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Abstra
tIn re
ent years mu
h attention has been fo
used on the possibility of realizing a single-photon sour
e,due to its possible appli
ations within quantum 
omputing. The e�orts have been both experimental andtheoreti
al, and progress has been made on both fronts. However mu
h work still remains to be done,in order to obtain a full understanding of the physi
s underlying a semi
ondu
tor single-photon sour
e,whi
h is a ne
essity for designing an e�
ient fun
tional devi
e.In this thesis we present a theory for des
ribing many-body e�e
ts in a semi
ondu
tor 
avity quantumele
trodynami
al system, suitable for modeling a semi
ondu
tor single-photon sour
e. We employ a non-equilibrium Green's fun
tion formalism that is 
apable of des
ribing the 
ompli
ated many-body system,whi
h the relevant physi
al system 
onsists of. Using the Green's fun
tion approa
h we formulated a set ofquantum kineti
 equations, where we took into a

ount the Coulomb intera
tion, the intera
tion betweenele
trons and longitudinal opti
al (LO) phonons, and the intera
tion between ele
trons and photons.Furthermore a model of the ele
troni
 states in the semi
ondu
tor quantum dots was developed, in termsof whi
h the various intera
tion matrix elements were 
al
ulated.The quantum kineti
 equations were applied to a range of equilibrium and non-equilibrium situations.In equilibrium the intera
tion with the LO-phonons, was found to dramati
ally 
hange the proper-ties of the ele
trons. We investigated the linear absorption spe
trum, revealing interesting spe
tralsignatures arising from the LO-phonon 
oupling, as well as for the Coulomb and photon intera
tion.The population dynami
s for the both ele
trons and photons was studied in the time domain, whereamongst other things the approa
h to a quasi-equilibrium state and the o

urren
e of Rabi os
illationswas treated.An attempt to solve for the full two-time Green's fun
tions of the photons was made, however, due to la
kof time this part of was not fully 
ompleted and more work is needed.
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1. Introdu
tionThe emerging �eld of quantum information te
hnology shows great promise as a possible repla
ement ofthe 
urrent 
lassi
al information te
hnology, as it o�ers opportunities to perform tasks not possible withinits 
lassi
al 
ounterpart. A very 
entral obje
t in this new �eld is the quantum 
omputer that derives itsspe
ial properties due to utilization of the qubit. A qubit is a generalization of the 
lassi
al bit that due toits quantum nature 
an be in a superposition of the 
lassi
al "0" and "1", giving it unique properties as a
omputation devi
e. A promising 
andidate for a qubit are the two polarization states of a photon. Indeed,ever sin
e it was realized that e�
ient quantum 
omputing 
an be performed using single photons andstandard linear opti
al elements [1℄, there has been an immense international resear
h a
tivity [2, 3℄ aimingat developing single-photon sour
es. An ideal single-photon sour
e is a devi
e that 
an deterministi
allyemit indistinguishable single photons e�
iently into a single well de�ned opti
al mode. The single photonsneed to be indistinguishable, as otherwise they will not behave quantum me
hani
ally and therefore notbe able to interfere as required by the s
heme proposed in Ref. [1℄. It is of similar importan
e that oneis able to generate a single photon whenever needed, popularly we speak of single-photons on-demand, asotherwise it will not be possible to e�e
tively interfere the single photons on a beam splitter. Furthermorethe 
olle
tion e�
ien
y, given as the amount of light emitted into the desired mode normalized by thetotal amount of light emitted, should be as high as possible. To summarize and emphasize these essentialfa
ts a good single-photon sour
e should possess
• A high degree of indistinguishability
• The ability to deterministi
ally emit single photons
• A high 
olle
tion e�
ien
yThe degree of indistinguishability is determined by the amount of de
oheren
e the photoni
 degrees offreedom experien
e through various intera
tion me
hanisms, and as these are always present in a phys-i
al system, one must be prepared to a

ept some degree of distinguishability. A detailed understand-ing of these de
oheren
e pro
esses is needed in order to understand the physi
s underlying a single-photon sour
e, but also from a more pra
ti
al point of view to be able to design better single-photonsour
es.In this thesis we will fo
us mainly on des
ribing de
oheren
e pro
esses, and therefore emphasis will be onthe indistinguishability aspe
t of single-photon sour
es.Semi
ondu
tor single-photon sour
esIn order for quantum 
omputers, or more generally quantum information te
hnologies, to move outsidethe laboratory the materials 
omprising these devi
es need to pra
ti
al. Systems su
h as ultra-
old gasesor single atoms are not well suited for eventual 
ommer
ialization and su�er from poor s
alability, eventhough they are ex
ellent for 
ertain fundamental studies. A material that does not su�er from the sameimpra
ti
alities is semi
ondu
tors, and whi
h for many purposes are highly s
alable as witnessed in themi
roele
troni
s industry. A huge advantage of employing semi
ondu
tors is the very high degree ofdesign 
ontrol the �eld has developed over the years, enabling 
onstru
tion of devi
es stru
tured downto the nanometer s
ale. It is at these small length s
ales that quantum e�e
ts begin to play a vitalrole. This 
ontrol also makes it possible, to a 
ertain degree, to engineer the ele
troni
 energy levels inthe material and through this 
ontrolling the energy of the emitted light. Furthermore, the quality ofsemi
ondu
tor devi
es grown nowadays is extremely high and various unwanted defe
ts do not pose aserious problem. 1



Introdu
tion

(a) Self-assembled quantum dots grown using the Stranski-Krastanowte
hnique [4℄. The diameter of ea
h quantum dot is on the orderof a few tens of nanometers. (b) Simulated ele
tri
 �eld mode pro�le of a
avity 
reated by omitting three holes ina 2D photoni
 
rystal membrane [5℄.Figure 1.1.: Figures of self-assembled QDs and an opti
al 
avity.A promising 
andidate for a semi
ondu
tor single-photon sour
e 
onsists of a single1 self-assembled quan-tum dot (QD), see �gure 1.1(a), pla
ed inside an opti
al 
avity, see �gure 1.1(b), whi
h o�ers 
ontrol overboth the ele
troni
 and photoni
 degrees of freedom. It is this spe
i�
 system we will deal with in thisthesis and a brief overview will therefore be given.QDs grown using the Stranski-Krastanow te
hnique [6℄ are made in a three step evaporation pro
ess,where due to the physi
al me
hanism behind the formation these QDs are 
alled self-assembled. The �rststep 
onsists of pla
ing a layer of semi
ondu
tor on a substrate, as an example we use GaAs whi
h is a
ommonly employed material. In the se
ond step a very thin layer, usually only a few monolayers thi
k,of another kind of semi
ondu
tor is evaporated onto the the �rst. The material forming the se
ond layersshould have a slightly di�erent latti
e 
onstant than the �rst, this demand is satis�ed by InAs whi
h wewill use and whi
h is further 
ommonly employed in 
onne
tion with GaAs. The latti
e mismat
h 
ausesa stress �eld to build in the InAs layer with a subsequent in
rease in surfa
e energy. To minimize thesurfa
e energy small islands of InAs spontaneously form on top of the thin layer of InAs, these islands aredenoted self-assembled QDs and the thin layer below them is denoted the wetting layer (WL). This step ofthe pro
ess is illustrated in �gure 1.1(a), where a s
anning ele
tron mi
ros
ope image shows how the QDsare randomly distributed on the WL. The last step 
onsists of evaporating a �nal layer of GaAs on topof the QDs and WL, 
ompletely embedding the InAs in GaAs. Now, the bandgap of InAs is signi�
antlylower than that of GaAs, and through band bending e�e
ts this 
reates a 
on�ning potential for bothele
trons and holes, allowing spatially lo
alized states to inside the QDs, see �gure 4.3 for a s
hemati
illustration. Regarding the opti
al 
avity we will not go into details with the spe
i�
 form, as we onlyrequire it to have a single well de�ned opti
al mode. This mode will be des
ribed entirely by parameters,that will be introdu
ed later when needed. For an ex
ellent exposition of di�erent 
avity designs we referto the review arti
le by Vahala et al. [7℄.An often performed experiment in solid-state quantum opti
s is the photolumines
en
e experiment, whereone ex
ites ele
trons in a given stru
ture and measures the light emitted by the stru
ture. The emittedlight 
arries with it a wealth of information on the various intera
tions that are present in the stru
ture.It is therefore of great interest to be able to model a photolumines
en
e experiment a

urately, to be ableto understand the experimental data. For illustration we have in �gure 1.2 sket
hed a typi
al photolumi-nes
en
e experiment. The �gure shows an energy diagram of a two-band semi
ondu
tor whi
h has a bulk
ontinuum part, arising from the un
on�ned 
arriers in the semi
ondu
tor bulk, a WL (quasi-) 
ontinuum,due to 
arriers moving in the quasi-2D WL, and a set of dis
rete states lo
alized in the QD. In the experi-ment ele
trons are generated in the 
ondu
tion band by some external sour
e, that 
ould either be opti
alor ele
tri
al in nature. In the opti
al 
ase the ex
itation energy is often tuned to the 
ontinuum parts of1In pra
tise it is very di�
ult to pla
e a single QD inside a 
avity, due to the fabri
ation pro
ess. Often several QDs arepla
ed spatially inside the 
avity, however, due to size �u
tuations and the asso
iated energy �u
tuation it is possible tospe
trally sele
t a single QD.2



Introdu
tionthe spe
trum to, avoid ex
iting with light of the same energy as one wish to dete
t. The ele
trons and holesthen undergo a rapid relaxation and dephasing pro
ess in the WL or bulk 
ontinuum, where the phasespa
e for s
attering is large, through the emission of phonons and s
attering with other 
arriers. On
e the
arriers rea
h the bottom of the WL 
ontinuum, they are 
aptured into the lo
alized QD states. From hereon they relax into the ground state of the dis
rete QD spe
trum, and as this part of the relaxation takespla
e for dis
rete ele
tron states, the time s
ales are typi
ally longer than in the 
ontinuum 
ase. Oftenthe relaxation to the QD ground state for the ele
trons and holes, o

urs su�
iently fast so that only avery small number of photons are emitted during the pro
ess. However, on
e the the 
arriers rea
h theirrespe
tive ground states, they start intera
ting e�
iently with the quantized ele
tromagneti
 �eld andsigni�
ant photon emission starts to o

ur. Depending on the strength of the ele
tron-photon intera
tiontwo qualitatively di�erent situation 
an arise, known as the weak and strong 
oupling regimes [8, Chap.7℄. In the strong 
oupling regime the 
oherent 
oupling between ele
trons and photons is stronger thanthe de
ay pro
esses, and 
oherent transfer of energy between the ele
troni
 and photoni
 subsystems isobserved through so-
alled Rabi os
illations. In the weak 
oupling regime the situation is reversed andthe de
ay pro
esses dominate over the 
oherent 
oupling, resulting in an irreversible de
ay of the ex
itedele
tron into its ground state while emitting a photon. It is this basi
 experiment we will set up a theoryfor in this thesis, as it 
onstitutes the fundamental me
hanism in a semi
ondu
tor single-photon sour
e.
Condu
tion band

Valen
e band

Bulk 
ontinuumWL 
ontinuum

Bulk 
ontinuumWL 
ontinuum

WL relaxationQD 
aptureQD relaxationStrong 
oupling Weak 
oupling External opti
al ex
itation

Figure 1.2.: S
hemati
 energy diagram illustrating the pro
esses involved in a typi
al photolumines
en
e experiment,explanations are given in the main text.In the 
ontext of single-photon sour
es the weak 
oupling regime is parti
ular interest due a phenomenaknown as the Pur
ell e�e
t [9℄, where the spontaneous emission rate is altered due to a 
hange in thelo
al density of opti
al states (LDOS). If the spontaneous emission rate is in
reased to a value near orabove the de
oheren
e rates, it will lead to an in
rease in the indistinguishability of the emitted photon[10℄. Intuitively we 
an understand this as the photon being emitted before the impa
t of dephasing hasrendered the photons distinguishable. Most exploitations of the Pur
ell e�e
t have employed an opti
al
avity to alter the LDOS, however, re
ently it has been proposed to use a photoni
 
rystal waveguide toalter the LDOS instead of a 
avity [11, 12℄. This o�ers several advantages over a spe
trally narrow high-Q3
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avity. First the Pur
ell e�e
t in a waveguide 
an be obtain over a larger range of frequen
ies and se
ondlythe photon is emitted dire
tly into a strongly dire
tional mode that in
reases the 
olle
tion e�
ien
y [13℄.We will however only treat 
avities and not waveguides in this thesis.Experimental and theoreti
al e�ortsMu
h attention is dire
ted towards obtaining a better understanding of the semi
ondu
tor 
avity quantumele
trodynami
al (
QED) system des
ribed above, both on the experimental and theoreti
al side. Indeedboth measurements of the weak and strong 
oupling regimes have been realized and we will dis
uss two su
hexamples. In �gure 1.3(a) we show the experimental setup and the result of a 
oin
iden
e measurement[14℄, between the two photon 
ounters depi
ted in the setup, after two single photons have been interferedon the beam splitter. The dip in the 
ount rate at τ = 0 is a signature of two-photon interferen
e ando

urs due to the bosoni
 nature of photons. One 
an use the area under the suppressed 
enter peak tode�ne a measure for the degree of indistinguishability of the emitted single photons, indeed for perfe
tlyindistinguishable photons the area would vanish [15℄. This experiment was performed in the weak 
ouplingregime utilizing the Pur
ell e�e
t to obtain a higher degree of two-photon interferen
e. An example ofa measurement in the strong 
oupling regime is shown in �gure 1.3(b). Here the emission spe
tra for aphotolumines
en
e experiment is shown at di�erent detunings between between ex
iton emitter (X) andthe 
avity (C) [16℄. A 
lear indi
ation that we are in the strong 
oupling regime is seen through theso-
alled avoided 
rossing of the two peaks, revealing the formation of an ele
tron-photon quasi-parti
le,often 
alled a polariton.

(a) Figures showing the setup for performing a two-photoninterferen
e measurement and the 
orresponding 
oin-
iden
e histogram [14℄. (b) Emission spe
tra for a 
QED system in the strong 
ou-pling regime [16℄.Figure 1.3.: Figures illustrating examples of weak and strong 
oupling between ele
trons and photons.The most basi
 features of these experiments have been reprodu
ed by simple models [15, 17�19℄, wherede
ay pro
esses are treated in relaxation rate approximations. The rates be
ome �tting parameters andgive no understanding or insight into the physi
s underlying the various de
ay pro
esses. In order tounderstand the e�e
ts of e.g. temperature, more advan
ed models are needed that expli
itly take intoa

ount the intera
tions giving rise to the temperature features. These intera
tions have an inherent many-body nature and are therefore notoriously di�
ult to handle theoreti
ally, and often very 
omputationallydemanding, whi
h are some of the reasons why they are not employed more often in the literature. Re
entlythere has been several theoreti
al papers [20�23℄ that treat 
QED systems and some kind of many-body4



Introdu
tionintera
tion, usually phonons. However, they all have the 
ommon feature that they use methods2 that areimpossible, or very di�
ult, to extend to realisti
 systems, whi
h is the ultimate goal and is a prerequisitefor explaining some experiments.In this thesis we employ a non-equilibrium Green's fun
tion formalism and set up a model for a realisti

QED system. We take into a

ount the many-body intera
tions between ele
trons, phonons, and photonsand go beyond the usual two-level des
ription of the ele
troni
 system, in that we 
onsider a multi-level QDs
heme rarely done in the literature. The model is analyzed and dis
ussed for several relevant s
enarios,with the overall 
on
lusion that in order to a

urately des
ribe experiments it is imperative to employ amany-body model, that expli
itly des
ribes the various de
ay me
hanisms.

2Many employ the so-
alled independent boson model [24℄ that only applies to systems with a single ele
troni
 level,obviously limiting its usefulness. 5



2. Non-equilibrium Green's Fun
tions2.1. Introdu
tion and motivationThe theoreti
al des
ription of many-body quantum systems is notoriously di�
ult, and there exists only avery limited understanding of the vast amount of intriguing phenomena arising from the intri
ate intera
-tions amongst many identi
al parti
les. One reason for the limited understanding of many-body systemsis due the pra
ti
al problems asso
iated with solving the fundamental governing equation, namely thetime-dependent S
hrödinger equation
i~∂t |Ψ(t)〉 = H |Ψ(t)〉 . (2.1)In standard wavefun
tion approa
hes the Hamiltonian and wavefun
tion are expanded in a many-parti
leHilbert spa
e and the resulting set of linear equations is solved. While this approa
h is possible and veryoften used for single or few parti
les systems, it be
omes impossible to pro
eed down this path on
e theparti
le number be
omes signi�
ant. This is so as the 
orresponding Hilbert spa
e, in
reases exponentiallyin the number of parti
les and in the number of single-parti
le states used to expand the many-parti
leHilbert spa
e on. To make progress we turn to the Heisenberg representation of quantum theory, in whi
hoperators rather than the wavefun
tions themselves are the primary obje
ts. This approa
h does howeveralso have an inherent problem known as the hierar
hy problem. The hierar
hy problem is ni
ely illustratedusing an 
on
rete example in whi
h we 
onsider the following Hamiltonian
H = ~ω1c

†
1c1 + ~ω2c

†
2c2 + ~ωa†a+ ~g(c†2c1a+ a†c†1c2),that represents fermions in two states 1 and 2, intera
ting with a bosoni
 mode through the intera
tiondes
ribed by the last two terms1. In order to get information on the fermions of the system, we would liketo know the time evolution of the fermion operators, e.g. c†2. To obtain the time evolution one needs tosolve the Heisenberg equation of motion, see eqs. (2.8) and (2.9), that reads

i~∂tc
†
2(t) = [c†2(t), H(t)].The evaluation of the 
ommutator between c†2 and H is easily done using the (anti)
ommutator relations,see eq. (A.33), for the operators and we get the following more expli
it equation

i~∂tc
†
2(t) = −~ω2c

†
2(t)− ~ga†(t)c†1(t).The �rst term on the right hand side (RHS) is identi�ed with the free evolution of c†2(t) in the absen
e ofintera
tions, while the se
ond term is due to the intera
tion with the bosoni
 mode. As this equation is not
losed in c†2(t) we have to set up an equation des
ribing the evolution of the operator produ
t a†(t)c†1(t),doing so one dis
overs that this equation 
ouples to a new produ
t of three operators. The 
oupling tohigher order produ
ts never ends, meaning that a 
losed set equations is never obtained and therefore theproblem is in prin
iple unsolvable. This in�nite number of equations is known as the hierar
hy problemof many-body theory.There are di�erent ways one 
an ta
kle the hierar
hy problem. The two dominating methods both fo
uson determining the time evolution of expe
tation values of operators, as here one may fo
us on obtaininge.g. single-parti
le information. This should be 
ontrasted to the wavefun
tion approa
h, were one obtains1This Hamiltonian is equal to the Jaynes-Cummings model studied in appendix A.2, in the rotating wave approximation,but the point we are trying to make is generi
 and hen
e this is not emphasized.6



Non-equilibrium Green's Fun
tions Introdu
tion and motivationall information available on the system, mu
h of whi
h is often redundant. An example of su
h a timedependent expe
tation value is the single-parti
le density matrix, e.g. ρ11(t) = 〈c†1(t)c1(t)〉 or its two-time generalization ρ<
11(t
′, t) = 〈c†1(t)c1(t′)〉. The method relying on one-time density matri
es is knownas the 
luster expansion s
heme (for a review see [25℄) where, rather intuitively, higher order produ
tsare fa
tored into lower ordered ones, whi
h in the end renders the system of equations �nite and hen
ein prin
iple solvable. The method relying on two-time density matri
es, or more generally two-time
orrelation fun
tions, is known as the Green's fun
tion approa
h. In this approa
h 
ertain 
ontributionsin all higher order produ
ts are kept, and hen
e these 
ontributions are taken into a

ount to in�niteorder. In this thesis we will use the a non-equilibrium version of the Green's fun
tion formalism, as it hasproven e�
ient in studying semi
ondu
tor many-body system out of equilibrium [26℄. For dis
ussions onthe di�eren
es and similarities of the two methods see [27℄ and [26, pp. 243-250℄To further motivate the use of Green's fun
tions we now show how these relate to experimentally a

essiblequantities. We start by 
onsidering a general one-body operator B, whi
h des
ribes some observable of aphysi
al system. In 
reation and annihilation operators B 
an be written

B =
∑

αβ

BαβO
†
αOβ ,where O 
an be either a fermion or boson operator and Bαβ = 〈α|B|β〉 is the single-parti
le matrixelement. What is measured in experiments is the expe
tation value of B, de�ned by tra
ing over thedensity operator of the system

〈B(t)〉 = Tr[Bρ(t)] = Tr[Bu(t, t0)ρ(t0)u
†(t, t0)] = Tr[u†(t, t0)Bu(t, t0)ρ(t0)] = Tr[B(t)ρ(t0)]. (2.2)In terms of the expansion of B above we may write

〈B(t)〉 =
∑

αβ

BαβTr
[
O†α(t)Oβ(t)ρ(t0)

]
=
∑

αβ

Bαβ 〈O†α(t)Oβ(t)〉 , (2.3)where 〈· · ·〉 denotes averaging with respe
t to the initial state of the system des
ribed by ρ(t0). The entiretime-dependent bra
ket 〈O†α(t)Oβ(t)〉 is proportional to what is known as the equal-time lesser Green'sfun
tion, see eq. (2.24b), and plays the role of the single-parti
le density matrix. Thus with knowledgeof the lesser Green's fun
tion, the expe
tation value of any one-body operator 
an be determined. Thismakes this obje
t very desirable to obtain, therefore mu
h e�ort is put into solving the equations for thelesser Green's fun
tion and mu
h of this thesis will deal with this issue also. Information on the spe
tralproperties of a system, e.g. density of states, is often wanted and also these are a

essible through theGreen's fun
tions. One 
an relate the mean thermal o

upation of a state α to the Fourier transform ofthe so-
alled spe
tral fun
tion Aα(ω) as [28, p. 131℄
〈O†αOα〉 =

∫ ∞

−∞

d(~ω)

2π
Aα(~ω)f(~ω), (2.4)where f(~ω) is equal to the Fermi-Dira
 (Bose-Einstein) distribution fun
tion for fermions (bosons) and

Aα(~ω) = −2Im[Gr
α(~ω)], see eq. (2.24
). This shows that the spe
tral fun
tion is similar to the usualdensity of states.There exists two approa
hes for generating the equations for the Green's fun
tions. The �rst is thediagrammati
 approa
h pioneered by Ri
hard Feynman, where one represents the equations in terms ofrather intuitive pi
tograms, that 
an make it easier to gain an overview of the 
ompli
ated equations. These
ond is a more mathemati
al approa
h developed by Julian S
hwinger, where a fun
tional derivativete
hnique is used to generate the governing equations. The two formulations are identi
al as showedby Freeman Dyson, but are in pra
ti
e quite di�erent and we will throughout this thesis employ thediagrammati
 approa
h as the author �nds this more intuitive.This 
hapter is meant as a brief introdu
tion to the theory of non-equilibrium Green's fun
tions andis a 
ompilation of a number of other texts [24, 26, 28�33℄, where ref. [33℄ should be emphasized as7



Basi
s of 
ontour ordered Green's fun
tions Non-equilibrium Green's Fun
tionsan espe
ially thorough and lu
id introdu
tion. Attention should also pointed to the re
ent release of atextbook by Jørgen Rammer on the subje
t [34℄, whi
h seems to �ll a gap in the literature for a modernformal introdu
tion to non-equilibrium Green's fun
tions.2.2. Basi
s of 
ontour ordered Green's fun
tionsIn this se
tion we will introdu
e the 
ontour ordered Green's fun
tion and develop an in�nite orderperturbation theory for this obje
t. We start by 
onsidering the 
al
ulation of ensemble averages ofphysi
al observables in non-equilibrium situations, this is done to motivate the introdu
tion of the 
on
eptof 
ontour time and 
ontour time ordering. Next we de�ne the single-parti
le 
ontour ordered Green'sfun
tion for whi
h we develop an in�nite order perturbation theory using the diagrammati
 te
hnique.The 
ulmination is the arrival at the Dyson equation for the 
ontour ordered Green's fun
tion and the
on
ept of self-energy.2.2.1. Ensemble averages in non-equilibriumTo be able to dis
uss quantum me
hani
al problems we �rst need to introdu
e a Hamiltonian for thesystem we are 
onsidering. We divide the Hamiltonian into three parts that are fundamentally di�erentand hen
e write it as
H = H0 +Hi + U(t). (2.5)The non-intera
ting part is given by H0, this 
ontains the quadrati
 (i.e. terms with two operators)parts of all the fermioni
 and bosoni
 spe
ies of the system, and 
onstitutes the basi
 system upon whi
hperturbation theory is performed. The intera
tion part is given by Hi and 
onsists of all many-bodyintera
tions between the fermioni
 and bosoni
 spe
ies. Ea
h term in Hi is 
hara
terized by having morethan two operators, and hen
e gives rise to the hierar
hy problem mentioned in the introdu
tion to this
hapter. The last part U(t) is the externally applied and expli
itly time-dependent disturban
e to thesystem, whi
h drives it into the non-equilibrium state. We assume U(t) to be quadrati
, whi
h is normallythe 
ase, as this yields a simpler formulation of the theory.We now pro
eed by 
onsidering the 
al
ulation of the expe
tation of a physi
al observable des
ribed bythe operator O in a system governed by the Hamiltonian eq. (2.5)
〈O(t)〉 = Tr [ρ(t0)O(t)] , (2.6)where ρ(t0) is the initial density matrix, before the time-dependent external potential begins to a
t. Themost natural initial state to 
onsider in a solid-state system is that of thermal equilibrium. The thermaldensity matrix is given by [28, p. 28℄
ρ(t0) =

e−β[(H0+Hi)−µN ]

Tr
[
e−β[(H0+Hi)−µN ]

] =
e−β(H0+Hi)

Tr
[
e−β(H0+Hi)

] , (2.7)where we have 
hosen our energy s
ale so that the 
hemi
al potential is zero, µ = 0, to avoid having to dealexpli
itly with the parti
le number operator, N , and β = (kBT )−1 is the inverse thermal energy. For themoment we will postpone the problems asso
iated with thermal density matrix to the end of this se
tionand 
on
entrate on the time development of the expe
tation value eq. (2.6).In eq. (2.6) O(t) is the S
hrödinger operator O in the Heisenberg pi
ture, also it should be emphasized that
O(t) 
an des
ribe both fermioni
 or bosoni
 spe
ies. The Heisenberg pi
ture is de�ned by

O(t) = u†H(t, t0)OuH(t, t0), (2.8)8



Non-equilibrium Green's Fun
tions Basi
s of 
ontour ordered Green's fun
tionswhere uH(t, t0) is the time evolution operator whi
h is governed by the S
hrödinger equation
i~∂tuH(t, t0) = HuH(t, t0), (2.9)with the initial 
ondition uH(t0, t0) = 1. This equation is in general very di�
ult to solve, if not impossible,for most realisti
 systems. Furthermore as the overall goal is to formulate a perturbation theory, we swit
hto the intera
tion pi
ture whi
h fa
ilitates this. In the intera
tion pi
ture an operators time-dependen
eis governed by H0 and is therefore given by
Ô(t) = u†H0

(t, t0)OuH0 (t, t0), (2.10)where uH0(t, t0) is the time evolution operator with respe
t to H0 and assumed known. However to 
apturethe full time evolution of the system we have to 
onsider Heisenberg time evolution. By using the property
uH0(t, t0)u

†
H0

(t, t0) = 1 of unitary operators we rewrite O(t) to a form more suitable for the formulationof a perturbation theory
O(t) = u†H(t, t0)OuH(t, t0) = u†H(t, t0)uH0(t, t0)u

†
H0

(t, t0)OuH0 (t, t0)u
†
H0

(t, t0)uH(t, t0)

= v†H0
(t, t0)Ô(t)vH0 (t, t0), (2.11)where we used eq. (2.10) and de�ned the very important time evolution operator

vH0(t, t0) = u†H0
(t, t0)uH(t, t0).The next step is to obtain an equation of motion for vH0(t, t0), whi
h is done by simply di�erentiating itsde�nition

i~∂tvH0 (t, t0) = i~∂t

(

u†H0
(t, t0)uH(t, t0)

)

=
[

i~∂tu
†
H0

(t, t0)
]

uH(t, t0) + u†H0
(t, t0) [i~∂tuH(t, t0)] .The terms in the square bra
kets are equal to their respe
tive S
hrödinger equations, see eq. (2.9),hen
e

i~∂tvH0 (t, t0) = −H0u
†
H0

(t, t0)uH(t, t0) + u†H0
(t, t0) (H0 +Hi + U(t))uH0(t, t0)u

†
H0

(t, t0)uH(t, t0)

=
(

Ĥi(t) + Û(t)
)

vH0(t, t0) = V̂ (t)vH0(t, t0),where we used that u†H0
(t, t0)H0uH0(t, t0) = H0, the de�nition of vH0(t, t0), and introdu
ed V̂ (t) = Ĥi(t) + Û(t)
ontaining all intera
tions. To solve this equation we formally integrate on
e and obtain the follow-ing

vH0(t, t0) = 1− i~−1

∫ t

t0

dt1V̂ (t1)vH0(t1, t0),where we have used the initial 
ondition vH0(t0, t0) = 1. This 
an now be iterated to yield vH0(t, t0)expressed as an in�nite sum, namely
vH0(t, t0) =

∞∑

n=0

(−i~−1)n

∫ t

t0

dt1

∫ t1

t0

dt2 · · ·
∫ tn−1

t0

dtnV̂ (t1)V̂ (t2) · · · V̂ (tn),where the zeroth term is to be taken as 1. If we introdu
e the time ordering operator2 Tt we 
an write theabove in a form whi
h allows an easier formulation of the perturbation theory
vH0(t, t0) =

∞∑

n=0

(−i~−1)n

n!

∫ t

t0

dt1

∫ t

t0

dt2 · · ·
∫ t

t0

dtnTt

{

V̂ (t1)V̂ (t2) · · · V̂ (tn)
}

. (2.12)2For a textbook introdu
tion to the time ordering operator see the �rst 
hapters in any many-body text, e.g. [24, 28℄. 9



Basi
s of 
ontour ordered Green's fun
tions Non-equilibrium Green's Fun
tionsAs this expansion looks like that of an exponential fun
tion it is 
ommon to de�ne the following shorthand notation
vH0(t, t0) = Tt

{

e
−i~−1

∫
t

t0
dt′V̂ (t′)

}

,but one should be 
autious by treating it as an exponential fun
tion in mathemati
al manipulations.The operator Tt orders operators so that "late times go left", e.g. for a two-operator produ
t weget
Tt

{

V̂ (t1)V̂ (t2)
}

= θ(t1 − t2)V̂ (t1)V̂ (t2) + θ(t2 − t1)V̂ (t2)V̂ (t1),whi
h holds for the type of intera
tions normally 
onsidered in solid state physi
s3. When 
onsidering timeordered Green's fun
tions in the se
tions ahead, we will also need to know the a
tion of the time orderingoperator on the more fundamental bosoni
 and fermioni
 operators, and not just the 
ombinations theseo

ur in in the various intera
tion Hamiltonians. Here it also holds that operators with "late times goleft", so that for a three operator produ
t we for example get [35℄
Tt {A1(t1)A2(t2)A3(t3)} = (−1)PAi1(ti1 )Ai2(ti2 )Ai3(ti3), ti1 > ti2 > ti3 , (2.13)where P is the number of inter
hangings of fermioni
 operators performed on the original produ
t, whilethere is no sign 
hanges for bosoni
 operators. Note that this ordering holds for operators governed intime by any Hamiltonian, both H0 and H . This is so as eq. (2.13) is basi
ally a de�nition and notderived from the kind of arguments leading to the introdu
tion of Tt in eq. (2.12), but of 
ourse they are
onsistent.We are now ready to introdu
e the 
on
ept of 
ontour time whi
h is motivated by the intera
tionpi
ture expansion of the operator O(t), eq. (2.11), and the expression for the time evolution opera-tor vH0 (t, t0), eq. (2.12), we have derived. The expression for vH0(t, t0) 
ontains an integration from

t0 to t, while v†H0
(t, t0) 
ontains one from t to t0, as seen through the hermitian 
onjugation pro
e-dure

v†H0
(t, t0) =

∞∑

n=0

(−i~−1)n

n!
(−1)n

∫ t

t0

dt1

∫ t

t0

dt2 · · ·
∫ t

t0

dtn

(

Tt

{

V̂ (t1)V̂ (t2) · · · V̂ (tn)
})†

=
∞∑

n=0

(−i~−1)n

n!

∫ t0

t

dt1

∫ t0

t

dt2 · · ·
∫ t0

t

dtnTat

{

V̂ (t1)V̂ (t2) · · · V̂ (tn)
}

, (2.14)where Tat {· · ·} = (Tt {· · ·})† is 
alled the anti-time ordering operator, as it basi
ally �ips the produ
t or-dered by Tt. Having made these observations it be
omes apparent that we 
an write
O(t) = TC2

{

e
−i~−1

∫

C2
dτ ′V̂ (τ ′)

}

Ô(t)TC1

{

e
−i~−1

∫

C1
dτ ′V̂ (τ ′)

}

,where C1 and C2 are the 
ontours depi
ted in �gure 2.1, and their 
orresponding time ordering operators
TC1 = Tt and TC2 = Tat, and �nally τ is a 
omplex time variable.Furthermore it is possible [35℄ to 
olle
t the two time evolution operators into one, whi
h is ordered alongthe entire Keldysh 
ontour C = C1 ∪ C2, so that we obtain

O(t) =

∞∑

n=0

(−i~−1)n

n!

∫

C

dτ1

∫

C

dτ2 · · ·
∫

C

dτnTC

{

V̂ (τ1)V̂ (τ2) · · · V̂ (τn)Ô(t)
}

= TC

{

e−i~−1
∫

C
dτ ′V̂ (τ ′)Ô(t)

}

= TC

{

SCÔ(t)
}

, (2.15)3For intera
tions whi
h does not 
ontain an even number of fermioni
 
reation and annihilation operators, and hen
e doesnot 
onserve fermioni
 parti
le number, a net sign 
an o

ur through inter
hanging of fermioni
 operators, see eq. (2.13).10



Non-equilibrium Green's Fun
tions Basi
s of 
ontour ordered Green's fun
tions
t0 tC1

C2

real time
imaginary time

Figure 2.1.: S
hemati
 illustration of the Keldysh 
ontour 
onsisting of the bran
hes C1 and C2. The 
ontour runson the real axis, but have been shifted slightly for visual 
larity.where we have de�ned SC = e−i~−1
∫

C
dτ ′V̂ (τ ′). The 
ontour time ordering operator TC orders along theKeldysh 
ontour C [35℄

TC {A1(τ1)A2(τ2)A3(τ3)} = (−1)PAi1 (τi1)Ai2 (τi2 )Ai3(τi3 ), τi1 >C τi2 >C τi3 , (2.16)where >C means "greater than" in the 
ontour sense. This for example means that times on the lower
ontour, C2, will always be greater than those on the upper 
ontour, C1. P is again the number ofinter
hanges of fermioni
 operators. As for the normal time ordering operator Tt, eq. (2.13), the TCordering also holds for operators governed by any Hamiltonian. Apart from being a more 
ompa
t notationeq. (2.15) has the great advantage that all the intera
tions in V̂ (t) are 
olle
ted in one pla
e, whi
h simpli�esthe perturbation theory we are aiming at performing.We have however not 
ompleted the task of isolating all the di�
ult intera
tions as we still need toaddress the initial density matrix, eq. (2.7), whi
h performs the thermodynami
 averaging. Formally thisproblem is handled in the same spirit as above, we write a di�
ult operator as something we know timessomething we handle perturbatively. The usual way to pro
eed is to take advantage of the fa
t that boththermal averaging and time development involves exponential fun
tions, and hen
e it be
omes possible toextend the Keldysh 
ontour into true imaginary time and through this perform the thermal averaging. Inequilibrium theory this is known as the Matsubara te
hnique, see e.g. [28℄. We will however not dwell atthe details4 as we take the usual approa
h of letting t0 → −∞, 
orresponding to adiabati
ally 
ouplingthe intera
tions 
ontained in Hi to the non-intera
ting H0 equilibrium system, so that the 
ontributionfrom the imaginary time bran
h be
omes negle
table. What we end up with is the following expression forthe ensemble average of the operator O(t) taking in an arbitrary non-equilibrium state, whi
h has evolvedfrom a non-intera
ting equilibrium state in the distant past,
〈O(t)〉 = Tr [ρ(t0 → −∞)O(t)] =

〈TC{SCÔ(t)}〉0
〈TC {SC}〉0

, (2.17)where the bra
kets with subs
ript "0" denote thermal average with respe
t toH0

〈· · ·〉0 =
1

Tr [e−βH0 ]
Tr
[
e−βH0 · · ·

]
. (2.18)Finally we extend the upper limit on the Keldysh 
ontour from t to∞ by inserting vH0(∞, t)v†H0

(∞, t) = 1next to SC in eq. (2.17), see �gure 2.2.2.2.2. The 
ontour ordered Green's fun
tion and Dyson'sequationIn the previous se
tion we 
onsidered the 
al
ulation of the expe
tation value of a physi
al observablein a non-equilibrium state, whi
h is often what one is interested in. It has however turned out to be4For a detailed derivation see [33℄. 11
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s of 
ontour ordered Green's fun
tions Non-equilibrium Green's Fun
tions
−∞
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∞
C1
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real time
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Figure 2.2.: S
hemati
 illustration of the Keldysh 
ontour with the lower and upper limits extended to −∞ and ∞respe
tively.very di�
ult to formulate a 
losed in�nite order perturbation theory for observables, due to the fa
tthat the spatial 
orrelation fun
tions 
omprising the observables, 
ouple to 
orrelation fun
tions in timealso. Sometimes one might be interested in 
orrelation fun
tions in time (even though they are not dire
tphysi
al observables) themselves, espe
ially for the bosoni
 photons, as this is what is often measured inexperiments. On this basis we de�ne the single-parti
le 
ontour ordered Green's fun
tion by the follow-ing
Gαβ(τ, τ ′) = −i~−1 〈TC{Oα(τ)O†β(τ ′)}〉 , (2.19)where Oα(τ) and O†β(τ ′) are either fermioni
 or bosoni
 operators in the Heisenberg pi
ture. The reason forintrodu
ing this rather strange theoreti
al obje
t is that it possesses a well de�ned perturbation expansion,as is hinted by 
onsidering the expansion of the time evolution in eq. (2.15). The 
ontour ordered Green'sfun
tion is de�ned in terms of 
ontour times that live on the Keldysh 
ontour and therefore its relevan
efor obtaining observable quantities, whi
h are in real times, might not be 
lear at the moment. We will
onsider this issue of going from 
ontour to real times in se
tion 2.3, but for the moment we will keep onworking on the 
ontour ordered Green's fun
tion.To make further progress toward a perturbation theory we adopt the result of eq. (2.17) and write theRHS of the 
ontour ordered Green's fun
tion in the intera
tion pi
ture
Gαβ(τ, τ ′) = −i~−1

〈TC{SCÔα(τ)Ô†β(τ ′)}〉
0

〈TC {SC}〉0
. (2.20)As seen from eq. (2.15) the time evolution operator SC in the above equation is an in�nite sum of produ
tsof operators evolving a

ording the Hamiltonian H0, this generally results in the generation of higher order
ontour ordered Green's fun
tions of the following form

G
0,(n)
α1···αn,βn···β1

(τ1, · · · , τn; τ ′n, · · · , τ ′1) = (−i~−1)n 〈TC{Ôα1(τ1) · · · Ôαn
(τn)Ô†βn

(τ ′n) · · · Ô†β1
(τ ′1)}〉0 ,where n indi
ates a n'th-parti
le 
ontour ordered Green's fun
tion. These arbitrarily large obje
ts 
an be
al
ulated, as the time-dependen
e is known, using the (anti)
ommutation relations for the (fermioni
)bosoni
 operators, but would be very tedious work. A mu
h more elegant and useful approa
h is providedby Wi
k's theorem5, whi
h states that a n'th-parti
le 
ontour ordered Green's fun
tion 
an be de
omposedinto produ
ts of single-parti
le 
ontour ordered Green's fun
tions. It is this de
omposition whi
h allowsfor the formulation of in�nite order perturbation theory. The de
omposition 
an be written 
ompa
tly asfollows

G
0,(n)
α1···αn,βn···β1

(τ1, · · · , τn; τ ′n, · · · , τ ′1) =

∣
∣
∣
∣
∣
∣
∣

G0
α1β1

(τ1, τ
′
1) . . . G0

α1βn
(τ1, τ

′
n)... . . . ...

G0
αnβ1

(τn, τ
′
1) . . . G0

αnβn
(τn, τ

′
n)

∣
∣
∣
∣
∣
∣
∣
±

, (2.21)5A proof of Wi
k's theorem in 
ontour times 
an be found in [34℄.12



Non-equilibrium Green's Fun
tions Basi
s of 
ontour ordered Green's fun
tionswhere+ denotes a positive determinant whi
h must be used for bosons and− denotes a regular determinantwith minus signs whi
h must be used for fermions. For Wi
k's theorem to hold the time-dependen
e andthermal averagingmust be governed byH0, a quadrati
 Hamiltonian, as in our 
ase.Applying Wi
k's theorem to the denominator in eq. (2.20) results in in�nitely many dis
onne
ted dia-grams6, i.e. diagrams that only involve internal integration variables and not the external (α, τ) and
(β, τ ′) variables. Applying Wi
k's theorem to the numerator eq. (2.20) results in in�nitely many 
on-ne
ted diagrams, i.e. diagrams that are 
onne
t to the external (α, τ) and (β, τ ′) points, times (as afa
tor) all the dis
onne
ted diagrams that appeared in the denominator. This means that all dis
onne
teddiagrams 
an
el resulting in a huge simpli�
ation and we 
an write the following perturbative expressionfor the 
ontour ordered Green's fun
tion

Gαβ(τ, τ ′) = −i~−1
∞∑

n=0

(−i~−1)n

n!

∫

C

dτ1

∫

C

dτ2 · · ·
∫

C

dτn 〈TC{V̂ (τ1)V̂ (τ2) · · · V̂ (τn)Ôα(τ)Ô†β(τ ′)}〉
0,con

,(2.22)where the subs
ript "
on" indi
ates that we should only keep 
onne
ted diagrams. Writing out higherand higher orders of the above expression it be
omes apparent that the stru
ture somehow repeats itself.One sees that it is possible to perform a resummation to obtain an integral equation for the 
ontourordered Green's fun
tion, also known as a Dyson equation. This resummation is most easily illustrateddiagrammati
ally as shown in �gure 2.3. The se
ond term on the RHS des
ribes the intera
tion with the
= + +

(α, τ) (β, τ ′) (α, τ) (β, τ ′) (α, τ) (β, τ ′)(λ, τ1) (µ, τ1) (α, τ) (β, τ ′)(λ′, τ2) (µ′, τ1)

U ΣFigure 2.3.: Diagrammati
 representation of the Dyson equation for the full 
ontour ordered Green's fun
tioneq. (2.23). The double (single) line represents the full (free) 
ontour ordered Green's fun
tion, while the U symbolrepresents the external potential and the Σ symbol represents the self-energy. For diagrammati
al representationsof U and Σ see �gure 2.4.external potential and as this is a one-body intera
tion it only results in a simple instantaneous s
atteringfrom one free Green's fun
tion to another with a 
ertain amplitude. This pro
ess is illustrated withthe dashed line in �gure 2.4(b). The third term on the RHS is the so-
alled (irredu
ible) self-energywhi
h des
ribes the true many-body intera
tions of the system and has an in�nite number of higher order
ontributions. A few of the lowest order ones are illustrated in �gure 2.4(a). The diagrams in �gure 2.4(a)are meant only to serve as an illustration, where for example the straight lines 
ould represent ele
tronsand the wiggly lines phonons. In a system with several many-body intera
tions ea
h involved spe
ie hasits own self-energy dependent on the spe
i�
 intera
tion, however the diagrams are topologi
al identi
alfor so it su�
es to show one example. If one trun
ates the self-energy after, say, the two �rst terms andsolves the resulting Dyson equation, these two �rst order pro
esses have been taken into a

ount to in�niteorder, whi
h justi�es 
alling this theory in�nite order perturbation theory.In mathemati
al form the Dyson equation is written as an integral equation in 
ontour time and spa
e
G(τ, τ ′) = G0(τ, τ ′) +

∫

C

dτ1G
0(τ, τ1)U(τ1)G(τ1, τ

′) +

∫

C

dτ2dτ1G
0(τ, τ2)Σ(τ2, τ1)G(τ1, τ

′), (2.23)where we have transitioned to a matrix notation to redu
e the number of sums, i.e. (G(τ, τ ′))αβ = Gαβ(τ, τ ′).This is the main equation for the rest of this thesis and will be applied to both fermioni
 and bosoni
parti
les later on.6Feynman diagrams, or just diagrams, are drawings of the various terms in the expansion of the Green's fun
tion that 
anrigorously be 
onverted to mathemati
s and vi
e versa. We will use the term diagram of both the drawings and themathemati
al equivalent as they are basi
ally the same. For an introdu
tion to Feynman diagrams see any many-bodytext book. 13



Real time Green's fun
tions and Langreth rules Non-equilibrium Green's Fun
tions(a)
Σ = + + + + · · ·

(b)
U =Figure 2.4.: Diagrammati
 representation of (a) a few of the lowest order 
ontributions to the self-energy where,as in �gure 2.3, the single lines represent free 
ontour ordered Green's fun
tions and the wiggly lines representintera
tion lines and (b) the s
attering vertex of the external potential. This self-energy is for fermions, the self-energy for bosons looks slightly di�erent.While the 
ontour ordered Green's fun
tion possess a ni
e perturbation expansion it has no dire
t rela-tion to physi
al observables and further is expressed in 
ontour time and not real time. The pro
ess oftranslating from 
ontour to real time, known as analyti
 
ontinuation, and making the 
onne
tion to morephysi
ally relevant 
orrelation fun
tions is 
arried out in the next se
tion.2.3. Real time Green's fun
tions and LangrethrulesIn the previous se
tions we introdu
ed the 
on
ept of 
ontour time, enabling an relatively easy and 
ompa
tformulation of the perturbation theory for the 
ontour ordered Green's fun
tion. However experimentsare performed in real time, so we have to link the 
ontour ordered Green's fun
tion to real time Green'sfun
tions whi
h have to be the relevant obje
ts for des
ribing physi
al measurements. It turns out to be
onvenient to introdu
e the following four real time Green's fun
tions

G>
αβ(t, t′) = −i~−1 〈Oα(t)O†β(t′)〉 , (2.24a)

G<
αβ(t, t′) = ±i~−1 〈O†β(t′)Oα(t)〉 , (2.24b)

Gr
αβ(t, t′) = −i~−1θ(t− t′) 〈[Oα(t), O†β(t′)]±〉 = θ(t− t′)(G>

αβ(t, t′)−G<
αβ(t, t′)), (2.24
)

Ga
αβ(t, t′) = i~−1θ(t′ − t) 〈[Oα(t), O†β(t′)]±〉 = −θ(t′ − t)(G>

αβ(t, t′)−G<
αβ(t, t′)), (2.24d)whi
h are 
alled the greater (>), lesser (<), retarded (r), and advan
ed (a) Green's fun
tion respe
tively.In the lesser Green's fun
tion + is for fermions and − is for bosons. For the retarded and advan
ed Green'sfun
tions the + subs
ript denotes a anti-
ommutator whi
h is to be used for fermions and the − denotesa 
ommutator to used for bosons. These Green's fun
tions are dire
tly related to physi
ally measurablequantities. The lesser Green's fun
tion 
an be used to 
al
ulate the expe
tation value of any physi
alobservable in its equal-time limit. The retarded/advan
ed Green's fun
tion 
ontains information on thespe
tral properties of the system, like the density of states, and 
an further be used to 
al
ulate responsefun
tions.Being de�ned on the Keldysh 
ontour the 
ontour ordered Green's fun
tion, eq. (2.19), 
ontains fourreal time Green's fun
tions as 
omponents, depending on where on the Keldysh 
ontour its time ar-guments are lo
ated. With referen
e to eqs. (2.16) and (2.19), and �gure 2.2 we dedu
e the follow-ing

Gαβ(τ, τ ′) =







Gt
αβ(t, t′), τ, τ ′ ∈ C1

G<
αβ(t, t′), τ ∈ C1, τ

′ ∈ C2

G>
αβ(t, t′), τ ∈ C2, τ

′ ∈ C1

Gat
αβ(t, t′), τ, τ ′ ∈ C2,

(2.25)
14



Non-equilibrium Green's Fun
tions Real time Green's fun
tions and Langreth ruleswhere the time ordered Green's fun
tion, Gt
αβ(t, t′), is given by

Gt
αβ(t, t′) = −i~−1 〈Tt{Oα(t)O†β(t′)}〉 = θ(t− t′)G>

αβ(t, t′) + θ(t′ − t)G<
αβ(t, t′) (2.26a)

= G<
αβ(t, t′) +Gr

αβ(t, t′) (2.26b)
= G>

αβ(t, t′) +Ga
αβ(t, t′) (2.26
)and the anti-time ordered Green's fun
tion, Gat

αβ(t, t′), is given by
Gat

αβ(t, t′) = −i~−1 〈Tat{Oα(t)O†β(t′)}〉 = θ(t′ − t)G>
αβ(t, t′) + θ(t− t′)G<

αβ(t, t′) (2.27a)
= G<

αβ(t, t′)−Ga
αβ(t, t′) (2.27b)

= G>
αβ(t, t′)−Gr

αβ(t, t′). (2.27
)Even though the time and anti-time ordered Green's fun
tions naturally arise through the properties of the
TC operator, these are not pra
ti
al for 
al
ulating physi
al quantities. For this reason we will formulatethe rest of the theory in terms of the retarded and advan
ed Green's fun
tions (using eqs. (2.26b), (2.26
),(2.27b), and (2.27
)) and the greater and lesser Green's fun
tions. It apparent from the above de�nitionsof the time and anti-time ordered Green's fun
tions that the following relationship holds between thevarious Green's fun
tions

Gr
αβ(t, t′)−Ga

αβ(t, t′) = G>
αβ(t, t′)−G<

αβ(t, t′), (2.28)showing that through their de�nitions there are only three independent Green's fun
tions. One 
analso show [29, p. 354℄ that a similar relationship holds between the various 
omponents of the self-energy
Σr

αβ(t, t′)− Σa
αβ(t, t′) = Σ>

αβ(t, t′)− Σ<
αβ(t, t′), (2.29)where

Σr
αβ(t, t′) = θ(t− t′)(Σ>

αβ(t, t′)− Σ<
αβ(t, t′)), (2.30a)

Σa
αβ(t, t′) = −θ(t′ − t)(Σ>

αβ(t, t′)− Σ<
αβ(t, t′)). (2.30b)In the equal-time limit of eq. (2.28), one 
an obtain a very simple relation between the greater and lesserGreen's fun
tions, namely

G>
αβ(t, t) = G<

αβ(t, t)− i~−1δαβ , (2.31)where eqs. (2.24
) and (2.24d) and the fa
t that, by de�nition, θ(0) = 1
2 have been used. This relation
learly shows the roles of the equal-time lesser and greater Green's fun
tions as o

upation fa
tors forele
trons and holes, respe
tively. The relation eq. (2.31) 
ould also have been derived dire
tly from thefundamental (anti)
ommutator relations in their equal-time limit. Furthermore it is possible to use therelation 〈ψ|A|φ〉∗ = 〈φ|A†|ψ〉 to show [32℄

[G
≷
αβ(t, t′)]∗ = −G≷

βα(t′, t). (2.32)This 
an be used to prove the following relation between the retarded and advan
ed Green's fun
tion[32℄
[Gr

αβ(t, t′)]∗ = Ga
βα(t′, t), (2.33)bringing the �nal number of independent Green's fun
tions down to two. One might be in
lined to thinkthat as the self-energies has a symmetry relation, eq. (2.29), similar to that of the Green's fun
tions,eq. (2.28), that the relations eqs. (2.32) and (2.33) also holds for the various 
omponents of the self-energy, but this is unfortunately not the 
ase7. The use of both of these symmetry relations for the7It is however 
laimed in the textbook by Haug and Jauho [36, p. 251℄ that this is the 
ase, but no proof or referen
e ismade to support this 
laim. It thus appears to be valid for some self-energies, but whether it holds for all in general ishighly doubtful. 15



Real time Green's fun
tions and Langreth rules Non-equilibrium Green's Fun
tionsGreen's fun
tions will yield signi�
ant simpli�
ations in the numeri
al 
al
ulations we will be performingin later 
hapters. This is so as one 
an 
al
ulate either half the Green's fun
tions in the entire (t, t′)-planeor all the Green's fun
tions in half the (t, t′)-plane. Usually the later is the most e
onomi
 
hoi
e, due tothe fa
t that the number of time steps in the numeri
al simulation usually is vastly larger than the numberof Green's fun
tions.We will now move on to show the so-
alled Langreth theorem. This theorem relates a "
ontour 
onvolution"of the form
C(τ, τ ′) =

∫

C

dτ1A(τ, τ1)B(τ1, τ
′), (2.34)to its real time lesser 
omponent. These 
ontour integrations of 
ontour time quantities appear, amongstother pla
es, in the Dyson equation eq. (2.23). Maintaining the order the A and B quantities makes therules derived below appli
able to matrix produ
ts as well, so this is done. To �nd the lesser 
omponent ofeq. (2.34) we know from eq. (2.25) that τ ∈ C1 and τ ′ ∈ C2, so that we get

C<(t, t′) =

∫

C

dτ1A(t, τ1)B(τ1, t
′)

=

∫

C1

dτ1A
t(t, τ1)B

<(τ1, t
′) +

∫

C2

dτ1A
<(t, τ1)B

at(τ1, t
′)

=

∫ ∞

−∞
dt1
[
At(t, t1)B

<(t1, t
′)−A<(t, t1)B

at(t1, t
′)
]

=

∫ ∞

−∞
dt1
[
Ar(t, t1)B

<(t1, t
′) +A<(t, t1)B

a(t1, t
′)
]
, (2.35)where we have used eqs. (2.26) and (2.27) and obtained the minus sign in third line by �ipping theintegral limits. The same holds for the greater part, just repla
e < with >. Using this result it possibleto �nd the retarded 
omponent of eq. (2.34), where we start by using the de�nitions eqs. (2.24
) and(2.24d)

Cr(t, t′) = θ(t− t′)[C>(t, t′)− C<(t, t′)]

= θ(t− t′)
∫ ∞

−∞
dt1
[
Ar(t, t1)B

>(t1, t
′) +A>(t, t1)B

a(t1, t
′)−Ar(t, t1)B

<(t1, t
′)−A<(t, t1)B

a(t1, t
′)
]

= θ(t− t′)
∫ ∞

−∞
dt1
[
Ar(t, t1)

{
B>(t1, t

′)−B<(t1, t
′)
}

+
{
A>(t, t1)−A<(t, t1)

}
Ba(t1, t

′)
]

=

∫ ∞

−∞
dt1θ(t− t′) {θ(t− t1)− θ(t′ − t1)}

{
A>(t, t1)−A<(t, t1)

}{
B>(t1, t

′)−B<(t1, t
′)
}
.Making a sket
h of the produ
t of step fun
tions one 
an be 
onvin
ed that the following relationholds

θ(t− t′) {θ(t− t1)− θ(t′ − t1)} = θ(t− t1)θ(t1 − t′),from whi
h we arrive at the �nal result
Cr(t, t′) =

∫ ∞

−∞
dt1A

r(t, t1)B
r(t1, t

′) =

∫ t

t′
dt1A

r(t, t1)B
r(t1, t

′). (2.36)A similar 
al
ulation 
an be performed for the advan
ed part and the result is obtained by repla
ing r with
a and inter
hanging the integration limits t and t′ after the last equal sign. A spe
ial kind of "
ontour 
on-volution" is en
ountered for some instantaneous self-energies and is of the form

D(τ) =

∫

C

A(τ ′, τ ′+)B(τ, τ ′), (2.37)16



Non-equilibrium Green's Fun
tions Real time Green's fun
tions and Langreth ruleswhere τ+ = τ + 0+ so that τ+ >C τ . This shift has the 
onsequen
e that A will always be
ome A< inreal time, for further elaboration see appendix A.5. As this is a one-time obje
t it has no di�erent realtime 
omponents in the same sense as two-time obje
ts has, but in order to perform 
al
ulations we needto express the 
ontour time fun
tions under the 
ontour integral in terms of real time fun
tions. We needto 
onsider the 
ases of τ being lo
ated in both the upper and lower Keldysh bran
h and we start with
τ ∈ C1

D(t) =

∫ ∞

−∞
dt′A<(t′, t′)

[
Bt(t, t′)−B<(t, t′)

]

=

∫ ∞

−∞
dt′A<(t′, t′)Br(t, t′) =

∫ t

−∞
dt′A<(t′, t′)Br(t, t′),where in the �rst line we used eq. (2.25) to split B into its 
ontributions on both bran
hes and in the lastline we used eq. (2.26b). This 
an be repeated for τ on the lower bran
h, τ ∈ C2, but the result is the sameas 
ould have been expe
ted as we deal with a one-time quantity. If the 
ontour times for B in eq. (2.37)happen to be inter
hanged, the same steps leads to Ba(t′, t) instead of Br(t, t′).Often one en
ounters, e.g. in the determination of self-energies, produ
ts of 
ontour quantities without a
ontour time integration of the forms

C⇇(τ, τ ′) = A(τ, τ ′)B(τ, τ ′),

C⇆(τ, τ ′) = A(τ, τ ′)B(τ ′, τ),
alled a parallel and an anti-parallel produ
t respe
tively, due to the arrangement of the time arguments.An example of a parallel produ
t is the se
ond self-energy diagram in �gure 2.4(a), for the ele
tron-phonon intera
tion, while an example of an anti-parallel produ
t o

urs in the same �gure in the "pair-bubble" in the third term. For the greater and lesser parts of these two quantities we immediatelyobtain
C

≷
⇇(t, t′) = A≷(t, t′)B≷(t, t′),

C
≷
⇆(t, t′) = A≷(t, t′)B≶(t′, t),using eq. (2.25). Again this result is used to �nd the 
orresponding retarded 
omponents. For C⇇(τ, τ ′)we get

Cr
⇇(t, t′) = θ(t− t′)[C>(t, t′)− C<(t, t′)]

= θ(t− t′)[A>(t, t′)B>(t, t′)−A<(t, t′)B<(t, t′)]

= θ(t− t′)[
{
A<(t, t′) +Ar(t, t′)−Aa(t, t′)

} {
B<(t, t′) +Br(t, t′)−Ba(t, t′)

}

−A<(t, t′)B<(t, t′)]

= A<(t, t′)Br(t, t′) +Ar(t, t′)Br(t, t′) +Ar(t, t′)B<(t, t′),where the relation eq. (2.28) between the four Green's fun
tions was used in going from the se
ond to thirdline, while in the last line we have taken advantage of the fa
t that Ar(t, t′)Ba(t, t′) ∝ θ(t− t′)θ(t′− t) = 0and removed the redundant step fun
tion in front. For the advan
ed part, Ca
⇇(t, t′), all r's should beinter
hanged with a's and the AaBa term gets a minus sign. The same steps 
an be repeated for theanti-parallel produ
t yielding

C
r(a)
⇆ (t, t′) = A<(t, t′)Ba(r)(t′, t) +Ar(a)(t, t′)B<(t′, t).All these various rules for obtaining real time parts of 
ontour quantities we 
olle
tively 
all Langrethrules and they have been summarized in table 2.1. There are of 
ourse many more rules that 
an bederived, e.g. for produ
ts of more than two quantities, but we will only need the ones mentioned in thisse
tion. Some of these "higher order" rules 
an be obtained by re
ursive use of the rules presented in table2.1. For more exhaustive 
olle
tions we refer to the referen
es mentioned in the beginning of the 
hapter.17



Equations of motion Non-equilibrium Green's Fun
tionsContour time Real time
C(τ, τ ′) =

∫

C
dτ1A(τ, τ1)B(τ1, τ

′) C≷(t, t′) =
∫∞
−∞ dt1

[
Ar(t, t1)B

≷(t1, t
′) +A≷(t, t1)B

a(t1, t
′)
]

Cr(a)(t, t′) =
∫∞
−∞ dt1A

r(a)(t, t1)B
r(a)(t1, t

′)

D←(τ) =
∫

C A(τ ′, τ ′+)B(τ, τ ′) D←(t) =
∫ t

−∞ dt
′A<(t′, t′)Br(t, t′)

D→(τ) =
∫

C
A(τ ′, τ ′+)B(τ ′, τ) D→(t) =

∫ t

−∞ dt
′A<(t′, t′)Ba(t′, t)

C⇇(τ, τ ′) = A(τ, τ ′)B(τ, τ ′) C
≷
⇇(t, t′) = A≷(t, t′)B≷(t, t′)

Cr
⇇(t, t′) = A<(t, t′)Br(t, t′) +Ar(t, t′)Br(t, t′) +Ar(t, t′)B<(t, t′)

Ca
⇇(t, t′) = A<(t, t′)Ba(t, t′)−Aa(t, t′)Ba(t, t′) +Aa(t, t′)B<(t, t′)

C⇆(τ, τ ′) = A(τ, τ ′)B(τ ′, τ) C
≷
⇆(t, t′) = A≷(t, t′)B≶(t′, t)

C
r(a)
⇆ (t, t′) = A<(t, t′)Ba(r)(t′, t) +Ar(a)(t, t′)B<(t′, t)Table 2.1.: Summary of the Langreth rules derived in se
tion 2.3.2.4. Equations of motionIn the previous se
tions we have provided the theory whi
h is needed to solve a non-equilibrium prob-lem, that is the Dyson equation and the Langreth rules for analyti
al 
ontinuation. For some pra
ti
al
al
ulations it however turns out to be more advantageous to solve a di�erential8 equation instead ofan integral equation. It is thus the obje
t of this se
tion to derive the equations of motion, usually
alled the kineti
 equations, for the various relevant Green's fun
tions introdu
ed in the previous se
-tions.In deriving the equations of motion we use the same approa
h as in the above se
tions, namely �rst derivein 
ontour time and then afterward take the real time 
omponents one may need. We start out by de�ningtwo operators whi
h are used to denote di�erentiation with respe
t to the two 
ontour times τ and τ ′,these are

(
−→
G0(τ))−1 = i~∂τI −H0(τ)⇒ (

−→
G0(τ))−1

αβ = (i~∂τ − ~ωα)δαβ , (2.38)for the �rst time argument and
(
←−
G0(τ ′))−1 = −i~∂τ ′I −H0(τ

′)⇒ (
←−
G0(τ ′))−1

αβ = (−i~∂τ ′ − ~ωβ)δαβ , (2.39)for the se
ond time argument9, where I is the identity matrix. The arrows indi
ate on what side theyoperate, e.g. (
−→
G0(τ))−1 operate on the left side. De�ning 
ontour time di�erentiation this way gives thefollowing ni
e property when operating on G0(τ, τ ′)

(
−→
G0(τ))−1G0(τ, τ ′) = G0(τ, τ ′)(

←−
G0(τ ′))−1 = δ(τ − τ ′)I, (2.40)where δ(τ − τ ′) is the 
ontour delta fun
tion. The real time properties of this fun
tion 
an be determinedby performing a
tual real time di�erentiations on the free Green's fun
tions of the system, whi
h areknown, and we obtain

(δ(τ − τ ′))≷ = 0, (δ(τ − τ ′))r = δ(t− t′), (2.41)8We do not obtain a ordinary di�erential equation, but rather a integro-di�erential equation 
ontaining memory integrals.One time integral in the Dyson equation is ex
hanged for a time derivative.9Note that the notation H0(τ) is not meant to signify any time-dependen
e in H0, but is merely meant as a notationaldevi
e to indi
ate that one should take the H0 energy 
orresponding to the �rst or se
ond time argument. Also note thateqs. (2.38) and (2.39) assumes H0 to be written in diagonal form.18



Non-equilibrium Green's Fun
tions Equations of motionfor the greater/lesser and retarded parts, respe
tively. For notational and interpretive purposes we intro-du
e the singular self-energy in the following way
Σ

s(τ) = U(τ) + (single time parts of Σ). (2.42)It is 
alled singular as it 
an formally be multiplied by a delta fun
tion, Σ
s(τ1)δ(τ1 − τ2), and put underthe double integral along with the two-time self-energy and hen
e would appear as a singular 
ontributionto this. A well known single-time self-energy is the Hartree-Fo
k self-energy arising from ele
tron-ele
tronintera
tion, whi
h a
ts as a instantaneous renormalization to the single-parti
le energies and externalpotential.To get the equation of motion in the �rst time argument, τ , the Dyson equation in the form of eq. (2.23)is used

G(τ, τ ′) = G0(τ, τ ′) +

∫

C

dτ1G
0(τ, τ1)Σ

s(τ1)G(τ1, τ
′) +

∫

C

dτ2dτ1G
0(τ, τ2)Σ(τ2, τ1)G(τ1, τ

′),whi
h we now let (
−→
G0(τ))−1, eq. (2.38), operate on and on applying eq. (2.40) we obtain

(
−→
G0(τ))−1G(τ, τ ′) = δ(τ − τ ′)I + Σ

s(τ)G(τ, τ ′) +

∫

C

dτ1Σ(τ, τ1)G(τ1, τ
′). (2.43)This is the di�erential form of the Dyson equation. To get the equation of motion in se
ond time argument,

τ ′, we reiterate the Dyson equation to the following form, where G and G0 has swit
hed pla
es under theintegrals,
G(τ, τ ′) = G0(τ, τ ′) +

∫

C

dτ1G(τ, τ1)Σ
s(τ1)G

0(τ1, τ
′) +

∫

C

dτ2dτ1G(τ, τ2)Σ(τ2, τ1)G
0(τ1, τ

′).Operating with (
←−
G0(τ ′))−1, eq. (2.39), on this Dyson equation yields the equation of motion in τ ′

G(τ, τ ′)(
←−
G0(τ ′))−1 = δ(τ − τ ′)I + G(τ, τ ′)Σs(τ ′) +

∫

C

dτ1G(τ, τ1)Σ(τ1, τ
′). (2.44)Having determined the equations of motion for the 
ontour ordered Green's fun
tion, the Langreth rulespresented in se
tion 2.3 
an be used to a
quire real time equations, and with the appropriate initial 
on-ditions the relevant Green's fun
tions 
an be 
al
ulated in the (t, t′)-plane. However, in order to 
omparewith experimental results or apply 
ertain approximation s
hemes (or both), it is often advantageous totransform to another set of time variables, instead of the original ones. For this purpose it is 
ustomaryto form the sum and di�eren
e of the two governing equations, eqs. (2.43) and (2.44), resulting in thefollowing equations

i~(∂τ ∓ ∂τ ′)G(τ, τ ′)− [H0(τ)G(τ, τ ′)±G(τ, τ ′)H0(τ
′)] = (1± 1)δ(τ − τ ′)I

+ Σ
s(τ)G(τ, τ ′) ±G(τ, τ ′)Σs(τ ′) +

∫

C

dτ1 [Σ(τ, τ1)G(τ1, τ
′)±G(τ, τ1)Σ(τ1, τ

′)] .Using the Langreth rules, eqs. (2.35) and (2.41), we obtain two equations of motion for the greater/lesserGreen's fun
tion
i~(∂t ∓ ∂t′)G

≷(t, t′) = [H0(t) + Σ
s(t)] G≷(t, t′)±G≷(t, t′) [H0(t

′) + Σ
s(t′)]

+

∫ ∞

−∞
dt1

[

Σ
r(t, t1)G

≷(t1, t
′) + Σ

≷(t, t1)G
a(t1, t

′)±Gr(t, t1)Σ
≷(t1, t

′)±G≷(t, t1)Σ
a(t1, t

′)
]

,(2.45)and likewise, using eqs. (2.36) and (2.41), equations for the retarded Green's fun
tion 
an be pro-du
ed
i~(∂t ∓ ∂t′)G

r(t, t′) = (1± 1)δ(t− t′)I + [H0(t) + Σ
s(t)] Gr(t, t′)±Gr(t, t′) [H0(t

′) + Σ
s(t′)]

+

∫ ∞

−∞
dt1 [Σr(t, t1)G

r(t1, t
′)±Gr(t, t1)Σ

r(t1, t
′)] . (2.46)19



Equations of motion Non-equilibrium Green's Fun
tionsThe new set of time variables most pra
ti
al for our purposes are given by the transformations
t̃ = t, τ = t− t′ ⇒ ∂t = ∂t̃ + ∂τ , ∂t′ = −∂τ , (2.47)where the di�eren
e or delay time10 τ measures the distan
e from the time diagonal, and for the 
ase

τ = 0 the absolute time t̃ sets the position on the time diagonal. Due to the many-body intera
tions, theGreen's fun
tions are expe
ted to de
ay when moving away from the time diagonal, making this spe
i�
set of time variables natural to employ.The equation of motion for the greater/lesser Green's fun
tion with respe
t to t̃ is found by taking thedi�eren
e part of eq. (2.45) and applying the transformation eq. (2.47)
i~∂tG

≷(t, t− τ) = [H0(t) + Σ
s(t)] G≷(t, t− τ) −G≷(t, t− τ) [H0(t− τ) + Σ

s(t− τ)]

+

∫ ∞

−∞
dt1

[

Σ
r(t, t1)G

≷(t1, t− τ) + Σ
≷(t, t1)G

a(t1, t− τ)−Gr(t, t1)Σ
≷(t1, t− τ)−G≷(t, t1)Σ

a(t1, t− τ)
]

,(2.48)where we have relabeled t̃ → t to lighten the notation. The new set of times (t, τ) de�ned in eq. (2.47)appear in eq. (2.48) merely as pla
eholders for the old set (t, t′) and no true mathemati
al transformationhas been applied. Whether the full transformation should be performed, also in
luding the time integral,depends on what further approximations that are to be made and the numeri
al solution s
heme. Formore on transformation of the time integral see e.g. [29, p. 357℄. For 
ertain approximation s
hemes itadvantageous to repla
e all retarded and advan
ed quantities with their greater and lesser 
ounterparts,this is done using eqs. (2.24
), (2.24d), and (2.30), resulting in
i~∂tG

≷(t, t− τ) = [H0(t) + Σ
s(t)] G≷(t, t− τ) −G≷(t, t− τ) [H0(t− τ) + Σ

s(t− τ)]

+

∫ t

−∞
dt1

[{
Σ

>(t, t1)−Σ
<(t, t1)

}
G≷(t1, t− τ)−

{
G>(t, t1)−G<(t, t1)

}
Σ

≷(t1, t− τ)
]

−
∫ t−τ

−∞
dt1

[

Σ
≷(t, t1)

{
G>(t1, t− τ)−G<(t1, t− τ)

}
−G≷(t, t1)

{
Σ

>(t1, t− τ)−Σ
<(t1, t− τ)

}]

,(2.49)where the step fun
tion in the de�nition of the retarded and advan
ed fun
tions, have been used on theupper limit in the time integrals. With referen
e to the dis
ussion below eq. (2.47) these equation take 
areof the propagation along the time diagonal for the greater/lesser Green's fun
tion. A parti
ular importantspe
ial 
ase of eqs. (2.48) and (2.49) is the equal-time limit, τ = 0, as the equal-time lesser Green's fun
tionis proportional to the single-parti
le density matrix, see se
tion 2.1. Taking this limit in eq. (2.49) for thelesser Green's fun
tion we obtain the following very important equation
i~∂tG

<(t, t) = [H0(t) + Σ
s(t)] G<(t, t)−G<(t, t) [H0(t) + Σ

s(t)]

+

∫ t

−∞
dt1
[
Σ

>(t, t1)G
<(t1, t)−Σ

<(t, t1)G
>(t1, t)−G>(t, t1)Σ

<(t1, t) + G<(t, t1)Σ
>(t1, t)

]
,(2.50)where several terms under the time integral has 
an
eled 
ompared to eq. (2.49). Even though we haveput τ = 0 we do not have a 
losed set of equations for the equal-time lesser11 Green's fun
tion. Thisis due to the fa
t that the time integral still goes outside the time diagonal, and hen
e in general westill need the lesser Green's fun
tion in the full two-time plane. There exists however an approximations
heme whi
h to some degree 
an 
ir
umvent this problem, for whi
h the spe
i�
 form of eq. (2.50) (only10This time variable should not be 
onfused with the 
ontour time, whi
h uses the same symbol, and as the relative timeonly is used in 
onne
tion with real time Green's fun
tions the notation should be unambiguous.11The equal-time greater is related to the equal-time lesser through eq. (2.31), and therefore only the lesser needs to be
onsidered.20



Non-equilibrium Green's Fun
tions Generalized Kadano�-Baym Ansatzgreater and lesser quantities o

urring) is parti
ularly useful. The s
heme is known as the GeneralizedKadano�-Baym Ansatz (GKBA) and is treated in more detail in se
tion 2.5. The equation of motion withrespe
t to τ is found by simply taking the lesser 
omponent of eq. (2.44) and applying the transformationeq. (2.47)
i~∂τG≷(t, t− τ) = G≷(t, t− τ) [H0(t− τ) + Σ

s(t− τ)]

+

∫ ∞

−∞
dt1

[

Gr(t, t1)Σ
≷(t1, t− τ) + G≷(t, t1)Σ

a(t1, t− τ)
]

,and further repla
ing all retarded and advan
ed fun
tions with greater and lesser ones we get
i~∂τG≷(t, t− τ) = G≷(t, t− τ) [H0(t− τ) + Σ

s(t− τ)]

+

∫ t

−∞
dt1

[{
G>(t, t1)−G<(t, t1)

}
Σ

≷(t1, t− τ)
]

−
∫ t−τ

−∞
dt1

[

G≷(t, t1)
{
Σ

>(t1, t− τ)−Σ
<(t1, t− τ)

}]

.As for the t equation whi
h version to use, depends on what approximations s
hemes that are to beemployed. This equation 
an be interpreted as propagating the greater/lesser Green's fun
tion away fromthe time diagonal. Applying essentially the same steps with eq. (2.46), the equations of motion for theretarded Green's fun
tion 
an be found. The t equation be
omes
i~∂tG

r(t, t− τ) = [H0(t) + Σ
s(t)] Gr(t, t− τ)−Gr(t, t− τ) [H0(t− τ) + Σ

s(t− τ)]

+

∫ ∞

−∞
dt1 [Σr(t, t1)G

r(t1, t− τ) −Gr(t, t1)Σ
r(t1, t− τ)] ,while the τ equation be
omes

i~∂τGr(t, t− τ) = δ(τ)I + Gr(t, t− τ) [H0(t− τ) + Σ
s(t− τ)] +

∫ ∞

−∞
dt1G

r(t, t1)Σ
r(t1, t− τ).(2.51)It should be noted that for both the equations of motion for the retarded Green's fun
tion, the in�niteintegrals 
an be redu
ed to �nite limits as ∫∞−∞ dt → ∫ t

t−τ
dt. For reasons that will be elaborated inse
tion 5.4.2 only the equation of motion in t is needed to 
over the entire two-time plane, assuming thatthe solution is known in a su�
iently wide strip around the time diagonal up to some t. It is naturalto obtain the Green's fun
tions on this strip in equilibrium, where they only depend in the di�eren
etime τ , see se
tion 5.3, and hen
e only the equations of motion in τ will be needed. Furthermore, dueto the symmetry relations eqs. (2.28) and (2.33) only two of the four Green's fun
tions are independent,and one is free to 
hoose these a

ording to what is most appropriate in the present situation. Previousstudies have employed the lesser/retarded Green's fun
tions [37, 38℄ and greater/lesser Green's fun
tions[39℄.The equations derived in this se
tion will be applied to more spe
i�
 situations in 
hapter 5.2.5. Generalized Kadano�-Baym AnsatzAs mentioned in the previous se
tion the equation of motion for the equal-time lesser Green's fun
tion,eq. (2.50), is not a 
losed equation as the s
attering integral requires the values of the Green's fun
tionbeyond the time diagonal. In many situations the full two-time lesser Green's fun
tion is not needed, asonly the equal-time lesser Green's fun
tion is required to determine expe
tation values, see eq. (2.3). Itwould therefore be ni
e if some reasonable approximation 
ould allow us to avoid dealing expli
itly with21



Generalized Kadano�-Baym Ansatz Non-equilibrium Green's Fun
tionsthe full two-time plane. Su
h an approximation does fortunately exists and is known as the GeneralizedKadano�-Baym Ansatz (GKBA) [40℄.The basis for obtaining the GKBA is an exa
t relation obeyed by the greater/lesser Green's fun
tion,whi
h is [35℄
G≷(t, t′) = i~

[

Gr(t, t′)G≷(t′, t′)−G≷(t, t)Ga(t, t′)
]

+ θ(t− t′)
∫ t

t′
dt1

∫ t′

−∞
dt2G

r(t, t1)
[

Σ
r(t1, t2)G

≷(t2, t
′) + Σ

≷(t1, t2)G
a(t2, t

′)
]

+ θ(t′ − t)
∫ t′

t

dt1

∫ t

−∞
dt2

[

G≷(t, t2)Σ
a(t2, t1) + Gr(t, t2)Σ

≷(t2, t1)
]

Ga(t1, t
′). (2.52)What should be noted about this relation is that the �rst term on the RHS 
ontains only equal-timegreater/lesser Green's fun
tions, multiplied by two-time retarded/advan
ed Green's fun
tions. The fulltwo-time greater/lesser Green's fun
tions only enter in the more 
ompli
ated double time integrals onthe se
ond and third lines. The GKBA 
onsists of negle
ting the se
ond and third lines 
ontaining thetwo-time greater/lesser Green's fun
tions, after whi
h one obtains

G≷(t, t′) = i~
[

Gr(t, t′)G≷(t′, t′)−G≷(t, t)Ga(t, t′)
]

=

{
i~Gr(t, t′)G≷(t′, t′), t > t′

−i~G≷(t, t)Ga(t, t′), t′ > t
(2.53)This now allows one to form a 
losed set of equations in the equal-time lesser Green's fun
tion through theuse of the equal-time identity eq. (2.31), that 
an be written in the following matrix form

G>(t, t) = G<(t, t)− i~−1I, (2.54)All this assumes that the retarded and advan
ed Green's fun
tions are somehow known quantities, whi
hin general they are not. The range of validity of the GKBA is by no means fully understood in a rigoroussense [26, p. 95℄, but it is possible to give a simple naive justi�
ation for its use whi
h we will brie�y do.The exa
t relation eq. (2.52) 
an be used to generate an expansion to arbitrarily high order in the self-energy, of the two-time greater/lesser Green's fun
tion in terms of the equal-time greater/lesser Green'sfun
tion. If we then assume that the self-energy 
ontains some small parameter, it makes sense to trun
atethis series at some point, where the GKBA is the lowest order approximation of this expansion. Thus we
an expe
t the GKBA to yield reasonable results in the limit of a weak 
oupling self-energy, whi
h hasindeed been veri�ed numeri
ally for a few spe
i�
 systems [37, 38℄.Up to now we have assumed that the retarded and advan
ed Green's fun
tions appearing in the GKBAwere known, whi
h of 
ourse is not true and they represent another issue when applying the GKBA. Inthe GKBA these appear in their full two-time non-equilibrium form, and as su
h obey their own two-timeDyson equations. However, if these Dyson equations were to solved there would be no idea in applying theGKBA in the �rst pla
e, as presumably no 
omputationally advantage would be obtained. We thereforehave to �nd an appropriate approximation to the spe
tral Green's fun
tions, that still yields satisfa
toryresults. The simplest 
hoi
e is to use the free Green's fun
tions of the system as these are always knownon the onset. The free Green's fun
tions do however not 
ontain any form of de
ay and will thereforeoften yield in
orre
t or even unphysi
al results. Another approa
h that has been applied su

essfullyin the literature [41, 42℄ is to employ the equilibrium spe
tral Green's fun
tions of the system. Thesewill 
ontain the renormalized single-parti
le properties in
luding both energy renormalizations and �nitelifetimes, appropriate for the given system. We have followed this path in all uses of the GKBA in thisthesis.If for some reason, either exa
tly or approximately, we 
an argue that only the diagonal elements of thespe
tral Green's fun
tions are signi�
ant, the sums implied in the matrix form of eq. (2.53) redu
e to a22



Non-equilibrium Green's Fun
tions Summarysingle term and get the following simpler version of the GKBA
G

≷
αβ(t, t′) = i~

[

Gr
αα(t, t′)G≷

αβ(t′, t′)−G≷
αβ(t, t)Ga

ββ(t, t′)
]

=

{

i~Gr
αα(t, t′)G≷

αβ(t′, t′), t > t′

−i~G≷
αβ(t, t)Ga

ββ(t, t′), t′ > t (2.55)whi
h will be employed throughout this thesis. For further dis
ussion of the GKBA see e.g. [31, pp.288-291℄ and [32, pp. 44-46℄.2.6. SummaryIn this 
hapter we have given a brief introdu
tion the non-equilibrium Green's fun
tion formalism, whi
hwill be the main theoreti
al tool in the rest of the thesis. We started out by showing how setting up theHeisenberg equation of motion for an ele
troni
 operator, led to an in�nite hierar
hy of 
oupled equations,yielding a problem that even in prin
iple is unsolvable. The o

urren
e of this in�nite set of equationsis often referred to as the many-body hierar
hy problem. In order to ta
kle the hierar
hy problem, weintrodu
ed the 
ontour ordered Green's fun
tion, for whi
h we formulated an integral equation, knownas the Dyson equation, written in terms of the so-
alled self-energy. Obtaining the Dyson equation isa huge a
hievement, as it allows one solve parts of the problem to in�nite order. To make the theorymore pra
ti
al we further introdu
ed the real time Green's fun
tions, in terms of whi
h the �nal governingequations were formulated. In the last se
tion we brie�y dis
ussed an important approximation s
hemeknown as the GKBA, whi
h will be applied throughout the thesis.
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3. Fundamental Hamiltonians3.1. Introdu
tionIn this 
hapter we will deal with the formulation of the general form of the Hamiltonian operator enteringthe S
hrödinger equation, eq. (2.1). The motivation is to gain an understanding of the origin, and ageneral overview of the many di�erent Hamiltonians that appear in many-body physi
s. This is importantin order to know the range of validity of the various Hamiltonians, but also to be sure that one deals witha 
onsistent set operators. Even though we will attempt to make the exposition as general as possible, weshould emphasize that the theory is developed for a solid-state system, more spe
i�
ally a semi
ondu
torheterostru
ture, whi
h will sometimes be (impli
itly) assumed.3.2. HamiltoniansIn this se
tion we derive the Hamiltonian for the system des
ribed in 
hapter 1. We start by writingdown the general Hamiltonian for a system of 
harged parti
les intera
ting with a 
lassi
al and quantizedele
tromagneti
 �eld1. Using the Coulomb gauge, ∇ · A(r, t) = 0 and in the S
hrödinger pi
ture theHamiltonian reads
H({ri}) =

∑

i

1

2mi
(pi − qiA(ri, t))

2
+
∑

i<j

qiqj
4πε

1

|ri − rj |
+

1

2

∫

dr

(

ε|ET(r)|2 +
1

µ0
|B(r)|2

)

. (3.1)The indexes i and j run over all valen
e ele
trons and ions of the system, pi = −i~∇i is the momentumoperator, qi is the 
harge, and mi is the mass of the parti
les. For notational simpli
ity we assume that the
i and j indexes also 
ontain a spin index. The �rst term in eq. (3.1) des
ribes the kineti
 energy of the par-ti
les and the intera
tion with the ve
tor potential A(r, t). We will be 
onsidering intera
tions with both
lassi
al and quantized ele
tromagneti
 �elds, the ve
tor potential must be a sum of these and it is there-fore written as A(r, t) = Acl(r, t) + Aqm(r). In the Coulomb gauge the transverse ele
tri
 and magneti
�elds are obtained from the ve
tor potential through the following relations

B(r, t) = ∇×A(r, t), (3.2)
ET(r, t) = −∂tA(r, t), (3.3)for these relations to hold for the quantized �elds, they must be written in the Heisenberg pi
turewhere they are time-dependent. The se
ond term in eq. (3.1) des
ribes the Coulomb intera
tion be-tween the various 
harged parti
les, whi
h is mediated by the longitudinal 
omponent of the ele
tri
 �eld,

EL(r) = −∇ϕ(r), where ϕ(r) is the s
alar potential. Note that the va
uum permittivity, ε0, has beenrepla
ed by a ba
kground diele
tri
 
onstant, ε = εrε0, where εr is the relative diele
tri
 
onstant. Theba
kground diele
tri
 
onstant 
ontains non-resonant 
ontributions to s
reening [31, p. 44℄ and it has torepla
e ε0 everywhere as it is originates from the Maxwell equations. The last term in eq. (3.1) des
ribesthe energy of the quantized transverse ele
tromagneti
 �elds, the energy of the 
lassi
al �eld is negle
ted[44℄.The two �rst terms in eq. (3.1) are by far the most di�
ult and a few approximations and rearrangementsare needed in order to pro
eed. Due to the large mass of the ions, 
ompared to the ele
trons, and the1See for example se
. 2.2 in [31℄, se
. 1.5 in [24℄, or se
. 4.8 in [43℄.24



Fundamental Hamiltonians Hamiltoniansrelatively weak ele
tromagneti
 �elds we are 
onsidering, the response of the ions to the �elds will be mu
hsmaller than that of the ele
trons. This means that we 
an negle
t the intera
tion between the ions andthe photons, hen
e the �rst term be
omes
∑

i

1

2mi
(pi − qiA(ri, t))

2 ≈
∑

electrons
i

1

2m
(pi + eA(ri, t))

2
+
∑

ions
j

p2
j

2mj
, qelectron = −e, (3.4)whi
h is a sum of the ele
trons kineti
 energy and intera
tion with the �elds and the kineti
 energy ofthe ions. Another simpli�
ation be
omes apparent if we expand the squared parentheses for the ele
-trons

∑

electrons
i

1

2m
(pi + eA(ri, t))

2
=

∑

electrons
i

1

2m

[
p2

i + e [pi ·A(ri, t) + A(ri, t) · pi] + e2A2(ri, t)
]

≈
∑

electrons
i

[
p2

i

2m
+

e

m
A(ri, t) · pi

]

, (3.5)where in the se
ond line we have negle
ted the A2 term as it is assumed small2 [44, p. 150℄ and further wehave used the fa
t that3 [pi,A(ri, t)] = 0 to obtain the well knownA·p intera
tion.The Coulomb intera
tion, se
ond term in eq. (3.1), between the 
harged parti
les, produ
es three qualita-tively di�erent intera
tions even though fundamentally they are all of a Coulombi
 nature. The three di�er-ent 
ombinations of the indexes i and j have been written out below for illustration
∑

i<j

qiqj
4πε

1

|ri − rj |
=

1

2

∑

i6=j

e2

4πε

1

|ri − rj |
︸ ︷︷ ︸

{i,j}={e,e}

+
1

2

∑

i6=j

qiqj
4πε

1

|Ri −Rj |
︸ ︷︷ ︸

{i,j}={ion,ion}

+
∑

ij

(−e)qj
4πε

1

|ri −Rj |
︸ ︷︷ ︸

{i,j}={e,ion}

. (3.6)The �rst term is the usual ele
tron-ele
tron intera
tion, whi
h will be kept in its present form. The se
ondterm is the intera
tion between the positively 
harged ions. As mentioned above, the ions are mu
h heavierthan the ele
trons and thus move mu
h slower. This means that a full dynami
al analysis is not ne
essaryand further approximations will be performed on this term, dis
ussed further in se
tion 3.2.1. The thirdterm involves the intera
tion between the ele
trons and ions. This term 
an be simpli�ed 
onsiderably by�rst writing the ioni
 position ve
tor as
Rj = R

(0)
j + uj , (3.7)where R

(0)
j is the equilibrium position of the ions, the stati
 latti
e, and uj is the displa
ement fromequilibrium. The approximation then 
onsists of Taylor expanding the ele
tron-ion intera
tion to �rstorder in uj , whi
h results in

∑

ij

(−e)qj
4πε

1

|ri −Rj |
≈
∑

ij

(−e)qj
4πε

(

1

|ri −R
(0)
j |
− uj ·∇ri

[

1

|ri −R
(0)
j |

])

, (3.8)noti
e that there is no fa
tor 1/2 in front of the sum, as there is no double 
ounting for the di�erentparti
les. The zeroth order part of this expansion is the well known intera
tion between ele
trons anda stati
 latti
e, whi
h for a single 
rystal resulting in Blo
h states for the ele
trons. The �rst orderterm is what be
omes the ele
tron-phonon intera
tion after the �eld quantization has been performed, seese
tion 3.2.2.2In the 
ontext of single-photon sour
es the negle
tion the A2 term is well justi�ed both for the quantized and 
lassi
al
ase. For the quantized 
ase the magnitude of A is obviously small as the goal is to produ
e a single photon. For the
lassi
al 
ontribution, here the ex
itation pulse, we are in the extremely low ex
itation limit as ultimately we are onlyinterested in the ex
itation of a single ele
tron.3The 
ommutator between p and A is [p, A] = −i~∇ · A, whi
h is zero in the Coulomb gauge. See p. 311 in [45℄. 25



Hamiltonians Fundamental HamiltoniansThis 
on
ludes the initial dis
ussion of the Hamiltonian of the total system. In the following se
tions wewill 
onsider non-intera
ting and intera
ting parts of the Hamiltonian separately and perform the �eldquantization pro
edure, se
ond quantization for the parti
les and a
tual �eld quantization for the ioni
displa
ement �eld. The radiation �eld is already quantized. The �eld quantization pro
edure is dis
ussedin detail in many textbooks, e.g. [24, 28, 31℄.3.2.1. Non-intera
ting partsIn this se
tion we will 
onsider the non-intera
ting parts from the dis
ussion of the Hamiltonian, eq. (3.1), inthe previous se
tion. It is important to spe
ify what pre
isely is meant by a non-intera
ting Hamiltonian, asthis forms the basis for the many-body perturbation theories we will apply, see 
hapter 2. A non-intera
tingHamiltonian has no terms with produ
ts of more than two operators (often referred to as quadrati
Hamiltonians and denoted H0) and must be time-independent in the S
hrödinger pi
ture. Below we willgo through the quadrati
 
ontributions from the three �elds we are 
onsidering, namely the ele
troni
,photoni
, and phononi
 �elds.Ele
tronsThe non-intera
ting 
ontributions from the ele
trons are the kineti
 energy, �rst term in eq. (3.5), and theintera
tion with the stati
 latti
e, �rst term in eq. (3.8)
H0,e({ri}) =

∑

i

p2
i

2m
+
∑

ij

(−e)qj
4πε

1

|ri −R
(0)
j |

=
∑

i

H0,e(ri).The transition to the se
ond quantization representation of the ele
troni
 �eld is done using the standardformulae
H0,e =

∫

drψ†(r)H0,e(r)ψ(r),where ψ(r) =
∑

ν 〈r|ν〉 cν is a �eld annihilation operator, written in a single-parti
le basis {|ν〉} whi
h
onsists of spatial part |α〉 and a spin part |σ〉, |ν〉 = |α〉 ⊗ |σ〉. The real spa
e/spin representation of |ν〉is given by 〈r|ν〉 = φα(r)χσ, where φα(r) is the wave fun
tion of the ele
tron in the spatial state α and
χσ is a spin fun
tion. If we 
hoose the eigenstates of H0,e as the single-parti
le basis {|ν〉}, we obtain asimple diagonal form of the quadrati
 
ontribution from the ele
trons

H0,e =
∑

ν

~ωνc
†
νcν . (3.9)If the sum over the stati
 ions runs over a single 
rystal, then the states |ν〉 would be
ome Blo
h statesprodu
ing the usual band stru
ture energy diagrams. This is however not the 
ase for the nanostru
tureswe are 
onsidering. We use band gap bending to 
reate the 
on�ning potentials for the ele
trons and holes,that make up the QD, and hen
e we do not have a single 
rystal and thus no pure Blo
h states. Due to thelarge di�eren
e in length s
ales of the QDs and the latti
e unit 
ells, it is fortunately possible to formulatean e�e
tive theory simplifying the 
al
ulation of the eigenstates of H0,e immensely. We will employ this ef-fe
tive mass approa
h in later 
hapters, when spe
i�
 stru
tures are 
onsidered.PhotonsThe quadrati
 
ontributions from the photons originate solely from the last term in eq. (3.1), the totalenergy of the transverse ele
tromagneti
, or simply radiation, �eld

H0,rad =
1

2

∫

dr

(

ε|ET(r)|2 +
1

µ0
|B(r)|2

)

. (3.10)26



Fundamental Hamiltonians HamiltoniansThere exist several ways to quantize the radiation �eld, depending on what level of sophisti
ation onemay wish, all resulting in the same result. We will not go further into the quantization pro
edure, asthis is standard textbook material, but simply pro
eed with the following4 form of the transverse ele
tri
�eld
ET(r) =

∑

m

Em(a†m + am)um(r). (3.11)In the above the mode fun
tions satisfy the orthonormality relation ∫ drum(r) · um′(r) = δm,m′ and
Em = (~ωm

2ε )1/2, where ωm is the frequen
y of mode m. This 
hoi
e of normalization means that thequantization volume, V , is 
ontained in the mode fun
tions and further these are real quantities found bysolving the 
lassi
al wave equation for the transverse ele
tri
 �eld. The magneti
 �eld 
an be obtained by
ombining eqs. (3.2) and (3.3) to −∂tB(r, t) = ∇×ET(r, t). Inserting the quantized radiation �eld intoeq. (3.10) and performing the integral we get the following result
H0,rad =

∑

m

~ωm

(

a†mam +
1

2

)

, (3.12)where the 
omposite quantum number m 
ontains the spatial, κ, and polarization, λ, quantum num-bers.PhononsThe non-intera
ting 
ontributions from the phonons 
omes from the kineti
 energy of the ions, se
ondterm in eq. (3.4), and the ion-ion Coulomb intera
tion, se
ond term in eq. (3.6),
H0,ph({Rj}) =

∑

j

p2
j

2mj
+

1

2

∑

i6=j

qiqj
4πε

1

|Ri −Rj |
(3.13)This intera
tion is in prin
iple the same as the ele
tron-ele
tron intera
tion and hen
e should be treatedas a pair intera
tion and not a quadrati
 term. The ions are however mu
h heavier than the ele
trons andhen
e rea
t mu
h slower to external perturbations and further they are positioned in a periodi
 latti
eonly exhibiting small os
illations about their equilibrium positions. On this basis we will assume the usualharmoni
 approximation for the ions, where the intera
tion term in eq. (3.13) is Taylor expanded to se
ondorder in the ioni
 displa
ement ve
tor, uj , see eq. (3.7). The 
oe�
ients in this se
ond order expansion areelements in the so-
alled dynami
al matrix of the ion system5. The determination of the dynami
al matrixis in general a very 
ompli
ated task. Values 
an be obtained for example by �tting models to experimentsor 
al
ulated using �rst prin
iples methods like Density Fun
tional Theory. The remaining Hamiltonianin the harmoni
 approximation is then quantized a

ording to the standard pro
edure6, resulting in thefollowing Hamiltonian for the phonons

H0,ph =
∑

µ

~ωµ

(

b†µbµ +
1

2

)

. (3.14)The quantum number µ is 
omposed of the quasi-momentum7, q, of the phonon and bran
h index, λ, whi
hruns over the various opti
al and a
ousti
 polarizations (TA, LA, TO, LO). It should be noted that formallythe q = 0 should be left out of the sum, as this term 
orresponds to a uniform translation of the entire
rystal [24℄. By writing the phonon Hamiltonian this way we assume bulk phonons, that is phonons whi
hlive in a system where the periodi
ity is given by the stati
 latti
e. Even though present day semi
ondu
tor4For a derivation of this spe
i�
 form of the quantized transverse ele
tri
 �eld see 
hap. 19 in [45℄.5See e.g. se
. 3.4 in [28℄ or se
. 11.2.1 in [31℄.6See e.g. se
. 1.1 in [24℄.7Restri
ted to the �rst Brillouin zone. 27



Hamiltonians Fundamental Hamiltoniansnanostru
tures are rarely pure bulk system, the system of Stranski-Krastanow grown QDs we are 
onsid-ering, 
an to a 
ertain extent be 
onsidered as a bulk material from the phonons point of view. The WL isonly a few nanometers thi
k and the QDs are very small 
ompared to the rest of the stru
ture, 
omposedof the barrier material. We will therefore assume that the phonon modes existing in the barrier materialwill pervade the low band gap material justifying the use of bulk phonons.3.2.2. Intera
ting partsIn this se
tion we will 
onsider the intera
tion terms in the Hamiltonian eq. (3.1). Intera
ting termsare Hamiltonians 
ontaining produ
ts of three or more operators, des
ribing the intera
tions amongstthe various �elds. Intera
ting 
ontributions are fundamentally di�erent from the non-intera
ting onesdis
ussed in the previous se
tion. The reason for this is that the self-energy they give rise to 
ontainsin�nitely many diagrams and hen
e has to be trun
ated and 
an therefore not be treated exa
tly. Belowwe will go trough the intera
tions between the various �elds separately.Ele
tron-ele
tronThe Coulomb intera
tion between the ele
trons is given by the �rst term in eq. (3.6)
He−e({ri}) =

1

2

∑

i6=j

e2

4πε

1

|ri − rj |
=

1

2

∑

i6=j

He−e(ri, rj). (3.15)The se
ond quantized form of the intera
tion is given by
He−e =

1

2

∫

drdr′ψ†(r)ψ†(r′)He−e(r, r
′)ψ(r′)ψ(r) (3.16)

=
1

2

∑

ν1ν2
ν3ν4

Vν4ν3,ν1ν2c
†
ν4
c†ν3
cν2cν1 , (3.17)where the intera
tion matrix element is given by

Vν4ν3,ν1ν2 = 〈ν4, ν3|He−e|ν1, ν2〉 =
∫

drdr′φ∗α4
(r)φ∗α3

(r′)He−e(r, r
′)φα1 (r)φα2 (r

′)δσ4,σ1δσ3,σ2 , (3.18)the Krone
ker deltas in the spin indexes appear as the Coulomb intera
tion is diagonal in spin. Forillustration, a Coulomb s
attering event, a single term in eq. (3.17), between two ele
trons is presented in�gure 3.1.Ele
tron-photonThe intera
tion between the ele
trons and photons is given by the se
ond term in eq. (3.5), the so-
alled
A · p intera
tion,

∑

i

e

m
A(ri, t) · pi,We will start by applying the ele
tri
 dipole approximation, whi
h is 
ommonly used in opti
s. Theapproximation 
onsists of evaluating the spa
e dependent radiation �eld, A(r, t), at the position of theele
troni
 system it is intera
ting with [44℄. This 
an be justi�ed by 
onsidering the spatial part of theexponential fun
tion arising from a Fourier de
omposition of A(r, t), exp(k · r). The fun
tion exp(k · r)
an now be Taylor expanded to lowest order as we assume k · r ≪ 1, whi
h is usually the 
ase for opti
al28
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ν1

ν4

ν2

ν3
Vν4ν3,ν1ν2

• •

Figure 3.1.: Diagrammati
 illustration of an ele
tron-ele
tron Coulomb s
attering event, a single term fromeq. (3.17), where two ele
trons in the states ν1 and ν2 are s
attered to the states ν3 and ν4 with a s
atteringamplitude of Vν4ν3,ν1ν2 .wave ve
tors. If we further assume that the ele
trons are lo
ated near the origin, all ele
tron positions 
anhen
eforth be evaluated at the origin in the above intera
tion term.Next we will repla
e the A · p intera
tion with a D · ET form, where D = −er is the ele
tron dipoleoperator, for pra
ti
al reasons8 in 
onne
tion with the numeri
al solution later on. The transformationbetween the two intera
tions 
an be performed more or less rigorously. We 
hoose a simple heuristi
approa
h, 
arried out in appendix A.3, more advan
ed treatments 
an be found in [31, 43, 46℄. A

ordingto this derivation we 
an write the intera
tion in the following way
−
∑

i

Di ·ET(0, t).The total transverse ele
tri
 �eld 
onsists of a quantized and an externally applied 
lassi
al part
ET(0, t) = ET,qm(0) + ET,cl(0, t),the resulting intera
tion Hamiltonians di�er signi�
antly and will therefore be treated separately. Thequantized �eld is given by eq. (3.11), so that the �eld quantized form of the intera
tion be
omes
He−rad =

∫

drψ†(r)er ·ET,qm(0)ψ(r)

=
∑

νν′m

~gm
νν′c†νcν′(a†m + am), (3.19)where the 
oupling strength is given by

~gm
νν′ = um(0)Em

∫

drφ∗α(r)er · eum
φα′ (r)δσ,σ′ . (3.20)For an illustration of the emission and absorption pro
esses originating from the intera
tion eq. (3.19) see�gure 3.2(a) and (b), respe
tively. The intera
tion between the ele
trons and the 
lassi
al �eld dependsexpli
itly on time, even in the S
hrödinger pi
ture, and is therefore very spe
ial in many-body perturbation8Keeping the ele
tron-photon intera
tion on the A · p form 
auses no problems for the quantized �eld, but it is doeshowever for the external 
lassi
al ex
itation pulse. The ex
itation pulse is known in its ele
tri
 �eld form, but in the A ·pintera
tion the 
orresponding A should be 
al
ulated through the relation ET = −∂tA, whi
h for most �elds should bedone numeri
ally. The is indeed possible and the approa
h 
ould be followed in situations where the D · ET intera
tionproblemati
, this is however not the 
ase for our model. Also it is always advisable to work with gauge-independentphysi
al �elds, rather than the gauge-dependent potentials, see e.g. 
hapter 7 in [35℄ or the dis
ussion [45, p. 359℄,espe
ially when doing perturbation theory in the ele
tromagneti
 �elds. 29



Hamiltonians Fundamental Hamiltonianstheory. The �eld quantized form of this semi-
lassi
al intera
tion is
U(t) =

∫

drψ†(r)er ·ET,cl(0, t)ψ(r)

=
∑

νν′

dνν′Ecl(t)c
†
νcν′ , (3.21)where the notation for the 
lassi
al �eld has been simpli�ed and the proje
ted dipole matrix element isgiven by

dνν′ =

∫

drφ∗α(r)er · eEcl
φα′(r)δσ,σ′ . (3.22)Note that U(t) has Heisenberg pi
ture notation, but it is not in the Heisenberg pi
ture. For an illustration ofthe ele
tron s
attering provided by this semi-
lassi
al intera
tion see �gure 3.2(
).(a) (b) (
)

ν ν′

m

~gm
νν′

ν ν′

m

~gm
νν′

ν ν′

dνν′Ecl(t)

• • •Figure 3.2.: Diagrammati
 illustrations of ele
tron-photon s
attering events, des
ribed by terms from eq. (3.19) andeq. (3.21). In (a) and (b) we show the s
attering of an ele
tron from state ν′ to ν through the emission, (a), orabsorption, (b), of an photon in mode m, both with a s
attering amplitude of ~gm
νν′ . In (
) we show the s
atteringof an ele
tron from state ν′ to ν through the intera
tion with the 
lassi
al �eld, with an amplitude of dνν′Ecl(t).Ele
tron-phononThe intera
tion between the ele
trons and phonons is given by the se
ond term in eq. (3.8)

He−ph({ri}) =
∑

ij

uj ·∇ri

[

eqj
4πε

1

|ri −R
(0)
j |

]

=
∑

i

He−ph(ri).As dis
ussed in se
tion 3.2.1 on the non-intera
ting phonons, the ioni
 displa
ement ve
tor uj is quantizeda

ording the standard pro
edure9 and the quantized displa
ement ve
tor takes the form
uj =

∑

µ

iŨµξµe
iq·R(0)

j (b†µ̄ + bµ),where µ̄ = (−q, λ), Ũµ is an unspe
i�ed10 expansion 
oe�
ient, and ξµ is a polarization ve
tor. As notedbelow eq. (3.14) the q = 0 term should should formally be omitted. Using the above, the �eld quantizedexpression is obtained as
He−ph =

∫

drψ†(r)He−ph(r)ψ(r)

=
∑

νν′µ

Mµ
νν′c

†
νcν′(b†µ̄ + bµ), (3.23)9See e.g. se
. 1.1 in [24℄.10We are not going to use the expli
it form of Ũµ. Instead we adapt an e�e
tive form of this intera
tion where tabulatedparameters a

ount for di�erent materials.30



Fundamental Hamiltonians Hamiltonianswhere the 
oupling strength is given by the expression
Mµ

νν′ = iŨµ

∑

j

eiq·R(0)
j

∫

drφ∗α(r)ξµ ·∇r

[

eqj
4πε

1

|r −R
(0)
j |

]

φα′(r)δσ,σ′ .As the ele
tron-phonon and ele
tron-photon intera
tion are formally identi
al the emission and absorptionpro
esses illustrated in �gure 3.2(a) and (b) also apply for phonons, with the appropriate repla
ement ofsymbols.3.2.3. Generi
 semi
ondu
tor HamiltonianThe full Hamiltonian 
an be written as three parts that are qualitatively di�erent
H = H0 +Hi + U(t). (3.24)The non-intera
ting (quadrati
) part, H0, has three 
ontribution, one from ea
h of the quantized �elds weare 
onsidering
H0 = H0,e +H0,rad +H0,ph,where the expli
it forms are given by
H0,e =

∑

ν

~ωνc
†
νcν ,

H0,rad =
∑

m

~ωm

(

a†mam +
1

2

)

,

H0,ph =
∑

µ

~ωµ

(

b†µbµ +
1

2

)

,see eqs. (3.9), (3.12), and (3.14) respe
tively. The non-intera
ting system 
onstitutes the basis upon whi
hwe perform perturbation theory. The intera
ting part, Hi, 
ontains the Hamiltonians having three or fourbasi
 operators, namely
Hi = He−e +He−rad +He−ph,where the expli
it forms are given by
He−e =

1

2

∑

ν1ν2
ν3ν4

Vν4ν3,ν1ν2c
†
ν4
c†ν3
cν2cν1 ,

He−rad =
∑

νν′m

~gm
νν′c†νcν′(a†m + am),

He−ph =
∑

νν′µ

Mµ
νν′c

†
νcν′(b†µ̄ + bµ),see eqs. (3.17), (3.19), and (3.23) respe
tively. These are the 
ontributions to the Hamiltonian givingrise to in�nitely many terms in their respe
tive self-energies. The last part of the Hamiltonian is theintera
tion between the ele
trons and the externally applied ele
tri
 �eld,

U(t) =
∑

νν′

dνν′Ecl(t)c
†
νcν′ ,given by eq. (3.21). The term is singled out as it has an expli
it time-dependen
e, unlike the other terms11,making it very spe
ial in many-body perturbation theory.11We remind the reader that we are 
urrently operating in the S
hrödinger pi
ture. 31



Summary Fundamental HamiltoniansThe full Hamiltonian eq. (3.24) is illustrated in �gure 3.3, with ea
h subsystem represented by an oval andwith arrows indi
ating the various intera
tions between the subsystems. The �gure emphasizes the 
entralrole ele
trons play in semi
ondu
tor dynami
s as this parti
le spe
ie intera
t with all other 
onstituents.phonons photons
ele
trons

external �eld
H0,e

H0,radH0,ph

He−e

He−radHe−ph

U(t)

Figure 3.3.: S
hemati
 illustration of the Hamiltonian eq. (3.24), indi
ating the individual subsystems and theirrespe
tive intera
tions.3.3. SummaryIn this 
hapter we have attempted to give an overview of the many di�erent Hamiltonian operators enteringmany-body physi
s. We started from a very basi
 form of the full Hamiltonian of a solid-state system,and gradually performed standard approximations to 
ome 
loser to a form, that would be appli
able inpra
ti
al 
al
ulations. For ea
h 
ontribution, both non-intera
ting and intera
ting, to the full Hamiltonian,the general se
ond quantized version was presented in a form that is ready for the appli
ation of the Green'sfun
tion formalism, derived in the previous 
hapter.

32



4. Single-Parti
le States and Matrix Elements4.1. Introdu
tionAs was made apparent in the previous 
hapters, one needs to know the matrix elements of a numberof operators in order to be able to evaluate a many-body theory, where the basi
 building blo
ks for
al
ulating these matrix elements, are the free single-parti
le states of the involved spe
ies. Our fo
us ison many-body simulations and as the name indi
ates, one often has to evaluate a very large number ofmatrix elements. This 
an be a quite formidable task in itself, even when the single-parti
le states areknown, espe
ially for two-parti
le intera
tions su
h as the Coulomb intera
tion, where a 6D integral has tobe evaluated. This 
alls for a fast and e�
ient method of evaluating the great number of matrix elements,whi
h we will develop in the 
oming se
tions. However, a �rst requirement for being able to perform the
al
ulation of the matrix elements is to have a suitable set of single-parti
le states. As our fo
us is onmany-body e�e
ts, we will 
hoose a simple des
ription of our ele
troni
 single-parti
le states, and negle
tsubtleties introdu
ed by more elaborate methods su
h as k · p, tight-binding, Density Fun
tional Theoryor other advan
ed methods.The outline of this 
hapter is as follows: In the �rst se
tion, se
tion 4.2, we des
ribe the model andmethod used to obtain the ele
troni
 single-parti
le states, where a simple e�e
tive mass model is applied.In se
tion 4.3 we des
ribe two methods for evaluating the 
omputationally demanding Coulomb matrixelements, one e�
ient approximate formulation and a more a

urate, but signi�
antly slower method. Inthe last se
tion, se
tion 4.4, we des
ribe how to 
al
ulate the matrix elements entering the light-matterintera
tion in the dipole approximation.4.2. Ele
troni
 single-parti
le states and energiesIn this se
tion we will brie�y dis
uss the model of, and the method used to 
al
ulate, the ele
troni
single-parti
le states and energies introdu
ed in se
tion 3.2.1. The approa
h is very basi
 and pro-vides the simplest way of 
onsistently in
luding both bound states in the QD and unbound states inthe WL.4.2.1. Self-assembled quantum dotsAs mentioned in 
hapter 1 we are interested in self-assembled semi
ondu
tor quantum dots grown usingthe Stranski-Krastanow te
hnique [6℄. These form as small islands on top of a WL, as seen in �gure 1.1(a),where the entire WL and QD is embedded in a barrier material. For simpli
ity we model the QD as arotationally symmetri
 trun
ated 
one, whi
h roughly agrees with what is found experimentally [47, 48℄,sitting on an in prin
iple in�nite WL. A few s
anning tunneling mi
ros
ope images of self-assembledquantum dots are shown in �gure 4.1, illustrating the rough resemblan
e with a trun
ated 
one. This setupis shown s
hemati
ally in �gure 4.2 where 
ylindri
al 
oordinates have been used to exploit the rotationalsymmetry, furthermore various geometri
al parameters are indi
ated. 33
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Figure 4.1.: S
anning tunneling mi
ros
ope image of a few self-assembled quantum dots [49℄.
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Figure 4.2.: S
hemati
 of the e�e
tive 2D 
omputational domain used for solving the e�e
tive mass S
hrödingerequation, eq. (4.4). The �gure shows the high (II) and low (I) bandgap materials, 
reating the ele
troni
 
on�nement,along with the relevant lengths entering the model.4.2.2. E�e
tive mass S
hrödinger equationFor the theoreti
al des
ription of the ele
troni
 states, we will assume the validity of a two-band semi
on-du
tor model with a single valen
e and 
ondu
tion band, as is often done in the literature [50�52℄. Forthe wavefun
tions the envelope fun
tion approximation will be employed, in whi
h the full wavefun
tionis written as [53, pp. 488-490℄
φ(r) = u(r)F (r), (4.1)where u(r) is the latti
e periodi
 Blo
h fun
tion and F (r) is the envelope fun
tion. The Blo
h fun
tiondoes not need to be determined expli
itly, while the envelope fun
tion is found from a one-band e�e
tivemass S
hrödinger equation
(

−~
2

2
∇ ·

[
1

m∗(r)
∇

]

+ V (r)

)

F (r) = EF (r). (4.2)34
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troni
 single-parti
le states and energiesHere V (r) is the 
on�ning potential, 
reated by bandbending e�e
ts through the embedding of the lowbandgap material (I) in the high bandgap material (II), see �gure 4.2, and m∗(r) is the position dependente�e
tive mass. The envelope fun
tion F (r) is subje
t to the 
onditions that
F (r) and

1

m∗(r)
n ·∇F (r) (4.3)must be 
ontinuous and di�erentiable at every point and further that F (r) must be �nite. Here n is anarbitrary unit ve
tor. These 
onditions arise from the fa
t that the parti
le number must be 
onserved[54, p. 74℄. Due to the rotational symmetry, the Hamiltonian 
ommutes with the generator for rotationsabout the z-axis, the z-
omponent of the angular momentum operator Lz (not to be 
onfused with thelength Lz in �gure 4.2). This has the 
onsequen
e that the z-
omponent of the angular momentum is a
onserved quantity, and therefore the envelope 
an be written as a produ
t of the eigenfun
tion for Lz,de�ned as LzΦm(ϕ) = ~mΦm(ϕ), and a part independent of ϕ

F (r) = Φm(ϕ)f(ρ, z) =
1√
2π
eimϕf(ρ, z),where eq. (4.3) di
tates that m must be an integer, see e.g. [45, se
. 7.3℄. Inserting this into eq. (4.2) weobtain the following eigenvalue equation for f(ρ, z)

(

−~
2

2ρ
∂ρ

[ ρ

m∗
∂ρ

]

− ~
2

2
∂z

[
1

m∗
∂z

]

+
~

2m2

2m∗ρ2
+ V (ρ, z)

)

f(ρ, z) = Ef(ρ, z), (4.4)where m∗ = m∗(ρ, z) and we immediately see that E is degenerate in m following from the rotationalsymmetry. Eq. (4.4) must also be supplied with a set of boundary 
onditions for the new fun
tion f(ρ, z),whi
h 
an be derived from eq. (4.3). On the internal boundaries between the domains I and II f(ρ, z) mustsatisfy eq. (4.3) dire
tly, while on the external boundaries and on the z-axis we must be a bit more 
areful.Due to the third term in eq. (4.4) one must distinguish between 
ases of m equal to zero or di�erent fromzero. For m 6= 0 the third term diverges as ρ → 0, therefore f(ρ, z) must go to zero on the z-axis. For
m = 0 the third term does not 
ause any problems, but now the derivative ∂ρf(ρ, z) must be zero onthe z-axis, otherwise f(ρ, z) would get a non-di�erentiable kink. Mathemati
ally these 
onditions 
an bewritten

f(ρ = 0, z) = 0, m 6= 0, (4.5a)
∂ρf(ρ = 0, z) = 0, m = 0. (4.5b)The boundaries at z = ±Lz/2 and ρ = R0 are arti�
ial boundaries introdu
ed to be able to solvethe equation numeri
ally, and therefore the solutions must ideally be independent of the position of theboundaries. For the boundaries at z = ±Lz/2 there is no pra
ti
al problem. This is the 
ase as weare only interested in states bound in the QD or in the WL and hen
e we expe
t the states to de
ayexponentially as we move in the z-dire
tion from material I into material II. For this reason Lz shouldsimply be 
hosen large enough that f(ρ, z = ±Lz) has approa
hed zero. For the boundary at ρ = R0 theproblem is more subtle. We are interested in des
ribing the delo
alized states in the WL whi
h we knowform an energy 
ontinuum. The energy 
ontinuum arises from the unbounded nature of the WL and isan essential feature to maintain in the theoreti
al des
ription. The e�e
t of introdu
ing a zero boundary
ondition at ρ = R0, is that the WL energy 
ontinuum be
omes dis
reetly sampled, in the way that thelarge R0 the �ner the sampling. One 
an then systemati
ally in
rease R0 until the physi
al result one is
onsidering no longer depends on this arti�
ial boundary. We state these 
onditions mathemati
ally as
f(ρ 6= 0, z = ±Lz/2) = 0, (4.6a)
f(ρ = R0, z) = 0. (4.6b)The position dependent e�e
tive mass and 
on�nement potential are 
onstants within ea
h domain (I andII) and jump whenever an internal boundary is 
rossed, hen
e
m∗(ρ, z) =

{
mI, (ρ, z) ∈ I
mII, (ρ, z) ∈ II, 35
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V (ρ, z) =

{
∆EI, (ρ, z) ∈ I
∆EII, (ρ, z) ∈ II.A s
hemati
 illustration of the energy lands
ape experien
ed by the ele
trons is shown �gure 4.3.Energy

Eg,II Eg,I

∆Ec

∆Ev

Condu
tion band

Valen
e band

II

II

I

I

II

IIFigure 4.3.: S
hemati
 illustration of the energy lands
ape in the QD/WL system. In the potential well the hori-zontal lines indi
ate bound QD states, while the grey boxes indi
ate the WL energy 
ontinuum.The mathemati
al model for obtaining the ele
troni
 states is now fully spe
i�ed and eq. (4.4) is ready tobe solved for ele
trons in the 
ondu
tion band and holes in the valen
e band. For the numeri
al valuesof the various band parameters, and a small dis
ussion of these, we refer to appendix A.8. The fullidenti�
ation of a state needs three indexes (when negle
ting spin whi
h is not important here), a bandindex (b), the z angular momentum (m), and a �nal index 
ounting the states within ea
h m subspa
e
(N). An envelope state 
an now be written as

F b
m,N (r) = Φm(ϕ)f b

|m|,N(ρ, z), (4.7)whi
h, when properly normalized and 
ombined with its respe
tive Blo
h fun
tion (eq. (4.1)), satis�es theorthonormality 
ondition
〈ubF b

m,N |ub′F b′

m′,N ′〉 = δm,m′δN,N ′δb,b′ .Usually all spatial quantum numbers will be 
olle
ted into a single one, normally denoted α, to lighten thenotation. Then the orthonormality 
ondition e.g. 
an be written 
ompa
tly as: 〈α|α′〉 = δα,α′ .For most geometries it is not possible to solve eq. (4.4) analyti
ally, therefore we have to resort to numeri
almethods. In our simulations we used the �nite element pa
kage COMSOL1, whi
h provides an easyimplementation and relatively stable and a

urate solutions [52℄.4.2.3. Numeri
al examplesFor illustration of the solutions of eq. (4.4) we will in this se
tion present a set of solutions for a typi
alsystem. The geometri
al parameters of the QD and WL system were 
hosen to yield a representative1For more information: http://www.
omsol.
om/36
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troni
 single-parti
le states and energiesQuantity Value Unit
h 1.25 nm
d 1.25 nm
r1 20 nm
r2 10 nm
R0 300 nm
Lz 60 nmTable 4.1.: Numeri
al values of the geometri
al parameters used in se
tion 4.2.3, see �gure 4.2.sele
tion of states that one would typi
ally en
ounter, these parameters are given in table 4.1. The bandparameters for the InGaAs system we employ for our heterostru
ture are dis
ussed and presented inappendix A.8.We start out by providing an overview of the energy eigenstates obtained by solving eq. (4.4) in termsof the energy density of states (DOS), the DOS for the 
ondu
tion band is shown in �gure 4.4(a) andfor the valen
e band in �gure 4.4(b). An alternative overview, slightly more informative, is given in�gure 4.5 showing the energy levels as a fun
tion of the angular momentum m. We have de�ned the DOS2as

d(E) =
∑

α

δ(E − Eα),but for pra
ti
al numeri
al reasons we use a broadened delta fun
tion in the form of a Lorentzian with awidth w, so that for the �gures the DOS is
d(E) =

∑

α

Lw(E − Eα), Lw(x) =
w

π

1

x2 + w2
. (4.8)The values of the DOS will depend on w and should therefore only be 
onsidered as an illustration. By
omparing �gures (4.4) and (4.5) for the 
ondu
tion and valen
e band, we noti
e that the overall levelstru
ture is very mu
h alike, whi
h is a 
onsequen
e of our 
hoi
e of band parameters, see A.8. Theenvelope fun
tions are therefore also very similar for the two bands and for that reason we will fo
uson the 
ondu
tion band states. In the DOS for the 
ondu
tion band states, the peaks below the onsetof the WL 
ontinuum 
orrespond to states bound mainly to the QD, while the states in the 
ontin-uum are a mixture of so-
alled quasi-bound states and WL states. We will elaborate on these di�erenttypes of states below. Hen
eforth the notation (b,m,N) will be employed when referring to f b

|m|,N(ρ, z).We start by 
onsidering the bound states. The �rst peak re�e
ts the non-degenerate state (c, 0, 1), this statehas zero angular momentum and 
an therefore be found very 
lose to the z-axis, as seen in �gure 4.6(a). Asthis state has the lowest energy, it is also the one most strongly bound to the QD. The se
ond peak is thedegenerate pair of states (c,±1, 1), where the degenera
y gives twi
e the DOS of the �rst peak. Having anangular momentum of ±1, the ele
tron is for
ed a bit further away from the z-axis than the state (c, 0, 1)and therefore less lo
alized in the QD, see �gure 4.6(
). The third peak stems from the degenerate pairof states (c,±2, 1), where the one unit higher angular momentum for
es the ele
trons further out of theQD, see �gure 4.6(d). The fourth peak has zero angular momentum, seen from its max value, and is thenon-degenerate state (c, 0, 2). This state is still lo
ated mainly in the QD, but has a
quired a node in theradial dire
tion to stay orthogonal to the states spatial near it, see �gure 4.6(b). The �fth peak is thedegenerate (c,±3, 1) pair of states, whi
h has an envelope similar to states (c,±1, 1) and (c,±2, 1), but ispushed even further out of the QD due to its higher angular momentum, see �gure 4.6(e). The last visiblepeak originates from the degenerate (c,±1, 2) pair and is similar in nature to the state (c, 0, 2), whi
h alsohas a node in the radial dire
tion, see �gure 4.6(f).2The degenera
y in the spin quantum number is not taken into a

ount here. To in
lude it, one should simply multiply bya fa
tor of 2. 37
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(b) DOS for the valen
e band.Figure 4.4.: Figures illustrating the energy density of states, eq. (4.8), for (left) the ele
trons in the 
ondu
tionband and (right) the ele
trons in the valen
e band. The DOS plots are on the same energy s
ale, with the zero pointpla
ed in the middle of the gap for material I, see �gure 4.3. For illustrative reasons a di�erent width was usedfor the dis
rete and 
ontinuous part of the spe
trum, wdiscreete = 0.05 meV and wcontinuous = 0.8 meV, the largerwidth of the 
ontinuum part re�e
ts the sampling in energy that is needed in the numeri
al simulation. This tri
kis needed in order to reprodu
e the well-known step-like DOS of 2D stru
tures, otherwise the 2D plateau would bevery spiky and not �at.
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(b) Energies for the valen
e band.Figure 4.5.: Representation of the energies obtained from solving eq. (4.4). To the left is the 
ondu
tion band with
m on the horizontal axis and N 
ounting up upwards in energy, while to the right the valen
e band is shown with
N 
ounting up downwards in energy. The 
olor 
oding of the dots is arbitrary.38
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troni
 single-parti
le states and energiesTo be able to dis
uss the quasi-bound states e�e
tively it is helpful to have been through the WL states�rst, as the quasi-bound states are intermediates between the strongly lo
alized and delo
alized states.We will refer to a state as being a WL state when it is basi
ally una�e
ted by the presen
e of the QDpotential3. It is of 
ourse true that all states in the 
ontinuum are a�e
ted by the QD potential, but inpra
ti
e it turns out that many of these are una�e
ted (within our numeri
al a

ura
y) and therefore itsafe to regard them as pure WL states. This fa
t be
omes very visible when expanding a WL state on theeigenstates of a pure WL (or quantum well) system as is done in se
tion 4.3.3. Three examples are shown�gures 4.7(b), 4.7(
), and 4.7(d), where it is 
learly seen that none of these envelopes are spatially near theQD, and hen
e they need not 
hange in order to be orthogonal to the bound QD states. One also noti
esthat the number of nodes in the radial dire
tion is 
orrelated with N , and is equal to N − 1. These threestates are all part of the energy 
ontinuum that has its onset at around 737 meV, and displays the familiarstep shape known from 2D systems, whi
h is what the WL e�e
tively is. The tail that extends from the
ontinuum part of the DOS is due to the �nite width of our Lorentzian, eq. (4.8), and therefore arti�
ial,the transition should be sharp as we have no broadening me
hanisms yet.Having dis
ussed both the bound and unbound states, we move on to an intermediate between these two,namely what we will refer to as quasi-bound states. These are states whi
h are not 
learly bound to theQD and yet not 
learly part of the WL 
ontinuum of delo
alized states either. An example is shown�gure 4.6(g), where we 
learly see that the envelope of the state (c, 0, 3) is lo
ated both in the QD andis delo
alized in the full WL; Fig. 4.6(h) shows a zoom in on the QD area. In �gure 4.7(a) we show thestates (c,±2, 2) whi
h in very large parts is lo
ated in the WL, but there is still a small probability of�nding it in the QD. Energeti
ally they usually form near the onset of the energy 
ontinuum and a bitinto this, depending on the geometry of the system. What is very spe
ial about these states is that theyhave a signi�
ant amplitude both in the QD and WL, and 
an therefore overlap both with pure bound andWL states. This means that e�e
tive s
attering 
an take pla
e between the spe
trally and spatially wellseparated QD and WL states, with the mediator being the quasi-bound states.It should be emphasized that the present approa
h for obtaining the ele
troni
 states, treats the bound,quasi-bound, and WL states on the same footing, as they originate from the same di�erential equation.This has the 
onsequen
e that properties su
h as orthogonality and relative energy di�eren
e betweendi�erent states are automati
ally ful�lled. This is in 
ontrast to another 
ommonly used s
heme fordes
ribing ele
troni
 states in many-body 
al
ulations, the so-
alled Orthogonalized Plane Wave (OPW)pro
edure (see e.g. [32, 55℄). In the OPW pro
edure plane waves are made orthogonal to some prede�nedbound states, often harmoni
 os
illator states, and these are then used as the single-parti
le basis. Theenergies are taken as a 
ombination of the unperturbed paraboli
 dispersion of the plane waves, the energiesof the bound states, and an user 
hosen o�set between these. The OPW approa
h has the huge advantageof being semi-analyti
al, whi
h speeds up 
al
ulations 
onsiderably, but su�ers from the above mentionedfundamental problem. A study of the signi�
an
e of various des
riptions of the ele
troni
 states has beenperformed in [51℄ and shows that it is important to treat the qualitatively di�erent states on the samefooting.
3It should be noted that for 
ertain geometries we experien
ed QD resonan
es in the WL 
ontinuum. These appear forotherwise pure WL states that are far from the lo
alized QD states, both spe
trally and spatially, but whi
h at someenergy rather suddenly be
ome lo
alized in the QD. We expe
t that these states o

ur due to the ful�lment of a resonan
e
onditions for the delo
alized WL states, mu
h like the transmission spe
tra for 1D quantum wells in introdu
torytextbooks on quantum me
hani
s. 39
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(h) State: (c, 0, 3), zoomed version.Figure 4.6.: Figures showing various solutions to eq. (4.4), namely the envelopes fb
|m|,N (ρ, z), for ele
trons in the
ondu
tion band. We use the notation (b, m,N) when referring to fb

|m|,N (ρ, z). Noti
e that one must 
arefullyinspe
t the values on the 
olorbar in ea
h plot, espe
ially for negative values.40
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(d) State: (c,±6, 2)Figure 4.7.: Figures showing various solutions to eq. (4.4), namely the envelopes fb
|m|,N (ρ, z), for ele
trons in the
ondu
tion band. We use the notation (b, m, N) when referring to fb

|m|,N (ρ, z). Noti
e that one must 
arefullyinspe
t the values on the 
olorbar in ea
h plot, espe
ially for negative values.4.3. Coulomb matrix elementsThe Coulomb matrix element, eq. (3.18), is one of the 
entral numeri
al quantities whi
h has to beevaluated in order to be able to perform many-body 
al
ulations4. We will therefore in this se
tion, dis
ussvarious properties and strategies for its evaluation, as it is not a trivial task.To redu
e the amount of 
omputation time needed, it is advantageous to make use of the symmetries theCoulomb matrix elements possess. These 
an easily be derived from the de�nition, eq. (3.18), and byusing the fa
t that He−e(r, r
′) = He−e(r

′, r). The symmetries are
Vν4ν3,ν1ν2 = V ∗ν1ν2,ν4ν3

= Vν3ν4,ν2ν1 = V ∗ν2ν1,ν3ν4
. (4.9)The spatial part of the Coulomb matrix element, eq. (3.18), is given by

Vα4α3,α1α2 =

∫

drdr′φ∗α4
(r)φ∗α3

(r′)He−e(r, r
′)φα1 (r)φα2 (r

′), (4.10)whi
h is the 
omputationally demanding part as the spin overlaps are trivially evaluated. To fa
ilitate theevaluation of the Coulomb matrix element, and for formal reasons, it is 
onvenient to 3D Fourier transform4It turns out that also for the intera
tion between ele
trons and dispersionless LO phonons, the matrix elements enteringthe self-energy 
an be reformulated in terms of the Coulomb matrix element se
tion 5.2.2. 41
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He−e(r, r

′) yielding
He−e(r − r′) =

1

V

∑

q

Vqe
iq·(r−r′), Vq =

e2

ε

1

q2
, (4.11)where V is the quantization volume and q = (qx, qy, qz) is the 3D waveve
tor. We use the Fourier transformde�ned by [28℄

f(r) =
1

V

∑

q

fqe
iq·r, fq =

∫

V

drf(r)e−iq·r. (4.12)Depending on the system under 
onsideration it 
an be advantageous to perform the qz integration ex-pli
itly in eq. (4.11) ending up with the 2D Fourier transform of the Coulomb intera
tion. Performing thisintegration [56, p. 122℄ yields
He−e(r − r′) =

1

A

∑

q‖

Vq‖e
iq‖·(ρ−ρ′)e−q‖|z−z′|, Vq‖ =

e2

2ε

1

q‖
, (4.13)where A is the quantization area, q‖ = (qx, qy) is the 2D or in-plane waveve
tor, and ρ = (x, y) is thein-plane position ve
tor. The reason for expanding the Coulomb intera
tion in plane-waves, and notevaluating eq. (4.10) dire
tly, is due to the problems generated by the 1/|r − r′| singularity, whi
h aredi�
ult to handle numeri
ally.If one inserts the 3D Fourier transform of the Coulomb intera
tion into eq. (4.10), the integrations over rand r′ 
an be separated as follows

Vα4α3,α1α2 =
1

V

∑

q

Vq

∫

drφ∗α4
(r)eiq·rφα1(r)

∫

dr′φ∗α3
(r′)e−iq·r′

φα2(r
′), (4.14)so that the integrals whi
h need to be evaluated are all of the form

〈α5|e±iq·r|α6〉 =
∫

drφ∗α5
(r)e±iq·rφα6(r). (4.15)This separation is made for formal reasons, the result is needed in the next se
tion, while for the a
tualevaluation the 2D transform, eq. (4.13), is used.4.3.1. Blo
h partIn the e�e
tive mass envelope approximation for the ele
trons, the wavefun
tions in eq. (4.10) are all ofthe following form

φα(r) = F b
α(r)ub(r), (4.16)where F b

α(r) is the envelope fun
tion and ub(r) is the Blo
h fun
tion for the stati
 latti
e, both for band
b. Normally the band index b is 
ontained in the general spatial quantum number α, but here we displayit expli
itly in the envelope fun
tion for 
larity. The envelope fun
tion is determined from the e�e
tivemass S
hrödinger equation, see se
tion 4.2.2, while the Blo
h fun
tion is generally not known. Below wewill show that for the 
lass of Coulomb matrix elements we are 
onsidering, it is not ne
essary to know theBlo
h fun
tion, whi
h is very fortunate as this fun
tion is very hard to obtain.In a semi
ondu
tor s
attering pro
esses where an ele
tron is s
attered from one band and to the other, 
ano

ur due to the Coulomb intera
tion between the ele
trons in the semi
ondu
tor. However, for a relativelywide bandgap semi
ondu
tor this pro
ess will be very non-resonant in nature, with the 
onsequen
e thatthe probability for it to happen will be very small, and for this reason we will negle
t su
h pro
esses in our42



Single-Parti
le States and Matrix Elements Coulomb matrix elementsmodel [56, p. 212℄. This approximation does not mean that the 
arriers do not intera
t a
ross the bandgap.There are strong intera
tions between ele
trons in the valen
e and 
ondu
tion band as their wavefun
tionsoverlap spatially, giving rise to the ex
itoni
 e�e
ts that are in general very important. A 
onsequen
e ofthe approximation, whi
h must be kept in mind, is that the number of 
arriers in ea
h band is 
onserved,hen
e no re
ombination takes pla
e due to the Coulomb intera
tions. For the Coulomb integrals, eq. (4.15),this means that the band index in the wavefun
tions is the same
〈α5|e±iq·r|α6〉 =

∫

drφ∗α5
(r)e±iq·rφα6(r)δb5,b6

=

∫

dr
[
F b

α5
(r)ub(r)

]∗
e±iq·rF b

α6
(r)ub(r).By assumption the envelope fun
tions are slowly-varying 
ompared to the Blo
h fun
tions. If we furtherassume that only 
omponents of the Coulomb intera
tion with relatively small waveve
tors are needed,the exponentials e±iq·r also be
ome slowly-varying 
ompared to the Blo
h part. A more quantitativerequirement would be that qmaxauc ≪ 1 , where qmax is the largest waveve
tor needed in the expansionof the Coulomb potential and auc is the typi
al size of the unit 
ell. For the InGaAs systems we willbe 
onsidering we have auc ≈ 5 Å [53℄ leading to qmax ≪ 2 × 109 m−1. This value of qmax limits usto the vi
inity of the band edges, whi
h is 
onsistent with the fundamental assumption of the e�e
tivemass theory we have employed for the ele
troni
 states. Having argued that both the envelopes andexponentials are slowly-varying 
ompared to the Blo
h fun
tion, we may follow [53, p. 120℄ and write theintegral over the entire stru
ture as a sum over all unit 
ells and an integral over a single periodi
5 unit
ell

〈α5|e±iq·r|α6〉 ≈
∑

uc i

Vuc

[
F b

α5
(ri)

]∗
e±iq·riF b

α6
(ri)

(
1

Vuc

∫

uc

dru∗b(r)ub(r)

)

︸ ︷︷ ︸

〈ub|ub〉=1

=

∫

dr
[
F b

α5
(r)
]∗
e±iq·rF b

α6
(r), (4.17)where in the last line the sum was 
onverted into an integral. This leads to the fa
t that the Coulombmatrix elements 
an be evaluated with out expli
itly knowing the Blo
h fun
tions and we end up with [32,p. 86℄

Vα4α3,α1α2 =

∫

drdr′F ∗α4
(r)F ∗α3

(r′)He−e(r, r
′)Fα1(r)Fα2 (r

′)× δb4,b1δb3,b2 . (4.18)4.3.2. Representation in separable basisThe geometry of the QD/WL system we intent to use for pra
ti
al 
al
ulations later in the thesis, will allbe for relatively shallow QDs, that is with a large width to height ratio, as those presented in se
tion 4.2.1.Due to the shallowness of the QDs, it be
omes a good approximation to write the entire envelope fun
tion
F (r) on a separable form, see se
tion 4.3.3. However, to set the stage for performing this approximationwe �rst formulate an exa
t pro
edure for 
al
ulating the Coulomb matrix elements. This pro
edure isbased expanding the numeri
al envelope fun
tions on an analyti
al basis set, that is separable in ea
h ofthe 
ylindri
al 
oordinates ρ, ϕ, and z, and furthermore this exa
t formulation will serve as a ben
hmarkfor the approximative formulation.Denoting the separable basis as {Bβ(r)} we may write the expansion of the envelope fun
tion as fol-lows

Fα(r) =
∑

β

Aα
βBβ(r), Aα

β = 〈β|α〉 =
∫

drB∗β(r)Fα(r), (4.19)5We will assume that the argument still holds, even though the system under 
onsideration has di�erent kinds of unit 
ells.43



Coulomb matrix elements Single-Parti
le States and Matrix Elementswhere the basis states are of the spe
i�
 form, see appendix A.7,
Bβ(r) = Φm(ϕ)R|m|l(ρ)Znz

(z) = gβ(ρ)Zβ(z), β = (m, l, nz), (4.20)and where gβ(ρ) = Φm(ϕ)R|m|l(ρ) has been introdu
ed for notational simpli
ity. Using the resulteq. (4.18), the 2D transform of the Coulomb potential, eq. (4.13), and the newly introdu
ed basis, aCoulomb matrix element 
an be written as
Vα4α3,α1α2 =

∑

β1β2

β3β4

[

Aα4

β4

]∗ [
Aα3

β3

]∗
Aα1

β1
Aα2

β2
× δb4,b1δb3,b2

×







1

A

∑

q‖

Vq‖

∫

dρg∗β4
(ρ)eiq‖·ρgβ1(ρ)

∫

dρ′g∗β3
(ρ′)e−iq‖·ρ′

gβ2(ρ
′)

×
∫

dzdz′Z∗β4
(z)Z∗β3

(z′)e−q‖|z−z′|Zβ1(z)Zβ2(z
′)

}

=
∑

β1β2

β3β4

[

Aα4

β4

]∗ [
Aα3

β3

]∗
Aα1

β1
Aα2

β2
× δb4,b1δb3,b2 × Vβ4β3,β1β2 . (4.21)In the last line we have introdu
ed the Coulomb matrix element for a basis state, Vβ4β3,β1β2 , de�ned as the
ontent in the 
urly bra
kets on the se
ond and third line. From this formula it is seen that the 
hallengingtask apparently is to 
al
ulate Vβ4β3,β1β2 , as the rest 
onsists of simple summations. For this reason thefollowing will fo
us on simplifying the expression for Vβ4β3,β1β2 .In the expression for Vβ4β3,β1β2 two types of integrals o

ur, one involving the ρ 
oordinate and oneinvolving z and z′, for whi
h we de�ne short hand notations in the following way

I±ρ (β5, β6 : q‖) =

∫

dρg∗β5
(ρ)e±iq‖·ρgβ6(ρ), (4.22)

Iz(β4, β3, β1, β2 : q‖) =

∫

dzdz′Z∗β4
(z)Z∗β3

(z′)e−q‖|z−z′|Zβ1(z)Zβ2(z
′). (4.23)We start by 
onsidering the integral I±ρ . Using the de�nition of gβ(ρ) I±ρ 
an be written as

I±ρ (β5, β6 : q‖) =

∫ R0

0

dρρR∗β5
(ρ)Rβ6(ρ)

[
1

2π

∫ 2π

0

dϕei([m6−m5]ϕ±q‖ρ cos(ϕ−ϕ‖))

]

,where we have used q‖ · ρ = q‖ρ cos(ϕ − ϕ‖), with ϕ‖ being the angle of q‖ with respe
t to the x-axis.The angular integral in square bra
kets 
an be rewritten to an expression involving Bessel fun
tions, likethose in the ρ integral. For this we use the following integral representation of the Bessel fun
tion [57, p.684℄
Jm(x) =

i−m

2π

∫ 2π

0

dγei[mγ+x cos(γ)], m = 0, 1, 2, 3, . . .and the fa
t that the integrand in the angular integral is 2π-periodi
. From this we obtain
1

2π

∫ 2π

0

dϕei([m6−m5]ϕ±q‖ρ cos(ϕ−ϕ‖)) = ei(m6−m5)ϕ‖i|m6−m5|J|m6−m5|(±q‖ρ).Finally using the series representation of the Bessel fun
tion [57, p. 670℄ one 
an show that Jm(−x) =
(−1)mJm(x) and we arrive at

I±ρ (β5, β6 : q‖) = 1±e
i(m6−m5)ϕ‖i|m6−m5|

∫ R0

0

dρρR∗β5
(ρ)J|m6−m5|(q‖ρ)Rβ6(ρ), (4.24)44



Single-Parti
le States and Matrix Elements Coulomb matrix elementswhere
1± =

{
1, +q‖ρ

(−1)|m6−m5|, −q‖ρ.The most demanding part 
an now be identi�ed as the integral
IJ (β5, β6 : q‖) =

∫ R0

0

dρρR∗β5
(ρ)J|m6−m5|(q‖ρ)Rβ6(ρ), (4.25)whi
h has to be evaluated numeri
ally. It should be noted that an analyti
al expression exists for thisintegral when R0 → ∞, see eq. ([1.℄ 6.578) in [58℄. This is not the 
ase for our system, but it 
ouldpossibly yield an ex
ellent approximation under 
ertain 
onditions, this has however not been investigatedfurther.The q‖ sum in eq. (4.21) 
an be transformed into an integral, assuming that the quantization area is large.Hen
e we make the substitution [28, p. 38℄

1

A

∑

q‖

→ 1

(2π)2

∫

dq‖ =
1

(2π)2

∫ 2π

0

dϕ‖

∫ ∞

0

dq‖q‖. (4.26)Due to our 
hoi
e of basis set the only pla
e ϕ‖ enters is through the exponential in eq. (4.24), thereforeit is possible to perform this integration analyti
ally whi
h is a ni
e simpli�
ation. Applying the ruleeq. (4.26) we 
an write Vβ4β3,β1β2 as
Vβ4β3,β1β2 =

1

2π

∫ ∞

0

dq‖q‖Vq‖

× i|m1−m4|IJ (β4, β1 : q‖)(−1)|m2−m3|i|m2−m3|IJ (β3, β2 : q‖)Iz(β4, β3, β1, β2 : q‖)

× 1

2π

∫ 2π

0

dϕ‖e
i[(m1−m4)+(m2−m3)]ϕ‖

︸ ︷︷ ︸

=δm1+m2,m3+m4

, (4.27)where the integral in the last line provides us with a sele
tion rule in the angular momentum quantumnumber m. The sele
tion rule in the m's re�e
ts the underlying symmetry of the basis fun
tions, andbasi
ally tells us that the total angular momentum (the sum of the two parti
ipating parti
les) in the
z-dire
tion is 
onserved. The delta fun
tion 
an further be used on the exponents of i and −1 in these
ond line to yield unity

i|m1−m4|(−1)|m2−m3|i|m2−m3|δm1+m2,m3+m4 = 1× δm1+m2,m3+m4 .Going ba
k to eq. (4.27) we 
an insert Vq‖ from eq. (4.13), where the 1/q‖ singularity is 
an
eled by thevolume element in the q‖ integral, and we obtain a simpli�ed expression for the Coulomb matrix elementof a basis state
Vβ4β3,β1β2 =

e2

4πε

∫ ∞

0

dq‖IJ (β4, β1 : q‖)IJ (β3, β2 : q‖)Iz(β4, β3, β1, β2 : q‖)× δm1+m2,m3+m4 . (4.28)Next we take a 
loser look at some of the properties of the integrals IJ and Iz , whi
h 
onstitute the basi
building blo
ks for 
al
ulating the Coulomb matrix elements.Properties of IJFrom eq. (4.28) it is apparent that the integration parameter q‖ in prin
iple should be varied 
ontinuouslyfrom 0 to ∞, this is however impossible to do numeri
ally and in pra
tise not ne
essary either. Theele
troni
 states we 
onsider are all relatively low in energy and hen
e we will be able to limit the size of45



Coulomb matrix elements Single-Parti
le States and Matrix Elementsthe Hilbert spa
e for the basis states used in the expansion eq. (4.19). This means that we 
an de�ne someupper 
ut-o� for the quantum number, β, 
hara
terizing the basis. Having put an upper limit on β we
an make some qualitative statements on the integral IJ , eq. (4.25), as a fun
tion of q‖, more spe
i�
allyon the limiting 
ases of very small and very large q‖.For very small q‖ the Bessel fun
tion in eq. (4.25) 
ontaining q‖ will have the following dependen
y on q‖:
J|m|(q‖ρ→ 0) ∝ (q‖ρ)

|m|, whi
h is seen from its series representation [57, p. 670℄. This tells us that for
|m| 6= 0, IJ will always give zero, while for |m| = 0 we get J|m|(q‖ρ→ 0)→ 1 and hen
e the value of IJwill depend on the mutual orthogonality of the gβ's. These two observations 
an be written 
olle
tivelyas

IJ (β5, β6 : q‖ → 0)→ δm5,m6δl5,l6 . (4.29)For very large q‖ the Bessel fun
tion J|m|(q‖ρ) will os
illate mu
h more rapidly than the other two Besselfun
tions, and hen
e the integral will average to zero
IJ (β5, β6 : q‖ →∞)→ 0. (4.30)These two statements are illustrated in �gure 4.8, where relatively low energy basis states are shown in�gures 4.8(a) and 4.8(
) and a relatively high energy basis states are shown in �gures 4.8(b) and 4.8(d).The �rst thing ones noti
es, when 
omparing the high and low energy 
ases, is that the 
ut-o� in q‖ seemsto 
ome at a lower value for the low energy states than for the high energy states. This is understandablein the light of eq. (4.30), as J|m|(q‖ρ) faster be
omes highly os
illatory 
ompared to the low energy statesthan 
ompared to the high energy states, and hen
e the integral will average to zero at a lower q‖ forthe low energy states than for the high energy ones. The 
ut-o� value in q‖ depends highly on R0, see�gure 4.2, but in a very simple way and s
ales basi
ally linearly with R0, as 
an be seen by introdu
inga unitless radial 
oordinate, ρ̃ = ρ/R0, in eq. (4.25). It is also apparent that the high energy states havemore stru
ture below their 
ut-o� and therefore require a �ner sampling in q‖ in order to yield 
orre
tresults. This makes the high energy states mu
h more 
hallenging numeri
ally, for whi
h reason it isimportant to make sure that ones performs the minimum amount of numeri
al 
al
ulations required. Oneway to minimize this number is to make use of the symmetries IJ possesses in its β quantum numbers,these symmetries will be dis
ussed next.From its de�nition, eq. (4.25),
IJ (m5l5,m6l6 : q‖) =

∫ R0

0

dρρR∗|m5|l5(ρ)J|m6−m5|(q‖ρ)R|m6|l6(ρ),we have dedu
ed the symmetries of IJ
IJ (m5l5,m6l6 : q‖) = I∗J (m6l6,m5l5 : q‖) (4.31a)

= IJ (m6l6,m5l5 : q‖), sign(m5) = sign(m6), (4.31b)
IJ (∓m5l5,±m6l6 : q‖) = I∗J (∓m6l6,±m5l5 : q‖) (4.31
)

= IJ (∓m6l6,±m5l5 : q‖), sign(m5) 6= sign(m6). (4.31d)The sign of the m's matters as there appears a di�eren
e in m5 and m6 in IJ . The number of di�erentpermutations of m and l in IJ equals (2 ×mmax + 1)2l2max, this times the numbers of sampling points of
q‖, whi
h is usually a few hundreds, is the number of integrals needed to be 
al
ulated numeri
ally. Forillustration we 
hoose the numbers mmax = 10 and lmax = 50, whi
h are reasonable for a typi
al QD/WLsystem. Plugging in these numbers we get (2×mmax + 1)2l2max = 1102500, while appli
ation of eq. (4.31)redu
es this number to 276775, roughly a fa
tor of 4 lower. This fa
tor of 4 is however not representativefor the 
omputation time spend. This is so as high energy states are more os
illatory than low energyones, and thus the sampling in ρ, used in the numeri
al quadrature, needs to be 
orrespondingly �ner,leading to longer 
omputation time. The fa
tor of 4 is thus a lower bound for the speed up in 
omputationtime. Parallelization is possible for ea
h IJ and hen
e leads to further e�
ien
y, but the 
al
ulation of allthe integrals IJ is still a 
onsiderable numeri
al task.46
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(d)Figure 4.8.: Examples of the integral IJ , eq. (4.25), illustrating the behavior stated in eqs. (4.29) and (4.30). Itshould be noti
ed that IJ is dependent on R0, see �gure 4.2, as the basis fun
tions also depend on this. For theseillustrations we used R0 = 150 nm.Properties of IzAs for IJ the in-plane waveve
tor q‖ must be varied between 0 and ∞ in the integral Iz , and as for IJ we
an give some general statements in these two limits. From eq. (4.23)
Iz(nz4, nz3, nz1, nz2 : q‖) =

∫

dzdz′Z∗nz4
(z)Z∗nz3

(z′)e−q‖|z−z′|Znz1(z)Znz2(z
′),it is 
learly seen that for q‖ → 0, the exponential e−q‖|z−z′| will tend toward unity and the 2D integral 
anbe separated into two 1D integrals. Due to the orthogonality of the Zn's we obtain the following simpleresult

Iz(nz4, nz3, nz1, nz2 : q‖ → 0)→ δnz4,nz1δnz3,nz2, (4.32)similar to the q‖ → 0 limit for IJ . For very large q‖ the exponential e−q‖|z−z′| will dampen the integrandso strongly that it will give zero for su�
iently large q‖. On the diagonal in the (z, z′)-plane we have
z − z′ = 0 and hen
e the exponential will always be 1 regardless of the value of q‖, however this in�nitelythin line has integral measure zero and will therefore not 
ontribute to a �nite value of the entire integral.47
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le States and Matrix ElementsHen
e for q‖ →∞ we have
Iz(nz4, nz3, nz1, nz2 : q‖ →∞)→ 0. (4.33)To illustrate eqs. (4.32) and (4.33) we show in �gure 4.9 three examples of Iz . One immediately noti
es
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(
)Figure 4.9.: Examples of the integral Iz, eq. (4.23), illustrating the behavior stated in eqs. (4.32) and (4.33). Itshould be noti
ed that Iz is dependent on Lz, see �gure 4.2, as the basis fun
tions also depend on this. For theseillustrations we used Lz = 60 nm.that all three 
urves are remarkably similar, ex
ept for the dips at q‖ = 0, when 
omparing to IJ . Infa
t all Iz 's that have been manually inspe
ted display one of these three kinds of qualitative behavior asa fun
tion of q‖. The slow 
onvergen
e towards zero for large q‖ is also 
hara
teristi
 for Iz , but this isusually not a problem as IJ often has the smallest 
ut-o� and therefore the long tail of Iz does not need tobe determined. The absolute value of the 
ut-o� depends on Lz, see �gure 4.2. Comparing again to IJ , Izshows very little stru
ture as a fun
tion of q‖, whi
h is very good news as mu
h fewer sampling points areneeded and interpolation 
an be used for obtaining the values 
orresponding to the more dense samplingrequired by IJ .The values of Iz are obtained by performing 2D integrals numeri
ally, whi
h is mu
h more demandingthan performing 1D integrals, from whi
h IJ is 
al
ulated. To give an idea of the magnitude, 
onsider a1D fun
tion that needs N fun
tion evaluations in order to meet some toleran
e set on its integrated value,the 
orresponding 2d integration would then need roughly N2 evaluations to yield the same a

ura
y,48
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N3 for 3D and so on. If the fun
tion values are 
omputationally expensive to obtain, higher dimensionalintegrals 
an be very very demanding to 
al
ulate numeri
ally. This is also one of the reasons for 
hoosingthe 
urrent approa
h for evaluation of the Coulomb matrix elements, that initially is determined from a6D integral.From the dis
ussion above it is apparent that it is very important to exploit potential symmetries andsele
tion rules of Iz , even more than for IJ . We will now address this issue. From eq. (4.23) one 
an showthe following symmetries for the integral Iz

Iz(nz4, nz3, nz1, nz2 : q‖) = I∗z (nz1, nz2, nz4, nz3 : q‖) = Iz(nz1, nz2, nz4, nz3 : q‖) (4.34a)
= Iz(nz3, nz4, nz2, nz1 : q‖) (4.34b)

= I∗z (nz2, nz1, nz3, nz4 : q‖) = Iz(nz2, nz1, nz3, nz4 : q‖), (4.34
)note the similarity with eq. (4.9). Furthermore it is possible to determine a sele
tion rule for Iz by makingthe following 
oordinate transformation
z → −z, z′ → −z′,whi
h does not 
hange the value of the integral, but yields the following relation in the nz's
Iz(nz4, nz3, nz1, nz2 : q‖) = (−1)nz4+nz3+nz1+nz2+4Iz(nz4, nz3, nz1, nz2 : q‖).Here we have used the parity of Znz

(z), Znz
(−z) = (−1)1+nzZnz

(z) see appendix A.7, and the fa
t that
e−q‖|z−z′| is even under inversion in the (z, z′)-plane6. This tells us that unless the sum of the quantumnumbers nz is an even number, the integral Iz is identi
ally zero. This 
an be formulated mathemati
allyusing the modulus operation as follows

Iz(nz4, nz3, nz1, nz2 : q‖) = Iz(nz4, nz3, nz1, nz2 : q‖)δmod(nz4+nz3+nz1+nz2,2),0. (4.35)This 
ondition simply means that the produ
t of the four Znz
's in Iz must be an even fun
tion, like

e−q‖|z−z′|, in order for the integral to yield a non-zero value, whi
h 
ould have been intuitively expe
ted.The fa
t that the integrand has even inversion symmetry means one 
an limit the integration domain tohalf the (z, z′)-plane, resulting in a signi�
ant speed up, roughly a fa
tor of 2, in terms of 
pu time. Togive an idea of the redu
tion in 
omputation time a
hieved by applying the symmetries eq. (4.34) and thesele
tion rule eq. (4.35), 
onsider a 
ut-o� of nz,max = 25. This gives n4
z,max = 390625 permutations of nzin Iz , using the symmetries and sele
tion rule this number redu
es to 49297, almost a fa
tor of 8. Similarto the 
al
ulation of IJ , 
al
ulation of Iz with high energy states is more time 
onsuming and thus thefa
tor of 8 is the minimum gain. On top of the number of permutations in the basis indi
es the samplingof q‖ adds another dimesion. For Iz usually around 50 sampling point of q‖ are needed, with the majority
lustered near q‖ = 0. Again, as for IJ , parallelization is possible for ea
h Iz .Colle
ting everything we arrive at the �nal simpli�ed expression for the Coulombmatrix element

Vα4α3,α1α2 =
∑

β1β2

β3β4

[

Aα4

β4

]∗ [
Aα3

β3

]∗
Aα1

β1
Aα2

β2
× δb4,b1δb3,b2 × Vβ4β3,β1β2

× δm1+m2,m3+m4 × δmod(nz4+nz3+nz1+nz2,2),0, (4.36)with Vβ4β3,β1β2 being given by
Vβ4β3,β1β2 =

e2

4πε

∫ ∞

0

dq‖IJ (β4, β1 : q‖)IJ (β3, β2 : q‖)Iz(β4, β3, β1, β2 : q‖)

× δmod(nz4+nz3+nz1+nz2,2),0 × δm1+m2,m3+m4 . (4.37)6This result 
ould also have been rea
hed using the more formal methods of group theory. Here one would introdu
e the
(z, z′)-plane parity operator Pzz′ , de�ned by Pzz′f(z, z′) = f(−z,−z′), and look for the eigenvalues of Pzz′ with theinvolved fun
tions. 49



Coulomb matrix elements Single-Parti
le States and Matrix Elements4.3.3. Representation in separable eigenstatesFor very shallow, that is small height, QDs it be
omes a good approximation to assume that the ele
troni
envelope fun
tion 
an be fa
tored into a fun
tion for ea
h spatial dire
tion [55℄. The philosophy is thatfor shallow QDs, the e�e
tive envelope for the z-dire
tion is very similar for the various types of stateswe en
ounter: bound QD states, quasi-bound states, and unbound WL states. And hen
e ultimately one
an use the same z-envelope for all states, yielding faster 
omputation times and hopefully fairly a

urateresults (see se
tion 4.3.4). In this approximation we write the envelope as follows
F eff

α (r) = Φm(ϕ)Reff
α (ρ)Zeff

α (z) = geff
α (ρ)Zeff

α (z), α = (b,m,N), (4.38)where due to symmetry the angular part is exa
t. One possible de�nition of the e�e
tive fun
tions isdes
ribed in the next subse
tion. Inserting eq. (4.38) into eq. (4.18), with the Coulomb potential Fouriertransformed, we obtain
Vα4α3,α1α2 =

1

A

∑

q‖

Vq‖ × δb4,b1δb3,b2

×
∫

dρ[geff
α4

(ρ)]∗eiq‖·ρgeff
α1

(ρ)

∫

dρ′[geff
α3

(ρ′)]∗e−iq‖·ρ′

geff
α2

(ρ′)

×
∫

dzdz′[Zeff
α4

(z)]∗[Zeff
α3

(z′)]∗e−q‖|z−z′|Zeff
α1

(z)Zeff
α2

(z′).The pro
edure exe
uted in se
tion 4.3.2 
an now be repeated here and the end result is
Vα4α3,α1α2 =

e2

4πε

∫ ∞

0

dq‖I
eff
J (α4, α1 : q‖)I

eff
J (α3, α2 : q‖)I

eff
z (α4, α3, α1, α2 : q‖)

× δb4,b1δb3,b2 × δm1+m2,m3+m4 . (4.39)In analogy with eqs. (4.23) and (4.25) we have introdu
ed the following notation
Ieff
J (α5, α6 : q‖) =

∫ R0

0

dρρ[Reff
α5

(ρ)]∗J|m6−m5|(q‖ρ)R
eff
α6

(ρ),

Ieff
z (α4, α3, α1, α2 : q‖) =

∫

dzdz′[Zeff
α4

(z)]∗[Zeff
α3

(z′)]∗e−q‖|z−z′|Zeff
α1

(z)Zeff
α2

(z′).One de�nition of the e�e
tive fun
tionsOur starting point for de�ning the e�e
tive fun
tions in eq. (4.38) is the general expansion of the envelopefun
tion, eq. (4.19), in terms of the basis given by eq. (4.20)
Fα(r) =

∑

β

Aα
βBβ(r).The spatial quantum number 
hara
terizing an envelope fun
tion is written as

α = (b,m,N),where m is the eigenvalue of the z 
omponent of the angular momentum operator (see appendix A.7), Nis a quantum number des
ribing the (ρ, z)-plane, and b is a band index. The spatial quantum number
hara
terizing a basis state is
β = (m, l, nz),see appendix A.7 for details. It should be emphasized that for a rotationally symmetri
 system, the

z 
omponent of the angular momentum operator is a 
onserved quantity and m is therefore a good50



Single-Parti
le States and Matrix Elements Coulomb matrix elementsquantum number. We will always 
onsider su
h systems and therefore the angular part of the envelopeand basis fun
tion will always be same. More spe
i�
ally, we write the expansion of the envelope asfollows
F b

m,N (r) =
∑

lnz

Ab
m(N : l, nz)Bmlnz

(r). (4.40)To motivate the de�nition of the e�e
tive fun
tions one 
an 
onsider an expli
it set of 
oe�
ients, e.g. asshown in �gure 4.10 for a typi
al QD ground state; this spe
i�
 state has the label (b,m,N) = (c, 0, 1).The geometry is the same as in se
tion 4.2.3, ex
ept for R0 whi
h is 75 nm in these 
al
ulations. The �rstthing one noti
es is that the 
oe�
ients de
ay as we go to higher and higher quantum numbers in boththe radial and z dire
tion, as is expe
ted when 
onsidering a lo
alized state. Next it is very apparent howrows for even nz have a mu
h less amplitude than those for odd nz, this is simply a manifestation of thefa
t that the wavefun
tion is almost symmetri
 about the (x, y)-plane. To de�ne the e�e
tive fun
tionit seems intuitively 
orre
t to fo
us on the 
oe�
ients that have large amplitudes, as these must be themost signi�
ant. For this purpose we identify the 
oe�
ient with the largest amplitude and denote itsindexes with stars as supers
ripts: (l∗, n∗z). We now propose to de�ne the e�e
tive fun
tions Rb,eff
|m|,N(ρ)and Zb,eff

|m|,N(z) in the following way
Rb,eff
|m|,N(ρ) =

∑

l

CR,b
l (m,N)R|m|,l(ρ), CR,b

l (m,N) = ξ
Ab

m(N : l, n∗z)
√∑

l|Ab
m(N : l, n∗z)|2

,

Zb,eff
|m|,N(ρ) =

∑

nz

CZ,b
l (m,N)Znz

(z), CZ,b
nz

(m,N) = ξ
Ab

m(N : l∗, nz)
√
∑

nz
|Ab

m(N : l∗, nz)|2
,where ξ = sign[Ab

m(N : l∗, n∗z)] is a phase fa
tor that ensures that the e�e
tive fun
tions have the samephase as as the original fun
tion. Noti
e that the e�e
tive 
oe�
ients have been renormalized in orderfor the e�e
tive fun
tions to be normalized to unity. The 
oe�
ients used in the e�e
tive fun
tions areshown graphi
ally in �gure 4.10, where the horizontal line indi
ates those used for Reff while the verti
alline indi
ates those used for Zeff . In order for this approximation to be good, the two lines should 
overas mu
h "weight" as possible, that is ∑⊥|Ab
m(N : l, nz)|2 should be as 
lose to unity as possible, where

⊥ indi
ate the bla
k lines in �gure 4.10. A limiting 
ase where this approximation is exa
t is for thepure WL state, where no dot potential is present in the geometry. For this system the eigenstates are
ompletely separable and for the radial dire
tion the solutions are Bessel fun
tions, the same ones as weuse as our basis (see appendix A.7), hen
e by de�nition the fa
torization pro
edure is exa
t for thesestates.This spe
i�
 de�nition of the e�e
tive fun
tions su�ers from a potentially very serious drawba
k, namelythat the mutual orthogonality of the e�e
tive fun
tions is not guarantied in this simple minded separationpro
edure. This is however only an issue when 
onsidering the overlap between states of equal m, fordi�erent m the integration over the exa
t angular fun
tions ensures the orthogonality. But for equal mwe have the situation
〈F eff

α |F eff
α′ 〉 = 〈Reff

α |Reff
α′ 〉 〈Zeff

α |Zeff
α′ 〉 6= 0, N 6= N ′, m = m′, b = b′.The importan
e of having orthogonal wavefun
tions depends on what should be 
al
ulated using thesewavefun
tions. In the 
ase of Coulomb matrix elements orthogonality is 
ru
ial, as seen from e.g. �gure 4.8where the point q‖ = 0 
orresponds to the pure overlap of two e�e
tive radial fun
tions and thus it mustalways be zero for di�erent fun
tions. The a
tual impa
t of this non-orthogonality will be investigated inthe next subse
tion.4.3.4. Comparison of exa
t and e�e
tive Coulomb matrixelementsIn this subse
tion we will perform a numeri
al 
omparison between the Coulomb matrix elements 
al
ulatedusing the exa
t expression eq. (4.36) and those obtained through the e�e
tive expression eq. (4.39). The51
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Figure 4.10.: Plot showing the 
oe�
ient Ac
0(1 : l, nz) in the expansion eq. (4.40). The verti
al and horizontal bla
klines indi
ate whi
h 
oe�
ients that are used in the de�nition of the e�e
tive fun
tions in eq. (4.38).
omparison is performed to estimate the validity of the fa
torization pro
edure des
ribed in se
tion 4.3.3.More spe
i�
ally we test whether the separated wavefun
tions provide a good des
ription and how big arole the non-orthogonality of the separated wavefun
tions play.
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Figure 4.11.: S
hemati
 illustration of the level stru
ture of the QD presented in se
tion 4.2.3.We fo
us on the same QD/WL geometry as in se
tion 4.2.3, with the ex
eption that R0 = 75 nm inthese 
al
ulations. A s
hemati
 of the level stru
ture is shown in �gure 4.11 where the level notation isindi
ated, a more detailed version 
an be found in �gure 4.5. We only perform the 
omparison for the
learly bound QD states, as the fa
torization approximation is expe
ted to be worst for these states, and52



Single-Parti
le States and Matrix Elements Coulomb matrix elementstherefore attention is not payed to the delo
alized WL states, where the fa
torization approximation isexpe
ted to be mu
h better.A representative sele
tion of Coulomb elements is shown in table 4.2, where four di�erent 
lasses of elementsare presented, separated by the horizontal lines. The �rst 
lass is that of two ele
trons in the same spatialstate s
attering with ea
h other into the same state and 
an be thought of as a 
lassi
al ele
trostati
intera
tion energy between two (equal) 
harge distributions given by the wavefun
tion squared. The se
ond
lass is similar to the �rst, but now the ele
trons are in di�erent spatial states and hen
e these elements 
anbe expe
ted to be smaller than the �rst 
lass, as the spatial overlap between the two 
harge distributionsis smaller. The two �rst 
lasses of elements, whi
h 
an be interpreted 
lassi
ally, are usually 
alled dire
telements. The third 
lass 
ontains elements of true quantum me
hani
al s
attering events, that is wherethe ele
trons are s
attered to new states and hen
e this pro
ess 
an not be thought of 
lassi
ally as theintera
tion of two 
harge distributions. These elements are usually 
alled ex
hange elements, due to theirquantum nature. The fourth 
lass 
omprises elements giving rise to ex
itoni
 e�e
ts, as these des
ribethe repulsion of ele
trons in the 
ondu
tion band with ele
trons in the valen
e band. For the �rst three
lasses we only 
onsider pro
esses in the 
ondu
tion band, as those for the valen
e band are very similarin magnitude, due to our 
hoi
e of band parameters, whi
h provide very similar wavefun
tions for the twobands, see appendix A.8. For ea
h set of elements we have 
al
ulated the absolute and relative error ofthe e�e
tive des
ription, de�ned in the following way
absolute error = |Vexact − Veff |, relative error =

|Vexact − Veff |
|Vexact|

.In general we observe values ranging from 1 to 14 meV, with the dire
t elements being 
learly largerthan the ex
hange elements. This is an e�e
t easily understood mathemati
ally in terms of the overlapintegrals, but it also makes sense physi
ally sin
e ele
trons that are 
loser spatially intera
t more strongly.For almost all the elements 
onsidered here the relative error is below one per
ent, whi
h is perhaps abit surprising 
onsidering the rather simple de�nition of the e�e
tive wavefun
tions we have employed. Itshould be noted that none of the elements in 
lasses one, two, and four su�er from the non-orthogonalityissues des
ribed in the previous se
tion, as they are either dire
t elements or ex
hange elements arisingfrom s
attering between states of di�erent angular momentum (and thus orthogonality is ensured). Theex
hange element in the third 
lass does, however, des
ribe a s
attering event between states of equalangular momentum and here the non-orthogonality is expe
ted to play a role. This element also has asigni�
antly higher relative error than any of the other 
onsidered elements, whi
h is in part expe
tedto originate from the non-orthogonality. To test this presumption a Gram-S
hmidt orthogonalizationalgorithm was applied to the m = 0 subspa
e whi
h states (
,1) and (
,5) belong to, to make sure that thestates where orthogonal. This lowered the relative error on V cccc
5313 to around 6 % from 8.3 % indi
ating thatnon-orthogonality does indeed have an e�e
t. A fundamental problem does, however, arise when applyingvarious orthogonalization pro
edures to non-orthogonal quantum states. The issue is that the pro
edureis un
onstrained, in the sense that it has no 
onne
tion to the underlying physi
al equation and hen
e itis not ensured that the orthogonalized states 
ontinues to be eigenstates of the physi
al equation. Due tothis issue and the fa
t that only a small number of the ex
hange elements, whi
h typi
ally have a smallmagnitude 
ompared to other elements, are seriously a�e
ted by the non-orthogonality the states were leftnot orthogonalized.
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V b4b3b1b2

α4α3α1α2
Exa
t [meV℄ E�e
tive [meV℄ Absolute error [µeV℄ Relative error [%℄

V cccc
1111 13.6855 13.6621 23.4464 0.171
V cccc

5555 9.80818 9.63959 168.590 1.72
V cccc

3333 10.7314 10.6882 43.2419 0.403
V cccc

6666 9.33722 9.27056 66.6584 0.714
V cccc

1515 10.9611 10.8305 130.671 1.20
V cccc

1313 11.5185 11.4823 36.1249 0.314
V cccc

1616 9.94670 9.89138 55.3118 0.556
V cccc

5353 9.63071 9.53662 94.0926 0.977
V cccc

5656 8.89239 8.80978 82.6087 0.929
V cccc

3636 9.79372 9.73499 58.7227 0.600
V cccc

5313 1.13377 1.03971 94.0645 8.30
V cvcv

1331 3.15866 3.14862 10.0423 0.318
V cvcv

1111 13.6236 13.6005 23.1121 0.170
V cvcv

1515 10.8932 10.7954 97.8453 0.898Table 4.2.: Table for 
omparison of Coulomb matrix elements 
al
ulated using the exa
t expression given byeq. (4.36) and the e�e
tive expression given by eq. (4.39). For these 
al
ulations a ba
kground diele
tri
 
onstantof ε/ε0 = 13.6 was used.4.4. Opti
al dipole matrix elementsIn this se
tion we brie�y des
ribe the 
al
ulation of the matrix elements entering the quantum and 
lassi
allight-matter intera
tion Hamiltonians, eqs. (3.19) and (3.21) respe
tively. A

ording to eqs. (3.20) and(3.22) the matrix element is mainly determined by an apparently simple overlap integral over the positionoperator (proje
ted onto the ele
tri
 �eld dire
tion)
∫

dr[φb
α(r)]∗r · eEφα′(r).The integral 
an, however, not be 
al
ulated dire
tly due to the fa
t that we are working in the ef-fe
tive mass approximation, and therefore do not know the Blo
h part of the produ
t wavefun
tion,eq. (4.16),

φb
α(r) = F b

α(r)ub(r),expli
itly. To pro
eed we wish to take advantage of the di�erent length s
ales governing the Blo
h andenvelope parts, as done with the Coulomb matrix elements in se
tion 4.3.1, and separate the integral intoparts that 
an be handled. This separation is mu
h easier to perform in the A · p form of the ele
tron-photon intera
tion. Therefore we remind the reader of the relation between a dipole and momentummatrix elements, see eq. (A.13),
〈φb

α|D · eE |φb′

α′〉 = i
1

ωbb′
αα′

e

m
〈φb

α|p · e|φb′

α′〉 , (4.41)showing proportionality between the two quantities. Using the full produ
t form of the wavefun
tion amomentum matrix element may now be written as [53, p. 119℄
〈φb

α|p · eE|φb′

α′ 〉 =
∫

dr
[
F b

α(r)ub(r)
]∗

p · eEF
b′

α′ (r)ub′(r)

=

∫

dr
[
F b

α(r)ub(r)
]∗ {

F b′

α′ (r)[p · eEub′(r)] + ub′(r)[p · eEF
b′

α′(r)]
}

≈ 〈F b
α|F b′

α′〉 〈ub|p · eE |ub′〉+ 〈F b
α|p · eE|F b′

α′〉 〈ub|ub′〉 ,54



Single-Parti
le States and Matrix Elements Summarywhere on the se
ond line we used that p is a di�erential operator and therefore the 
hain rule must beapplied on produ
ts, and further on the last line we separated out the slowly-varying envelope part as ineq. (4.17). If we restri
t our attention to inter-band transitions, whi
h we will only 
onsider in this thesis,the se
ond term vanish due to the orthogonality of the Blo
h fun
tions, i.e. 〈uc|uv〉 = 0, and we are leftwith
〈φc

α|p · eE|φv
α′〉 = 〈F c

α|F v
α′ 〉 〈uc|p · eE |uv〉 . (4.42)The part involving the Blo
h fun
tion and momentum operator 
an be measured and is tabulated in theliterature, while the simple overlap integral between the envelopes 
an be 
al
ulated within our e�e
tivemass theory. Fixing the polarization to the y-dire
tion and using the formulaes of [53, appendix A 8.3℄one 
an obtain the following expression for the momentum matrix element

〈uc|py|uv〉 = −i |M |√
2
, (4.43)whi
h holds for a typi
al III-V semi
ondu
tor with a single 
ondu
tion band and where the valen
e bandis taken to be the heavy hole band. For the material system we 
onsider,InxGax−1Asx , the parameter

|M | 
an be parameterized a

ording to the formulae [53, p. 121℄
|M | = m

2

√
28.8− 6.6x [eV

1
2 ],where x is the 
omposition fra
tion and the [eV 1

2

] means the unit eV
1
2 . Inserting now eqs. (4.41),(4.42), and (4.43) into the expressions for a matrix element of the intera
tion Hamiltonian as derived inappendix A.3, eqs. (A.14) and (A.15), we get

〈φc
α|Hi|φv

α′〉 = e|M |√
2mω

〈F c
α|F v

α′〉 E0,y

2
.We note that the only quantity left that depend on the ele
troni
 states, is the pure overlap between theinvolved states, the ele
troni
 transition frequen
y that entered eq. (4.41) has 
an
eled. As mentionedin se
tion 4.2.3 the ele
troni
 envelopes for 
ondu
tion and valen
e band states are often very similar innature, meaning that we to a good approximation 
an assume the following

〈F c
α|F v

α′〉 = δα,α′ . (4.44)This has the 
onsequen
e that we only 
onsider "dire
t" or "verti
al" opti
al transitions. This yields verysigni�
ant simpli�
ations in the numeri
al solution of the equations of motion for the ele
troni
 densitymatrix, as one 
an negle
t "indire
t" opti
al o�-diagonal elements of the density matrix as dis
ussed inse
tion 5.4.1.The 
on
lusion that 
an be drawn after this long series of approximations, is that all non-zero dipolematrix elements has the same value independent of whi
h transition they refer to. For the quantized �eldsthe dipole matrix element has to be multiplied with a few other 
onstants that are not 
al
ulated expli
itly,see eq. (3.20), and hen
e we might as well treat the entire 
oupling 
onstant as a parameter. This will notover parameterize the equations, as often we only 
onsider a single quantized mode. For the semi-
lassi
alintera
tion, eq. (3.21), the dipole matrix element is multiplied by the externally applied �eld and it willtherefore only be this e�e
tive produ
t, often denoted the Rabi energy, that enters the equations. Forthese reasons we will not expli
itly evaluate the values of the dipole matrix elements, but simply refer tothe e�e
tive numbers that enter the Hamiltonian.4.5. SummaryIn this 
hapter we 
onsidered the ele
troni
 single-parti
le states and the subsequent 
al
ulation of variousmatrix elements using these states. In the �rst se
tion we setup a simpli�ed model for des
ribing the55



Summary Single-Parti
le States and Matrix Elementssingle-parti
le ele
troni
 states bound in the QD and WL. We employed a simple e�e
tive mass model, thattreats the bound and unbound states on the same footing, and solved this model for a realisti
 geometryusing the 
ommer
ial �nite element pa
kage COMSOL. To illustrate the model we presented solutionsfor a spe
i�
 geometry and dis
uss the nature of the di�erent states obtained. In the se
ond part of the
hapter we dis
ussed how to 
al
ulate the 
omputationally demanding Coulomb matrix elements, using thenumeri
ally obtained single-parti
le states. We presented two ways of performing this 
al
ulation, an exa
tbut slow formulation and an approximative but mu
h faster method. The two approa
hes were 
omparedfor a spe
i�
 geometry, and for most elements the fast methods yielded relative errors below 1%. In thelast se
tion 
al
ulation of matrix elements of the dipole intera
tion were dis
ussed. We argued why it to agood approximation was not ne
essary to perform any a
tual numeri
al 
al
ulations of the elements, butrather obtain the numbers needed only using known and tabulated parameters.
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5. Equations of Motion5.1. Introdu
tionIn this 
hapter we present approximate forms of the general theory derived in the two �rst 
hapters anddevelop the �nal equations of motion des
ribing our 
QED system. Sele
ting the appropriate approximativeforms of the Hamiltonians, and subsequently the trun
ation of the self-energies, is really the essential partof doing theoreti
al many-body physi
s, as in general there is no 
han
e of in
luding all physi
al e�e
ts.Our 
hoi
es in this pro
ess will all be guided by previous studies in the literature, with the ex
eption ofthe ele
tron-photon intera
tion whi
h is not often treated in the literature. The end goal of this 
hapteris to formulate a set of equations des
ribing the time evolution of our non-equilibrium system. Thiswill be done in two steps: First we 
onsider the equations governing the 
QED system in equilibrium,as these provide the initial 
onditions for the general non-equilibrium system and are important inputparameters in the GKBA. Se
ondly the a
tual non-equilibrium equations are developed. We treat two
ases of these, namely one where the GKBA is applied to both the ele
troni
 and photoni
 Green's fun
tionsand one where the full two-time Green's fun
tion for the photon is treated. To our knowledge it is the�rst time that the two-time photon Green's fun
tion is being treated within a many-body semi
ondu
torformalism.5.2. ApproximationsIn this se
tion we will dis
uss various approximations to the general semi
ondu
tor Hamiltonian presentedin se
tion 3.2.3, so that it in a feasible way des
ribes the 
QED system we wish to examine, see 
hapter 1.The system 
ontains three kinds of parti
les, ele
trons, phonons, and photons, that intera
t. Below, wedes
ribe �rst the free systems, the quadrati
 parts of the Hamiltonian, and se
ond the intera
tion partsof the Hamiltonian. In the last part we 
onsider the trun
ation of the self-energies, where the a
tualderivation of these is performed in appendix A.5.5.2.1. HamiltoniansNon-intera
ting HamiltoniansThe ele
trons 
onstitute a very important part of the system and hen
e a good des
ription is neededfor the single-parti
le states and energies. The basi
 QD-WL system of the ele
trons has already beendes
ribed in se
tion 4.2 and the band parameters in appendix A.8, hen
e te
hni
al details will be omittedhere. To sum up the most important fa
ts, we operate within a de
oupled two-band model, with a
ondu
tion and a valen
e band. The lo
alized QD states and the delo
alized WL states are found fromthe same e�e
tive mass S
hrödinger equation and hen
e treated on equal footing. This automati
allyensures that orthogonality between the states ful�lled and that the energies are 
orre
tly des
ribed. Thefree Hamiltonian for the ele
trons is still as in eq. (3.9)
H0,e =

∑

ν

~ωνc
†
νcν , 57



Approximations Equations of Motionbut now we 
an elaborate on the general quantum number ν. It 
an be written as ν = (b, α, σ), where
b is the band index that 
an be either 
ondu
tion (
) or valen
e (v), α 
ontains other spatial quantumnumbers within ea
h band, and �nally the spin is denoted by σ.

Figure 5.1.: Model 
al
ulation of the dispersion of the various phonon bran
hes in bulk GaAs. Taken from [59℄.Next we will dis
uss the free phonon Hamiltonian. In a III-V semi
ondu
tor like GaAs there exist severaldi�erent kinds of latti
e vibrations whi
h eigenmodes are 
alled phonons. These are divided into transverseand longitudinal polarizations, usually 
alled bran
hes with referen
e to their band stru
ture diagram.Furthermore we divide them into so-
alled a
ousti
al and opti
al phonons, where a
ousti
al phonons ingeneral have a linear dispersion for long wavelengths, while the opti
al ones have a �nite energy forlong wavelengths, often with very weak dispersion. To illustrate these fa
ts regarding the dispersionof the di�erent phonon bran
hes, we show in �gure 5.1 a model 
al
ulation for bulk GaAs. It is atextbook fa
t, e.g. [31, p. 325℄, that only longitudinal phonons set up strong polarization �elds inside a
rystal on whi
h ele
trons 
an s
atter e�
iently, therefore only longitudinal phonons will be 
onsidered.Furthermore for s
attering between dis
rete states in QDs, whi
h is of the primary 
on
ern in this thesis,only longitudinal opti
al (LO) phonons need be 
onsidered, as longitudinal a
ousti
al (LA) phonons donot have a large enough energy to provide e�
ient s
attering [60, 61℄. For larger waveve
tors where theLA-phonon energy be
omes 
omparable to the energy separation between the QD states (typi
ally 20-40meV), the s
attering amplitude for the transition goes to zero1 and therefore do not 
ontribute either.It has however been pointed out [62, 63℄ that in the low temperature regime, below 150 K, LA-phononsdominate the dephasing dynami
s in QD systems. Based on these arguments and fa
ts we will restri
tour attention to LO-phonons and only 
onsider temperatures above 150 K. The LO-phonons will furtherbe taken as dispersionless in their long wavelength limit, seen to be reasonable from �gure 5.1, whi
his a 
ommonly adopted approximation yielding huge 
omputational simpli�
ations. The free LO-phonon1This tenden
y 
an be seen in �gure 4.8, where the integral IJ is proportional to the amplitude for ele
tron-phonon s
atteringevent for both LO- and LA-phonons.58



Equations of Motion ApproximationsHamiltonian 
an then be written as
H0,LO =

∑

q

~ωLOb
†
qbq,where q is the phonon waveve
tor and the zero-point energy appearing in the general form eq. (3.14) hasbeen dropped as it is without importan
e in the 
al
ulations. The value of ~ωLO for GaAs is approximately37 meV. In pra
ti
e ωLO is often repla
ed by ωLO− iτ−1

LO, where τLO is a phenomenologi
al lifetime for theLO-phonons, that arise due to anharmoni
 pro
esses going beyond linear spring model that is normallyassumed [64℄. Formally one should not simply insert a 
omplex energy into the Hamiltonian as suggestedabove. This makes the Hamiltonian non-Hermitian and does not in general result in the 
orre
t dynami
s,one should rather 
onsider a dressed LO-phonon Green's fun
tion that de
ay with the introdu
ed lifetime.Values of τLO found in the literature are typi
ally in the range 1-5 ps [41, 65℄. We will not 
onsider anytemperature dependen
e of either ωLO or τLO.In the 
ase of the free photons we are interested in modeling a 
avity with a �nite lifetime. The densityof states for su
h a 
avity is 
hara
terized by having a 
ertain width 
entered around the main 
avityenergy. The 
avity peak is made up by summing over many modes supported by the photoni
 stru
-ture and therefore many equations would be generated to treat the photons 
orre
tly. However, as ourmain fo
us is not to provide a highly a

urate des
ription of the photoni
 modes and energies, we willadopt another approa
h that enables us to 
onsider only a single quasi-mode of the 
avity with a �nitelifetime. To motivate this formally we repla
e the Hamiltonian eq. (3.12) for the free photons by thefollowing
H0,rad = ~ωcava

†
cac +

∑

l

~ωla
†
lal +

∑

l

(

Tla
†
cal + T ∗l a

†
lac

)

,whi
h is inspired by the tight-binding model used for ele
trons. This Hamiltonian des
ribes a system of alo
alized mode, denoted 
, and a 
ontinuum of delo
alized leaky modes, denoted by l, where an amplitudeexists, T ∗l , for the pro
ess where a photon 
an "tunnel" from the lo
alized mode and into the 
ontinuumand of 
ourse also the reverse pro
ess. We are interested in the e�e
t the leaky modes have on the lifetimeof an ex
itation in the lo
alized 
avity mode. To this end one should look for the spe
tral Green's fun
tionsof the system, e.g. the retarded Green's fun
tion de�ned by
Ar

cc(τ) = −i~−1θ(τ) 〈[ac(τ), a
†
c]〉 ,where we have used that the system is assumed to be in equilibrium and hen
e the Green's fun
tions onlydepend on a single time (a
tually the time di�eren
e τ = t− t′), see e.g. [28, p. 89℄. As the Hamiltonianonly 
ontains quadrati
 terms, and thus does not generate the in�nite hierar
hy of 
oupled equations,

Ar
cc(τ) 
an be determined exa
tly using the Heisenberg equation of motion. This is a textbook exer
ise(see e.g. [28, p. 143℄ for the same model for ele
trons) and will therefore not be repeated. For one-timefun
tions, as Ar

cc(τ), it is often advantageous to go into the frequen
y domain and we employ the followingtime Fourier transform de�nition
f(ω) =

∫ ∞

−∞
dtei(ω+iη)tf(t), f(t) =

∫ ∞

−∞

dω

2π
e−iωtf(ω), (5.1)where η = 0+ is a positive in�nitesimal that ensures the existen
e of the Fourier transform. Physi
ally it
an be seen as adding arti�
ial damping to the system motivated by the fa
t that in real physi
al systemsno 
orrelations lasts forever. It will however be repla
ed by a damping me
hanisms in the physi
al model.The retarded Green's fun
tion for the 
avity mode is given by

Ar
cc(ω) =

1

~ω − ~ωcav − Σr
cc(ω)

, Σr
cc(ω) =

∑

l

|Tl|2
~(ω − ωl + iη)

,where Σr
cc(ω) is the retarded self-energy. The self-energy 
an be written in terms of its real and imaginaryparts Σr

cc(ω) = ~Λr
cc(ω)− i~Γr

cc(ω), where ~Λr
cc(ω) 
orresponds to an energy shift and Γr

cc(ω) to an inverse59



Approximations Equations of Motionlifetime. If we assume the self-energy to be frequen
y independent a Fourier transform ba
k to the timedomain yields
Ar

cc(τ) = −i~−1θ(τ)e−i(ωcav+Λr
cc)τe−Γr

ccτ ,
learly showing a renormalization of the energy and the a
quisition of a �nite lifetime when 
omparingto its free 
ounterpart given by A0,r
cc (τ) = −i~−1θ(τ) exp(−iωcavτ). If we further assume that only thenew quasi-
avity mode is spatially resonant with the ele
troni
 transitions in the QD, we 
an negle
t theleaky modes and only treat them impli
itly as a reservoir for the quasi-
avity mode and simply use thequasi-
avity mode with a �nite lifetime (negle
ting the unimportant energy shift). The free Hamiltonianfor the 
avity photons thus redu
es to

H0,rad = ~ωcava
†a, (5.2)where the subs
ript 
 has been dropped on the operators. To take into a

ount the �nite lifetime of thephotons in the 
avity, all 
avity photon Green's fun
tions should be dressed with the de
ay rate given by

ωcav/Q, with Q = ωcav/Γ
r
cc being the usual Q-fa
tor of the 
avity. In the density of states pi
ture thisseries of approximations yields a Lorentzian shaped 
avity with a width proportional to ~ωcav/Q in energyunits. This approa
h is 
ommonly used in the literature, see e.g. [66℄.Intera
ting HamiltoniansNow we move on to dis
uss the many-body intera
tion Hamiltonians of the system. We start with ele
tron-ele
tron Coulomb intera
tion given in general by eq. (3.16). The only limitation we will put on thisHamiltonian is the inability to s
atter parti
les a
ross the band gap, whi
h has already been dis
ussed inse
tion 4.3.1. We negle
t these pro
esses due to their very non-resonant nature and hen
e the Coulombmatrix element a
quire two delta fun
tions in the band indexes

Vν4ν3,ν1ν2 = V b4b3,b1b2
α4α3,α1α2

× δb4,b1δb3,b2 , (5.3)where the spin index, σ, has been absorbed into the spatial index, α. It is illustrative to write out thesums over the band indexes in the expression for He−e expli
itly
He−e =

1

2

∑

α1α2
α3α4

{
V cc,cc

α4α3,α1α2
c†c,α4

c†c,α3
cc,α2cc,α1 + V vv,vv

α4α3,α1α2
c†v,α4

c†v,α3
cv,α2cv,α1

+V cv,cv
α4α3,α1α2

c†c,α4
c†v,α3

cv,α2cc,α1 + V vc,vc
α4α3,α1α2

c†v,α4
c†c,α3

cc,α2cv,α1

}
.The two �rst terms des
ribe intra-band pro
esses o

urring in the 
ondu
tion and valen
e bands respe
-tively. The two last terms des
ribe inter-band pro
esses where parti
les in ea
h band s
atter on ea
h other,but remains in their respe
tive bands. The inter-band pro
esses give rise to ex
itoni
 e�e
ts well knownfor their importan
e in semi
ondu
tor opti
s. It should also be noted that this form of the Coulomb inter-a
tion 
onserves the number of parti
les in ea
h band, hen
e it does not 
ause re
ombination of ele
tronsand holes.As argued in the previous se
tion, we need only 
onsider LO phonons in the intera
tion between ele
tronsand phonons. The intera
tion Hamiltonian between ele
trons and dispersionless long-wavelength LOphonons is often des
ribed by the so-
alled Fröli
h Hamiltonian [24, p. 44℄

He−LO =
∑

q

M

qV
1
2

ρ(q)(b†−q + bq), (5.4)where q is the phonon waveve
tor, ρ(q) is the Fourier transformed of the ele
tron density operator, and Vis the quantization volume. The square of the 
oupling 
onstant M is given by
M2 =

e2~ωLO

2

(
1

ε∞
− 1

ε

)

=
e2~ωLO

2

1

ε∗
,60



Equations of Motion Approximationswhere ~ωLO is the LO phonon energy and ε (ε∞) is the low frequen
y/ba
kground (high frequen
y)diele
tri
 
onstant. This intera
tion Hamiltonian 
an be derived from the fundamental form, eq. (3.23),but this will not be done here, interested readers 
an 
onsult refs. [24, 31℄. The Fourier transformed of theele
tron density operator is obtained from its de�nition ρ(r) = ψ†(r)ψ(r) and using the spatial Fouriertransform in eq. (4.12), giving
ρ(q) =

∫

dre−iq·rρ(r) =
∑

νν′

〈ν|e−iq·r|ν′〉 c†νcν′ .Inserting this into eq. (5.4) yields
He−LO =

∑

νν′q

Mq
νν′c

†
νcν′(b†−q + bq), Mq

νν′ =
M

qV
1
2

〈ν|e−iq·r|ν′〉 ,whi
h is the desired form of the intera
tion. As with the Coulomb intera
tion between ele
trons we limitthe LO phonons to only 
ause intra-band transitions, whi
h is justi�ed due to the non-resonant natureof an inter-band transition 
aused by a LO phonon. This does however not mean that the LO phonons
annot a�e
t ele
troni
 inter-band quantities, su
h as the opti
al polarization.The intera
tion between the ele
trons and 
avity photons is given by eq. (3.19), whi
h for the quasi-
avitymode introdu
ed in eq. (5.2) redu
es to
He−rad =

∑

νν′

~gνν′c†νcν′(a† + a). (5.5)We 
an simplify this intera
tion further by applying the rotating wave approximation (RWA), in whi
hterms des
ribing very non-resonant pro
esses where an ele
tron is ex
ited a
ross the bandgap and a pho-ton is emitted (and the opposite) are negle
ted. This approximation is well justi�ed when the 
oupling
onstants ~gνν′ are small 
ompared to the 
avity energy ~ωcav. In the RWA we get the following Hamil-tonian
He−rad =

∑

αα′

~gαα′(c†c,αcv,α′a+ a†c†v,αcc,α′), (5.6)where we have assumed that gcv
αα′ = gvc

αα′ = gαα′ and again the spin index has been absorbed into thespatial index. The RWA is investigated further in appendix A.2.The intera
tion Hamiltonian for the 
lassi
al ex
itation pulse is given by eq. (3.21) whi
h 
an be used inthis general form. The RWA 
an however also be applied to this intera
tion, to whi
h end we write the
lassi
al �eld as
Ecl(t) =

1

2
E0(t)(e

iω0t + e−iω0t),where E0(t) is an envelope fun
tion and the exponentials set the 
arrier frequen
y of the pulse. Unlessotherwise stated the pulse envelope will be a Gaussian of the form E0(t) = E0 exp(−((t− t0)/∆t)2), with
∆t being the temporal width and t0 the peak position. The positive and negative exponentials in Ecl(t) ba-si
ally 
orrespond to the photon operators dis
ussed above, i.e. emission and absorption of photons, hen
ethe same arguments apply and we 
an immediately write down U(t) in the RWA

U(t) =
∑

αα′

dαα′

E0(t)

2
(e−iω0tc†c,αcv,α′ + eiω0tc†v,αcc,α′), (5.7)where again we assume that dcv

αα′ = dvc
αα′ = dαα′ and absorb the spin index into the spatial.The reason for applying the RWA to the Hamiltonians involving the various opti
al �elds is purely pra
ti
al.If the RWA was not applied, there would appear terms in the equations of motion os
illating on times
aleson the order of two times the inverse opti
al frequen
ies, whi
h in our 
ase are tuned to the band gap ofaround 1 eV. These times
ales are mu
h smaller than any other in the system and hen
e set the lower limitin the time dis
retization. Furthermore the e�e
t of in
luding these highly non-resonant 
ontributions isusually small. Thus it is of great pra
ti
al importan
e to apply the RWA and this will be done for most
al
ulations in this thesis. 61



Approximations Equations of Motion5.2.2. Trun
ation of self-energiesApproximations applied to the Hamiltonians are the most fundamental restri
tions one 
an impose on agiven model of a physi
al system, and these approximations will set the ultimate limit for the validityof our physi
al model. Unfortunately, we are not done with applying approximations. Any many-bodyintera
tion Hamiltonian will generate in�nitely many terms in its 
orresponding self-energy, a situationthat 
annot be handled in pra
ti
e and hen
e a trun
ation of the self-energy is needed. The trun
ationof the self-energy de
reases the a

ura
y of the quantities 
al
ulated using the Green's fun
tions, asoppose to the exa
t quantities obtained through exa
t diagonalization of the Hamiltonian. The 
hallengeis then to sele
t the appropriate self-energy, so that ones results has the desired a

ura
y needed in agiven appli
ation. The sele
tion pro
ess is often guided by physi
al intuition, experien
e, and 
ertainfundamental 
onservation laws. However it is not always obvious whi
h self-energy diagrams should beused.Notation is a rather important aspe
t of performing many-body 
al
ulations due to the many di�erentquantities one has to keep tra
k of. We will therefore at this point �x the symbols used for the variousself-energies in a hopefully meaningful fashion. The ele
trons intera
t with every other 
onstituent of thesystem, in
luding themselves, and therefore we need a total of four self-energies whi
h we will denote bythe following symbols
ΣLO,x

νν′ (t, t′), Σrad,x
νν′ (t, t′), Σee,x

νν′ (t, t′), Uνν′(t).The supers
ripts LO, rad, and ee refer to intera
tions with phonons, photons, and other ele
trons (Coulomb)respe
tively and Uνν′(t) is the singular self-energy due to the 
lassi
al ex
itation pulse. The self-energiesare presented in their real-time form and x refers to one of the four 
omponents greater, lesser, re-tarded or advan
ed. The photons in the 
avity only intera
t with ele
trons, and as we only 
onsider asingle quasi-
avity mode, only a single symbol is needed for this self-energy and we will use the follow-ing
σx(t, t′).The phonons will be assumed to be in thermal equilibrium at all times and therefore a self-energy is notneeded.Below, we expli
itly go through all the self-energies mentioned above, but �rst we make a 
omment on somegeneral features of the self-energies. All the 
onsidered self-energies are of lowest order in their respe
tive
oupling strengths, however they are all made self-
onsistent as di
tated by the 
onservation laws2 ofparti
le number, momentum, and energy [30℄. The pro
edure of making a self-energy self-
onsistent
onsists of repla
ing free Green's fun
tions by the 
orresponding full one, as illustrated diagrammati
allyin appendix A.5. A justi�
ation for 
onsidering only lowest order 
ontributions will be given for ea
hself-energy below.The lowest order 
ontribution to the self-energy from the ele
troni
 Coulomb intera
tion is given byeq. (A.21) and is a singular 
ontribution, in the sense that it does not depend on two times, but rather asingle time see eq. (2.42). This has the e�e
t, that it a
ts as an e�e
tive one-body intera
tion and not atrue many-body intera
tion. As su
h it gives rise to instantaneous renormalizations in the single-parti
leenergies and external �elds, but does not 
ause broadening of spe
tral features. In its self-
onsistent formit is equal to the well-known mean-�eld Hartree-Fo
k (HF) approximation, whi
h is exa
tly the form wewill use
Σee,HF

νν′ (t) = i~
∑

ν1ν2

(Vνν2,ν1ν′ − Vνν2,ν′ν1) [G<
ν1ν2

(t, t)− i~−1δb1,vδb2,vδν1,ν2 ]. (5.8)Noti
e that the 
ontribution from the full valen
e band has been subtra
ted from this self-energy, forwhi
h reason only diagonal Green's fun
tions should be subtra
ted ensured by δν1,ν2 [26, p. 260℄. This2Of 
ourse a quantity is only 
onserved if the 
orresponding symmetry is present in the system. In general in a non-relativisti
non-equilibrium system parti
le number is the only 
onserved quantity.62



Equations of Motion Approximationsis done as it is in
luded in the band stru
ture of the single-parti
le energies we are using, basi
ally it is
ontained in the experimentally measured parameters dis
ussed in appendix A.8. This subtra
tion hasthe 
onsequen
e that in equilibrium (the unex
ited semi
ondu
tor) the ele
troni
 Coulomb intera
tionwill not 
ontribute, it will only give 
ontributions for non-equilibrium situations. The regime of validityfor the HF self-energy is that of low ex
itation, where only a small number of ele
trons are opti
allyex
ited. Beyond the low-ex
itation regime one has to in
lude higher order 
ontributions to the self-energy to a

ount for 
ompli
ated e�e
ts like s
reening and true Coulomb s
attering. It should also benoted that the HF mean-�eld theory does not a

ount for two-pair or higher order 
orrelations as e.g.biex
itons, see [27, p. 451℄. For 
ompleteness we mention that the HF self-energy satisfy the followingsymmetry
[Σee,HF

νν′ (t)]∗ = Σee,HF
ν′ν (t), (5.9)whi
h be shown using the symmetry relations for the lesser Green's fun
tion eq. (2.32) and those of theCoulomb matrix element eq. (4.9). This symmetry 
an be useful for formal arguments as well as for saving
omputation time in the numeri
s.In the low ex
itation regime it is a well established fa
t [56, p. 222℄ that the dominant s
attering me
hanismis provided by phonons and therefore these are the main sour
es of intra-band relaxation and inter-band,as well as intra-band, dephasing. The two lowest order self-
onsistent 
ontributions to the self-energyare given by eqs. (A.30) and (A.29). However as dis
ussed in the previous subse
tion we 
an to a goodapproximation limit our attention to LO-phonons if we keep the temperature above 150 K [63℄, whi
hyields very signi�
ant simpli�
ations as will be dis
ussed next.We 
an make some simpli�
ations on the self-energy arising from the LO-phonon intera
tion, due to thesimple fa
t that we assume the LO-phonons to be dispersionless. Both 
ontributions to the self-energy,eqs. (A.30) and (A.29), 
ontain a sum over q and a produ
t of two Mq

νν′s multiplied by the free phononGreen's fun
tion. Due to the dispersionlessness of the LO-phonons, their 
orresponding free Green'sfun
tion will not depend on energy and therefore not on q either, meaning that it 
an be taken outsidethe q sum. The waveve
tor sum is therefore limited to run over the Mq
νν′s giving a quantity whi
h 
an be
onsidered an e�e
tive matrix element in four ele
tron indi
es. Inserting the de�nition of Mq

νν′ into thisquantity gives the following
∑

q

Mq

ν1ν′
1
M−q

ν2ν′
2

= M2 1

V

∑

q

1

q2
〈ν2|eiq·r|ν′2〉 〈ν1|e−iq·r|ν′1〉 ,by 
omparing this to the Coulomb matrix element in the form of eq. (4.14), we see that these quan-tities are equal3, apart from a few multipli
ative 
onstants4. We end up being able to write [32, p.72℄

∑

q

Mq

ν1ν′
1
M−q

ν2ν′
2

=
M2ε

e2
Vν2ν1,ν′

2ν′
1

=
~ωLO

2ε∗/ε
Vν2ν1,ν′

2ν′
1
. (5.10)This result saves a lot of 
omputation time in two aspe
ts. Firstly we only need to 
al
ulate the Coulombmatrix elements, and not the phonon matrix elements, whi
h is very fortunate as these two are themost time 
onsuming of all the input matrix elements. Se
ondly, and more importantly, the q sumdoes not have to be 
arried out expli
itly in the numeri
al solution of the equations of motion for theGreen's fun
tions, whi
h results in a very signi�
ant speed up. With this simpli�
ation we write the Fo
k3However, it should be noted that formally the waveve
tor sum for the phonons is restri
ted to the �rst Brillouin zone, butwe will assume the matrix elements Mq

νν′ de
ay su�
iently fast so that we may extend the sum to all waveve
tors.4In the a
tual simulations one should be mindful of the fa
t that the two diele
tri
 
onstants in eq. (5.10) are for the bulkmaterial in whi
h the LO-phonons live, whereas the ele
troni
s wavefun
tions are often 
al
ulated for another materialas usually we 
onsider heterostru
tures. This means that the pure Coulomb matrix elements are often 
al
ulated with adi�erent diele
tri
 
onstant and hen
e a simple res
aling is needed. 63
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ontribution using the 
ontour version eq. (A.30) and the appropriate Langreth rule from table 2.1 asfollows5
Σ

LO,F,≷
νν′ (t, t′) = i~

∑

ν1ν2

~ωLO

2ε∗/ε
Vν2ν,ν′ν1G

≷
ν1ν2

(t, t′)D0,≷
LO (t, t′), (5.11)where D0,≷

LO (t, t′) is free LO-phonon Green's fun
tion de�ned in eq. (A.35). This self-energy has thefollowing symmetry under 
omplex 
onjugation
[

Σ
LO,F,≷
νν′ (t, t′)

]∗
= −Σ

LO,F,≷
ν′ν (t′, t),shown using the same relations as eq. (5.9). This relation is useful for simplifying the s
attering termsarising from the ele
tron-LO-phonon intera
tion, as done in se
tion 5.4.1, or to relate values of the self-energy above and below the time diagonal, whi
h 
ould save some 
omputational e�ort. The se
ond �rstorder self-energy is the Hartree 
ontribution, whi
h from eq. (A.29) and using the Langreth rules, see table2.1, has the following real time expression

ΣLO,H
νν′ (t) = −i~

∫ t

−∞
dt′
∑

ν1ν2

~ωLO

2ε∗/ε
Vν2ν,ν1ν′

[
G<

ν1ν2
(t′, t′)− i~−1δb1,vδb2,vδν1,ν2

]
D0,r

LO(t, t′), (5.12)where D0,r
LO(t, t′) is the free retarded Green's fun
tion of the LO-phonons and where the 
ontribution fromthe full valen
e band has been subtra
ted for the same reasons as with eq. (5.8). As with the singularself-energy for the ele
tron-ele
tron intera
tion this singular self-energy satisfy a symmetry relation similarto eq. (5.9), namely that under under 
omplex 
onjugation we get

[ΣLO,H
νν′ (t)]∗ = ΣLO,H

ν′ν (t),whi
h is useful in the numeri
s and for 
ertain formal arguments. The justi�
ation for negle
ting higherorder self-energies in the ele
tron-LO-phonon 
oupling, is that we restri
t ourselves to treating materialswith weak 
oupling 
onstants, su
h as GaAs [26, p. 262℄.We will now 
onsider the ele
troni
 self-energies arising from the ele
tron-photon intera
tion. Due to theformal equivalen
e of the ele
tron-photon and ele
tron-phonon intera
tion Hamiltonians, see se
tion 3.2.3,their 
orresponding self-energies will also be equal, with the appropriate repla
ement of symbols of 
ourse.We will therefore simply state these, as basi
ally all the 
omments made to the phonon 
ase applies to thephoton 
ase as well. From the Hamiltonian eq. (5.5) and eq. (A.23) we obtain the Fo
k 
ontribution forthe photons
Σ

rad,F,≷
νν′ (t, t′) = i~

∑

ν1ν2

~gνν1~gν2ν′G≷
ν1ν2

(t, t′)A≷(t, t′), (5.13)whi
h as for the phonons has the following symmetry
[

Σ
rad,F,≷
νν′ (t, t′)

]∗
= −Σ

rad,F,≷
ν′ν (t′, t). (5.14)The Hartree 
ontribution from the photons is obtained from eq. (A.22)

Σrad,H
νν′ (t) = −i~

∫ t

−∞
dt′
∑

ν1ν2

~gνν′~gν2ν1

[
G<

ν1ν2
(t′, t′)− i~−1δb1,vδb2,vδν1,ν2

]
A

r(t, t′), (5.15)with the symmetry relation
[Σrad,H

νν′ (t)]∗ = Σrad,H
ν′ν (t).5In this se
tion we only present the greater and lesser real time 
omponents of the self-energies, as it is these that are usedin the non-equilibrium simulations whi
h are the main fo
us. If other real 
omponents are needed, as in equilibrium, theywill be presented in their respe
tive se
tions.64



Equations of Motion EquilibriumRestri
ting ourselves to the lowest order self-energies for the ele
tron-photon intera
tion we limit thevalidity of our theory to relatively weak ele
tron-photon 
oupling 
onstants.Now we turn to the photoni
 self-energy arising from the intera
tion with the ele
trons. To stay 
onsistentwith the ele
troni
 self-energies des
ribed above, we keep only the lowest order self-energy diagram in theexpansion of the photoni
 Dyson equation. This is 
alled the pair-bubble diagram due to its diagrammati
appearan
e, see �gure A.8. The 
ontour version is given by eq. (A.27) and with the use of the Langrethrules we get the real time 
omponents
σ≷(t, t′) = −i~

∑

ν1ν′
1

ν2ν′
2

~gν1ν′
1
~gν2ν′

2
G

≷
ν′
2ν1

(t, t′)G≶
ν′
1ν2

(t′, t), (5.16)whi
h satisfy a symmetry relation similar to that of the ele
troni
 self-energies
[

σ≷(t, t′)
]∗

= −σ≷(t′, t). (5.17)5.3. EquilibriumIn this se
tion we deal with the Green's fun
tion theory des
ribing the equilibrium properties of oursystem. It is important to know these for two reasons. The �rst and most relevant for the present thesis isthe need to supply the GKBA, se
tion 2.5, with suitable retarded and advan
ed Green's fun
tions. Eventhough one may employ free Green's fun
tions in the GKBA, the result is often very poor and indeed forour system it resulted in unphysi
al populations for all 
onsidered situations. Fortunately it turns out[37, 38, 41℄ that the equilibrium Green's fun
tions provide ex
ellent approximations for the retarded andadvan
ed Green's fun
tions entering the GKBA. More generally the solution of the equilibrium system isneeded in order to provide any set of non-equilibrium equations with the 
orre
t initial 
onditions, whi
h isthe se
ond reason for 
onsidering the equilibrium Green's fun
tions. The 
orre
t set of initial 
onditions isneeded in order for the initial/equilibrium 
orrelations to enter in the non-equilibrium time development,as otherwise these will be missing for the rest of the time evolution [26℄.5.3.1. Equilibrium spe
tral Green's fun
tionsA general 
onsequen
e of a system being in thermal equilibrium is that its Green's fun
tions be
omefun
tions of a single e�e
tive time (the time di�eren
e), rather than the two-time dependen
e in non-equilibrium. This is indeed expe
ted on an intuitive level, as a system in thermal equilibrium 
an-not depend more on one time than the other, and hen
e the only "real" time 
oordinate must be thetime di�eren
e. This is easily shown formally, as for a time-independent Hamiltonian the Heisenbergtime-dependen
e is given expli
itly by O(t) = eiHt/~Oe−iHt/~. For a greater-like quantity we maywrite
〈Oα(t)O†β(t′)〉 = 1

Tr[e−βH ]
Tr
[

e−βHeiHt/~Oαe
−iHt/~eiHt′/~O†βe

−iHt′/~

]

=
1

Tr[e−βH ]
Tr
[

e−βHeiH(t−t′)/~Oαe
−iH(t−t′)/~O†β

]

= 〈Oα(t− t′)O†β〉 , (5.18)where we used that the tra
e operation is invariant under 
y
li
 permutations, Tr[AB] = Tr[BA], andthat the thermal and time operators 
ommute, also the 
hemi
al potential is assumed to be zero. Thesame 
an be shown for a lesser-like quantity and hen
e all the various Green's fun
tions 
an be written asfun
tions of the di�eren
e time, G(t, t′) = G(t− t′) = G(τ). 65



Equilibrium Equations of MotionIn the following we will fo
us on the retarded Green's fun
tion as this obje
t is dire
tly related to thespe
tral properties of an equilibrium system, further it is known from the equilibrium Green's fun
tionformalism that only a single Green's fun
tion is needed6 and this is often 
hosen to be the retarded one. Wewill therefore aim for a formulation in terms of the retarded Green's fun
tion within the non-equilibriumformalism. A natural starting point is the di�eren
e (equilibrium) time limit of the equation of motionfor the retarded Green's fun
tion, eq. (2.51),
i~∂τG

r
νν′(τ) = δ(τ)δνν′ + ~ων′Gr

νν′(τ) +

∫ t

t−τ

dt1
∑

ν1

Gr
νν1

(t− t1)Σr
ν1ν′(τ − [t− t1]). (5.19)In the equation of motion above the step fun
tion from the de�nition of the retarded quantities has beenused to limit the memory integral. In this version we do not 
onsider any 
ontributions from the singularself-energy. This is 
orre
t for the external potential as this is not present in equilibrium. Furthermore,the instantaneous self-energy from the Coulomb intera
tion is by 
onstru
tion zero in equilibrium7, seeeq. (5.8) and so are the singular 
ontributions arising from the Hartree self-energies from the LO-phononsand 
avity photons, eqs. (5.12) and (5.15) respe
tively. We 
an simplify a bit further by introdu
ing thefollowing transformation of the memory time t1

τ1 = t− t1 ⇒ dτ1 = −dt1,
∫ t1=t

t1=t−τ

dt1 = −
∫ τ1=0

τ1=τ

dτ1 =

∫ τ

0

dτ1,through whi
h we may write the above equation as
i~∂τG

r
νν′(τ) = δ(τ)δνν′ + ~ων′Gr

νν′(τ) +

∫ τ

0

dτ1
∑

ν1

Gr
νν1

(τ1)Σ
r
ν1ν′(τ − τ1). (5.20)This equation will form the starting point for all spe
tral fun
tions 
onsidered in the rest of the re-port.5.3.2. The polaronIn this se
tion we will formulate the theory for the situation where the self-energy in eq. (5.20) des
ribesthe intera
tion between ele
trons and dispersionless LO-phonons. The quasi-parti
le that forms from thisintera
tion is usually 
alled a polaron [24, p. 497℄.LO-phonons 
ause only intra-band transitions and as no inter-band polarizations are indu
ed otherwise,all Green's fun
tions must be diagonal in the band index. It has further been found [41, 61℄ to be a goodapproximation to only in
lude Green's fun
tions fully diagonal in both band and all other indi
es. This isa huge simpli�
ation 
omputationally and further we 
an simplify the notation for all quantities to only
ontain a single index (two in pra
tise as we write the band expli
itly), hen
e we 
an perform the followingrepla
ement everywhere

Gbb′,x
αα′ (τ) = Gb,x

α (τ)δbb′δαα′ , Σbb′,r
αα′ (τ) = Σb,r

α (τ)δbb′δαα′ , (5.21)where b is the band index and α 
ontains all other quantum numbers. The fa
t that the self-energy alsobe
omes diagonal in its outer indi
es is a 
onsequen
e of the matrix stru
ture of the Dyson equationeq. (5.20).We 
onsider only the Fo
k 
ontribution to the lowest order self-energy, as the Hartree term is zero asmentioned in the dis
ussion below eq. (5.19). From eq. (A.30) and the appropriate Langreth rule from6The fa
t that only a single Green's fun
tion is needed in equilibrium 
an be realized using the �u
tuation-dissipationtheorem that links the di�erent Green's fun
tions together [26, p. 45℄.7The equal-time lesser Green's fun
tion that appears in eq. (5.8) be
omes proportional to the mean thermal o

upation inequilibrium, whi
h is zero for the 
ondu
tion band and unity for the valen
e band so that 〈c†b,αcb,α〉 − δb,v = 0.66



Equations of Motion Equilibriumtable 2.1 we get
Σb,LO,F,r

α (t, t′) = i~
∑

α1

~ωLO

2ε∗/ε
V bbbb

α1ααα1

×
{

Gb,<
α1

(t, t′)D0,r
LO(t, t′) +Gb,r

α1
(t, t′)D0,r

LO(t, t′) +Gb,r
α1

(t, t′)D0,<
LO (t, t′)

}

,where we have used eq. (5.21) and eq. (5.3) to remove most of the sums. To pro
eed further we will makethe assumption that no ele
trons are thermally ex
ited a
ross the bandgap, hen
e we 
onsider what is some-times referred to as an ele
tron-hole va
uum. This assumption is well satis�ed for the 
lass of III-V semi
on-du
tors we are 
onsidering all having band gaps well above thermal energies typi
ally used in experiments(26 meV for room temperature). This allows us to assume that [26, p. 296℄
Gc,<

α (t, t′) = 0, (5.22)as Gc,<
α (t, t′) is related to the probability of dete
ting an ele
tron in the same state at time t and t′,and in an empty band this probability is zero. More formally this 
an be realized by 
onsidering thede�nition of the above Green's fun
tion whi
h is Gc,<

α (t, t′) = i~−1 〈c†c,α(t′)cc,α(t)〉, this Green's fun
tionis proportional to the probability of removing an ele
tron in state α in the 
ondu
tion band at time t andputting it ba
k at time t′, where t′ < t might be the 
ase. By assumption the bra
kets des
ribe a systemwhere no ele
trons are present in the 
ondu
tion band, hen
e the annihilation operator at time t will seea va
uum and the probability for this pro
ess will be zero. For the ele
trons in the valen
e band it mustsimilarly hold that
Gv,>

α (t, t′) = 0,as the Gv,>
α (t, t′) is related to the probability of dete
ting a hole at times t and t′ whi
h is zero in a fullband. As above a more reason 
an be seen by 
onsidering the de�nition of the greater Green's fun
tion

Gv,>
α (t, t′) = −i~−1 〈cv,α(t)c†v,α(t′)〉, where an ele
tron is 
reated in the valen
e band at time t′ and removedat time t. By assumption the probability for this pro
ess is zero in our full valen
e band due to the Pauliprin
iple. From this 
on
lusion and from the de�nition of the retarded Green's fun
tion, eq. (2.24
), weget

Gv,<
α (t, t′) = −Gv,r

α (t, t′). (5.23)Considering now the retarded self-energy for the 
ondu
tion band: The �rst term is zero through eq. (5.22),for the se
ond term we use the relation8 Dr = D>−D< for the LO phonon Green's fun
tions, whi
h aftera 
an
elation yields
Σc,LO,F,r

α (t, t′) =
∑

α1

Gc,r
α1

(t, t′)Dcc,>
αα1

(t, t′).For the valen
e band simply use eq. (5.23) in the �rst term after whi
h this and the se
ond one 
an
elsgiving
Σv,LO,F,r

α (t, t′) =
∑

α1

Gv,r
α1

(t, t′)Dvv,<
αα1

(t, t′).In both of the above self-energies we have introdu
ed an e�e
tive LO-phonon Green's fun
tion givenby
Dbb′,≷

αα1
(t, t′) = i~

~ωLO

2ε∗/ε
V b′bb′b

α1ααα1
D

0,≷
LO (t, t′)

=
~ωLO

2ε∗/ε
V b′bb′b

α1ααα1

{

NLOe
±iωLO(t−t′) + (NLO + 1)e∓iωLO(t−t′)

}

, (5.24)8Even though the phonon Green's fun
tion is not de�ned in exa
tly the same way as the ele
troni
 Green's fun
tions, thisrelation still holds as it does for ele
trons in the retarded Green's fun
tion de�nition eq. (2.24
). See [24, p. 121℄. 67



Equilibrium Equations of MotionwhereD0,≷
LO (t, t′) is found from eq. (A.35), ~ωLO is the 
onstant LO phonon energy, andNLO = 1/(exp(~ωLO/kBT )− 1)is the thermal o

upation fa
tor of the LO-phonons. In the a
tual simulations this Green's fun
tion is mul-tiplied with a de
aying exponential exp(−τ−1

LO|t− t′|), to simulate the �nite lifetime of the LO-phonons, seese
tion 5.2.1. For 
ompleteness and later use we mention that Dbb′,≷
αα1 (t, t′) satis�es the following symmetryrelations

Dbb′,≷
αα1

(t, t′) = Dbb′,≶
αα1

(t′, t), (5.25)and under 
omplex 
onjugation
[

Dbb′,≷
αα1

(t, t′)
]∗

= Dbb′,≶
α1α (t, t′) = Db′b,≶

αα1
(t, t′), (5.26)shown using the symmetries of the Coulomb matrix element, see eq. (4.9), and those of D0,≷

LO (t, t′), seeeq. (A.36). We 
an now write down the equation of motion for the retarded Green's fun
tion
i~∂τG

b,r
α (τ) = δ(τ) + ~ωb

αG
b,r
α (τ) +

∫ τ

0

dτ1G
b,r
α (τ1)

∑

α1

Gb,r
α1

(τ − τ1)Dbb,λb
αα1

(τ − τ1), (5.27)where λc = > and λv = < is a band spe
i�
 index. We note that in the present approximation the bands de-
ouple 
ompletely and 
an be solved independently simplifying the numeri
s and interpretation. The initial
ondition for Gb,r
α (τ) 
an be determined from its de�nition eq. (2.24
) as follows

Gb,r
α (0) = −i~−1θ(0) 〈[cb,α(t), c†b,α(t)]+〉 = −i~−1/2, (5.28)where the equal-time anti-
ommutator has been evaluated to unity and we used that θ(0) = 1/2 perde�nition.Eq. (5.27) is in its present form not very suitable for numeri
al solution, this is due to the presen
e of thedelta fun
tion in the �rst term and the free energy in the se
ond term. The delta fun
tion is hard to repre-sent numeri
ally while maintaining its essential features and the underlying fast os
illations from the freeevolution will require a very �ne time dis
retization. To avoid having to deal with these issues we performa transformation of the retarded Green's fun
tion [67℄ given by the following

Gb,r
α (τ) = −i~−1θ(τ)e−iωb

ατ
G

b
α(τ), (5.29)whi
h eliminates the fast os
illations through the exponential and the delta fun
tion through the stepfun
tion. The transformation is just a slowly-varying envelope representation used in many areas of physi
s.The initial 
ondition for Gb

α(τ) is found from that of Gb,r
α (τ) and we simply get

Gb
α(0) = 1.Transformation of the equation of motion, eq. (5.27), is done using simple substitution, the 
hainrule for thetime derivative, and the fa
t that ∂τ (θ(τ)) = δ(τ). This yields the following equation9
∂τGb

α(τ) = −~
−2

∫ τ

0

dτ1G
b
α(τ1)

∑

α1

ei[ωb
α−ωb

α1
](τ−τ1)Gb

α1
(τ − τ1)Dbb,λb

αα1
(τ − τ1). (5.30)Numeri
al examplesTo illustrate the e�e
t LO phonons has on the spe
tral properties of the ele
trons, we give a numeri
alexample whi
h further serves as future referen
e for the non-equilibrium simulations performed later in9The time derivative in eq. (5.30) has a step fun
tion multiplied onto it, θ(τ)∂τ G

b,r
α (τ), from the transformation. Howeveras it is only di�erent from 1 for τ < 0, whi
h we do not 
onsider, and for τ = 0, where the RHS of zero, we have removedit from the equation.68



Equations of Motion EquilibriumQuantity Value Unit Quantity Value Unit Quantity Value Unit
h 1 nm ~ωc

1 665.9697 meV ~ωLO 36.8 meV
d 1.25 nm ~ωc

2 702.1410 meV ε∞/ε0 10.9 1
r1 15 nm ~ωc

3 702.1410 meV ε/ε0 12.5 1
r2 7.5 nm ~ωv

1 -563.8878 meV τLO 5 ps
R0 50 nm ~ωv

2 -588.3320 meV
Lz 60 nm ~ωv

3 -588.3320 meVTable 5.1.: Table presenting various parameters: (left) geometri
al parameters of the QD, (mid) free single-parti
leof the bound states in the QD, and (right) parameters des
ribing LO-phonons in a bulk GaAs system.the thesis. For simpli
ity we fo
us on a QD with few bound states and to further simplify we negle
t theWL 
ontinuum. We stress that the negle
tion of the WL is not justi�ed for the temperature range we willbe 
onsidering, namely the range above 150 K where a
ousti
 phonons 
an be negle
ted [63℄, whi
h arenot in
luded in the present theory. For temperatures near room temperature it 
an be expe
ted, and hasbeen demonstrated [42℄, that ele
trons will be thermally ex
ited into the WL 
ontinuum and hen
e thesestates will be
ome important for the dynami
s. In the low temperature regime it is, on the other hand,expe
ted to be a mu
h better approximation to negle
t the WL 
ontinuum, as here the thermal ex
itationis expe
ted to be smaller [68℄.To obtain only a few bound states, the size of the QD has to be relatively small and it turns out thatthe geometri
 parameters shown in table 5.1 (left) (
ompare with �gure 4.2) produ
es a QD with three
learly bound states in both 
ondu
tion and valen
e band. The energies of these states are shown in table5.1 (mid), while the 
orresponding wavefun
tions are very similar to those presented in se
tion 4.2. Allmatrix elements used in the simulations to 
ome are 
al
ulated using these states. A s
hemati
 of thelevel stru
ture is shown in �gure 5.2 where also the notation of the states is indi
ated, the 
rossed areasabove and below the dots represents the WL 
ontinuum whi
h we negle
t. We note that the spin degreesof freedom of the ele
tron are omitted in the following, this is not an approximation as the ele
tron-phonon intera
tion we are 
onsidering is diagonal in spin and hen
e does not 
ouples the spin up anddown subspa
es. The parameters des
ribing the LO-phonons are shown in table 5.1 (right) and are takenas those of a bulk GaAs system, as this is what our embedding barrier material 
onsists of [31℄, theLO-phonon lifetime has been taken from the literature [41, 42℄.The governing equation eq. (5.30) was solved in the time domain using the methods des
ribed in ap-pendix A.4, but the results are presented in the frequen
y domain as this domain is usually more familiarwhen dis
ussing spe
tral properties. We use the Fourier transform de�ned in eq. (5.1) with η = 0. Itshould be noted that the system 
onsisting of a single ele
troni
 state 
oupled to a 
ontinuum of phononmodes 
an be solved exa
tly. This model is known as the independent boson model (IBM) [24, p. 285℄, andwe will sometimes refer to this model in the following dis
ussion, as it 
an be useful in the interpretationand veri�
ation of the theory developed here.In �gure 5.3 the spe
tral fun
tions of the various states are shown at four di�erent temperatures, for the
ondu
tion band in the top �gure and the valen
e band in the bottom �gure. The spe
tral fun
tion (orspe
tral density) is de�ned as
Ab

α(ω) = −2Im
[
Gb,r

α (ω)
]
, (5.31)where Gb,r

α (ω) is the Fourier transformed of Gb,r
α (τ). The spe
tral fun
tion is very similar to the usualdensity of states, see eq. (2.4), and therefore has a rather physi
ally intuitive interpretation whi
h isthe reason for showing this quantity. When 
omparing the polaron densities to that of a free parti
le,

A0,b
α (ω) = 2πδ(~ω − ~ωb

α) marked by the verti
al lines, the di�eren
e is very signi�
ant. The most strikingdi�eren
e when 
omparing to normal Lorentzian lineshapes is the formation of the phonon sidebandssituated approximately one LO-phonon energy apart. These form due to the 
onstant energy of the LO-phonons and are signatures of states where a number phonons have been absorbed or emitted. A small69
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Figure 5.2.: S
hemati
 illustration of the level stru
ture of the QD used in the polaron simulations.energy renormalization is also indu
ed by the phonons, usually 
alled the polaron shift, it is negative for
ondu
tion band states and positive for the valen
e band states. This di�eren
e of sign is expe
ted arisefrom the fa
t that for the 
ondu
tion band states we are really 
onsidering holes (uno

upied states),while for the valen
e band we are 
onsidering ele
trons (o

upied states) so a di�eren
e is de�nitelyexpe
ted.Another pe
uliar feature is the multipeak 
lusters near ea
h of the main peaks, as oppose to just a singlepeak at ea
h LO-phonon energy separation that would naively be expe
ted from the IBM. It turns out thatthese multipeak stru
ture are due to the 
oupling between the bound states in the QD, mediated by theLO-phonons and as su
h it is an hybridization e�e
t. To support this 
laim the spe
tral fun
tions have alsobeen 
al
ulated for the un
oupled system, i.e. where there is no intra-band 
oupling between states due tophonons, the result is shown in �gure 5.4 and we observe a simple series of single peaks as expe
ted on thegrounds of the IBM. The relatively large di�eren
e in the spe
trum for the 
ondu
tion and valen
e bandis solely due to the di�eren
e in transition energies within ea
h band, as the phonon matrix elements arevery similar for the two. For the 
ondu
tion band the transition energy is ~ωc
21 = 36.17 meV while for thevalen
e band we obtain ~ωv

12 = 24.44 meV. This shows that the ele
troni
 transitions in the 
ondu
tionband are very 
lose to resonant with an LO-phonon energy, while the valen
e band transition is not nearlyas resonant. Thus a stronger intera
tion between the 
ondu
tion band states and the LO-phonons isexpe
ted, whi
h is manifested in the three-peak stru
ture many of the main peaks exhibits. The 
enterpeak is the one whi
h is also present without 
oupling to other states, while the "shoulder" peaks arise dueto a hybridization splitting seen many pla
es in quantum physi
s. The three-peak stru
ture is 
ompletelyabsent for the valen
e band spe
trum, where the hybridization peak is well separate from the phonon peak,due to the la
k of resonan
e. The main phonon peaks in the valen
e band all have a small "shoulder" onone of their sides, this is not a sign of hybridization as it also appears in the de
oupled spe
tra in �gure 5.4.From the IBM we know that the de
oupled solutions should no exhibit any "shoulders" but should simplybe a series of Lorentzians, we therefore take the presen
e of these "shoulders" as unphysi
al artifa
tspresent due to the approximations we have performed [69℄. The la
k of resonan
e is also seen through thewidth of the peaks in the valen
e band, these are more narrow than those in the 
ondu
tion, indi
ating alonger lifetime as they do not 
ouple as e�
iently to the phonon reservoir.70
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Figure 5.3.: Plots of the spe
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tion, eq. (5.31), for the ele
troni
 states. 71
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Equations of Motion EquilibriumAs we go through the various series for de
reasing temperatures we noti
e that the peak height eitherin
reases or de
reases, depending on whether we 
onsider the high or low energy side with respe
t to thefree energy, further the trend is reversed when going between bands. For the valen
e band the high energyside peaks de
rease and the low energy side peaks in
rease in height, while generally narrowing in width.This observation is taken as eviden
e that the high energy side 
orresponds to absorption of LO-phonons,as generally lowering the temperature de
reases the number of phonons, 
orrespondingly the low energyside must 
orrespond to emission of LO-phonons. The reason why the emission peaks do not de
rease inheight as the temperature is lowered, is due to the 
ontribution from the va
uum �eld, i.e. spontaneousphonon emission. This overall pi
ture of the peaks agrees well with the physi
al intuition that if an ele
tronabsorbs a LO-phonon its energy must in
rease, while emission must lower its energy. For the 
ondu
tionband the situation is reversed, whi
h is expe
ted to arise from the fa
t that we are dealing with holes(uno

upied states) rather than ele
trons. It is easily seen formally that we 
onsider hole properties whensolving for the retarded Green's fun
tion, this is so as for the 
ondu
tion band G< = 0, eq. (5.22), andhen
e per de�nition Gr = G>, where G> des
ribes the properties of uno

upied states, i.e. holes. A moreintuitive physi
al reason has however not been found.When 
omparing the above results to similar 
al
ulations in the literature [41℄ we �nd ex
ellent agreementon the overall stru
ture of the spe
trum. Furthermore it seems that the main e�e
t of in
luding a WL,is to broaden all spe
tral features and many of the �ne stru
ture features survives in
lusion of the WL.As a further veri�
ation of our implementation, we 
ompared the results of our numeri
al 
ode to anumeri
ally exa
t solution, that 
an be obtained in the 
ase of a free (non-self-
onsistent) self-energy. Theresult of the 
omparison was an ex
ellent agreement between the two approa
hes, verifying the numeri
al
ode. As a 
losing note we mention that all the 
onsidered spe
tral fun
tions satisfy the sum rule [28, p.130℄
∫
d(~ω)

2π
Ab

α(~ω) = 1,whi
h provides further veri�
ation of our implementation and 
on�rms that the parti
le number is 
on-served after turning on the LO-phonon intera
tion, by virtue of the self-
onsistent self-energy we haveemployed.5.3.3. The polaritonIn this se
tion we will formulate the theory where the self-energy in eq. (5.20) des
ribes the intera
tionbetween ele
trons and photons in a single 
avity mode.For the 
ase of the LO-phonon intera
tion treated using non-equilibrium Green's fun
tions mu
h literatureis available, but this is not the 
ase for the photon, at least to the knowledge of the author. This means thatwe must take a more expli
it approa
h for �nding out whi
h elements of the retarded Green's fun
tion weneed to solve for. Our starting point is the Fo
k self-energy arising due to the ele
tron-photon intera
tion,whi
h in the RWA and 
ontour time is given by eq. (A.25). It should be noted that the Hartree self-energyis zero, as we assume all opti
al inter-band polarizations to vanish10 in equilibrium, see eq. (A.26) oreq. (5.41). The 
avity photons we 
onsider have energies near the band gap hen
e we will assume thatthey only 
ause inter-band transitions, i.e. are band o�-diagonal in their matrix element. Furthermore wewill assume that pairs of states in the 
ondu
tion and valen
e band exists, whi
h are spatially similar, sothat the opti
al matrix elements be
ome diagonal in the in-band quantum number α, see se
tion 4.4. Allin all we may write the opti
al matrix element gbb′

αα′ = gαδα,α′(1− δb,b′), further suggesting that it may bea good approximation to only treat Green's fun
tions diagonal in the in-band quantum number α. Thissimpli�
ation is further supported by the observation that only fully diagonal retarded Green's fun
tions10Although this statement might seem trivial, it in fa
t amounts to showing that ρcv
α (t) = 〈c†v,α(t)cc,α(t)〉 =

〈c†v,α(t − t)cc,α〉 = 〈c†v,αcc,α〉 = 1
Tr{e−βH}

Tr
{

e−βHc†v,αcc,α

} is zero. In the presen
e of intera
tion me
hanisms thatoperate a
ross the band, su
h as the ele
tron-photon intera
tion, this is not possible and it will remain an assumption,but for most wide band gap semi-
ondu
tors a rather good one. 73



Non-equilibrium Equations of Motiondo initially have a non-zero value and hen
e sour
e terms are needed for these to be
ome non-zero, whi
hare small or zero a

ording to the arguments given above. With the use of these arguments, eq. (A.25),and the Langreth rules of table 2.1 we may write the retarded self-energy as
Σbb′,rad,F,r

α (t, t′) = i~|~gα|2 × {
[
Gvv,<

α (t, t′)Ar(t, t′) +Gvv,r
α (t, t′)Ar(t, t′) +Gvv,r

α (t, t′)A<(t, t′)
]
δb,c

+
[
Gcc,<

α (t, t′)Aa(t′, t) +Gcc,r
α (t, t′)A<(t′, t)

]
δb,v } δb,b′ .As for the phonons we will assume that no ele
trons are thermally ex
ited and hen
e that eqs. (5.22)and (5.23) 
ontinue to be valid when 
onsidering photons also, therefore we may simplify this self-energyto

Σbb′,rad,F,r
α (t, t′) = i~|~gα|2 ×

[
Gvv,r

α (t, t′)A<(t, t′)δb,c +Gcc,r
α (t, t′)A<(t′, t)δb,v

]
δb,b′ .We now observe that all 
ontributions to this self-energy are proportional to the lesser 
avity photonGreen's fun
tion, whi
h in its equal time limit is proportional to the photon number in the 
avity andfrom appendix A.5 we get that its free version is equal to A0,<(t, t′) = −i~−1e−iω(t−t′)nB(~ω). Regardlessof whether we 
onsider the full or free photon Green's fun
tion it is very fair to assume that its envelopewill mainly be given by its thermal o

upation nB(~ω) fa
tor. For a 1 eV photon at room temperaturethe thermal o

upation is equal to nB(~ω) = 1/(exp(1/0.026)− 1) ≈ exp(−38) ≈ 10−17 and therefore wemay put this equal to zero.After this series of approximations we have arrived at the 
on
lusion that the photons will not a�e
t theequilibrium properties of the ele
trons, or vi
e versa. This means that the ele
troni
 spe
tral Green'sfun
tions in equilibrium, will be 
ompletely determined by the polaron fun
tions dis
ussed in the previousse
tion. Also, the equilibrium properties of the photons are des
ribed by the free photons, as we haveassumed that the photons only intera
t with ele
trons. The photons do of 
ourse have an in�uen
e on thedynami
s of the ele
trons, and vi
e versa, but this in�uen
e will be limited to non-equilibrium situationswhi
h will be treated later in the next se
tion.5.4. Non-equilibriumIn this se
tion we will derive the �nal form of the equations of motion governing our non-equilibrium 
QEDsystem. For the ele
troni
 Green's fun
tions the GKBA will be applied in all 
ases, whi
h is expe
ted tobe the main limitation of our theory, however it enables us to save vast amounts of 
omputation time. Forthe photoni
 Green's fun
tions we present equations of motion both with and without the GKBA applied.The reason for not applying the GKBA to the photon Green's fun
tions, is that in some 
ases the fulltwo-time lesser Green's fun
tions is needed in order to give sensible results as shown in se
tion 6.5. Thetwo-time theory is however signi�
antly more 
ompli
ated and mu
h more demanding to solve numeri
ally,as will be dis
ussed in the next 
hapter.5.4.1. Ele
troni
 equations of motion and s
attering termsIn this se
tion we will derive the equations of motion des
ribing the ele
troni
 degrees of freedom in ournon-equilibrium system, where we are interested in observable quantities like populations and polarizations.These quantities are des
ribed by the equal-time lesser Green's fun
tion for the ele
trons, where the fa
tthat we are only interested in equal-time Green's fun
tions means that we 
an apply the GKBA, seese
tion 2.5, whi
h simpli�es the solution pro
ess immensely. A natural step when 
onsidering the equal-time lesser Green's fun
tion, is to formulate the equations of motion in terms of the redu
ed density matrixof the ele
troni
 system, whi
h the equal-time lesser Green's fun
tion is proportional to, see se
tion 2.1.Next we will dis
uss an approximation regarding whi
h elements of the density matrix are 
onsidered in74



Equations of Motion Non-equilibriumthe 
al
ulations. In a two-band model of a semi
ondu
tor the density matrix may be written in matrixform as follows
ρ(t) =

[
ρcc(t) ρcv(t)
ρvc(t) ρvv(t)

]

. (5.32)If we assume an equal number N of single-parti
le states in ea
h band has (2N)2 elements, that ea
hhas their own equation of motion. For a standard quantum kineti
 simulation where the dynami
s ismainly 
on�ned to the bound states of a QD and where parts of the WL 
ontinuum are also in
luded,one 
ould easily have N = 100 leading to (2N)2 = 40000 elements of the density matrix. Even on thesuper
omputers of today this is a very di�
ult 
omputational task that is often not pursuable in pra
ti
e,hen
e we need to 
onsider a redu
ed number of elements in the density matrix. A number of di�erentapproa
hes are possible depending on what kind of experiment one is looking to des
ribe. The 
riti
alfa
tor is how the system is ex
ited by external sour
es.In the standard experiment of opti
al inter-band ex
itation of ele
trons from the valen
e to the 
ondu
tionband, with subsequent intra-band relaxation and re
ombination by photons, a large redu
tion in thenumber of elements is possible. For this parti
ular experiment it has turned out [38, 42℄ to be a goodapproximation to only 
onsider diagonal elements in ea
h of the four sub-matri
es in eq. (5.32). For theband diagonal sub-matri
es this has the 
onsequen
e that we only des
ribe populations and no intra-band polarizations, while for the o�-diagonal (in the band index) sub-matri
es it means that we onlydes
ribe "verti
al" or "opti
al" polarizations. Again assuming an equal number of single-states in ea
hband, this redu
es the 
onsidered number of density matrix elements to 3N , whi
h for N = 100 results in
3N = 300 elements, a mu
h more feasible number 
ompared to 40000. It should however be noted thatthis approximation is only well-de�ned in 
ertain systems. There need to exist pairs of states in the twobands, that are similar in their spatial form so that it is possible to de�ne what is meant by a diagonalelement in e.g. ρcv(t). Only systems where su
h diagonal elements11 
an be unambiguously de�ned willbe treated in the thesis.We will pro
eed the derivations in the approximation des
ribed above and hen
e we make the repla
ement
ρbb′

αα′(t) = ρbb′

α (t)δαα′ in all equations hen
eforth. The index b is a band index and α des
ribes all otherindexes. The fundamental forms of our equations of motion from se
tion 2.4 are all formulated in termsof Green's fun
tions, so �rst we present the transformation between the equal-time lesser Green's fun
tionand the density matrix
Gbb′,<

α (t, t) = i~−1 〈c†b′,α(t)cb,α(t)〉 = i~−1ρbb′

α (t), (5.33a)
Gbb′,>

α (t, t) = −i~−1 〈cb,α(t)c†b′,α(t)〉 = −i~−1[δb,b′ − ρbb′

α (t)], (5.33b)where also the transformation of the greater Green's fun
tion has been presented as this will be neededlater. These equations serve as our de�nition of the density matrix elements. Transformation of eq. (2.50)a

ording to eq. (5.33) yields the equation of motion for the density matrix, whi
h we write in the following
ompa
t form
∂tρ

bb′

α (t) = ∂tρ
bb′

α (t)|coh + ∂tρ
bb′

α (t)|scatt, (5.34)where ∂tρ
bb′

α (t)|coh des
ribes terms giving rise to 
oherent time evolution and ∂tρ
bb′

α (t)|scatt des
ribesterms giving rise to time evolution due to many-body pro
esses, ea
h of whi
h will be des
ribed be-low.Coherent termsThe 
oherent term be
omes
∂tρ

bb′

α (t)|coh = −iωbb′

α ρbb′

α (t)− i~−1
∑

b1

[

Σbb1,s
α (t)ρb1b′

α (t)− ρbb1
α (t)Σb1b′,s

α (t)
]

. (5.35)11One possible de�nition 
ould be the transition where the overlap integral 〈c, α|v, α′〉 is the largest. 75



Non-equilibrium Equations of MotionThe �rst 
ontribution is that from the free evolution, in the absen
e of any intera
tions, where the transitionfrequen
y is written as ωbb′

α = ωb
α − ωb′

α . This term is not very interesting and we move on to the singularself-energy. By de�nition, eq. (2.42), the singular self-energy 
ontains the intera
tion with the external�elds and any one-time self-energy that might result from the many-body intera
tions. In our system wehave the following 
ontributions
Σbb′,s

α (t) = U bb′

α (t) + Σbb′,ee,HF
α (t) + Σbb′,LO,H

α (t) + Σbb′,rad,H
α (t), (5.36)whi
h will be des
ribed below, but �rst we dis
uss some general features of the singular self-energy. Dueto the simple stru
ture of the singular sour
e term in eq. (5.35), we 
an make some general 
on
lusions onwhat e�e
t a singular self-energy has depending on whether it is stri
tly diagonal or o�-diagonal in theband indexes. To this end we de
ompose the singular self-energy into a diagonal (d) and an o�-diagonal(od) part

Σ
s
α(t) = Σ

d
α(t) + Σ

od
α (t),where matrix notation with respe
t to the band indexes has been employed. For the diagonal part we getthe following sour
e term

∂tρ
bb′

α (t)|dcoh = −i~−1
[

Σbb,d
α (t)− Σb′b′,d

α (t)
]

ρbb′

α (t)(1 − δb,b′),whi
h shows that a diagonal singular self-energy leads to a time-dependent renormalization of the single-parti
le energies. For the o�-diagonal part we 
hoose the two following 
ases as illustration
∂tρ

cv
α (t)|od

coh = −i~−1[ρvv
α (t)− ρcc

α (t)]Σcv,od
α (t), (5.37a)

∂tρ
cc
α (t)|od

coh = −2~
−1Im

[
ρcv

α (t)Σvc,od
α (t)

]
, (5.37b)whi
h show that an o�-diagonal singular self-energy gives rise to sour
e terms identi
al to those ofan external �eld operating on an interband transition [31, p. 89℄, hen
e it will renormalize any su
h�eld.The �rst term des
ribes the intera
tion with the external ele
tri
 �eld whi
h in its RWA form is givengiven by eq. (5.7), where the matrix elements we use are written as

U bb′

α (t) =







0, b = b′ = c, v

dcv
α

E0(t)
2 e−iω0t, b = c, b′ = v

dvc
α

E0(t)
2 eiω0t, b = v, b′ = c

(5.38)The dipole matrix elements are written as dcv
α = dcv

αα = 〈c, α|d|v, α〉, in the spirit of our main approx-imation dis
ussed in the beginning of se
tion 5.4.1. A
tually it turns out, see se
tion 4.4, that in thedipole approximation for inter-band opti
al transitions, the dipole matrix element is proportional to thepure overlap between the involved states in ea
h band, 〈c, α|v, α′〉. Hen
e in systems where these arevery similar in nature dcv
αα is mu
h larger than dcv

α6=α′ and 
onsequently the dire
t opti
al transitions aredriven mu
h more strongly that the indire
t (α 6= α′) ones, whi
h is the main reason why it is a goodapproximation to only 
onsider the diagonal part of ρcv(t). In general there are other sour
es, su
h as theex
itoni
 Coulomb intera
tion, to the o�-diagonal elements in ρcv(t), but these are usually of only minorimportan
e.The se
ond term is the mean-�eld HF energy, eq. (5.8), arising from the Coulomb intera
tion between theele
trons. In terms of density matri
es the HF term is written as
Σbb′,ee,HF

α (t) =
∑

b1b2
α1

(

V bb2b′b1
αα1αα1

− V bb2b1b′

αα1α1α

) [
ρb1b2

α1
(t)− δb1,vδb2,v

]
. (5.39)Being a singular self-energy Σee,HF with both band diagonal and o�-diagonal terms it will give rise toinstantaneous renormalizations in the free energies as well as in the external ele
tri
 �eld, the latter givingrise to the well-known ex
itoni
 features in various spe
tra.76



Equations of Motion Non-equilibriumThe third term is the Hartree self-energy from the LO-phonon intera
tion, eq. (5.12), whi
h in our presentnotation may be written as
Σbb′,LO,H

α (t) =

∫ t

−∞
dt′
∑

b1α1

~ωLO

2ε∗/ε
V b1bb1b

α1αα1α

[
ρb1b1

α1
(t′)− δb1,v

]
D0,r

LO(t, t′)δb,b′ , (5.40)where D0,r
LO(t, t′) is free retarded Green's fun
tion of the LO-phonons. It 
an be found from the relation

Dr(t, t′) = θ(t− t′)[D>(t, t′)−D<(t, t′)] and expli
itly reads
D0,r

LO(t, t′) = −2~
−1θ(t− t′) sin(ωLO[t− t′])e−|t−t′|/τLO ,where the equations in eq. (A.35) were used. This self-energy is band diagonal and hen
e thus it will onlyrenormalize the free energies of the ele
trons. The sums in eq. (5.40) only involve ele
troni
 populations,where further the 
ontribution from the full valen
e band has been subtra
ted. Thus it 
an already at thispoint be expe
ted, that this self-energy will be of little signi�
an
e in the low ex
itation regime12 wherewe will primarily be operating.The fourth term is the Hartree 
ontribution from the ele
tron-photon intera
tion. From now on we willemploy the RWA version of the ele
tron-photon intera
tion, eq. (5.6). This unfortunately means that thenotation 
annot be kept as 
ompa
t as it has been up to this point, this is so be
ause when applying theRWA one has to perform the band summation in order to remove the non-resonant 
ontributions. The
ontour version of the RWA Hartree self-energy is given by eq. (A.26) and with the use of the Langrethrules we get

Σbb′,rad,H
α (t) =

∫ t

−∞
dt′
∑

α1

~gα~gα1

[
ρcv

α1
(t′)Ar(t, t′)δb,cδb′,v + ρvc

α1
(t′)[Ar(t, t′)]∗δb,vδb′,c

]
. (5.41)This self-energy is purely band o�-diagonal and hen
e it will renormalize the external �eld and furtherdrive the system as an internal �eld, whi
h it a
tually is.S
attering termsWe now move on to 
onsider many-body s
attering 
ontributions to the density matrix equation of motion.The 
orre
t des
ription of the various de
ay pro
esses, be it relaxation or dephasing, that o

ur in a semi-
ondu
tor nanostru
ture is the main motivation for employing the non-equilibrium Green's fun
tion formal-ism to our system. The s
attering term in eq. (5.34) 
an in general be written as

∂tρ
bb′

α (t)|scatt =

−
∫ t

−∞
dt1
∑

b1

[

Σbb1,>
α (t, t1)G

b1b′,<
α (t1, t)− Σbb1,<

α (t, t1)G
b1b′,>
α (t1, t)

−Gbb1,>
α (t, t1)Σ

b1b′,<
α (t1, t) +Gbb1,<

α (t, t1)Σ
b1b′,>
α (t1, t)

]

. (5.42)It is apparent from this form that the values of the ele
troni
 Green's fun
tions are needed away from thetime diagonal in the (t, t′)-plane and hen
e it is in general not possible to formulate a theory entirely interms of equal-time Green's fun
tions, that per de�nition live on the time diagonal. As we do not wish tosolve for the Green's fun
tions in the two-time plane an approximation is needed that provides us with a
losed set of equations for the equal-time ele
troni
 Green's fun
tions. Fortunately one su
h approximationexits and it is know as the GKBA, see se
tion 2.5. We will employ a version of the GKBA where diagonal12Rather surprisingly it turns out that the e�e
ts of the LO Hartree self-energy remains small even at high ex
itation
onditions. This is expe
ted to be 
onne
ted to the fa
t that the sine fun
tion in the retarded LO-phonon Green'sfun
tion, os
illates with a relatively fast period (TLO = 2π/ωLO ≈ 0.11 ps in GaAs) and hen
e will tend to average theintegral to zero, unless the populations 
hange signi�
antly within this time span. 77



Non-equilibrium Equations of Motionspe
tral Green's fun
tions have been assumed, eq. (2.55), (see the dis
ussion above eq. (5.21)) and in termsof the density matrix the GKBA may be written as
Gbb′,≷

α (t, t′) =







−Gb,r
α (t, t′)ρbb′

α (t′), < and t > t′

Gb,r
α (t, t′)[δb,b′ − ρbb′

α (t′)], > and t > t′

ρbb′

α (t)Gb′,a
α (t, t′), < and t < t′

−[δb,b′ − ρbb′

α (t)]Gb′,a
α (t, t′), > and t < t′

(5.43)The spe
tral Green's fun
tions that o

ur in the GKBA are for the general non-equilibrium system andas su
h obey their respe
tive Dyson equations, in both times. However, if these were to be used notmu
h (if any) 
omputational time would be saved and it would be a better strategy to simply solvethe original two-time equations of motion for G≷. However, it turns out to be a good approximation[37, 38℄ for a weak 
oupling self-energy to use the equilibrium spe
tral Green's fun
tions in the GKBA,that further only depends on the time di�eren
e in the two times. This is a huge simpli�
ation as theequilibrium spe
tral Green's fun
tions 
an be 
al
ulated in advan
e and simply used as an input to thenon-equilibrium 
al
ulation, and they only have to be re
al
ulated if any parameters 
hara
terizing theequilibrium system are 
hanged.The s
attering term is linear in the self-energy and the self-energy itself is a sum of ea
h of its 
ontributions,hen
e it is possible to write down a s
attering term for ea
h intera
tion and 
orresponding 
ontributionto its self-energy. This is a very pra
ti
al feature of the non-equilibrium Green's fun
tion formalism, astaking into a

ount new intera
tions or going to higher orders simply amounts to adding more s
atteringterms to already existing equations. This is in 
ontrast to many other methods that depend on expansionin basis states of the 
ombined system, and not in the individual subsystems as in the non-equilibriumGreen's fun
tion formalism, where in
lusion of another kind bosoni
 intera
tion would result in a 
ompletereformulation of the derived equations.We start o� by 
onsidering the s
attering terms due to the intera
tion of the ele
trons and LO-phonons.The Fo
k 
ontribution to the lowest order self-energy, eq. (5.11), is in our main approximation givenby
Σbb′,LO,F,≷

α (t, t′) = i~
∑

α1

~ωLO

2ε∗/ε
V b′bb′b

α1ααα1
Gbb′,≷

α1
(t, t′)D0,≷

LO (t, t′)

=
∑

α1

Dbb′,≷
αα1

(t, t′)Gbb′,≷
α1

(t, t′),where the e�e
tive LO-phonon Green's fun
tion, Dbb′,≷
αα1 (t, t′), is de�ned in eq. (5.24). Plugging this intoeq. (5.42) and employing the GKBA we obtain the following s
attering term

∂tρ
bb′

α (t)|LO,F
scatt =

∫ t

−∞
dt1

∑

b1α1

(

Gb,r
α1

(t, t1)
[

Gb′,r
α (t, t1)

]∗

×
{

−Dbb1,>
αα1

(t, t1)[δb,b1 − ρbb1
α1

(t1)]ρ
b1b′

α (t1) +Dbb1,<
αα1

(t, t1)ρ
bb1
α1

(t1)[δb1,b′ − ρb1b′

α (t1)]
}

+Gb,r
α (t, t1)

[

Gb′,r
α1

(t, t1)
]∗

×
{

[δb,b1 − ρbb1
α (t1)]ρ

b1b′

α1
(t1)D

b1b′,>
αα1

(t, t1)− ρbb1
α (t1)[δb1,b′ − ρb1b′

α1
(t1)]D

b1b′,<
αα1

(t, t1)
})

, (5.44)where eq. (2.33) has been used to formulate it in terms of the retarded Green's fun
tion only and eq. (5.25)to �ip the time arguments in the LO-phonon Green's fun
tion. We 
an exploit the symmetries under
omplex 
onjugation of the Green's fun
tions, see eqs. (2.32) and (5.26), to simplify the band diagonal78



Equations of Motion Non-equilibriums
attering terms, that is population relaxation, to the following form
∂tρ

bb
α (t)|LO,F

scatt =

2Re
[ ∫ t

−∞
dt1

∑

b1α1

(

Gb,r
α1

(t, t1)
[
Gb,r

α (t, t1)
]∗

×
{
−Dbb1,>

αα1
(t, t1)[δb,b1 − ρbb1

α1
(t1)]ρ

b1b
α (t1) +Dbb1,<

αα1
(t, t1)ρ

bb1
α1

(t1)[δb1,b − ρb1b
α (t1)]

})]

.This simpli�
ation applies to 2/3 of all s
attering terms and saves around 50 % 
omputation time on ea
h,thus leading to an approximate 33.3 % speed up.Next we 
onsider the s
attering terms arising due to the intera
tion between the ele
trons and 
avityphotons. In the RWA the Fo
k 
ontribution to the 
ontour self-energy is given by eq. (A.25) and with thehelp of the Langreth rules we obtain the following real time 
omponents
Σbb′,rad,F,≷

α (t, t′) = i~|~gα|2
[

Gvv,≷
α (t, t′)A≷(t, t′)δb,c +Gcc,≷

α (t, t′)A≶(t′, t)δb,v
]

δb,b′ , (5.45)where we have assumed gαα′ = gαδαα′ , see se
tion 4.4. Below we will present two versions of the ele
troni
s
attering terms due to the 
avity photons, in the �rst version in whi
h the GKBA has been applied to thephoton Green's fun
tion, and a se
ond version in whi
h we keep the photon Green's fun
tion in its generaltwo-time form. The GKBA has been applied to the ele
troni
 Green's fun
tions in both versions, as weare only interested in equal-time properties for these. For the photons we are, however, interested in thefull two-time Green's fun
tion13 as this allows for the 
al
ulation of quantities su
h as emission spe
traand indistinguishability, see se
tions 6.5 and 6.6, while the GKBA is assumed to yield a su�
iently 
orre
tequal-time dynami
s.The GKBA for the photons is given by eq. (5.53), where we have also made use of the relations eq. (5.52) toexpress everything in terms of the number of photons in the 
avity A(t). We are now ready to determinethe s
attering term eq. (5.42) with self-energy given by eq. (5.45) in the GKBA for the ele
trons andphotons. After straight forward insertion the band diagonal term be
omes
∂tρ

bb
α (t)|rad,F

scatt = −2Re
[ ∫ t

−∞
dt1

(

Gv,r
α (t, t1) [Gc,r

α (t, t1)]
∗ (
i~|~gα|2Ar(t, t1)

)
{[1− ρvv

α (t1)][1 +A(t1)]ρ
cc
α (t1)− ρvv

α (t1)A(t1)[1− ρcc
α (t1)]} δb,c

−Gc,r
α (t, t1) [Gv,r

α (t, t1)]
∗ (i~|~gα|2[Ar(t, t1)]

∗) {[1− ρcc
α (t1)]A(t1)ρ

vv
α (t1)− ρcc

α (t1)[1 +A(t1)][1 − ρvv
α (t1)]} δb,v

)]

,where we have used the symmetry relations of the Green's fun
tions and self-energy, eq. (5.14), tosimplify as done above with the LO-phonon s
attering terms. It is possible to simplify further dueto the fa
t that we only need the real part of the integral, and after a few 
an
elations we end upwith
∂tρ

bb
α (t)|rad,F

scatt = −2Re
[ ∫ t

−∞
dt1G

v,r
α (t, t1) [Gc,r

α (t, t1)]
∗ (
i~|~gα|2Ar(t, t1)

)

× {A(t1) [ρcc
α (t1)− ρvv

α (t1)] + ρcc
α (t1) [1− ρvv

α (t1)]} (δb,c − δb,v)
]

. (5.46)We have grouped 
ontributions due to stimulated and spontaneous pro
esses under the integral. Further-more note that the sign of the 
ondu
tion and valen
e band 
ontributions are opposite, similarly to whatwould be expe
ted in a two-level system. This is indeed expe
ted as we only 
onsider diagonal transitionsin the in-band quantum number α, hen
e we 
onsider e�e
tive two-level systems for ea
h α. Indeed if13Naively one might expe
t that the GKBA would yield an approximately valid two-time Green's fun
tion, in the full two-time plane, however when one employs equilibrium retarded Green's fun
tions in it these seem to determine the spe
tralproperties. This severely limits its use in 
al
ulating e.g. emission spe
tra as will be dis
ussed further in se
tion 6.5. 79



Non-equilibrium Equations of Motionno other intera
tions were present, the set of equations for ea
h α would de
ouple and 
ould be solvedindependently. The band o�-diagonal term be
omes
∂tρ

cv
α (t)|rad,F

scatt = −
∫ t

−∞
dt1
(
i~|~gα|2Ar(t, t1)

) (

|Gv,r
α (t, t1)|2 {[1− ρvv

α (t1)][1 +A(t1)]ρ
cv
α (t1) + ρvv

α (t1)A(t1)ρ
cv
α (t1)}

+ |Gc,r
α (t, t1)|2 {ρcv

α (t1)ρ
cc
α (t1)[1 +A(t1)] + ρcv

α (t1)[1− ρcc
α (t1)]A(t1)}

)

,and after a few 
an
elations we obtain the following simpli�ed version
∂tρ

cv
α (t)|rad,F

scatt = −
∫ t

−∞
dt1
(
i~|~gα|2Ar(t, t1)

) (

|Gv,r
α (t, t1)|2 {A(t1)ρ

cv
α (t1) + ρcv

α (t1)[1− ρvv
α (t1)]}+ |Gc,r

α (t, t1)|2 {A(t1)ρ
cv
α (t1) + ρcv

α (t1)ρ
cc
α (t1)}

)

.(5.47)Again we 
an group stimulated and spontaneous pro
esses 
ontributing to the ele
troni
 dephasing andwe note that ∂tρ
vc
α (t)|rad,F

scatt 
an be obtained through 
omplex 
onjugation.Next we treat the same s
attering terms as above, but now we do not apply the GKBA for the photoni
Green's fun
tion. The stru
ture of the terms will be similar, however, a bit more 
ompli
ated as we 
annotanymore make use of the equal-time relation between the greater and lesser photon Green's fun
tion,eq. (5.52), and hen
e no 
an
elations o

ur. We introdu
e a new photon Green's fun
tion Ã≷(t, t′) by thefollowing de�nition
i~A≷(t, t′) = e−iωcav(t−t′)Ã≷(t, t′), (5.48)whi
h is slowly-varying outside the time diagonal. The retarded ele
troni
 Green's fun
tions play a similarrole in the GKBA for the ele
trons as the exponential in the above de�nition, ex
ept here we kept theslowly-varying envelope in its two-time form, whereas for the ele
trons we only 
onsider the equal-time en-velope. The new photon Green's fun
tions satisfy the following symmetry relation
[Ã≷(t, t′)]∗ = Ã≷(t′, t), (5.49)derived from eqs. (5.48) and (2.32), whi
h will be used to limit the numeri
al solution to the subdiag-onal halfplane in the two-time plane, and for other simpli�
ations. The band diagonal s
attering termbe
omes
∂tρ

bb
α (t)|rad,F

scatt = −2Re
[ ∫ t

−∞
dt1|~gα|2

(

Gv,r
α (t, t1) [Gc,r

α (t, t1)]
∗ e−iωcav(t−t1)

{

[1− ρvv
α (t1)]Ã

>(t, t1)ρ
cc
α (t1)− ρvv

α (t1)Ã
<(t, t1)[1 − ρcc

α (t1)]
}

δb,c

+Gc,r
α (t, t1) [Gv,r

α (t, t1)]
∗
e−iωcav(t1−t)

{

[1− ρcc
α (t1)]Ã

<(t1, t)ρ
vv
α (t1)− ρcc

α (t1)Ã
>(t1, t)[1 − ρvv

α (t1)]
}

δb,v

)]

,whi
h 
an be simpli�ed, for the same reasons as in the GKBA 
ase (and using eq. (5.49)), to
∂tρ

bb
α (t)|rad,F

scatt = −2Re
[ ∫ t

−∞
dt1|~gα|2Gv,r

α (t, t1) [Gc,r
α (t, t1)]

∗
e−iωcav(t−t1)

×
{

[1− ρvv
α (t1)]Ã

>(t, t1)ρ
cc
α (t1)− ρvv

α (t1)Ã
<(t, t1)[1 − ρcc

α (t1)]
}

(δb,c − δb,v)
]

. (5.50)For the band o�-diagonal terms we get
∂tρ

cv
α (t)|rad,F

scatt = −
∫ t

−∞
dt1|~gα|2e−iωcav(t−t1)

(

|Gv,r
α (t, t1)|2

{

[1− ρvv
α (t1)]Ã

>(t, t1)ρ
cv
α (t1) + ρvv

α (t1)Ã
<(t, t1)ρ

cv
α (t1)

}

+ |Gc,r
α (t, t1)|2

{

ρcv
α (t1)ρ

cc
α (t1)Ã

>(t, t1) + ρcv
α (t1)[1 − ρcc

α (t1)]Ã
<(t, t1)

})

, (5.51)80



Equations of Motion Non-equilibriumwhere ∂tρ
vc
α (t)|rad,F

scatt 
an be obtained through 
omplex 
onjugation.5.4.2. Photoni
 equations of motion and s
attering termsIn this se
tion we will derive the equations of motion governing the Green's fun
tions des
ribing thephotoni
 degrees of freedom. In the ele
troni
 
ase we were primarily interested in the equal-time lesserGreen's fun
tion, as this des
ribes ele
troni
 populations and polarizations. The full two-time ele
troni
Green's fun
tions were only of se
ondary interest in themselves, needed only in order to solve the inherenttwo-time equations of motion for the Green's fun
tions 
orre
tly. This enabled us to apply the GKBAfor the ele
troni
 Green's fun
tions, whi
h simpli�ed all aspe
ts of both the formal theory and numeri
alsolution immensely. In many quantum opti
al experiments the main task is to perform time 
orrelatedmeasurements or re
ord emission spe
tra, to obtain information on the properties of the photons emit-ted from some ex
ited stru
ture. Both of these quantities require the full two-time photoni
 Green'sfun
tion in order to be 
al
ulated theoreti
ally, thus making the two-time photoni
 Green's fun
tion ofprimary interest in itself, and not just as an devi
e enabling one to obtain equal-time Green's fun
tions.The full two-time formulation of the equation of motion is a 
ompli
ated a�air, and we will thereforestart by des
ribing the equal-time GKBA version of the photoni
 equations of motion �rst, whi
h areindeed interesting in their own right, and in the end of the se
tion 
onsider the more general two-timeversion.In the GKBA the fundamental governing equation is the equation of motion for the equal-time lesserGreen's fun
tion, eq. (2.50), whi
h for the single mode 
avity redu
es to
i~∂tA

<(t, t) = −i~γcavA
<(t, t) + 2Re

{∫ t

−∞
dt1
[
σ>(t, t1)A

<(t1, t)− σ<(t, t1)A
>(t1, t)

]
}

.To simplify the symmetry relation eq. (5.17) has been used for the self-energy, also a de
ay term has beenadded to take into a

ount the �nite photon lifetime in the 
avity, with the de
ay rate being given by
γcav = ωcav/Q, see the dis
ussion above eq. (5.2). The equal-time lesser Green's fun
tion, A<(t, t), isproportional to the number of photons in the 
avity, A(t), whi
h we will eventually formulate the equationof motion in terms of. To write the GKBA in terms of A(t) we use eq. (2.31) to obtain the followingequal-time relations between the lesser and greater Green's fun
tion

A<(t, t) = −i~−1 〈a†(t)a(t)〉 = −i~−1A(t), (5.52a)
A>(t, t) = −i~−1 〈a(t)a†(t)〉 = −i~−1[1 +A(t)]. (5.52b)Now we may write the GKBA14, eq. (2.55), in terms of the photon density
A≷(t, t′) =







Ar(t, t′)[1 +A(t′)], > and t > t′

Ar(t, t′)A(t′), < and t > t′

−[1 +A(t)]Aa(t, t′), > and t < t′

−A(t)Aa(t, t′), < and t < t′

(5.53)where we will take the retarded and advan
ed Green's fun
tions in their equilibrium forms. To pro
eedwe need the self-energy of the photons due to the ele
tron-photon intera
tion. In the RWA and at thepair-bubble level this is given in the 
ontour version by eq. (A.28), with the following real time 
ompo-nents
σ≷(t, t′) = −i~

∑

α1

|~gα1 |2Gcc,≷
α1

(t, t′)Gvv,≶
α1

(t′, t). (5.54)14Whether we use the full GKBA, eq. (2.53), or the GKBA assuming diagonal spe
tral fun
tions, eq. (2.55), is indi�erent inthe present 
ase due to the fa
t that we only 
onsider a single mode. 81



Non-equilibrium Equations of MotionUsing this self-energy, the GKBA for both the ele
trons, eq. (5.43), and photons, eq. (5.53), we obtain theequation of motion for the photon density A(t)

∂tA(t) = −γcavA(t)

+ 2Re
{∫ t

−∞
dt1
∑

α1

Gc,r
α1

(t, t1)
[
Gv,r

α1
(t, t1)

]∗ (
i~|~gα1 |2[Ar(t, t1)]

∗)

×
{
[1− ρcc

α1
(t1)]ρ

vv
α1

(t1)A(t1)− ρcc
α1

(t1)[1− ρvv
α1

(t1)][1 +A(t1)]
}}

,that 
an be simpli�ed to the following by a few 
an
elations
∂tA(t) = −γcavA(t)

− 2Re
{∫ t

−∞
dt1
∑

α1

Gc,r
α1

(t, t1)
[
Gv,r

α1
(t, t1)

]∗ (
i~|~gα1 |2[Ar(t, t1)]

∗)

×
{
A(t1)

[
ρcc

α1
(t1)− ρvv

α1
(t1)

]
+ ρcc

α1
(t1)

[
1− ρvv

α1
(t1)

]}}

. (5.55)Noti
e the strong similarity between this s
attering term and that of ele
troni
 population, eq. (5.46), hint-ing that we have 
hosen a 
onsistent set of self-energies for the two intera
ting subsystem.Now we will 
onsider the equations of motion for the two-time photoni
 Green's fun
tions, A≷(t, t − τ),only applying the GKBA to the ele
troni
 Green's fun
tions. The equation of motion for the two-timeGreen's fun
tions is eq. (2.49). We note that we need to solve for both the greater and lesser Green'sfun
tion, as these 
ouple through the s
attering terms in their respe
tive equations of motion, 
onsistentwith the remarks in the beginning of se
tion 2.3. The equation of motion reads
i~∂tA

≷(t, t− τ) = −i~γcav

[

A≷(t, t− τ)−A≷
eq(t, t− τ)

]

+

∫ t

−∞
dt1

[{
σ>(t, t1)− σ<(t, t1)

}
A≷(t1, t− τ)−

{
A>(t, t1)−A<(t, t1)

}
σ≷(t1, t− τ)

]

−
∫ t−τ

−∞
dt1

[

σ≷(t, t1)
{
A>(t1, t− τ) −A<(t1, t− τ)

}
−A≷(t, t1)

{
σ>(t1, t− τ) − σ<(t1, t− τ)

}]

,where a phenomenologi
al de
ay term has been added, to take into a

ount the intera
tion of the 
avityphotons with a reservoir through the de
ay rate γcav. The e�e
t of the de
ay term is to make sure thatthe photon Green's fun
tions A≷(t, t− τ) return to their equilibrium values, A≷
eq(t, t− τ), for su�
ientlylong times after the external pulse has a
ted. For τ > 0 we15 note that the integration domains in thememory integrals above overlap for t1 ∈ [t−τ,−∞[, furthermore the stru
ture of the integrands of the twomemory integrals is rather similar, hen
e 
an
elations between the two 
ould be expe
ted. To anti
ipatethis 
an
elation we split the �rst memory integral as ∫ t

−∞ dt1 =
∫ t

t−τ
dt1 +

∫ t−τ

−∞ dt1 and rearrange toobtain
i~∂tA

≷(t, t− τ) = ∂tA
≷(t, t− τ)|phen + ∂tA

≷(t, t− τ)|scatt,I + ∂tA
≷(t, t− τ)|scatt,II, (5.56)where for notational simpli
ity we have de�ned the following three s
attering terms

∂tA
≷(t, t− τ)|phen = −i~γcav

[

A≷(t, t− τ)−A≷
eq(t, t− τ)

]

,

∂tA
≷(t, t− τ)|scatt,I =

∫ t

t−τ

dt1

[{
σ>(t, t1)− σ<(t, t1)

}
A≷(t1, t− τ)−

{
A>(t, t1)−A<(t, t1)

}
σ≷(t1, t− τ)

]

,

∂tA
≷(t, t− τ)|scatt,II =

∫ t−τ

−∞
dt1

[ {
σ>(t, t1)− σ<(t, t1)

}
A≷(t1, t− τ)−

{
A>(t, t1)−A<(t, t1)

}
σ≷(t1, t− τ)

−σ≷(t, t1)
{
A>(t1, t− τ)−A<(t1, t− τ)

}
+A≷(t, t1)

{
σ>(t1, t− τ) − σ<(t1, t− τ)

} ]

.15We only need to 
onsider the 
ase of τ > 0, due to the fa
t that the values of the greater/lesser Green's fun
tion, on ea
hside of the time diagonal, are related through 
omplex 
onjugation. This was already pointed out in se
tion 2.3 and is
ontained in eq. (5.49).82



Equations of Motion Non-equilibriumAs expe
ted no 
an
elations o

ur in ∂tA
≷(t, t− τ)|scatt,I, while for ∂tA

≷(t, t− τ)|scatt,II the 
an
elationsappear to depend on whether the greater or lesser 
omponent is 
onsidered, however, after a
tually per-forming the 
al
ulation one �nds that ∂tA
<(t, t− τ)|scatt,II = ∂tA

>(t, t− τ)|scatt,II, in agreement with [39℄.The simpli�ed result is
∂tA(t, t− τ)|scatt,II =

∫ t−τ

−∞
dt1

[

σ>(t, t1)A
<(t1, t− τ) − σ<(t, t1)A

>(t1, t− τ)

− A>(t, t1)σ
<(t1, t − τ) + A<(t, t1)σ

>(t1, t − τ)
]

,where the greater/lesser supers
ript has been dropped as it is no longer ne
essary. We note that if we takethe equal-time limit, τ = 0, in ∂tA
≷(t, t−τ)|scatt,I we �nd that this 
ontribution to the total s
attering termvanish due to the integration limits be
oming equal. Hen
e both the greater and lesser Green's fun
tionobey the same equation of motion, as ∂tA

<(t, t − τ)|scatt,II = ∂tA
>(t, t − τ)|scatt,II. This might seemsurprising, but is fully 
onsistent with the exa
t relation eq. (5.52) between the greater and lesser Green'sfun
tion. Furthermore we observe that the equation of motion redu
e to the form given by eq. (2.50), asindeed it should.To obtain expli
it expressions for the two-time s
attering terms we use the pair-bubble (PB) self-energyeq. (5.54), along with the slowly-varying transformation eq. (5.48). In all s
attering terms we have furtheremployed eq. (5.49) to limit the two-time fun
tions to the subdiagonal half-plane, whi
h simpli�es thenumeri
al labor signi�
antly. We begin with the phenomenologi
al de
ay term ∂tA

≷(t, t − τ)|phen andreadily obtain
∂tÃ

≷(t, t− τ)|phen = −γcav

[

Ã≷(t, t− τ)− Ã≷
eq(t, t− τ)

]Regarding the form of Ã≷
eq(t, t − τ) we know from se
tion 5.3.3 that the ele
troni
 and photoni
 degreesof freedom do not in�uen
e ea
h other in equilibrium, at our level of approximation. Hen
e the photonGreen's fun
tions in equilibrium will be given by their free version, dressed with the de
ay rate γcav, fromappendix A.6 we therefore �nd

Ã<
eq(t, t− τ) = 0, Ã>

eq(t, t− τ) = e−γcavτ ,where we have assumed nB(~ωcav) = 0, whi
h is very reasonable at any temperatures normally 
onsideredin experiments. For the two-time photoni
 s
attering terms we have employed the GKBA for the ele
troni
Green's fun
tions. For the term ∂tÃ
>(t, t−τ)|PB

scatt,I we get the following expression
∂tÃ

>(t, t− τ)|PB
scatt,I =

∫ t

t−τ

dt1
∑

α1

|~gα1 |2

×
[

−Gc,r
α1

(t, t1)
[
Gv,r

α1
(t, t1)

]∗
e−iωcav(t1−t){ρvv

α1
(t1)− ρcc

α1
(t1)}Ã>(t1, t− τ)

+Gc,r
α1

(t1, t− τ)
[
Gv,r

α1
(t1, t− τ)

]∗
e−iωcav(t−τ−t1){Ã>(t, t1)− Ã<(t, t1)}[1− ρcc

α1
(t− τ)]ρvv

α1
(t− τ)

]

,(5.57)while for ∂tÃ
<(t, t− τ)|PB

scatt,I we obtain a similar expression
∂tÃ

<(t, t− τ)|PB
scatt,I =

∫ t

t−τ

dt1
∑

α1

|~gα1 |2

×
[

−Gc,r
α1

(t, t1)
[
Gv,r

α1
(t, t1)

]∗
e−iωcav(t1−t){ρvv

α1
(t1)− ρcc

α1
(t1)}Ã<(t1, t− τ)

+Gc,r
α1

(t1, t− τ)
[
Gv,r

α1
(t1, t− τ)

]∗
e−iωcav(t−τ−t1){Ã>(t, t1)− Ã<(t, t1)}ρcc

α1
(t− τ)[1− ρvv

α1
(t− τ)]

]

.(5.58)83



Non-equilibrium Equations of MotionFor the last term, ∂tÃ(t, t− τ)|PB
scatt,II, we have a single expression for both the greater and lesser 
ompo-nent

∂tÃ(t, t− τ)|PB
scatt,II =

∫ t−τ

−∞
dt1
∑

α1

|~gα1 |2

×
[

Gc,r
α1

(t, t1)
[
Gv,r

α1
(t, t1)

]∗
e−iωcav(t1−t){−[1−ρcc

α1
(t1)]ρ

vv
α1

(t1)[Ã
<(t−τ, t1)]∗+ρcc

α1
(t1)[1−ρvv

α1
(t1)][Ã

>(t−τ, t1)]∗}

+
[
Gc,r

α1
(t− τ, t1)

]∗
Gv,r

α1
(t−τ, t1)e−iωcav(t−τ−t1){Ã>(t, t1)ρ

cc
α1

(t1)[1−ρvv
α1

(t1)]−Ã<(t, t1)[1−ρcc
α1

(t1)]ρ
vv
α1

(t1)}
]

.(5.59)As used and mentioned several times in previous se
tions, all Green's fun
tions of an equilibrium systemonly depend on the di�eren
e between their two di�erent times, whi
h was utilized heavily in se
tion 5.3.All the non-equilibrium equations of motion derived in this and the previous se
tion, are equations ofmotion propagating the Green's fun
tions along the time diagonal or parallel to it. Along these straightlines the two times do not 
hange relative to ea
h other, and one would expe
t all sour
e terms to theseequations of motion to vanish in the 
ase of an equilibrium system. Reminding ourselves that for asemi
ondu
tor in equilibrium we assume that all ele
trons are in the valen
e band, hen
e ρvv
α (t) = 1 and

ρcc
α (t) = 0, and that no photons are thermally ex
ited, Ã<(t, t− τ) = 0. Noting this it is relatively straightforward to see that all ele
troni
 s
attering terms indeed vanish in equilibrium, due to the stru
ture alone.For the photoni
 s
attering terms in the GKBA, it is equally apparent that also these vanish for a systemin equilibrium. However, the situation is not that 
lear 
ut for one of the the two-time s
attering terms,namely eq. (5.57), while for the two other it is relatively easy to see that these are zero in equilibrium.After using the equilibrium values stated above and writing all fun
tions as single-time quantities, we maybasi
ally write eq. (5.57) on the simpli�ed form

∫ t

t−τ

dt1g(t1 − t+ τ)a(t− t1)−
∫ t

t−τ

dt1g(t− t1)a(t1 − t+ τ).To see that an integral of this type is indeed zero, one may perform a 
hange of integration variablea

ording to [37℄ t̃1 = 2t− t1 + τ in one of the integrals, after whi
h it is 
learly seen that this s
atteringterm also vanish in equilibrium.Path S
attering term fun
tion memory time t1
CI,1 ∂tÃ

≷(t, t− τ)|PB
scatt,I Ã≷(t1, t− τ) [t− τ, t]

CI,2 ∂tÃ
≷(t, t− τ)|PB

scatt,I Ã≷(t, t1) [t− τ, t]
CII,1 ∂tÃ(t, t− τ)|PB

scatt,II Ã≷(t− τ, t1) ]−∞, t− τ ]
CII,2 ∂tÃ(t, t− τ)|PB

scatt,II Ã≷(t, t1) ]−∞, t− τ ]Table 5.2.: Table explaining the integration paths shown in �gure 5.5.Due to the signi�
antly more di�
ult numeri
al pro
edure of solving the two-time equations of motion, asoppose to the single-time equations of motion, we brie�y sket
h the strategy for doing this. As mentionedabove our equations of motion are formulated so that we propagate the Green's fun
tions on or parallel tothe time diagonal, whi
h has the 
onsequen
e that the di�eren
e time τ only enters the equations of motionas a parameter. This simpli�es the numeri
al solution pro
ess, as we only have a single equation of motion,even though we have two independent times. Furthermore, this allows for a formulation that 
an be solvede�
iently on a parallel 
omputer. To illustrate the pro
edure, we show in �gure 5.5 the steps needed tobe taken to obtain the values of the two-time photoni
 Green's fun
tions in a point (t + ∆t, t + ∆t− τ),where ∆t is time dis
retization. The area in the �gure between the two parallel lines is where we solve forthe two-time Green's fun
tions, and �nite width of this strip illustrate the memory depth of the system,expli
itly given by τmax. Inspe
ting the s
attering terms in eq. (5.56), we �nd that for the general 
ase84



Equations of Motion Summaryof non-zero τ four di�erent integration paths need to be followed. These originate from various argumentarrangements in the photoni
 Green's fun
tions, and are shown as the dashed lines in the �gure and de�nedin detail in table 5.2. What should be noted from the �gure, is that in order to in
rease t by ∆t, all onemust know is the values of the Green's fun
tions in grey area in the �gure, and this holds for any valueof τ , whi
h is the essential point. One does not have to start at τ = 0, as 
ould be expe
ted as this isnormally the 
ase when time stepping, and hen
e the integrals 
an be 
al
ulated independently for ea
hvalue of τ , allowing for parallelization, making large simulations possible. One does however have to solvefor all τ 's in the memory strip before t 
an be in
reased by yet another ∆t.
dis
retized two-time plane

�rst time argument

se
ond time argument
CI,2

CI,1

CII,1

CII,2

(t, t)

(t, t− τ)

(t+ ∆t, t+ ∆t− τ)

(t− τ, t− τ)

(t, t− τmax)

Figure 5.5.: S
hemati
 �gure of the dis
retized two-time plane showing several important sets of time 
oordinatesand four integration paths, the C's, followed in the photoni
 s
attering terms.
The equations of motion des
ribed above where solved using the numeri
al methods des
ribed in ap-pendix A.4, further the slowly-varying versions of all sour
e terms are presented in appendix A.9.5.5. SummaryThe main result of this 
hapter is �nal formulation of the equations of motion governing our non-equilibriumsystem. However, in order to get this far we performed a �nal set of approximations on the fundamentalHamiltonians of the system. Also, we treated the trun
ation of the various self-energies, whi
h were all85



Summary Equations of Motionkept in the lowest order, but self-
onsistent as di
tated by parti
le 
onservation. The detailed derivationwas performed in appendix A.5. A se
tion was also devoted to studying the equilibrium properties of oursystem. These are important as knowledge of the equilibrium retarded Green's fun
tions is very importantfor the appli
ation of the GKBA. The LO-phonon intera
tion was found to drasti
ally 
hange the propertiesof the non-intera
ting system, whi
h were dis
ussed for a few numeri
al examples. Surprisingly, the photonintera
tion was found not to alter the equilibrium properties of the ele
troni
 system, meaning that no
orrelations exists between the two spe
ies. In the last se
tion we derived the kineti
 equations for both theele
troni
 and photoni
 degrees of freedom, in the general 
ase appli
able to a non-equilibrium situation.For the ele
troni
 equations the GKBA was applied everywhere, however for the photoni
 equations wepresented two versions, namely one with and without appli
ation of the GKBA.
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6. Results and Dis
ussion6.1. Introdu
tionIn this 
hapter we present results of the numeri
al solution of the equations of motion derived in the previ-ous 
hapter. The equations of motion will be applied to a number of interesting situations, whi
h we thinkare relevant for obtaining an understanding of the e�e
ts of many-body intera
tions in our 
QED system.A main task of this 
hapter will be the determination of the absorption spe
tra for our 
QED system.This will be investigated for variety of di�erent parameters and yield mu
h information on the global spe
-tral properties of the system. Another fo
us is the investigation of more spe
i�
 situations where, undervarious 
ir
umstan
es, ele
trons are ex
ited a
ross the bandgap, and the subsequent population dynami
sis analyzed in terms of time resolved series. These series display dire
tly the interplay between ele
trons,phonons, and photons and allows one to obtain some intuition on the 
ompli
ated many-body dynami
s.In the last two se
tions we investigate properties spe
i�
 to the photoni
 degrees of freedom, namely theemission spe
tra and indistinguishability of the photons emitted from the 
avity. The numeri
al solutionof the equations is in itself a signi�
ant task, and typi
al simulation times for the system 
on�gurationswe have 
onsidered, tend to span from hours and up to one week. We will however not dis
uss the te
hni-
alities of the numeri
al solution pro
ess, as our fo
us is on analyzing the physi
s and theoreti
al model,and we only brie�y dis
uss the numeri
al methods in appendix A.4.6.2. Unphysi
al populationsDuring the veri�
ation and testing of the numeri
al implementation of the equations of motion presentedin 
hapter 5, 
ertain parameter sets were found to 
ause the failure of the diagonal elements of the densitymatrix, ρbb
α (t), to stay within the interval [0; 1]. This result is of 
ourse unphysi
al as it ruins the statisti
alinterpretation of the density matrix, and is an una

eptable result of a physi
al model. It is a knownproblem in the literature, that the "un
ontrolled approximations" [70℄ whi
h are involved when derivingapproximate quantum kineti
 equations, espe
ially in non-equilibrium, 
an 
ause unphysi
al populationsto appear. To our knowledge there do not exist any systemati
 way of 
hoosing the self-energy, so thatone is guarantied to obtain populations within [0; 1], as it is the 
ase, e.g., with 
onservation of totalparti
le number, see appendix A.5. In this se
tion we will des
ribe an example where this failure o

ursand dis
uss its impli
ations for the developed theory.A system where the failure o

urs is that des
ribed in se
tion 5.3.2, whi
h 
onsists of purely dis
rete states.The s
enario is the following; a weak pulse ex
ites the system through eq. (5.38), while the ele
trons intera
twith LO-phonons through the s
attering term eq. (5.44). We do not 
onsider the Coulomb or ele
tron-photon intera
tion. The temporal width of the pulse is 100 fs, it has its peak value at t = 0.4 ps, andwe 
onsider �ve di�erent ex
itation energies. The Fourier transformed of the �ve pulses and the linearabsorption spe
trum of the system, 
al
ulated using the method des
ribed in se
tion 6.3, are shown in�gure 6.1. Here it is seen that we 
onsider three 
ases of non-resonant ex
itation #1, #3, and #5 andtwo 
ases of resonant ex
itation #2 and #4, as it turns out that the failure depends very mu
h on theex
itation 
onditions.In �gure 6.2(a) we show the time evolution of the populations ρbb

α (t) for all states in both 
ondu
tionand valen
e band, for the �ve ex
itation energies. After inspe
tion of the solutions it is found thatthe populations des
ribing the resonant ex
itations #2 and #4 behave physi
ally, staying within the87
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Figure 6.1.: Figure showing the absorption spe
tra of the 
onsidered system (blue line) and the spe
trums of the�ve di�erent ex
itation pulses (red lines).
[0; 1] interval, and eventually rea
h a quasi-thermal equilibrium after approximately 5 ps (not shown in�gure 6.2(a)). For all the non-resonant ex
itations #1, #3, and #5 we do, however, observe unphysi
alpopulations below 0 and above 1, but on a longer times
ale they all rea
h a quasi-thermal equilibriumwith fully positive populations. The numbers in the �gure show that the failure is quite substantial,espe
ially for the 
ondu
tion band, and hen
e indi
ates, along with the smoothness of the 
urves, that weare not dealing with some numeri
al noise issue. It should also be noted that the failure also o

urs atstronger ex
itation where larger o

upation probabilities are obtained. The �rst question that 
omes tomind is why does the theory only fail for the non-resonant ex
itations? To provide a possible answer forthis, we have solved the equations without the LO-phonons, and the results are shown in �gure 6.2(b).For the resonant 
ases we �nd what is expe
ted, namely that the pulse ex
ites some of the ele
tronswhi
h subsequently do not relax or dephase due to the la
k of a de
ay me
hanism. For the non-resonant
ases we observe a phenomena known as adiabati
 following [71, 72℄, where the populations are seento basi
ally follow the temporal shape of the pulse, hen
e the populations return to their equilibriumvalues after the pulse has passed. This phenomena o

urs when the detuning between the ex
itationpulse and ele
troni
 transitions, is 
onsiderably larger than the spe
tral width of the pulse or any levelbroadenings. The adiabati
 following of the populations, is thought to be the reason why the theory onlyfails when 
onsidering the non-resonant ex
itation 
ases. In these 
ases the populations in the 
ondu
tionand valen
e band return to their extremal values of 0 and 1 respe
tively. As the approximate treatmentof the LO-phonon intera
tion does not expli
itly guarantee populations in the [0; 1] interval, exa
tly the
ases where adiabati
 following o

ur are thought to be extra sensitive to breaking the physi
al boundsof the populations. A quantity as the total parti
le number is, however, expli
itly 
onserved throughthe use of self-
onsistent self-energies, and in our simulations we do indeed �nd that the parti
le numberis 
onserved down to the numeri
al a

ura
y. The parti
le number 
onservation is taken as a strongindi
ation that the equations of motion are solved 
orre
tly. It should be noted that in
luding the Hartreeenergy renormalization eq. (5.40), does not 
hange the solution to any signi�
ant degree, indi
ating thatthis 
orre
tion is very small for the 
onsidered system.The ele
troni
 single-parti
le wavefun
tions used in these simulations are very similar for ele
trons in the88



Results and Dis
ussion Unphysi
al populations
0

c 
ba

nd

 

 #1
#2
#3
#4
#5

0.2 0.4 0.6 0.8 1

1

v 
ba

nd

t [ps]

−7.5× 10−5

1 + 2.2× 10−5

(a) Time evolution of the o

upation probabilities with LO-phonon s
attering.
0

c 
ba

nd

 

 
#1
#2
#3
#4
#5

0.2 0.4 0.6 0.8 1

1

v 
ba

nd
t [ps]

1.2× 10−4

1− 1.2× 10−4(b) Time evolution of the o

upation probabilities withoutLO-phonon s
attering.Figure 6.2.: The di�erent 
olored series are for di�erent ex
itation energies, see �gure 6.1, while the solid lines are
ρbb
1 (t) and the dashed ρbb

2/3(t), ρbb
3 (t) = ρbb

2 (t) due to symmetry.
ondu
tion and valen
e band, whi
h has the 
onsequen
e that the Coulomb matrix elements that enterinto the LO-phonon self-energy are very similar in magnitude for the ele
trons in both bands. Also thesingle-parti
le transition energies within ea
h band are not far apart, we have ~(ωc
2 − ωc

1) = 36.17 meVfor the 
ondu
tion band and ~(ωv
1 − ωv

2 ) = 24.44 meV for the valen
e band, where we noti
e that the
ondu
tion band transition is almost perfe
tly resonant with a LO-phonon having an energy of 36.8 meV.This rather symmetri
 setup is a 
onsequen
e of the band parameters we have 
hosen to des
ribe the freeele
trons. They were 
hosen to yield an equal number of bound QD states for the ele
trons in both bands,whi
h is desirable when only des
ribing o�-diagonal elements in the band index as we do (see dis
ussion inse
tion 5.4.1). To narrow down the origin of the population bound breaking another set of band parameterswas tested, see appendix A.8 and se
tion 6.3. This set resulted in more spatially lo
alized valen
e bandwavefun
tions, yielding larger Coulomb matrix elements and smaller transition energies (≈ 15 meV), andmu
h larger transition energies for the 
ondu
tion band states (≈ 2× ~ωLO). The same set of simulationsas des
ribed above was performed on this new system, and it was found that no breaking of the populationbounds o

urred. To identify whether the reason for this new situation arose from the asymmetri
 matrixelements or the di�eren
e in transition energies 
ompared to the �rst system, the transition energy of the
ondu
tion band was manually set to ≈ 1.5 × ~ωLO. After this 
hange the unphysi
al populations againstarted to o

ur, though not of the magnitude as seen in �gure 6.2(a). We must therefore 
on
lude thatthe present theory yields the worst results, sometimes even unphysi
al, when intra-band transitions are
lose to resonant with the LO-phonon energy. This 
on
lusion is 
onsistent with the �ndings of [73℄, whostudy a slightly di�erent, but 
omparable system, in an exa
tly solvable model and makes 
omparisons toapproximations similar to ours.Negative populations 
an also o

ur as a result of the breakdown of the GKBA as investigated by [38℄.This is however not thought to be the reason in our 
ase, as we 
onsider a material with a low LO-phonon
oupling as opposed to [38℄, who 
onsider a strong 
oupling material. The authors of [38℄ also raised thequestion of whether populations within [0;1℄ 
an be guaranteed on formal grounds, but knew of none workthat 
ould provide su
h a guarantee. More fundamentally the problems in our model are expe
ted to arisedue to the fa
t that we 
onsider a purely dis
rete ele
troni
 system, i.e. we have negle
ted the WL 
on-tinuum of delo
alized states. This suspi
ion is supported by the fa
t that several others [41, 42, 74℄ have89



Absorption spe
tra Results and Dis
ussionobtained physi
al results for QD systems, 
oupled to a WL 
ontinuum, in the same self-energy approxi-mation as 
onsidered here. Systemati
ally going to higher orders in the LO-phonon self-energy should inprin
iple remedy the problems 
on
erning unphysi
al populations for the purely dis
rete system, that we
onsider. We suspe
t that the reason why the present self-energy approximation appear to be su�
ient inthe presen
e of a WL 
ontinuum, is 
onne
t to the presumably faster de
ay of higher order 
orrelations(i.e. higher order self-energies), due to the a

ess to the larger phase spa
e provided by the 
ontinuum.However, as the ultimate goal is to in
lude the WL 
ontinuum in the simulations, we will not pursuehigher order 
orre
tions as the present order is expe
ted to be su�
ient, in the presen
e of a 
ontinuum[69℄. Due to la
k of time in the present proje
t, in
lusion of the WL is unrealisti
 and we will therefore
ontinue with the material parameters not resulting in unphysi
al populations.6.3. Absorption spe
traIn this se
tion we present 
al
ulations of the linear opti
al sus
eptibility for di�erent temperatures in therange from 150 K to 300 K. The imaginary part of the sus
eptibility is known to be 
losely related tothe absorption experien
ed by a weak probe �eld, see e.g. [56, p. 11℄, impinging on a system, and thusprovides us with a valuable sour
e of information on the e�e
ts the intera
tions have had on the free system.The spe
trum will 
ontain energy renormalizations and linewidth broadenings 
aused by the intera
tions,hen
e knowing this will make it mu
h easier later on to perform spe
i�
 narrow bandwidth ex
itationsof the intera
ting system. The linear sus
eptibility is also an often treated quantity in the literaturemaking 
omparison with other theories and models possible, that 
ould help to verify our implementation.As des
ribed in se
tion 6.2 
ertain 
hoi
es of parameters for the QD system resulted in unphysi
al popula-tions. For this reason we will not 
ontinue our simulations with the system des
ribed in se
tion 4.2.3 andse
tion 5.3.2, but rather 
hose a new set of parameters not su�ering from the unphysi
al populations. Theband parameters of the new system are presented in table A.2, while the geometri
al parameters of thenew QD system are shown in table 6.1 (left), see �gure 4.2. The size of the QD was tuned so that three
learly bound states formed in the 
ondu
tion band. However due to the new set of band parameters1no symmetry in the number of bound states between the two bands exists, and the number of boundstates in the valen
e band is mu
h greater than that of the 
ondu
tion band. This situation is illustrateds
hemati
ally in �gure 6.3, but for simpli
ity we will only 
onsider the �rst three bound states in thevalen
e band and all the bound states in the 
ondu
tion band, indi
ated by the dashed box in the �gure.We will also negle
t the spin degrees of freedom, as we expe
t that in
luding these will only 
ause minor1Most signi�
antly the larger heavy hole mass of the valen
e band ele
trons.Quantity Value Unit Quantity Value Unit Quantity Value Unit
h 1.25 nm ~ωc

1 567.8 meV V cccc
1111 19.59 meV

d 1.25 nm ~ωc
2 650.5 meV V cccc

2222 13.76 meV
r1 10 nm ~ωc

3 650.5 meV V vvvv
1111 27.05 meV

r2 5 nm ~ωv
1 -270.5 meV V vvvv

2222 21.60 meV
R0 50 nm ~ωv

2 -285.5 meV V cvcv
1111 22.41 meV

Lz 40 nm ~ωv
3 -285.5 meV V cvcv

2222 16.07 meV
V cccc

1212 15.35 meV
V vvvv

1212 22.98 meV
V cccc

2112 4.08 meV
V vvvv

2112 6.80 meVTable 6.1.: Table presenting various parameters: (left) geometri
al parameters of the QD, (mid) free single-parti
leenergies of the 
onsidered bound states in the QD, and (right) a representative sele
tion of Coulomb matrix elements.90
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hanges. Indeed it is only the ele
tron-ele
tron Coulomb intera
tion that mixes subspa
es of di�erent spinsin the Hamiltonian, whi
h is not the intera
tion of main interest. The resulting energies of the levels areshown in table 6.1 (mid), along with a representative set of Coulomb matrix elements2 in table 6.1 (right).The parameters des
ribing the LO-phonons are given in table 5.1.
Condu
tion band
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Figure 6.3.: S
hemati
 illustration of the level stru
ture of the QD used in the simulations in se
tion 6.3. Thedashed box indi
ates the levels used in the simulations.Next we des
ribe the theory needed to obtain the sus
eptibility for our system. The response of a system toa weak externally applied ele
tri
 �eld, E(t), 
an be des
ribed by an indu
ed polarization of the medium.Within linear response theory the indu
ed polarization 
an be written as [56℄
P (t) =

∫ t

−∞
dt′χ(t, t′)E(t′),where χ(t, t′) is the linear opti
al sus
eptibility that per de�nition is independent of E(t), and only dependson the properties of the underlying system that is being probed. It should be noted that we assume pures
alar quantities and that t > t′ due to 
ausality. The above form is 
ompletely general and χ(t, t′) 
andes
ribe any non-equilibrium system due to its two-time dependen
e, this form 
ould, e.g., be used for2The e�e
tive stati
 diele
tri
 
onstant ε enters the expression for the Coulomb intera
tion, whi
h is a well known quantityfor most bulk semi
ondu
tors. We do however deal with heterostru
tures, and here the situation is not as 
lear 
utas for a bulk system. As we ex
lusively 
onsider ele
troni
 states bound to the QD or WL, and not the surroundingbarrier/bulk material, we 
hoose the diele
tri
 
onstant of the low bandgap material. In this thesis we only 
onsider theternary alloy InxGax−1As as the low bandgap material, and therefore we use the following expression for the e�e
tivediele
tri
 
onstant: 1/εx = x/εInAs + (1 − x)/εGaAs, whi
h seems appropriate for a heterostru
ture. The values of thebinary 
ompounds are found from [31℄ for GaAs, εGaAs/ε0 = 12.5, and [75℄ for InAs, εInAs/ε0 = 14.61. For x = 0.6 weget the value εx/ε0 = 13.68 and for pure InAs, x = 1, the value is εx/ε0 = 14.61. Prior to the dis
overy of the unphysi
alpopulations des
ribed in se
tion 6.2, we used a x = 0.6 system and afterwards we swit
hed to a x = 1 system as explainedin the present se
tion. Therefore the values presented in table 6.1 are for the x = 1 system. 91
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ussiondes
ribing the often performed pump-probe experiments. We are in the present se
tion not interestedin probing non-equilibrium systems, but rather systems in thermal equilibrium where it holds that thesus
eptibility is only a fun
tion of the time di�eren
e χ(t, t′) = χ(t− t′), due to arguments similar to thoseof eq. (5.18). This yields a huge simpli�
ation in a
tually obtaining the sus
eptibility, as now we maywrite the formulae as
P (t) =

∫ t

−∞
dt′χ(t− t′)E(t′), (6.1)whi
h is nothing but a 
onvolution integral that under Fourier transformation, eq. (5.1), transforms intoan algebrai
 equation for the sus
eptibility whi
h is easily solved as

χ(ω) =
P (ω)

E(ω)
. (6.2)The next task is to determine the "ma
ros
opi
" polarization from our mi
ros
opi
 model of the system.This is done by 
al
ulating the expe
tation value of the mi
ros
opi
 dipole operator as follows

P (t) = Tr [D · eEρ(t)] = −Tr [dρ(t)] = −
∑

bb′α

dbb′

α ρb′b
α (t),where we use the dipole operator proje
ted onto the dire
tion of the ex
itation �eld, d = −D · eE,as this is the only relevant quantity in a spe
i�
 experiment, see eq. (3.21). Performing the sumsover the band indi
es and using dα = dcv

α = dvc
α we arrive at our �nal expression for the polariza-tion

P (t) = −
∑

α

dα[ρcv
α (t) + ρvc

α (t)] = −
∑

α

dα[ρ̃cv
α (t)e−iωcv

α t + ρ̃vc
α (t)e−iωvc

α t]. (6.3)In the above expression we have also written the density matrix in terms of its slowly-varying 
omponentsthrough the transformation
ρbb′

α (t) = e−iωbb′

α tρ̃bb′

α (t),that pulls out the fast os
illation due to the free evolution of the system. The a
tual numeri
al solution ofthe equations of motion was performed for the slowly-varying 
omponents, as this yields very signi�
antadvantages in terms of time dis
retization. See appendix A.9 for the slowly-varying versions of all equationsof motion and appendix A.4 for a presentation of the numeri
al methods used.The polarization eq. (6.3) is obtained by solving the equations of motion for the density matrix, afterex
itation by an ultra-short pulse of width 15 fs. Even though eq. (6.2) in prin
iple holds for any ele
tri
�eld, it is in pra
tise important that the pulse is temporally short enough to spe
trally 
over all resonan
esof the system, as otherwise numeri
al noise will be
ome too mu
h of a fa
tor. For the Gaussian pulseused in our simulations, the Full Width Half Maximum (FWHM) width is in energy units given by
wE = 4 ln(2)~/∆tpulse, whi
h for ∆tpulse = 15 fs yields wE = 122 meV, being su�
ient for our levels
heme.Our equations of motion are all derived from a theory that deals with redu
ed density matri
es, andtherefore they all 
ontain memory integrals, linking the present state of the system to the past. All thesememory integrals in prin
iple extend from the present and ba
k to the non-intera
ting past at t = −∞,whi
h is a situation that 
an not be treated numeri
ally and fortunately we do not have to. Due to theintera
tions in our system, we expe
ts 
orrelations to de
ay when moving away from the time-diagonal.This is indeed the 
ase as seen in se
tion 5.3.2, where the �nite width of the peaks in the spe
trum of theele
troni
 density of states, 
orresponds to de
ay in the time domain. For all ele
troni
 s
attering termsit is exa
tly the equilibrium retarded Green's fun
tions that set this so-
alled memory depth, due to theuse of the GKBA, and similarly for the photons when the GKBA is used for these. In the simulations wepresent below, we have set the memory depth a

ording to the 
riteria Gb

α(τmemory) < 10−4, with Gb
α(τ)92
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T [K℄ τmemory [ps℄300 7250 9200 12150 18Table 6.2.: Memory depths used in the absorption simulations performed in this se
tion.being de�ned in eq. (5.29). As the retarded Green's fun
tions always enter in pairs, this means that ata memory depth of τmemory, the memory kernel will be suppressed by a fa
tor of at least 10−8, ensuringthat all signi�
ant e�e
ts have been taken into a

ount. For the spe
i�
 system and temperatures wehave 
onsidered in this se
tion, we used the memory depths presented in table 6.2, whi
h are determineda

ording to the above mentioned 
riteria.We note that being in the linear regime we do not formally indu
e any 
hanges in the populations of thedi�erent ele
troni
 states, this 
an be dedu
ed by an expansion in the ex
itation pulse. As su
h we neednot solve for the diagonal elements of ele
troni
 density matrix, redu
ing the dimension of the equationsystem by a fa
tor of 2/3. Furthermore we also note that from the slowly-varying version of eq. (6.3),we see that its Fourier transform will be peaked at the frequen
ies ω = ±|ωcv

α |, thus having signi�
ant
ontributions at both positive and negative frequen
ies. The two parts of the spe
trum are however mirrorimages of ea
h other, and therefore essentially yields the same information. Also, only positive frequen
ies
an be measured in experiments [76, p. 28℄, therefore we will only show spe
trum at positive frequen
ies.6.3.1. LO-phonons and CoulombIn this subse
tion we will present and dis
uss absorption spe
tra for the free system des
ribed above withthe e�e
ts of LO-phonons, des
ribed through eq. (5.44), and the HF Coulomb intera
tion between theele
trons, des
ribed by eq. (5.39). The singular Hartree self-energy from the LO-phonons, eq. (5.40), doesnot 
ontribute to the absorption spe
tra simulations as it only involves populations, that by 
onstru
tiondo not 
ontribute in equilibrium.In �gure 6.4 we show the imaginary part of the sus
eptibility for four temperatures between 150 K and 300K, 
onsistent with our 
hoi
e of only 
onsidering LO-phonons, the top �gure is with the HF Coulomb self-energy in
luded and the bottom �gure is without. When dis
ussing the spe
tra we will adopt the terminol-ogy 
ommonly used in atomi
 physi
s and denote the levels in our QD with the letters s, p, d and so on. Dueto the size of our QD we only need s and p states, with s being the lowest/highest in the 
ondu
tion/valen
eand p being the next lowest/highest in the 
ondu
tion/valen
e band.We start out dis
ussing the spe
tra without the Coulomb intera
tion as this is the simplest. The mostdominating features of the spe
tra are still the s and p transitions near the transition energies of thefree system. These have obtained a �nite width due to the dephasing 
aused by the intera
tion withLO-phonons and the transition energy has also been renormalized slightly to lower values. It is 
learfrom the spe
tra that the lineshape of the s and p transitions are non-Lorentzian, bearing witness ofnon-exponential de
ay of the polarization in the time domain. This non-exponential de
ay arises due tothe fa
t that our system has memory, but is limited to a short time span after the ex
itation by theexternal pulse. This time span is set by the de
ay of the memory kernel ([26, p. 40℄ and [56, p. 227℄),i.e. the retarded Green's fun
tions of the ele
trons. For times longer than the memory depth of thesystem, the polarization enters a regime of slow exponential de
ay, giving rise to the sharp resonan
esin the spe
tra having an approximately Lorentzian lineshape. The reason for the slower de
ay in thelong-time limit, is due to the time-energy un
ertainty relation ∆E∆t ≥ ~/2. This relation di
tates that93
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tra Results and Dis
ussionthe energy must be 
onserved to a higher degree in ea
h s
attering event, than was the 
ase in the short-time regime. This yields less e�
ient s
attering in the long-time limit, as oppose to the short-time limitwhere energy need not be 
onserved to su
h high degree and thus more pro
esses 
ontribute to s
attering.
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Figure 6.4.: Absorption spe
tra of the system shown in �gure 6.3 with the e�e
ts of LO-phonons and the Coulombintera
tion. The transition energies of the free system are indi
ated by the dashed verti
al lines.Apart from the main s and p transitions we observe a very ri
h stru
ture of smaller peaks, positioned onthe high and low energy sides of both main peaks. These are so-
alled LO-phonon-assisted transitions,and arise from pro
esses where ele
trons having absorbed or emitted a number of LO-phonons, makeopti
al transitions. To illustrate these LO-phonon dressed ele
trons, we show in �gure 6.5 the equilibriumspe
tral density of the ele
tron states involved in these simulations, through the GKBA. In prin
iplewe have transitions between every peak in the spe
tral densities, for equal3 in-band quantum numbers(e.g. Ac
1(~ω) and Av

1(~ω)). However, due to the thermal broadening and the a

ura
y limits imposedby the numeri
s, many of these are too weak to be resolved. A general feature when 
onsidering theseries for de
reasing temperature is that the spe
tral features sharpen. This is indeed expe
ted as thebroadening is 
aused by the intera
tion with the LO-phonons, and as the thermal o

upation of thesede
rease with temperature less s
attering is expe
ted to o

ur. There is a notable di�eren
e in thebehavior of the peaks due to LO-phonon-assisted transitions as a fun
tion of temperature, some of them3This is due to the fa
t that we only 
onsider dire
t opti
al transitions, i.e. where the in-band quantum numbers α areequal. Allowing for "indire
t" transitions would lead to a mu
h more 
ompli
ated spe
trum, however, with smaller peakheights due to the smaller matrix element 
ausing the transition.94
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train
rease and some de
rease in peak height as the temperature is lowered. We expe
t this behavior toarise from the fa
t, that the LO-phonon-assisted transitions are between ele
tron states either havingabsorbed or emitted a number of LO-phonons, and these behave di�erently on temperature. This is
learly illustrated in the 
ase of the the valen
e band spe
tral densities in �gure 6.5. Here the peaks onthe high energy side de
rease, 
orresponding to absorption, and those in the low energy side in
rease,
orresponding to emission, as the temperature is de
reased. We will therefore have three di�erent kindsof LO-phonon-assisted transitions namely: 1) between two absorption sidebands whi
h should thereforede
rease the most for de
reasing temperature, 2) between two emission sidebands whi
h should in
rease forde
reasing temperature, and 3) between an emission and absorption sideband where the height should bean intermediate between the two �rst. Predi
ting the relative strengths and positions of the LO-phonon-assisted transitions, would be a very 
omplex and di�
ult pro
edure and one would have to analyze theLO-phonon s
attering term in great detail. We are quite 
ertain that the overall stru
ture of the LO-phonon-assisted resonan
es, 
an be understood in terms of the above and we will therefore not go intofurther detail on this point.A 
hara
teristi
 feature seen in many of the peaks at 300 K is that they appear to 
onsist of a main peakand a shoulder on one of the sides, 
ausing an apparent asymmetry of the resonan
e. For most of these,however, we observe, as temperature is lowered, that the shoulders are simply lesser pronoun
ed resonan
eson their own, and not an asymmetry of the main peak. A 
urious feature is seen in the height of the sand p main resonan
es, where we noti
e that for all temperatures 
onsidered, the s peak is higher thanthe p peak. From a simple model of the system where, instead of LO-phonons, a 
onstant dephasing rateis added to the o�-diagonal elements of the density matrix, we expe
t the p resonan
e to have twi
e themaximum value of the s resonan
e. This is due to the fa
t that the p shell is doubly energy degenerate, andhen
e 
ontributes twi
e to the total polarization, see eq. (6.3). In our model the height of the resonan
esis dire
tly 
onne
ted to the slow long-time de
ay of the polarization, where we 
an 
on
lude that the spolarization de
ays slower than the total p polarization.Having dis
ussed the spe
trum in the absen
e of the Coulomb intera
tion, we now 
onsider the spe
trumwith this fundamental intera
tion turned on. In 
omparing the spe
tra with and without the Coulombintera
tion, the most noti
eable di�eren
e is the large negative shift of the s and p resonan
es, while otherparts of the spe
tra appear largely una�e
ted. These shifts are well-known and are usually 
alled ex
itonresonan
es [56, p. 188℄, and arise due to the e�e
tively attra
tive intera
tion between an ele
tron anda hole, that form the ex
iton quasi-parti
le. The magnitude of the ex
iton shifts 
an relatively easy bededu
ed from a simpli�ed version of the equations of motions and we will brie�y show how. We startby 
onsidering the Coulomb HF self-energy eq. (5.39), where we need only 
onsider the band o�-diagonal
omponents, e.g. the 
v 
omponent. After using the band sele
tion rule of the Coulomb matrix element,eq. (4.18), we �nd that the Hartree 
ontribution does not 
ontribute, and that the Fo
k 
ontributionredu
es to
Σcv,ee,F

α (t) = −
∑

α1

V cvcv
αα1α1αρ

cv
α1

(t).Using eq. (5.37a) we arrive at the equation of motion for ρcv
α (t) in
luding only the Coulomb intera
-tion

∂tρ
cv
α (t) = −i[ωcv

α − ~
−1V cvcv

αααα]ρcv
α (t)− γαρ

cv
α (t) + i~−1

∑

α1 6=α

V cvcv
αα1α1αρ

cv
α1

(t)− i~−1U cv
α (t), (6.4)where we have also added a small dephasing rate γα and an external ex
itation �eld U cv
α (t). From thisequation it is easily seen that for a two-level system, we get an energy renormalization given by the dire
tex
iton Coulomb matrix elements V cvcv

αααα. On an intuitive level it does seems strange that one shouldobtain a Coulomb energy shift with only a single ele
tron present in the system, as if the ele
tron intera
tswith itself. We therefore suspe
t that it arises due to virtual pro
esses, that are automati
ally taken intoa

ount in the Green's fun
tion formalism. We have not fully understood the origin of this shift, butwe do think that it is an unphysi
al feature that should not appear. A strong possibility is that arisesfrom the trun
ation of the self-energy, and therefore solving the problem with the exa
t self-energy would95
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tion, eq. (5.31), for the ele
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 states.96
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T [K℄ ∆polaron [meV℄300 -1.268250 -1.200200 -1.185150 -1.185Table 6.3.: Temperature dependen
e of energy renormalization of the s transition, the polaron shift, dedu
ed byinspe
ting the data from �gure 6.4.somehow 
ompletely 
an
el the observed shift. For more than two levels the polarizations 
ouple throughthe indire
t ex
iton matrix elements in the third term, these are, however, usually several times smallerin magnitude than the dire
t ones, see table 6.1. Indeed solving the above equation of motion for oursystem, whi
h 
an be done analyti
ally exa
t, we �nd that the dire
t ex
iton matrix elements a

ount for98% and 97% of the entire ex
iton shift for the s and p transitions, respe
tively. Inspe
ting the data in�gure 6.4 we �nd an ex
ellent agreement with these simulations, when the polaron energy shift is takeninto a

ount.A pe
uliar feature of the spe
tra is that the s resonan
e apparently split up into two peaks, when we turnon the Coulomb intera
tion. Splitting of spe
tral features is normally indi
ate that we have entered somesort of strong 
oupling regime for a given intera
tion, where the 
oupling strength ex
eeds the relevantlinewidths. As this splitting appears when the Coulomb intera
tion is turned on, one might be tempted
on
lude that it is dire
tly due to this intera
tion. However, due to the stru
ture of eq. (6.4) and ourexperien
e with its solution, we do not think that the Coulomb intera
tion, at the HF level and in thelinear regime, 
an give rise to the usual kind of intera
tion indu
ed splitting. The only intera
tion thatis in
luded in these simulations besides the Coulomb, is the intera
tion with the LO-phonons, and hen
ewe spe
ulate that the splitting must somehow originate from this intera
tion. Indeed if we 
ompare thespe
tra with and without Coulomb intera
tions, in the spe
tral region near the renormalized s resonan
e,we observe a rather pronoun
ed LO-phonon-assisted transition in the spe
tra without Coulomb. Thisparti
ular LO-phonon-assisted transition has a main peak and a small shoulder on the high energy side.We believe that by sheer 
oin
iden
e (rooted in the spe
i�
 system parameters of 
ourse), the s transitiongets shifted and lands on top of this LO-phonon-assisted transition. This 
auses the LO-phonon-assistedtransition to be magni�ed several orders of magnitude, and by 
oin
iden
e it is the shoulder that getsmagni�ed the most. The main peak is also magni�ed to a signi�
ant value, even though the ex
iton shiftdoes not 
oin
ide exa
tly with this resonan
e, the reason being that the main peak was originally mu
hmore signi�
ant than the shoulder. The net result is what appears to be a Coulomb indu
ed splitting,whi
h in some sense it is, but fundamentally it is mediated by the LO-phonons.The last observation we wish to note is that the ex
iton shift mainly o

urs for the original s and ptransitions, while all the LO-phonon-assisted transitions are only very weakly a�e
ted by the Coulombintera
tion.6.3.2. LO-phonons and photonsIn this subse
tion we will dis
uss the absorption spe
tra for the same system as above, but now in
ludingthe intera
tion with photons and not the Coulomb intera
tion. Even though we have derived equationsof motion for the photon Green's fun
tions in se
tion 5.4.2, these will not be needed in the linear regime.This is be
ause only ele
troni
 densities enter in the sour
e terms of these equations of motion, andthese are not a�e
ted in the linear regime, hen
e we will not 
hange the photon Green's fun
tions fromtheir equilibrium values. The only way the photons enter the ele
troni
 equations, is through the singularHartree self-energy, eq. (5.41), where the retarded photon Green's fun
tion may be taken in its equilibriumform due to the above arguments. 97



Absorption spe
tra Results and Dis
ussionThe properties of the 
avity are treated fully on a parameter basis, whi
h is reasonable as we only 
onsidera single quasi-mode in the 
avity. The �rst parameter is the energy of the 
avity photon ~ωcav, whi
hwe in this se
tion will always tune relatively 
lose to the s transition in the QD. Therefore we write theenergy as
~ωcav = ~ωcv

1 − |∆polaron|+ n× 1 meV, (6.5)where we have subtra
ted the small energy shift due to the ele
tron-phonon intera
tion from the freeenergy of the s transition and n is a dimensionless parameters. This is done to be able to 
ontrol thedetuning of the 
avity with respe
t to the LO-phonon dressed ele
troni
 system, and in table 6.3 we showthe temperature dependen
e of the polaron shift of the s transition. The se
ond parameter des
ribes the�nite lifetime of the photons in the quasi-mode of the 
avity. We will usually talk about the linewidth
~γcav of the photon, or its inverse 
ounterpart the lifetime τcav = γ−1

cav, however, another 
ommonly usedmeasure is the Q-fa
tor de�ned as Q = ωcav/γcav. In the following dis
ussions we will use the quantity thatbest suits the given situation. The last parameter des
ribes the 
oupling strength between the photonsand ele
trons and is denoted ~gα. However, as dis
ussed in se
tion 4.4 it is reasonable within our model to
onsider a single strength for all transitions, and we may therefore drop the α subs
ript and simply referto a single number ~g.
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Figure 6.6.: Figures showing the absorption spe
tra in
luding the e�e
ts of LO-phonons and the 
avity photons.These simulations were done for 
oupling strengths in the range ~g = [0.1, 0.2, 0.3, 0.4, 0.5, 1, 2, 3, 4, 5, 6, 7] meV, with
~g = 0.1 meV being the blue 
enter peak and ~g = 7 meV being the outer purple double peak. Other parametersin the simulations were: ~ωcav = ~ωcv

1 − |∆polaron|, τcav = 2.36 ps ⇒ ~γcav = 0.28 meV ⇒ Q = 3000, and atemperature of 300 K.As in the 
ase of the Coulomb intera
tion in the previous subse
tion, one may negle
t the in�uen
e ofthe LO-phonons and 
ome up with a mu
h simpler set of equations, that in some 
ases 
an be solvedanalyti
ally exa
t. These simpler models are sometimes useful in interpreting the results of more 
ompli-
ated numeri
al models, we will therefore brie�y dis
uss su
h a model. As mentioned in the beginningof this subse
tion we need only 
onsider the Hartree self-energy of the ele
trons due to the photons.Furthermore as the self-energy is purely o�-diagonal in the band index, only the following element is98
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Σcv,rad,H

α (t) =

∫ t

−∞
dt′
∑

α1

~gα~gα1ρ
cv
α1

(t′)Ar(t, t′), (6.6)where Ar(t, t′) = −i~−1θ(t − t′)e−iωcav(t−t′)−γcav|t−t′| is the retarded photon Green's fun
tion4. Usingeq. (5.37a) we obtain the equation of motion for the inter-band polarization
∂tρ

cv
α (t) = −iωcv

α ρ
cv
α (t)− γαρ

cv
α (t)− i~−1

∫ t

−∞
dt′
∑

α1

~gα~gα1ρ
cv
α1

(t′)Ar(t, t′)− i~−1U cv
α (t), (6.7)where a dephasing rate γα and an ex
itation �eld U cv

α (t) have been added. In our QD system the di�eren
ein transition energy between the s and p shells is above 90 meV, hen
e if we tune the 
avity energy nearthe s transition we may negle
t the in�uen
e of the p transitions, due to very large detuning. In this
ase of a two-level system we may solve eq. (6.7) analyti
ally using the Lapla
e transform te
hnique, ifwe assume a delta pulse ex
itation at t = 0. The solution yields the time-dependent polarization givenexpli
itly by
ρcv(t) =

ρcv(t = 0)

λ+ − λ−
(
[λ+ + iδ − γcav] e

λ+t − [λ− + iδ − γcav] e
λ−t
)
e−iωcv

1 t (6.8)where δ = ωcav−ωcv
1 is the detuning and λ± = 1

2 (−iδ− γ− γcav ± i[4g2 + (δ+ i[γ− γcav])
2]1/2), the valueof ρcv(t = 0) is determined by the spe
i�
s of the ex
itation pulse but is relatively unimportant when
onsidering absorption spe
tra. We note that only the dephasing rate γ does not enter in the full modeland hen
e this is the only adjustable parameter.
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tion of ~g for the simulation and two-level model, and (right) shows the positions of the peaks as a fun
tion of

~g for the simulation and two-level model, the bla
k dashed line show the polaron shift.To start out the dis
ussion we 
onsider a situation where the photon energy is set so that we obtain asituation as 
lose to the usual zero detuning 
ase as possible, that is we put n = 0 in eq. (6.5), we 
hoose a4Alternatively one may introdu
e the di�eren
e time de�ned as τ = t − t′, in terms of whi
h eq. (6.6) transforms to:
∫∞
0 dτ

∑

α1
~gα~gα1ρcv

α1
(t − τ)Ar(τ), where τ 
an be interpreted as an absolute memory time. 99
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Q-fa
tor of 3000, and a temperature of 300 K. The 
oupling strength is varied from 0.1 meV to 7 meV (thestep size is shown in the �gure 
aption) and the resulting spe
tra are shown in �gure 6.6. We only showthe spe
tral region of the spe
tra near the energy of the 
avity, as the other parts are basi
ally una�e
tedby the presen
e of the 
oupling to the photons, whi
h makes sense on an intuitive level. At the lowestvalue of ~g we observe a single peak at the s transition energy, whi
h is slightly broader and lower inmaximum value 
ompared to the spe
tra without photons. The fa
t that we see a single peak, indi
atesthat we are in the so-
alled weak 
oupling regime, see the dis
ussion in 
hapter 1. For the next few valuesof the 
oupling strength, we observe that the single peak gradually splits and be
omes a double peak. Theseparation in
reases with the 
oupling strength, being expe
ted behavior seen in simple textbook modelsas e.g. eq. (6.8). This is the regime of so-
alled strong 
oupling, see 
hapter 1. A behavior that is howevernot expe
ted from simpler models, is the asymmetry in the peak heights in the double peak stru
ture. Wesee through the di�erent values of ~g that neither the left or right peak remains dominant, but rather themaximum shifts several times. To quantify these observations, we show in �gure 6.7 the peak heights andpositions as a fun
tion of the 
oupling strength, along with the numbers predi
ted by eq. (6.8). It shouldbe noted that the dephasing rate entering eq. (6.8), was 
hosen so that the peak heights were similar inmagnitude, whi
h 
oin
identally gave a dephasing rate very similar to the photon de
ay rate, re�e
tingthe e�e
tive dephasing rate 
aused by the LO-phonons at this temperature. It is however not the goal ofthis dis
ussion to extra
t dephasing rates, but rather to show qualitative di�eren
es, so we will not dwellon this point. In �gure 6.7 we see that the spe
tral positions of the peaks in the strong 
oupling regime,follow rather 
losely the positions predi
ted by our simple model, although the right peak seems to drifta bit more than the left peak. In the 
ase of the peak heights we see a mu
h more dramati
 departurefrom the predi
tions of the simple model. The simple model predi
ts that the left and right peaks shouldbe of equal magnitude, due to the symmetri
 lineshape imposed by the 
onstant dephasing rate, and tendtoward a 
onstant value for large ~g. Instead of an equal magnitude we observe that the data points fromthe simulation, a
tually 
ross ea
h other twi
e in the range of 
oupling strengths we 
onsider. This deviantbehavior is, of 
ourse, 
aused by the intera
tion with the LO-phonons, and is the result of the 
ompli
ateddynami
s between the photons and the LO-phonon dressed ele
troni
 states. In order to more pre
iselydetermine the reason for this behavior, one should go ba
k to the spe
tral fun
tions in �gure 6.5, andinvestigate exa
tly whi
h of the LO-phonon and/or hybridization peaks, that give rise to spe
tral featuresnear the s transition in the absorption spe
tra without photons. However, su
h an extensive analysis isbeyond the s
ope of this thesis.Now we will dis
uss a situation where we vary the detuning parameter n, see eq. (6.5), and �x the
oupling strength at ~g = 5 meV, other parameters are as in �gure 6.6. The spe
tra obtained fromthese simulations are shown in �gure 6.8 for a wide range of detunings. Starting at n = 0 we see a
lear double peak stru
ture indi
ating that we are in the strong 
oupling regime. Furthermore, the leftand right peaks are of approximately the same magnitude, whi
h indeed they need not as 
an be seen in�gure 6.6. In this situation we may not assign a spe
i�
 peak to either the photon or ele
tron. The systemis in a strong superposition of the two, and it is not possible to distinguish them. We usually say thata polariton, an ele
tron-photon quasi-parti
le, has formed. For in
reasing positive detuning we observe a
lear monotoni
al in
rease for the left peak and de
rease for the right peak, whi
h is expe
ted on the basisof our simple model. Having a situation where di�eren
e in peak magnitude is as large as for n = 20,
orresponds to a departure from the strong 
oupling regime and into a regime where we may assign apeak to ea
h of the involved parti
les. Here the left peak is the ele
tron and the right is the photon,whi
h 
an be seen from the fa
t that it is the most detuned of the two peaks. For in
reasing negativedetuning we observe the same trend, but the other way around, until a detuning near n = −12 is rea
hed,then the right peak is no longer in
reasing, but a
tually de
reasing. In �gure 6.9 the non-monotoni
albehavior is more 
learly presented, and we see that the right peak 
ontinues to de
rease for detuningslarger than those shown in �gure 6.8. Furthermore we also note a small in
rease in the left (photon)peak for the largest negative detuning 
onsidered, whi
h might be due to the presen
e of LO-phononassisted transition near this pla
e in the spe
trum, see �gure 6.4. Comparing to what is predi
ted by oursimple model, the disagreement is strongest for negative detunings, whi
h is expe
ted to originate fromthe spe
tral asymmetry introdu
ed by the intera
tion with LO-phonons. In �gure 6.9 we also show thepeak positions as a fun
tion of the detuning, whi
h are seen to rather 
losely resemble what is predi
ted100
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Figure 6.8.: Figures showing the absorption spe
tra in
luding the e�e
ts of LO-phononsand the 
avity photons. These simulations were done for detunings in the range n =
[−20,−16,−12,−10,−8,−6,−4,−2, 0, 2, 4, 6, 8, 10, 12, 16, 20], see eq. (6.5). Other parameters in the simula-tions were: ~g = 5 meV, τcav = 2.36 ps ⇒ ~γcav = 0.28 meV ⇒ Q = 3000, and a temperature of 300K.by the two-level model.Comparing the results of �gures 6.7 and 6.9 we 
an 
on
lude, that the spe
tral positions of the peaks in thestrong 
oupling regime, are not mu
h a�e
ted by having an expli
itly many-body intera
tion 
ausing thedephasing of the opti
al polarizations. The individual weights in the double peak stru
tures are howeververy mu
h a�e
ted by having dephasing modeled beyond simple 
onstant dephasing rates, whi
h 
an givean indi
ation of when more detailed modeling of experiments is needed.
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simu leftFigure 6.9.: Two alternative representations of the spe
tra shown in 6.8, (left) presents peak heights as a fun
tionof the detuning parameter n for the simulation and model, (right) presents the peak positions as a fun
tion n forthe simulation and model, further the bla
k dashed lines are for the free systems.6.4. Time domainIn the previous se
tion we dis
ussed the absorption spe
tra of our QD system, whi
h gave detailed spe
tralinformation on the ele
troni
 transitions and how these were a�e
ted by the various intera
tions we
onsidered. However, the simulations were performed in the linear regime, where formally no populationdynami
s take pla
e and we need only 
onsider the equations of motion for the o�-diagonal elements of theele
troni
 density matrix. The theory developed throughout this thesis is, however, mu
h more general and
an treat a great range5 non-equilibrium situations where the populations of the di�erent states move awayfrom their equilibrium values. Indeed, if one was solely interested in the linear absorption spe
trum this
an to a good approximation be dedu
ed from the equilibrium properties of the system [26, p. 161℄, and atrue non-equilibrium formalism need not be applied. As one of the main goals of this thesis is to developa theory that is 
apable of des
ribing non-equilibrium pro
esses in semi
ondu
tors, this se
tion will bedevoted to dis
ussing solutions of our equations of motion in the time domain under various 
ir
umstan
eswhere true non-equilibrium 
onditions are present.6.4.1. LO-phononsIn this subse
tion we 
onsider the time evolution of the ele
troni
 density matrix after ex
itation by anexternal pulse in
luding only the intera
tion with LO-phonons, through the Hartree and Fo
k self-energies,eqs. (5.40) and (5.44), respe
tively. For simpli
ity we negle
t the Coulomb intera
tion between theele
trons and the intera
tion with photons, as in
luding these intera
tions makes the analysis more di�
ult.Omitting these intera
tions of 
ourse makes the results less appli
able to real physi
al systems, but it allowsus to study the e�e
t of LO-phonons ex
lusively. In fa
t in systems where photons o

upy bulk sizedvolumes, it is well known that the radiative re
ombination times are on the order of nanose
onds, whereasthe typi
al times
ale for phonon dynami
s is pi
ose
onds. Hen
e in negle
ting the photon intera
tion wemay simply imagine 
onsidering su
h a system, where photons only be
ome important on mu
h longertimes
ales.5Generally we are limited to the weak ex
itation regime. Going beyond the weak regime require us to take into a

ount thee�e
ts of s
reening.102
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Figure 6.10.: Figures showing the time evolution of the elements of the ele
troni
 density matrix for three dif-ferent ex
itation energies and four di�erent temperatures. In all �gures the solid line is 300 K, the dotted250 K, the dashed-dotted 200, and the dashed 150 K. The strength of the ex
itation pulse is the same forseries. The s
aling numbers {ac, av, b} for the plots are: top: {
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}, middle:
{
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Time domain Results and Dis
ussionEx
itation energy T [K℄ ∑

α ρ̃
cc
α (t = 10 ps)

~ωcv
2 300 1.7127× 10−2250 1.7382× 10−2200 1.7610× 10−2150 1.7797× 10−2

~(ωcv
2 + ωcv

1 )/2 300 6.8058× 10−4250 6.2670× 10−4200 5.7419× 10−4150 5.2793× 10−4

~ωcv
1 300 1.0728× 10−2250 1.0962× 10−2200 1.1168× 10−2150 1.1335× 10−2Table 6.4.: Table showing the total number of ele
trons ex
ited into the 
ondu
tion band, ∑α ρ̃cc

α (t = 10 ps), by theexternal ex
itation �eld.The �rst situation we wish to 
onsider is the establishment of a quasi-thermal equilibrium state within ea
hband, due to thermalization of the ele
trons through the intera
tion with the LO-phonons. We 
onsider thesame system as in se
tion 6.3, where we ex
ite the system with a 100 fs pulse of �xed amplitude and varythe photon energy of the pulse and temperature. The results of the simulations are shown in �gure 6.10.The top �gure is for a photon energy of ~ωcv
2 
orresponding to the free p shell transition energy, the middleone is for an energy of ~(ωcv

2 + ωcv
1 )/2 
orresponding to right between the s and p transitions, and �nallythe bottom �gure is for an energy of ~ωcv

1 
orresponding to the free s transition. Thus we 
onsider two
ases of resonant ex
itation6 and one 
ase of o�-resonant ex
itation. Ea
h simulation was performed atfour di�erent temperatures, 300 K, 250 K, 200 K, and 150 K.Generally we observe that all populations rea
h a quasi-equilibrium state within 4-7 ps. This is 
onsis-tent with results obtained in the paper [41℄, even though they rea
h the quasi-equilibrium slightly faster,presumably due to the fa
t that they in
lude a WL 
ontinuum that is expe
ted to speed up the thermal-ization. The simulations all show the expe
ted result, namely that ele
tron states of lower energy are morepopulated than those of higher energy, being 
onsistent with the general rule that a subsystem 
onne
tedto a reservoir always tries to minimize its total energy. A slightly surprising result in the 
ases of theresonant ex
itations, is that the polarization de
ays on a signi�
antly longer times
ale than the times
aleit takes the populations to rea
h the quasi-equilibrium. An in
rease in the lifetime of the polarizations is,however, observed as the temperature in lowered. Going through the populations at large times when thequasi-equilibrium has been established, we see a 
lear tenden
y of the ele
tron o

upation to shift towardshigher/lower energy in the 
ondu
tion/valen
e band as the temperature is in
reased. This is expe
tedas for higher temperature, the probability of an ele
tron to absorb a LO-phonon in
reases due to thethermal o

upation fa
tor of the LO-phonons. This trend is, however, not observed for the non-resonantex
itation for reasons that will be explained shortly. As we learned in se
tion 6.3 the absorbtion spe
trum
hanges with temperature, and thus we 
an not expe
t the same number of ele
trons to be ex
ited, fora �xed ex
itation pulse, as we vary the temperature. Inspe
ting the total number of ele
trons generatedin the 
ondu
tion band by the pulse, reveals that it does indeed depend on temperature, see table 6.4.Comparing the numbers for the two resonant ex
itations, we see that almost twi
e as many ele
trons aregenerated in the 
ase of p shell ex
itation than in the 
ase of the s shell. This is 
onsistent with the fa
t the6In the se
tion on absorption spe
tra we were 
areful to subtra
t the small polaron energy shift from the energy of the
avity photon, in order to be able to have full resonan
e between the s transition and the photon. This is, however, notas important in this se
tion, as we 
onsider a 100 fs pulse 
orresponding to a FWHM energy width of 18.2 meV and thusthe polaron shift of the order 1 meV is not important. The situation was di�erent in the absorption simulations, wherethe high Q of the 
avity made the photon linewidth of the order 0.1 meV, thus making the polaron shift important toa

ount for.104



Results and Dis
ussion Time domainp shell is double energy degenerate and hen
e in the free system one would expe
t this ratio to be exa
tly2. However due to the e�e
ts of the LO-phonons this is not the 
ase. For the 
ase of the non-resonantex
itation we see that the numbers depend strongly on temperature, explaining why we do not see thesame trend as for the resonant 
ases. In fa
t the dependen
e of ∑α ρ̃
cc
α (t = 10 ps) on temperature is sostrong that in order to 
on�rm the above intuition regarding LO-phonon absorption, one should tune theex
itation �eld so that an equal amount was ex
ited for the di�erent temperatures, or simply initiate thesimulations with ele
trons already ex
ited7.We will now turn to a dis
ussion of the transient regime in �gure 6.10, between the pulse has ex
ited thesystem and the quasi-equilibrium has been rea
hed. In the 
ases of resonant ex
itation, we observe aninitial rapid 
hange in the populations of the levels the pulse was tuned onto, however already during theshort time span the pulse is in the system, s
attering between the intra-band levels has already o

urred.This shows that the LO-phonons in�uen
e the ele
tron dynami
s on times
ales below the 100 fs mark. Inthe non-resonant 
ase we are in the regime where one would expe
t to see the phenomena of adiabati
following, already dis
ussed in se
tion 6.2, due to very o�-resonant 
hara
ter of the external pulse. Indeedfor a free system, as shown in �gure 6.2(b), we see how the populations simply follow the ex
itationpulse envelope, illustrating the adiabati
 following. Whereas in the present simulations, the LO-phononsseem to "
at
h" the ele
trons near their quasi-equilibrium values, making the pulse unable to "follow"them ba
k to their true equilibrium values. After the pulse has left the system, the ele
tron populationsapproa
h their quasi-equilibrium values of qualitatively di�erent ways, we observe both exponential-likemonotoni
al de
ay and de
ay with rather powerful os
illations. The exponential-like monotoni
al de
ayo

urs mainly in the 
ondu
tion band and the os
illatory de
ay o

urs mainly in the valen
e band. Weexpe
t this di�eren
e between the bands to arise from the di�eren
e in intra-band transition energies, asthis is one of two quantities determining how e�
ient the ele
trons and LO-phonons 
ouple, the otherbeing the matrix element. Indeed from table 6.1 we read o� the following intra-band transition energies:

~ωvv
12 = 0.4 × ~ωLO = 15.0 meV and ~ωcc

21 = 2.2 × ~ωLO = 82.7 meV. These 
learly show that the intra-band transition in the valen
e band is mu
h more resonant with a LO-phonon energy than the intra-bandtransition in the 
ondu
tion band. Thus we expe
t a mu
h stronger 
oupling in the valen
e band than inthe 
ondu
tion band. Indeed it has been pointed out in the literature [41, 61℄ that these os
illations areanalogous to the Rabi os
illations8 observed in opti
s in the strong 
oupling regime. Studying 
arefully thetransient regime in the valen
e band, we noti
e a pronoun
ed dependen
e of the os
illations on temperature,both in os
illation period, amplitude, and de
ay time. The os
illation period is seen to in
rease as thetemperature is lowered, whi
h is usually 
onne
t to a de
rease in a 
oupling strength. In our 
ase weexpe
t that this lowering of the e�e
tive ele
tron-phonon intera
tion, arises from the thermal o

upationfa
tors of the LO-phonons. These de
rease along with the temperature and enters the LO-phonon Green'sfun
tions o

urring in the self-energy determining the intera
tion. The damping of the os
illations isseen to in
rease along with temperature, whi
h is also 
onsistent with the fa
t that the e�e
tive ele
tron-phonon intera
tion in
reases with in
reasing temperature. In the low temperature simulations for theo�-resonant 
ase, we observe a lot of small os
illations modulating the larger os
illation. We suspe
t thatthese small os
illations might arise from pro
esses, where the inter-band polarization for both the s andp transitions enters, so-
alled P 2 terms see [26, p. 281℄ or [56, p. 229℄. The reason for this suspi
ion isthat it is only for the non-resonant 
ase that the polarizations for both inter-band transitions have similarmagnitude.The simulations dis
ussed above were all done in the weak ex
itation or linear regime where, as notedin se
tion 6.3, only the o�-diagonal elements of the ele
troni
 density matrix 
hange signi�
antly fromtheir equilibrium value. This is due to the fa
t that these are �rst order in the external �eld, whereas thepopulations or diagonal elements are se
ond order9. In this lowest order regime the qualitative shape ofthe solutions does not 
hange, only the absolute magnitude does, and this s
ales linearly for o�-diagonalelements and quadrati
ally for the diagonal elements in the external �eld. Our model is however notlimited to lowest order in the ex
itation �eld, in fa
t it 
ontains all order of the ex
itation �eld, and we7In the low ex
itation regime it is a
tually possible to obtain the quasi-thermal equilibrium populations only throughknowledge of the true equilibrium retarded Green's fun
tions, through the use of the �u
tuation-dissipation theorem [38℄.8This is a
tually not that surprising as photons and phonons are formally identi
al at our approximation level.9This 
an be realized by performing a formal expansion in the external �eld, see [31℄. 105



Time domain Results and Dis
ussionwill therefore spend some time dis
ussing how the solutions 
hange qualitatively as we move away from thelinear regime. To illustrate the 
hange we have plotted in �gure 6.11 the in
oherently summed polarization
∑

α |ρ̃cv
α (t)| and the population of the s shell in the 
ondu
tion band, for a range of di�erent strengthsof the ex
itation �eld. The simulations were performed with a 15 fs pulse and a temperature of 300 K.The reason for 
hoosing su
h a short pulse, is that it 
reates solutions that are more os
illatory than a100 fs pulse, making the point easier to illustrate. All solutions are s
aled to fa
ilitate 
omparison of thequalitative shape, even though their absolute values are quite di�erent.For the two sets of solutions with relative �eld strengths of 0.75 and 1 we are 
learly in the linear regime,seen through the fa
t that these solution are of the same s
aled shape. For the next two of strengths2.5 and 5, we still see an overall agreement in the shape of the solutions, 
ompared to the linear regime,however they do start to di�er slightly. At relative strengths of 7.5 and 8.75 the departure from the linearregime is even more pronoun
ed, espe
ially for the solutions of the populations, whereas the in
oherentlysummed polarization is not a�e
ted that mu
h. For the largest relative strength 
onsidered, equal to10, the qualitative shape of the solution for the population has totally 
hanged, and again we see thatthe polarization is not as sensitive. In
reasing the ex
itation strength even further, we enter a regimewhere Rabi os
illations start to o

ur, due to the intera
tion between the 
lassi
al ex
itation �eld andthe ele
trons. These are, however, not presented as the fo
us is on 
hanges in the dynami
s due toLO-phonons.To understand the origin of these qualitative 
hanges in the dynami
s, one should look at the s
atteringterms originating from the ele
tron-phonon intera
tion, the Hartree 
ontribution 5.40 and the Fo
k 
ontri-bution eq. (5.44). The Fo
k 
ontribution is the more important of the two and therefore we will only treatthis in the following. More spe
i�
ally one should 
onsider the fa
tors in the s
attering terms 
ontainingthe ele
troni
 density matrix. Upon examination of eq. (5.44) we �nd that all these fa
tors appear in thefollowing forms: [δb,b1 − ρbb1

α1
(t1)]ρ

b1b′

α (t1) and ρbb1
α1

(t1)[δb1,b′ − ρb1b′

α (t1)]. b, b′, and α are �xed depending onwhi
h element of the density matrix is 
onsidered, while b1 and α1 are integration variables that shouldbe summed over all their possible values. Considering the s
attering term of the polarization, b = 
 and
b′ = v, we get the following kinds of 
ontributions

lowest order : ρcv
α (t1)

higher order : ρcc
α1

(t1)ρ
cv
α (t1), ρvv

α1
(t1)ρ

cv
α (t1)and for the 
ondu
tion band population, b = 
 and b′ = 
,

lowest order : ρcv
α (t1)ρ

vc
α1

(t1), ρcc
α (t1)

higher order : ρcc
α (t1)ρ

cc
α1

(t1)where we have arranged the di�erent 
ontributions a

ording to their order in the ex
itation �eld. Wenote that the lowest order for the polarization is �rst and se
ond for the population. In the linearregime the dynami
s is governed by the lowest order 
ontributions presented above, whereas the higherorder 
ontributions be
ome signi�
ant when the strength of the ex
itation �eld is in
reased. Physi
allywhat happens in this weak to strong transition is that population dynami
s start to be
ome signi�
ant.6.4.2. LO-phonons and photonsIn this se
tion we will des
ribe and dis
uss solutions of our equations in
luding LO-phonons, as in theprevious subse
tion, and now with the ele
tron-photon intera
tion also. In se
tion 6.3 we have already
onsidered the e�e
t of adding photons to the equations of motion, but as these simulations were donein the linear regime, no ele
trons were ex
ited and thus no real photons generated. In this se
tion wewill allow for ex
itation of ele
trons a
ross the bandgap and hen
e for the generation of real photons. Inse
tion 5.4 we derived two versions of equations of motion 
ontaining photons, one where photons wheretreated in the GKBA and one where the full two-time photoni
 Green's fun
tions were retained. In this106
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10Figure 6.11.: Figures illustrating the transition from the weak to the strong ex
itation regime, (left) shows thein
oherently summed polarization and (right) shows the o

upation of the s shell in the QD. The legends indi
atethe relative strength of the ex
itation �eld and further all solutions have been s
aled to fa
ilitate 
omparison. Thesimulations were performed with a 15 fs pulse at a temperature of 300 K.se
tion we will only 
onsider photon dynami
s in the GKBA, the two-time version of the equations willbe treated in later se
tions. To in
lude photons in the ele
troni
 equations we add the following termsin the simulations: Eqs. (5.41), (5.46), and (5.47). In the GKBA for the photon, the only dynami
alquantity is the photon density in the 
avity, A(t), whi
h obeys the equation of motion given in eq. (5.55).To illustrate the more interesting e�e
ts photons has on the dynami
s of the system, we present simula-tions in the short-time regime where 
oherent e�e
ts are still present in the s
attering pro
esses takingpla
e. More spe
i�
ally we will look for Rabi os
illations, i.e. 
oherent ex
hange of energy between twosubsystems, between the ele
trons and photons, as these are signatures of the ele
tron-photon systembeing in the strong 
oupling regime. The strong 
oupling regime is where most of the interesting physi
stakes pla
e and it is therefore of great interest to obtain a better theoreti
al understanding of this. We
onsider the same ele
troni
 system as in the previous se
tions, whi
h we ex
ite with a 100 fs pulse andwe 
hoose a rather strong pulse. We use a strong ex
itation pulse in order ex
ite a signi�
ant numberof ele
trons, that again is the prerequisite for generating enough real photons to make stimulated pro-
esses signi�
ant. Going into the strong ex
itation regime is a
tually not justi�ed in our model, as in thisregime the Coulomb intera
tion starts to be
ome the dominant dephasing me
hanism, whi
h we 
an notdes
ribe in lowest order self-energy approximation. For simpli
ity we do however not in
lude the Coulombintera
tion in these simulations, and hen
e the simulations are not expe
ted to yield results similar towhat would be measured, but hopefully they highlight some general features in ele
tron-photon-phonondynami
s.In �gure 6.12 we show the results of the simulations in the 
ase of p and s shell ex
itation, and with the
avity tuned to the renormalized s transition, other parameters are given in the �gure 
aption. Comparingthe two di�erent ex
itation 
onditions we observe a substantial di�eren
e in the dynami
s, espe
iallywithin the �rst 5 ps after ex
itation. In the 
ase of p shell ex
itation we observe an initial rapid relaxationof ele
trons toward the s shells, where they are resonant with the 
avity, and photons are generated inthe 
avity in a smooth way. Even though the s shells are populated very fast by the e�
ient LO-phonons
attering, we observe no signi�
ant signs of Rabi os
illations neither in the populations nor polarizations.We suspe
t that the reason for the absen
e of Rabi os
illations, is due to the very rapid dephasing of the spolarization, in whi
h the resulting loss of 
oheren
e of the ele
trons, prevents the 
oherent energy ex
hangebetween ele
trons and photons. In �gure 6.14 we see how the 
ondu
tion band is gradually emptied ofele
trons, with the rate of de
ay in
reasing with in
reasing ~g as expe
ted. In the 
ase of s shell ex
itation,107
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Figure 6.12.: Figures showing the solution of all ele
tron and photon quantities in our model. The pulse ex
itationenergy is ~ωcv
2 (top) and ~ωcv

1 (bottom), and a strong pulse magnitude was used. The 
avity is tuned so that
~ωcav = ~ωcv

1 − |∆polaron|. The di�erent series are: (solid) ~g = 0.1 meV, (dotted) ~g = 0.5 meV, (dashed-dotted)
~g = 2 meV, and (dashed) ~g = 5 meV, and a Q-fa
tor of 3000 was used. The temperature is 300 K.108
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Figure 6.13.: As in �gure 6.12, but with a temperature of 150 K. 109



Time domain Results and Dis
ussionpowerful Rabi os
illations are observed for the two highest values of the ele
tron-photon 
oupling strengths
onsidered. The fa
t that the slowly-varying s polarization is modulated with an os
illation depending on
~g 
an understood in terms of eq. (6.8), where we see that in the strong 
oupling regime, os
illations areindeed expe
ted in the time domain. As in the previous 
ase the 
ondu
tion band ele
trons de
ay into thevalen
e band, however, at mu
h lower rate, see �gure 6.14 (top).The origin of the lower de
ay rate for the s ex
itation, is expe
ted to be found in the part of the s
atteringterm des
ribing spontaneous pro
esses, the part with the blo
king fa
tor stru
ture ρcc

α1
(t1)

[
1− ρvv

α1
(t1)

].These terms give relatively high values when the o

upation in the 
ondu
tion band is high and low in thevalen
e band, i.e. right after the ex
itation pulse has ex
ited the system. Whereas when the o

upationin the 
ondu
tion band de
reases and the valen
e band in
reases, these terms give relatively low values.To support this argument a simulation was made where the 
ondu
tion band o

upation after p shellex
itation, rea
hed a level 
omparable to that of the s shell ex
itation. Figure 6.14 (bottom) shows thatthe rate of de
ay for the p shell ex
itation, drops dramati
ally on
e fewer ele
trons are present in the
ondu
tion band. This e�e
t is most 
learly illustrated when dealing with a two-level one ele
tron system,where the relation ρcc(t1) + ρvv(t1) = 1 holds yielding a blo
king term of the form (ρcc(t1))
2. This shouldbe 
ontrasted to the usual exponential de
ay known for a two-level system, arising from "blo
king" termsof the form ρcc(t1), where no extra slow down is experien
ed when the o

upation is low. This dis
repan
ybetween the two methods in the 
ase of a two-level system is not fully understood yet, but we are 
ertainthat it is the Green's fun
tion approa
h whi
h yields the in
orre
t result10, manifested in a sort of arti�
ialPauli blo
king. The blo
king fa
tor stru
ture des
ribed above is also obtained in the 
luster expansions
heme, however in this formalism the arti�
ial blo
king issue may be resolved as des
ribed in [68℄. Inthe 
ase of a system 
ontaining more than one ele
tron, it is however 
lear that the various s
atteringterms must 
ontain blo
king terms of the form en
ountered in our theory, supported by the literature[68, 77℄.The important di�eren
e between the two ex
itation 
ases is that in the present, 
oherent ele
trons areex
ited dire
tly to states intera
ting through the 
avity mode, whereas in the previous 
ase the initially
oherent ele
trons had to undergo s
attering pro
esses in order to arrive at the 
avity resonant states.During these s
attering pro
esses they lost enough of their 
oheren
e, so that Rabi os
illations were notobservable. This indi
ates that if we 
ould maintain the 
oheren
e of the p shell ex
ited ele
trons for alonger time, Rabi os
illations for this ex
itation 
ase 
ould be
ome observable. Our handle for providinglonger 
oheren
e time, is to lower the temperature and hen
e the amount of LO-phonons available toparti
ipate in s
attering. In �gure 6.13 we show simulations identi
al to those in �gure 6.12, but witha temperature of 150 K, and indeed Rabi os
illations start to be
ome visible for the p shell ex
itation.Os
illations due to LO-phonons also be
ome more pronoun
ed, espe
ially for the valen
e band population,however, they have a larger period than those indu
ed by the photons and 
an therefore be distinguished,
ompare with �gure 6.10. For the s shell ex
itation the already existing Rabi os
illations have be
omegreater in amplitude, in parti
ular in photon density where we observe negative populations. This indi
atesthe either the GKBA or lowest order self-energy approximation has broken down, and that lower ~g valuesshould be used to obtain sensible results.Comparison with numeri
ally exa
t solutionTo be able to formulate and solve the equations of motion for the Green's fun
tions as done above, we haveapplied two major approximations, namely the trun
ation of the various (self-
onsistent) self-energies andthe employment of the GKBA. The exa
t validity and range of either of these approximations are not fullyunderstood yet in a formal rigorous sense, and thus it is always interesting to 
ompare with other solutionmethods. In this se
tion we will perform su
h a 
omparison, with a simpli�ed version of the 
QED system
onsidered above that 
an be solved numeri
ally exa
t.The �rst simpli�
ation we employ is to negle
t the intera
tion with the LO-phonons, whi
h is done tobe able to span the Hilbert spa
e with a �nite set of basis ve
tors. This removes the basi
 dissipation10Or our inability to apply it 
orre
tly.110
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Time domain Results and Dis
ussionme
hanism and thus no dephasing or relaxation will o

ur, unless it is added phenomenologi
ally. Nextwe limit ourselves to only 
onsidering the s shells of our QD, hen
e we only treat two ele
troni
 states.This system is des
ribed by the following Hamiltonian
H = ~ωcc†ccc + ~ωvc†vcv + ~ωcava

†a+ ~g(c†ccva+ a†c†vcc) + ~
dE0(t)

2
(c†ccve

−iω0t + c†vcce
+iω0t),in the 
ase where no loss pro
esses are present. To in
lude losses one may use a master equation approa
has the Lindblad form, see [78℄. Here the equation of motion for the redu
ed density operator of the systemdes
ribed by the lossless Hamiltonian above reads

∂tρ(t) =
1

i~
[H, ρ(t)]− 1

2

∑

k

(

L†kLkρ(t) + ρ(t)L†kLk − 2Lkρ(t)L
†
k

)

. (6.9)In this formula La,b =
√
γa,b |a〉 〈b| are Lindblad operators, des
ribing a loss pro
ess o

urring at a rate

γa,b in the transition from state b to a. In this formalism pure dephasing 
an easily be added by in
ludingLindblad operators of the form La,a =
√
γa,a |a〉 〈a|, that 
an be thought of as a virtual transition, not
hanging the o

upation of level a. Now in order to perform a 
omparison between the Green's fun
tionapproa
h and a solution obtained through that Lindblad master equation, we 
an not in
lude losses that
an not be unambiguously in
luded in both formalisms. This rules out adding pure dephasing, as it isnot 
lear how it should be in
luded in the Green's fun
tion approa
h. One might naively think that asimple term like −γdephρ

cv(t) 
ould be added to the equation of motion for the polarization. However,as we have learned in the previous se
tions, de
ay me
hanisms also a�e
t the retarded Green's fun
tionsentering the GKBA, and it is not 
lear how these fun
tions should be modi�ed to in
lude pure dephasing.The situation is quite di�erent for the 
ase of the 
avity loss rate, γcav, whi
h 
an easily be in
luded inboth the Lindblad formalism and Green's fun
tion approa
h.To pro
eed with the solution eq. (6.9), we need to span a Hilbert spa
e 
apable of des
ribing the physi
alsituation we wish to 
onsider. The situation is the usual, in whi
h the ele
tron is initially in the groundstate and at some point it is ex
ited by the external �eld, and the system is left to evolve a

ordingto the rest of the Hamiltonian. Due to the appli
ation of the RWA for the light-matter intera
tion,and the assumption that we only ex
ite that system on
e with a ultra-fast pulse, we may limit theHilbert spa
e to only 
ontain basis states with at maximum a single photon added. Choosing the set
{
|1〉 = c†v |0〉 , |2〉 = a†c†v |0〉 , |3〉 = c†c |0〉

} we may expand the operator equation eq. (6.9) and by in
ludingthe Lindblad operator Lγcav =
√
γcavc

†
vcva, loss is introdu
es for the 
avity photons. We obtain thefollowing equations for the redu
ed density matrix

∂tρ11(t) = γcavρ22 +
i

2
dE0(t)[ρ̃13(t)e

−iδ0t − c.c.],

∂tρ22(t) = −γcavρ22 + ig[ρ23(t)− c.c.],

∂tρ33(t) = −ig[ρ23(t)− c.c.]− i

2
dE0(t)[ρ̃13(t)e

−iδ0t − c.c.],

∂tρ̃12(t) = −γcav

2
ρ̃12(t) + igρ̃13(t)e

−iδt − i

2
dE0(t)ρ

∗
23(t)e

−iδ′t,

∂tρ̃13(t) = igρ̃12(t)e
iδt +

i

2
dE0(t)e

iδ0t[ρ11(t)− ρ33(t)],

∂tρ23(t) = −γcav

2
ρ23(t)− iδρ23(t) + ig[ρ22(t)− ρ33(t)] +

i

2
dE0(t)ρ̃

∗
12(t)e

−iδ′t,where we have de�ned the following detunings δ = ω−ωcv, δ0 = ω0−ωcv, and δ′ = ω−ω0, and the slowly-varying fun
tions ρ13(t) = eiωcvtρ̃13(t) and ρ12(t) = eiωtρ̃12(t). In the 
ase of the Green's fun
tions we usethe equations des
ribed in the beginning of this subse
tion. In the GKBA for the ele
trons we employfree retarded Green's fun
tions, whi
h is a
tually exa
t in this 
ase where only the photon intera
tionis 
onsidered. This we know from se
tion 5.3.3, where it was established that there are no 
orrelationsbetween the ele
trons and photons in equilibrium, and thus no initial 
orrelations need to be in
ludedthrough the retarded Green's fun
tions.112
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omparing the solution of the Jaynes-Cummings model using an exa
t method (dashed) andour Green's fun
tion method (solid). The ex
itation was done with a 100 fs pulse with a large magnitude and the
olors are for: (red) Q = 3000 and ~g = 0.1 meV, (blue) Q = 3000 and ~g = 1 meV, (green) Q = 100 and
~g = 0.1 meV, and (bla
k) Q = 100 and ~g = 1 meV. The detuning between the photon energy and ele
troni
transition is in all 
ases zero.In �gure 6.15 we show the results simulations using the two di�erent methods. We 
onsider four represen-tative parameters sets 
ombining a large/small 
oupling strength ~g and high/low damping through the
Q-fa
tor. The exa
t numbers are given in the �gure 
aption. We show the population of the 
ondu
tionband state, the valen
e band population 
an be obtained through parti
le 
onservation, the polariza-tion, and the photon density. The agreement appears to be best for the red series des
ribing both a low
oupling strength and damping. The agreement is worst for the 
ase of high 
oupling strength and lowdamping, whi
h 
ould intuitively have been expe
ted, as formally we 
onsider an expansion in ~g. For
ertain times we even have negative populations for both the ele
trons and photons, see se
tion 6.2 formore on this feature of the theory. The overall 
on
lusion of this brief 
omparison is that we 
an onlyexpe
t qualitative agreement in the 
ase of the ele
tron-photon intera
tion, however, quantitative agree-ment 
an not be expe
ted on the basis of this investigation. For the full system where the LO-phononsare also in
luded, we do not expe
t the disagreement with the exa
t result to be as large is in this parti
-ular situation. This is due to the fa
t that dissipative pro
esses, introdu
ed by the LO-phonons, tend tomake higher order 
orrelations de
ay faster. This hopefully lowers the need to go to higher order in theself-energy in order to avoid unphysi
al populations. Also the present system is a two level one ele
tronsystem, where the e�e
ts of the arti�
ial Pauli blo
king dis
ussed in se
tion 6.4.2 are expe
ted to be mostsevere.
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Emission spe
tra Results and Dis
ussion6.5. Emission spe
traIn this se
tion we will des
ribe and dis
uss our attempts to model the emission spe
trum of the 
avityphotons in our semi
ondu
tor 
QED system. This is an interesting quantity as it is often measured inexperiments, see e.g. [16, 79℄.We begin with an expression for the emission spe
trum [44, p. 299℄ for an idealized two-level dete
tor.Assuming an in�nite dete
tion time, the expression reads
S(R, ωS) ∝

∫ +∞

−∞
dt′
∫ +∞

−∞
dte−iωS(t′−t) 〈E(−)(R, t′)E(+)(R, t)〉 ,where R is the position of the dete
tor, ωS is the dete
tion frequen
y, and E(±)(R, t) are the ele
tri
 �eldoperators, assumed to be s
alars. Note that we have negle
ted an unimportant prefa
tor and thereforewe only write "proportional to" at the moment. In prin
iple the ele
tri
 �eld operators 
ontain a sumover all modes, in
luding those in the far �eld where the emitted photons are a
tually measured, thesemodes 
an be important to obtain agreement with experiment. It is, however, beyond the s
ope of thisthesis to des
ribe all these modes and we limit ourselves to only 
onsidering the lo
al 
avity mode, as alsodone in appendix A.1, whi
h greatly redu
es the 
omplexity of 
al
ulating the spe
tra. This 
orrespondsto the rather unrealisti
 experiment where the dete
tor is pla
ed inside the 
avity, or to the 
ase wherethe photon propagates without 
hanging its properties from the 
avity to the dete
tor in the far �eld. Inany 
ase it does not make mu
h sense, to assign any signi�
an
e to the mode fun
tion of the 
avity thatenter the expression for the �eld operator, and we will simply negle
t this overall prefa
tor and thereforealso the dependen
e on the dete
tor position R. The emission spe
trum is now expressed only in termsof the 
reation and annihilation operators of the 
avity, and this expression will be used in the rest of thethesis

S(ωS) =

∫ +∞

−∞
dt′
∫ +∞

−∞
dte−iωS(t′−t) 〈a†(t′)a(t)〉

=

∫ +∞

−∞
dt′
∫ +∞

−∞
dte−i(ωS−ωcav)(t′−t)Ã<(t, t′), (6.10)where in the se
ond line we have expressed the photon bra
ket in terms of the slowly-varying lesser Green'sfun
tion de�ned in eq. (5.48). The two time integrals in eq. (6.10) 
over the entire two-time plane and thusthe two-time photon Green's fun
tion is needed at all these points. However, due to the symmetry relationeq. (5.49), that relates the values of the lesser Green's fun
tion above and below the time diagonal, it is pos-sible to redu
e the double time integral to run over either the half plane above or below the time diagonal.Choosing below the time diagonal we may derive the following expression

S(ωS) = 2Re

{∫ +∞

0

dτei(ωS−ωcav)τ

∫ +∞

−∞
dtÃ<(t, t− τ)

}

, (6.11)using eq. (5.49).As a �rst approximation one may attempt to use the GKBA version of the two-time photoni
 Green'sfun
tion as given by eq. (5.53), where the retarded Green's fun
tion is taken in its equilibrium form. Inthe GKBA the slowly-varying lesser Green's fun
tion has the form
Ã<(t, t− τ) = exp(−γcavτ)A(t − τ), (6.12)where A(t−τ) is simply the photon density and we have assumed τ > 0. Inserting this form into eq. (6.11)we get
S(ωS) = 2Re

{∫ +∞

0

dτei(ωS−ωcav)τ−γcavτ

∫ +∞

−∞
dtA(t− τ)

}

.114



Results and Dis
ussion Emission spe
traThe integral over t deals only with the photon density, and due to the fun
tional dependen
e of A on τwe may 
hange the integration variable t→ t− τ so that we get the integral ∫ +∞
−∞ dtA(t), whi
h is 
learlyindependent of τ and we will simply denote it by the real 
onstant A. Performing the integral over theremaining exponential and taking the real part yields

S(ωS) = 2A
γcav

(ωS−ωcav)2 + γ2
cav

, (6.13)revealing a Lorentzian lineshape 
entered around the 
avity frequen
y. We note that the only requirementfor performing this 
al
ulation, is that the retarded Green's fun
tion used in the GKBA only depends onthe time di�eren
e. This result tells us that one 
an only obtain a Lorentzian emission spe
trum, if theGKBA is used as an approximation for the two-time photon Green's fun
tion. All information on how theele
trons were initially ex
ited, and exa
tly how the photons were emitted is all 
ontained in the 
onstant
A. This simple 
onstant only s
ales the magnitude of the Lorentzian lineshape, and hen
e appli
ation ofthe GKBA will be of very little use in interpreting experimental emission spe
tra. The fa
t that the GKBAfails spe
ta
ularly for this type of 
al
ulation, is perhaps a bit surprising sin
e it is an approximation, thatis very often used in the literature. It has, however, mainly been applied in situations where the obje
t ofprimary interest was the equal-time lesser Green's fun
tion of the ele
trons. In these situations knowledgeof the Green's fun
tion outside the time-diagonal is as su
h redundant. The situation here is very di�erent,in that the quantity we wish to determine depends strongly on the values of the Green's fun
tion outsidethe time diagonal. Considering that all propagation outside the time diagonal in the GKBA is handled bythe retarded Green's fun
tion, it might not be that surprising after all that the properties of the retardedGreen's fun
tion, will be very signi�
ant in quantities depending strongly on the o�-diagonal values ofthe two-time lesser Green's fun
tion. On the basis of this dis
ussion, we must 
on
lude that in orderto 
al
ulate emission spe
tra of light emitted under strong non-equilibrium 
onditions, the full two-timema
hinery must be set in motion, at least for the photoni
 Green's fun
tions.6.5.1. Present stage resultsAs dis
ussed above we have to work with the two-time versions of the equations of motion for the photoni
Green's fun
tions, as oppose to the one-time GKBA version, in order to obtain meaningful emissionspe
tra. This is a signi�
antly more 
ompli
ated task, both formally, as seen by 
omparing eqs. (5.55)and (5.56), and espe
ially numeri
ally. In the GKBA one should only perform a single memory integralfor ea
h dis
retized t value, while in the two-time formalism a memory integral must be performed forea
h dis
retized t and τ value. Furthermore, this should be done for both the greater and lesser photoni
Green's fun
tion, as these are both independent fun
tions in the two-time formalism. Depending on therequired memory depth of the memory integrals, the 
omputationally demands are in
reased many times,and as a 
onsequen
e of this the implementation and veri�
ation pro
ess be
omes more di�
ult and moretime 
onsuming. This stage of the proje
t was not initialized until the very end of the assigned timeperiod, and therefore enough time was not available to obtain a 
ompletely satisfa
tory result. We will,however, des
ribe the present stage of our progress and dis
uss what further steps need to be taken.To start o� the dis
ussion we in �gure 6.16 show our solutions for the two-time photoni
 Green's fun
tions.To redu
e the 
omputationally demands we only 
onsider the two s shells of our QD, and ex
ite the systemon resonan
e with a strong 100 fs pulse, other parameters are given in the �gure 
aption. The solutionfor the lesser Green's fun
tion shows a behavior that is somewhat expe
ted, in that we observe an initialin
rease in magnitude, due to the ele
tron and hole re
ombining by photon emission, and afterwards ade
ay in both the t and τ is seen. For the greater Green's fun
tion the behavior is mu
h di�erent andwe observe a strong in
rease in the τ dire
tion, where we would expe
t a de
ay on physi
al grounds. Theapparent plateaus in the �gure are arti�
ial and represent areas where the magnitude is larger than the
olor s
ale. Indeed, we are quite 
ertain that this behavior is not physi
al, and arises from numeri
alinstabilities that eventually would lead to a blow up of the solution. This kind of behavior is usually a signthat one should lower the dis
retization size until a 
onverged result is rea
hed. Due to very long integration115
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Figure 6.16.: Solutions of the two-time photoni
 Green's fun
tions for the following parameters: ~ωcav = ~ωcv
1 ,

Q = 100 ⇒ ~γcav = 8.38 meV, ~g = 8 meV, and T = 300 K. Note that the pixellation does not represent the timedis
retization used in the simulations, where ∆t = ∆τ = 1 fs was used.times, su
h a systemati
 study was not performed for the present set of parameters. We did, however, takeanother route and in
reased the physi
al damping in the system, through lowering the Q-fa
tor from 100to 30. This was done expe
ting that it would help to prevent the numeri
al instabilities from o

urring. In�gure 6.17 we show our solution for the Q-fa
tor of 30. The ex
itation was performed with a 50 fs pulse,instead of 100 fs, other parameters are as in �gure 6.16. The �gure shows that the numeri
al instabilitiesare indeed damped signi�
antly, even though one still observes some bands in the τ dire
tion near t = 2.2ps and t = 2.6 ps for the greater Green's fun
tion that do not appear physi
al. The magnitude of thebands does, however, de
rease for in
reasing τ , and hen
e we do not expe
t that this solution would blowup if one 
al
ulated it for larger τ values than 
onsidered here.

2 2.5 3 3.5
0

0.5

1

1.5  

t [ps]

 

τ
[p

s]
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Figure 6.17.: Solutions of the two-time photoni
 Green's fun
tions with parameters as in �gure 6.16, ex
ept for
Q = 30 ⇒ ~γcav = 27.94 meV and the use of a 50 fs pulse for ex
itation.These observations hint that the problem is at least partly due to numeri
al instabilities, that in prin
iple
an be 
ured by de
reasing the time dis
retization, and not due to �aws in our theory or implementation.Indeed it is reasonable to think that a �ner time dis
retization is needed in a two-time 
al
ulation, thanwould be ne
essary in a single-time 
al
ulation, due to the mu
h more progressive a

umulation of errors.This is so as we basi
ally solve a di�erential equation for ea
h dis
retized value of τ , ea
h of whi
h has annumeri
al error and an a

umulated error due to the memory integral. Ea
h of these solutions are used116



Results and Dis
ussion Indistinguishabilityevery time we in
rease t, and the net result is a mu
h larger error on the overall solution, whi
h 
ouldeasily lead to the instabilities we observe. We would like to point out that the solutions satisfy parti
le
onservation and ful�l the relation Ã>(t, t) − Ã<(t, t) = 1, see eq. (2.31). This indi
ates that our theoryand implementation at least to some extent are 
orre
t. In order to get rid of the numeri
al instabilities,one 
ould perform a thorough analysis of the error as a fun
tion of the time dis
retization, and 
ompareit to a formal error analysis of the equations, to see if the two agree.Even though we are quite 
onvin
ed that the two-time solutions presented above, do not represent thetrue solutions to our equations, we have still 
al
ulated the emission spe
trum a

ording to eq. (6.11) tosee if some physi
al signatures 
ould be identi�ed. The results are shown in �gure 6.18 for the 
onsidered
ases. Both spe
tra display a large emission near the free 
avity frequen
y, where the renormalized 
avityfrequen
y is slightly lower than the free. The set of sidebands situated on ea
h side of the main peak aresignatures of LO-phonons, 
on�rmed through the fa
t that appear approximately a LO-phonon energy onea
h side of the main peak. Furthermore, the spe
trum for the highest Q-fa
tor also display a splitting ofthe main peak, whi
h shows that this system is in the strong 
oupling regime, see 
hapter 1. The smallripples in this spe
trum are expe
ted to o

ur, as we have basi
ally performed a Fourier transformationof a fun
tion that has not fully de
ayed in a smooth manner.
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Figure 6.18.: Emission spe
tra 
al
ulated from eq. (6.11) using the solutions in �gure 6.16 (left) and �gure 6.17(right).6.6. IndistinguishabilityIn order for a single-photon sour
e to be used in a quantum 
omputer, it is essential that the single photonsit emits are indistinguishable, as otherwise one will not be able to make them interfere. This makes it veryimportant to obtain an understanding of what physi
al pro
esses, 
auses the single photons to be
omedistinguishable. In this se
tion we will dis
uss how to de�ne and determine the indistinguishability of thesingle photons emitted from our 
QED system.As dis
ussed in 
hapter 1, one way to quantify the indistinguishability is to perform a Hong-Ou-Mandel(HOM) interferen
e experiment as shown in �gure 1.3(a). The result of su
h a measurement is a 
oin
iden
ehistogram for photon dete
tion events, in the two photon dete
tors on ea
h of the output arms of the BS,as shown in the bottom of the �gure. Two perfe
tly indistinguishable photons would 
oales
e into a two-photon state, when impinging simultaneously on the two input arms of a BS. Therefore one would notobserve simultaneous 
li
ks in both dete
tors for this 
ase, leading to the vanishing of the peak near τ = 0in the histogram. Real single photons are, however, always slightly distinguishable, due to intera
tions117



Indistinguishability Results and Dis
ussionwith the environment, 
ausing the peak at τ = 0 to not vanish 
ompletely. We may therefore use themagnitude of the peak near τ = 0 as a measure of the indistinguishability [15, 17℄, normalized in anappropriate way. To quantify this proposal we denote the fun
tion des
ribing the 
oin
iden
e histogram,as a fun
tion of the delay time τ , with the symbol G(2)
exp(τ). With this quantity we may de�ne the degreeof indistinguishability I in the following way

I = 1−
∫

peak near τ=0
dτG

(2)
exp(τ)

∫

peak away from τ=0
dτG

(2)
exp(τ)

, (6.14)where the normalization must be 
hosen as the integral over a peak su�
iently far away from the 
enterpeak at τ = 0, so that no two-photon interferen
e o

urs. The peaks far away from τ = 0 are basi
allywhat would be measured with no BS in the experiment.Next one needs to relate the experimental fun
tion G
(2)
exp(τ) to a fun
tion that 
an be 
al
ulated the-oreti
ally. The relevant fun
tion is the se
ond order 
orrelation fun
tion for the photon [17℄, whi
h isproportional to the probability of dete
ting a photon at one spa
e-time point and another photon at someother (or the same) spa
e-time point. In our 
ase the two di�erent spa
e points are the two dete
torsin the HOM experiment, and the two times are the arrival times of the photons on the dete
tors. Wedenote this fun
tion as G(2)(t, t′) = G(2)(t, t−τ), where referen
e to the spa
e points has been omitted andfurther we have employed the time transformation used throughout the thesis. The se
ond order 
orrela-tion fun
tion is, however, a true two-time fun
tion and not an e�e
tive single-time fun
tion as G(2)

exp(τ).It turns out that in order to obtain the experimental fun
tion one must average the time t, as this iswhat is done with the experimental data11, due to large un
ertainties in t. Performing the averaging weobtain
G(2)

exp(τ) ∝
1

2T

∫ +T

−T

dtG(2)(t, t− τ), (6.15)where T must be 
hosen large enough so thatG(2)(t, t−τ) has fully de
ayed, furthermore only "proportionalto" 
an be used due to several unknown prefa
tors pertaining to the experimental setup.The above approa
h for de�ning and obtaining the indistinguishability was motivated by the experimentalpro
edure. We may however 
hoose a simpler approa
h as we work with pure theory and are not limitedby the te
hni
alities of the experiment. The motivation is the fa
t that G(2)(t, t− τ) vanishes everywherefor two perfe
tly indistinguishable photons, in the 
ase of a single12 simultaneous ex
itation of the twosingle-photon sour
es. The degree on indistinguishability may then be de�ned as
I = 1−

∫ +∞
−∞ dt

∫ +∞
−∞ dτG(2)(t, t− τ)

∫ +∞
−∞ dt

∫ +∞
−∞ dτG

(2)
no BS(t, t− τ)

, (6.16)where we have 
hosen the normalization as the integral over G(2)(t, t − τ) with no BS present, and thusno interferen
e e�e
ts. With this de�nition one obtains I = 1 for perfe
tly indistinguishable photonsand I = 0 when no interferen
e o

urs at all, with the extreme being the 
ase of no BS present in theexperiment.Returning to the se
ond order 
orrelation fun
tion we note that it is a spe
ial 
ase of the two-parti
leGreen's fun
tion for the photon, whi
h is a di�
ult obje
t to handle in a many-body formalism. Fortu-nately it turns out that due to the spe
i�
s of our system, we may to a good approximation express thetwo-parti
le Green's fun
tion in terms of single-parti
le Green's fun
tions. An expression for G(2)(t, t− τ),11We thank Henri Thyrrestrup Nielsen and Toke Lund-Hansen of DTU Fotonik for enlightening dis
ussions.12It is important that the single-photon sour
es are only ex
ited on
e, as otherwise one would get peaks away from τ = 0similar to those in �gure 1.3(a). The peaks in this experiment [14℄ are due to te
hni
alities of the experiment, i.e. theneed to build up a proper statisti
s through many identi
al ex
itations of the emitter.118



Results and Dis
ussion Indistinguishabilityappropriate for our experiment, has been derived in appendix A.1 and is given by
G(2)(t3, t4) = 〈a†(t3)a(t3)〉 〈a†(t4)a(t4)〉 − 〈a†(t3)a(t4)〉 〈a†(t4)a(t3)〉+ 〈a†(t3)a†(t4)a(t4)a(t3)〉

+
1√
2

[
〈a†(t3)a†(t4)a(t3)〉 〈a(t4)〉+ 〈a†(t3)a(t4)a(t3)〉 〈a†(t4)〉

− 〈a†(t3)a†(t4)a(t4)〉 〈a(t3)〉 − 〈a†(t4)a(t4)a(t3)〉 〈a†(t3)〉
]
.The two �rst terms in this expression are proportional to single-parti
le photoni
 Green's fun
tions, whilethe third is a two-parti
le Green's fun
tion and the rest represent other 
ontributions. In appendix A.2 itwas shown that in the RWA it is well justi�ed to negle
t all other terms than the two �rst in the aboveexpression. Hen
e we end up with a mu
h more manageable obje
t

G(2)(t, t− τ) = 〈a†(t)a(t)〉 〈a†(t− τ)a(t− τ)〉 − 〈a†(t)a(t− τ)〉 〈a†(t− τ)a(t)〉
= Ã<(t, t)Ã<(t− τ, t− τ)− |Ã<(t, t− τ)|2, (6.17)where in the last line we have used the de�nition of the slowly-varying photon Green's fun
tion eq. (5.48)and also the symmetry eq. (2.32) to write the se
ond term as an absolute value. The se
ond order
orrelation fun
tion with no BS introdu
ed in eq. (6.16), may be found from eq. (6.17) by simply removingthe last term

G
(2)
no BS(t, t− τ) = Ã<(t, t)Ã<(t− τ, t− τ), (6.18)as this is what introdu
es 
orrelations between the photons. For a proper formal derivation of thisresult, one may go ba
k to eq. (A.4) and realize that without the a
tion of the BS, one may sim-ply fa
tor this expe
tation value right away, due to the assumption of independen
e of the two emit-ters.As done in se
tion 6.5, where we found that the determination of the emission spe
trum required the fulltwo-time lesser Green's fun
tion of the photon, we may attempt to use the GKBA to express the two-timeGreen's fun
tion in the expression eq. (6.17). To apply the GKBA we simply have to insert eq. (6.12) intoeq. (6.17) whi
h yields the following

G(2)(t, t− τ) = A(t− τ)
[
A(t)− e−2γcavτA(t− τ)

]
,where we have used that both the de
aying exponential and the photon density are real fun
tions. Inse
tion 6.5 the GKBA was found to be of no use as the repla
ement for the true two-time Green's fun
tion,however at �rst sight the situation does not look as 
riti
al here as in the 
ase of the emission spe
trum.A further investigation has unfortunately not yet been performed.6.6.1. Present stage resultsIn the se
tion we present 
al
ulations of G(2)(t, t− τ) and G(2)

exp(τ) based on the two-time solutions alreadyintrodu
ed in se
tion 6.5.1. As the solutions themselves have already been dis
ussed we will simply makea brief 
omments on the obtained results for G(2)(t, t− τ) and G(2)
exp(τ).In �gure 6.19 we show the results of 
al
ulating G(2)(t, t− τ) based on the formulae eq. (6.17). The �rstthing one noti
es is the fa
t that the values be
ome negative. This is 
learly unphysi
al as G(2)(t, t − τ)expresses a probability, whi
h is another indi
ation that the two-time solutions presented se
tion 6.5.1 arenot the a
tual physi
al solutions to the equations. Other than this una

eptable property, we noti
e thatthe value goes to zero for τ = 0, being 
onsistent with eq. (6.17), and that it de
ays in both the t and τdire
tions.The 
orresponding G(2)

exp(τ) fun
tions are shown �gure 6.20. These also display negative values, due to thefa
t that G(2)(t, t−τ) does, again being an unphysi
al property. The red 
urves display the so-
alled HOMdip, whi
h is a sign that interferen
e has o

urred. The blue 
urves illustrate G(2)
exp(τ) with no BS present,eq. (6.18), and for this reason they do not display any signs of 
orrelation. 119
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Figure 6.19.: G(2)(t, t−τ ) 
al
ulated from eq. (6.17) for the solutions shown in �gure 6.16 to the left and �gure 6.17to the right.
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Figure 6.20.: 
al
ulated from eq. (6.17) for the solutions shown in �gure 6.16 to the left and �gure 6.17 to the right.6.7. SummaryIn this 
hapter we have applied the equations of motion derived in the previous 
hapter, to a number ofspe
i�
 situations, in
luding probing the equilibrium system in linear response theory and investigatingthe full non-equilibrium dynami
s of our 
QED system. Below we go through the �ndings and results ofthe di�erent se
tions in the 
hapter.In se
tion 6.2 we dis
ussed the o

urren
e of unphysi
al populations within our theory. These o

ur for
ertain ex
itation s
hemes, when 
onditions for very e�
ient 
oupling are present within the bands. Wesuspe
t that these unphysi
al features are due to a break down of the GKBA and/or the lowest orderself-energy approximation, a suspi
ion whi
h is supported by the literature. Using a level stru
ture withtransitions less resonant with the LO-phonon energy, did, however, provide us with a qui
k �x of the prob-lem, but more work is needed to fully resolve this issue in a satisfa
tory manner.The linear absorption spe
trum was treated in se
tion 6.3, where the e�e
ts of all many-body intera
tionswere systemati
ally investigated. Only in
luding the LO-phonon intera
tion, we found that the main sand p transitions were broadened and slightly shifted. Beside the renormalizations of the main peaks, a120



Results and Dis
ussion Summaryvery ri
h stru
ture of lesser pronoun
ed peaks arose. It turns out that the ri
h peak stru
ture 
an beunderstood in terms of the spe
tral fun
tions of the polaron quasi-parti
les, where a number of sidebandsand hybridization e�e
ts enter in a dramati
 way. The quasi-parti
les give rise to so-
alled LO-phonon-assisted transitions, manifesting themselves as a 
ompli
ated ba
kground of peaks. In
luding the Coulombintera
tion mainly resulted in a large negative shift of the s and p transitions, known as ex
iton shifts.The magnitude of the shifts 
ould be explained using a relatively simple model. The 
ombined e�e
ts ofboth the LO-phonons and photons was also investigated, and several parameters 
ontrolling the ele
tron-photon 
oupling were systemati
ally varied. The results from the numeri
al simulations, were 
omparedto a simple model where dephasing was treated in the 
onstant de
ay rate approximation. In the strong
oupling regime, the transition resonant with 
avity photon developed into a double peak, as expe
ted, andthe positions and relative weights of the two peaks were 
ompared to the simple model. It was found thatthe spe
tral positions of the peaks 
ould be relatively well explained by the model, whereas the relativeweights 
ould not, due to symmetri
 Lorentzian lineshape impli
itly assumed in the 
onstant de
ay rateapproximation.In se
tion 6.4 time domain solutions to our equations were investigated. The �rst part dealt with theapproa
h to a quasi-equilibrium state, due to LO-phonon s
attering after ex
itation by a short opti
alpulse. In all 
onsidered 
ases a quasi-equilibrium state was rea
hed within a time span of 5 ps. FurthermoreRabi os
illations between the ele
trons in valen
e band and LO-phonons was observed, whi
h are analogousto well-known Rabi os
illations between ele
trons and photons. In the se
ond part we 
onsidered a similarsituation, but now photons were in
luded in the equations, and in this investigation we looked spe
i�
allyfor Rabi os
illations between the ele
trons and photons. The o

urren
e of Rabi os
illations was found,not surprisingly, to depend on temperature, whi
h is reasonable as the number of LO-phonons 
ausingdephasing de
reases with temperature. A mu
h stronger dependen
e was, however, found on exa
tly howthe ele
trons were ex
ited, and the strongest Rabi os
illations were found for ex
itation dire
tly into thelevels being resonant with the 
avity photon. In the last part we 
ompared our Green's fun
tion approa
hto a numeri
ally exa
t solution to a simpli�ed system. Quantitatively the agreement was not overwhelming,but qualitatively the agreement was reasonable. It is, however, di�
ult to gauge the a

ura
y of solutionsobtained using Green's fun
tions for more realisti
 systems, as exa
t solutions to many-body problems arein general very di�
ult to obtain.In the last 
ouple of se
tions, 6.5 and 6.6, we dis
ussed how to determine the emission spe
trum andindistinguishability of the emitted photons using the Green's fun
tion formalism. In the 
ase of theemission spe
trum, it was found that in order to obtain lineshapes other than Lorentzians, the GKBA
ould not be employed for the photoni
 Green's fun
tions. This 
alled for the use of the full two-timephotoni
 Green's fun
tion theory, whi
h is mu
h more 
ompli
ated than the e�e
tive single-time versionprovided by the GKBA. The present stage of progress on solving the two-time theory was dis
ussed inse
tion 6.5.1. Even though it was 
on
luded that we had not yet obtained the 
orre
t physi
al solution,the solutions that had been obtained, still produ
ed emission spe
tra 
ontaining some of the expe
tedphysi
s, su
h as the strong 
oupling splitting and sidebands due to LO-phonons. In se
tion 6.6 two-time�ndings in 
onne
tion to indistinguishability were dis
ussed, but these were to a large degree unphysi
aland therefore in
on
lusive.
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7. Summary and OutlookIn this thesis we have investigated many-body e�e
ts in self-assembled semi
ondu
tor QDs, with themain motivation of des
ribing relaxation and dephasing pro
esses beyond a simple 
onstant de
ay ratepi
ture. The main emphasis has been on the intera
tion between ele
trons and LO-phonons, whi
h isknown to be the main s
attering me
hanism in the low ex
itation and high temperature regime. Tomodel a single-photon sour
e the QD has been pla
ed in an opti
al 
avity, in whi
h the intera
tion withphotons be
omes important on short time-s
ales. To des
ribe the dynami
s, a many-body formalism hasbeen employed, whi
h is based on non-equilibrium Green's fun
tions. Invoking 
ompli
ated theoreti
almethods is ne
essary in order to 
orre
tly des
ribe a true many-body system, whi
h a semi
ondu
tor QDis. The governing equations derived using the many-body formalism, have been solved numeri
ally and thesolutions analyzed and dis
ussed for a range of parameters. Below we go through the individual 
haptersand summarize the results obtained in these in greater detail.A general introdu
tion to the subje
t is given in 
hapter 1, where we have tried to motivate the presentwork and give an introdu
tion to the physi
al system being 
onsidered.In 
hapter 2 we took on the task of introdu
ing the reader to the formal theory of non-equilibrium Green'sfun
tions. We started from a basi
 
al
ulation of an ensemble average for a non-equilibrium system writtenas an in�nite series, and ended up with the 
elebrated Dyson equation, formulated in terms of the 
ontourordered Green's fun
tion and its 
orresponding self-energy. From this we were able to formulate a set ofequations for various real time Green's fun
tions, that are 
apable of des
ribing physi
ally observables.The equations are the foundation for almost all 
al
ulations performed in this thesis. Last we introdu
edan extremely important approximation known as the Generalized Kadano�-Baym Ansatz (GKBA), thatin some 
ases enables us to redu
e the general two-time stru
ture of the Green's fun
tions to an e�e
tivesingle-time stru
ture.The most fundamental ingredient in any quantum theory, namely the Hamiltonian operator, was treated in
hapter 3 for a general semi
ondu
tor system. Even though this is normally regarded as textbook material,we went through many of the steps ne
essary to go from a fully general Hamiltonian, to a form moreappropriate for pra
ti
al 
al
ulations. This was done in order to gain an overview and understanding ofthe many di�erent Hamiltonians that enter many-body physi
s. We have at least to some degree su

eededin doing this.The more pra
ti
al problem of obtaining a su�
ient des
ription of the ele
troni
 single-parti
le states, andthe 
omputationally demanding task of subsequent 
al
ulating of the various intera
tion matrix elements,was treated in 
hapter 4. In this 
hapter we set up a simple model for the 
ombined QD and WL system,that 
aptures the essential features of the self-assembled QDs grown in the laboratory. We numeri
allysolved the model for a spe
i�
 geometry and dis
ussed the qualitatively di�erent states. Next we proposedtwo ways of 
al
ulating Coulomb matrix elements on the basis of the states obtained from our model.One whi
h is exa
t but slow and one whi
h is approximate but mu
h faster. The need for a fast ande�
ient method is paramount, as the number of Coulomb matrix elements grows extremely fast with thenumber of basis states. The two methods were 
ompared and for most elements the relative error of theapproximative method was below 1 %.In 
hapter 5 we performed a last set of approximations on the Hamiltonians and trun
ated the many-bodyself-energies, further we formulated the �nal versions of equations des
ribing our equilibrium and non-equilibrium system. The self-energies were trun
ated at the lowest order level, but made self-
onsistent inthe ele
troni
 and photoni
 Green's fun
tions, as di
tated by the parti
le 
onservation law in the 
ase ofthe ele
trons. An analysis of the equilibrium properties of our system was performed, and it was foundthat the 
oupling to the LO-phonons strongly modi�ed the spe
tral properties of the ele
trons, 
ompared122



Summary and Outlook Outlookto the free or slightly lifetime broadened 
ase. These quasi-parti
le properties are very important toin
orporate into the non-equilibrium theory, as otherwise the initial or equilibrium 
orrelations will bemissing in the non-equilibrium dynami
s. In 
ontrast to the LO-phonons, the photons were found not tohave any equilibrium 
orrelations with the ele
trons, at least at our level of approximation. This was abit surprising due to the formal similarities between phonons and photons. In the last part of the 
hapterthe non-equilibrium equations of motion were derived. In these derivations the main approximation wasemployment of the GKBA. The GKBA was applied to all ele
troni
 Green's fun
tions, whereas for thephotoni
 Green's fun
tions we presented two versions, one in the GKBA and one where we retained thefull two-time form of the Green's fun
tions.The appli
ation of the equations of motion to non-equilibrium situations was treated in 
hapter 6. Dueto the size of this 
hapter, we will only summarize a few of the main results obtained here, referring thereader to se
tion 6.7 for a more 
omplete summary. A large part of this 
hapter was devoted to studyingmany-body e�e
ts on the linear absorption spe
trum of our system. The most dramati
 e�e
t o

urred dueto in
lusion of LO-phonons into the Hamiltonian. A very ri
h spe
trum resulted where beside the alreadyexisting the main s and p transitions, a large number of lesser pronoun
ed peaks 
ame into existen
e. Itwas established that these smaller peaks were manifestations of LO-phonon-assisted transitions, arisingdue to transitions between LO-phonon dressed ele
tron states, illustrated 
learly through the polaronspe
tral fun
tions. In
luding photons into the theory, we were able to study the e�e
ts of LO-phonons onthe va
uum Rabi splitting, that appears in the spe
trum in the strong 
oupling regime. We systemati
allyvaried the 
oupling strength ~g and detuning, between the 
avity and s transition, and 
ompared theresults to a simple analyti
al model. We found that the spe
tral positions of the two peaks 
hara
terizingthe va
uum Rabi splitting, were well des
ribed by the simple model, however the relative weights of thepeaks were not. Another main fo
us was the investigation of population dynami
s after ex
itation bya short opti
al pulse, displaying the full power of the non-equilibrium theory developed in this thesis.The approa
h to a quasi-thermal equilibrium state was studied, and it was found that this state wasestablished within 5 ps for all the 
ases 
onsidered. Furthermore, Rabi os
illations between the LO-phonons and valen
e band ele
trons was observed, indi
ating that these 
ouple strongly for the 
onsideredsystem. The o

urren
e of Rabi os
illations due to the ele
tron-photon intera
tion was also treated, andwe investigated under whi
h 
onditions these were most pronoun
ed. Not surprisingly it was 
on�rmedthat lowering the temperature made it more likely to observe these 
oherent ex
hanges of energy. This is
onsistent with the fa
t that the thermal o

upation of LO-phonons de
reases for de
reasing temperature,and hen
e the de
oheren
e 
aused by them. More surprisingly it was found that the Rabi os
illationsdepended mu
h stronger on exa
tly how the ele
trons were ex
ited. More spe
i�
ally the more powerfulos
illations were observed when ele
trons were ex
ited into the shell being resonant with the 
avity. Weexpe
t this to be due to the ele
trons losing their 
oheren
e while relaxing into the 
avity resonant s shell,and thereby not being able to intera
t 
oherently with the photons.7.1. OutlookIn the limited time span of this proje
t we have not been able to pursue all the dire
tions and ideas wewould have liked to. In the following we des
ribe several extensions of the present work, that would benatural to investigate in the future.One of the most obvious improvements of the present theory would be the in
lusion of the ele
troni
states in the WL 
ontinuum, that we know are part of the real physi
al system we are trying to des
ribe.At elevated temperatures it is known that ele
trons are thermally ex
ited into the WL states [42℄, hen
emaking these important for a proper des
ription. Although the WL 
ontinuum has been taken into a

ountin several many-body 
al
ulations [41, 55℄, this was done in a s
heme where the bound and unbound statesof the QD and WL respe
tively, were not treated on the same footing, whi
h 
ould potentially be a seriousproblem. A 
onsistent solution to this problem would be the implementation of the WL states des
ribedin se
tion 4.2.3, into the theory developed in this thesis. It is further expe
ted that adding an ele
troni

ontinuum would remedy the issues we have experien
ed regarding the unphysi
al populations des
ribed123



Outlook Summary and Outlookin se
tion 6.2, in that they would provide more e�
ient s
attering making the appli
ation of the lowestorder self-energy su�
ient.Many quantum opti
al experiments are performed at very low temperatures, where it is known thatLA-phonons be
ome the dominant dephasing me
hanism. It would indeed be very interesting to in
ludeLA-phonons into our theory, as this would enable us to help interpreting many of the experiments 
urrentlybeing performed around the world, some of whi
h even in the Quantum Photoni
s group at DTU Fotonik.Going to low temperatures would furthermore drasti
ally lower the amount of ele
trons being thermallyex
ited, that 
ould serve as an argument for negle
ting the WL 
ontinuum. The fa
t that LA-phonons
onstitute an energy 
ontinuum 
ould possibly, in analog to adding a ele
troni
 
ontinuum, help us avoidunphysi
al populations, due to the in
reased s
attering e�
ien
y.A more pra
ti
al improvement, but no less important, would be to implement the numeri
al 
ode in a lowlevel programming language su
h as Fortran or C. The present implementation of the theory has been donein the 
ommer
ial s
ript language MATLAB, whi
h o�ers easy a

ess to 
ompli
ated fun
tionality andrelatively easy debugging 
apabilities, however often at the 
ost 
omputational e�
ien
y. Implementationin a low level language would o�er great speed and the opportunity to use existing parallelization pa
kages,making large s
ale 
omputations possible. A faster implementation of the theory, would also ease theanalysis of the unresolved issues remaining in the two-time theory of the photoni
 Green's fun
tionsdes
ribed in se
tions 6.5 and 6.6.The ultimate goal for future developments of the work presented in this thesis, is to provide a pra
ti
altheory that takes into a

ount all the important many-body intera
tions in a 
QED system. From thistheory it should be is possible to extra
t all wanted information on the emitted photons, whi
h is the mostimportant property to des
ribe as it is what is being measured in experiments. We have initiated this bysetting up a theory for the two-time photoni
 Green's fun
tions, but as has been reported mu
h work stillremains to be done.
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A. AppendixA.1. Se
ond order 
orrelation fun
tion for a Hong-Ou-Mandeltype experimentAs mentioned in 
hapter 1 we are interested in determining the indistinguishability of single photonsemitted from a semi
ondu
tor 
QED system, for this we may perform an interferen
e experiment asinterferen
e and quantum indistinguishability are intimately 
onne
ted. Indeed it is known [15, 17℄ thatif two perfe
tly indistinguishable photons are interfered on a BS, these will 
oales
e into a two-photonstate. The 
orresponding 
oin
iden
e dete
tion probability in a Hong-Ou-Mandel (HOM) two-photoninterferen
e experiment [80℄ will be zero. The experiment we wish to des
ribe is shown s
hemati
ally in�gure A.1. It 
onsists of two systems, denoted 1 and 2, that are 
apable of emitting photons, whi
h aredire
ted onto a beam-splitter (BS) where they may interfere and the output arms of the BS are equippedwith photon dete
tors.System 2
System 1

Mirror

variable delay devi
e
Arm 2Arm 1 Arm 3Arm 4

Beam splitter
Photon dete
tor at r4

Photon dete
tor at r3

Figure A.1.: S
hemati
 illustration of the experiment designed to measure G(2)(r3t3, r4t4; r4t4, r3t3). The variabledelay devi
e is inserted to adjust the path length for the photons from system 1, so that one may 
ontrol the arrivaltimes for the photons from system 1 on the BS.Theoreti
ally the relevant quantity for des
ribing su
h an experiment is the se
ond order 
orrelationfun
tion of the quantized ele
tri
 �eld [45, p. 564℄, with its spatial 
oordinates evaluated at the dete
tor125



Se
ond order 
orrelation fun
tion for a Hong-Ou-Mandel type experiment Appendixpositions in ea
h of the output arms 3 and 4. The expli
it expression for the se
ond order 
orrelationfun
tion is
G(2)(r3t3, r4t4; r4t4, r3t3) = 〈E(−)(r3, t3)E

(−)(r4, t4)E
(+)(r4, t4)E

(+)(r3, t3)〉 , (A.1)where the positive and negative frequen
y parts of the quantized ele
tri
 �eld are given by
E(+)(r, t) =

∑

m

Emam(t)um(r), E(−)(r, t) =
∑

m

Ema
†
m(t)um(r), (A.2)and the mode fun
tions and expansion 
oe�
ients are assumed to be real. For simpli
ity we will assumethat the �elds on the output side of the BS 
an be represented by a single mode in ea
h arm so that wemay write the �eld as

E(−)(r, t) = E
(−)
3 (r, t) + E

(−)
4 (r, t) = E3a

†
3(t)u3(r) + E4a

†
4(t)u4(r), (A.3)where only the negative frequen
y part is shown. The reason for making this assumption is that we onlywish to model a single quasi-mode of the 
avity, from whi
h the photons originate, and therefore also theinput side of the BS will be represented by a simple two mode �eld as above. In this approximation we onlysolve for the lo
al 
avity mode and through this we impli
itly assume that propagation e�e
ts from the
avity to the dete
tors are negle
table. This often used assumption has re
ently been questioned [81℄, forsome types of photoni
 stru
tures, and may therefore not be valid in all 
ases, but it is beyond the s
opeof this thesis to improve upon this approximation. To pro
eed we insert eq. (A.3) into eq. (A.1) whi
hresults in a total of 24 = 16 
ontributions. Fortunately most of these 
an be negle
ted as they 
ontainspatial 
ross terms of the type u3(r4) or u4(r3), where a spatially lo
alized mode fun
tion is evaluated atthe dete
tor position in the other output arm, whi
h 
an safely negle
ted. After throwing all these 
rossterms away we end up with the expression

G(2)(r3t3, r4t4; r4t4, r3t3) ≈ |E3u3(r3)|2|E3u4(r4)|2 〈a†3(t3)a†4(t4)a4(t4)a3(t3)〉 ,where we may further remove the 
onstant prefa
tors. This is allowed due to the fa
t that the 
onsideredse
ond order 
orrelation fun
tion is only proportional to the probability we are looking for, and hen
e itmust be normalized at some point anyway. We may now simply the notation and write the se
ond order
orrelation fun
tion as follows
G

(2)
34 (t3, t4) = 〈a†3(t3)a†4(t4)a4(t4)a3(t3)〉 . (A.4)The next thing is to relate the output photon operators to those on the input side, whi
h is done with astandard BS relation of the form [17℄
[
a3(t)
a4(t)

]

=

[
cos(ξ) −e−iφ sin(ξ)

eiφ sin(ξ) cos(ξ)

] [
a1(t)
a2(t)

]

, (A.5)that performs the BS a
tion as a unitary operation. The number ξ determines the re�e
tion and transmis-sion of the BS and φ is an arbitrary phase. To expressG(2)
34 (t3, t4) in terms of the input photon operators weuse eq. (A.5) on eq. (A.4) whi
h generates 24 = 16 terms of four-operator brakets in the photon operatorsfor the two input arms. We assume the photon operators of the input to be equal to the photon operatorsof system 1 and 2, respe
tively. To simplify this expression and the further analysis of the problem, we willassume that system 1 and 2 are identi
al and independent. The identi
al part means that their respe
tiveHamiltonians are equal, ex
ept for the index, and the independen
e means that their Hamiltonians 
om-mute, [H1, H2] = 0, i.e. do not intera
t. The fa
t that their Hamiltonians 
ommutes, has the 
onsequen
ethat any expe
tation value involving operators of the two subsystems may be fa
tored into an expe
tationvalue for ea
h of the subsystems, e.g. 〈a†2(t3)a†1(t4)a1(t4)a2(t3)〉 = 〈a†2(t3)a2(t3)〉 〈a†1(t4)a1(t4)〉. The fa
tthat the are equal means that after the fa
torization we may simply remove the subs
ript referring to theindividual subsystems, so that e�e
tively we only 
onsider a single system. In pra
tise this situation 
anrealized by using the same system as both system 1 and 2. The �rst emitted photon 
ould be sent on126



Appendix Higher Order Correlation Fun
tionsa longer path, while the system returned to equilibrium and 
ould be ex
ited again to emit the se
ondphoton. Performing the steps des
ribed above and spe
ializing to the 
ase of a 50/50 BS, obtained bysetting ξ = π/4, and 
hoosing the arbitrary phase as φ = π/4 we arrive at
G

(2)
34 (t3, t4) = 〈a†(t3)a(t3)〉 〈a†(t4)a(t4)〉 − 〈a†(t3)a(t4)〉 〈a†(t4)a(t3)〉+ 〈a†(t3)a†(t4)a(t4)a(t3)〉

+
1√
2

[
〈a†(t3)a†(t4)a(t3)〉 〈a(t4)〉+ 〈a†(t3)a(t4)a(t3)〉 〈a†(t4)〉

− 〈a†(t3)a†(t4)a(t4)〉 〈a(t3)〉 − 〈a†(t4)a(t4)a(t3)〉 〈a†(t3)〉
]
, (A.6)where an overall fa
tor of 1/2 has been removed. The two �rst terms in this expression are �rst order
orrelation fun
tions or single-parti
le Green's fun
tions and are expe
ted to play an important role as weare 
onsidering single-photon states. The third term is a se
ond order 
orrelation fun
tion, or two-parti
leGreen's fun
tion, and is not expe
ted to yield signi�
ant 
ontributions due to its two parti
le nature.This may sound strange as we are interfering two photons, however, we have expressed the two-photondete
tion probability in terms of quantities of the single emitter, where only a single photon is generated.The last four terms are more di�
ult to have an intuition about, as they are not dire
tly related to photondete
tion probabilities as the �rst three terms are. The importan
e of all terms will be investigated furtherin appendix A.2.A.2. Higher Order Correlation Fun
tionsThe purpose of this appendix is to estimate the relative magnitude of the various photon 
orrelationfun
tions appearing in the expression for G(2)

34 (t3, t4), see eq. (A.6), and show or argue that higher order
orrelation fun
tions are identi
ally zero or negligible. For referen
e we reprodu
e the expression for
G

(2)
34 (t3, t4) below

G
(2)
34 (t3, t4) = 〈a†(t3)a(t3)〉 〈a†(t4)a(t4)〉 − 〈a†(t3)a(t4)〉 〈a†(t4)a(t3)〉+ 〈a†(t3)a†(t4)a(t4)a(t3)〉

+
1√
2

[
〈a†(t3)a†(t4)a(t3)〉 〈a(t4)〉+ 〈a†(t3)a(t4)a(t3)〉 〈a†(t4)〉

− 〈a†(t3)a†(t4)a(t4)〉 〈a(t3)〉 − 〈a†(t4)a(t4)a(t3)〉 〈a†(t3)〉
] (A.7)To avoid having to deal with the full solid-state system, see se
tion 3.2.3, we will fo
us on a mu
h simplersystem, namely the well known Jaynes-Cummings model1 (JCM). The JCM des
ribes a system of a singleele
tron intera
ting with a single 
avity mode through the dipole 
oupling, for a illustration see �gure A.2.The Hamiltonian for the JCM is given by

H = H0 +Hi, H0 =
∑

i=1,2

~ωic
†
i ci + ~ω(a†a+ 1/2), Hi =

∑

i6=j

~gc†icj(a
† + a), (A.8)where ωi is the frequen
y of ele
tron state i, ω is the frequen
y of the 
avity mode, and g is the 
oupling
onstant between the two systems whi
h we assume to be real. The operators c†i , ci, a†, and a arethe standard se
ond quantization operators for fermions and bosons. We note that the rotating waveapproximation (RWA) has not been applied, as it is partly the validity of this we wish to examine, also thespin index of the ele
tron has been omitted for notational simpli
ity. The part of the Hamiltonian for thefull system whi
h is responsible photon emission into the 
avity is exa
tly given by the JCM Hamiltonian.The extra terms o

urring, all lead to various forms of the de
ay. On this basis, we 
an expe
t the JCMto exhibit stronger photon 
orrelations than the full system, and hen
e it 
an be used as an ideal systemto investigate higher order 
orrelations. We will then assume that photon 
orrelation fun
tions, whi
h arezero or negligible for the JCM will be of even smaller signi�
an
e for the full system, and hen
e 
an beomitted in the full analysis.1See e.g. 
hapter 6 in [44℄. 127
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tions Appendix

c†1 |0〉

c†2 |0〉

~ω1

~ω2
Hi

|0〉~ω 1
2

a† |0〉~ω 3
2

(a†)2√
2!
|0〉~ω 5

2

(a†)N

√
N !
|0〉~ω(N + 1

2 )

(a†)N+1√
(N+1)!

|0〉~ω(N + 3
2 )

(a†)N+2√
(N+2)!

|0〉~ω(N + 5
2 )

Figure A.2.: S
hemati
 illustration of the Jaynes-Cummings model, with the ele
troni
 and photoni
 systems in-tera
ting through Hi.In order to obtain the photon 
orrelation fun
tions we need to determine the time evolution of the photonoperators (a and a†) in the Heisenberg pi
ture. This is given by
a(t) = u†(t, t0)au(t, t0), (A.9)where u(t, t0) is the time evolution operator
i~∂tu(t, t0) = Hu(t, t0)⇒ u(t, t0) = exp (−iH(t− t0)/~) ,and where the initial 
ondition u(t0, t0) = 1 has been used. In the following we will set t0 = 0 and dropthe se
ond time argument in u(t, t0). The expli
it form of u(t) is most easily obtained by diagonalizing

H , as u(t) will be diagonal in the eigenstates of H .The next step is to 
hoose a suitable basis for our system. A general basis ve
tor 
ontaining one ele
tronand N photons will be of the form
|n1, n2;N〉 = (c†1)

n1(c†2)
n2

(a†)N

√
N !
|0〉 , where n1, n2 = 0, 1 and N = 0, 1, 2 . . . (A.10)Usually when 
onsidering the JCM, in the RWA, the basis {|1, 0; 1〉 , |0, 1; 0〉} is used, as this generates a
losed set of equations for the initial state |ψ(t = 0)〉 = |0, 1; 0〉. However due to the fa
t that we have notapplied the RWA, the same initial 
ondition will 
ouple to states 
ontaining more than one photon, and ingeneral generate an in�nite set of equations. These other states 
ontain virtual photons, that is photonsthat would not be allowed to exist if stri
t energy 
onservation was to hold. In quantum me
hani
s stri
tenergy 
onservation does not hold, due to the energy-time un
ertainty relation2 ∆E∆t ≥ ~/2, and breakingenergy 
onservation is allowed within small time spans. The main reason for going beyond the RWA is toexamine the e�e
t of the virtual photons on the higher order terms inG(2)

34 (t3, t4).2For a 
riti
al 
omment on the usual interpretation of the energy-time un
ertainty relation see [45, p. 343℄. The 
omment isbased on the fa
t that there does not exist a time operator in quantum me
hani
s and hen
e an energy-time un
ertaintyrelation, in the usual sense, 
annot be derived.128



Appendix Higher Order Correlation Fun
tionsAs a trun
ated basis we will 
hoose the following �ve states, denoted the bare basis,
|1〉 = |1, 0; 0〉 = c†1 |0〉 , (A.11a)
|2〉 = |1, 0; 1〉 = c†1a

† |0〉 , (A.11b)
|3〉 = |0, 1; 0〉 = c†2 |0〉 , (A.11
)
|4〉 = |0, 1; 1〉 = c†2a

† |0〉 , (A.11d)
|5〉 = |1, 0; 2〉 = c†1

(a†)2√
2
|0〉 . (A.11e)These are 
hosen as they possess the two lowest free transition energies for a system initially in the |3〉state, assuming a zero detuning setup, ω2−ω1 = ω. The free transition energy between two states is givenby: |H0(|final〉 − |initial〉)|, so that for our basis we get

H0(|2〉 − |3〉) = 0, |H0(|1〉 − |3〉)| = H0(|4〉 − |3〉) = H0(|5〉 − |3〉) = ~ω.This way we allow the initial ex
itation to propagate into states whi
h are energeti
ally unfavorable, butnevertheless o

ur as we have not applied the energy-
onserving RWA. In the 
ase of having applied theRWA there would be no need to expand the basis beyond {|2〉 , |3〉}, as these are the only states 
onservingenergy for a system initially in state |2〉 or |3〉.The matrix representation of H in the basis {|1〉 , |2〉 , |3〉 , |4〉 , |5〉} is given by
H =









~ω1 0 0 ~g 0
0 ~(ω1 + ω) ~g 0 0
0 ~g ~ω2 0 0

~g 0 0 ~(ω2 + ω)
√

2~g

0 0 0
√

2~g ~(ω1 + 2ω)









,where the zero-point energy of the photons has been negle
ted, as it only 
orresponds to a shift of ~ω/2to all energy levels and hen
e is without any dynami
al signi�
an
e. Finding eigenvalues- and ve
torsof this 5 × 5 matrix 
an be done analyti
ally, as the solution of the 
hara
teristi
 equation for deter-mining the eigenvalues only involves a third order polynomial. The expli
it form of the eigenvalues-and ve
tors is however not very important in the present 
ontext and would take up a lot of spa
e, sothese will not be shown. Instead we present the general form of the solution and argue on the basis ofthis.The eigenvalues- and ve
tors will be represented by the following symbols
~Ωi, |Ωi〉 =









〈1|Ωi〉
〈2|Ωi〉
〈3|Ωi〉
〈4|Ωi〉
〈5|Ωi〉









,respe
tively and the ve
tors have been normalized, i.e. 〈Ωi|Ωj〉 = δij . Representing the Hamiltonian inthe basis of its eigenstates, the dressed states, diagonalizes the matrix form of H . Mathemati
ally thediagonalization is performed by applying the following transformation to H
H ′ = V −1HV ⇒ (H ′)ij = ~Ωiδij .Here the prime (′) signi�es representation in the dressed basis and V is a unitary transformation ma-trix, whi
h 
olumns are given by the eigenve
tors of H , i.e. (V )ij = 〈i|Ωj〉. Having diagonalized theHamiltonian, it is easy to obtain the time evolution operator as this is also diagonal in the dressed ba-sis
u′(t) = exp (−iH ′t/~)⇒ (u′(t))ij = exp(−iΩit)δij . 129



Higher Order Correlation Fun
tions AppendixWe 
ould pro
eed to work in the dressed basis, but we will transform ba
k to the more intuitive bare basis,eq. (A.11), where the time evolution operator is given by the inverse transformation
u(t) = V u′(t)V −1.The last thing needed to 
al
ulate the photon 
orrelation fun
tions is to determine the matrix representa-tion of the photon operators a and a†. The elements of a are found by writing a general matrix elementof a in two states of the form eq. (A.10)
〈m1,m2;M |a|n1, n2;N〉 = 〈0| a

M

√
M !

cm2
2 cm1

1 a(c†1)
n1(c†2)

n2
(a†)N

√
N !
|0〉

= 〈M |a|N〉 δm1,n1δm2,n2

=
√
NδM,N−1δm1,n1δm2,n2 ,where in the last line we have used a |N〉 =

√
N |N − 1〉. The matrix representing a 
an now be writtenas

a =









0 1 0 0 0

0 0 0 0
√

2
0 0 0 1 0
0 0 0 0 0
0 0 0 0 0









.The matrix form of a† is easily found from the above by the de�nition of Hermitian 
onjugation (a†)ij = [(a)ji]
∗.Obtaining the time evolution of the various 
orrelation fun
tions in G(2)

34 (t3, t4), eq. (A.7), is now a simplematter of matrix multipli
ation as seen from eq. (A.9). One last thing that needs to be dis
ussed is themeaning of the bra
kets in eq. (A.7). The usual meaning of the bra
ket is that of taking the expe
tationvalue of a 
ertain operator O(t), that is 〈O(t)〉 = Tr [ρ0O(t)], where ρ0 is the initial density matrix of thesystem. For a pure state the density matrix 
an be written as ρ0 = |ψ0〉 〈ψ0|, so that the expe
tation valueof O(t) 
an rewritten as follows
〈O(t)〉 = Tr [ρ0O(t)] = Tr [|ψ0〉 〈ψ0|O(t)] = 〈ψ0|O(t)|ψ0〉 ,where |ψ0〉 is the initial state ve
tor of the system. This means that we simply have to take the matrixelement of the produ
t of operator matri
es 
orresponding to the desired initial state. To mimi
 thesituation in an opti
ally ex
ited semi
ondu
tor intended for single photon produ
tion, we 
hoose the state
orresponding to a single ex
ited ele
tron, |ψ0〉 = |3〉.We will start by 
onsidering the 
orrelation fun
tions on the se
ond and third line of eq. (A.7), 
ontainingan uneven number of photon operators inside the bra
kets. It 
an be shown expli
itly by multiplying allthe various matri
es and in the end taking the 〈3| · · · |3〉 element, that both bra
kets of single and threephoton operators are identi
ally zero for all times. None of the other terms in G(2)

34 (t3, t4) are identi
allyzero, but we have still a
hieved a major simpli�
ation and we are down to bra
kets of two and four photonoperators
G

(2)
34 (t3, t4) = 〈a†(t3)a(t3)〉 〈a†(t4)a(t4)〉 − 〈a†(t3)a(t4)〉 〈a†(t4)a(t3)〉

︸ ︷︷ ︸

single−particle contributions

+ 〈a†(t3)a†(t4)a(t4)a(t3)〉
︸ ︷︷ ︸

two−particle contributions

.(A.12)The 
orrelation fun
tion with four operators 
onstitutes a two-parti
le Green's fun
tion, whi
h is amu
h more di�
ult obje
t to handle than the 
orrelation fun
tions with two photon operators, single-parti
le Green's fun
tions. Due to this fa
t we are interested in examining the importan
e of the two-parti
le Green's fun
tion 
ontributions, relative to the 
ontributions from the one-parti
le Green's fun
-tions.130



Appendix From A · p to d · ET intera
tionTo start o� the dis
ussion of the last remaining terms in G(2)
34 (t3, t4), it is useful to mention a few prop-erties of the JCM in the RWA. When applying the RWA to the JCM Hamiltonian we remove the term

~g(c†2c1a
† + c†1c2a), as this 
orresponds to the 
reation of virtual photons, see [44, p. 196℄. The justi�-
ation for performing the RWA, rests on the assumption that 
oupling energy ~g is small 
ompared tothe transition energies of the free system, i.e. ~ω and ~(ω2 − ω1). This is 
ertainly the 
ase for presentsemi
ondu
tor nanostru
tures [82℄. Applying the RWA has the 
onsequen
e that the elements H14 and

H41 of the Hamiltonian be
ome zero, whi
h leads to a new matrix form of H
H =









~ω1 0 0 0 0
0 ~(ω1 + ω) ~g 0 0
0 ~g ~ω2 0 0

0 0 0 ~(ω2 + ω)
√

2~g

0 0 0
√

2~g ~(ω1 + 2ω)









.It is 
learly seen that the new system 
onsists of three independent subsystems, whi
h do not mix due tothe RWA. For this Hamiltonian all 
orrelation fun
tions, ex
ept those 
omposed of single-parti
le Green'sfun
tions, are identi
ally zero for all times. On the basis of this, one 
ould therefore expe
t that the
ontributions from 〈a†(t3)a†(t4)a(t4)a(t3)〉 would be
ome negligible for small g for the full JCM. However,it was found not to be the 
ase. For the following set of parameters3: ~ω2 = 2~ω1 = 2~ω = 2.64 eVand ~g = 85 µeV, the single- and two-parti
le 
ontributions in eq. (A.12) were of the same order ofmagnitude. However, the absolute value of the single-parti
le Green's fun
tions was mu
h larger thanfor the two-parti
le Green's fun
tions . This pi
ture did not 
hange for even lower g, down to ~g =
15 µeV. To be able to see the expe
ted behavior, the bare basis was extended by the following two basisstates

|6〉 = |0, 1; 2〉 = c†2
(a†)2√

2
|0〉 ,

|7〉 = |1, 0; 3〉 = c†1
(a†)3√

3!
|0〉 ,thereby allowing for the 
reation of another pair of virtual photons, breaking the stri
t energy 
onservationby 2~ω. This enlargement of the basis did not 
ause any visible 
hanges in the single-parti
le 
ontributions,but it did 
ause small 
hanges in the two-parti
le 
ontributions, not in magnitude but rather shiftingvarious os
illations in the two-time plane. It was indeed expe
ted that the in
lusion of more virtualphotons would 
hange the two-parti
le 
ontributions, but not have mu
h e�e
t on the single-parti
le ones.Due to this observation and the strong expe
tation that enough virtual photon pro
esses4 and su�
ientlylow g will 
ause us to rea
h the RWA limit of vanishing two-parti
le 
ontributions, we will assume thatthe two-parti
le 
ontributions in G(2)

34 (t3, t4) 
an be negle
ted.A.3. From A · p to d ·ET intera
tionIn this appendix we will rewrite the ele
tron-photon intera
tion from the A · p to the D · ET form.To do this we employ a relatively simple heuristi
 approa
h, more rigorous methods [31, 43, 46℄ 
an beused involving unitary transformations but the result is basi
ally the same, hen
e we will use the moretransparent simple approa
h. We 
onsider the A · p intera
tion between a 
lassi
al �eld5 and a singleele
tron in the ele
tri
 dipole approximation
Hi =

e

m
A(0) · p.3Representative for present day semi
ondu
tor nanostru
tures, see [82℄.4Enough virtual photon pro
esses 
ould mean taking 
ertain pro
esses to in�nite order and would therefore not be pra
ti
allypossible in the present approa
h of diagonalizing a Hamiltonian matrix.5Basi
ally the same argument 
an be performed with a quantized �eld of the form ET(0) = E0

2
(a† + a). 131



From A · p to d · ET intera
tion AppendixTo 
onne
t the two di�erent forms a relation between the momentum, p and position, r, is needed. Thisis found by using the de�nition of momentum [31, p. 26℄ as the time derivative of the position times the(free) mass of the ele
tron
p = m∂tr =

m

i~
[r, H0] ,where H0 is the single-ele
tron Hamiltonian, whose eigenstates we use as basis H0 |n〉 = ~ωn |n〉. Wepro
eed by taking an arbitrary matrix element of Hi

〈j|Hi|k〉 =
e

m
A(0) · 〈j|p|k〉 = e

m
A(0) ·

{

〈j|m
i~

(rH0 −H0r) |k〉
}

= −iωjkDjk ·A(0), (A.13)where ωjk = ωj − ωk and D = −er is the ele
trons dipole. The 
onne
tion between A and ET is givenby the gauge relation eq. (3.3)
ET(0, t) = −∂tA(0, t)⇒ A(0, t) = −

∫

dt̃ET(0, t̃).Assuming that we have a 
lassi
al ele
tri
 �eld for whi
h dominating time-dependen
e is given by
ET(0, t) =

E0

2
(eiωt + e−iωt),the 
orresponding ve
tor potential be
omes

A(0, t) = −E0

iω2
(eiωt − e−iωt).Inserting this into the matrix elements above yields

〈j|Hi|k〉 =
ωjk

ω
Djk ·

E0

2
(eiωt − e−iωt).To show that these matrix elements are identi
al to those of Hi = −D ·ET, and hen
e that it is the sameoperator, we 
onsider the 
ases ωjk > 0 and ωjk < 0 separately. The 
ase ωjk > 0 
orresponds to theex
itation of the ele
tron, and hen
e the dominating 
ontribution will 
ome from the term where a photonis absorbed, so that

〈j|Hi|k〉 ≈ −
ωjk

ω
Djk ·

E0

2
e−iωt. (A.14)The 
ase ωjk < 0 ⇒ ωjk = −ωkj 
orresponds to the deex
itation of the ele
tron, and therefore thedominating 
ontribution 
omes from the term where a photon is emitted yielding

〈j|Hi|k〉 ≈ −
ωkj

ω
Djk ·

E0

2
eiωt. (A.15)For both 
ases we 
onsider only the resonant part of the intera
tion, so that the fra
tion 
ontainingthe transition frequen
y and �eld frequen
y is very 
lose to unity. This 
ompletes the derivation andwe have shown that the A · p and D · ET intera
tions are identi
al within the approximations usedabove. Considering only resonant 
ontributions in the ele
tron-photon intera
tion is 
ommonly knownas the rotating-wave approximation (RWA), thus in order for the arguments stated in this appendix tohold, the RWA should be applied in every ele
tron-photon intera
tion Hamiltonian. The more advan
edderivations referred to in the beginning, do however not make use of the RWA to prove equivalen
e betweenthe two forms, hen
e using the D · ET intera
tion and not applying the RWA will still be a 
onsistent
hoi
e.A possible issue should be noted regarding the 
urrent approa
h. The unitary transformation applied inthe referen
es [46, p. 636℄ generates a dipole-dipole intera
tion of the form D ·D in the transformed Hamil-tonian, whi
h does not appear in our derivation performed above. This indi
ates that the approximationswe have used 
orrespond to negle
ting this dipole-dipole intera
tion. The validity of this approximation
an be assessed by 
omparing two review arti
les written by the same main authors [25, 83℄. In theoldest arti
le the dipole-dipole term is kept in the 
al
ulations, whereas in the more re
ent arti
le thisterm has been negle
ted. The 
al
ulations were performed on semi
ondu
tor nanostru
tures 
omparableto those we are 
onsidering, indi
ating that the negle
tion of the dipole-dipole intera
tion is hopefullyjusti�ed.132



Appendix Numeri
sA.4. Numeri
sThe numeri
al methods for solving the equations of motion of the Green's fun
tions are an extremelyimportant aspe
t of performing many-body simulations. This is due to the often huge 
omputations thatneed to be performed and 
hoosing the wrong method 
an easily result in several orders of magnitudelonger 
omputation time. Of similar importan
e is how the algorithms are implemented on a 
omputersystem, we will however not des
ribe this part of the proje
t. For the above reason we will brie�y des
ribedi�erent methods used in the numeri
al solution of our equations.The di�erential equations we need to solve are all of the following general form
∂tu(t) = g(t) +

∫ t

−∞
dt′k(t, t′)u(t′) = f(t), (A.16)where for simpli
ity we write it is a s
alar, generalization to a more general matrix form is straight-forward.In the above di�erential equation u(t) is fun
tion we solve for, g(t) is some general fun
tion, and the lastterm is a memory integral with a memory kernel k(t, t′). In the following we will denote the entire RHSas a single sour
e term f(t).The goal in numeri
s is to a
hieve as high a degree of 
omputational e�
ien
y as possible, i.e. obtaina su�
iently a

urate solution in the least amount of time, whi
h is what guides ones 
hoi
e of method.A

ura
y is generally obtained through the use of high order methods, while the time 
onsumption iskept low by minimizing the number of fun
tion evaluations. We are not in sear
h of extremely a

uratesolutions, but we do have the rather spe
ial problem that our sour
e term f(t) is often very expensive toevaluate. This is due to the presen
e of many sums in the self-energies and espe
ially the memory integralover the past. Fortunately there exists a 
lass of methods known as linear multistep or Adams methods,that are designed to minimize the number of sour
e evaluations, while still being available to high order.For our type of problem a spe
i�
 set of s
hemes have proved themselves useful [26, p. 284℄, these areknown as predi
tor-
orre
tor (PC) s
hemes. A parti
ular 
hoi
e is the so-
alled Adams-Bashforth-Moulton(ABM) pro
edure [84, p. 943℄ whi
h is a third order method. The time-stepping formulas are given bytwo 
ontributions, a predi
tor and a 
orre
tor part

predictor : un+1 = un +
h

12
(23fn − 16fn−1 + 5fn−2) + O(h4), (A.17)

corrector : un+1 = un +
h

12
(5fn+1 + 8fn − fn−1) + O(h4). (A.18)In these formulas h is the distan
e between two 
onse
utive time dis
retization points, the integer nrefers to the dis
rete time axis, and O(hp+1) is an order of magnitude error term with p being the orderof the method. The predi
tor part is an expli
it method in that un+1 only depends on quantities atprevious times, whereas the 
orre
tor part is an impli
it method as un+1 depends on the sour
e termat the present time n + 1. The reason for 
ombining these two methods is that the expli
it predi
tor iseasy to implement but has bad stability properties, while the impli
it method is di�
ult6 to implementbut has good stability properties. The strategy is then to 
al
ulate an initial estimate of un+1 using thepredi
tor, and then 
al
ulate a better estimate using the 
orre
tor, using at ea
h n the predi
tor guess toevaluate the unknown sour
e fn+1. This pro
edure 
an be repeated many times, but usually only a singleiteration is performed, the rather subtle reason for this is explained in [84, p. 944℄. The great advantageof Adams methods is, as mentioned, that it minimizes the number of sour
e evaluations needed. This 
anbe realized by 
onsidering the RHS of eqs. (A.18) and (A.17) where referen
e is to previous grid pointsonly (ex
ept for fn+1 in the predi
tor), meaning that these evaluations 
an be reused by employing a bitof bookkeeping. This is in 
ontrast to e.g. high order Runge-Kutta methods, where several intermediatesour
e evaluations are needed in between the a
tual grid points. The memory of the Adams method isin general an advantage, but it does 
ause some problems for the �rst few initial steps of the algorithm,6Eq. (A.18) is a
tually an impli
it equation in un+1, through fn+1, that would have to be solved somehow, whi
h wouldbe very time 
onsuming. 133



Self-energies Appendixas basi
ally one has to known the solution in the �rst few grid points in order to start the time stepping.This is not a problem for the non-equilibrium simulations performed in 
hapter 6, where prior to thearrival of the ex
itation pulse the solution is known and all sour
e terms are zero. For the simulationsof the retarded Green's fun
tion performed in se
tion 5.3 we are however not that fortunate, and wehave to apply some other method to solve the problem or somehow obtain the solution in �rst few gridpoints. One solution is to use the most simple of all the Adams methods, namely the well-known Eulerformulae
un+1 = un + hfn + O(h2).Being a �rst order method a very small h is often needed in order to obtain a desired a

ura
y, hen
esolution of the full problem using the Euler s
heme is often not feasible. An alternative strategy is to usethe Euler s
heme to obtain the solution in the grid points needed to initiate the PC ABM pro
edure andsubsequently use this method, with a feasible h, for the rest of the time stepping. This strategy has beenapplied whenever needed. A more serious drawba
k of the Adams is the fa
t that they rely on equidistanttime grids, thus making adaptive time grids di�
ult to implement.During the implementation and testing of the PC ABM pro
edure, the numeri
al solution was for somesituations found to be subje
ted to numeri
al dispersion, that is damping of the solution not related toany physi
al damping me
hanisms but purely due to the numeri
al method. The numeri
al dispersionwas however only an issue during time spans when energy was being put into the system through theex
itation pulse, after the pulse had passed no signi�
ant numeri
al dispersion was observed. This 
ouldbe
ome a serious issue for 
ertain ex
itation 
onditions that o

ur over long periods of time, e.g. 
on-tinuous wave ex
itation, but for our system where only short pulses are 
onsidered it was no pra
ti
alproblem.So far we dis
ussed the solution of eq. (A.16) assuming that the sour
e term 
ould be evaluated withoutany spe
ial e�ort, this is not the 
ase as an integral has to be evaluated. The memory kernel and solutionare both dis
rete fun
tions, hen
e one of the easiest and most intuitive ways of performing the integral,would be using the trapezoid rule [84℄
∫ h(n+1)

hn

dtu(t) =
h

2
(un + un+1) + O(h3),as it integrates pie
ewise linear fun
tions exa
tly. Being a se
ond order method one 
ould spe
ulate whetherusing the trapezoid rule for 
al
ulating the sour
e term, would ruin the advantage of using the third orderABM method for the time stepping, as the se
ond order method in prin
iple should introdu
e a largererror than the third order in ea
h time step. To test this the Simpson's rule [84℄

∫ h(n+2)

hn

dtu(t) =
h

3
(un + 4un+1 + un+2) + O(h5),whi
h is of fourth order was tested, but turned out to yield the same result as using the trapezoid rule.For this reason the trapezoid rule was used in the simulations, as it has the advantage of being able tointegrate both an even and odd number of grid points, as oppose to the Simpson rule whi
h 
an onlyintegrate an odd number.A.5. Self-energiesIn this appendix we will derive the self-energies to be used in this thesis. To keep the theory as simpleas possible only lowest order self-energies will be 
onsidered, whi
h means that the self-energy 
an beidenti�ed from the se
ond non-zero term in the expansion of the 
ontour ordered Green's fun
tions, seeeq. (2.22),

Gαβ(τ, τ ′) = G0
αβ(τ, τ ′) +

∫

C

dτ2dτ1
∑

α1β1

G0
αβ1

(τ, τ2)Σ
(1)
β1α1

(τ2, τ1)G
0
α1β(τ1, τ

′) + · · · (A.19)134



Appendix Self-energiesThe supers
ript on the self-energy signi�es that this is a lowest/�rst order self-energy. It should be notedthat this approa
h for obtaining the self-energy 
an be applied for both fermions and bosons, as longas the Green's fun
tion is de�ned a

ording to eq. (2.19). All the self-energies derived in this appendixwill be made self-
onsistent, in the sense that all free Green's fun
tions appearing will be repla
ed by the
orresponding full Green's fun
tions, G0 → G, ex
ept for the phonons whi
h are treated as a reservoir.The pro
edure for making the self-energy self-
onsistent, is to in
lude a wide enough sub
lass of diagramsinto Σ
(1)
β1α1

(τ2, τ1) in eq. (A.19), until one 
an repla
e all free Green's fun
tions with the 
orrespondingfull ones. This has the 
onsequen
e that the self-
onsistent self-energy has in�nite many terms, whereasthe 
orresponding non-self-
onsistent self-energy only has a single term. This is illustrated for a Fo
ktype self-energy in �gure A.3, where all terms up to third order are shown and a few of fourth order.The self-
onsistent s
heme ensures that the di�erent subsystems 
ouple and also that the self-energiessatisfy important physi
al 
onservation laws, su
h as parti
le number [85℄. The physi
al justi�
ations, andlimitations, for only 
onsidering lowest order self-energies are given in the main text, see se
tion 5.2.2, hen
ethis appendix will only present the formal details with the physi
s postponed.
ΣF

SC = = + +

+ +

+ + + · · ·Figure A.3.: Diagrams illustrating a self-
onsistent Fo
k self-energy for ele
trons intera
ting with phonons.Below we will go through the self-energies arising from the various intera
tions presented in generi
 formin se
tion 3.2.3. The following symbols will be used to the denote the various Green's fun
tions: G forele
trons, A for photons, and D for phonons. Their diagrammati
 
ounterparts are shown in �gure A.4.
G0 = G =

A0 = A =

D0 =Figure A.4.: Diagrams used for the various Green's fun
tions; G is for ele
trons, A is for photons, and D is forphonons.
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Self-energies AppendixEx
itation pulseThe semi-
lassi
al intera
tion between the ele
trons and the 
lassi
al ex
itation pulse is given eq. (3.21)
U(t) =

∑

νν′

dνν′Ecl(t)c
†
νcν′ .A

ording to eq. (2.22) the �rst two terms in the expansion of the ele
tron Green's fun
tion are givenby

Gνν′(τ, τ ′) = G0
νν′(τ, τ ′) + (−i~−1)2

∫

C

dτ1 〈TC{Û(τ1)ĉν(τ)ĉ†ν′ (τ
′)}〉0,con + · · ·

= G0
νν′(τ, τ ′) +

∫

C

dτ1
∑

ν1ν′
1

dν1ν′
1
Ecl(τ1)(−i~−1)2 〈TC{ĉ†ν1

(τ1)ĉν′
1
(τ1)ĉν(τ)ĉ†ν′ (τ

′)}〉
0,con

+ · · ·Wi
k's theorem, eq. (2.21), 
an now be applied to the two-parti
le Green's fun
tion in the se
ond termabove, this results in a 
onne
ted and a dis
onne
ted diagram. Keeping only the 
onne
ted diagram yieldsfor the se
ond term
∫

C

dτ1
∑

ν1ν′
1

G0
νν1

(τ, τ1)
[
dν1ν′

1
Ecl(τ1)

]
G0

ν′
1ν′(τ1, τ

′),
omparing to eq. (A.19) we 
an identify the (singular) self-energy as the 
ontent of the square bra
k-ets
Uν1ν′

1
(τ1) = dν1ν′

1
Ecl(τ1). (A.20)It should be noted that as this intera
tion is a one-body intera
tion, it does not generate anymore termsto its self-energy and is therefore treated exa
tly. A diagrammati
 representation is shown in �gure A.5.
Figure A.5.: Diagram used for the singular self-energy eq. (A.20).Ele
tron-ele
tronThe Coulomb intera
tion between the ele
trons is given by eq. (3.17)

He−e =
1

2

∑

ν1ν2
ν3ν4

Vν4ν3,ν1ν2c
†
ν4
c†ν3
cν2cν1 .The �rst two terms in the expansion of the ele
tron Green's fun
tion are given by

Gνν′(τ, τ ′) = G0
νν′(τ, τ ′) + (−i~−1)2

∫

C

dτ1 〈TC{Ĥe−e(τ1)ĉν(τ)ĉ†ν′ (τ
′)}〉0,con + · · ·For the se
ond term we further get

∫

C

dτ1
(−i~−1)−1

2

∑

ν1ν2
ν3ν4

Vν4ν3,ν1ν2(−i~−1)3 〈TC{ĉ†ν4
(τ1)ĉ

†
ν3

(τ1)ĉν2(τ1)ĉν1(τ1)ĉν(τ)ĉ†ν′ (τ
′)}〉

0,con
.136



Appendix Self-energiesApplying Wi
k's theorem to the three-parti
le Green's fun
tion we obtain six diagrams, two of whi
h aredis
onne
ted, and therefore disregarded, and four 
onne
ted diagrams. Of the four 
onne
ted diagramsthere are only two that are topologi
ally di�erent, ea
h o

urring in pairs, hen
e the "double 
ounting" 1
2fa
tor 
an
els. For the �rst 
onne
ted diagram we get

∫

C

dτ1
∑

ν1ν4

G0
νν4

(τ, τ1)

[

−i~
∑

ν2ν3

Vν4ν3,ν1ν2G
0
ν2ν3

(τ1, τ
+
1 )

]

G0
ν1ν′(τ1, τ

′),where τ+
1 = τ1 + 0+ so that τ+

1 >C τ1. This interpretation of the equal-time 
ontour ordered Green'sfun
tion, G0
νν′(τ, τ), as slightly 
ontour time shifted, G0

νν′(τ, τ+), is ne
essary to make sure that the oper-ators in the Hamiltonian are ordered 
orre
tly, i.e. that 
reation operators stand to the left of annihilationoperators7. This has the 
onsequen
e that G0
νν′(τ, τ+) be
omes an equal-time lesser Green's fun
tions

G0,<
νν′ (t, t) no matter where τ is lo
ated on the Keldysh 
ontour. The self-
onsistent self-energy 
an nowbe identi�ed as

Σe−e,H
ν4ν1

(τ1) = −i~
∑

ν2ν3

Vν4ν3,ν1ν2Gν2ν3(τ1, τ
+
1 ),whi
h is usually 
alled the Hartree self-energy or dire
t intera
tion. The se
ond 
onne
ted diagramyields

∫

C

dτ1
∑

ν2ν4

G0
νν4

(τ, τ1)

[

i~
∑

ν1ν3

Vν4ν3,ν1ν2G
0
ν1ν3

(τ1, τ
+
1 )

]

G0
ν2ν′(τ1, τ

′),from whi
h we get the self-
onsistent self-energy
Σe−e,F

ν4ν2
(τ1) = i~

∑

ν1ν3

Vν4ν3,ν1ν2Gν1ν3(τ1, τ
+
1 ),this self-energy is usually 
alled the Fo
k self-energy or ex
hange intera
tion. These two 
ontributionslook formally quite similar and by inter
hanging ν1 and ν2 in the Fo
k part they 
an be 
olle
ted into thewell known Hartree-Fo
k self-energy

Σe−e,HF
ν4ν1

(τ1) = i~
∑

ν2ν3

(Vν4ν3,ν2ν1 − Vν4ν3,ν1ν2)Gν2ν3(τ1, τ
+
1 ). (A.21)A diagrammati
 representation is shown in �gure A.6.(a) (b)

Figure A.6.: Diagrams used for (a) the Coulomb Fo
k self-energy and (b) the Coulomb Hartree self-energy, seeeq. (A.21).7See e.g. [24, p. 97-98℄ or [28, p. 227℄ 137



Self-energies AppendixEle
tron-photonThe intera
tion between the ele
trons and photons is given by eq. (3.19)
He−rad =

∑

νν′m

~gm
νν′c†νcν′(a†m + am).The �rst three terms in the ele
troni
 Green's fun
tion are

Gνν′(τ, τ ′) = G0
νν′(τ, τ ′) + (−i~−1)2

∫

C

dτ1 〈TC{Ĥe−rad(τ1)ĉν(τ)ĉ†ν′ (τ
′)}〉0,con +

(−i~−1)3

2!

∫

C

dτ1dτ2 〈TC{Ĥe−rad(τ1)Ĥe−rad(τ2)ĉν(τ)ĉ†ν′ (τ
′)}〉0,con + · · ·The se
ond term in this expansion is identi
ally zero due to the fa
t that the ele
tron-photon intera
tiondoes not 
onserve the number photons. More spe
i�
ally one gets terms of the form 〈c†1c2c3c†3(a† + a)〉0,whi
h 
an be fa
tored into an ele
tron and a photon part, 〈c†1c2c3c†4〉0 〈a† + a〉0, as H0 for the ele
tronsand photons 
ommute. The photon fa
tor is identi
ally zero as the bra
kets denote thermal averaging,where ea
h 
ontribution to the tra
e has the same number of photons in it. This has the 
onsequen
ethat one has to go to se
ond order in the intera
tion Hamiltonian to obtain a non-zero 
ontribution. These
ond order term be
omes

∫

C

dτ1dτ2
∑

ν1ν′
1m1

ν2ν′
2m2

(−i~−1)−1
~gm1

ν1ν′
1
~gm2

ν2ν′
2
(−i~−1) 〈TC{

[
â†m1

(τ1) + âm1(τ1)
] [
â†m2

(τ2) + âm2(τ2)
]
}〉

0

× 1

2!
(−i~−1)3 〈TC{ĉ†ν1

(τ1)ĉν′
1
(τ1)ĉ

†
ν2

(τ2)ĉν′
2
(τ2)ĉν(τ)ĉ†ν′ (τ

′)}〉
0,con

.In the photon bra
ket on the �rst line it would be natural to simply de�ne the entire obje
t as the photonGreen's fun
tion, as is usually done for phonons (see last part of this se
tion). However to set the stage forsolving the Dyson equation for the photon Green's fun
tions, we 
hoose to write out the big bra
ket intotwo Green's fun
tions of the usual form Am1m2(τ1, τ2) = −i~−1 〈TC

{
am1(τ1)a

†
m2

(τ2)
}
〉. We do howeverkeep the symbol A for the sum for notational reasons, hen
e we write

A
0
m1m2

(τ1, τ2) = −i~−1 〈TC{
[
â†m1

(τ1) + âm1(τ1)
] [
â†m2

(τ2) + âm2(τ2)
]
}〉

0

= A0
m1m2

(τ1, τ2) +A0
m2m1

(τ2, τ1).It should be noted that this relation does not hold for a general non-thermal state, as in this 
ase termslike 〈a†a†〉 and 〈aa〉 are not ne
essarily zero. The three-parti
le ele
tron Green's fun
tion is evaluatedusing Wi
k's theorem and yields two dis
onne
ted diagrams, that are disregarded, and four 
onne
teddiagrams. As in the ele
tron-ele
tron 
ase only two of these diagrams are topologi
ally di�erent, 
an
elingthe 1
2! fa
tor. The �rst 
onne
ted 
ontribution to the se
ond order term is
∫

C

dτ1
∑

ν1ν′
1

G0
νν1

(τ, τ1)






−i~

∫

C

dτ2
∑

m1m2

ν2ν′
2

~gm1

ν1ν′
1
~gm2

ν2ν′
2
G0

ν′
2ν2

(τ2, τ
+
2 )A0

m1m2
(τ1, τ2)






G0

ν′
1ν′(τ1, τ

′),where the self-energy 
an then be identi�ed as the 
ontent of the square bra
kets. This self-energy is usually
alled the Hartree part, due to its diagrammati
al similarity to the Hartree part for the ele
tron-ele
tronintera
tion and the self-
onsistent version is given by
Σe−rad,H

ν1ν′
1

(τ1) = −i~
∫

C

dτ2
∑

m1m2

ν2ν′
2

~gm1

ν1ν′
1
~gm2

ν2ν′
2
Gν′

2ν2
(τ2, τ

+
2 )Am1m2(τ1, τ2). (A.22)
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Appendix Self-energiesAs we integrate over τ2 this self-energy be
omes singular and will therefore not 
ause any relaxationor dephasing, but will only a
t as an instantaneous renormalization quantity. The se
ond 
onne
ted
ontribution is the following
∫

C

dτ1dτ2
∑

ν1ν′
2

G0
νν1

(τ, τ1)






i~
∑

m1m2

ν2ν′
1

~gm1

ν1ν′
1
~gm2

ν2ν′
2
G0

ν′
1ν2

(τ1, τ2)A
0
m1m2

(τ1, τ2)






G0

ν′
2ν′(τ2, τ

′),where the self-
onsistent self-energy, usually 
alled the Fo
k part again due to its diagrammati
al appear-an
e, 
an be identi�ed and is given by
Σe−rad,F

ν1ν′
2

(τ1, τ2) = i~
∑

m1m2

ν2ν′
1

~gm1

ν1ν′
1
~gm2

ν2ν′
2
Gν′

1ν2
(τ1, τ2)Am1m2(τ1, τ2). (A.23)For diagrammati
 illustrations of these 
ontributions to the self-energy see �gure A.7.(a) (b)

Figure A.7.: Diagrams used for the ele
tron-photon intera
tion, where (a) is the Fo
k-type self-energy and (b) isthe Hartree-type self-energy, see eqs. (A.23) and (A.22) respe
tively.In pra
tise we will employ the RWA in the intera
tion Hamiltonian between the ele
trons and photonsthat is given by eq. (5.6)
He−rad =

∑

αα′m

~gm
αα′(c†c,αcv,α′am + a†mc

†
v,αcc,α′). (A.24)The above derivation 
an be repeated for this Hamiltonian and the result for the Fo
k 
ontributionis

Σbb′,e−rad,F
α1α′

2
(τ1, τ2) = i~

∑

m1m2

α2α′
1

~gm1

α1α′
1
~gm2

α2α′
2

×
{

Gvv
α′

1α2
(τ1, τ2)Am1m2(τ1, τ2)δb,c +Gcc

α′
1α2

(τ1, τ2)Am2m1(τ2, τ1)δb,v

}

δb,b′ , (A.25)while for the Hartree 
ontribution we get
Σbb′,e−rad,H

α1α′
1

(τ1) = −i~
∫

C

dτ2
∑

m1m2

α2α′
2

~gm1

α1α′
1
~gm2

α2α′
2

×
{

Gcv
α′

2α2
(τ2, τ

+
2 )Am1m2(τ1, τ2)δb,cδb′,v +Gvc

α′
2α2

(τ2, τ
+
2 )Am2m1(τ2, τ1)δb,vδb′,c

}

. (A.26)We note that due to the sele
tion rules of g and the appli
ation of the RWA, the Fo
k self-energy ispurely diagonal in the band indi
es and the Hartree self-energy is purely o�-diagonal in the band in-di
es. 139



Self-energies AppendixPhoton-ele
tronIn the previous se
tion we 
al
ulated the self-energy of the ele
trons due to the intera
tion with thephotons, here we determine the self-energy of the photons arising from the intera
tion with the ele
trons.This means that it is of 
ourse the same intera
tion Hamiltonian, but now we 
onsider the photon Green'sfun
tion to se
ond order
Amm′(τ, τ ′) = A0

mm′(τ, τ ′) + (−i~−1)2
∫

C

dτ1 〈TC{Ĥe−rad(τ1)âm(τ)â†m′ (τ
′)}〉0,con +

(−i~−1)3

2!

∫

C

dτ1dτ2 〈TC{Ĥe−rad(τ1)Ĥe−rad(τ2)âm(τ)â†m′ (τ
′)}〉0,con + · · ·The �rst order term is zero due to basi
ally the same reason as above, i.e. after fa
torization of the ele
tronand photon bra
kets, we obtain terms like 〈aaa†〉0 and 〈a†aa†〉0 whi
h are identi
ally zero. For the se
ondorder term we get

∫

C

dτ1dτ2
∑

ν1ν′
1m1

ν2ν′
2m2

(−i~−1)−1
~gm1

ν1ν′
1
~gm2

ν2ν′
2
(−i~−1)2 〈TC{ĉ†ν1

(τ1)ĉν′
1
(τ1)ĉ

†
ν2

(τ2)ĉν′
2
(τ2)}〉0,con

× 1

2!
(−i~−1)2 〈TC{

[
â†m1

(τ1) + âm1(τ1)
] [
â†m2

(τ2) + âm2(τ2)
]
âm(τ)â†m′ (τ

′)}〉
0,con

.Through Wi
k's theorem the ele
tron bra
ket gives a 
onne
ted and dis
onne
t diagram, where only the
onne
ted is kept. Multiplying out the two square bra
kets in photon bra
ket yields two equal 
ontri-butions, whi
h 
an be realized by relabeling the integration variables, thus 
an
eling the 1
2! . Furtherappli
ation of Wi
k's theorem gives a 
onne
ted and dis
onne
t diagram, where only the 
onne
ted iskept. In the end the se
ond order term 
an be written as

∫

C

dτ1dτ2
∑

m1m2

A0
mm2

(τ, τ2)







−i~

∑

ν1ν′
1

ν2ν′
2

~gm1

ν1ν′
1
~gm2

ν2ν′
2
G0

ν′
2ν1

(τ2, τ1)G
0
ν′
1ν2

(τ1, τ2)







A0

m1m′(τ1, τ
′),where the self-energy 
an be identi�ed and in its self-
onsistent form it is given by

Σe−rad,PB
m2m1

(τ2, τ1) = −i~
∑

ν1ν′
1

ν2ν′
2

~gm1

ν1ν′
1
~gm2

ν2ν′
2
Gν′

1ν2
(τ1, τ2)Gν′

2ν1
(τ2, τ1). (A.27)Due to its diagrammati
 form this self-energy is often 
alled a pair-bubble term, for an illustrationsee �gure A.8. As mentioned in the previous se
tion we in pra
tise employ the RWA form of theele
tron-photon intera
tion eq. (A.24), for this intera
tion Hamiltonian we get the following photon self-energy

Σe−rad,PB
m2m1

(τ2, τ1) = −i~
∑

α1α′
1

α2α′
2

~gm1

α1α′
1
~gm2

α2α′
2
Gcc

α′
2α1

(τ2, τ1)G
vv
α′

1α2
(τ1, τ2). (A.28)

Ele
tron-phononThe intera
tion between the ele
trons and phonons is given by eq. (3.23)
He−ph =

∑

νν′µ

Mµ
νν′c

†
νcν′(b†µ̄ + bµ),140



Appendix Free real-time Green's fun
tions
Figure A.8.: Diagram used for the photon-ele
tron intera
tion, see eq. (A.27).and is seen to be formally equivalent to the ele
tron-photon intera
tion, eq. (3.19), this has the 
onsequen
ethat the self-energy must be the same also. Referring to eqs. (A.22) and (A.23) we 
an immediatelywrite down the two �rst order 
ontributions to the self-energy of the ele
trons due to intera
tion withphonons

Σe−ph,H
ν1ν′

1
(τ1) = −i~

∫

C

dτ2
∑

ν2ν′
2µ

Mµ
ν1ν′

1
M µ̄

ν2ν′
2
Gν′

2ν2
(τ2, τ

+
2 )D0

µµ̄(τ1, τ2), (A.29)and
Σe−ph,F

ν1ν′
2

(τ1, τ2) = i~
∑

ν′
1ν2µ

Mµ
ν1ν′

1
M µ̄

ν2ν′
2
Gν′

1ν2
(τ1, τ2)D

0
µµ̄(τ1, τ2). (A.30)Where we have de�ned the free phonon Green's fun
tion as follows

D0
µ1µ2

(τ1, τ2) = −i~−1 〈TC{[b̂†µ̄1
(τ1) + b̂µ1(τ1)][b̂

†
µ̄2

(τ2) + b̂µ2(τ2)]}〉0 , (A.31)note that we do not make this self-energy self-
onsistent in the phonon Green's fun
tion, as the phononsare treated as a reservoir, i.e. the phonons are assumed to in thermal equilibrium at all times. For thefree phonon Green's fun
tion we have the following ni
e property
D0

µ1µ2
(τ1, τ2) = D0

µ1µ̄1
(τ1, τ2)δµ̄1µ2 ,whi
h has been used to simplify the above self-energies. For diagrammati
 illustrations of these self-energiessee �gure A.9. (a) (b)

Figure A.9.: Diagrams used for the ele
tron-phonon intera
tion, where (a) is the Fo
k-type self-energy and (b) isthe Hartree-type self-energy, see eqs. (A.30) and (A.29) respe
tively.A.6. Free real-time Green's fun
tionsIn this appendix we derive expli
it expressions for free (non-intera
ting) real-time Green's fun
tions. These
an be found in any textbook, but are used frequently in this thesis, hen
e this appendix. 141



Free real-time Green's fun
tions AppendixThe Green's fun
tions we are looking for are de�ned by eq. (2.24)
G0,>

αβ (t, t′) = −i~−1 〈Oα(t)O†β(t′)〉
0
,

G0,<
αβ (t, t′) = ±i~−1 〈O†β(t′)Oα(t)〉

0
,

G0,r
αβ(t, t′) = −i~−1θ(t− t′) 〈[Oα(t), O†β(t′)]±〉0 ,

G0,a
αβ (t, t′) = i~−1θ(t′ − t) 〈[Oα(t), O†β(t′)]±〉0 ,where the + is for fermions and the − for bosons. The pro
edure we are about to go through 
an beperformed simultaneously for both fermions and bosons, when minding a few signs underway. For a non-intera
ting system the Hamiltonian is quadrati
 and time-independent and 
an without loss of generalitybe 
hosen to be diagonal, hen
e we write it as

H0 =
∑

α

~ωαO
†
αOα.To obtain the time evolution of the operators 
omprising the Green's fun
tions, we need to solve theHeisenberg equation of motion for these quantities, namely

i~∂tOα(t) = [Oα(t), H0(t)] = [Oα, H0] (t) =
∑

β

~ωβ[Oα, O
†
βOβ ](t).Evaluating the remaining 
ommutator as [Oα, O

†
βOβ ] = Oβδαβ is easily done using the (anti)
ommutatorrelations for the Oα's

[Oα, O
†
β ]± = δαβ , [Oα, Oβ ]± = [O†α, O

†
β ]± = 0, (A.33)where again+ is for fermions and− for bosons. The equation of motions be
omes

i~∂tOα(t) = ~ωαOα(t),whi
h is solved using the initial 
ondition Oα(t = 0) = Oα to give
Oα(t) = e−iωαtOα ⇒ O†α(t) = e+iωαtO†α, (A.34)applying for both fermions and bosons.These solutions 
an now be plugged into the de�nitions of the Green's fun
tions. We start with the greaterGreen's fun
tion
G0,>

αβ (t, t′) = −i~−1e−iωα(t−t′)[1− nF (~ωα)]δαβ , Fermions

G0,>
αβ (t, t′) = −i~−1e−iωα(t−t′)[1 + nB(~ωα)]δαβ , Bosons.The distribution fun
tions nF/B , the Fermi-Dira
 and Bose-Einstein fun
tions respe
tively, arise whenperforming thermal averaging over the number operator nα = O†αOα, see eq. (2.18). The lesser Green'sfun
tion yields

G0,<
αβ (t, t′) = +i~−1e−iωα(t−t′)nF (~ωα)δαβ , Fermions

G0,<
αβ (t, t′) = −i~−1e−iωα(t−t′)nB(~ωα)δαβ , Bosons.The retarded and advan
ed Green's fun
tions are equal for the fermions and bosons and are givenby

G0,r
αβ(t, t′) = −i~−1θ(t− t′)e−iωα(t−t′)δαβ,

G0,a
αβ (t, t′) = +i~−1θ(t′ − t)e−iωα(t−t′)δαβ.142



Appendix Analyti
al basis set for the ele
troni
 single-parti
le statesTwo important 
ommon features of all the free Green's fun
tions are that they 1) only depend on theirtime di�eren
e, e�e
tive being one-time fun
tions and not two-time, and 2) that they are diagonal intheir quantum numbers. The time di�eren
e dependen
e 
an in fa
t be shown to hold for any equilib-rium Green's fun
tion, regardless of what intera
tions might be present. This feature makes equilibriumretarded and advan
ed Green's fun
tions very attra
tive to use in 
onne
tion with the GKBA, see se
-tion 2.5.We make use of one last free Green's fun
tion whi
h is not de�ned the same way as above. This is thefree phonon Green's fun
tion introdu
ed in eq. (A.31)
D0

µµ′(τ, τ ′) = −i~−1 〈TC{[b†µ̄(τ) + bµ(τ)][b†µ̄′ (τ
′) + bµ′(τ ′)]}〉

0
.To obtain its real-time 
omponents we put it on a more familiar form by de�ningBµ(τ) ≡ b†µ̄(τ) + bµ(τ) = B†µ̄(τ),so that we may write

D0
µµ′(τ, τ ′) = −i~−1 〈TC{Bµ(τ)B†µ̄′ (τ

′)}〉
0
.The greater and lesser Green's fun
tions are thus given by

D0,>
µµ′ (t, t

′) = −i~−1 〈Bµ(t)B†µ̄′(t
′)〉

0
,

D0,<
µµ′ (t, t

′) = −i~−1 〈B†µ̄′(t
′)Bµ(t)〉

0
.The time evolution of Bµ(t) is easily found from eq. (A.34) and we get

D0,>
µµ′ (t, t

′) = −i~−1
{

eiωµ(t−t′)nB(~ωµ) + e−iωµ(t−t′)[nB(~ωµ) + 1]
}

δµ̄′,µ, (A.35a)
D0,<

µµ′ (t, t
′) = −i~−1

{

e−iωµ(t−t′)nB(~ωµ) + eiωµ(t−t′)[nB(~ωµ) + 1]
}

δµ̄′,µ. (A.35b)From these expressions the following relations are seen holds between the greater and lesser phonon Green'sfun
tions
D

0,≷
µµ′ (t, t

′) = D
0,≶
µ′µ(t′, t) = −[D

0,≶
µµ′ (t, t

′)]∗, (A.36)this redundan
y in Green's fun
tions is due to the way the phonon Green's fun
tion is de�ned eq. (A.31).A.7. Analyti
al basis set for the ele
troni
 single-parti
lestatesThe purpose of this appendix is to des
ribe how to obtain the basis fun
tions used in se
tion 4.3.2 toexpand the numeri
al solutions from COMSOL. The most important properties of a basis is that itmust be 
omplete and further that it must satisfy the same outer boundary 
onditions as the fun
tionit is to expand. The simplest way to satisfy both of these requirements is to use the same geometry asfor the COMSOL solution, see �gure 4.2, but simply for a homogenous medium and impose the samezero boundary 
onditions on the outer boundaries. This empty 
ylinder is s
hemati
ally shown in A.10.As for the COMSOL solution we deal with rotationally symmetri
 system and thus the angular dependen
e
an readily be obtained as in se
tion 4.2.2, and we are left with an equation of the form eq. (4.4) for thetwo remaining dire
tions. Due to the fa
t that we have no internal boundaries, it is reasonable to assumethat we may further fa
torize the remaining fun
tion into a part for the radial 
oordinate, ρ, and for the
z-dire
tion, f(ρ, z) = R(ρ)Z(z). Substituting this into eq. (4.4) we end up with a S
hrödinger equation ofthe form

− ~
2

2m∗

(
1

ρ
∂ρ [ρ∂ρ] +

m2

ρ2
+ ∂zz

)

R(ρ)Z(z) = ER(ρ)Z(z). 143
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x

y

z

R0

Lz

Figure A.10.: Figure of the geometry used to obtain the free basis fun
tions.This kind of equation may be solved using the separation of variables te
hnique and is done in any textbookon partial di�erential equations, see e.g. [86℄, and we will therefore simply state the solution satisfyingthe boundary 
onditions given in eqs. (4.5) and (4.6). The full solution may be written on the followingform
Bmlnz

(r) = Φm(ϕ)R|m|l(ρ)Znz
(z),where the expli
it form of ea
h of the three fun
tions will be brie�y des
ribed below. For the angular partwe obtain

Φm(ϕ) =
1√
2π
eimϕ, m = 0,±1,±2,±3, . . .whi
h are the well-known eigenstates of the z-
omponent of the angular momentum operator. For theradial part we have

R|m|l(ρ) =

√
2

R0J|m|+1(γ|m|l)
J|m|(k|m|lρ), k|m|l =

γ|m|l
R0

, l = 1, 2, 3, . . . (A.37)where γ|m|l is the l'th root of J|m|, with J|m| being the Bessel fun
tion of the �rst kind. For illustrationwe show a few of the radial fun
tions in �gure A.11. For the z-dire
tion we get
Znz

(z) =
1

√

Lz/2
sin

(
πnz

Lz
z +

πnz

2

)

, nz = 1, 2, 3, . . .Ea
h of the above fun
tions have been normalized and hen
e the full produ
t form is also normalized. Theeigenenergy is given by the following expression
Emlnz

=
~

2

2m∗
(
(k|m|l)

2 + (knz
)2
)

=
~

2

2m∗

([
γ|m|l
R0

]2

+

[
π

Lz
nz

]2
)

,where we noti
e the degenera
y inm, due to the rotational symmetry of the system.
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(d)Figure A.11.: Figures showing a few of the radial basis fun
tions eq. (A.37).A.8. Semi
ondu
tor band parametersIn this appendix we will brie�y dis
uss the parameters that enter in the one-band e�e
tive mass S
hrödingerequation, we use to obtain the ele
troni
 wavefun
tions, see eq. (4.4). Figure A.12 illustrates the energylands
ape we are 
onsidering. We use an un
oupled two-band model with a 
ondu
tion and valen
e band,where II (I) denotes the high (low) bandgap material. It should be emphasized that no e�e
ts due tostrain or piezo ele
tri
 e�e
ts are expli
itly taken into a

ount, apart of 
ourse from the fa
t that we havea QD that have formed due to strain/surfa
e tension. This is a huge approximation and the 
al
ulatedenergies and wavefun
tions should therefore only be 
onsidered as 
rude estimates to the real quantities.Hopefully the 
al
ulated physi
al quantities will still display qualitatively 
orre
t behavior. Apart fromthe various energies shown in �gure A.12 we also need to know the e�e
tive masses of the ele
trons andholes.We will use GaAs as the high bandgap material and InxGax−1As as the low bandgap material, with8
x = 0.60 to simulate the di�usion of Ga into the shallow InAs QD and WL. We will adopt bulk valuesfor all parameters, ex
ept for the hole masses whi
h need spe
ial attention due to anisotropy in k-spa
e8Obtained through personal 
ommuni
ation with Søren Stobbe of DTU Fotonik. 145
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tor band parameters AppendixEnergy
Eg,II Eg,I

∆Ec

∆Ev

Condu
tion band

Valen
e band

II

II

I

I

II

IIFigure A.12.: S
hemati
 illustration of the energy lands
ape in the QD/WL system. In the potential well thehorizontal lines indi
ate bound QD states, while the grey box indi
ate the WL energy 
ontinuum.for the valen
e band. The parameters for the high bandgap material are tabulated in table A.1, whilethose for the low bandgap material are obtained using interpolation formulas, to take into a

ount the Ga
on
entration in the InAs. For the bandgap we use the formulae [87℄
Eg,I = xEg,InAs + (1− x)Eg,GaAs − x(1 − x)Cg,GaInAs,where Cg,GaInAs is known as a bowing parameter. The so-
alled 
ondu
tion band o�set (CBO), ∆Ec, andvalen
e band o�set (VBO),∆Ev, are assumed to be given by the 60/40 ratio so that
∆Ec = 0.60× (Eg,II − Eg,I),

∆Ev = 0.40× (Eg,II − Eg,I).For the hole mass we use the heavy hole (hh) mass and 
hoose the 
omponent the in-plane dire
tion,
(x, y)-plane in real spa
e, as this is where most of our dynami
s is. Furthermore we adopt the hh massappropriate for quantum well stru
tures as our QD/WL system is very similar to this, this 
hoi
e issupported in the literature see e.g. [88℄. It is however an open question what input parameters to usewhen performing simulations using e�e
tive des
riptions, like the e�e
tive mass S
hrödinger equation, onsemi
ondu
tor heterostru
tures and there is no broad 
onsensus on this point in the s
ienti�
 literature.We take the hh mass as given by [89, p. 171℄

[
m0

m∗hh

][110]

QW

= γ1 + γ2.The high bandgap material hh mass is readily obtained, while for the low bandgap material we use the146



Appendix Semi
ondu
tor band parametersQuantity Value Unit Referen
e Quantity Value Unit
γ1,GaAs 6.98 1 [87℄ Eg,II 1.519 eV
γ2,GaAs 2.06 1 [87℄ Eg,I 0.7433 eV
γ3,GaAs 2.93 1 [87℄ ∆Ec 0.465 eV
γ1,InAs 20.0 1 [87℄ ∆Ev 0.310 eV
γ2,InAs 8.5 1 [87℄ m∗c,II 0.067 m0

γ3,InAs 9.2 1 [87℄ m∗c,I 0.0344 m0

m∗e,GaAs 0.067 m0 [87℄ m∗v,II 0.111 m0

m∗e,InAs 0.026 m0 [87℄ m∗v,I 0.0483 m0

Eg,GaAs 1.519 eV [87℄
Eg,InAs 0.417 eV [87℄
Cg,GaInAs 0.477 eV [87℄Table A.1.: First set of the band parameters used in the e�e
tive mass S
hrödinger equation simulations.Quantity Value Unit

Eg,II 1.424 eV
Eg,I 0.359 eV
∆Ec 0.697 eV
∆Ev 0.368 eV
m∗c,II 0.0665 m0

m∗c,I 0.027 m0

m∗v,II 0.38 m0

m∗v,I 0.34 m0Table A.2.: Se
ond set of the band parameters used in the e�e
tive mass S
hrödinger equation simulations. Allvalues are taken from [53℄.following interpolation formulae
[
m0

m∗hh

][110]

QW,I

= x

[
m0

m∗hh

][110]

QW,InAs

+ (1− x)
[
m0

m∗hh

][110]

QW,GaAs

.All the parameters are summarized in table A.1.After it was realized that the set of parameters des
ribed above yielded unphysi
al population for someex
itation 
onditions, see se
tion 6.2, another set was 
hosen that did not su�er from this problem. Wewill brie�y des
ribe the new set in the following. The materials are the same as above, but now we usepure InAs as the low bandgap material, i.e. x = 1. Furthermore we use the e�e
tive mass in the [001℄,
z, dire
tion, as oppose to the [110℄ dire
tion above, whi
h is 
onsiderably larger, leading in general tomore 
on�ned valen
e band states. For the CBO and VBO we 
hoose a slightly di�erent ratio given by
0.654/0.346 so that

∆Ec = 0.654× (Eg,GaAs − Eg,InAs),

∆Ev = 0.346× (Eg,GaAs − Eg,InAs),where the number of digits has histori
al reasons. The new parameters are summarized in table A.2.
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Slowly-varying equations AppendixA.9. Slowly-varying equationsIn this appendix we list the slowly-varying versions of the equations of motion presented in 
hapter ??,whi
h are the quantities that are solved for numeri
ally. We de�ne the slowly-varying transformation forthe ele
troni
 density matrix as follows
ρbb′

α (t) = e−iωbb′

α tρ̃bb′

α (t), (A.38)that removes the fast underlying os
illations in the o�-diagonal elements of the density matrix due tothe free evolution of the system. Eq. (A.38) transforms the equation of motion for the density matrix,eq. (5.34), into the form
∂tρ̃

bb′

α (t) = ∂tρ̃
bb′

α (t)|coh + ∂tρ̃
bb′

α (t)|scatt.Below we list ea
h of the 
ontributions to the 
oherent and s
attering terms used in the simulations intheir slowly-varying versionA.9.1. Coherent termsThe 
oherent sour
e term, eq. (5.35), transforms into
∂tρ̃

bb′

α (t)|coh = −i~−1
∑

b1

[{

eiωbb1
α tΣbb1,s

α (t)
}

ρ̃b1b′

α (t)− ρ̃bb1
α (t)

{

eiωb1b′

α tΣb1b′,s
α (t)

}]

,were the term due to the free evolution has disappeared and hen
e the fast os
illations asso
iated withit.Now we list the slowly-varying transformed of the terms in eq. (5.36):Eq. (5.38):
U bb′

α (t) =







0, b = b′ = c, v

dcv
α

E0(t)
2 e−iω0t, b = c, b′ = v

dvc
α

E0(t)
2 eiω0t, b = v, b′ = cEq. (5.39):

Σbb′,HF
α (t) =

∑

b1b2
α1

(

V bb2b′b1
αα1αα1

− V bb2b1b′

αα1α1α

)

e−iωb1b2
α1

t [ρ̃b1b2
α1

(t)− δb1,vδb2,v

]Eq. (5.40):
Σbb′,LO,H

α (t) =

∫ t

−∞
dt′
∑

b1α1

~ωLO

2ε∗/ε
V b1bb1b

α1αα1α

[
ρ̃b1b1

α1
(t′)− δb1,v

]
D0,r

LO(t, t′)δb,b′ ,Eq. (5.41):
Σbb′,rad,H

α (t) =

∫ t

−∞
dt′
∑

α1

~gα~gα1

[

e−iωcv
α1

t′ ρ̃cv
α1

(t′)Ar(t, t′)δb,cδb′,v + e−iωvc
α1

t′ ρ̃vc
α1

(t′)[Ar(t, t′)]∗δb,vδb′,c
]

.148



Appendix Slowly-varying equationsA.9.2. Ele
troni
 s
attering termsLO-phonons: Eq. (5.44):
∂tρ̃

bb′

α (t)|F,LO
scatt =

eiωbb′

α t

∫ t

−∞
dt1

∑

b1α1

(

Gb,r
α1

(t, t1)
[

Gb′,r
α (t, t1)

]∗
e−i(ωbb1

α1
+ωb1b′

α )t1

×
{

−Dbb1,>
αα1

(t, t1)[δb,b1 − ρ̃bb1
α1

(t1)]ρ̃
b1b′

α (t1) +Dbb1,<
αα1

(t, t1)ρ̃
bb1
α1

(t1)[δb1,b′ − ρ̃b1b′

α (t1)]
}

+Gb,r
α (t, t1)

[

Gb′,r
α1

(t, t1)
]∗
e−i(ωbb1

α +ωb1b′

α1
)t1

×
{

[δb,b1 − ρ̃bb1
α (t1)]ρ̃

b1b′

α1
(t1)D

b1b′,>
αα1

(t, t1)− ρ̃bb1
α (t1)[δb1,b′ − ρ̃b1b′

α1
(t1)]D

b1b′,<
αα1

(t, t1)
})RWA GKBA photons: Eq. (5.46):

∂tρ̃
bb
α (t)|rad,F

scatt = −2Re
[ ∫ t

−∞
dt1G

v,r
α (t, t1) [Gc,r

α (t, t1)]
∗ (i~|~gα|2Ar(t, t1)

)

× {A(t1) [ρ̃cc
α (t1)− ρ̃vv

α (t1)] + ρ̃cc
α (t1) [1− ρ̃vv

α (t1)]} (δb,c − δb,v)
]

.Eq. (5.47):
∂tρ̃

cv
α (t)|rad,F

scatt = −eiωcv
α t

∫ t

−∞
dt1
(
i~|~gα|2Ar(t, t1)

)
e−iωcv

α t1
(

|Gv,r
α (t, t1)|2 {A(t1)ρ̃

cv
α (t1) + ρ̃cv

α (t1)[1− ρ̃vv
α (t1)]}+ |Gc,r

α (t, t1)|2 {A(t1)ρ̃
cv
α (t1) + ρ̃cv

α (t1)ρ̃
cc
α (t1)}

)

.RWA two-time photons: Eq. (5.50):
∂tρ̃

bb
α (t)|rad,F

scatt = −2Re
[ ∫ t

−∞
dt1|~gα|2Gv,r

α (t, t1) [Gc,r
α (t, t1)]

∗
e−iωcav(t−t1)

×
{

[1− ρ̃vv
α (t1)]Ã

>(t, t1)ρ̃
cc
α (t1)− ρ̃vv

α (t1)Ã
<(t, t1)[1− ρ̃cc

α (t1)]
}

(δb,c − δb,v)
]

.Eq. (5.51):
∂tρ̃

cv
α (t)|rad,F

scatt = −eiωcv
α t

∫ t

−∞
dt1|~gα|2e−iωcv

α t1e−iωcav(t−t1)
(

|Gv,r
α (t, t1)|2

{

[1− ρ̃vv
α (t1)]Ã

>(t, t1)ρ̃
cv
α (t1) + ρ̃vv

α (t1)Ã
<(t, t1)ρ̃

cv
α (t1)

}

+ |Gc,r
α (t, t1)|2

{

ρ̃cv
α (t1)ρ̃

cc
α (t1)Ã

>(t, t1) + ρ̃cv
α (t1)[1 − ρ̃cc

α (t1)]Ã
<(t, t1)

})

.A.9.3. Photoni
 s
attering termsAs only ele
troni
 populations enter these terms, the slowly-varying versions are identi
al to those presentedin the main se
tion and however for 
ompleteness we repeat them here. 149



Slowly-varying equations AppendixEq. (5.59):
∂tÃ(t, t− τ)|PB

scatt,II =

∫ t−τ

−∞
dt1
∑

α1

|~gα1 |2

×
[

Gc,r
α1

(t, t1)
[
Gv,r

α1
(t, t1)

]∗
e−iωcav(t1−t){−[1−ρ̃cc

α1
(t1)]ρ̃

vv
α1

(t1)[Ã
<(t−τ, t1)]∗+ρ̃cc

α1
(t1)[1−ρ̃vv

α1
(t1)][Ã

>(t−τ, t1)]∗}

+
[
Gc,r

α1
(t− τ, t1)

]∗
Gv,r

α1
(t−τ, t1)e−iωcav(t−τ−t1){Ã>(t, t1)ρ̃

cc
α1

(t1)[1−ρ̃vv
α1

(t1)]−Ã<(t, t1)[1−ρ̃cc
α1

(t1)]ρ̃
vv
α1

(t1)}
]

,Eq. (5.57):
∂tÃ

>(t, t− τ)|PB
scatt,I =

∫ t

t−τ

dt1
∑

α1

|~gα1 |2

×
[

−Gc,r
α1

(t, t1)
[
Gv,r

α1
(t, t1)

]∗
e−iωcav(t1−t){ρ̃vv

α1
(t1)− ρ̃cc

α1
(t1)}Ã>(t1, t− τ)

+Gc,r
α1

(t1, t− τ)
[
Gv,r

α1
(t1, t− τ)

]∗
e−iωcav(t−τ−t1){Ã>(t, t1)− Ã<(t, t1)}[1− ρ̃cc

α1
(t− τ)]ρ̃vv

α1
(t− τ)

]

,Eq. (5.58):
∂tÃ

<(t, t− τ)|PB
scatt,I =

∫ t

t−τ

dt1
∑

α1

|~gα1 |2

×
[

−Gc,r
α1

(t, t1)
[
Gv,r

α1
(t, t1)

]∗
e−iωcav(t1−t){ρ̃vv

α1
(t1)− ρ̃cc

α1
(t1)}Ã<(t1, t− τ)

+Gc,r
α1

(t1, t− τ)
[
Gv,r

α1
(t1, t− τ)

]∗
e−iωcav(t−τ−t1){Ã>(t, t1)− Ã<(t, t1)}ρ̃cc

α1
(t− τ)[1− ρ̃vv

α1
(t− τ)]

]

,
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