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Summary

This thesis explores the various aspects of utilizing topology optimization in de-
signing nanophotonic devices. Either frequency-domain or time-domain meth-
ods is used in combination with the optimization algorithms, depending on
various aims of the designing problems.

The frequency-domain methods are appropriate for problems where the power
is to be maximized or minimized at a few frequencies, without regards on the
detailed profile of the optical pulse or the need of large amount of frequency
samplings. The design of slow light couplers connecting ridge waveguides and
the photonic crystal waveguides is showcased here. It is demonstrated both
numerically and experimentally that the optimized couplers could improve the
coupling efficiency prominently.

With more focus on the time-domain optimization method, the thesis dis-
cusses extensively the design of pulse-shaping filters, which greatly exploits
the benefits of time-domain methods. Finite-difference time-domain method
is used here as the modeling basis for the inverse problem. Filters based on
both one-dimensional gratings and two-dimensional planar structures are de-
signed and different issues regarding local minima, black and white design,
minimum lengthscale and flexible pulse delay are addressed to demonstrate
time-domain based topology optimization’s potential in designing complicated
photonic structures with specifications on the time characteristics of pulses.
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Resumé

Denne afhandling udforsker forskellige aspekter af anvendelsen af topologiop-
timering ved design af nanofotoniske komponenter. Der anvendes enten en
frekvensdomæne- eller en tidsdomænemetode i kombination med optimeringsal-
goritmerne, afhængigt af de forskellige mål for designopgaverne.

Frekvensdomænemetoderne er hensigtsmæssige til problemer hvor effekten skal
maksimeres eller minimeres ved nogle f̊a frekvenser, uden at tage hensyn til
den detaljerede profil af den optiske puls eller behovet for mange frekven-
skomposanter. Designet af koblere til ”langsomt lys”, der forbinder normale
kantbølgeledere og fotoniske krystalbølgeledere er behandlet her. Det er demon-
streret b̊ade numerisk og eksperimentelt at de optimerede koblere kan forbedre
koblingens effektivitet markant.

Med fokus p̊a tidsdomæneoptimeringsmetoden diskuterer afhandlingen omfat-
tende designet af pulsformgivningsfiltre, som i høj grad udnytter fordelene ved
tidsdomænemetoderne. ”Finite-difference time-domain” metoden er anvendt
som modelleringens fundament for det inverse problem. Filtre baseret p̊a b̊ade
én-dimensionelle gitre og to-dimensionelle plane strukturer er blevet designet,
og forskellige problemer vedrørende lokale minima, sort/hvidt design, mindste
længdeskala og variable pulsforsinkelser er blevet adresseret. Hensigten er at
demonstrere potentialet for tidsdomænebaseret topologioptimering ved design
af komplicerede fotoniske strukturer til frembringelse af lyspulser med speci-
fikke af tidskarakteristikker.
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Resumé iii

Publications and conference contributions v

Acknowledgements vii

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Thesis structure . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Topology optimization 7
2.1 Basics of topology optimization . . . . . . . . . . . . . . . . . . 8
2.2 Comparisons to genetic algorithms . . . . . . . . . . . . . . . . 10
2.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3 Maxwell’s equations and their numerical solutions 13
3.1 Maxwell’s equations . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2 Finite element method . . . . . . . . . . . . . . . . . . . . . . . 17

3.2.1 Helmholtz equation . . . . . . . . . . . . . . . . . . . . 17
3.2.2 Discretization . . . . . . . . . . . . . . . . . . . . . . . . 19

3.3 Finite-difference time-domain method . . . . . . . . . . . . . . 20
3.3.1 Maxwell’s equations reduction to 2D and 1D . . . . . . 20
3.3.2 The Yee grid and the leap frog scheme . . . . . . . . . . 20
3.3.3 FDTD update equations . . . . . . . . . . . . . . . . . . 22
3.3.4 Stability criteria . . . . . . . . . . . . . . . . . . . . . . 24
3.3.5 Absorbing boundary conditions . . . . . . . . . . . . . . 25

3.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26



x CONTENTS

4 Frequency-domain topology optimization 27
4.1 Rationale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.2 Design and fabrication of slow light couplers . . . . . . . . . . . 29

4.2.1 PhCW with round holes . . . . . . . . . . . . . . . . . . 30
4.2.2 PhCW with ring-shaped holes . . . . . . . . . . . . . . . 33

4.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5 1D time-domain topology optimization 39
5.1 Problem formulation . . . . . . . . . . . . . . . . . . . . . . . . 39
5.2 Sensitivity analysis . . . . . . . . . . . . . . . . . . . . . . . . . 40
5.3 Proof of concept . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.4 Optimization of 1D pulse-shaping filters . . . . . . . . . . . . . 43

5.4.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.4.2 Objective function . . . . . . . . . . . . . . . . . . . . . 44

5.4.2.1 Envelope objective function . . . . . . . . . . . 44
5.4.2.2 Sensitivity analysis for the envelope objective

function . . . . . . . . . . . . . . . . . . . . . . 45
5.4.2.3 Explicit penalization . . . . . . . . . . . . . . . 46
5.4.2.4 Modified objective function . . . . . . . . . . . 48

5.4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

6 Minimum lengthscale control and black/white designs 51
6.1 Test problem formulation . . . . . . . . . . . . . . . . . . . . . 53
6.2 SIMP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
6.3 Density filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
6.4 Sensitivity filters . . . . . . . . . . . . . . . . . . . . . . . . . . 59
6.5 Explicit penalization . . . . . . . . . . . . . . . . . . . . . . . . 60
6.6 Modified Heaviside filters . . . . . . . . . . . . . . . . . . . . . 62
6.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

7 2D Time-domain Topology Optimizations of Pulse-shaping Fil-
ters 67
7.1 The inverse problem . . . . . . . . . . . . . . . . . . . . . . . . 68
7.2 Square-pulse filters . . . . . . . . . . . . . . . . . . . . . . . . . 68

7.2.1 Original problem formulation . . . . . . . . . . . . . . . 69
7.2.2 Delay variable . . . . . . . . . . . . . . . . . . . . . . . 69
7.2.3 Transmission efficiencies for the filters . . . . . . . . . . 72
7.2.4 Minimum length-scale control and black/white design . 73
7.2.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

7.3 Saw-tooth filters . . . . . . . . . . . . . . . . . . . . . . . . . . 75
7.4 Pulse-splitting filters . . . . . . . . . . . . . . . . . . . . . . . . 76
7.5 Thresholded performance . . . . . . . . . . . . . . . . . . . . . 76
7.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

8 Conclusions and future work 79



CONTENTS xi

A Sensitivity analysis for topology optimizations based on finite-
difference time-domain method 83
A.1 Sensitivities for 1D problems . . . . . . . . . . . . . . . . . . . 83

A.1.1 Problem formulation . . . . . . . . . . . . . . . . . . . . 83
A.1.2 Definition of sensitivities . . . . . . . . . . . . . . . . . . 85
A.1.3 The finite difference method for calculating sensitivities 85
A.1.4 1D sensitivity analysis by using the adjoint-variable method 86

A.1.4.1 Derivation of the implicit sensitivity term . . . 86
A.1.4.2 Derivative residual . . . . . . . . . . . . . . . . 89
A.1.4.3 The adjoint problem . . . . . . . . . . . . . . . 91
A.1.4.4 The adjoint current . . . . . . . . . . . . . . . 93
A.1.4.5 Implementation of sensitivity analysis using the

adjoint-variable method . . . . . . . . . . . . . 94



xii CONTENTS



Chapter 1

Introduction

1.1 Motivation

The inventions of semiconductor lasers and optical fibers in the 1960s and
1970s mark the inception of the photonics research. As the under-sea optical
fibers convey gigabytes of data with light signals across the globe every second,
photonic devices gradually took over the stage of telecommunication which
was previously dominated by their electronic counterparts. Although telecom-
munication became the prime arena for photonics, other non-communication
applications, including fiber sensors, non-linear optics and bio-optics, also ben-
efitted from this new field of research. Guided-wave devices started to gain the
attention of academia and industry for their low loss and high bandwidth char-
acteristics. In a planar waveguide, light is confined by total internal reflection
(TIR) in a small modal region inside the high-index semiconductor materials
instead of being guided by discrete lenses and mirrors as in bulk optics. Pla-
nar waveguides transform photonic devices into compact chip sets with more
stability and less power consumption and are widely deployed instead of tra-
ditional optical components in emission, transmission, amplification, detection
and modulation of light.

Researchers looked into different semiconductor materials in order to find a
good platform for realizing various photonic functionalities. III-V semicon-
ducting compounds and other crystals like lithium niobate (LiNbO3) were the
prime candidates in the early years, either due to their direct band gaps for
light emission and detection, or for the Pockels effect crucial in modulation
and switching. On the other hand, silicon has long been established as the
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dominant material in the electronics industry. It is a cheap crystal with robust
quality, and its complementary metal-oxide-semiconductor (CMOS) foundry
technology has been well-established and is capable of high volume manufac-
turing. Naturally, it would be a cost-effective and an elegant solution if silicon
photonic components would be readily available to integrate with the existing
material platform of electronics. In the 1980s, the potential of silicon photon-
ics surfaced with the material’s newly recognized transmission transparency in
the telecommunication wavelength (1.3µm ∼ 1.55µm). Moreover, waveguides
built on silicon-on-insulator (SOI) platform are able to guide light at a very
low propagation loss due to the large index contrast between the waveguide
core and its silica claddings. Gradually, silicon becomes a prominent candidate
for photonic devices. Various efforts were devoted to design and fabrication of
silicon-based photonic devices that are compatible with the standard CMOS
technology for electronics. Even though bulk crystal silicon does not have a di-
rect band gap for easier light emissions or Pockels effect for enabling switching
functions, alternative properties of silicon are being explored to devise silicon-
based photonic components including switches, modulators and detectors. On
another end, progress in heterogeneous integration between active materials
and SOI [1][2] also makes it possible to group function blocks of different mate-
rials on the same photonic chip. As of today, silicon has become the dominant
photonic material for optoelectronic integrated chips (OEIC) and photonic inte-
grated chips (PIC), and the progress in silicon photonics exhibits the potential
to finally combine best of two worlds: electronics and photonics.

With the ever increasing internet traffic in this multimedia era, larger band-
width is required on the existing fiber network. Researchers are striving to
achieve both higher transmission speed per wavelength channel as well as a
bigger number of wavelength channels transmitted per fiber. As these high-
speed systems are being developed, the electronic components are pushed to-
wards their speed limit. Devices like switches which can operate extremely
fast became the new research direction, where there will be less need to con-
vert light to electricity and vice versa. As the trend for further integration
of electronics and photonics progresses, the need for additional reduction of
the sizes of photonic components strengthens. Even though the cross-section
for silicon waveguides has reduced significantly due to improvement of surface
roughness in the fabrication process, traditional waveguides structure still faces
a road block. Total internal reflection, which allows light to propagate along the
waveguide, requires large incident angles as light zigzags inside the chamber.
This fundamentally puts a lower limit on the curvature of waveguide bends,
and hence obstructs further miniaturization of photonic devices.

Photonic crystals (PhC) came into sight in 1987 [3][4], and gradually gained
significant attention after 2000. Dielectric materials are arranged periodically
in specific lattice patterns, much like atoms in the crystalline structures in
solids. By simulating the crystal structures and expressing them on a more
macroscopic level, these artificial crystals then acquire a bandgap for light in a
certain frequency range, similar to the electronic bandgap in semiconductors.
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This photonic bandgap forbids photons to propagate through the bulk crystal.
Hence by making a line defect in a bulk PhC, light will be trapped inside the
line defect, forming an effective waveguide. Since light is strongly confined in
the defect, waveguides can now have much sharper turns without loosing too
much light due to scattering. This invention potentially paved the way for
designing compact photonic circuit layout in a small chip area, thus effectively
counters the size issues of optoelectronic integrated circuits.

Interests have been garnered around further improving these PhC components
in regards to lower loss, higher bandwidth and other desirable properties. The
large amount of scatters existing in these devices naturally provides a rich pos-
sibility of re-arranging the rods and holes to fine tune the device performances.
Various attempts have been made at adjusting the lattice structure locally to
improve the device performance, based on some basic physical arguments. For
example, coupled-mode theory is applied in designing efficient PhC-based Y-
junctions [5] and high-transmittance waveguide bends [6][7][8]. Small holes,
either uniform or adiabatically-arranged, are introduced along the defect or in
the vicinity of the bends to assist gradual modal conversion. Known frequency
shifts between the crystals’ different lattice periodicities or various propagation
modes give rise to a mean of manipulating the band diagrams of the structure
by dislocating parts of the lattice [9] or by inserting a roll of small holes midst
of a waveguide to prohibit a multimode from forming [10]. Resonance cavities
are produced around the bends or splitter junctions to properly couple the
light from the input waveguide to the output waveguide(s) around a waveguide
bend [11] or a power splitter [12]. Apart from these physical arguments, intu-
itive geometrical assumptions are also used to create functional features in the
structure. For a more efficient PhC waveguide bend, critical holes/rods that
are originally located on the lattice points, are rearranged around the bends
[13] or join together [14] to form a ’smoother’ corner for light to pass through.
For most of the above-mentioned applications, the details of the geometrical
maneuver, i.e. the size of the new holes, the extent of the lattice dislocations or
the exact cavity geometry, are selected empirically and largely determined in
a trial-and-error process. Physical arguments used to envision the functional
geometries, while useful at times, do not guarantee optimal performance. The
transmission, bandwidth and the reflection are highly sensitive to small vari-
ations in the geometry, which calls for a more rigourous design methodology.
The procedure also lacks generality, which prohibits its further extension to
more complex function blocks. More systematic measures are also available.
Instead of choosing which holes to move around based on crude arguments, sen-
sitivity analysis can be used where small variations are exerted to the positions,
sizes or material composition of specific lattice site and the device performances
are evaluated accordingly [15]. Such a method quantitatively determines the
most influential geometrical features to which the device performance is most
susceptible. On another end, stochastic optimizations (simulated annealing,
evolutionary algorithms, etc.) are utilized to find the optimal sizes or locations
of the holes/rods around the bends or splitter joints in order to improve the
transmission in a PhC waveguide bend [16] and a PhC-based power divider
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[17]. Although effective in finding a better layout with improved performances,
the number of design variables allowed in stochastic optimization methods is
usually very limited (see section 2.2 for arguments). For one-dimensional grat-
ing design problems, these methods are adequate if relatively few layers of
the gratings are needed [18]. For two-dimensional design problems where the
geometries are more complex than their one-dimensional counterparts, the op-
timization processes are often reduced to simplified shape optimizations. The
design variables are sizes or material distributions of the lattice sites instead
of the complete design domain where neither the boundaries of the features
nor their connectiveness is known a priori. The full topology is mapped by
projecting these few design variables to the whole domain. Intuitively, we may
assume that there exists a better solution with a topology containing more ir-
regular shapes than round holes. In 2004, Sigmund and Jensen proposed using
topology optimization (TO) to optimize the PhCW bends [19]. By using a
systematic algorithm, a more optimal solution which contains topologies not
confined by predetermined shapes was found. Soon, TO was utilized to design
more PhCW-based devices [20][21][22][23][24]. More application areas includ-
ing designing photonic crystal cell geometries with optimal planar bandgap
structures [25] as well as high Q-factor PhC microcavities [26] also emerged.
TO has been proven an efficient tool to optimize a design region as part of
the whole PhC component in order to improve the device performance without
compromising the bandgap properties of the original device.

Previously, TO of photonic devices was mainly based on frequency domain
method. In this thesis, we explore the possibilities of designing nanophotonic
devices using the combination of TO and the finite-difference time-domain
method (FDTD). FDTD-based TO was first exemplified by Nomura in the
design of broadband dielectric resonator antennas [27]. To further examine
the scope and feasibility of this optimization method, we aim at designing
two-dimensional (2D) planar pulse-shaping filters and focus on the temporal
conversions between the input and output pulses.

Various pulse-shaping filters were used in telecommunications, nonlinear optics
and biomedical imaging. For example, in high-speed optical communication
systems, well-defined temporal square wave pulses as switching signals are es-
sential in counteracting timing jitter problems. The most-employed technique
for ultrafast pulse shaping is Fourier synthesis [28]. It is based on spatial filter-
ing of optical frequency components and is implemented by a relatively intri-
cate system comprised of discrete optical components like diffraction gratings,
lenses and phase/amplitude spatial masks. Another more intuitive method is
by combining interferometers and delay lines [29]. By coherently and succes-
sively delaying the Gaussian-like input pulse and then superimposing the de-
layed pulses, arbitrary pulse shapes can be achieved depending on the amount
of delay. Apart from discrete systems, fiber gratings-based filters have also be-
come prime candidates since they are more stable and more coupling-friendly
with the planar waveguide systems. Several methods exists for designing fiber
gratings. Electromagnetic inverse scattering is used by matching the spacial
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refractive index modulation profile to that of the spectral impulse response of
the desired transfer function between the input and the output pulse. The
modulation profile is then expressed in a superstructured fiber Bragg grating
that acts as a spatial filter for shaping pulses [30]. The layer peeling method
was developed by geophysicists to examine the physical properties and struc-
tures of the layered media where waves propagate. It was later incorporated by
Feced [31] and Skaar [32] to determine the layered structure of fiber gratings
that have a specific spectral response. However, both methods are confined
to one-dimensional (1D) layered systems and cannot be applied to designing
filters based on two-dimensional planar structures.

FDTD-based TO is used here to design the layout of pulse-shaping filters based
on 2D planar SOI waveguides. Such devices have the potential to be directly
integrated with other waveguide systems on OEICs and PICs.

1.2 Thesis structure

The thesis is structured as follows.

We start out by briefly describing the basic concepts and advantages of topol-
ogy optimization in chapter 2. Chapter 3 deals with the modeling perspectives
of our implementation, and gives a practical account of finite element method
(FEM) and finite-difference time-domain method. Frequency-domain TO is
showcased in chapter 4 to optimize slow-light couplers between ridge waveg-
uides and PhCW, with round holes as well as ring-shaped holes in the lattice.
Chapter 5 to Chapter 7 present the methodology and results of topology op-
timization based on FDTD. 1D grating design problems are presented and
discussed in chapter 5. In order to achieve practical designs that can eventu-
ally be fabricated on the 2D SOI platform, Chapter 6 details the technical tools
we use to ensure minimum length-scale control and black/white design. The
results for 2D pulse-filtering designs are presented in Chapter 7. In chapter 8,
the results for the thesis are summarized and the conclusions drawn. In the
appendix, detailed derivation sensitivity expressions using the adjoint-variable
method is presented.
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Chapter 2

Topology optimization

Just as the microstructures in a material determines its physical properties,
specific geometrical layouts of a macroscopic structure also decide its behav-
iors and performances to a great extent. Researchers have long been using
mathematical programming to find optimal compositions of materials to im-
prove various characteristics of structures. Techniques for structural optimiza-
tion have stridden from linear programming to nonlinear programming, from
optimizing shapes and sizes to optimizing layouts where sizes, shapes and con-
nectivity of the features are all unknowns, and from small-scaled and simple
mechanical models to large and multiphysics problems.

Two main strategies exist in optimizing topological features of a structure. One
of them is to generate a set of individual solutions based on certain heuristic
algorithms, and to evaluate them in order to select the best ranked solution.
The generation of these solutions is usually based on a stochastic process.
Among this class of probabilistic optimizers [33][34][35][36][37], genetic algo-
rithms (GA) which is inspired by evolutionary processes is a strong contenders.
The other type of optimization resorts to a continuous process, where inter-
mediate solutions are produced according to the gradient information from
the previous iteration. These intermediate solutions do not necessarily present
physical structures on their own, but with proper penalization and controls,
they gradually converge to a final physical solution, which is considered an op-
timum. Of the latter, topology optimization (TO) is a popular method that has
been proven its efficacy in many problems. It was first introduced by Bendsøe
and Kikuchi [38] in 1988 on material distribution problems using composite
materials. By distributing material freely in the design domain, TO has been
utilized in optimizing various physical quantities (compliance, displacement,
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stress and etc.) in mechanical structures. Since its inception, the technique
has undergone great development and has been expanded to multiple physics
problems including Stokes flow problems, heat conduction problems, wave prop-
agation problems and etc. [39]. Its versality lies in the utilization of the adjoint
method [40] to retrieve sensitivities in an efficient manner.

As the modern fabrication technology advances, production of artificial micro-
scopic features down to the size of several nanometers becomes feasible. It not
only provides the human beings with new dimensions of controlling objects and
energy in a minuscule way not fathomable before, but also naturally broadens
the realm in which TO is applicable. For example, TO has been used to op-
timize electrothermomechanical in a microelectromechanical system (MEMS)
[41]. Photonic crystal waveguide termination has been design to have a much
larger directional emission [42]. TO has also revealed some interesting link be-
tween the optimal cell structure design for PhCs and geometrical tessellation
methods [25]. Apart from the common formulation where frequency-domain
methods are used, TO has also extended to time-domain method. Nomura
has used FDTD-based TO in antenna design [27], and Dahl did a pilot study
of a transient topology-optimization approach in one-dimensional photonic de-
vices [43]. For a more comprehensive review over TO applications in designing
photonic devices, please refer to [44].

In this chapter, we familiarize the readers with basic concepts of topology
optimization. A brief comparison between TO and one of the other major
optimization algorithms, genetic algorithms, is also presented.

2.1 Basics of topology optimization

In this section, we first list the terminologies of some basic concepts in TO
to assist the readers with understanding of this thesis. An flow chart for the
general TO process is drawn afterwards.

Design domain : The design domain is the geometric volume, area or dis-
tance where the optimization algorithm distributes material within and
is a part of the total calculation domain. The domain is discretized into
elements or grid points which are not only the basic building blocks for
the numerical modeling process, but also manifest the updated physical
properties in each intermediate topology.

Densities (ρρρ) : This is a vector of N variables that are being directly up-
dated by the optimization algorithm, N being the total number of design
variables in the design problem. In most cases, each design variable (ρi)
corresponds to the physical properties of a single element/grid point (xi)
in the design domain through a certain material interpolations. The most
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straight forward material interpolation, for a two-phases dielectric mate-
rial design problem for example, renders the relationship between the
densities (in this case the electrical permittivities) and the local permit-
tivities as such: xi = εr

2 + (εr
2 − εr

1)ρ. Here, εr
2 and εr

1 are the higher
and lower relative permittivities of the two design materials, and i is the
order of the element/grid point in the design domain. The local material
property takes the form of the high refractive index material if ρ equates
to 1, low refractive index material if ρ is 0, and linearly scales in between
the two materials when ρ is otherwise.

Objective function (F (ρρρ)) : The objective function is a function depend-
ing explicitly and/or implicitly on the design variables. It evaluates the
global fitness of the current solution. For mechanical problems, it can be
the compliance of the structure, the displacement at a certain structural
point, or in a more complicated case, the crashworthiness of a car. In a
wave propagation problem, it can be the energy flow through a certain
port, or the band gap size of a bulk photonic crystals. The aim of the op-
timization can be to minimize or maximize the objective function value,
which should gradually converge through the optimization process.

System equations : The system equations are what the numerical modeling
of the structure must adhere to. For wave propagation problems, they
can be e.g. Helmholtz equations or Maxwell’s equations.

Constraints : The minimization or maximization of the objective function
value is usually not without constraints for mechanical problems. Such
constraints are usually constituted of volume, stress, or displacement.
In wave propagation problems, volumetric constraints are less pertinent
since there is marginal difference in how much dielectric material is present
in the final design as long as the design domain is fixed. However, con-
straints might be added as a numerical maneuver, e.g. to improve con-
vergence.

Sensitivities (∂F
∂ρρρ ) : Explicit derivatives of the objective function (F (ρρρ)) and

other constraints with respect to ρρρ. It is a quantitative measure of how
individual design variables impact the design goals. According to the
theory of adjoint-variable analysis [45], at most two system analyses are
needed to compute all sensitivity information in a structure to a certain
response.

Figure 2.1 is a flow chart for a typical TO process. Here we use the method of
moving asymptotes (MMA) as the mathematical programming tool to update
the design variables [46]. MMA approximate the smooth, non-linear optimiza-
tion problems with a sequence of simpler convex subproblems. These subprob-
lems are constructed based on sensitivity information at the current iteration
as well as the previous few iterations. MMA has been used with TO techniques
in many applications and has demonstrated its efficiency and stability in solv-
ing optimization problems with many design variables and very few constraints
[39].
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Start with an initial topology

Do the system analysis on the

current design

Calculate the objective

function, constraints, and their

sensitivities with respect to the

design variables

Are the changes in design

variables small enough?

Compute the new design

variables using MMA

No

Yes

End of

optimization

Figure 2.1: The flow chart of a typical topology optimization process.

2.2 Comparisons to genetic algorithms

Genetic algorithm (GA) is one of the major contenders in solving inverse prob-
lems [34][33]. It is an evolutionary optimization method based on Darwinian
survival-of-fittest principle. The design variables are assembled into a vector
as one candidate solution, termed an individual. The population consists of a
number of individuals, which are usually generated randomly in the beginning
of the optimization. In each generation, the fitness of each individual is eval-
uated by a fitness function. Individuals who perform well on this evaluation
will be selected to breed a new generation. There are several genetic operators
which transform the current selected individuals in order to render the next
generation. The most used operators are: 1. crossover (mating), where two or
more of the individuals in the selected population are combined according to
certain rule to form a new individual, much like the mating process in nature.
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This process makes sure that the good genomes are kept throughout the gener-
ations, so the average ’fitness’ among the population is guaranteed to improve;
2. mutation, where parts of the individual are swapped to different values. Mu-
tation maintains the diversity of the population, which helps the optimization
look beyond the nearby local minima and hopefully reach towards the global
minimum.

Several pioneering experiments have been done to apply GAs to the design of
photonic devices. Goh et. al. proposed using genetic optimization for one-
dimensional (1D) and two-dimensional (2D) photonic bandgap structures [47].
In 1D, the widths of 20 or so dielectric stacks are being optimized, while in
2D, the radii of the 9 holes in a subcell are optimized in order to design a
large-bandwidth bulk material.

GAs have the following advantages:
1). The bitstring representation of the solutions (chromosomes) fits well with
binary optimization problems. No special care needs to be taken to ensure the
final design consisting of only two distinctive materials (0/1 design).

2). The problem formulation is flexible. As soon as a fitness function can be
defined, it can be used as a merit function to evaluate a design and ultimately
guide the optimization to an optimal design. For example, if the electrical
(E) fields can be calculated for a design, optimizations can be done directly
to alter the distribution of E, or its Fourier transformation in the frequency
space. Since gradient information is not needed here, more complex objective
function can be applied without regarding whether its derivatives to the design
variables exist.

However, GAs also have several major disadvantages:

1. The greatest setback of GAs is their intimidating computational expenses.
The number of system analyses needed in the optimization process of GA is
the product of the population size (the number of candidate solutions in each
generation) and the total number of generations. A sufficiently large S to
explore enough solution space is needed, and a certain number of generations
are also necessary for the optimization to converge to a reasonable design.
For large topological problems where the number of design variables is usually
in the order of hundreds of thousands, both population size and generations
needed grow exponentially with the problem size, making the computational
load astronomical. This drawback largely limits the range of problems GAs can
solve in the field of nano-photonics. For example, while a unit cell structure
with varying sizes of holes can be optimized by GAs by projecting a few design
variables to a full array of periodic cells, a full 2D/3D inverse scattering problem
where the periodicity is to be broken is far too computationally heavy to be
solved by GAs.

2. Tuning of the parameters. GA is quite sensitive to several parameters,



12 Topology optimization

e.g. the population size, the rate of mutation, the crossover probabilities and
etc.. These parameters are generally problem specific and thus can be tedious
to adjust properly. For TOs, when used with a robust SLP algorithm, the
optimization usually converges well as long as the objective function is properly
designed and scaled.

Even though TO and GA are vastly different optimization methods, one prob-
lem is common to them: both are easy to fall prey to local minima if the
problem is non-convex. These iterative methods are generally ”short sighted”,
hence devising a good objective function/fitness function that is well regulated
is crucial in obtaining a good design.

2.3 Conclusions

We gave a brief overview of the basic concepts of topology optimization method
and its merits. By using intermediate values, a piece-wise constant variable is
formulated as a continuous variable, which makes the optimization a contin-
uous process. The adjoint-variable method is used to derive the sensitivity
information from just two system analyses, which makes efficient topology op-
timization a possibility. The method of moving asymptotes, a mathematical
programming tool, has been proved efficient to work with typical topology op-
timization problems with many design variables but few constraints. A short
analysis was presented to compare TO with GA, a popular stochastic opti-
mization method. GA provides a flexibility when formulating a design prob-
lem, since it doesn’t require the underlying problem to be differentiable, and
no sensitivity expressions need to be derived. It also naturally fits the scope of
multi-phase optimizations, since each one of its candidate solutions is already
a physical topology and thus no need for further procedures to make sure that
intermediate materials are eliminated. However, the number of GA’s fitness
evaluations has an exponential dependence on the number of design variables,
which largely limits the scope of applications where GA is feasible.



Chapter 3

Maxwell’s equations and their
numerical solutions

Ever since James Clark Maxwell’s seminal paper in 1861 [48], Maxwell’s equa-
tions have been deemed as the governing equations of interactions between
electric- and magnetic-fields (EM) around their sources. Solutions to Maxwell’s
equations guide scientists in understanding and exploring natural phenomena
as well as spearheading many of the most exhilarating inventions in human
history, among them telephone, radar and modern telecommunication. How-
ever, until 1960s, the solutions to Maxwell’s equations were mainly analytical
ones. The availability of these solutions as well as the feasibility of solving them
depend greatly on the complexities and the sizes of the structures of interest.
Numerical solutions, while being the clear candidate for its potential in solv-
ing problems with more complicated boundary conditions and parameters, are
essentially impossible to implement due to limited computational means. This
renders it difficult to study the EM wave problems full vectorially and limits the
further understanding of optically large and complex structures. Fortunately,
with the advent of powerful digital computers and advanced programming lan-
guages, researchers are able to implement various numerical solutions to study
EM wave problems with intricate geometries.

Two main classes of EM solvers exist, categorized by the forms in which
Maxwell’s equations are formulated. One of them solves the integral form
of Maxwell’s equations, and includes methods like method of moments (MoM)
[49], fast multipole method (FMM) [50], and plane-wave time-domain method
(PWTD) [51]. These methods only require discretizations on the surface of the
structure instead of the whole volume, thus decreasing the complexity of the



14 Maxwell’s equations and their numerical solutions

solution. However, many of these solvers (e.g. MoM and FMM) depend on the
calculation of Green’s functions on each subdomains, which limits their gener-
ality in more complicated scattering problems. The other class of solvers are
based on the partial differential equation (PDE) form of Maxwell’s equations,
wave equations or Helmholtz equations. These include finite-difference time-
domain method (FDTD) [52][53][54], finite-element method (FEM) [55][56],
finite-element time-domain method (FETD) [57] [58] and finite-volume time-
domain method (FVTD) [59][60]. These methods discretize the space volumet-
rically.

The above mentioned PDE solvers can be further classified into time-domain
methods (FDTD, FETD and FVTD), and frequency-domain methods (FEM).
The frequency-domain methods solve one frequency at a time, and is faster
if only a few frequencies are requested for solutions. Meanwhile, the time-
domain methods solves a wide band of frequencies in one go, and is naturally
more efficient when broadband calculations are needed.

Introduced in 1966 by Yee [52] and heralded by Taflove [54], FDTD method has
proved its efficacy in simulating wave propagations and scatterings in the optics
domain. One of the main challenges for FDTD when it comes to modeling com-
plicated structures is that it uses the uniform Cartesian grid for discretization.
For layouts where curved material boundaries are abundant, e.g. photonic crys-
tals, a staircasing scheme is usually taken to approximate these boundaries in a
saw-tooth manner. This kind of approximation destroys the second-order accu-
racy of the algorithm [61]. On the other hand, FEM, FETD and FVTD all work
with unstructured grids. These grids are especially desirable if different resolu-
tions are needed across the calculation domain. In an unstructured grid, finer
subdomains can be allocated around the irregular discontinuities to improve
the accuracy of the approximation, while larger elements are used elsewhere
to maintain the computational efficiency. In many finite-element implementa-
tions, the meshes can be generated in such an adaptive manner automatically.
However, compared to FDTD, FEM, FETD and FVTD methods are not as
efficient when it comes to computation resources. Take FETD for example, it
requires the solution of a sparse linear system at each time step, which pro-
duces a bottleneck for the solver when the size and complexity of the problem
scales up. Various efforts have been attempted to speed up the matrix solu-
tion, e.g. by using mass lumping [62][63]. Compared to matrix-based methods,
FDTD also has the benefits of being highly parallelizable. Moreover, as a time-
domain method, nonlinearity and time-varying scatters are much more easily
implemented in FDTD than in a frequency-domain method, e.g. FEM. Hybrid
methods which combine FDTD with other methods exist, where FDTD on
uniform grids is used in large homogeneous volumes and FEM/FETD/FVTD
on unstructured grids is applied near complex material boundaries [64][65][66].
Subgridding can also be applied, where parts of the domain are discretized by
finer Cartesian grids, thus reserving the structured nature of FDTD [67][68].
This strategy, however, introduces spurious reflections and is not very sta-
ble. Adaptive meshes/subgriddings, however, are difficult to apply efficiently
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in topology optimization processes, where the layout of the structure alters in
each optimization iteration. The constant changes render the original adaptive
mesh or subgridding invalid due to the change of locations of the discontinu-
ities. Re-meshing in between the iterations is possible, but it is computational
expensive and thus counteracting the improved calculation efficiencies brought
about by adaptive meshing. More importantly, by refining mesh around mate-
rial boundaries, more detailed features are encouraged to appear in these areas,
making convergence of the optimization difficult.

In this chapter, we introduced the basis of FEM and FDTD methods which are
the underlying modeling techniques for the topology optimizations presented
in this thesis. Both methods are derived from the differential form of Maxwell’s
equations, but FEM solves the de-coupled Helmholtz equation which is time-
independent, while FDTD solves both electric- and magnetic-fields in the time
domain. Since the main focus of this thesis is on topology optimization based
on time-domain methods, FEM is only going to be very briefly addressed, while
more detailed aspects of FDTD are presented and discussed here.

3.1 Maxwell’s equations

Maxwell’s equations are described as follows:

∂B
∂t

= −∇×E−M (Faraday′s law) (3.1a)

∂D
∂t

= ∇×H− J (Ampere′s law) (3.1b)

∇ ·D = ρ (Gauss′s law for the electric field) (3.1c)
∇ ·B = 0 (Gauss′s law for the magnetic field) (3.1d)

where,
E is the electric field (in [V/m])
H is the magnetic field (in [A/m])
D is the electric flux density (in [C/m2])
B is the magnetic flux density (in [Wb/m2])
µ is the magnetic permeability (in [H/m])
ε is the electric permittivity (in [F/m]).
J is the electric current density (in [A/m2])
M is the equivalent magnetic current density (in [V/m2])
ρ is the electric charge density (in [C/m3]).

Note that all of the above fields, current density and flux variables have de-
pendence on time (t). However, the time dependence is eliminated from the
notation for convenience in the following text.
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For linear, isotropic and nondispersive material, the fluxes and fields assume
the following relationships:

D = εE (3.2)
B = µH

By allowing materials with isotropic, nondispersive electric and magnetic losses
that attenuate E and H fields via conversion to heat energy, we have:

J = Jsource + σE (3.3)
M = Msource + σ∗H

where σ is the electric conductivity (in [S/m]), and σ∗ is the equivalent mag-
netic loss (in [Ω/m]).

By applying the relations in equations 3.2 and 3.3 onto equations 3.1a and 3.1b,
the Maxwell curl equations boil down to:

∂H
∂t

= − 1
µ

(∇×E)− 1
µ

(Msource + σ∗H) (3.4a)

∂E
∂t

=
1
ε
(∇×H)− 1

ε
(Jsource + σ∗E) (3.4b)

By expanding the vector components of the right hand side of the above two
equations, we have the following set of scalar equations:

∂Hx

∂t
= − 1

µ
[
∂Ey

∂z
− ∂Ez

∂y
− (Msourcex + σ∗Hx)] (3.5a)

∂Hy

∂t
= − 1

µ
[
∂Ez

∂x
− ∂Ex

∂z
− (Msourcey + σ∗Hy)] (3.5b)

∂Hz

∂t
= − 1

µ
[
∂Ex

∂y
− ∂Ey

∂x
− (Msourcey + σ∗Hz)] (3.5c)

∂Ex

∂t
=

1
ε
[
∂Hz

∂y
− ∂Hy

∂z
− (Jsourcex + σEx)] (3.5d)

∂Ey

∂t
=

1
ε
[
∂Hx

∂z
− ∂Hz

∂x
− (Jsourcey + σEy)] (3.5e)

∂Ez

∂t
=

1
ε
[
∂Hy

∂x
− ∂Hx

∂y
− (Jsourcez + σEz)] (3.5f)
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3.2 Finite element method

3.2.1 Helmholtz equation

The finite element method solves the decoupled Helmholtz equation in the
frequency domain.

Consider a lossless, source free, linear, isotropic and non-dispersive medium,
Eqn. 3.4b becomes:

1
ε
(∇×H) =

∂E
∂t

(3.6)

By taking the curls of both sides of the above equation, we have:

∇× (
1
ε
∇×H) = ∇× ∂E

∂t
=

∂

∂t
(∇×E) (3.7)

Substitute the curl of E in the above equation with Eqn. 3.1a and we have:

∇× (
1
ε
∇×H) =

∂

∂t
(−µ

∂H
∂t

)

= −µ
∂2H
∂t2

(3.8)

Similarly for the electric field, we have:

∇× (− 1
µ
∇×E) = ε

∂2E
∂t2

(3.9)

For dielectric materials which are of the main interest of this thesis, the per-
meability µ stays constant throughout the domain, and can thus be taken out
from the first curl on the LHS of the above equation. Thus, Eqn. 3.9 can be
rewritten as:

∇×∇×E = −µε
∂2E
∂t2

(3.10)

Now the electrical and magnetic fields are decoupled, unlike in the original
Maxwell’s equations. Let us assume that the fields have a harmonic dependence
on time. Take H for example:

H = H0e
−jωt,

∂H
∂t

= −jωH0e
−jωt = −jωH,

∂2H
∂t2

= (−jω)(−jωH) = −ω2H

(3.11)
where ω is the angular frequency (in [rad/s]).
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By inserting Eqn. 3.11 into Eqn. 3.8 and canceling out the time-dependence
terms from both sides, the equation for H field can eventually be written as:

∇× (
1
ε
∇×H) = µω2H (3.12)

Here H is shorthanded for H(x,y, z) where the dependence on time t is re-
moved.

Consider the following vector calculus identity:

∇× (ψA) = ψ∇×A +∇ψ ×A (3.13)

where ψ is a scalar field and A is a vector. By replacing ψ by 1
ε and A by

∇×H, the above relation renders Eqn. 3.12 as follows:

1
ε
∇× (∇×H) +∇1

ε
× (∇×H) = µω2H (3.14)

The triple vector product identity gives:

A× (B×C) = (A ·C)B− (A ·B)C (3.15)

where A, B and C are all vectors. By using this identity on both the first and
the second terms on the left hand side of Eqn. 3.14, it can be rewritten as
below:

1
ε

[∇(∇ ·H)−∇2H
]
+∇(∇1

ε
·H)−∇1

ε
· ∇H = µω2H (3.16)

Now consider the 2D TEz case where the structure is invariant in the z-direction
and extends to infinity along the z-axis. The magnetic field is reduced to one
non-zero component Hz and the permittivity (ε) has only dependence on the
x and y axes. Since Hx and Hy are both 0 while Hz is invariant along the
z-axis, the divergence of the H field (∂Hx

∂x + ∂Hy

∂y + ∂Hz

∂z is 0, rendering the term
∇(∇·H) null. Moreover, the gradient ∇1

ε has only components in the x and y
directions and is thus orthogonal to the H field which has only z component.
Hence the term ∇(∇ 1

ε ·H) is also 0. By removing the zero terms and replace
the vectorial magnetic field H by its component Hz, Eqn. 3.16 can be rewritten
for the 2D TMz case as follows:

1
ε
∇2Hz +∇1

ε
· ∇Hz = −µω2Hz (3.17)

It is easy to recognize that the left hand side of the above equation fits the
right hand side of the vector calculus identity stated below by replacing ψ by
1
ε and A by ∇Hz:

∇ · (ψA) = ψ∇ ·A +∇ψ ·A (3.18)
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By using the above relation, the 2D TEz Helmholtz equation can finally be
written in the compact form of:

∇ · (1
ε
∇Hz) + µω2Hz = 0 (3.19)

Using similar approaches, the 2D TMz Helmholtz equation can also be derived.
It results in the following form:

∇2Ez + µεw2Ez = 0 (3.20)

3.2.2 Discretization

In Jensen and Sigmund’s FEM modeling of the 2D photonic crystal problem
for their topology optimization technique [69], the computation domain is dis-
cretized into rectangular subcells. Each subcell contains a field unknown ue,
which are collected into the global field unknown vector u. Edge elements are
used in electromagnetic problems like ours in order to eliminate spurious modes
[70]. The transverse field across a subcell (ue) can be expressed as the super-
position of the related edge elements weighted by basis functions. By using a
weak form (integral form) of the governing equation and a standard Galerkin
method for discretization, the problem results in a set of linear equations:

(−w2M + iwC + K)u = f (3.21)

where f is the load term modeling the incident wave. Matrix K is the global
stiffness matrix and matrix M is the global mass matrix. Both matrix are
corresponding terms to the original Helmholtz equations of Eqn. 3.19 and Eqn.
3.20, and are assembled from the element matrices. The detailed formations
of these matrices are presented in [69]. Matrix C incorporates the absorbing
boundary conditions (ABCs) and material damping that are not present in
the original governing equation. Perfectly matched layers (PML) are used as
ABCs to decrease the reflections from the computational domain truncations.
Artificial material damping is also used in Sigmund and Jensen’s work in order
to avoid resonance-based local maxima and grey elements.

The general Galerkin method as well as FEM techniques can be referred to in
[71][55][56].
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3.3 Finite-difference time-domain method

3.3.1 Maxwell’s equations reduction to 2D and 1D

Assuming the structure extends to infinity in the z direction with uniform
transverse cross section, the z-derivatives in Maxwell’s equations Eqn. 3.5a
can be removed, resulting in two sets of 2D equations each of which contains
only three field components instead of six.

For transverse-magnetic mode with respect to z-axis (TMz mode), the equa-
tions involve only Hx, Hy and Ez:

∂Hx

∂t
= − 1

µ
[
∂Ez

∂y
+ Msourcex + σ∗Hx] (3.22a)

∂Hy

∂t
= − 1

µ
[
∂Ez

∂x
− (Msourcey + σ∗Hy] (3.22b)

∂Ez

∂t
=

1
ε
[
∂Hy

∂x
− ∂Hx

∂y
− (Jsourcez + σEz)] (3.22c)

For transverse-electric mode with respect to z-axis (TEz mode), the equations
involve only Ex, Ey and Hz:

∂Ex

∂t
=

1
ε
[
∂Hz

∂y
− Jsourcex ] (3.23a)

∂Ey

∂t
=

1
ε
[−∂Hz

∂x
− Jsourcey ] (3.23b)

∂Hz

∂t
=

1
µ

[
∂Ex

∂y
− ∂Ey

∂x
−Msourcez ] (3.23c)

For the 1D problem where the geometry has neither variations in y nor in z
directions, derivatives with respect to either y or z are removed. Maxwell’s
equations becomes:

∂Hy

∂t
=

1
µ

[
∂Ez

∂x
− (Msourcey + σ∗Hy)] (3.24a)

∂Ez

∂t
=

1
ε
[
∂Hy

∂x
− (Jsourcez + σEz)] (3.24b)

3.3.2 The Yee grid and the leap frog scheme

in 1966, Kane Yee introduced the Yee grid lattice [52] where the electric and
magnetic fields are positioned half a grid size apart from the neighboring fields
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(Fig. 3.1). The staggered manner of the field positions makes it natural to
use the central-difference scheme to approximate the partial derivatives of the
fields, and the results of this combination is a divergence free mesh in the
absence of free electric and magnetic charge (see Chapter 3 in [54]).

Figure 3.1: Electric and magnetic field positions on the 3D staggered Yee grid
lattice.

The fields are then updated in the time domain using a leapfrog scheme (Fig.
3.2), where all the E fields are calculated by using the previously stored H fields
data from half a time step ago, and vice versa for calculating the H fields. The
FDTD update scheme for x-directed 1D case is illustrated in Fig. 3.2 where
the locations of H and E in both time and space are staggered apart. The field
component at time step n∆t and grid point i∆x are denoted as un

i , where u
is either the electric- or magnetic- field and ∆t, ∆x are the time step size and
grid spacing, respectively.
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Figure 3.2: 1D leap frog update scheme on Yee grid.

3.3.3 FDTD update equations

For 2D cases, assume a square lattice where the grid spacings in both direc-
tions are the same: ∆x = ∆y = ∆. The locations of the three field compo-
nents for TMz mode are illustrated in Fig. 3.3. The Ez field is denoted as
Ez

∣∣n∆t
i∆,j∆ ; the Hx field is denoted as Hx

∣∣∣(n+ 1
2 )∆t

i∆,(j+ 1
2 )∆

; and the Hy field is denoted

as Hy

∣∣∣(n+ 1
2 )∆t

(i+ 1
2 )∆,j∆

. For simplicity reasons, the increment symbols ∆ and ∆t are

removed from the notation so the fields are shorthanded as: Ez

∣∣n
i,j , Hx

∣∣∣n+ 1
2

i,j+ 1
2

and Hy

∣∣∣n+ 1
2

i+ 1
2 ,j

.

Figure 3.3: 2D Yee grid for TMz mode.

Using the central difference approximation, the partial differential of a field at
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coordinates x = i∆, y = j∆ and time step n becomes:

∂u

∂t

∣∣n
i,j =

u
n+1/2
i,j − u

n−1/2
i,j

∆t
+ O[(∆t)2] (3.25)

By inserting the central difference expression into Eqn. 3.22a, we have:

Hx

∣∣∣n+1/2
i,j+1/2 −Hx

∣∣∣n−1/2
i,j+1/2

∆t
=− ∆

µi,j+1/2

(
Ez

∣∣n
i,j+1 − Ez

∣∣n
i,j

∆

+ Msourcex

∣∣∣n+1/2
i,j+1/2 + σ∗i,j+1/2Hx

∣∣∣ni,j+1/2

)

(3.26)

Since Hx field is only saved at half integer time steps (0.5∆t, 1.5∆t, etc.),
Hx

∣∣∣ni,j+1/2 is not readily available. By using a semi-implicit approximation
(see Chapter 3 in [54]), the value for the integer time step Hx can be deemed
as:

Hx

∣∣∣ni,j+1/2 =
Hx

∣∣∣n+1/2
i,j+1/2 + Hx

∣∣∣n−1/2
i,j+1/2

2
(3.27)

Substitute Eqn. 3.27 into Eqn. 3.26 and rearrange the equation, the value for
Hx

∣∣∣n+1/2
i,j+1/2 can be derived as:

Hx

∣∣∣n+1/2
i,j+1/2 =

(
2µi,j+1/2 − σ∗i,j+1/2∆t

2µi,j+1/2 + σ∗i,j+1/2∆t

)
Hx

∣∣∣n−1/2
i,j+1/2

− 2∆t

2µi,j+1/2 + σ∗i,j+1/2∆t

(
Ez

∣∣n
i,j+1 − Ez

∣∣n
i,j

∆

+Msourcex

∣∣∣n+1/2
i,j+1/2

)
(3.28a)

Similarly, equations 3.22b and 3.22c can be treated the same way and rewritten
as:

Hy

∣∣∣n+1/2
i+1/2,j =

(
2µi+1/2,j − σ∗i+1/2,j∆t

2µi+1/2,j + σ∗i+1/2,j∆t

)
Hy

∣∣∣n−1/2
i+1/2,j

+
2∆t

2µi+1/2,j + σ∗i+1/2,j∆t

(
Ez

∣∣n
i+1,j − Ez

∣∣n
i,j

∆

−Msourcey

∣∣∣n+ 1
2

i+1/2,j

)
(3.28b)
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Ez
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∆
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)
(3.28c)

For 1D cases (equations 3.24a and 3.24b), the following update equations can
be written by using the grid and time locations shown in Fig. 3.2:

Hy

∣∣∣n+1/2
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1
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+
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2µi+ 1
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)
(3.29a)
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2εi + σi∆t

(
Hy

∣∣n
i+1 −Hy |ni

∆

−Jsourcey

∣∣n+1
i

)
(3.29b)

3.3.4 Stability criteria

Explicit updating scheme is used in FDTD, rendering the method conditionally
stable. The maximum time-step allowed in FDTD is inversely proportional to
the minimum grid step size among all directions.

A Courant stability bound is established as follows:

ξ = c M t

√
1

(M x)2
+

1
(M y)2

+
1

(M z)2
≤ 1 (3.30)

where ξ is defined as the Courant number or stability factor, and M x, M y
and M z are the grid spacings in the three dimensions respectively. A Courant
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number higher than 1 would cause the field to grow exponentially (proved in
Chapter 4, [54]). Hence an upperbound of the time step size is easily determined
once the grid is set.

For a highly intricate optical layout where the minimum grid step size is
bounded by the lengthscale of the minimum geometrical feature, the time-
step size becomes small, resulting in a large number of total time steps needed.
Weak or non-conditionally stable methods exist, e.g. the alternating-direction-
implicit (ADI) method [72]. Implicit updating is used in ADI where the time
step size is no longer bounded by the Courant stability criteria. However, a
high Courant number, while alleviating the computational cost of FDTD, in-
troduceds large dispersion and truncation errors. Moreover, ADI requires to
solve tridiagonal matrices during each time step, which makes it less efficient
compared to the matrix-free operation of the explicit updating scheme.

3.3.5 Absorbing boundary conditions

While it is necessary to truncate the computation domain, the outer lat-
tice boundary must simulate the extension to infinity in order to study un-
bounded regions. Hence, creating artificial absorbing boundary conditions
(ABCs) where incident waves are absorbed instead of reflected back into the
calculation domain becomes crucial in computational electromagnetics. Effec-
tive ABCs should be able to absorb incident waves within a large bandwidth,
with little reflection, disregarding the incident angles.

In 1994, Berenger introduced the perfectly matched layers [73] where plane
waves of arbitrary incidence, polarization and frequency are matched at the
boundary. In this 2D formulation, the magnetic field component Hz in a TEz

plan wave impinging on the boundaries is split into two orthogonal waves, Hzx

and Hzy. These two field components, together with Ex and Ey, continue to
propagate into the PML slab after exiting the physical domain. By configuring
the electric conductivities (σx and σy) and the magnetic conductivities (σ∗),
the impedances of both sides of the boundary can be matched for each of
these field component, making the boundary reflectionless. 3D PML was later
developed by Katz [74].

Although PMLs have theoretically zero reflections for Maxwell’s equations, spu-
rious reflections occur due to the discretizations in the actual implementation
of FDTD. Consider an x-directed wave impinging normally upon a PML slab,
a polynomial grading can be introduced to gradually increase the PML losses
along the x axis:

σx(x) = (x/d)mσx,max (3.31)

Here x is the distance to the boundary and d is the thickness of total the PML
layers. A polynomial constant 3 ≤ m ≤ 4 is usually used. Such a distribution
of σx results in a low absorption rate at the beginning of PML, but the loses
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quickly grow deeper inside the layers.

Numerical experiments show that PML exhibits an excellent absorbing perfor-
mance in 2D, with a global error 7 orders of magnitude smaller than earlier
ABCs like Mur ABC (see Chapter 7 in [54]).

Uniaxial PML (UPML) is also developed where an anistropic absorbing medium
is configured in the PML slab to absorb the fields propagating along both
directions [75][76]. UMPL is shown to be akin to the original split-field PML
in effectiveness, and since no field splitting is needed is needed, hence improving
the computational efficiency of PML layers.

3.4 Conclusions

We introduced the underlying modeling methods used (FEM and FDTD) for
the topology optimization cases presented in this thesis. The general perspec-
tives of the two methods as well as the details regarding the Yee grid, stability
criteria and boundary conditions for FDTD implementations are addressed.
Although the structured and uniform grid necessary in FDTD presents a chal-
lenge in modeling extremely complex geometries, the method still offers great
benefits in efficient computing and the capacity of massive parallelization, com-
pared to matrix-based methods. Moreover, as a time-domain method, FDTD
provides the natural ability to incorporate nonlinearity modeling without much
difficulty. Though nonlinearities are not covered in this thesis, the potential
of our method to extend to such regimes would certainly be interesting and
inspiring future works.



Chapter 4

Frequency-domain topology
optimization

In this chapter, we review the rationale as well as some design examples of
the frequency-domain TO. Based on the time-harmonic two-dimensional finite
element (FE) modelling of the photonic devices, the optimization redistributes
the two-phase materials in the design domain. The methodology was first
published in 2004 by Jensen and Sigmund for the design of a transmission-
efficient 90◦ bend in a two-dimensional photonic crystal waveguide (PhCW)
[19]. The fabrication and characterization of a TO-designed Z-bend PhCW was
carried out by Borel et. al [20], which proved the efficacy of the design method.
More TO design examples as well as their materializations on the silicon-on-
insulator (SOI) material platform appeared in the next few years, e.g. low-loss
T-junction waveguide [20], 60◦ PhCW bend [21][22], double 90◦ PhCW bends
[23] and PhCW-based Y-splitters [24]. In this chapter, we focus on applying
frequency-domain TO to the design of slow light couplers for photonic crystal
waveguides based on both normal round holes as well as ring-shaped holes in a
two-dimensional photonic crystal structure. Both devices were fabricated and
large improvements in transmissions are seen in the slow-light region of the
transmitted light. The optimization code was designed and written by Jakob
S. Jensen in collaboration with Ole Sigmund at MEK, DTU [19].

The results presented in this chapter are published in [77] and [78].
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Figure 4.1: The design problem for PhCW-based slow light couplers. The
physical domain is a photonic crystal waveguide in a triangular lattice with
air holes. It is cladded by perfectly match layers (PML) as absorbing bound-
ary conditions. The wave input is excited at the entrance of the PhCW (as
indicated by the arrow) and the output is measured at the exit of the wave-
guide. The design domain is illustrated as the grey stripe near the entrance of
the waveguide, where the slow light modes are being reflected or coupled in,
depending on the local geometrical structure.

4.1 Rationale

To design a PhCW-based slow light coupler, the problem is formulated as shown
in Fig. 4.1.

From the modeling perspective, let us review the discussions in section 3.2.
The governing equation of the E-polarized wave propagation in the form of
Helmholtz equation is as follows:

∇2E + µεw2E = 0 (4.1)

The equation is then implemented by using the finite element (FE) method
based on square elements. By assembling the frequency-dependent element
matrices into a system matrix S(ω), we now have a set of linear complex equa-
tions:

(−w2u + iwC + K)u = f (4.2)
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Here u is the vector containing the nodal values of field E. Matrix C accounts
for absorbing boundary conditions and artificial material damping which is used
to improve smoothness of the optimization problem. Each of the systems of
linear equations solves for one time-harmonic wave propagation problem with
a specific frequency.

In order to optimize for the higher (or lower) transmission through the waveg-
uide, the time-averaged Poynting vector (p) flowing through the area A is
computed by the following equation:

p = {pxpy}T =
ω

2a

∫

A

R(i(∇E)E∗)dA, (4.3)

where a is the lattice constant and E∗ is the complex conjugate field.

In the following example we show how to formulate an optimization prob-
lem when the optimization goal is to maximize the y component of the time-
averaged Poying vector py in the cell A for a number M of target frequencies
ω̄j , j = 1,M . The optimization objective and bounds can be formulated as:

max
0≤ρρρ≤1

C =
M∑

j=1

py(uj)

subject to : ((−wj)2M + iwjC + K)u = f(wj), j = 1,M,

(4.4)

where ρρρ is the design variable set.

4.2 Design and fabrication of slow light cou-

plers

In this section, two TO design examples are shown to enhance the slow light
coupling efficiencies for two different kinds of photonic crystal waveguides.

Small group velocities of light resulting from flat dispersion curves in PhCWs
near the cut-off has become an interesting topic in recent years. This is largely
due to the fact that the slowed-down light makes PhCWs potential candidates
for important applications such as delay lines and optical storage. However,
the mismatch of impedances between the PhCW slow light mode and the ridge
waveguide mode creates a difficult situation for the light to be coupled in from
the ridge waveguide to PhCW, and vice versa. This prevents PhCWs to be
efficiently used as slow-light devices in all-optical circuits.
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Figure 4.2: Definition of the termination parameter τ .

Vlasov and McNab [79] demonstrated different coupling efficiencies by varying
the lattice terminations at the strip/PhC interface. A termination parameter
τ was defined by how much the lattice was shifted at the interface (see Fig.
4.2). For their PhC configuration (triangular lattice with radius-pitch ratio
(R/a) equal to 0.25), they predicted the best coupling efficiency should occur
when τ = 0.3 or 0.8, since the photonic surface states originated by the crystal
lattice termination are tuned in resonance with the PhCW slow-light mode.
The study established a connection between the surface states induced by lat-
tice terminations and the enhancement of the slow light coupling efficiencies.
A recipe for improving such coupling efficiencies was proposed by evaluating
surface mode from various lattice terminations to find one termination that has
the surface mode most in tune with the guided mode of PhCW. However, such
an approach can be tedious and inefficient.

In order to test the recipe, we computed the band structures for the W1 PhCW
slow light mode as well as surface modes from 8 different termination parame-
ters (see Fig. 4.3). For ease of observation, we only plotted the surface modes
that are close to the W1 PhC mode (dotted black) and inside the band gap.
No modes higher than normalized frequency 0.26c/a or lower than W1 PhC’s
11th band (which is the lower bound of the bandgap) are plotted. We notice
that the tuned-in termination parameter drifts away from τ = 0.3 and 0.8 as
the configuration for the lattice changed. Moreover, there is no quantifiable
relationship between the surface state frequencies and the termination param-
eter. This means that many random termination parameters might need to be
tested before a good match can be found, which makes it difficult to manually
searching for the parameter. Thus, the development of a more general method
of manipulating the coupler geometry is of interest. Frequency-domain TO is a
good candidate here to find an optimized coupling for a specific lattice config-
uration, which has no matching surface states to the W1 PhC slow light mode.

4.2.1 PhCW with round holes

The optimization was carried out on PhCWs defined by a line-defect in a tri-
angular photonic crystal lattice of air holes in silicon with pitch (Λ) equal to
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Figure 4.3: Band structures for W1 PhCW mode (dotted black) and surface
modes with different termination parameters τ (solid).

400nm and the hole diameter (d) around 260nm. Fig. 4.4.(a) and Fig. 4.4.(c)
illustrate the two different initial configurations at which the optimization be-
gins. Structure (a) has the lattice termination parameter τ = 0.5 if τ = 0
results in a lattice termination cutting through the center of the first row of
holes. In structure (c), the termination is shifted by Λ/7 along the PhCW and
thus has τ = 0.64. The design domain, where the dielectric material can be
freely redistributed, is set to be a Λ-wide stripe area centered at the original
cutting and covering 16 rows of holes in the Γ − M direction of the crystal.
The target function is to optimize for higher transmission at three frequencies
in the slow light regime. The two resulting optimized structures are shown in
Fig. 4.4.(b) and Fig. 4.4.(d), respectively for structure (a) and (c).

The structures were fabricated and characterized by Lars Hagedorn Frandsen
and Amélie Têtu using e-beam lithography (JEOL-JBX9300FS) and inductively-
coupled plasma reactive-ion etching to define the PhCW structure into the
320nm top silicon layer of a silicon-on-insulator wafer. The fabricated PhCWs
are 12µm long and connected to tapered ridge waveguides to route light to
and from the sample facets.
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Figure 4.4: Scanning electron micrographs of the un-optimized (a and c) and
optimized (b and d) structures: a) τ = 0.5 un-optimized, b) τ = 0.5 optimized,
c) τ = 0.64 un-optimized, and d) τ = 0.64 optimized.

Figure 4.5 shows the experimental measurements of the fabricated structures
shown in Fig. 4.4. The inset of the figure shows a zoom-in on the slow light
regime. As expected from the Finite Difference Time Domain (FDTD) cal-
culations, the spectrum for the un-optimized structure with τ = 0.64 (dotted
gray) shows a higher coupling efficiency near the band-edge than that of the
structure with τ = 0.5 (dotted black).

Also shown in the figure is the measured transmission for optimized structures
starting from waveguides with τ = 0.5 (solid black) and τ = 0.64 (solid gray)
terminations. It is clearly seen that the coupling efficiencies for slow light have
been improved by 5dB and 2dB in structures with termination parameters
τ = 0.5 and τ = 0.64, respectively, resulting in an improved performance of
the PhCW near the band-edge. It is important to notice that the optimiza-
tions have converged to approximately the same transmission level in the slow
light regime, disregarding the initial configurations proofing the robustness of
the method. The optimized waveguide with termination τ = 0.5 is especially
noticeable with its unique high transmission in the last 1nm before the cut-off.

The design and characterization show that the topology optimization method
can be used to improve the coupling of slow light in and out of PhCWs. The
optimized structures show better performance in transmission near the band-
gap, thus providing the waveguide with wider and smoother transmission band-
width.
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Figure 4.5: Experimental spectra of the optimized waveguides (solid) and their
reference (dotted) waveguides for PhCW with round holes.

4.2.2 PhCW with ring-shaped holes

Photonic crystals with ring-shaped holes are dielectric rods each circulated by
a round air hole setting in a square or triangular array. It was proposed by
Kurt et al. [80] and has been shown to have a larger band gap. Here we study
the optimization of slow light couplers to PhCW with these ring-shaped holes
(RPhCW).

The optimization was performed on an RPhCW consisting of a hexagonal lat-
tice (pitch Λ=405nm) of ring-shaped holes which are defined by their outer
(Ro = 152nm) and inner (Ri = 76nm) radii. The optimization aims at max-
imizing the wave output of the RPhCW, as illustrated in Fig. 4.6(a). The
design domains are Λ-wide strip and 2Λ-wide strip respectively for the two
design examples shown in Fig. 4.6(b) and (d). The optimized structures are
shown in Fig. 4.6(c) and (e)

Figure 4.7 shows the 2D simulated transmission spectra for the two optimized
structures in Figs. 4.6(c) and (e). The calculation is done in the commercial
software Crystal Wave. To examine the optimized design’s tolerance to ring
size fluctuations present due to fabrication errors, we performed calculations
for the optimized structure with different ring width (G = Ro−Ri), G = 0.16Λ,
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Figure 4.6: (a) Schematic diagram of the RPhCW, (b,d) Un-optimized coupling
region with different design domains (red shadows) for topology optimization,
(c,e) Optimized slow-light couplers for the different design domains, respec-
tively.

G = 0.20Λ and G = 0.22Λ, while G = 0.20Λ is the original ring specification.
The bands move to longer wavelengths with decreasing ring width, but in all 3
configurations the transmittances of the TO-optimized RPhCWs are dramati-
cally improved within a 50nm bandwidth next to the cut-off. The inset of Fig.
4.7(b) illustrates the coupling improvement in this band width. The maximum
coupling enhancement decreases only from 2.4dB to 2.1dB when changing the
ring width by 0.06Λ, indicating that the optimized slow-light coupler is quite
robust and can tolerate small variations of the ring width.

Both TO-designed couplers were fabricated and characterized by Ph.D. student
Minhao Pu. The samples were fabricated using e-beam lithography (JEOL-
JBX9300FS) and inductively-coupled plasma reactive-ion etching to define the
RPhCW structures into the 340nm top silicon layer of a silicon-on-insulator
wafer (see Fig. 4.8). The fabricated RPhCWs are 5µm long and connected
to tapered ridge waveguides to route light to and from the sample facets. An
RPhCW with standard coupling region was also fabricated as a reference (see
Fig. 4.8(a)). For each of those structures, the in-coupling region was fabricated
based on the TO designs in Fig. 4.6(c) and (e) while the out-coupling region was
the exact mirror reflection of the in-coupler. Light transmission experiments
were performed, where light from a tunable laser source (1520− 1620nm) was
launched into the sample and collected by an optical spectral analyzer to record
the transmission spectrum. The polarization of the input light was adjusted to
the quasi-TE mode with a fiber polarization controller.

The measured transmission spectra are shown in Fig. 4.9. It is clear that
both optimized structures have higher coupling efficiencies near the band cut-
off than the reference structure as we expected. Also shown in the figures are
the extracted coupling improvements for the two couplers (see insets in Fig.
4.9). An enhancement in the combined in- and out-coupling of up to 5dB
is observed in the slow light regime close to the band cut-off of 1600nm for
both designs. Thus, the experimental results confirmed the predicted improved
coupling performance of 2.5dB per coupling of the topology-optimized slow-
light interfaces.
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Figure 4.7: 2D simulated transmission spectra for the RPhCW with differ-
ent ring-gap widths, insets are the calculated coupling improvement for the
optimized coupler. Figure courtsey of Minhao Pu.

Figure 4.8: Scanning electron micrographs of the un-optimized (a) and two
optimized (b,c) structures. Figure courtsey of Minhao Pu.

4.3 Conclusions

In this chapter, we investigated the utilization of FEM-based topology opti-
mization in designing slow light couplers for two different configurations of
photonic crystal waveguides. For both structures, TO has shown its capabil-
ity of improving the slow light coupling efficiency by several dBs, disregarding
the initial geometries of the design domain. Moreover, the ring sizes in the
RPhCW are perturbed by 0.04 Λ and 0.02 Λ, in both of which cases the op-
timized structures still see a considerable enhancement of slow light coupling
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Figure 4.9: Measured transmission spectra for the two optimized couplers in
RPhCW. (a) Λ-wide design domain, (b) 2Λ-wide design domain. Insets are the
extracted coupling improvements for the two couplers. The optimized spec-
tra (black) see a clear enhancement of transmission in the slow light regime,
compared to the un-optimized spectra (grey). Figure courtsey of Minhao Pu.
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efficiency. This proves that the optimized structures are quite robust and are
tolerant of small variations from the original structure, an effect inevitable due
to fabrication tolerances.

Together with previous design examples in the literature, the frequency-domain
TO has proven to be a powerful tool in tuning the device performance when the
target frequencies are few. However, in design examples where more frequency
samplings need to be evaluated and adjusted, frequency-domain methods face
with a computational challenge of solving linear systems for all these frequen-
cies. Time-domain methods, on the other hand, has the capability of solving a
wide range of spectrum with one analysis. For the rest of the thesis, we will ex-
plore the feasibility and potential of using time-domain topology optimization
in designing photonic devices.
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Chapter 5

1D time-domain topology
optimization

In this chapter, we discuss 1D topology optimization based on finite-difference
time-domain method. A Bragg grating design case is presented as a benchmark
where FDTD-based TO is tested to see whether its solution matches that of
theoretical prediction. A more complicated design problem is explored where
a grating structure is optimized to be able to transform a Gaussian pulse into
a square pulse. Penalization methods are used here to ensure that the final
design is strictly black and white while having minimum feature size under
control.

Part of the results presented in this chapter is published in [81]

5.1 Problem formulation

The calculation domain is uniformly discretized into plates layered perpendic-
ular to the propagation direction of the light, and is terminated using Mur’s
absorptive boundary conditions. The material of each plate is determined by
design variable ρi through linear interpolation:

εi
r = εr1 + (εr2 − εr1)ρi, (0 ≤ ρi ≤ 1). (5.1)

In the above equation εi
r is the relative dielectric constant of the ith plate in the

design domain, and εr1 and εr2 are the relative dielectric constants for the two
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Figure 5.1: 1D grating optimization. The input pulse is excited at the source
node (black) and the output pulse at the objective node (grey) is measured
and evaluated.

design materials. The goal of the 1D topology optimization is to distribute two
dielectric materials ( ε1r and ε2r) within the design domain (Fig.5.1) to make a
grating structure that fulfills certain transmission functions between the source
node and the output node. For example, one can minimize the transmission
at certain frequencies to design a special filter, or to alter the temporal shape
of the output pulse. Depending on the optimization goal, a specific objective
function F (ρ) is prescribed. The gratings are modeled by 1D FDTD method
with Mur’s ABC terminating the calculation domain.

5.2 Sensitivity analysis

The element-level sensitivities, which are the gradients of the objective function
with respect to each of the design variables, are key to the redistribution of the
design materials. Here we use the adjoint-variable method [82][83] to efficiently
retrieve the sensitivity information using only two system analyses. Only two
system analyses are needed for extracting the exact sensitivities for all design
variables. The first is the forward analysis yielding the response of the system
while the extra adjoint analysis is carried out by swopping the input and output
nodes and feeding the system with the adjoint current which depends on the
field values from the forward analysis.
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The detailed derivation of the sensitivity analysis based on FDTD is presented
in Appendix A.1.

5.3 Proof of concept

It is well known that theoretically, Bragg Gratings (BG) are the best structures
to minimize the transmission at a specific frequency. We try to use TO aiming
at minimizing the transmissions of waves at a single frequency, and expect the
resulting optimized structure to be an exact BG with the correct period.

A 1GHz harmonic wave was used as the excitation. For BGs with two alter-
nating materials (ε1 = 1 and ε2 = 2.25), the period of gratings (Λ) is calculated
as below:

L1 =
λ

4n1
,

L2 =
λ

4n2
,

Λ = L1 + L2,

(5.2)

where λ is the wavelength of the harmonic wave excitation and n1 and n2 are
the refractive indices of the two design materials. L1 and L2 are the layer
thicknesses of material 1 and 2, respectively. BGs with the above layer thick-
nesses and period can then be constructed to minimize the transmission at the
frequency of 1GHz.

In our problem formulation, the optimization is set to minimize the field energy
transmitted through the structure by optimizing design variables ρρρ:

min
0≤ρρρ≤1

∫

T

Eo(ρρρ)2dt,

s.t. : Maxwell′s Equations,

(5.3)

The topology optimized grating (blue) is seen in Fig. 5.2 in comparison with
that of a theoretical 5-layers BGs (red). The resemblance between the two
layouts as well as their spectra is clear. Thus we confirm that the optimization
reached its theoretical minimum.

A more challenging example was tested to optimize a structure that has mul-
tiple transmission channels and cutoff channels. In this specific case, we want
3 transmission dips at 0.8GHz, 1.0GHz and 1.2GHz, with the two designing
materials ε1 = 1 and ε2 = 2.25. The objective of the optimization is to not
only minimize the transmissions at the 3 dip frequencies, but also to maximize
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Figure 5.2: Bragg gratings optimization. (a) Layouts of the optimized gratings
(blue) and the theoretical Bragg gratings (red). (b) Tranmission spectra of the
optimized gratings (blue) and theoretical Bragg gratings (red).

the transmissions at the 2 peak frequencies in between the dips. Thus 2 mod-
ellings were needed with different excitations: the first with a superposition
of 3 equal-weighted harmonic waves of the dip frequencies; the second with a
similar superposition of the peak frequencies. The objective function is thus
formulated as to maximize the time-integrated energy transmitted between the
peak channels and the dip channels:

min
0≤ρρρ≤1

∫

T

[Edip
o (ρρρ)2 − Epeak

o (ρρρ)2]dt,

s.t. : Maxwell′s Equations,

(5.4)

The optimized layout and the corresponding transmission spectrum is depicted
below in Fig. 5.3. It can be seen that the optimized structure fulfills the
multichannel filtering function we defined earlier.
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Figure 5.3: The layout and the spectrum of the topology optimized multichan-
nel filter.

5.4 Optimization of 1D pulse-shaping filters

In this section, we investigate using FDTD-based TO to optimize the mate-
rial distribution in a grating to accomplish pulse filtering functionalities. The
difficulties with using the field history directly in the objective function are
addressed and a solution is proposed and test. Appropriate filtering methods
are used to ensure the fabricability of the final design.

5.4.1 Motivation

Shaping optical pulses into arbitrary wave forms is desirable in many applica-
tions including optical communication, nonlinear optics and biomedical imaging
[28]. Different methods to design pulse-shaping filters are present today, based
on various hardware configurations and design algorithms. Fourier synthesis
methods are used by Weiner [28] to design filters by distributing gratings and
lenses. While having the benefits of incorporating programmable modules such
as liquid-crystal spatial light modulators, this system is bulky, lossy and diffi-
cult to integrate into waveguide systems. Fibre gratings have also become good
candidates for shaping pulses. Many inverse design algorithms have been intro-
duced [84, 85, 32, 86], among which the inverse scattering layer peeling method
(LPM) [87] is the most used. However, LPM is only effective for designing
1D fibre gratings for two reasons: 1. The resulting topology from LPM opti-
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mizations are with continuous index variations, which needs an extra synthesis
method to be converted to feasible designs for two-phase platforms including
thin-films and planar waveguides [88]; 2. So far LPM has not been generalized
to design 2D structures. Hence new design methods have to be developed if
2D filters are desired in planar waveguide systems.

5.4.2 Objective function

Different from minimizing the energy flux in the frequency-domain method [19],
the objective function (OF), F (ρ), for the time-domain pulse-shaping optimiza-
tion should aim at minimizing the time-integrated squared difference between
the output pulse Eo(t) and the prescribed pulse g(t), namely:

F (ρ) =

Tmax∫

t=0

[Eo(ρ, t)− g(t)]2dt. (5.5)

5.4.2.1 Envelope objective function

There are two challenges in using the formulation of OF in Eqn. 5.5. First of all,
the optimization will be easily trapped in local minima due to rapid oscillations
of the electric field. Consider a case where we want to delay a Gaussian pulse by
simply increasing the dielectric constant of the bulk material (see Fig. 5.4a).
Figure 5.4b shows the objective function values as a function of τ , which is
the distance in time steps between the output pulse and the target pulse. For
perfect overlap between the two pulses (τ = 400), the objective function value
is 0. For τ different from 400, there are oscillations with local minima for
each carrier wave period. The optimization is prone to be trapped at these
minima, thus a new objective function needs to be introduced to circumvent
this problem.

Instead of optimizing the electric field directly as described in Eqn. 5.5, we
propose an envelope OF that optimizes the time-averaged electric field strength:

F̂ =

Tmax∫

t=0

[

∑
t′∈Nt

E2
o(ρ, t′)

N
−

∑
t′∈Nt

g2(t′)

N
]dt, (5.6)

where N is the number of time steps in one carrier wave period. Nt is the
set of time points having the span of one carrier wave period and is centred
at time t. By averaging the squared E field within each period, the envelope
is effectively extracted (see Fig. 5.5). The original inverse design problem is
now reformulated into a more regularized one. Note, however, that since the
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Figure 5.4: A simple design case of delaying a pulse. (a) The electric field of
the original (dotted) and target (smooth) pulses. (b) The objective function
(OF) values as a function of τ , which is the number of time steps by which the
original pulse is moved towards the target pulse.

envelope is being optimized now, the phase of the field will not be in direct
control of the optimization anymore.

5.4.2.2 Sensitivity analysis for the envelope objective function

While the system matrix derivative in the sensitivity expression stays the same
for the envelope OF, the adjoint current in the backward analysis changed. The
adjoint current depends on ∂f

∂E with f being the merit function in the objective
function. In the case of the envelope objective function, f takes the following
form:

f(t) = [

∑
t′∈Nt

E2
o(t′)

N
−g̃(t)]2, (5.7)

Here g̃(t) is the prescribed target pulse that has already taken an averaged
form.

Now define:

h(t) =

∑
t′∈Nt

E2
o(t′)

N
, (5.8)



46 1D time-domain topology optimization

Figure 5.5: Envelope (dotted) extracted from the original electric field (solid)
(see Eqn. 5.6). The amplitude of the envelope is scaled down to be comparable
qualitatively to the shape of the electric field.

and take h(t) into the derivative of the merit function in Eqn. 5.7 at time t′:

∂f

∂E
|t′ =

∑

t̃=Nt′

∂f

∂h(t̃)
∗ ∂h(t̃)

∂E(t′)
. (5.9)

In the above equation, the two derivative terms can be further deduced:

∂f

∂h(t̃)
= 2[h(t̃)− g(t̃)],

∂h(t̃)
∂E(t′)

=
2
N

E(t′).

(5.10)

Take Eqn. 5.10 back into the derivative of the merit function in Eqn. 5.9, we
have:

∂f

∂E
|t′ =

1
N

∑

t̃∈Nt′

4[

∑
¯̃t∈Nt̃

E2(¯̃t)

N
− g̃(t̃)]E(t′) (5.11)

5.4.2.3 Explicit penalization

The second challenge to an ordinary OF in Fig. 5.5 is to ensure the fabricabil-
ity of the optimized design. To comply with the gradient-based optimization
algorithm, a continuous design variable ρ is used. However, in order to fab-
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ricate the device on a two-phase material platform, a black and white design
with reasonable minimum feature size has to be guaranteed. The linear inter-
polation relationship between the local material εi and design variable ρi calls
for extra measures to penalize intermediate values between 0 and 1.

In the case of designing Bragg gratings (see section 5.3), the 0-1 design is
naturally enforced without further measures. This is because the transmis-
sion is to be minimized, which is accomplished by utilizing the highest index
contrast available in the materials. Thus, the algorithm is encouraged to use
the materials with the highest and the lowest permittivity available, instead of
’grey’ material in between. Unfortunately, this mechanism cannot be applied
to the pulse-shaping filter optimizations, where the goal is not to minimize
the transmission, but to shape the temporal distribution of the field energy.
Based on the above discussions, extra measures need to be taken to enforce the
black/white design in our problem.

The popular form of simplified penalization used in standard TO [89] is not
feasible here since it is difficult to impose a volume constraint on a scattering
problem. Implicit morphological filters employed on densities [90] are usually
good candidates for minimum length scale control but not successful in penal-
izing the intermediate design variables entirely in our case. Although the grey
elements can be removed by post processings, the performances of the altered
structures may deviate a lot from the thresholded ones. This is because that in
1D, each element denotes a plane instead of a grain in 2D. It can be seen that
many elements in one plane are coupled and thus one element change forces the
others to change altogether. This obviously increase the system’s sensitivities
to each of these element.

After various trials, it is shown that Borrvall and Petersson’s [91] explicit and
mesh-independent penalization imposed directly on the objective function offers
a good solution to our problem. The new OF will have the following form:

¯̂
F = F̂ + d

∑

i

ρ̃i(1− ρ̃i), (5.12)

where the average density ρ̃i is defined as ρ̃i =
∑

j∈Di

ρj/L. Di is the vicinity of

the ith plate and L is the length of Di. The averaging of the densities works
as a minimum length scale control to avoid generating too fine features in the
optimized layout. Clearly the penalization term in Eqn. 5.12 is minimum only
if all design variables are either 1 or 0. d is a scaling factor that determines
the extent to which intermediate values should be penalized. A too small d
would render the penalization ineffective, while a too large d would cause the
optimization to deviate from the original goal. Here a continuation method
was used where d starts from 5 × 105 and gradually increases through the
optimization iterations to shift the optimization focus from pulse shaping to
black and white design.
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One challenge posed by the problem is that the optimization might fall prey
to local minima easily where the pulse shape is still quite far away from ideal.
This could be caused by the combination of two reasons. Firstly, the 1D config-
uration of the layered structure determines that light can only have one path
between the source and the output. Any small changes in the layers might
drastically change the grating characteristic. This means that as soon as the
optimization is at a local minimum, it takes a large incentive for the algorithm
to ’climb’ uphill again. The second reason is that as the scaling factor d increase
rapidly in the end, the optimization gives more preference to structures that
brings down the penalization term in Eqn. 5.12, instead of the real objective of
pulse shaping. To circumvent this problem, we carry out a set of optimizations
instead of one and vary the starting guesses of the design domain in hope for
search the whole solution map. Numerical experiments show that by running
50 optimizations based on random starting guesses, a handful of good designs
can be obtained for our problem.

The penalization term in Eqn. 5.12 brings an additional sensitivity term which
only has an explicit dependance on the design variable ρ. The exact form of
the altered sensitivities can be seen in chapter 6 section 6.5.

5.4.2.4 Modified objective function

Combining the above two alterations to the original OF, we now minimize the
time-integrated envelope difference between the output and the target pulse
plus the density penalization sum by varying the design varible ρ. In the
meantime, Maxwell’s equations should be obeyed as well as the upper and
lower boundaries of the materials used for our system. The problem is thus
formulated as:

min
0≤ρρρ≤1

¯̂
F (ρρρ),

subject to : Maxwell′s equations,

(5.13)

5.4.3 Results

The optimization method is tested where an input Gaussian pulse with a full
width at half maximum (FWHM) of 26fs and a carrier wavelength of 1.55µm
is to be converted to a square pulse in a stack of thin-film layers consisting of
Si (εr = 12.3763) and SiO2 (εr = 2.3339). Due to the limited spectral range
of the input pulse, the filtered square pulse will show overshoot and ringing
known as the Gibbs effect. To comply with this mathematical limit, the target
pulse is then generated by superimposing five Gaussian pulses with different
time delays to mimic a square pulse so that its spectrum fits under that of
the input pulse. The resulting target pulse has a FWHM of 90fs with its
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Figure 5.6: The effectiveness of the optimization as a function of design domain
size.

amplitude decreased five-fold compared to that of the un-filtered pulse. The
design domain is discretized into elements the size of λ/165, where λ is the
wavelength of the carrier wave of the pulses. Design domains with 8 different
lengths were optimized, each with 50 randomly distributed starting guesses to
increase the chance of finding a solution close to global minimum. For the
design domain of 5.42µm with 578 elements, a single optimization takes 12.6
minutes on an state-of-the-art single processor computer with the Fortran 95
code.

Figure 5.6 shows the optimization results in terms of the integrated difference
between the optimized pulse envelope and the target pulse envelope. For each
design domain size, a best result was picked among all 50 optimizations of
different starting guesses. The optimized pulse approaches the target pulse
better as the length of the design domain increases, since more reflectors are
allowed in a longer device to tailor the pulse more accurately. This is a clear
trend to be seen in the length between 3.10µm and 5.42µm, with the deviation
from the target pulse down to 0.3% at the latter. However, if the design
domain is too big, the optimization becomes more difficult due to the many
more local minima introduced by the increasing number of design variables.
The advantage of longer design domain is then lost, which can be seen after
5.42µm.

The best design is that of 5.42µm, or 3.5 times the wavelength of the carrier
wave of the pulse. Fig. 5.7(a) illustrates the optimized pulse (solid black) com-
pared to the target pulse (solid grey) and the original Gaussian pulse (dotted
black). The layout of such a pulse-shaping filter is depicted in Fig. 5.7b. With
the help of the explicit penalization term in Eqn. 5.12, the thinnest layer in
this structure is 65.8nm which ensures fabricability.
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Figure 5.7: Square pulse shaping. (a) The optimized output pulse with scaled
amplitude (solid black) vs. the target pulse (solid grey) as well as the scaled
input Gaussian pulse (dotted black); (b) The optimized layout of the thin-film
pulse-shaping filter with Si (black) and SiO2 (white). The thickness of each
layer is noted in terms of the corresponding number of grid points shown above
the topology.

5.5 Conclusions

Topology optimization based on FDTD in one-dimension has been demon-
strated in this chapter. A proof of concept in designing Bragg gratings show
that TO is indeed capable of finding the theoretically best solutions in simple
cases. For more complicated problems where simple rationales of favoring high
index contrasts are not available, extra numerical tools need to be applied in or-
der to assure sensible optimization results. Black/white designs and minimum
feature size controls are both crucial in producing manufacturable designs. In
our experiments, explicit penalization showed its capability of achieving such
designs in 1D grating optimization problems. Since 1D structures with the aid
of explicit penalization scheme are prone to local minima, optimizations based
on various starting guesses are required to ensure a more thorough search in
the solution space. The results are promising and feasible designs which fulfills
pulse shaping functionalities are generated.



Chapter 6

Minimum lengthscale control
and black/white designs

Real-world structures and devices are usually composed of one or more dis-
tinct materials which are shaped in an organized way to assume certain de-
sirable properties. For example, steel can be shaped into triangular sub-units
to form a truss structure which has a small compliance. Silicon and air can
be arranged in a periodic fashion to create a photonic band gap where light
within a certain frequency band is prohibited to pass through. In topology
optimization, a direct interpretation of these distinct materials would lead to
distributed, discrete-valued design problems. These problems are usually very
hard to solve, especially considering the large number of design variables com-
mon in a topology problem. On the contrary, a convex problem with continuous
design variables is possible to solve by using gradient information.

Consider a case where silicon (solid) and air (void) are to be distributed in the
design domain to fulfill certain optical functionalities. A linear interpolation
can be used to project the design variables (ρ (also known as densities) to the
physical domain which contains the actual permittivities (ε):

xi = ε0 + (ε1 − ε0)ρi,
0 ≤ ρi ≤ 1, i ∈ N.

(6.1)

Here ε0 and ε1 are the permittivities of air and silicon respectively and N is the
set of all design variables. A zero-valued design variable would render the local
permittivity to be that of the air, while a design variable equal to 1 identifies
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a Si element. Everything in between 0 and 1, or white and black, are the grey
elements which are un-physical yet crucial in formulating the design problem
into a convex continuous optimization problem.

The existence of intermediate elements in the final design, however, hinder the
manufacturability of the optimized topology. The lack of means to interpret
these grey material in the manufacturing process means that the theoretical
performance predicted for the topology during the modeling process will not
hold for the actual device, where only two-phase materials (black/white) are
available. Another issue contributing to the difficulties of modeling and manu-
facturing the optimized designs is the minimum lengthscale of a structure. In
an ideal case, a more refined mesh in the optimization would in general pro-
duce the same topology as a less refined one, just with more smoothes on the
boundaries given rise by finer staircases. For a non-regularized design prob-
lem, however, there exist a mesh dependency problem. Small and new features
surface when the mesh is refined, thus resulting in a quite different topology
compared to a that from a coarse mesh. A direct problem caused by the mesh
dependency is that it is difficult to get rid of small features containing only
one or two finite elements/grid points. The coarse discretizations within these
features give rise to numerical artifacts during the modeling based on finite
methods (FEM , FDTD, etc.), and give inaccurate predictions of the device
performances. Moreover, the minimum lengthscale also determines whether
the topology can be manufactured with decent precision given the fabrication
tolerance.

Various techniques have been applied in order to control the black/white com-
position as well as the minimum lengthscale of the optimized design. In struc-
tural optimizations, a material interpolation method called Solid Isotropic Ma-
terial with Penalization (SIMP) is often used to penalize intermediate densities
and eventually steer the design towards black/white topologies. The SIMP
model is effective under the volume constraint: η = V

V ∗ ≤ 1, where V is the
aggregated densities over the design domain and V ∗ is the density sum if the
whole design domain is filled with solid-phase material. Since the total material
is capped, the optimization has to use material wisely so that this constraint is
not broken. SIMP penalizes the grey materials to make them less effective in
the objective function (e.g. minimum compliance), and thus forcing them out
of the final design. However, SIMP does not work well with problems where the
sensitivities of the design variables constitute more than one sign. While larger
volume of materials are always preferrable in making a mechanical structure
strong, the same principle does not hold for designing other physical problems
(e.g. heat conduction, optical pulse shaping, etc.). This will be demonstrated
in the next section. Filters are a class of popular methods used by TO to
control minimum lengthscales. Together with SIMP, density filtering provides
mesh independent designs by limiting variations of densities in a close neigh-
borhood [92][93]. Sensitivity filtering also performs well by making a similar
filtering approach to the sensitivities instead of the densities [94][95]. An in-
trinsic characteristic with the above filtering techniques is that they produce
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grey elements around the boundaries of materials. For mechanical problems,
simple thresholding can be used to remove these grey area while still maintain-
ing the optimized device performance to a large extent. For our pulse-shaping
examples, however, the light scattering pattern becomes extremely sensitive to
the boundary variations from the original topology and the thresholded one.
The device performance is drastically changed, rendering the design invalid.
More advanced projection methods are developed to further enforce the dis-
creteness of the optimized design, alleviating the problems caused by large grey
transition areas [96][90][97].

The optimized topologies as well as their performances are analyzed both qual-
itatively and quantitatively to give a better understanding of different filter
mechanisms in our pulse filtering problem.

6.1 Test problem formulation

A Gaussian pulse with the FWHM of 26fs is sent through the device via a
ridge waveguide. The design domain is a rectangular region of the size 946nm
by 1604nm Fig. 6.1. It is coupled in and out by ridge waveguides and the
whole computational domain is discretized into a uniform grid of the spacing
26.3nm. Silicon and air are to be distributed in the design domain so that the
input pulse will be transformed into a target pulse. The target output pulse
(grey) in Fig. 6.2(b) is extracted by letting the input pulse propagate through
a known test structure in Fig. 6.2(a). Note that even though the test structure
from where the target pulse is extracted is an obvious solution candidate, it
is not the only solution available. What we try to find is a topology that fits
our design criteria, which has black/white topology and maintains minimum
lengthscale control, while accomplishing the pulse filtering function. Since the
target pulse is the response of the test topology, it ensures that there exists at
least one solution. However, the optimized topology is not necessarily equal to
this prescribed topology, given the non-uniqueness of the scattering problem.

The above design problem, in its simplest form, takes the following formulation:

min
0≤ρ≤1

log
(∫

t

[Ē2(ρ)− Ḡ2]dt

)
−C,

subject to : Maxwell′s equations
(6.2)

Ē2(ρ) and Ḡ2 are the time-averaged envelopes of the output pulse to be opti-
mized and the target pulse, respectively. The reason why we optimize envelope
instead of electric field as well as the derivation of sensitivities for the envelope
objective function has been described in details in section 5.4.2.1. A logarithm
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Figure 6.1: Problem formulation for the filter test. The design domain (grey)
is coupled by ridge waveguides. The source is excited at the beginning of the
waveguide (indicated as the arrow). The output pulse is evaluated at the end
of the output ridge waveguide. The calculation domain is terminated by PML
layers.
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Figure 6.2: (a) The test structure is coupled in and out by ridge waveguides.
The source is excited at the beginning of the waveguide (indicated as the ar-
row) and the target output pulse is extracted at the end of the output ridge
waveguide. (b) The input pulse (black-circled line) is transformed into the
target pulse (grey line) after propagating through the test structure.

is taken since the time-integrated square difference between the output pulse
is a large number and might cause scaling problems for MMA. For similiar
reasons, a constant C is also used here to scale the objective function values
close to 1. Naturally, the smaller objective function value, the better fitting
between the optimized pulse and its target. Without using any penalization
measure nor filters, such an optimization gives a topology in shown in Fig. 6.3.

As illustrated in Fig. 6.3, the optimization finds a solution where the optimized
pulse fits the target pulse perfectly. The objective function value is as low as
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Figure 6.3: Optimized results without penalization or filters. (a) The optimized
topology. Mnd = 17.01%. (b) The optimized pulse (black) vs. the target pulse
(grey). The objective function value is at 0.6056.

0.6056. However, the resulting topology suffers from large area of grey elements.
Moreover, there exist many stand-alone elements in the final design, indicating
bad minimum lengthscale control. To quantitatively evaluate the severeness of
grey areas in the optimized design, a measure of discreteness is used here [90]:

Mnd =
N∑

i=1

4ρi
∗(1− ρi

∗)
N

× 100% (6.3)

ρ∗ here denotes the filtered design densities, which in the current case equate
the original design variables ρ since no filters are used. N is the total number of
grid points in the design domain. For a complete grey design where all densities
are at 0.5, the measure of discreteness gives a value of 100%. On the other hand,
for an absolute black and white design, the measure of discreteness becomes
0%. For the unfiltered design shown above, the Mnd value is at 17.01%.

6.2 SIMP

In structural TO, a model called Solid Isotropic Material with Penalization is
often used to interpolate the design variables:

Eijkl,i = (ρi)pE0
ijkl, p > 1,∫

Ω
ρidΩ ≤ V, 0 ≤ ρi ≤ 1, i ∈ N.

(6.4)
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E0
ijkl is the stiffness tensor of a given material. Since the penalization parameter

p is larger than 1, the factual stiffness of one element, Eijkl,i, is smaller than
the one where p is not in play. Thus, the stiffness comes at a more expensive
price (more material used) compared to those with design variables either of 0
or 1. With a volume constraint that limits how much solid material is available
for the whole structure, the algorithm is bound to choose design variables close
to 0 or 1.

Such schemes, however, do not work well with designing photonic devices.
While a smaller stiffness usually contributes to weaker mechanical structures,
smaller permittivities do not necessarily link to higher nor lower transmissions
of light. This is because the improved performance of such devices are based
on the distribution of highly localized light patterns introduced by interfaces
between two materials. These patterns might just be as well or even better
bounded by grey elements than black/white elements. In 1D problems where
all waves have to pass through each layer of materials, the volume constraint can
hardly force out the grey layers who might be critical in defining the localized
modes. The 0s and 1s are no longer more cost-effective than the intermedi-
ates elements in this case. Thus, the optimization algorithm will not prefer
black/white elements like it does in the mechanical problems or transmission
minimizing/maximizing problems. In 2D problems, it is more flexible for the
waves to travel via different routes and thus the specific local modes are not as
critical as in 1D. There the grey elements can be more effectively penalized by
the volume constraint.

Figure 6.4 shows the optimization results of the test problem with SIMP in-
terpolation under no volume constraint while Fig 6.5 is for SIMP under the
volume constraint of 0.3 ( V

V ∗ ≤ 0.3). Without using the volume constraint, the
SIMP scheme shows its ability to decrease the grey elements. While under the
volume constraint, we observe that the objective function value deteriorates
from 4.1290 to 7.5764. A clear discrepancy between the optimized pulse and
the target pulse can also be seen. This degrading indicates a strong bound
of the volume constraint, i.e. the solid material available is not sufficient to
filter the pulse completely. However, even more grey elements exist under the
volume constraint (Mnd = 1.7% compared to Mnd = 0.84% without volume
constraint). This proves that our prediction that the SIMP/volume constraint
combination does not penalize the grey elements efficiently in our problem.

6.3 Density filters

To compute the filtered density for element i, we sum up the weighted densities
for all the elements in the neighborhood of i (including i), and divide the sum
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Figure 6.4: Optimized results using SIMP under no volume constraint. (a) The
optimized topology. Mnd = 0.84%. (b) The optimized pulse (black) vs. the
target pulse (grey). The objective function value is at 4.129.

W
id

th
 (

nm
)

Length (nm)
0 400 800

400

800

1200

1600

(a)

0 40 80 120 160
Time (fs)

E
nv

el
op

e 
(a

. u
.)

 

 

Target
Optimized

(b)

Figure 6.5: Optimized results using SIMP under a volume constraint of 0.3.
(a) The optimized topology. Mnd = 1.7%. (b) The optimized pulse (black) vs.
the target pulse (grey). The objective function value is at 7.5764.

by the total weights:

ρ̃i =

∑
j∈N

W j
i ρj

∑
j∈N

W j
i

,

W j
i =

{
1− Dij

r , if Dij ≤ r
0, otherwise

(6.5)
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Here Dij is the distance between element i and j. If this distance is smaller
or equal to the filter size r, the weight of element j in the filtered densities is
inversely proportional to Dij; otherwise, the weight is 0.

The filtered densities ρ̃ are then used in the physical topology on which the anal-

ysis is based on. Note that the filtered sensitivities (
∂F

∂ρ̃
) should be adjusted to

derive the real sensitivites
∂F

∂ρ
by using a chain rule to take into considerations

of the filtered sensitivites in the neiborhood of the center element:

∂F

∂ρi
=

∑

j∈N

∂F

∂ρ̃j

∂ρ̃j

∂ρi
,

∂ρ̃j

∂ρi
=

W j
i∑

j∈N

W j
i

,

∂F

∂ρi
=

∑
j∈N

W j
i

∂F
∂ρ̃j

∑
j∈N

W j
i

,

W j
i =

{
1− Dij

r , if Dij ≤ r
0, otherwise.

(6.6)

After the filtering, any boundaries between black and white (or grey) in ρ will
be smeared out to larger grey regions in ρ̃. Since the grey areas are penal-
ized in SIMP, a black/white topology in ρ will be eventually favored by the
optimization to have lesser grey area in the filtered densities ρ̃. Moreover, the
resulting structure is more likely to get rid of small geometries since their ex-
istence results in larger perimeters with grey transition area, which is bound
to be penalized in the SIMP scheme. This mechanism ensure the minimum
lengthscale control of the structures. Figure 6.6 shows the optimization results
using density filtering with SIMP interpolation under volume constraint 0.7.
The topology has much less small features and holes, compared to the results
without density filters. The objective function also converges well at the value
of 3.0257. However, the filtered densities have a diffusive effect around its edges
of the features. Since the filtered densities are the topology we build our mod-
elling on, they are the physical structure we evaluate. Due to the smearing
out effect of the density filtering, the grey area will always exist when the filter
radius r is larger than 1. In some cases, e.g. some compliance minimization
problems, these grey elements can be removed in post-processing using thresh-
olding and the structure still maintains a favorable objective function value. In
other cases, e.g. designing optical filters, removing these grey elements results
in significant changes in the performance of the optimized structures due to the
high sensitivity of the objective function to these elements. An alternative is to
gradually decrease the filter radius to 1 during the optimization. However, this
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Figure 6.6: Optimized results using density filters. (a) The optimized topology.
Mnd = 27%. (b) The optimized pulse (black) vs. the target pulse (grey). The
objective function value is at 3.0257.

method might reintroduce mesh dependent designs as well as small features.

6.4 Sensitivity filters

Sensitivity filters modify the sensitivities of a certain element by incorporating
the neighboring sensitivities:

ρ̃i =

∑
j∈N

W j
i ρj

∑
j∈N

W j
i

,

W j
i =

{
1− Dij

r , if Dij ≤ r
0, otherwise

(6.7)

As a popular tool in structural optimization, sensitivity filters offer some very
desirable qualities. First of all, the resulting topology by using sensitivity filters
are mesh-independent and have minimum length scale control by the size of r
when used with SIMP interpolation/penalization under a volume constraint.
Moreover, the mechanism is inexpensive to implement and does not impose
extra constraints in the optimization problem. The optimization results for
the test example using the sensitivity filters with r = 2 and volume constraint
of 0.3 is shown in Fig. 6.7. The same as in density filters, a continuation of
filter radii is necessary to get rid all the grey area around the boundaries.
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Figure 6.7: Optimized results using sensitivity filters. (a) The optimized topol-
ogy. Mnd = 3.18%. (b) The optimized pulse (black) vs. the target pulse (grey).
The objective function value is at 5.0149.

6.5 Explicit penalization

Borrvall and Petersson first introduced a regularized penalization term on the
intermediate densities in 2000 [91]. Different from the density-based filters, this
term G(ρ) is explicitly presented in the objective function:

F̄ (ρ) = F (ρ) + G(ρ),
G(ρ) = d

∑

e∈N

ρ̃e(1− ρ̃e). (6.8)

Here ρ̃e is the filtered density:

ρ̃e =
1
|Ne|

∑

i∈Ne

ρi, (6.9)

where Ne is the neighborhood of element e and |Ne| is the number of elements
in the neighborhood.

The penalization term is non-zero only when the filtered density ρ̃e is zero or
one, hence the intermediate densities will be unfavored during the minimization
of the objective function. The filtered densities instead of the original densities
are used in order to avoid mesh dependency design as well as small objects in
the design. Thus the optimization problem become regularized. In order to
ensure the convergence of the original design problem, a continuation method
was taken where the penalization term weight d gradually increases from an
initial small value. When d is small, the original objective function F becomes
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Figure 6.8: Optimized results using explicit penalization. (a) The optimized
topology. Mnd = 0.0%. (b) The optimized pulse (black) vs. the target pulse
(grey). The objective function value is at 4.9536.

the dominant factor in the optimization goal. In later stages, d increases to
sufficiently large values so that the penalization of grey element begins.

The sensitivities of the penalization term can be derived by applying the chain
rule:

∂G

∂ρi
=

∑

e∈Ni

∂G

∂ρ̃e

∂ρ̃e

∂ρi
,

∂G

∂ρ̃e
= d(1− 2ρ̃e),

∂ρ̃e

∂ρi
=

1
|Ne| .

(6.10)

Since the penalization term is explicitly added to the original objective func-
tion, the optimization will eventually shift away from the real objective to favor
the penalization of grey elements. Experience show that it is especially a big
problem in 1D pulse filtering problems. A black/white design is obtained usu-
ally at the price of largely distorted pulse shapes. One remedy is to start the
optimizations from different random initial topologies in order to search the
solution space more thoroughly.

Optimization results on the test example using explicit penalization is illus-
trated in Fig. 6.8. It can be seen that using explicit penalization does generate
completely black and white design without compromising the objective function
much in this 2D example. However, thin lines of solid phase persist, indicating
less than satisfactory minimum lengthscale control.
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6.6 Modified Heaviside filters

Although density filter helps ensure mesh independency, the averaging effect
within the neighborhood of any element makes sharp edges impossible to obtain
in the densities. Thus a new scheme is needed to not only give minimum length
scale control, but offer black and white topology.

Morphology filters were introduced by Sigmund in [90]. The idea came from
morphological filters used in image processing, where erosion and dilation are
the basic operators. A structuring element (SE), usually of a couple pixel wide
and tall, are used to gauge a binary picture for features. In erosion, the SE is
centered at a certain pixel. If any pixel within the area covered by the SE is
white, the center pixel is rendered white. A new image is created when all pixels
are visited by the SE. A similar procedure goes for dilation, just reverse: if any
pixel within the SE-covered area is black, the center pixel is rendered black. In
other words, erosion makes the object (black) smaller while the dilation makes
it bigger. The erosion-dilation combination (first erosion, then dilation), known
as open, removes features smaller than the SE while still keeping the size of
other features. The dilation-erosion combination (first dilation, then erosion),
known as close, connects features over gaps smaller than the SE, while keeping
the other features untouched. In real design problems, we usually want to get
rid of both small features and small gaps. One way to achieve this is to take
an open-close, which is a combination of the two operators. Figure 6.6 shows
how these operators work on a binary image.

(a) Structuring element.

(b) Opened topology. (c) Closed topology. (d) Open-closed topology.
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(g) The original topology. (h) Eroded topology. (i) Dilated topology.

Figure 6.7: The effects of morphology filters on a topology.

Such a discrete operator needs to be reformed when working on a continuous
grey-scale density field instead of binary field. The Kreisselmeier-Steinhauser
formulation was originally used by Guest [96], and later Sigmund [90] suggested
a Heaviside formulation for the dilation operator where the local density is
approximated as the following:

ρ̄e = 1− e−βρ̃e + ρ̃ee
−β (6.11)

In order to ensure convergence, a continuation process is taken where the value
of β is gradually increased. When β is small, the Heaviside density filter behaves
approximately the same as the mean density filter; when β is a large value, e.g.
500, the Heaviside filter resembles that of a step function (see figure 6.8). Since
the filter radius does not need to diminish during the continuation process, the
mesh independency as well as the minimum length scale control are able to
be obtained. This is of great advantage compared to the density filtering and
the sensitivity filtering where the filter size needed to be gradually decreased
in order to get rid of the smearing out of geometrical features in the densities.
However, the density filtering still impacts the Heaviside operator by yielding
a final density value slighted deviated from 0 or 1 when the mean density ρ̃e

within the structural element area is very close to 0 or 1.

Figure 6.9 shows the optimization results of the test case using modified Heav-
iside filters described above. The optimized pulse has a good conformation to
the target pulse, and the objective function value is at 3.16. Compared to the
topology by using density filters and sensitivity filters, the morphological fil-
ters are obviously very efficient in converging to black and white designs. The
measure of discreteness is as low as 0.89%. It also has a clear advantage over
explicit penalization when it comes to minimum lengthscale control. No thin
lines are visible in either the solid or void phase.
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Figure 6.9: Optimization results using Heaviside morphology filters. (a) The
optimized topology. Mnd = 0.89%. (b) The optimized pulse (black) vs. the
target pulse (grey). The objective function value is at 3.16.

6.7 Conclusions

In order to make the optimized devices manufacturable, the discreteness of the
final design and its minimum length control are of the most importance. For
optical devices like pulse-shaping filters, high sensitivities to even the smallest
changes in the light scatterers determines that traditional control methods suit-
able for structural optimizations are not effective enough. Projection schemes
proved to be a good way to control both issues in our test example. It is based
on classic density filtering where a local density is depending on its adjacent
neighbors in order to limit the fast variations of densities. However, it does
not generate grey transition areas like traditional density filters or sensitiv-
ity filters, thus eliminating the need for vast post processing where the device
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performance can be subject to drastic changes.
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Chapter 7

2D Time-domain Topology
Optimizations of

Pulse-shaping Filters

Optical pulse shaping involves converting one or more short optical pulses gen-
erated by the laser into pulses with pre-determined temporal profiles, as well as
pulse trains with specific repetition rates. Current passive pulse-shaping filters
are mainly based on distributed system of lenses and gratings [28] as well as
long-period fiber-grating (LPG). There are also other proposals of designing
pulse-shaping filters. For example, by using arrayed-interferometers, Park et
al. suggested using coherence synthesization where a single pulse is replicated,
delayed and superimposed to achieve desirable pulse shapes [98]. The duality
of space and time was made use of by Palushani et al. where an input sinc
pulse propagates through a long single-mode fiber and evolve into a temporal
profile similar to its initial spectrum shape, i.e. a square-shape [99].

There are interests as well in integrating the pulse-shaping filters directly into
planar waveguide systems. However, available filtering design methods are
highly dependable on the platforms where these filters are realized, and none of
them can be directly applied to the planar waveguides where the high-index di-
electric material can be freely distributed on the two-dimensional (2D) platform
by using state-of-the-art fabrication methods featured around e-beam lithogra-
phy. Evolution-inspired optimization methods, e.g. Genetic Algorithms (GA),
are of astronomical computational complexities when dealing with free distri-
butions of materials. Thus, Topology Optimization (TO), which has many
successes in optimizing free topologies, is considered a great candidate and is
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investigated here for its efficacy in designing planar waveguide-based pulse-
shaping filters.

7.1 The inverse problem

The 2D inverse problem for the optimization is posed as Fig. 7.1. The whole
calculation domain is invariant in the z direction. It consists of a design domain
where dielectric materials are to be distributed within, boundary region where
Berenger’s Split-field PML absorbing boundary conditions are to be applied,
and auxiliary regions including an input and an output ridge waveguide in
silicon coupled to the design domain. An input pulse is excited at the source
node (blue) in the input waveguide and propagates along the y axis. It is
evaluated at the output node (green) and a prescribed pulse shape is expected.
The whole calculation domain is uniformly discretized. Since the design domain
as well as the input and output ridge waveguides are symmetric about the
horizontal middle line of the calculation domain, only half of the space needs
to be calculated as well as optimized. The topology is then mirrored to the
other half space to obtain a full device layout.

Figure 7.1: The two-dimensional inverse problem.

7.2 Square-pulse filters

Square-shaped optical pulses are widely used in high-speed optical signal pro-
cessing. For example, such a square pulse can improve the timing-jitter toler-
ance in ultrahigh-speed optical time domain demultiplexing where the pulse is
used as a nonlinear optical switching [100].
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In the following example, a Gaussian pulse which has a full-width at half-
maximum (FWHM) of 26fs and centered at 1577nm is to be excited at the
source node within the input ridge waveguide. A square target pulse of the
width of 136fs is prescribed to be the target pulse at the output node of the
device. Silicon (εd

r = 12.3763) and air (ε0r = 1) are being distributed within
the design domain by the topology optimization in order to fulfill the filtering
functionality. The design domain is a 2.367µm × 2.393µm rectangle region,
which is discretized uniformly into 90×91 elements. Each of the square element
is of the size 26.3nm× 26.3nm.

7.2.1 Original problem formulation

The original problem is formulated as to minimize the squared difference be-
tween the extracted output pulse envelope Ēx(t) and the target pulse envelope
Ḡ(t). The envelope is extracted from the electric field history of the output
node by averaging the squared field over each period of the carrier wave fre-
quency (see section 5.4.2.1). Since the pulse is a guided wave propagating along
the y-axis through the single mode ridge waveguides and the filtering region,
Ex will be the dominating field component over Ey. Thus, in the following
text, only Ex will be considered in the evaluation of the output pulse shape
and sensitivity analysis.

min
0≤ρ≤1

Tmax∫

t=0

[Ēx(t)− Ḡ(t)]2dt,

s.t. : Maxwell′s Equations,

(7.1)

7.2.2 Delay variable

Since the wave packet travels at different group velocities in solid and in void
media, the delay of the optimized pulse varies with the changing topologies just
as its pulse shape. By prescribing the target pulse to occur at a specific point
in the time line, we explicitly fixate the delay, which adds a constraint to how
much solid material is allowed to conform to the fixed pulse delay. This hinders
the optimization in the sense that the pulse shape is not the only criteria the
algorithm has to take into account. See Fig. 7.2(a) for example: in iteration
a, the optimized pulse (solid grey) has a worse conformance to the shape of
the target pulse (dotted grey) compared to the optimized pulse in iteration b
(solid black). However, since the target pulse is fixated on the time line and
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overlaps more with the pulse in a, this iteration results in a smaller objective
function value than iteration b. Thus the algorithm prefers a to b under the
false criteria, even though a provides a better topology regarding ideal output
pulse shape produced.

In order to improve the flexibility of the optimization, a delay variable τ is
introduced (see Fig. 7.2(b)). With the new variable, the target pulse is pre-
scribed as G(t, τ) where τ determines the delay time of the current target pulse
relative to the initial one. The initial delay is extracted by sending the target
pulse through the design domain filled with vacuum. Now compare iteration a
and b again: it is obvious that the pulse in iteration b has a closer resemblance
to its corresponding target pulse (dotted black). The new objective function
incorporating the delay variable τ becomes:

F =

Tmax∫

t=0

[Ēx(t)− Ḡ(t, τ)]2dt, (7.2)

where τ is a dimensionless design variable between 0 and 1 that scales the
physical delay time linearly between 0 and the maximum delay time Dmax.
The value of Dmax depends on the size of the design domain and is usually
assigned a large number to ensure enough room in the time line to move the
target pulse back and forth. When τ = 0, there is no further delay on the
original prescribed target pulse; when τ = 1, a maximum delay time Dmax is
imposed on the target pulse.

One problem with using the delay variable is that it tends to favor maximum
delay due to the existence of trailing waves. Since the evaluation time termi-
nates at Tmax, a pulse of larger delay with much of its trailing waves beyond
Tmax is more preferable to the optimization. The wave energy beyond Tmax is
simply ignored instead of contributing to the squared differences between the
optimized pulse and the target pulse. To compensate this undesired effect of
the delay variable, a flexible evaluation window Tw is introduced. Tw can be
determined by extending the target pulse end time by a constant amount of
time, and is varied every iteration depending solely on the delay time τ . Since
the tail waves fallen inside Tw is always taken into account in the evaluation of
the objective function, the optimized pulses are purely merited by their shapes
without being affected by the truncation of tail waves. Note that these trail-
ing waves are still part of the evaluation, with their weight kept at the same
level throughout the optimization. For the square pulse optimization, for ex-
ample, the ending time of Tw is set to be 20% of the target square pulse width
beyond the target’s ending, which favors a pulse with high distinction ratio
between the square pulse and its immediate trailing waves. Another benefit of
running flexible simulation time in each iteration is that it helps reducing the
total computational load. Instead of calculating the full range of time steps
within Tmax in every single iteration, the necessary time range to simulate is
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(a) Evaluation of two optimization iterations using a fixated
target pulse.

(b) Evaluation of two optimization iterations using a floating
target pulse. An evaluation window is set in respect to the
amount of the delay τ .

Figure 7.2: The delay variable and the evaluation window are introduced to
improve the flexibility of the prescribed target pulse.
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effectively reduced to the size of the evaluation window Tw.

The sensitivities of the delay variable can be calculated by taken a first-order
finite difference approximation of the partial derivative of the objective function
to τ :

∂F

∂τ
≈

Tw∫
t=0

[Ēx(t)− Ḡ(t, τ + ∆τ)]2dt−
Tw∫

t=0

[Ēx(t)− Ḡ(t, τ −∆τ)]2dt

2∆τ
(7.3)

7.2.3 Transmission efficiencies for the filters

For pulse-shaping filters, low transmission loss is a desirable effect. High trans-
mission losses make it necessary to stage the pulse-shaping filters with am-
plifiers. The non-linearities associated with optical amplifiers could introduce
pulse-shape deform in the input pulse, if the signal is to be amplified prior
to entering the filter; or it could directly deteriorate the output pulse if the
amplifier is connected after the filter.

Since our pulse filtering is a linear process, the maximum transmitted pulse
energy is limited by the spectral shape and amplitude of the input pulse. The
spectrum of the optimized pulse has to be confined under the spectrum of the
input pulse. The amplitude of the target pulse can be determined by capping its
spectrum’s peak under that of the input pulse spectrum. Figure 7.3 illustrates
the spectrum as well as the electric field of the square-wave target pulse whose
amplitude is limited by the power spectrum of the input pulse.
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Figure 7.3: Target pulse energy limited by the input pulse spectrum.
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7.2.4 Minimum length-scale control and black/white de-

sign

Various filters were tested for the 2D optimization problem, and Modified Heav-
iside filters were chosen (see section 6.6) Although such filtering scheme does
not converge well for 1D problems, we find it fitting for the 2D problems. This
is mainly due to the increased flexibilities of positioning various lighter scatters
in a two-dimensional design domain instead of having to force all the light going
through the same scatters as in the 1D problems. The β factor for the filter
starts at a small value of 0.2 where the projection between the filter densities
ρ̃ and the real physical densities are almost linear. β is doubled every 300
iterations until β is 500.

7.2.5 Results

The results for the square-pulse filter optimization where the target pulse am-
plitude is limited by the power spectrum of the input pulses are shown in Fig.
7.4. The measure of discreteness (see section 6.1 for definition) for the opti-
mized design is 0.79%, which indicates an almost black and white topology.
The minimum feature in the topology is an element of the size of 3× 4, which
corresponds to an area of the size 78.9nm× 105.2nm.

The transmission efficiency η is computed as the ratio between the pulse energy
of the output pulse Eo and the input pulse Ei:

η =

Tmax∫
t=0

E2
o(t)dt

Tmax∫
t=0

E2
i (t)dt

(7.4)

The transmission efficiency for the optimized structure is 35.2%. Among the
transmitted energy, 96.6% of it is under the main square wave rather than the
tail waves. The optimization takes 5505 iterations to converge as β gradually
increases to the value of 500. It takes a total time of 28 hours and 31 minutes
in DTU FOTONIK cluster built on Dual-Core AMD Opteron(tm) Processor
2218, with the allocation of 12GB memory.

The optimized structure is also tested for input pulses with wavelength shifts
to investigate the robustness of the design. The input pulse carrier wavelength
is shifted upwards to 1582nm and also downwards to 1577nm with the same
amount of periods as in the original input pulse. The resulting output pulses for
the shifted frequencies see small deviations from the output pulse with center
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Figure 7.4: Optimization results for the square-pulse filter with spectral-limited
amplitude.

frequency in Fig. 7.5. The object function values are evaluated and compared
for the three different frequencies in Table 7.1.

Figure 7.5: Ouput pulses with 3 different input pulses’ carrier wavelengths:
1572nm (red), 1577nm (blue) and 1582nm (magenta).
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Table 7.1: Objective function value for input pulses with 3 different center
wavelengths

Center wavelength (nm) Objective function (log(F))
1572 29.6668
1577 27.3734
1582 28.9686

7.3 Saw-tooth filters

A saw-tooth pulse is an asymmetric triangular pulse with one of the slopes
ascending/descending much more steeply than the other. For our optimization
problem, a Gaussian pulse with a FWHM width of 26fs centered at 1577nm is
sent through a rectangular design domain. The size of the design domain, the
input/output ridge waveguides as well as the discretization are configured the
same way as the previous square pulse example. The target pulse envelope is
prescribed to be a saw-tooth pulse with a sharp rising edge and a slowly falling
edge with linear slope. The FWHM of the saw-tooth pulse is set to be 50.25fs.
The optimized results are shown in Fig. 7.6. The final design has a highly
discrete design with the measure of discreteness at 0.88%. The transmission
efficiency for the optimized filter is 63.2%, where 99.7% of the energy is under
the saw-tooth wave envelope instead of the tail waves.
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Figure 7.6: Optimization results for the saw-tooth filter.
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7.4 Pulse-splitting filters

The input pulse is a Gaussian pulse with FWHM of 26fs centered at 1577nm.
The target is a pulse train constituted of 4 pulses each with 20.4fs FWHM,
and spaced 52.6fs apart. The design domain is a rectangular region with the
area of 3.94µm×2.39µm. The discretized grid spacing is 26.3nm, which results
in a total of 6900 design variables in the half space modeled and optimized.
The final design and its performance are illustrated in Fig. 7.7. The topology
is almost all black and white, with the measure of discreteness 0.91%.
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Figure 7.7: Optimization results for the pulse-splitting filter.

7.5 Thresholded performance

To study the optimized structures more closely, we examine their performances
after applying a thresholding procedure on them. In this process, the grey
elements still existent in the optimized designs are completely removed. If
a grey element has a permittivity larger than 6.6882 (exact midway between
silicon and air), it is replaced with a silicon element. Similarly, if a grey element
has a permittivity smaller than that, it is treated as an air element instead.
The structures are then re-evaluated and compared with the pulse-filtering
performance of the original designs, as well as the target pulses (see Fig. 7.8).

From the comparisons, it is clear that the thresholded structures exhibit quali-
tatively the same performances as the original designs. However, small distor-
tions do occur. For example, the top of the square pulse experience a slight dip
compared to the flatness of the original optimized pulse. The third peak of the
pulse train shows a 1.1dB drop for the thresholded topology. These changes
are due to the highly sensitive nature of these devices to small variations of



7.5 Thresholded performance 77

local scatterers.
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(a) Square-pulse filter performance after thresholding.
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(b) Saw-tooth filter performance after thresholding.
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(c) Pulse-splitting filter performance after thresholding.

Figure 7.8: Comparisons of pulse shaping performances of the thresholded
structures and the original designed topology for the square-pulse filter, the
saw-tooth filter, and the pulse-splitting filter.
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7.6 Conclusions

In this chapter, three different pulse-shaping filters (square wave, saw-tooth
wave and pulse-splitting) are optimized using topology optimization based on
2D finite-difference time-domain method. By distributing silicon and air, the
optimization successfully generate topologies that fulfill the pulse filtering func-
tionalities. The filtered pulses show good resemblance to the prescribed target
pulse, indicating effective optimizations. For square wave filters, it is shown
that the optimized structures are quite robust to small variations in the input
pulse carrier wavelength. The final designs are highly discrete and almost void
of stand-alone elements, showing good minimum lengthscale control.



Chapter 8

Conclusions and future work

Conclusions

This thesis exploits topology optimization in both frequency domain and time
domain to design nanophotonic devices.

• Slow light couplers

Small group velocities of light due to flat dispersion curve near the band cut-
off in photonic crystals waveguides have exhibited the potential in various op-
tical function blocks. However, the impedance mismatch between the ridge
waveguide and the photonic crystal waveguide largely prohibits efficient slow
light coupling. By using topology optimization based on frequency domain
Helmholtz equations, new coupling topologies adjacent to the coupling area
are designed and tested. It is demonstrated, both numerically and experi-
mentally, that the optimized structures have improved coupling efficiencies by
between 2dB to 5dB, depending on the initial reference structure. For PhCWs
based on ring holes, it is also shown that the optimized design has quite robust
performance when the ring sizes fluctuate around the original value.

• Pulse-shaping filters based on 1D gratings

1D grating-based square pulse shaping filters are designed using topology opti-
mization based on finite-difference time-domain method. The methodology was
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tested on the design of Bragg gratings and shows consistency with theoretical
predictions. An objective function based on envelope function instead of the
field values is designed to tackle the local minima problem in optimizing wave
packets. Explicit penalization is used to control the discreteness of the design
as well as the minimum lengthscale. With the extra penalization scheme, bad
convergence is observed where the optimization focus shifts away from fulfilling
the pulse shaping functionality. Multiple optimizations starting from random
initial guesses proved to be effective in finding good topologies by searching the
solution space more thoroughly.

• Pulse shaping filters based on 2D SOI structures

3 different pulse-shaping functionalities, i.e. square pulse filters, saw-tooth
pulse filters and pulse-splitting filters, are optimized by using topology opti-
mization based on 2D finite-difference time-domain method. Apart from geo-
metrical design variables, a new delay variable is introduced to freely position
the target pulse as the optimization see fit, giving the optimization more flexi-
bility. Modified Heaviside filters are utilized to give highly discrete designs with
reasonable lengthscale controls. The design for square pulse is shown perform
robustly under small perturbations to the input pulse carrier wavelength.

Future work

• Real-world device modeling

2D simulations of planar photonic devices have been shown to predict device
performance efficiently in the past. However, to better predict the device per-
formance, the modeling should be able to take into account the vertical prop-
agation losses for these devices, including our pulse-shaping filters. Due to the
large number of iterations necessary for topology optimizations combined with
the high computational cost of full 3D FDTD simuations, alternative measures
should be preferred to model those losses instead of a full vectorial simulation.

• Robustness designs

Over- and under-etching are common issues in fabricating planar SOI devices
using e-beam lithography. These factors result in the topological deviations



81

of the fabricated device from the original designs, giving rise to performance
degrade. To find topologies whose performances are more insensitive to the
small variations of material boundaries, a robust design method can be applied
to generate more manufacturing tolerant designs [101].
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Appendix A

Sensitivity analysis for
topology optimizations based

on finite-difference
time-domain method

In this appendix, we derive the sensitivity expressions by using FDTD-based
adjoint-variable analysis on structured grids for 1D problems. For 2D problems
defined in section 7.1 where Ex becomes the dominant field component, Ez can
be ignored in evaluation of the output pulse and the sensitivity analysis. This
simplification makes the 1D sensitivity analysis recipe also applicable in the 2D
case.

A.1 Sensitivities for 1D problems

A.1.1 Problem formulation

First, let us revisit the 1D problem formulation at the beginning of chapter 5.
The goal of the 1D topology optimization is to distribute two dielectric materi-
als (ε1

r and ε2
r) within the design domain (Fig. A.1) to make a grating structure
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Figure A.1: 1D grating optimization. The input pulse is excited at the source
node (black) and the output pulse at the objective node (grey) is measured
and evaluated.

that fulfills certain transmission functions between the source node (green) and
the output node (red). For example, one can minimize the transmission at cer-
tain frequencies to design a special filter, or to alter the temporal shape of the
output pulse. Depending on different purposes, a specific objective function
F (ρρρ) is prescribed.

The relationship between the material property and the design variable for a
specific grid cell is expressed as:

εi
r = ε0

r + (εd
r − ε0

r)ρi, (0 ≤ ρi ≤ 1), (A.1)

where
εi

r is the relative dielectric constant for element i,
ε0

r is the relative dielectric constant for the lower index material,
εd

r is the relative dielectric constant for the higher index material, and
ρi is the ith design variable.

In the following example, the objective function F of the measured fields is
defined as to minimize the local measurement f at the objective node when
integrated over the complete analysis time Tmax:

F (E,ρρρ) =

Tmax∫

0

f(E,ρρρ)dt. (A.2)

The local measurement can be decided upon specific optimization criteria, e.g.
the transmitted energy.
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A.1.2 Definition of sensitivities

The sensitivities of the objective function to design parameter variations are
defined by the gradient of F in the design parameter ρρρ space:

∇ρρρF =
[

∂F

∂ρ1
,
∂F

∂ρ2
, ...

∂F

∂ρN

]
. (A.3)

It is a row vector with the size of the number of grid cells in the design domain,
and can be calculated by two methods: finite difference method and analyt-
ical sensitivity method. For the sensitivity of a specific design variable, the
derivative is:

∂F

∂ρi
≈ ∆iF

∆iρ
. (A.4)

The variation ∆iF in Eqn. A.4 can be expressed as

∆iF = ∆e
i F +

Tmax∫

0

(
∂f

∂E
·∆iE)dt, (A.5)

where E is the field solution, and the superscript e in ∆e
i F denotes the vari-

ation related to the explicit dependence on ρi. For example, when there is
perturbation at the observation node (i.e. a small change of the local dielectric
constant), f will have a change that is explicitly depending on this pertur-

bation.
Tmax∫
0

( ∂f
∂E ·∆iE)dt is in correspondence to the implicit variation of the

objective function defined in Eqn. A.2 via the field solutions.

By taking Eqn. A.5 into Eqn. A.4, we have the sensitivity of a certain design
variable as:

∆iF

∆iρ
≈ ∆e

i F

∆iρ
+

Tmax∫
0

( ∂f
∂E ·∆iE)dt

∆iρ
(A.6)

A.1.3 The finite difference method for calculating sensi-

tivities

The most straight forward way to get the sensitivities is to use the Finite
Difference Method, where the material property of every individual element
is perturbed to result in a small change in the objective function value. The
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sensitivity for a specific element in the design domain is defined as:

∇i
ρρρF =

F (ρi + ∆ρi)
∆ρi

, (A.7)

where ∆ρi is a very small perturbation around 10−7 ∼ 10−4.

The Finite Difference Method is an accurate way to calculate the sensitivities,
but for a design domain with N elements, N +1 system analyses would have to
be carried out to calculate the full vector of ∇ρρρF . This makes the method very
cumbersome to execute, especially when one single system analysis by FDTD
is already computationally heavy.

A.1.4 1D sensitivity analysis by using the adjoint-variable

method

The sensitivities can be calculated analytically by using only 2 system analysis,
based on the known theory of adjoint-variable analysis [82],[102]. Note that in
our case, though the expression for calculating sensitivities is derived analyti-
cally, the field values used in the equations are still the numerical results from
the FDTD simulation.

A.1.4.1 Derivation of the implicit sensitivity term

Maxwell’s coupled equations are mathematically equivalent to the non-coupled
second-order wave equation for the E-field:

1
µ

∂2Ez

∂x2
− ε

∂2Ez

∂t2
=

∂Js

∂t
. (A.8)

After discretization, Eqn. A.8 can be reduced to the linear matrix form:

M
..

θθθ +Kθθθ = Q, (A.9)

with initial conditions
θθθ(0) = 0 and

.

θθθ(0) = 0, (A.10)

where θθθ is a row vector of the field values Ez at all elements, and
.

θθθ and
..

θθθ
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are the first and second time derivatives of θθθ respectively. Equation A.9 is a
linear matrix form of the wave equation common in the finite element (FEM)
formulation. M and K are global system matrices assembling the material
properties of all the grid cells in the calculation domain, while Q is the global
matrix for depicting the excitation condition. These global matrices are in
correspondence to the terms in Eqn. A.8 through the following relations:

M
..

θθθ → −ε∂2Ez

∂t2 , M is depending on ε ;
Kθ → 1

µ
∂2Ez

∂x2 , K is depending on 1
µ ; and

Q → ∂Js

∂t .

In this notation, Eqn. A.5 is rewritten as

∆iF = ∆e
i F +

Tmax∫

0

(
∂f

∂θθθ
·∆iθθθ)dt. (A.11)

When the system equation Eqn. A.9 is perturbed at the ith design variable by
∆ρi, it becomes:

(M + ∆iM)(
..

θθθ +∆i

..

θθθ) + (K + ∆iK)(θθθ +∆iθθθ) = Q + ∆iQ (A.12)

By expanding equation Eqn. A.12, we have:

(M
..

θθθ +Kθθθ)+(∆iM
..

θθθ +∆iKθθθ)+(M+∆iM)∆i

..

θθθ +(K+∆iK)∆i θθθ = Q+∆iQ.
(A.13)

Define the residual term R as:

R = M
..

θθθ +Kθθθ−Q, (A.14)

and replace the system equation Eqn. A.9 into Eqn. A.13, we have:

M̃i∆i

..

θθθ +K̃i∆i θθθ +∆iR = 0, (A.15)

where

M̃i∆i = M + ∆iM,

K̃i∆i = K + ∆iK, and

∆iR = ∆iM
..

θθθ +∆iKθθθ−∆iQ.
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Now let us go back to the sensitivity expression in Eqn. A.11. The implicit
dependance of both ∂f

∂θθθ and ∆iθθθ on the design variable makes it difficult to cal-
culate the sensitivity value in a straightforward way. That is why an auxiliary
row vector λλλ is introduced to get rid of the ∆iθθθ term. λλλ has the same and size
as θθθ and is called the adjoint variable. Its value is unknown for now, but its
solution will be derived later on.

We first pre-multiply Eqn. A.15 with λλλ. The product is then integrated over
the observation time, just as needed in calculating the objective function:

Tmax∫

0

λλλT
i · (M̃i∆i∆i

..

θθθ +K̃i∆i∆i θθθ)dt = −
Tmax∫

0

λλλT
i ·∆iRdt, (A.16)

Next we integrate in time the term λλλT
i · M̃i∆i

..

θθθ by parts twice to remove
..

θθθ. It
results in:

λλλT
i · M̃i∆i

.

θθθ
∣∣∣Tmax
0 − λ̇λλ

T

i · M̃i∆i θθθ
∣∣∣Tmax
0 +

Tmax∫

0

(λ̈λλ
T

i M̃i + λλλT
i K̃i) ·∆iθθθ · dt

= −
Tmax∫

0

λλλT
i ·∆iRdt.

(A.17)

The first two terms in the above equation are 0 at t = 0, since θ̇θθ and θ̈θθ are 0 at
t = 0 as in Eqn. A.10. We can further eliminate the terms at t = Tmax too by
choosing λλλ to be:

λλλT
i (Tmax) = 0,

λ̇λλ
T

i (Tmax) = 0.
(A.18)

We can also choose values for λλλ to satisfy

λ̈λλ
T

i M̃i + λλλT
i K̃i =

∂f

∂θθθ
, (A.19)
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so that combined with Eqn. A.18, Eqn. A.17 finally becomes

Tmax∫

t=0

∂f

∂θθθ
∆iθθθ · dt = −

Tmax∫

t=0

λλλT
i ·∆iR · dt (A.20)

Noticing that the left hand side of the above equation is also the implicit
sensitivity term in Eqn. A.5, the sensitivity expression in Eqn. A.6 can now
be rewritten as:

∆iF

∆iρ
≈ ∆e

i F

∆iρ
−

Tmax∫

0

λλλT
i ·

∆iR
∆iρ

(θθθ)dt, (A.21)

where the derivative residual is:

∆iR
∆iρ

(θθθ) ≈ ∆iM
..

θθθ

∆iρ
+

∆iKθθθ

∆iρ
− ∆iQ

∆iρ
(A.22)

Note that the field θθθ and its derivatives θ̇θθ and θ̈θθ remain constant during the
differentiation of system matrices M and K. In problems where the source
node is not part of the design domain, ∆iQ

∆iρ
to 0.

In the following sections, we are going to derive the detailed calculations of λλλ
from the adjoint analysis as well as the derivative residual term ∆iR

∆iρ
(θθθ), which

are both necessary to arrive at the analytical sensitivity values in Eqn. A.21.

A.1.4.2 Derivative residual

In this section, the matrix derivative residual term ∆iR
∆iρ

(θθθ) is going to be cal-
culated by evaluating ∆iR

∆iρ
(Ez) at every grid cell.

Using central finite difference approximation with spatial interval ∆x and time
step ∆t, the residual for the 1D wave equation in Eqn. A.8 is discretized as:

∆x2DxxEz − α ·DttEz − β ·DtJs (A.23)
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where

DtJs = Js(t + ∆t)− Js(t−∆t)

α = µrεr(
∆x

c∆t
)2

β =
2µ0µr∆x2

∆t
DξξEz = Ez(ξ −∆ξ)− 2Ez + Ez(ξ + ∆ξ), ξ = (x, t).

Thus, we can have the derivative residual term to the design variable pertur-
bation to be:

∆iR
∆iρ

(Ez) =
∆i∆x2DxxEz,i −∆iα ·DttEy,i −∆iβ ·DtJs

∆iρ
(A.24)

Since Ez remains constant during the matrix derivative approximation, the first
increment term in the numerator becomes insensitive to the design parameter
ρ and is left as 0. The same applies to the third term, which has no dependence
on the material property εi

r at all. So Eqn. A.24 simply becomes:

∆iR
∆iρ

(Ez) =
−(∆iα) ·DttEy,i

∆iρ

= −∆iµrε
i
r(

∆x
c∆t )

2

∆iρ
·DttEy,i

= −∆iµr[ε0
r + (εd

r − ε0
r)ρi]( ∆x

c∆t )
2

∆iρ
·DttEy,i

= −µr(εd
r − ε0

r)(
∆x

c∆t
)2 ·DttEy,i

(A.25)

where Ey,i is the field history at ith design element.

Equation A.25 shows that the residual derivative to the ith is the product of a
constant containing the material parameters εd

r , ε0
r and µr as well as the second

time derivative of the field history Ez at grid cell i.
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A.1.4.3 The adjoint problem

By recapturing equations Eqn. A.18 and Eqn. A.19, one can see that the
adjoint variable λλλ must satisfy:

λ̈λλ
T

i M̃i + λλλT
i K̃i =

∂f

∂θθθ
,

as well as
λλλT

i (Tmax) = 0 and λ̇λλ
T

i (Tmax) = 0.

It is straightforward to see that the above two equations very much resemble
the original system equations Eqn. A.9 and Eqn. A.10 for solving second-order
wave equation, with 2 major discrepancies:

a) The system matrices M̃ and K̃ are perturbed with ∆iρ, and there are N
different adjoint variable, each for a specific design variable ρi;

b) The boundary conditions are set for the terminal at t = Tmax instead of
at t = 0.

In order to calculate the values for λλλ, we will first approximate the perturbed
system matrices M̃ and K̃ with the unperturbed M and K, thus we will have
only one adjoint variable λλλ and the subscript is dropped. It has been shown [83]
that given the relative fine mesh and small perturbations, this approximation
comes with very good accuracy.

Based on the properties of matrix transpose:

AT B = (BT A)T (A.26)

we rewrite Eqn. A.19 with the unperturbed matrices:

MT
..

λλλ +KT λλλ = (
∂f

∂ρρρ
)T (A.27)

By comparing the above equation with Eqn. A.9 and bear in mind that M and
K are symmetric matrices, we can conclude that Eqn. A.27 is also the solution
to the same wave equation in Eqn. A.8, except that the FDTD simulation
should run backward in time due to the terminal values determined in Eqn.
A.18.

Next, we quote the 1D FDTD update equations Eqn. 3.29a and Eqn. 3.29ain
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section 3.3.3 without magnetic sources:

Hy

∣∣∣n+1/2
i+1/2 =

(
2µi+1/2 − σ∗i+1/2∆t

2µi+1/2 + σ∗i+1/2∆t

)
Hy

∣∣∣n−
1
2

i+ 1
2

+
2∆t

2µi+ 1
2

+ σ∗i+1/2∆t

(
Ez

∣∣n
i+1 − Ez |ni

∆

)
(A.28a)

Ez

∣∣n+1
i =

(
2εi − σi∆t

2εi + σi∆t
)Ez |ni

+
2∆t

2εi + σi∆t

(
Hy

∣∣n
i+1 −Hy |ni

∆

−Jsourcey

∣∣n+1
i

)
(A.28b)

Based on the above equations, we solve for Hy

∣∣∣n−
1
2

i+ 1
2

and Ez |ni respectively

instead of Hy

∣∣∣n+1/2
i+1/2 and Ez

∣∣n+1
i , and also change the sign of the lossy term

σ and σ∗ since the computation now runs backward in time. This give us the
backward update equations:

Ĥy

∣∣∣n−1/2
i+1/2 =

(
2µi+1/2 − σ∗i+1/2∆t

2µi+1/2 + σ∗i+1/2∆t

)
Ĥy

∣∣∣n+ 1
2

i+ 1
2

− 2∆t

2µi+ 1
2

+ σ∗i+1/2∆t

(
Êz

∣∣n
i+1 − Êz |ni

∆

)
(A.29a)

Êz |ni =
(

2εi − σi∆t

2εi + σi∆t
)Êz

∣∣n+1
i

− 2∆t

2εi + σi∆t

(
Ĥy

∣∣n
i+1 − Ĥy |ni

∆

+Ĵsourcey

∣∣n+1
i

)
(A.29b)

The comparison of the above two systems of update equations shows that we
can use the original FDTD update scheme to solve for (Ĥ,−Ê) in the backward
analysis, starting from the terminal values at t = Tmax and running backward
to t = 0. The excitation for the backward scheme is the adjoint current ĴS . Its
values will be determined in the following section.
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A.1.4.4 The adjoint current

The adjoint current is computed according to the correspondence between ∂f
∂θθθ

in the adjoint problem definition Eqn. A.19 and β · DtĴS in the discretized
wave equations of Eqn. A.23 at every time step and grid cell:

β ·DtĴS =
∂f

∂Ez
. (A.30)

From the above equation we can see that the adjoint current depends on the
definition of local measurement f for individual optimization problems. For
the simplest case, we determine f to be:

f =
E2

z,objective

2
, (A.31)

which means the goal of the optimization is to minimize the time-integrated
transmitted energy at the objective node.

By expanding Eqn. A.30 at grid cell i and time n, we have

β · (Ĵn+1

S,i − Ĵ
n

S,i) =
∂f

∂Ez
|i,n (A.32)

Take Eqn. A.31 into the above equation, it becomes:

β · (Ĵn+1

S,i − Ĵ
n

S,i) =
∂(E2

z,objective/2)
∂Ez

|i,n

=
{

En
z,objective, i = objective node

0, i 6= objective node.

} (A.33)

Since the RHS of the above equation is only nonzero at the objective node, it
means the adjoint current ĴS,i will only be excited at the object node in the
backward analysis:

β · (Ĵn+1
S,objective − Ĵn

S,objective) = En
z,objective

Ĵn+1
S,objective = Ĵn

S,objective +
En

z,objective

β
,

where Ĵ0
S,objective = 0.

(A.34)
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The above adjoint current update equation shows that the adjoint current
value at a certain time step depends on its own value at the previous time
step as well as the forward analysis field solutions at the objective node, at the
corresponding time.

A.1.4.5 Implementation of sensitivity analysis using the adjoint-

variable method

By taking Eqn. A.25 as well as the simulated adjoint variable λλλ into the
sensitivity calculation in Eqn. A.21, we can now determine the sensitivity for
the ith design variable to be:

∆iF

∆iρ
≈ ∆e

i F

∆iρ
+

nmax∑
n=1

µr(εd
r − ε0

r)(
∆x

c∆t
)2 ·DttE

n
z,i · λn

i (A.35)

In most cases where the ith element is not the objective node, the first term in
the RHS of the above equation is 0 since the local measurement does not change
explicitly so long as the objective node material property stays the same.

A flow chart streamlining the procedures described above is illustrated below:
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Figure A.2: Flow chart for analytical sensitivity calculation using AVM.
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