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AbstratIn reent years muh attention has been foused on the possibility of realizing a single-photon soure,due to its possible appliations within quantum omputing. The e�orts have been both experimental andtheoretial, and progress has been made on both fronts. However muh work still remains to be done,in order to obtain a full understanding of the physis underlying a semiondutor single-photon soure,whih is a neessity for designing an e�ient funtional devie.In this thesis we present a theory for desribing many-body e�ets in a semiondutor avity quantumeletrodynamial system, suitable for modeling a semiondutor single-photon soure. We employ a non-equilibrium Green's funtion formalism that is apable of desribing the ompliated many-body system,whih the relevant physial system onsists of. Using the Green's funtion approah we formulated a set ofquantum kineti equations, where we took into aount the Coulomb interation, the interation betweeneletrons and longitudinal optial (LO) phonons, and the interation between eletrons and photons.Furthermore a model of the eletroni states in the semiondutor quantum dots was developed, in termsof whih the various interation matrix elements were alulated.The quantum kineti equations were applied to a range of equilibrium and non-equilibrium situations.In equilibrium the interation with the LO-phonons, was found to dramatially hange the proper-ties of the eletrons. We investigated the linear absorption spetrum, revealing interesting spetralsignatures arising from the LO-phonon oupling, as well as for the Coulomb and photon interation.The population dynamis for the both eletrons and photons was studied in the time domain, whereamongst other things the approah to a quasi-equilibrium state and the ourrene of Rabi osillationswas treated.An attempt to solve for the full two-time Green's funtions of the photons was made, however, due to lakof time this part of was not fully ompleted and more work is needed.
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1. IntrodutionThe emerging �eld of quantum information tehnology shows great promise as a possible replaement ofthe urrent lassial information tehnology, as it o�ers opportunities to perform tasks not possible withinits lassial ounterpart. A very entral objet in this new �eld is the quantum omputer that derives itsspeial properties due to utilization of the qubit. A qubit is a generalization of the lassial bit that due toits quantum nature an be in a superposition of the lassial "0" and "1", giving it unique properties as aomputation devie. A promising andidate for a qubit are the two polarization states of a photon. Indeed,ever sine it was realized that e�ient quantum omputing an be performed using single photons andstandard linear optial elements [1℄, there has been an immense international researh ativity [2, 3℄ aimingat developing single-photon soures. An ideal single-photon soure is a devie that an deterministiallyemit indistinguishable single photons e�iently into a single well de�ned optial mode. The single photonsneed to be indistinguishable, as otherwise they will not behave quantum mehanially and therefore notbe able to interfere as required by the sheme proposed in Ref. [1℄. It is of similar importane that oneis able to generate a single photon whenever needed, popularly we speak of single-photons on-demand, asotherwise it will not be possible to e�etively interfere the single photons on a beam splitter. Furthermorethe olletion e�ieny, given as the amount of light emitted into the desired mode normalized by thetotal amount of light emitted, should be as high as possible. To summarize and emphasize these essentialfats a good single-photon soure should possess
• A high degree of indistinguishability
• The ability to deterministially emit single photons
• A high olletion e�ienyThe degree of indistinguishability is determined by the amount of deoherene the photoni degrees offreedom experiene through various interation mehanisms, and as these are always present in a phys-ial system, one must be prepared to aept some degree of distinguishability. A detailed understand-ing of these deoherene proesses is needed in order to understand the physis underlying a single-photon soure, but also from a more pratial point of view to be able to design better single-photonsoures.In this thesis we will fous mainly on desribing deoherene proesses, and therefore emphasis will be onthe indistinguishability aspet of single-photon soures.Semiondutor single-photon souresIn order for quantum omputers, or more generally quantum information tehnologies, to move outsidethe laboratory the materials omprising these devies need to pratial. Systems suh as ultra-old gasesor single atoms are not well suited for eventual ommerialization and su�er from poor salability, eventhough they are exellent for ertain fundamental studies. A material that does not su�er from the sameimpratialities is semiondutors, and whih for many purposes are highly salable as witnessed in themiroeletronis industry. A huge advantage of employing semiondutors is the very high degree ofdesign ontrol the �eld has developed over the years, enabling onstrution of devies strutured downto the nanometer sale. It is at these small length sales that quantum e�ets begin to play a vitalrole. This ontrol also makes it possible, to a ertain degree, to engineer the eletroni energy levels inthe material and through this ontrolling the energy of the emitted light. Furthermore, the quality ofsemiondutor devies grown nowadays is extremely high and various unwanted defets do not pose aserious problem. 1



Introdution

(a) Self-assembled quantum dots grown using the Stranski-Krastanowtehnique [4℄. The diameter of eah quantum dot is on the orderof a few tens of nanometers. (b) Simulated eletri �eld mode pro�le of aavity reated by omitting three holes ina 2D photoni rystal membrane [5℄.Figure 1.1.: Figures of self-assembled QDs and an optial avity.A promising andidate for a semiondutor single-photon soure onsists of a single1 self-assembled quan-tum dot (QD), see �gure 1.1(a), plaed inside an optial avity, see �gure 1.1(b), whih o�ers ontrol overboth the eletroni and photoni degrees of freedom. It is this spei� system we will deal with in thisthesis and a brief overview will therefore be given.QDs grown using the Stranski-Krastanow tehnique [6℄ are made in a three step evaporation proess,where due to the physial mehanism behind the formation these QDs are alled self-assembled. The �rststep onsists of plaing a layer of semiondutor on a substrate, as an example we use GaAs whih is aommonly employed material. In the seond step a very thin layer, usually only a few monolayers thik,of another kind of semiondutor is evaporated onto the the �rst. The material forming the seond layersshould have a slightly di�erent lattie onstant than the �rst, this demand is satis�ed by InAs whih wewill use and whih is further ommonly employed in onnetion with GaAs. The lattie mismath ausesa stress �eld to build in the InAs layer with a subsequent inrease in surfae energy. To minimize thesurfae energy small islands of InAs spontaneously form on top of the thin layer of InAs, these islands aredenoted self-assembled QDs and the thin layer below them is denoted the wetting layer (WL). This step ofthe proess is illustrated in �gure 1.1(a), where a sanning eletron mirosope image shows how the QDsare randomly distributed on the WL. The last step onsists of evaporating a �nal layer of GaAs on topof the QDs and WL, ompletely embedding the InAs in GaAs. Now, the bandgap of InAs is signi�antlylower than that of GaAs, and through band bending e�ets this reates a on�ning potential for botheletrons and holes, allowing spatially loalized states to inside the QDs, see �gure 4.3 for a shematiillustration. Regarding the optial avity we will not go into details with the spei� form, as we onlyrequire it to have a single well de�ned optial mode. This mode will be desribed entirely by parameters,that will be introdued later when needed. For an exellent exposition of di�erent avity designs we referto the review artile by Vahala et al. [7℄.An often performed experiment in solid-state quantum optis is the photoluminesene experiment, whereone exites eletrons in a given struture and measures the light emitted by the struture. The emittedlight arries with it a wealth of information on the various interations that are present in the struture.It is therefore of great interest to be able to model a photoluminesene experiment aurately, to be ableto understand the experimental data. For illustration we have in �gure 1.2 skethed a typial photolumi-nesene experiment. The �gure shows an energy diagram of a two-band semiondutor whih has a bulkontinuum part, arising from the unon�ned arriers in the semiondutor bulk, a WL (quasi-) ontinuum,due to arriers moving in the quasi-2D WL, and a set of disrete states loalized in the QD. In the experi-ment eletrons are generated in the ondution band by some external soure, that ould either be optialor eletrial in nature. In the optial ase the exitation energy is often tuned to the ontinuum parts of1In pratise it is very di�ult to plae a single QD inside a avity, due to the fabriation proess. Often several QDs areplaed spatially inside the avity, however, due to size �utuations and the assoiated energy �utuation it is possible tospetrally selet a single QD.2



Introdutionthe spetrum to, avoid exiting with light of the same energy as one wish to detet. The eletrons and holesthen undergo a rapid relaxation and dephasing proess in the WL or bulk ontinuum, where the phasespae for sattering is large, through the emission of phonons and sattering with other arriers. One thearriers reah the bottom of the WL ontinuum, they are aptured into the loalized QD states. From hereon they relax into the ground state of the disrete QD spetrum, and as this part of the relaxation takesplae for disrete eletron states, the time sales are typially longer than in the ontinuum ase. Oftenthe relaxation to the QD ground state for the eletrons and holes, ours su�iently fast so that only avery small number of photons are emitted during the proess. However, one the the arriers reah theirrespetive ground states, they start interating e�iently with the quantized eletromagneti �eld andsigni�ant photon emission starts to our. Depending on the strength of the eletron-photon interationtwo qualitatively di�erent situation an arise, known as the weak and strong oupling regimes [8, Chap.7℄. In the strong oupling regime the oherent oupling between eletrons and photons is stronger thanthe deay proesses, and oherent transfer of energy between the eletroni and photoni subsystems isobserved through so-alled Rabi osillations. In the weak oupling regime the situation is reversed andthe deay proesses dominate over the oherent oupling, resulting in an irreversible deay of the exitedeletron into its ground state while emitting a photon. It is this basi experiment we will set up a theoryfor in this thesis, as it onstitutes the fundamental mehanism in a semiondutor single-photon soure.
Condution band

Valene band

Bulk ontinuumWL ontinuum

Bulk ontinuumWL ontinuum

WL relaxationQD aptureQD relaxationStrong oupling Weak oupling External optial exitation

Figure 1.2.: Shemati energy diagram illustrating the proesses involved in a typial photoluminesene experiment,explanations are given in the main text.In the ontext of single-photon soures the weak oupling regime is partiular interest due a phenomenaknown as the Purell e�et [9℄, where the spontaneous emission rate is altered due to a hange in theloal density of optial states (LDOS). If the spontaneous emission rate is inreased to a value near orabove the deoherene rates, it will lead to an inrease in the indistinguishability of the emitted photon[10℄. Intuitively we an understand this as the photon being emitted before the impat of dephasing hasrendered the photons distinguishable. Most exploitations of the Purell e�et have employed an optialavity to alter the LDOS, however, reently it has been proposed to use a photoni rystal waveguide toalter the LDOS instead of a avity [11, 12℄. This o�ers several advantages over a spetrally narrow high-Q3



Introdutionavity. First the Purell e�et in a waveguide an be obtain over a larger range of frequenies and seondlythe photon is emitted diretly into a strongly diretional mode that inreases the olletion e�ieny [13℄.We will however only treat avities and not waveguides in this thesis.Experimental and theoretial e�ortsMuh attention is direted towards obtaining a better understanding of the semiondutor avity quantumeletrodynamial (QED) system desribed above, both on the experimental and theoretial side. Indeedboth measurements of the weak and strong oupling regimes have been realized and we will disuss two suhexamples. In �gure 1.3(a) we show the experimental setup and the result of a oinidene measurement[14℄, between the two photon ounters depited in the setup, after two single photons have been interferedon the beam splitter. The dip in the ount rate at τ = 0 is a signature of two-photon interferene andours due to the bosoni nature of photons. One an use the area under the suppressed enter peak tode�ne a measure for the degree of indistinguishability of the emitted single photons, indeed for perfetlyindistinguishable photons the area would vanish [15℄. This experiment was performed in the weak ouplingregime utilizing the Purell e�et to obtain a higher degree of two-photon interferene. An example ofa measurement in the strong oupling regime is shown in �gure 1.3(b). Here the emission spetra for aphotoluminesene experiment is shown at di�erent detunings between between exiton emitter (X) andthe avity (C) [16℄. A lear indiation that we are in the strong oupling regime is seen through theso-alled avoided rossing of the two peaks, revealing the formation of an eletron-photon quasi-partile,often alled a polariton.

(a) Figures showing the setup for performing a two-photoninterferene measurement and the orresponding oin-idene histogram [14℄. (b) Emission spetra for a QED system in the strong ou-pling regime [16℄.Figure 1.3.: Figures illustrating examples of weak and strong oupling between eletrons and photons.The most basi features of these experiments have been reprodued by simple models [15, 17�19℄, wheredeay proesses are treated in relaxation rate approximations. The rates beome �tting parameters andgive no understanding or insight into the physis underlying the various deay proesses. In order tounderstand the e�ets of e.g. temperature, more advaned models are needed that expliitly take intoaount the interations giving rise to the temperature features. These interations have an inherent many-body nature and are therefore notoriously di�ult to handle theoretially, and often very omputationallydemanding, whih are some of the reasons why they are not employed more often in the literature. Reentlythere has been several theoretial papers [20�23℄ that treat QED systems and some kind of many-body4



Introdutioninteration, usually phonons. However, they all have the ommon feature that they use methods2 that areimpossible, or very di�ult, to extend to realisti systems, whih is the ultimate goal and is a prerequisitefor explaining some experiments.In this thesis we employ a non-equilibrium Green's funtion formalism and set up a model for a realistiQED system. We take into aount the many-body interations between eletrons, phonons, and photonsand go beyond the usual two-level desription of the eletroni system, in that we onsider a multi-level QDsheme rarely done in the literature. The model is analyzed and disussed for several relevant senarios,with the overall onlusion that in order to aurately desribe experiments it is imperative to employ amany-body model, that expliitly desribes the various deay mehanisms.

2Many employ the so-alled independent boson model [24℄ that only applies to systems with a single eletroni level,obviously limiting its usefulness. 5



2. Non-equilibrium Green's Funtions2.1. Introdution and motivationThe theoretial desription of many-body quantum systems is notoriously di�ult, and there exists only avery limited understanding of the vast amount of intriguing phenomena arising from the intriate intera-tions amongst many idential partiles. One reason for the limited understanding of many-body systemsis due the pratial problems assoiated with solving the fundamental governing equation, namely thetime-dependent Shrödinger equation
i~∂t |Ψ(t)〉 = H |Ψ(t)〉 . (2.1)In standard wavefuntion approahes the Hamiltonian and wavefuntion are expanded in a many-partileHilbert spae and the resulting set of linear equations is solved. While this approah is possible and veryoften used for single or few partiles systems, it beomes impossible to proeed down this path one thepartile number beomes signi�ant. This is so as the orresponding Hilbert spae, inreases exponentiallyin the number of partiles and in the number of single-partile states used to expand the many-partileHilbert spae on. To make progress we turn to the Heisenberg representation of quantum theory, in whihoperators rather than the wavefuntions themselves are the primary objets. This approah does howeveralso have an inherent problem known as the hierarhy problem. The hierarhy problem is niely illustratedusing an onrete example in whih we onsider the following Hamiltonian
H = ~ω1c

†
1c1 + ~ω2c

†
2c2 + ~ωa†a+ ~g(c†2c1a+ a†c†1c2),that represents fermions in two states 1 and 2, interating with a bosoni mode through the interationdesribed by the last two terms1. In order to get information on the fermions of the system, we would liketo know the time evolution of the fermion operators, e.g. c†2. To obtain the time evolution one needs tosolve the Heisenberg equation of motion, see eqs. (2.8) and (2.9), that reads

i~∂tc
†
2(t) = [c†2(t), H(t)].The evaluation of the ommutator between c†2 and H is easily done using the (anti)ommutator relations,see eq. (A.33), for the operators and we get the following more expliit equation

i~∂tc
†
2(t) = −~ω2c

†
2(t)− ~ga†(t)c†1(t).The �rst term on the right hand side (RHS) is identi�ed with the free evolution of c†2(t) in the absene ofinterations, while the seond term is due to the interation with the bosoni mode. As this equation is notlosed in c†2(t) we have to set up an equation desribing the evolution of the operator produt a†(t)c†1(t),doing so one disovers that this equation ouples to a new produt of three operators. The oupling tohigher order produts never ends, meaning that a losed set equations is never obtained and therefore theproblem is in priniple unsolvable. This in�nite number of equations is known as the hierarhy problemof many-body theory.There are di�erent ways one an takle the hierarhy problem. The two dominating methods both fouson determining the time evolution of expetation values of operators, as here one may fous on obtaininge.g. single-partile information. This should be ontrasted to the wavefuntion approah, were one obtains1This Hamiltonian is equal to the Jaynes-Cummings model studied in appendix A.2, in the rotating wave approximation,but the point we are trying to make is generi and hene this is not emphasized.6



Non-equilibrium Green's Funtions Introdution and motivationall information available on the system, muh of whih is often redundant. An example of suh a timedependent expetation value is the single-partile density matrix, e.g. ρ11(t) = 〈c†1(t)c1(t)〉 or its two-time generalization ρ<
11(t
′, t) = 〈c†1(t)c1(t′)〉. The method relying on one-time density matries is knownas the luster expansion sheme (for a review see [25℄) where, rather intuitively, higher order produtsare fatored into lower ordered ones, whih in the end renders the system of equations �nite and henein priniple solvable. The method relying on two-time density matries, or more generally two-timeorrelation funtions, is known as the Green's funtion approah. In this approah ertain ontributionsin all higher order produts are kept, and hene these ontributions are taken into aount to in�niteorder. In this thesis we will use the a non-equilibrium version of the Green's funtion formalism, as it hasproven e�ient in studying semiondutor many-body system out of equilibrium [26℄. For disussions onthe di�erenes and similarities of the two methods see [27℄ and [26, pp. 243-250℄To further motivate the use of Green's funtions we now show how these relate to experimentally aessiblequantities. We start by onsidering a general one-body operator B, whih desribes some observable of aphysial system. In reation and annihilation operators B an be written

B =
∑

αβ

BαβO
†
αOβ ,where O an be either a fermion or boson operator and Bαβ = 〈α|B|β〉 is the single-partile matrixelement. What is measured in experiments is the expetation value of B, de�ned by traing over thedensity operator of the system

〈B(t)〉 = Tr[Bρ(t)] = Tr[Bu(t, t0)ρ(t0)u
†(t, t0)] = Tr[u†(t, t0)Bu(t, t0)ρ(t0)] = Tr[B(t)ρ(t0)]. (2.2)In terms of the expansion of B above we may write

〈B(t)〉 =
∑

αβ

BαβTr
[
O†α(t)Oβ(t)ρ(t0)

]
=
∑

αβ

Bαβ 〈O†α(t)Oβ(t)〉 , (2.3)where 〈· · ·〉 denotes averaging with respet to the initial state of the system desribed by ρ(t0). The entiretime-dependent braket 〈O†α(t)Oβ(t)〉 is proportional to what is known as the equal-time lesser Green'sfuntion, see eq. (2.24b), and plays the role of the single-partile density matrix. Thus with knowledgeof the lesser Green's funtion, the expetation value of any one-body operator an be determined. Thismakes this objet very desirable to obtain, therefore muh e�ort is put into solving the equations for thelesser Green's funtion and muh of this thesis will deal with this issue also. Information on the spetralproperties of a system, e.g. density of states, is often wanted and also these are aessible through theGreen's funtions. One an relate the mean thermal oupation of a state α to the Fourier transform ofthe so-alled spetral funtion Aα(ω) as [28, p. 131℄
〈O†αOα〉 =

∫ ∞

−∞

d(~ω)

2π
Aα(~ω)f(~ω), (2.4)where f(~ω) is equal to the Fermi-Dira (Bose-Einstein) distribution funtion for fermions (bosons) and

Aα(~ω) = −2Im[Gr
α(~ω)], see eq. (2.24). This shows that the spetral funtion is similar to the usualdensity of states.There exists two approahes for generating the equations for the Green's funtions. The �rst is thediagrammati approah pioneered by Rihard Feynman, where one represents the equations in terms ofrather intuitive pitograms, that an make it easier to gain an overview of the ompliated equations. Theseond is a more mathematial approah developed by Julian Shwinger, where a funtional derivativetehnique is used to generate the governing equations. The two formulations are idential as showedby Freeman Dyson, but are in pratie quite di�erent and we will throughout this thesis employ thediagrammati approah as the author �nds this more intuitive.This hapter is meant as a brief introdution to the theory of non-equilibrium Green's funtions andis a ompilation of a number of other texts [24, 26, 28�33℄, where ref. [33℄ should be emphasized as7



Basis of ontour ordered Green's funtions Non-equilibrium Green's Funtionsan espeially thorough and luid introdution. Attention should also pointed to the reent release of atextbook by Jørgen Rammer on the subjet [34℄, whih seems to �ll a gap in the literature for a modernformal introdution to non-equilibrium Green's funtions.2.2. Basis of ontour ordered Green's funtionsIn this setion we will introdue the ontour ordered Green's funtion and develop an in�nite orderperturbation theory for this objet. We start by onsidering the alulation of ensemble averages ofphysial observables in non-equilibrium situations, this is done to motivate the introdution of the oneptof ontour time and ontour time ordering. Next we de�ne the single-partile ontour ordered Green'sfuntion for whih we develop an in�nite order perturbation theory using the diagrammati tehnique.The ulmination is the arrival at the Dyson equation for the ontour ordered Green's funtion and theonept of self-energy.2.2.1. Ensemble averages in non-equilibriumTo be able to disuss quantum mehanial problems we �rst need to introdue a Hamiltonian for thesystem we are onsidering. We divide the Hamiltonian into three parts that are fundamentally di�erentand hene write it as
H = H0 +Hi + U(t). (2.5)The non-interating part is given by H0, this ontains the quadrati (i.e. terms with two operators)parts of all the fermioni and bosoni speies of the system, and onstitutes the basi system upon whihperturbation theory is performed. The interation part is given by Hi and onsists of all many-bodyinterations between the fermioni and bosoni speies. Eah term in Hi is haraterized by having morethan two operators, and hene gives rise to the hierarhy problem mentioned in the introdution to thishapter. The last part U(t) is the externally applied and expliitly time-dependent disturbane to thesystem, whih drives it into the non-equilibrium state. We assume U(t) to be quadrati, whih is normallythe ase, as this yields a simpler formulation of the theory.We now proeed by onsidering the alulation of the expetation of a physial observable desribed bythe operator O in a system governed by the Hamiltonian eq. (2.5)
〈O(t)〉 = Tr [ρ(t0)O(t)] , (2.6)where ρ(t0) is the initial density matrix, before the time-dependent external potential begins to at. Themost natural initial state to onsider in a solid-state system is that of thermal equilibrium. The thermaldensity matrix is given by [28, p. 28℄
ρ(t0) =

e−β[(H0+Hi)−µN ]

Tr
[
e−β[(H0+Hi)−µN ]

] =
e−β(H0+Hi)

Tr
[
e−β(H0+Hi)

] , (2.7)where we have hosen our energy sale so that the hemial potential is zero, µ = 0, to avoid having to dealexpliitly with the partile number operator, N , and β = (kBT )−1 is the inverse thermal energy. For themoment we will postpone the problems assoiated with thermal density matrix to the end of this setionand onentrate on the time development of the expetation value eq. (2.6).In eq. (2.6) O(t) is the Shrödinger operator O in the Heisenberg piture, also it should be emphasized that
O(t) an desribe both fermioni or bosoni speies. The Heisenberg piture is de�ned by

O(t) = u†H(t, t0)OuH(t, t0), (2.8)8



Non-equilibrium Green's Funtions Basis of ontour ordered Green's funtionswhere uH(t, t0) is the time evolution operator whih is governed by the Shrödinger equation
i~∂tuH(t, t0) = HuH(t, t0), (2.9)with the initial ondition uH(t0, t0) = 1. This equation is in general very di�ult to solve, if not impossible,for most realisti systems. Furthermore as the overall goal is to formulate a perturbation theory, we swithto the interation piture whih failitates this. In the interation piture an operators time-dependeneis governed by H0 and is therefore given by
Ô(t) = u†H0

(t, t0)OuH0 (t, t0), (2.10)where uH0(t, t0) is the time evolution operator with respet to H0 and assumed known. However to apturethe full time evolution of the system we have to onsider Heisenberg time evolution. By using the property
uH0(t, t0)u

†
H0

(t, t0) = 1 of unitary operators we rewrite O(t) to a form more suitable for the formulationof a perturbation theory
O(t) = u†H(t, t0)OuH(t, t0) = u†H(t, t0)uH0(t, t0)u

†
H0

(t, t0)OuH0 (t, t0)u
†
H0

(t, t0)uH(t, t0)

= v†H0
(t, t0)Ô(t)vH0 (t, t0), (2.11)where we used eq. (2.10) and de�ned the very important time evolution operator

vH0(t, t0) = u†H0
(t, t0)uH(t, t0).The next step is to obtain an equation of motion for vH0(t, t0), whih is done by simply di�erentiating itsde�nition

i~∂tvH0 (t, t0) = i~∂t

(

u†H0
(t, t0)uH(t, t0)

)

=
[

i~∂tu
†
H0

(t, t0)
]

uH(t, t0) + u†H0
(t, t0) [i~∂tuH(t, t0)] .The terms in the square brakets are equal to their respetive Shrödinger equations, see eq. (2.9),hene

i~∂tvH0 (t, t0) = −H0u
†
H0

(t, t0)uH(t, t0) + u†H0
(t, t0) (H0 +Hi + U(t))uH0(t, t0)u

†
H0

(t, t0)uH(t, t0)

=
(

Ĥi(t) + Û(t)
)

vH0(t, t0) = V̂ (t)vH0(t, t0),where we used that u†H0
(t, t0)H0uH0(t, t0) = H0, the de�nition of vH0(t, t0), and introdued V̂ (t) = Ĥi(t) + Û(t)ontaining all interations. To solve this equation we formally integrate one and obtain the follow-ing

vH0(t, t0) = 1− i~−1

∫ t

t0

dt1V̂ (t1)vH0(t1, t0),where we have used the initial ondition vH0(t0, t0) = 1. This an now be iterated to yield vH0(t, t0)expressed as an in�nite sum, namely
vH0(t, t0) =

∞∑

n=0

(−i~−1)n

∫ t

t0

dt1

∫ t1

t0

dt2 · · ·
∫ tn−1

t0

dtnV̂ (t1)V̂ (t2) · · · V̂ (tn),where the zeroth term is to be taken as 1. If we introdue the time ordering operator2 Tt we an write theabove in a form whih allows an easier formulation of the perturbation theory
vH0(t, t0) =

∞∑

n=0

(−i~−1)n

n!

∫ t

t0

dt1

∫ t

t0

dt2 · · ·
∫ t

t0

dtnTt

{

V̂ (t1)V̂ (t2) · · · V̂ (tn)
}

. (2.12)2For a textbook introdution to the time ordering operator see the �rst hapters in any many-body text, e.g. [24, 28℄. 9



Basis of ontour ordered Green's funtions Non-equilibrium Green's FuntionsAs this expansion looks like that of an exponential funtion it is ommon to de�ne the following shorthand notation
vH0(t, t0) = Tt

{

e
−i~−1

∫
t

t0
dt′V̂ (t′)

}

,but one should be autious by treating it as an exponential funtion in mathematial manipulations.The operator Tt orders operators so that "late times go left", e.g. for a two-operator produt weget
Tt

{

V̂ (t1)V̂ (t2)
}

= θ(t1 − t2)V̂ (t1)V̂ (t2) + θ(t2 − t1)V̂ (t2)V̂ (t1),whih holds for the type of interations normally onsidered in solid state physis3. When onsidering timeordered Green's funtions in the setions ahead, we will also need to know the ation of the time orderingoperator on the more fundamental bosoni and fermioni operators, and not just the ombinations theseour in in the various interation Hamiltonians. Here it also holds that operators with "late times goleft", so that for a three operator produt we for example get [35℄
Tt {A1(t1)A2(t2)A3(t3)} = (−1)PAi1(ti1 )Ai2(ti2 )Ai3(ti3), ti1 > ti2 > ti3 , (2.13)where P is the number of interhangings of fermioni operators performed on the original produt, whilethere is no sign hanges for bosoni operators. Note that this ordering holds for operators governed intime by any Hamiltonian, both H0 and H . This is so as eq. (2.13) is basially a de�nition and notderived from the kind of arguments leading to the introdution of Tt in eq. (2.12), but of ourse they areonsistent.We are now ready to introdue the onept of ontour time whih is motivated by the interationpiture expansion of the operator O(t), eq. (2.11), and the expression for the time evolution opera-tor vH0 (t, t0), eq. (2.12), we have derived. The expression for vH0(t, t0) ontains an integration from

t0 to t, while v†H0
(t, t0) ontains one from t to t0, as seen through the hermitian onjugation proe-dure

v†H0
(t, t0) =

∞∑

n=0

(−i~−1)n

n!
(−1)n

∫ t

t0

dt1

∫ t

t0

dt2 · · ·
∫ t

t0

dtn

(

Tt

{

V̂ (t1)V̂ (t2) · · · V̂ (tn)
})†

=
∞∑

n=0

(−i~−1)n

n!

∫ t0

t

dt1

∫ t0

t

dt2 · · ·
∫ t0

t

dtnTat

{

V̂ (t1)V̂ (t2) · · · V̂ (tn)
}

, (2.14)where Tat {· · ·} = (Tt {· · ·})† is alled the anti-time ordering operator, as it basially �ips the produt or-dered by Tt. Having made these observations it beomes apparent that we an write
O(t) = TC2

{

e
−i~−1

∫

C2
dτ ′V̂ (τ ′)

}

Ô(t)TC1

{

e
−i~−1

∫

C1
dτ ′V̂ (τ ′)

}

,where C1 and C2 are the ontours depited in �gure 2.1, and their orresponding time ordering operators
TC1 = Tt and TC2 = Tat, and �nally τ is a omplex time variable.Furthermore it is possible [35℄ to ollet the two time evolution operators into one, whih is ordered alongthe entire Keldysh ontour C = C1 ∪ C2, so that we obtain

O(t) =

∞∑

n=0

(−i~−1)n

n!

∫

C

dτ1

∫

C

dτ2 · · ·
∫

C

dτnTC

{

V̂ (τ1)V̂ (τ2) · · · V̂ (τn)Ô(t)
}

= TC

{

e−i~−1
∫

C
dτ ′V̂ (τ ′)Ô(t)

}

= TC

{

SCÔ(t)
}

, (2.15)3For interations whih does not ontain an even number of fermioni reation and annihilation operators, and hene doesnot onserve fermioni partile number, a net sign an our through interhanging of fermioni operators, see eq. (2.13).10



Non-equilibrium Green's Funtions Basis of ontour ordered Green's funtions
t0 tC1

C2

real time
imaginary time

Figure 2.1.: Shemati illustration of the Keldysh ontour onsisting of the branhes C1 and C2. The ontour runson the real axis, but have been shifted slightly for visual larity.where we have de�ned SC = e−i~−1
∫

C
dτ ′V̂ (τ ′). The ontour time ordering operator TC orders along theKeldysh ontour C [35℄

TC {A1(τ1)A2(τ2)A3(τ3)} = (−1)PAi1 (τi1)Ai2 (τi2 )Ai3(τi3 ), τi1 >C τi2 >C τi3 , (2.16)where >C means "greater than" in the ontour sense. This for example means that times on the lowerontour, C2, will always be greater than those on the upper ontour, C1. P is again the number ofinterhanges of fermioni operators. As for the normal time ordering operator Tt, eq. (2.13), the TCordering also holds for operators governed by any Hamiltonian. Apart from being a more ompat notationeq. (2.15) has the great advantage that all the interations in V̂ (t) are olleted in one plae, whih simpli�esthe perturbation theory we are aiming at performing.We have however not ompleted the task of isolating all the di�ult interations as we still need toaddress the initial density matrix, eq. (2.7), whih performs the thermodynami averaging. Formally thisproblem is handled in the same spirit as above, we write a di�ult operator as something we know timessomething we handle perturbatively. The usual way to proeed is to take advantage of the fat that boththermal averaging and time development involves exponential funtions, and hene it beomes possible toextend the Keldysh ontour into true imaginary time and through this perform the thermal averaging. Inequilibrium theory this is known as the Matsubara tehnique, see e.g. [28℄. We will however not dwell atthe details4 as we take the usual approah of letting t0 → −∞, orresponding to adiabatially ouplingthe interations ontained in Hi to the non-interating H0 equilibrium system, so that the ontributionfrom the imaginary time branh beomes negletable. What we end up with is the following expression forthe ensemble average of the operator O(t) taking in an arbitrary non-equilibrium state, whih has evolvedfrom a non-interating equilibrium state in the distant past,
〈O(t)〉 = Tr [ρ(t0 → −∞)O(t)] =

〈TC{SCÔ(t)}〉0
〈TC {SC}〉0

, (2.17)where the brakets with subsript "0" denote thermal average with respet toH0

〈· · ·〉0 =
1

Tr [e−βH0 ]
Tr
[
e−βH0 · · ·

]
. (2.18)Finally we extend the upper limit on the Keldysh ontour from t to∞ by inserting vH0(∞, t)v†H0

(∞, t) = 1next to SC in eq. (2.17), see �gure 2.2.2.2.2. The ontour ordered Green's funtion and Dyson'sequationIn the previous setion we onsidered the alulation of the expetation value of a physial observablein a non-equilibrium state, whih is often what one is interested in. It has however turned out to be4For a detailed derivation see [33℄. 11



Basis of ontour ordered Green's funtions Non-equilibrium Green's Funtions
−∞

−∞

∞

∞
C1

C2

real time
imaginary time

Figure 2.2.: Shemati illustration of the Keldysh ontour with the lower and upper limits extended to −∞ and ∞respetively.very di�ult to formulate a losed in�nite order perturbation theory for observables, due to the fatthat the spatial orrelation funtions omprising the observables, ouple to orrelation funtions in timealso. Sometimes one might be interested in orrelation funtions in time (even though they are not diretphysial observables) themselves, espeially for the bosoni photons, as this is what is often measured inexperiments. On this basis we de�ne the single-partile ontour ordered Green's funtion by the follow-ing
Gαβ(τ, τ ′) = −i~−1 〈TC{Oα(τ)O†β(τ ′)}〉 , (2.19)where Oα(τ) and O†β(τ ′) are either fermioni or bosoni operators in the Heisenberg piture. The reason forintroduing this rather strange theoretial objet is that it possesses a well de�ned perturbation expansion,as is hinted by onsidering the expansion of the time evolution in eq. (2.15). The ontour ordered Green'sfuntion is de�ned in terms of ontour times that live on the Keldysh ontour and therefore its relevanefor obtaining observable quantities, whih are in real times, might not be lear at the moment. We willonsider this issue of going from ontour to real times in setion 2.3, but for the moment we will keep onworking on the ontour ordered Green's funtion.To make further progress toward a perturbation theory we adopt the result of eq. (2.17) and write theRHS of the ontour ordered Green's funtion in the interation piture
Gαβ(τ, τ ′) = −i~−1

〈TC{SCÔα(τ)Ô†β(τ ′)}〉
0

〈TC {SC}〉0
. (2.20)As seen from eq. (2.15) the time evolution operator SC in the above equation is an in�nite sum of produtsof operators evolving aording the Hamiltonian H0, this generally results in the generation of higher orderontour ordered Green's funtions of the following form

G
0,(n)
α1···αn,βn···β1

(τ1, · · · , τn; τ ′n, · · · , τ ′1) = (−i~−1)n 〈TC{Ôα1(τ1) · · · Ôαn
(τn)Ô†βn

(τ ′n) · · · Ô†β1
(τ ′1)}〉0 ,where n indiates a n'th-partile ontour ordered Green's funtion. These arbitrarily large objets an bealulated, as the time-dependene is known, using the (anti)ommutation relations for the (fermioni)bosoni operators, but would be very tedious work. A muh more elegant and useful approah is providedby Wik's theorem5, whih states that a n'th-partile ontour ordered Green's funtion an be deomposedinto produts of single-partile ontour ordered Green's funtions. It is this deomposition whih allowsfor the formulation of in�nite order perturbation theory. The deomposition an be written ompatly asfollows

G
0,(n)
α1···αn,βn···β1

(τ1, · · · , τn; τ ′n, · · · , τ ′1) =

∣
∣
∣
∣
∣
∣
∣

G0
α1β1

(τ1, τ
′
1) . . . G0

α1βn
(τ1, τ

′
n)... . . . ...

G0
αnβ1

(τn, τ
′
1) . . . G0

αnβn
(τn, τ

′
n)

∣
∣
∣
∣
∣
∣
∣
±

, (2.21)5A proof of Wik's theorem in ontour times an be found in [34℄.12



Non-equilibrium Green's Funtions Basis of ontour ordered Green's funtionswhere+ denotes a positive determinant whih must be used for bosons and− denotes a regular determinantwith minus signs whih must be used for fermions. For Wik's theorem to hold the time-dependene andthermal averagingmust be governed byH0, a quadrati Hamiltonian, as in our ase.Applying Wik's theorem to the denominator in eq. (2.20) results in in�nitely many disonneted dia-grams6, i.e. diagrams that only involve internal integration variables and not the external (α, τ) and
(β, τ ′) variables. Applying Wik's theorem to the numerator eq. (2.20) results in in�nitely many on-neted diagrams, i.e. diagrams that are onnet to the external (α, τ) and (β, τ ′) points, times (as afator) all the disonneted diagrams that appeared in the denominator. This means that all disonneteddiagrams anel resulting in a huge simpli�ation and we an write the following perturbative expressionfor the ontour ordered Green's funtion

Gαβ(τ, τ ′) = −i~−1
∞∑

n=0

(−i~−1)n

n!

∫

C

dτ1

∫

C

dτ2 · · ·
∫

C

dτn 〈TC{V̂ (τ1)V̂ (τ2) · · · V̂ (τn)Ôα(τ)Ô†β(τ ′)}〉
0,con

,(2.22)where the subsript "on" indiates that we should only keep onneted diagrams. Writing out higherand higher orders of the above expression it beomes apparent that the struture somehow repeats itself.One sees that it is possible to perform a resummation to obtain an integral equation for the ontourordered Green's funtion, also known as a Dyson equation. This resummation is most easily illustrateddiagrammatially as shown in �gure 2.3. The seond term on the RHS desribes the interation with the
= + +

(α, τ) (β, τ ′) (α, τ) (β, τ ′) (α, τ) (β, τ ′)(λ, τ1) (µ, τ1) (α, τ) (β, τ ′)(λ′, τ2) (µ′, τ1)

U ΣFigure 2.3.: Diagrammati representation of the Dyson equation for the full ontour ordered Green's funtioneq. (2.23). The double (single) line represents the full (free) ontour ordered Green's funtion, while the U symbolrepresents the external potential and the Σ symbol represents the self-energy. For diagrammatial representationsof U and Σ see �gure 2.4.external potential and as this is a one-body interation it only results in a simple instantaneous satteringfrom one free Green's funtion to another with a ertain amplitude. This proess is illustrated withthe dashed line in �gure 2.4(b). The third term on the RHS is the so-alled (irreduible) self-energywhih desribes the true many-body interations of the system and has an in�nite number of higher orderontributions. A few of the lowest order ones are illustrated in �gure 2.4(a). The diagrams in �gure 2.4(a)are meant only to serve as an illustration, where for example the straight lines ould represent eletronsand the wiggly lines phonons. In a system with several many-body interations eah involved speie hasits own self-energy dependent on the spei� interation, however the diagrams are topologial identialfor so it su�es to show one example. If one trunates the self-energy after, say, the two �rst terms andsolves the resulting Dyson equation, these two �rst order proesses have been taken into aount to in�niteorder, whih justi�es alling this theory in�nite order perturbation theory.In mathematial form the Dyson equation is written as an integral equation in ontour time and spae
G(τ, τ ′) = G0(τ, τ ′) +

∫

C

dτ1G
0(τ, τ1)U(τ1)G(τ1, τ

′) +

∫

C

dτ2dτ1G
0(τ, τ2)Σ(τ2, τ1)G(τ1, τ

′), (2.23)where we have transitioned to a matrix notation to redue the number of sums, i.e. (G(τ, τ ′))αβ = Gαβ(τ, τ ′).This is the main equation for the rest of this thesis and will be applied to both fermioni and bosonipartiles later on.6Feynman diagrams, or just diagrams, are drawings of the various terms in the expansion of the Green's funtion that anrigorously be onverted to mathematis and vie versa. We will use the term diagram of both the drawings and themathematial equivalent as they are basially the same. For an introdution to Feynman diagrams see any many-bodytext book. 13



Real time Green's funtions and Langreth rules Non-equilibrium Green's Funtions(a)
Σ = + + + + · · ·

(b)
U =Figure 2.4.: Diagrammati representation of (a) a few of the lowest order ontributions to the self-energy where,as in �gure 2.3, the single lines represent free ontour ordered Green's funtions and the wiggly lines representinteration lines and (b) the sattering vertex of the external potential. This self-energy is for fermions, the self-energy for bosons looks slightly di�erent.While the ontour ordered Green's funtion possess a nie perturbation expansion it has no diret rela-tion to physial observables and further is expressed in ontour time and not real time. The proess oftranslating from ontour to real time, known as analyti ontinuation, and making the onnetion to morephysially relevant orrelation funtions is arried out in the next setion.2.3. Real time Green's funtions and LangrethrulesIn the previous setions we introdued the onept of ontour time, enabling an relatively easy and ompatformulation of the perturbation theory for the ontour ordered Green's funtion. However experimentsare performed in real time, so we have to link the ontour ordered Green's funtion to real time Green'sfuntions whih have to be the relevant objets for desribing physial measurements. It turns out to beonvenient to introdue the following four real time Green's funtions

G>
αβ(t, t′) = −i~−1 〈Oα(t)O†β(t′)〉 , (2.24a)

G<
αβ(t, t′) = ±i~−1 〈O†β(t′)Oα(t)〉 , (2.24b)

Gr
αβ(t, t′) = −i~−1θ(t− t′) 〈[Oα(t), O†β(t′)]±〉 = θ(t− t′)(G>

αβ(t, t′)−G<
αβ(t, t′)), (2.24)

Ga
αβ(t, t′) = i~−1θ(t′ − t) 〈[Oα(t), O†β(t′)]±〉 = −θ(t′ − t)(G>

αβ(t, t′)−G<
αβ(t, t′)), (2.24d)whih are alled the greater (>), lesser (<), retarded (r), and advaned (a) Green's funtion respetively.In the lesser Green's funtion + is for fermions and − is for bosons. For the retarded and advaned Green'sfuntions the + subsript denotes a anti-ommutator whih is to be used for fermions and the − denotesa ommutator to used for bosons. These Green's funtions are diretly related to physially measurablequantities. The lesser Green's funtion an be used to alulate the expetation value of any physialobservable in its equal-time limit. The retarded/advaned Green's funtion ontains information on thespetral properties of the system, like the density of states, and an further be used to alulate responsefuntions.Being de�ned on the Keldysh ontour the ontour ordered Green's funtion, eq. (2.19), ontains fourreal time Green's funtions as omponents, depending on where on the Keldysh ontour its time ar-guments are loated. With referene to eqs. (2.16) and (2.19), and �gure 2.2 we dedue the follow-ing

Gαβ(τ, τ ′) =







Gt
αβ(t, t′), τ, τ ′ ∈ C1

G<
αβ(t, t′), τ ∈ C1, τ

′ ∈ C2

G>
αβ(t, t′), τ ∈ C2, τ

′ ∈ C1

Gat
αβ(t, t′), τ, τ ′ ∈ C2,

(2.25)
14



Non-equilibrium Green's Funtions Real time Green's funtions and Langreth ruleswhere the time ordered Green's funtion, Gt
αβ(t, t′), is given by

Gt
αβ(t, t′) = −i~−1 〈Tt{Oα(t)O†β(t′)}〉 = θ(t− t′)G>

αβ(t, t′) + θ(t′ − t)G<
αβ(t, t′) (2.26a)

= G<
αβ(t, t′) +Gr

αβ(t, t′) (2.26b)
= G>

αβ(t, t′) +Ga
αβ(t, t′) (2.26)and the anti-time ordered Green's funtion, Gat

αβ(t, t′), is given by
Gat

αβ(t, t′) = −i~−1 〈Tat{Oα(t)O†β(t′)}〉 = θ(t′ − t)G>
αβ(t, t′) + θ(t− t′)G<

αβ(t, t′) (2.27a)
= G<

αβ(t, t′)−Ga
αβ(t, t′) (2.27b)

= G>
αβ(t, t′)−Gr

αβ(t, t′). (2.27)Even though the time and anti-time ordered Green's funtions naturally arise through the properties of the
TC operator, these are not pratial for alulating physial quantities. For this reason we will formulatethe rest of the theory in terms of the retarded and advaned Green's funtions (using eqs. (2.26b), (2.26),(2.27b), and (2.27)) and the greater and lesser Green's funtions. It apparent from the above de�nitionsof the time and anti-time ordered Green's funtions that the following relationship holds between thevarious Green's funtions

Gr
αβ(t, t′)−Ga

αβ(t, t′) = G>
αβ(t, t′)−G<

αβ(t, t′), (2.28)showing that through their de�nitions there are only three independent Green's funtions. One analso show [29, p. 354℄ that a similar relationship holds between the various omponents of the self-energy
Σr

αβ(t, t′)− Σa
αβ(t, t′) = Σ>

αβ(t, t′)− Σ<
αβ(t, t′), (2.29)where

Σr
αβ(t, t′) = θ(t− t′)(Σ>

αβ(t, t′)− Σ<
αβ(t, t′)), (2.30a)

Σa
αβ(t, t′) = −θ(t′ − t)(Σ>

αβ(t, t′)− Σ<
αβ(t, t′)). (2.30b)In the equal-time limit of eq. (2.28), one an obtain a very simple relation between the greater and lesserGreen's funtions, namely

G>
αβ(t, t) = G<

αβ(t, t)− i~−1δαβ , (2.31)where eqs. (2.24) and (2.24d) and the fat that, by de�nition, θ(0) = 1
2 have been used. This relationlearly shows the roles of the equal-time lesser and greater Green's funtions as oupation fators foreletrons and holes, respetively. The relation eq. (2.31) ould also have been derived diretly from thefundamental (anti)ommutator relations in their equal-time limit. Furthermore it is possible to use therelation 〈ψ|A|φ〉∗ = 〈φ|A†|ψ〉 to show [32℄

[G
≷
αβ(t, t′)]∗ = −G≷

βα(t′, t). (2.32)This an be used to prove the following relation between the retarded and advaned Green's funtion[32℄
[Gr

αβ(t, t′)]∗ = Ga
βα(t′, t), (2.33)bringing the �nal number of independent Green's funtions down to two. One might be inlined to thinkthat as the self-energies has a symmetry relation, eq. (2.29), similar to that of the Green's funtions,eq. (2.28), that the relations eqs. (2.32) and (2.33) also holds for the various omponents of the self-energy, but this is unfortunately not the ase7. The use of both of these symmetry relations for the7It is however laimed in the textbook by Haug and Jauho [36, p. 251℄ that this is the ase, but no proof or referene ismade to support this laim. It thus appears to be valid for some self-energies, but whether it holds for all in general ishighly doubtful. 15



Real time Green's funtions and Langreth rules Non-equilibrium Green's FuntionsGreen's funtions will yield signi�ant simpli�ations in the numerial alulations we will be performingin later hapters. This is so as one an alulate either half the Green's funtions in the entire (t, t′)-planeor all the Green's funtions in half the (t, t′)-plane. Usually the later is the most eonomi hoie, due tothe fat that the number of time steps in the numerial simulation usually is vastly larger than the numberof Green's funtions.We will now move on to show the so-alled Langreth theorem. This theorem relates a "ontour onvolution"of the form
C(τ, τ ′) =

∫

C

dτ1A(τ, τ1)B(τ1, τ
′), (2.34)to its real time lesser omponent. These ontour integrations of ontour time quantities appear, amongstother plaes, in the Dyson equation eq. (2.23). Maintaining the order the A and B quantities makes therules derived below appliable to matrix produts as well, so this is done. To �nd the lesser omponent ofeq. (2.34) we know from eq. (2.25) that τ ∈ C1 and τ ′ ∈ C2, so that we get

C<(t, t′) =

∫

C

dτ1A(t, τ1)B(τ1, t
′)

=

∫

C1

dτ1A
t(t, τ1)B

<(τ1, t
′) +

∫

C2

dτ1A
<(t, τ1)B

at(τ1, t
′)

=

∫ ∞

−∞
dt1
[
At(t, t1)B

<(t1, t
′)−A<(t, t1)B

at(t1, t
′)
]

=

∫ ∞

−∞
dt1
[
Ar(t, t1)B

<(t1, t
′) +A<(t, t1)B

a(t1, t
′)
]
, (2.35)where we have used eqs. (2.26) and (2.27) and obtained the minus sign in third line by �ipping theintegral limits. The same holds for the greater part, just replae < with >. Using this result it possibleto �nd the retarded omponent of eq. (2.34), where we start by using the de�nitions eqs. (2.24) and(2.24d)

Cr(t, t′) = θ(t− t′)[C>(t, t′)− C<(t, t′)]

= θ(t− t′)
∫ ∞

−∞
dt1
[
Ar(t, t1)B

>(t1, t
′) +A>(t, t1)B

a(t1, t
′)−Ar(t, t1)B

<(t1, t
′)−A<(t, t1)B

a(t1, t
′)
]

= θ(t− t′)
∫ ∞

−∞
dt1
[
Ar(t, t1)

{
B>(t1, t

′)−B<(t1, t
′)
}

+
{
A>(t, t1)−A<(t, t1)

}
Ba(t1, t

′)
]

=

∫ ∞

−∞
dt1θ(t− t′) {θ(t− t1)− θ(t′ − t1)}

{
A>(t, t1)−A<(t, t1)

}{
B>(t1, t

′)−B<(t1, t
′)
}
.Making a sketh of the produt of step funtions one an be onvined that the following relationholds

θ(t− t′) {θ(t− t1)− θ(t′ − t1)} = θ(t− t1)θ(t1 − t′),from whih we arrive at the �nal result
Cr(t, t′) =

∫ ∞

−∞
dt1A

r(t, t1)B
r(t1, t

′) =

∫ t

t′
dt1A

r(t, t1)B
r(t1, t

′). (2.36)A similar alulation an be performed for the advaned part and the result is obtained by replaing r with
a and interhanging the integration limits t and t′ after the last equal sign. A speial kind of "ontour on-volution" is enountered for some instantaneous self-energies and is of the form

D(τ) =

∫

C

A(τ ′, τ ′+)B(τ, τ ′), (2.37)16



Non-equilibrium Green's Funtions Real time Green's funtions and Langreth ruleswhere τ+ = τ + 0+ so that τ+ >C τ . This shift has the onsequene that A will always beome A< inreal time, for further elaboration see appendix A.5. As this is a one-time objet it has no di�erent realtime omponents in the same sense as two-time objets has, but in order to perform alulations we needto express the ontour time funtions under the ontour integral in terms of real time funtions. We needto onsider the ases of τ being loated in both the upper and lower Keldysh branh and we start with
τ ∈ C1

D(t) =

∫ ∞

−∞
dt′A<(t′, t′)

[
Bt(t, t′)−B<(t, t′)

]

=

∫ ∞

−∞
dt′A<(t′, t′)Br(t, t′) =

∫ t

−∞
dt′A<(t′, t′)Br(t, t′),where in the �rst line we used eq. (2.25) to split B into its ontributions on both branhes and in the lastline we used eq. (2.26b). This an be repeated for τ on the lower branh, τ ∈ C2, but the result is the sameas ould have been expeted as we deal with a one-time quantity. If the ontour times for B in eq. (2.37)happen to be interhanged, the same steps leads to Ba(t′, t) instead of Br(t, t′).Often one enounters, e.g. in the determination of self-energies, produts of ontour quantities without aontour time integration of the forms

C⇇(τ, τ ′) = A(τ, τ ′)B(τ, τ ′),

C⇆(τ, τ ′) = A(τ, τ ′)B(τ ′, τ),alled a parallel and an anti-parallel produt respetively, due to the arrangement of the time arguments.An example of a parallel produt is the seond self-energy diagram in �gure 2.4(a), for the eletron-phonon interation, while an example of an anti-parallel produt ours in the same �gure in the "pair-bubble" in the third term. For the greater and lesser parts of these two quantities we immediatelyobtain
C

≷
⇇(t, t′) = A≷(t, t′)B≷(t, t′),

C
≷
⇆(t, t′) = A≷(t, t′)B≶(t′, t),using eq. (2.25). Again this result is used to �nd the orresponding retarded omponents. For C⇇(τ, τ ′)we get

Cr
⇇(t, t′) = θ(t− t′)[C>(t, t′)− C<(t, t′)]

= θ(t− t′)[A>(t, t′)B>(t, t′)−A<(t, t′)B<(t, t′)]

= θ(t− t′)[
{
A<(t, t′) +Ar(t, t′)−Aa(t, t′)

} {
B<(t, t′) +Br(t, t′)−Ba(t, t′)

}

−A<(t, t′)B<(t, t′)]

= A<(t, t′)Br(t, t′) +Ar(t, t′)Br(t, t′) +Ar(t, t′)B<(t, t′),where the relation eq. (2.28) between the four Green's funtions was used in going from the seond to thirdline, while in the last line we have taken advantage of the fat that Ar(t, t′)Ba(t, t′) ∝ θ(t− t′)θ(t′− t) = 0and removed the redundant step funtion in front. For the advaned part, Ca
⇇(t, t′), all r's should beinterhanged with a's and the AaBa term gets a minus sign. The same steps an be repeated for theanti-parallel produt yielding

C
r(a)
⇆ (t, t′) = A<(t, t′)Ba(r)(t′, t) +Ar(a)(t, t′)B<(t′, t).All these various rules for obtaining real time parts of ontour quantities we olletively all Langrethrules and they have been summarized in table 2.1. There are of ourse many more rules that an bederived, e.g. for produts of more than two quantities, but we will only need the ones mentioned in thissetion. Some of these "higher order" rules an be obtained by reursive use of the rules presented in table2.1. For more exhaustive olletions we refer to the referenes mentioned in the beginning of the hapter.17



Equations of motion Non-equilibrium Green's FuntionsContour time Real time
C(τ, τ ′) =

∫

C
dτ1A(τ, τ1)B(τ1, τ

′) C≷(t, t′) =
∫∞
−∞ dt1

[
Ar(t, t1)B

≷(t1, t
′) +A≷(t, t1)B

a(t1, t
′)
]

Cr(a)(t, t′) =
∫∞
−∞ dt1A

r(a)(t, t1)B
r(a)(t1, t

′)

D←(τ) =
∫

C A(τ ′, τ ′+)B(τ, τ ′) D←(t) =
∫ t

−∞ dt
′A<(t′, t′)Br(t, t′)

D→(τ) =
∫

C
A(τ ′, τ ′+)B(τ ′, τ) D→(t) =

∫ t

−∞ dt
′A<(t′, t′)Ba(t′, t)

C⇇(τ, τ ′) = A(τ, τ ′)B(τ, τ ′) C
≷
⇇(t, t′) = A≷(t, t′)B≷(t, t′)

Cr
⇇(t, t′) = A<(t, t′)Br(t, t′) +Ar(t, t′)Br(t, t′) +Ar(t, t′)B<(t, t′)

Ca
⇇(t, t′) = A<(t, t′)Ba(t, t′)−Aa(t, t′)Ba(t, t′) +Aa(t, t′)B<(t, t′)

C⇆(τ, τ ′) = A(τ, τ ′)B(τ ′, τ) C
≷
⇆(t, t′) = A≷(t, t′)B≶(t′, t)

C
r(a)
⇆ (t, t′) = A<(t, t′)Ba(r)(t′, t) +Ar(a)(t, t′)B<(t′, t)Table 2.1.: Summary of the Langreth rules derived in setion 2.3.2.4. Equations of motionIn the previous setions we have provided the theory whih is needed to solve a non-equilibrium prob-lem, that is the Dyson equation and the Langreth rules for analytial ontinuation. For some pratialalulations it however turns out to be more advantageous to solve a di�erential8 equation instead ofan integral equation. It is thus the objet of this setion to derive the equations of motion, usuallyalled the kineti equations, for the various relevant Green's funtions introdued in the previous se-tions.In deriving the equations of motion we use the same approah as in the above setions, namely �rst derivein ontour time and then afterward take the real time omponents one may need. We start out by de�ningtwo operators whih are used to denote di�erentiation with respet to the two ontour times τ and τ ′,these are

(
−→
G0(τ))−1 = i~∂τI −H0(τ)⇒ (

−→
G0(τ))−1

αβ = (i~∂τ − ~ωα)δαβ , (2.38)for the �rst time argument and
(
←−
G0(τ ′))−1 = −i~∂τ ′I −H0(τ

′)⇒ (
←−
G0(τ ′))−1

αβ = (−i~∂τ ′ − ~ωβ)δαβ , (2.39)for the seond time argument9, where I is the identity matrix. The arrows indiate on what side theyoperate, e.g. (
−→
G0(τ))−1 operate on the left side. De�ning ontour time di�erentiation this way gives thefollowing nie property when operating on G0(τ, τ ′)

(
−→
G0(τ))−1G0(τ, τ ′) = G0(τ, τ ′)(

←−
G0(τ ′))−1 = δ(τ − τ ′)I, (2.40)where δ(τ − τ ′) is the ontour delta funtion. The real time properties of this funtion an be determinedby performing atual real time di�erentiations on the free Green's funtions of the system, whih areknown, and we obtain

(δ(τ − τ ′))≷ = 0, (δ(τ − τ ′))r = δ(t− t′), (2.41)8We do not obtain a ordinary di�erential equation, but rather a integro-di�erential equation ontaining memory integrals.One time integral in the Dyson equation is exhanged for a time derivative.9Note that the notation H0(τ) is not meant to signify any time-dependene in H0, but is merely meant as a notationaldevie to indiate that one should take the H0 energy orresponding to the �rst or seond time argument. Also note thateqs. (2.38) and (2.39) assumes H0 to be written in diagonal form.18



Non-equilibrium Green's Funtions Equations of motionfor the greater/lesser and retarded parts, respetively. For notational and interpretive purposes we intro-due the singular self-energy in the following way
Σ

s(τ) = U(τ) + (single time parts of Σ). (2.42)It is alled singular as it an formally be multiplied by a delta funtion, Σ
s(τ1)δ(τ1 − τ2), and put underthe double integral along with the two-time self-energy and hene would appear as a singular ontributionto this. A well known single-time self-energy is the Hartree-Fok self-energy arising from eletron-eletroninteration, whih ats as a instantaneous renormalization to the single-partile energies and externalpotential.To get the equation of motion in the �rst time argument, τ , the Dyson equation in the form of eq. (2.23)is used

G(τ, τ ′) = G0(τ, τ ′) +

∫

C

dτ1G
0(τ, τ1)Σ

s(τ1)G(τ1, τ
′) +

∫

C

dτ2dτ1G
0(τ, τ2)Σ(τ2, τ1)G(τ1, τ

′),whih we now let (
−→
G0(τ))−1, eq. (2.38), operate on and on applying eq. (2.40) we obtain

(
−→
G0(τ))−1G(τ, τ ′) = δ(τ − τ ′)I + Σ

s(τ)G(τ, τ ′) +

∫

C

dτ1Σ(τ, τ1)G(τ1, τ
′). (2.43)This is the di�erential form of the Dyson equation. To get the equation of motion in seond time argument,

τ ′, we reiterate the Dyson equation to the following form, where G and G0 has swithed plaes under theintegrals,
G(τ, τ ′) = G0(τ, τ ′) +

∫

C

dτ1G(τ, τ1)Σ
s(τ1)G

0(τ1, τ
′) +

∫

C

dτ2dτ1G(τ, τ2)Σ(τ2, τ1)G
0(τ1, τ

′).Operating with (
←−
G0(τ ′))−1, eq. (2.39), on this Dyson equation yields the equation of motion in τ ′

G(τ, τ ′)(
←−
G0(τ ′))−1 = δ(τ − τ ′)I + G(τ, τ ′)Σs(τ ′) +

∫

C

dτ1G(τ, τ1)Σ(τ1, τ
′). (2.44)Having determined the equations of motion for the ontour ordered Green's funtion, the Langreth rulespresented in setion 2.3 an be used to aquire real time equations, and with the appropriate initial on-ditions the relevant Green's funtions an be alulated in the (t, t′)-plane. However, in order to omparewith experimental results or apply ertain approximation shemes (or both), it is often advantageous totransform to another set of time variables, instead of the original ones. For this purpose it is ustomaryto form the sum and di�erene of the two governing equations, eqs. (2.43) and (2.44), resulting in thefollowing equations

i~(∂τ ∓ ∂τ ′)G(τ, τ ′)− [H0(τ)G(τ, τ ′)±G(τ, τ ′)H0(τ
′)] = (1± 1)δ(τ − τ ′)I

+ Σ
s(τ)G(τ, τ ′) ±G(τ, τ ′)Σs(τ ′) +

∫

C

dτ1 [Σ(τ, τ1)G(τ1, τ
′)±G(τ, τ1)Σ(τ1, τ

′)] .Using the Langreth rules, eqs. (2.35) and (2.41), we obtain two equations of motion for the greater/lesserGreen's funtion
i~(∂t ∓ ∂t′)G

≷(t, t′) = [H0(t) + Σ
s(t)] G≷(t, t′)±G≷(t, t′) [H0(t

′) + Σ
s(t′)]

+

∫ ∞

−∞
dt1

[

Σ
r(t, t1)G

≷(t1, t
′) + Σ

≷(t, t1)G
a(t1, t

′)±Gr(t, t1)Σ
≷(t1, t

′)±G≷(t, t1)Σ
a(t1, t

′)
]

,(2.45)and likewise, using eqs. (2.36) and (2.41), equations for the retarded Green's funtion an be pro-dued
i~(∂t ∓ ∂t′)G

r(t, t′) = (1± 1)δ(t− t′)I + [H0(t) + Σ
s(t)] Gr(t, t′)±Gr(t, t′) [H0(t

′) + Σ
s(t′)]

+

∫ ∞

−∞
dt1 [Σr(t, t1)G

r(t1, t
′)±Gr(t, t1)Σ

r(t1, t
′)] . (2.46)19



Equations of motion Non-equilibrium Green's FuntionsThe new set of time variables most pratial for our purposes are given by the transformations
t̃ = t, τ = t− t′ ⇒ ∂t = ∂t̃ + ∂τ , ∂t′ = −∂τ , (2.47)where the di�erene or delay time10 τ measures the distane from the time diagonal, and for the ase

τ = 0 the absolute time t̃ sets the position on the time diagonal. Due to the many-body interations, theGreen's funtions are expeted to deay when moving away from the time diagonal, making this spei�set of time variables natural to employ.The equation of motion for the greater/lesser Green's funtion with respet to t̃ is found by taking thedi�erene part of eq. (2.45) and applying the transformation eq. (2.47)
i~∂tG

≷(t, t− τ) = [H0(t) + Σ
s(t)] G≷(t, t− τ) −G≷(t, t− τ) [H0(t− τ) + Σ

s(t− τ)]

+

∫ ∞

−∞
dt1

[

Σ
r(t, t1)G

≷(t1, t− τ) + Σ
≷(t, t1)G

a(t1, t− τ)−Gr(t, t1)Σ
≷(t1, t− τ)−G≷(t, t1)Σ

a(t1, t− τ)
]

,(2.48)where we have relabeled t̃ → t to lighten the notation. The new set of times (t, τ) de�ned in eq. (2.47)appear in eq. (2.48) merely as plaeholders for the old set (t, t′) and no true mathematial transformationhas been applied. Whether the full transformation should be performed, also inluding the time integral,depends on what further approximations that are to be made and the numerial solution sheme. Formore on transformation of the time integral see e.g. [29, p. 357℄. For ertain approximation shemes itadvantageous to replae all retarded and advaned quantities with their greater and lesser ounterparts,this is done using eqs. (2.24), (2.24d), and (2.30), resulting in
i~∂tG

≷(t, t− τ) = [H0(t) + Σ
s(t)] G≷(t, t− τ) −G≷(t, t− τ) [H0(t− τ) + Σ

s(t− τ)]

+

∫ t

−∞
dt1

[{
Σ

>(t, t1)−Σ
<(t, t1)

}
G≷(t1, t− τ)−

{
G>(t, t1)−G<(t, t1)

}
Σ

≷(t1, t− τ)
]

−
∫ t−τ

−∞
dt1

[

Σ
≷(t, t1)

{
G>(t1, t− τ)−G<(t1, t− τ)

}
−G≷(t, t1)

{
Σ

>(t1, t− τ)−Σ
<(t1, t− τ)

}]

,(2.49)where the step funtion in the de�nition of the retarded and advaned funtions, have been used on theupper limit in the time integrals. With referene to the disussion below eq. (2.47) these equation take areof the propagation along the time diagonal for the greater/lesser Green's funtion. A partiular importantspeial ase of eqs. (2.48) and (2.49) is the equal-time limit, τ = 0, as the equal-time lesser Green's funtionis proportional to the single-partile density matrix, see setion 2.1. Taking this limit in eq. (2.49) for thelesser Green's funtion we obtain the following very important equation
i~∂tG

<(t, t) = [H0(t) + Σ
s(t)] G<(t, t)−G<(t, t) [H0(t) + Σ

s(t)]

+

∫ t

−∞
dt1
[
Σ

>(t, t1)G
<(t1, t)−Σ

<(t, t1)G
>(t1, t)−G>(t, t1)Σ

<(t1, t) + G<(t, t1)Σ
>(t1, t)

]
,(2.50)where several terms under the time integral has aneled ompared to eq. (2.49). Even though we haveput τ = 0 we do not have a losed set of equations for the equal-time lesser11 Green's funtion. Thisis due to the fat that the time integral still goes outside the time diagonal, and hene in general westill need the lesser Green's funtion in the full two-time plane. There exists however an approximationsheme whih to some degree an irumvent this problem, for whih the spei� form of eq. (2.50) (only10This time variable should not be onfused with the ontour time, whih uses the same symbol, and as the relative timeonly is used in onnetion with real time Green's funtions the notation should be unambiguous.11The equal-time greater is related to the equal-time lesser through eq. (2.31), and therefore only the lesser needs to beonsidered.20



Non-equilibrium Green's Funtions Generalized Kadano�-Baym Ansatzgreater and lesser quantities ourring) is partiularly useful. The sheme is known as the GeneralizedKadano�-Baym Ansatz (GKBA) and is treated in more detail in setion 2.5. The equation of motion withrespet to τ is found by simply taking the lesser omponent of eq. (2.44) and applying the transformationeq. (2.47)
i~∂τG≷(t, t− τ) = G≷(t, t− τ) [H0(t− τ) + Σ

s(t− τ)]

+

∫ ∞

−∞
dt1

[

Gr(t, t1)Σ
≷(t1, t− τ) + G≷(t, t1)Σ

a(t1, t− τ)
]

,and further replaing all retarded and advaned funtions with greater and lesser ones we get
i~∂τG≷(t, t− τ) = G≷(t, t− τ) [H0(t− τ) + Σ

s(t− τ)]

+

∫ t

−∞
dt1

[{
G>(t, t1)−G<(t, t1)

}
Σ

≷(t1, t− τ)
]

−
∫ t−τ

−∞
dt1

[

G≷(t, t1)
{
Σ

>(t1, t− τ)−Σ
<(t1, t− τ)

}]

.As for the t equation whih version to use, depends on what approximations shemes that are to beemployed. This equation an be interpreted as propagating the greater/lesser Green's funtion away fromthe time diagonal. Applying essentially the same steps with eq. (2.46), the equations of motion for theretarded Green's funtion an be found. The t equation beomes
i~∂tG

r(t, t− τ) = [H0(t) + Σ
s(t)] Gr(t, t− τ)−Gr(t, t− τ) [H0(t− τ) + Σ

s(t− τ)]

+

∫ ∞

−∞
dt1 [Σr(t, t1)G

r(t1, t− τ) −Gr(t, t1)Σ
r(t1, t− τ)] ,while the τ equation beomes

i~∂τGr(t, t− τ) = δ(τ)I + Gr(t, t− τ) [H0(t− τ) + Σ
s(t− τ)] +

∫ ∞

−∞
dt1G

r(t, t1)Σ
r(t1, t− τ).(2.51)It should be noted that for both the equations of motion for the retarded Green's funtion, the in�niteintegrals an be redued to �nite limits as ∫∞−∞ dt → ∫ t

t−τ
dt. For reasons that will be elaborated insetion 5.4.2 only the equation of motion in t is needed to over the entire two-time plane, assuming thatthe solution is known in a su�iently wide strip around the time diagonal up to some t. It is naturalto obtain the Green's funtions on this strip in equilibrium, where they only depend in the di�erenetime τ , see setion 5.3, and hene only the equations of motion in τ will be needed. Furthermore, dueto the symmetry relations eqs. (2.28) and (2.33) only two of the four Green's funtions are independent,and one is free to hoose these aording to what is most appropriate in the present situation. Previousstudies have employed the lesser/retarded Green's funtions [37, 38℄ and greater/lesser Green's funtions[39℄.The equations derived in this setion will be applied to more spei� situations in hapter 5.2.5. Generalized Kadano�-Baym AnsatzAs mentioned in the previous setion the equation of motion for the equal-time lesser Green's funtion,eq. (2.50), is not a losed equation as the sattering integral requires the values of the Green's funtionbeyond the time diagonal. In many situations the full two-time lesser Green's funtion is not needed, asonly the equal-time lesser Green's funtion is required to determine expetation values, see eq. (2.3). Itwould therefore be nie if some reasonable approximation ould allow us to avoid dealing expliitly with21



Generalized Kadano�-Baym Ansatz Non-equilibrium Green's Funtionsthe full two-time plane. Suh an approximation does fortunately exists and is known as the GeneralizedKadano�-Baym Ansatz (GKBA) [40℄.The basis for obtaining the GKBA is an exat relation obeyed by the greater/lesser Green's funtion,whih is [35℄
G≷(t, t′) = i~

[

Gr(t, t′)G≷(t′, t′)−G≷(t, t)Ga(t, t′)
]

+ θ(t− t′)
∫ t

t′
dt1

∫ t′

−∞
dt2G

r(t, t1)
[

Σ
r(t1, t2)G

≷(t2, t
′) + Σ

≷(t1, t2)G
a(t2, t

′)
]

+ θ(t′ − t)
∫ t′

t

dt1

∫ t

−∞
dt2

[

G≷(t, t2)Σ
a(t2, t1) + Gr(t, t2)Σ

≷(t2, t1)
]

Ga(t1, t
′). (2.52)What should be noted about this relation is that the �rst term on the RHS ontains only equal-timegreater/lesser Green's funtions, multiplied by two-time retarded/advaned Green's funtions. The fulltwo-time greater/lesser Green's funtions only enter in the more ompliated double time integrals onthe seond and third lines. The GKBA onsists of negleting the seond and third lines ontaining thetwo-time greater/lesser Green's funtions, after whih one obtains

G≷(t, t′) = i~
[

Gr(t, t′)G≷(t′, t′)−G≷(t, t)Ga(t, t′)
]

=

{
i~Gr(t, t′)G≷(t′, t′), t > t′

−i~G≷(t, t)Ga(t, t′), t′ > t
(2.53)This now allows one to form a losed set of equations in the equal-time lesser Green's funtion through theuse of the equal-time identity eq. (2.31), that an be written in the following matrix form

G>(t, t) = G<(t, t)− i~−1I, (2.54)All this assumes that the retarded and advaned Green's funtions are somehow known quantities, whihin general they are not. The range of validity of the GKBA is by no means fully understood in a rigoroussense [26, p. 95℄, but it is possible to give a simple naive justi�ation for its use whih we will brie�y do.The exat relation eq. (2.52) an be used to generate an expansion to arbitrarily high order in the self-energy, of the two-time greater/lesser Green's funtion in terms of the equal-time greater/lesser Green'sfuntion. If we then assume that the self-energy ontains some small parameter, it makes sense to trunatethis series at some point, where the GKBA is the lowest order approximation of this expansion. Thus wean expet the GKBA to yield reasonable results in the limit of a weak oupling self-energy, whih hasindeed been veri�ed numerially for a few spei� systems [37, 38℄.Up to now we have assumed that the retarded and advaned Green's funtions appearing in the GKBAwere known, whih of ourse is not true and they represent another issue when applying the GKBA. Inthe GKBA these appear in their full two-time non-equilibrium form, and as suh obey their own two-timeDyson equations. However, if these Dyson equations were to solved there would be no idea in applying theGKBA in the �rst plae, as presumably no omputationally advantage would be obtained. We thereforehave to �nd an appropriate approximation to the spetral Green's funtions, that still yields satisfatoryresults. The simplest hoie is to use the free Green's funtions of the system as these are always knownon the onset. The free Green's funtions do however not ontain any form of deay and will thereforeoften yield inorret or even unphysial results. Another approah that has been applied suessfullyin the literature [41, 42℄ is to employ the equilibrium spetral Green's funtions of the system. Thesewill ontain the renormalized single-partile properties inluding both energy renormalizations and �nitelifetimes, appropriate for the given system. We have followed this path in all uses of the GKBA in thisthesis.If for some reason, either exatly or approximately, we an argue that only the diagonal elements of thespetral Green's funtions are signi�ant, the sums implied in the matrix form of eq. (2.53) redue to a22



Non-equilibrium Green's Funtions Summarysingle term and get the following simpler version of the GKBA
G

≷
αβ(t, t′) = i~

[

Gr
αα(t, t′)G≷

αβ(t′, t′)−G≷
αβ(t, t)Ga

ββ(t, t′)
]

=

{

i~Gr
αα(t, t′)G≷

αβ(t′, t′), t > t′

−i~G≷
αβ(t, t)Ga

ββ(t, t′), t′ > t (2.55)whih will be employed throughout this thesis. For further disussion of the GKBA see e.g. [31, pp.288-291℄ and [32, pp. 44-46℄.2.6. SummaryIn this hapter we have given a brief introdution the non-equilibrium Green's funtion formalism, whihwill be the main theoretial tool in the rest of the thesis. We started out by showing how setting up theHeisenberg equation of motion for an eletroni operator, led to an in�nite hierarhy of oupled equations,yielding a problem that even in priniple is unsolvable. The ourrene of this in�nite set of equationsis often referred to as the many-body hierarhy problem. In order to takle the hierarhy problem, weintrodued the ontour ordered Green's funtion, for whih we formulated an integral equation, knownas the Dyson equation, written in terms of the so-alled self-energy. Obtaining the Dyson equation isa huge ahievement, as it allows one solve parts of the problem to in�nite order. To make the theorymore pratial we further introdued the real time Green's funtions, in terms of whih the �nal governingequations were formulated. In the last setion we brie�y disussed an important approximation shemeknown as the GKBA, whih will be applied throughout the thesis.
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3. Fundamental Hamiltonians3.1. IntrodutionIn this hapter we will deal with the formulation of the general form of the Hamiltonian operator enteringthe Shrödinger equation, eq. (2.1). The motivation is to gain an understanding of the origin, and ageneral overview of the many di�erent Hamiltonians that appear in many-body physis. This is importantin order to know the range of validity of the various Hamiltonians, but also to be sure that one deals witha onsistent set operators. Even though we will attempt to make the exposition as general as possible, weshould emphasize that the theory is developed for a solid-state system, more spei�ally a semiondutorheterostruture, whih will sometimes be (impliitly) assumed.3.2. HamiltoniansIn this setion we derive the Hamiltonian for the system desribed in hapter 1. We start by writingdown the general Hamiltonian for a system of harged partiles interating with a lassial and quantizedeletromagneti �eld1. Using the Coulomb gauge, ∇ · A(r, t) = 0 and in the Shrödinger piture theHamiltonian reads
H({ri}) =

∑

i

1

2mi
(pi − qiA(ri, t))

2
+
∑

i<j

qiqj
4πε

1

|ri − rj |
+

1

2

∫

dr

(

ε|ET(r)|2 +
1

µ0
|B(r)|2

)

. (3.1)The indexes i and j run over all valene eletrons and ions of the system, pi = −i~∇i is the momentumoperator, qi is the harge, and mi is the mass of the partiles. For notational simpliity we assume that the
i and j indexes also ontain a spin index. The �rst term in eq. (3.1) desribes the kineti energy of the par-tiles and the interation with the vetor potential A(r, t). We will be onsidering interations with bothlassial and quantized eletromagneti �elds, the vetor potential must be a sum of these and it is there-fore written as A(r, t) = Acl(r, t) + Aqm(r). In the Coulomb gauge the transverse eletri and magneti�elds are obtained from the vetor potential through the following relations

B(r, t) = ∇×A(r, t), (3.2)
ET(r, t) = −∂tA(r, t), (3.3)for these relations to hold for the quantized �elds, they must be written in the Heisenberg piturewhere they are time-dependent. The seond term in eq. (3.1) desribes the Coulomb interation be-tween the various harged partiles, whih is mediated by the longitudinal omponent of the eletri �eld,

EL(r) = −∇ϕ(r), where ϕ(r) is the salar potential. Note that the vauum permittivity, ε0, has beenreplaed by a bakground dieletri onstant, ε = εrε0, where εr is the relative dieletri onstant. Thebakground dieletri onstant ontains non-resonant ontributions to sreening [31, p. 44℄ and it has toreplae ε0 everywhere as it is originates from the Maxwell equations. The last term in eq. (3.1) desribesthe energy of the quantized transverse eletromagneti �elds, the energy of the lassial �eld is negleted[44℄.The two �rst terms in eq. (3.1) are by far the most di�ult and a few approximations and rearrangementsare needed in order to proeed. Due to the large mass of the ions, ompared to the eletrons, and the1See for example se. 2.2 in [31℄, se. 1.5 in [24℄, or se. 4.8 in [43℄.24



Fundamental Hamiltonians Hamiltoniansrelatively weak eletromagneti �elds we are onsidering, the response of the ions to the �elds will be muhsmaller than that of the eletrons. This means that we an neglet the interation between the ions andthe photons, hene the �rst term beomes
∑

i

1

2mi
(pi − qiA(ri, t))

2 ≈
∑

electrons
i

1

2m
(pi + eA(ri, t))

2
+
∑

ions
j

p2
j

2mj
, qelectron = −e, (3.4)whih is a sum of the eletrons kineti energy and interation with the �elds and the kineti energy ofthe ions. Another simpli�ation beomes apparent if we expand the squared parentheses for the ele-trons

∑

electrons
i

1

2m
(pi + eA(ri, t))

2
=

∑

electrons
i

1

2m

[
p2

i + e [pi ·A(ri, t) + A(ri, t) · pi] + e2A2(ri, t)
]

≈
∑

electrons
i

[
p2

i

2m
+

e

m
A(ri, t) · pi

]

, (3.5)where in the seond line we have negleted the A2 term as it is assumed small2 [44, p. 150℄ and further wehave used the fat that3 [pi,A(ri, t)] = 0 to obtain the well knownA·p interation.The Coulomb interation, seond term in eq. (3.1), between the harged partiles, produes three qualita-tively di�erent interations even though fundamentally they are all of a Coulombi nature. The three di�er-ent ombinations of the indexes i and j have been written out below for illustration
∑

i<j

qiqj
4πε

1

|ri − rj |
=

1

2

∑

i6=j

e2

4πε

1

|ri − rj |
︸ ︷︷ ︸

{i,j}={e,e}

+
1

2

∑

i6=j

qiqj
4πε

1

|Ri −Rj |
︸ ︷︷ ︸

{i,j}={ion,ion}

+
∑

ij

(−e)qj
4πε

1

|ri −Rj |
︸ ︷︷ ︸

{i,j}={e,ion}

. (3.6)The �rst term is the usual eletron-eletron interation, whih will be kept in its present form. The seondterm is the interation between the positively harged ions. As mentioned above, the ions are muh heavierthan the eletrons and thus move muh slower. This means that a full dynamial analysis is not neessaryand further approximations will be performed on this term, disussed further in setion 3.2.1. The thirdterm involves the interation between the eletrons and ions. This term an be simpli�ed onsiderably by�rst writing the ioni position vetor as
Rj = R

(0)
j + uj , (3.7)where R

(0)
j is the equilibrium position of the ions, the stati lattie, and uj is the displaement fromequilibrium. The approximation then onsists of Taylor expanding the eletron-ion interation to �rstorder in uj , whih results in

∑

ij

(−e)qj
4πε

1

|ri −Rj |
≈
∑

ij

(−e)qj
4πε

(

1

|ri −R
(0)
j |
− uj ·∇ri

[

1

|ri −R
(0)
j |

])

, (3.8)notie that there is no fator 1/2 in front of the sum, as there is no double ounting for the di�erentpartiles. The zeroth order part of this expansion is the well known interation between eletrons anda stati lattie, whih for a single rystal resulting in Bloh states for the eletrons. The �rst orderterm is what beomes the eletron-phonon interation after the �eld quantization has been performed, seesetion 3.2.2.2In the ontext of single-photon soures the negletion the A2 term is well justi�ed both for the quantized and lassialase. For the quantized ase the magnitude of A is obviously small as the goal is to produe a single photon. For thelassial ontribution, here the exitation pulse, we are in the extremely low exitation limit as ultimately we are onlyinterested in the exitation of a single eletron.3The ommutator between p and A is [p, A] = −i~∇ · A, whih is zero in the Coulomb gauge. See p. 311 in [45℄. 25



Hamiltonians Fundamental HamiltoniansThis onludes the initial disussion of the Hamiltonian of the total system. In the following setions wewill onsider non-interating and interating parts of the Hamiltonian separately and perform the �eldquantization proedure, seond quantization for the partiles and atual �eld quantization for the ionidisplaement �eld. The radiation �eld is already quantized. The �eld quantization proedure is disussedin detail in many textbooks, e.g. [24, 28, 31℄.3.2.1. Non-interating partsIn this setion we will onsider the non-interating parts from the disussion of the Hamiltonian, eq. (3.1), inthe previous setion. It is important to speify what preisely is meant by a non-interating Hamiltonian, asthis forms the basis for the many-body perturbation theories we will apply, see hapter 2. A non-interatingHamiltonian has no terms with produts of more than two operators (often referred to as quadratiHamiltonians and denoted H0) and must be time-independent in the Shrödinger piture. Below we willgo through the quadrati ontributions from the three �elds we are onsidering, namely the eletroni,photoni, and phononi �elds.EletronsThe non-interating ontributions from the eletrons are the kineti energy, �rst term in eq. (3.5), and theinteration with the stati lattie, �rst term in eq. (3.8)
H0,e({ri}) =

∑

i

p2
i

2m
+
∑

ij

(−e)qj
4πε

1

|ri −R
(0)
j |

=
∑

i

H0,e(ri).The transition to the seond quantization representation of the eletroni �eld is done using the standardformulae
H0,e =

∫

drψ†(r)H0,e(r)ψ(r),where ψ(r) =
∑

ν 〈r|ν〉 cν is a �eld annihilation operator, written in a single-partile basis {|ν〉} whihonsists of spatial part |α〉 and a spin part |σ〉, |ν〉 = |α〉 ⊗ |σ〉. The real spae/spin representation of |ν〉is given by 〈r|ν〉 = φα(r)χσ, where φα(r) is the wave funtion of the eletron in the spatial state α and
χσ is a spin funtion. If we hoose the eigenstates of H0,e as the single-partile basis {|ν〉}, we obtain asimple diagonal form of the quadrati ontribution from the eletrons

H0,e =
∑

ν

~ωνc
†
νcν . (3.9)If the sum over the stati ions runs over a single rystal, then the states |ν〉 would beome Bloh statesproduing the usual band struture energy diagrams. This is however not the ase for the nanostrutureswe are onsidering. We use band gap bending to reate the on�ning potentials for the eletrons and holes,that make up the QD, and hene we do not have a single rystal and thus no pure Bloh states. Due to thelarge di�erene in length sales of the QDs and the lattie unit ells, it is fortunately possible to formulatean e�etive theory simplifying the alulation of the eigenstates of H0,e immensely. We will employ this ef-fetive mass approah in later hapters, when spei� strutures are onsidered.PhotonsThe quadrati ontributions from the photons originate solely from the last term in eq. (3.1), the totalenergy of the transverse eletromagneti, or simply radiation, �eld

H0,rad =
1

2

∫

dr

(

ε|ET(r)|2 +
1

µ0
|B(r)|2

)

. (3.10)26



Fundamental Hamiltonians HamiltoniansThere exist several ways to quantize the radiation �eld, depending on what level of sophistiation onemay wish, all resulting in the same result. We will not go further into the quantization proedure, asthis is standard textbook material, but simply proeed with the following4 form of the transverse eletri�eld
ET(r) =

∑

m

Em(a†m + am)um(r). (3.11)In the above the mode funtions satisfy the orthonormality relation ∫ drum(r) · um′(r) = δm,m′ and
Em = (~ωm

2ε )1/2, where ωm is the frequeny of mode m. This hoie of normalization means that thequantization volume, V , is ontained in the mode funtions and further these are real quantities found bysolving the lassial wave equation for the transverse eletri �eld. The magneti �eld an be obtained byombining eqs. (3.2) and (3.3) to −∂tB(r, t) = ∇×ET(r, t). Inserting the quantized radiation �eld intoeq. (3.10) and performing the integral we get the following result
H0,rad =

∑

m

~ωm

(

a†mam +
1

2

)

, (3.12)where the omposite quantum number m ontains the spatial, κ, and polarization, λ, quantum num-bers.PhononsThe non-interating ontributions from the phonons omes from the kineti energy of the ions, seondterm in eq. (3.4), and the ion-ion Coulomb interation, seond term in eq. (3.6),
H0,ph({Rj}) =

∑

j

p2
j

2mj
+

1

2

∑

i6=j

qiqj
4πε

1

|Ri −Rj |
(3.13)This interation is in priniple the same as the eletron-eletron interation and hene should be treatedas a pair interation and not a quadrati term. The ions are however muh heavier than the eletrons andhene reat muh slower to external perturbations and further they are positioned in a periodi lattieonly exhibiting small osillations about their equilibrium positions. On this basis we will assume the usualharmoni approximation for the ions, where the interation term in eq. (3.13) is Taylor expanded to seondorder in the ioni displaement vetor, uj , see eq. (3.7). The oe�ients in this seond order expansion areelements in the so-alled dynamial matrix of the ion system5. The determination of the dynamial matrixis in general a very ompliated task. Values an be obtained for example by �tting models to experimentsor alulated using �rst priniples methods like Density Funtional Theory. The remaining Hamiltonianin the harmoni approximation is then quantized aording to the standard proedure6, resulting in thefollowing Hamiltonian for the phonons

H0,ph =
∑

µ

~ωµ

(

b†µbµ +
1

2

)

. (3.14)The quantum number µ is omposed of the quasi-momentum7, q, of the phonon and branh index, λ, whihruns over the various optial and aousti polarizations (TA, LA, TO, LO). It should be noted that formallythe q = 0 should be left out of the sum, as this term orresponds to a uniform translation of the entirerystal [24℄. By writing the phonon Hamiltonian this way we assume bulk phonons, that is phonons whihlive in a system where the periodiity is given by the stati lattie. Even though present day semiondutor4For a derivation of this spei� form of the quantized transverse eletri �eld see hap. 19 in [45℄.5See e.g. se. 3.4 in [28℄ or se. 11.2.1 in [31℄.6See e.g. se. 1.1 in [24℄.7Restrited to the �rst Brillouin zone. 27



Hamiltonians Fundamental Hamiltoniansnanostrutures are rarely pure bulk system, the system of Stranski-Krastanow grown QDs we are onsid-ering, an to a ertain extent be onsidered as a bulk material from the phonons point of view. The WL isonly a few nanometers thik and the QDs are very small ompared to the rest of the struture, omposedof the barrier material. We will therefore assume that the phonon modes existing in the barrier materialwill pervade the low band gap material justifying the use of bulk phonons.3.2.2. Interating partsIn this setion we will onsider the interation terms in the Hamiltonian eq. (3.1). Interating termsare Hamiltonians ontaining produts of three or more operators, desribing the interations amongstthe various �elds. Interating ontributions are fundamentally di�erent from the non-interating onesdisussed in the previous setion. The reason for this is that the self-energy they give rise to ontainsin�nitely many diagrams and hene has to be trunated and an therefore not be treated exatly. Belowwe will go trough the interations between the various �elds separately.Eletron-eletronThe Coulomb interation between the eletrons is given by the �rst term in eq. (3.6)
He−e({ri}) =

1

2

∑

i6=j

e2

4πε

1

|ri − rj |
=

1

2

∑

i6=j

He−e(ri, rj). (3.15)The seond quantized form of the interation is given by
He−e =

1

2

∫

drdr′ψ†(r)ψ†(r′)He−e(r, r
′)ψ(r′)ψ(r) (3.16)

=
1

2

∑

ν1ν2
ν3ν4

Vν4ν3,ν1ν2c
†
ν4
c†ν3
cν2cν1 , (3.17)where the interation matrix element is given by

Vν4ν3,ν1ν2 = 〈ν4, ν3|He−e|ν1, ν2〉 =
∫

drdr′φ∗α4
(r)φ∗α3

(r′)He−e(r, r
′)φα1 (r)φα2 (r

′)δσ4,σ1δσ3,σ2 , (3.18)the Kroneker deltas in the spin indexes appear as the Coulomb interation is diagonal in spin. Forillustration, a Coulomb sattering event, a single term in eq. (3.17), between two eletrons is presented in�gure 3.1.Eletron-photonThe interation between the eletrons and photons is given by the seond term in eq. (3.5), the so-alled
A · p interation,

∑

i

e

m
A(ri, t) · pi,We will start by applying the eletri dipole approximation, whih is ommonly used in optis. Theapproximation onsists of evaluating the spae dependent radiation �eld, A(r, t), at the position of theeletroni system it is interating with [44℄. This an be justi�ed by onsidering the spatial part of theexponential funtion arising from a Fourier deomposition of A(r, t), exp(k · r). The funtion exp(k · r)an now be Taylor expanded to lowest order as we assume k · r ≪ 1, whih is usually the ase for optial28



Fundamental Hamiltonians Hamiltonians
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Figure 3.1.: Diagrammati illustration of an eletron-eletron Coulomb sattering event, a single term fromeq. (3.17), where two eletrons in the states ν1 and ν2 are sattered to the states ν3 and ν4 with a satteringamplitude of Vν4ν3,ν1ν2 .wave vetors. If we further assume that the eletrons are loated near the origin, all eletron positions anheneforth be evaluated at the origin in the above interation term.Next we will replae the A · p interation with a D · ET form, where D = −er is the eletron dipoleoperator, for pratial reasons8 in onnetion with the numerial solution later on. The transformationbetween the two interations an be performed more or less rigorously. We hoose a simple heuristiapproah, arried out in appendix A.3, more advaned treatments an be found in [31, 43, 46℄. Aordingto this derivation we an write the interation in the following way
−
∑

i

Di ·ET(0, t).The total transverse eletri �eld onsists of a quantized and an externally applied lassial part
ET(0, t) = ET,qm(0) + ET,cl(0, t),the resulting interation Hamiltonians di�er signi�antly and will therefore be treated separately. Thequantized �eld is given by eq. (3.11), so that the �eld quantized form of the interation beomes
He−rad =

∫

drψ†(r)er ·ET,qm(0)ψ(r)

=
∑

νν′m

~gm
νν′c†νcν′(a†m + am), (3.19)where the oupling strength is given by

~gm
νν′ = um(0)Em

∫

drφ∗α(r)er · eum
φα′ (r)δσ,σ′ . (3.20)For an illustration of the emission and absorption proesses originating from the interation eq. (3.19) see�gure 3.2(a) and (b), respetively. The interation between the eletrons and the lassial �eld dependsexpliitly on time, even in the Shrödinger piture, and is therefore very speial in many-body perturbation8Keeping the eletron-photon interation on the A · p form auses no problems for the quantized �eld, but it is doeshowever for the external lassial exitation pulse. The exitation pulse is known in its eletri �eld form, but in the A ·pinteration the orresponding A should be alulated through the relation ET = −∂tA, whih for most �elds should bedone numerially. The is indeed possible and the approah ould be followed in situations where the D · ET interationproblemati, this is however not the ase for our model. Also it is always advisable to work with gauge-independentphysial �elds, rather than the gauge-dependent potentials, see e.g. hapter 7 in [35℄ or the disussion [45, p. 359℄,espeially when doing perturbation theory in the eletromagneti �elds. 29



Hamiltonians Fundamental Hamiltonianstheory. The �eld quantized form of this semi-lassial interation is
U(t) =

∫

drψ†(r)er ·ET,cl(0, t)ψ(r)

=
∑

νν′

dνν′Ecl(t)c
†
νcν′ , (3.21)where the notation for the lassial �eld has been simpli�ed and the projeted dipole matrix element isgiven by

dνν′ =

∫

drφ∗α(r)er · eEcl
φα′(r)δσ,σ′ . (3.22)Note that U(t) has Heisenberg piture notation, but it is not in the Heisenberg piture. For an illustration ofthe eletron sattering provided by this semi-lassial interation see �gure 3.2().(a) (b) ()
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• • •Figure 3.2.: Diagrammati illustrations of eletron-photon sattering events, desribed by terms from eq. (3.19) andeq. (3.21). In (a) and (b) we show the sattering of an eletron from state ν′ to ν through the emission, (a), orabsorption, (b), of an photon in mode m, both with a sattering amplitude of ~gm
νν′ . In () we show the satteringof an eletron from state ν′ to ν through the interation with the lassial �eld, with an amplitude of dνν′Ecl(t).Eletron-phononThe interation between the eletrons and phonons is given by the seond term in eq. (3.8)

He−ph({ri}) =
∑

ij

uj ·∇ri

[

eqj
4πε

1

|ri −R
(0)
j |

]

=
∑

i

He−ph(ri).As disussed in setion 3.2.1 on the non-interating phonons, the ioni displaement vetor uj is quantizedaording the standard proedure9 and the quantized displaement vetor takes the form
uj =

∑

µ

iŨµξµe
iq·R(0)

j (b†µ̄ + bµ),where µ̄ = (−q, λ), Ũµ is an unspei�ed10 expansion oe�ient, and ξµ is a polarization vetor. As notedbelow eq. (3.14) the q = 0 term should should formally be omitted. Using the above, the �eld quantizedexpression is obtained as
He−ph =

∫

drψ†(r)He−ph(r)ψ(r)

=
∑

νν′µ

Mµ
νν′c

†
νcν′(b†µ̄ + bµ), (3.23)9See e.g. se. 1.1 in [24℄.10We are not going to use the expliit form of Ũµ. Instead we adapt an e�etive form of this interation where tabulatedparameters aount for di�erent materials.30



Fundamental Hamiltonians Hamiltonianswhere the oupling strength is given by the expression
Mµ

νν′ = iŨµ

∑

j

eiq·R(0)
j

∫

drφ∗α(r)ξµ ·∇r

[

eqj
4πε

1

|r −R
(0)
j |

]

φα′(r)δσ,σ′ .As the eletron-phonon and eletron-photon interation are formally idential the emission and absorptionproesses illustrated in �gure 3.2(a) and (b) also apply for phonons, with the appropriate replaement ofsymbols.3.2.3. Generi semiondutor HamiltonianThe full Hamiltonian an be written as three parts that are qualitatively di�erent
H = H0 +Hi + U(t). (3.24)The non-interating (quadrati) part, H0, has three ontribution, one from eah of the quantized �elds weare onsidering
H0 = H0,e +H0,rad +H0,ph,where the expliit forms are given by
H0,e =

∑

ν

~ωνc
†
νcν ,

H0,rad =
∑

m

~ωm

(

a†mam +
1

2

)

,

H0,ph =
∑

µ

~ωµ

(

b†µbµ +
1

2

)

,see eqs. (3.9), (3.12), and (3.14) respetively. The non-interating system onstitutes the basis upon whihwe perform perturbation theory. The interating part, Hi, ontains the Hamiltonians having three or fourbasi operators, namely
Hi = He−e +He−rad +He−ph,where the expliit forms are given by
He−e =

1

2

∑

ν1ν2
ν3ν4

Vν4ν3,ν1ν2c
†
ν4
c†ν3
cν2cν1 ,

He−rad =
∑

νν′m

~gm
νν′c†νcν′(a†m + am),

He−ph =
∑

νν′µ

Mµ
νν′c

†
νcν′(b†µ̄ + bµ),see eqs. (3.17), (3.19), and (3.23) respetively. These are the ontributions to the Hamiltonian givingrise to in�nitely many terms in their respetive self-energies. The last part of the Hamiltonian is theinteration between the eletrons and the externally applied eletri �eld,

U(t) =
∑

νν′

dνν′Ecl(t)c
†
νcν′ ,given by eq. (3.21). The term is singled out as it has an expliit time-dependene, unlike the other terms11,making it very speial in many-body perturbation theory.11We remind the reader that we are urrently operating in the Shrödinger piture. 31



Summary Fundamental HamiltoniansThe full Hamiltonian eq. (3.24) is illustrated in �gure 3.3, with eah subsystem represented by an oval andwith arrows indiating the various interations between the subsystems. The �gure emphasizes the entralrole eletrons play in semiondutor dynamis as this partile speie interat with all other onstituents.phonons photons
eletrons

external �eld
H0,e

H0,radH0,ph

He−e

He−radHe−ph

U(t)

Figure 3.3.: Shemati illustration of the Hamiltonian eq. (3.24), indiating the individual subsystems and theirrespetive interations.3.3. SummaryIn this hapter we have attempted to give an overview of the many di�erent Hamiltonian operators enteringmany-body physis. We started from a very basi form of the full Hamiltonian of a solid-state system,and gradually performed standard approximations to ome loser to a form, that would be appliable inpratial alulations. For eah ontribution, both non-interating and interating, to the full Hamiltonian,the general seond quantized version was presented in a form that is ready for the appliation of the Green'sfuntion formalism, derived in the previous hapter.
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4. Single-Partile States and Matrix Elements4.1. IntrodutionAs was made apparent in the previous hapters, one needs to know the matrix elements of a numberof operators in order to be able to evaluate a many-body theory, where the basi building bloks foralulating these matrix elements, are the free single-partile states of the involved speies. Our fous ison many-body simulations and as the name indiates, one often has to evaluate a very large number ofmatrix elements. This an be a quite formidable task in itself, even when the single-partile states areknown, espeially for two-partile interations suh as the Coulomb interation, where a 6D integral has tobe evaluated. This alls for a fast and e�ient method of evaluating the great number of matrix elements,whih we will develop in the oming setions. However, a �rst requirement for being able to perform thealulation of the matrix elements is to have a suitable set of single-partile states. As our fous is onmany-body e�ets, we will hoose a simple desription of our eletroni single-partile states, and negletsubtleties introdued by more elaborate methods suh as k · p, tight-binding, Density Funtional Theoryor other advaned methods.The outline of this hapter is as follows: In the �rst setion, setion 4.2, we desribe the model andmethod used to obtain the eletroni single-partile states, where a simple e�etive mass model is applied.In setion 4.3 we desribe two methods for evaluating the omputationally demanding Coulomb matrixelements, one e�ient approximate formulation and a more aurate, but signi�antly slower method. Inthe last setion, setion 4.4, we desribe how to alulate the matrix elements entering the light-matterinteration in the dipole approximation.4.2. Eletroni single-partile states and energiesIn this setion we will brie�y disuss the model of, and the method used to alulate, the eletronisingle-partile states and energies introdued in setion 3.2.1. The approah is very basi and pro-vides the simplest way of onsistently inluding both bound states in the QD and unbound states inthe WL.4.2.1. Self-assembled quantum dotsAs mentioned in hapter 1 we are interested in self-assembled semiondutor quantum dots grown usingthe Stranski-Krastanow tehnique [6℄. These form as small islands on top of a WL, as seen in �gure 1.1(a),where the entire WL and QD is embedded in a barrier material. For simpliity we model the QD as arotationally symmetri trunated one, whih roughly agrees with what is found experimentally [47, 48℄,sitting on an in priniple in�nite WL. A few sanning tunneling mirosope images of self-assembledquantum dots are shown in �gure 4.1, illustrating the rough resemblane with a trunated one. This setupis shown shematially in �gure 4.2 where ylindrial oordinates have been used to exploit the rotationalsymmetry, furthermore various geometrial parameters are indiated. 33
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Figure 4.1.: Sanning tunneling mirosope image of a few self-assembled quantum dots [49℄.
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Figure 4.2.: Shemati of the e�etive 2D omputational domain used for solving the e�etive mass Shrödingerequation, eq. (4.4). The �gure shows the high (II) and low (I) bandgap materials, reating the eletroni on�nement,along with the relevant lengths entering the model.4.2.2. E�etive mass Shrödinger equationFor the theoretial desription of the eletroni states, we will assume the validity of a two-band semion-dutor model with a single valene and ondution band, as is often done in the literature [50�52℄. Forthe wavefuntions the envelope funtion approximation will be employed, in whih the full wavefuntionis written as [53, pp. 488-490℄
φ(r) = u(r)F (r), (4.1)where u(r) is the lattie periodi Bloh funtion and F (r) is the envelope funtion. The Bloh funtiondoes not need to be determined expliitly, while the envelope funtion is found from a one-band e�etivemass Shrödinger equation
(

−~
2

2
∇ ·

[
1

m∗(r)
∇

]

+ V (r)

)

F (r) = EF (r). (4.2)34



Single-Partile States and Matrix Elements Eletroni single-partile states and energiesHere V (r) is the on�ning potential, reated by bandbending e�ets through the embedding of the lowbandgap material (I) in the high bandgap material (II), see �gure 4.2, and m∗(r) is the position dependente�etive mass. The envelope funtion F (r) is subjet to the onditions that
F (r) and

1

m∗(r)
n ·∇F (r) (4.3)must be ontinuous and di�erentiable at every point and further that F (r) must be �nite. Here n is anarbitrary unit vetor. These onditions arise from the fat that the partile number must be onserved[54, p. 74℄. Due to the rotational symmetry, the Hamiltonian ommutes with the generator for rotationsabout the z-axis, the z-omponent of the angular momentum operator Lz (not to be onfused with thelength Lz in �gure 4.2). This has the onsequene that the z-omponent of the angular momentum is aonserved quantity, and therefore the envelope an be written as a produt of the eigenfuntion for Lz,de�ned as LzΦm(ϕ) = ~mΦm(ϕ), and a part independent of ϕ

F (r) = Φm(ϕ)f(ρ, z) =
1√
2π
eimϕf(ρ, z),where eq. (4.3) ditates that m must be an integer, see e.g. [45, se. 7.3℄. Inserting this into eq. (4.2) weobtain the following eigenvalue equation for f(ρ, z)

(

−~
2

2ρ
∂ρ

[ ρ

m∗
∂ρ

]

− ~
2

2
∂z

[
1

m∗
∂z

]

+
~

2m2

2m∗ρ2
+ V (ρ, z)

)

f(ρ, z) = Ef(ρ, z), (4.4)where m∗ = m∗(ρ, z) and we immediately see that E is degenerate in m following from the rotationalsymmetry. Eq. (4.4) must also be supplied with a set of boundary onditions for the new funtion f(ρ, z),whih an be derived from eq. (4.3). On the internal boundaries between the domains I and II f(ρ, z) mustsatisfy eq. (4.3) diretly, while on the external boundaries and on the z-axis we must be a bit more areful.Due to the third term in eq. (4.4) one must distinguish between ases of m equal to zero or di�erent fromzero. For m 6= 0 the third term diverges as ρ → 0, therefore f(ρ, z) must go to zero on the z-axis. For
m = 0 the third term does not ause any problems, but now the derivative ∂ρf(ρ, z) must be zero onthe z-axis, otherwise f(ρ, z) would get a non-di�erentiable kink. Mathematially these onditions an bewritten

f(ρ = 0, z) = 0, m 6= 0, (4.5a)
∂ρf(ρ = 0, z) = 0, m = 0. (4.5b)The boundaries at z = ±Lz/2 and ρ = R0 are arti�ial boundaries introdued to be able to solvethe equation numerially, and therefore the solutions must ideally be independent of the position of theboundaries. For the boundaries at z = ±Lz/2 there is no pratial problem. This is the ase as weare only interested in states bound in the QD or in the WL and hene we expet the states to deayexponentially as we move in the z-diretion from material I into material II. For this reason Lz shouldsimply be hosen large enough that f(ρ, z = ±Lz) has approahed zero. For the boundary at ρ = R0 theproblem is more subtle. We are interested in desribing the deloalized states in the WL whih we knowform an energy ontinuum. The energy ontinuum arises from the unbounded nature of the WL and isan essential feature to maintain in the theoretial desription. The e�et of introduing a zero boundaryondition at ρ = R0, is that the WL energy ontinuum beomes disreetly sampled, in the way that thelarge R0 the �ner the sampling. One an then systematially inrease R0 until the physial result one isonsidering no longer depends on this arti�ial boundary. We state these onditions mathematially as
f(ρ 6= 0, z = ±Lz/2) = 0, (4.6a)
f(ρ = R0, z) = 0. (4.6b)The position dependent e�etive mass and on�nement potential are onstants within eah domain (I andII) and jump whenever an internal boundary is rossed, hene
m∗(ρ, z) =

{
mI, (ρ, z) ∈ I
mII, (ρ, z) ∈ II, 35



Eletroni single-partile states and energies Single-Partile States and Matrix Elementsand
V (ρ, z) =

{
∆EI, (ρ, z) ∈ I
∆EII, (ρ, z) ∈ II.A shemati illustration of the energy landsape experiened by the eletrons is shown �gure 4.3.Energy
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IIFigure 4.3.: Shemati illustration of the energy landsape in the QD/WL system. In the potential well the hori-zontal lines indiate bound QD states, while the grey boxes indiate the WL energy ontinuum.The mathematial model for obtaining the eletroni states is now fully spei�ed and eq. (4.4) is ready tobe solved for eletrons in the ondution band and holes in the valene band. For the numerial valuesof the various band parameters, and a small disussion of these, we refer to appendix A.8. The fullidenti�ation of a state needs three indexes (when negleting spin whih is not important here), a bandindex (b), the z angular momentum (m), and a �nal index ounting the states within eah m subspae
(N). An envelope state an now be written as

F b
m,N (r) = Φm(ϕ)f b

|m|,N(ρ, z), (4.7)whih, when properly normalized and ombined with its respetive Bloh funtion (eq. (4.1)), satis�es theorthonormality ondition
〈ubF b

m,N |ub′F b′

m′,N ′〉 = δm,m′δN,N ′δb,b′ .Usually all spatial quantum numbers will be olleted into a single one, normally denoted α, to lighten thenotation. Then the orthonormality ondition e.g. an be written ompatly as: 〈α|α′〉 = δα,α′ .For most geometries it is not possible to solve eq. (4.4) analytially, therefore we have to resort to numerialmethods. In our simulations we used the �nite element pakage COMSOL1, whih provides an easyimplementation and relatively stable and aurate solutions [52℄.4.2.3. Numerial examplesFor illustration of the solutions of eq. (4.4) we will in this setion present a set of solutions for a typialsystem. The geometrial parameters of the QD and WL system were hosen to yield a representative1For more information: http://www.omsol.om/36



Single-Partile States and Matrix Elements Eletroni single-partile states and energiesQuantity Value Unit
h 1.25 nm
d 1.25 nm
r1 20 nm
r2 10 nm
R0 300 nm
Lz 60 nmTable 4.1.: Numerial values of the geometrial parameters used in setion 4.2.3, see �gure 4.2.seletion of states that one would typially enounter, these parameters are given in table 4.1. The bandparameters for the InGaAs system we employ for our heterostruture are disussed and presented inappendix A.8.We start out by providing an overview of the energy eigenstates obtained by solving eq. (4.4) in termsof the energy density of states (DOS), the DOS for the ondution band is shown in �gure 4.4(a) andfor the valene band in �gure 4.4(b). An alternative overview, slightly more informative, is given in�gure 4.5 showing the energy levels as a funtion of the angular momentum m. We have de�ned the DOS2as

d(E) =
∑

α

δ(E − Eα),but for pratial numerial reasons we use a broadened delta funtion in the form of a Lorentzian with awidth w, so that for the �gures the DOS is
d(E) =

∑

α

Lw(E − Eα), Lw(x) =
w

π

1

x2 + w2
. (4.8)The values of the DOS will depend on w and should therefore only be onsidered as an illustration. Byomparing �gures (4.4) and (4.5) for the ondution and valene band, we notie that the overall levelstruture is very muh alike, whih is a onsequene of our hoie of band parameters, see A.8. Theenvelope funtions are therefore also very similar for the two bands and for that reason we will fouson the ondution band states. In the DOS for the ondution band states, the peaks below the onsetof the WL ontinuum orrespond to states bound mainly to the QD, while the states in the ontin-uum are a mixture of so-alled quasi-bound states and WL states. We will elaborate on these di�erenttypes of states below. Heneforth the notation (b,m,N) will be employed when referring to f b

|m|,N(ρ, z).We start by onsidering the bound states. The �rst peak re�ets the non-degenerate state (c, 0, 1), this statehas zero angular momentum and an therefore be found very lose to the z-axis, as seen in �gure 4.6(a). Asthis state has the lowest energy, it is also the one most strongly bound to the QD. The seond peak is thedegenerate pair of states (c,±1, 1), where the degeneray gives twie the DOS of the �rst peak. Having anangular momentum of ±1, the eletron is fored a bit further away from the z-axis than the state (c, 0, 1)and therefore less loalized in the QD, see �gure 4.6(). The third peak stems from the degenerate pairof states (c,±2, 1), where the one unit higher angular momentum fores the eletrons further out of theQD, see �gure 4.6(d). The fourth peak has zero angular momentum, seen from its max value, and is thenon-degenerate state (c, 0, 2). This state is still loated mainly in the QD, but has aquired a node in theradial diretion to stay orthogonal to the states spatial near it, see �gure 4.6(b). The �fth peak is thedegenerate (c,±3, 1) pair of states, whih has an envelope similar to states (c,±1, 1) and (c,±2, 1), but ispushed even further out of the QD due to its higher angular momentum, see �gure 4.6(e). The last visiblepeak originates from the degenerate (c,±1, 2) pair and is similar in nature to the state (c, 0, 2), whih alsohas a node in the radial diretion, see �gure 4.6(f).2The degeneray in the spin quantum number is not taken into aount here. To inlude it, one should simply multiply bya fator of 2. 37
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(b) DOS for the valene band.Figure 4.4.: Figures illustrating the energy density of states, eq. (4.8), for (left) the eletrons in the ondutionband and (right) the eletrons in the valene band. The DOS plots are on the same energy sale, with the zero pointplaed in the middle of the gap for material I, see �gure 4.3. For illustrative reasons a di�erent width was usedfor the disrete and ontinuous part of the spetrum, wdiscreete = 0.05 meV and wcontinuous = 0.8 meV, the largerwidth of the ontinuum part re�ets the sampling in energy that is needed in the numerial simulation. This trikis needed in order to reprodue the well-known step-like DOS of 2D strutures, otherwise the 2D plateau would bevery spiky and not �at.
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(b) Energies for the valene band.Figure 4.5.: Representation of the energies obtained from solving eq. (4.4). To the left is the ondution band with
m on the horizontal axis and N ounting up upwards in energy, while to the right the valene band is shown with
N ounting up downwards in energy. The olor oding of the dots is arbitrary.38



Single-Partile States and Matrix Elements Eletroni single-partile states and energiesTo be able to disuss the quasi-bound states e�etively it is helpful to have been through the WL states�rst, as the quasi-bound states are intermediates between the strongly loalized and deloalized states.We will refer to a state as being a WL state when it is basially una�eted by the presene of the QDpotential3. It is of ourse true that all states in the ontinuum are a�eted by the QD potential, but inpratie it turns out that many of these are una�eted (within our numerial auray) and therefore itsafe to regard them as pure WL states. This fat beomes very visible when expanding a WL state on theeigenstates of a pure WL (or quantum well) system as is done in setion 4.3.3. Three examples are shown�gures 4.7(b), 4.7(), and 4.7(d), where it is learly seen that none of these envelopes are spatially near theQD, and hene they need not hange in order to be orthogonal to the bound QD states. One also notiesthat the number of nodes in the radial diretion is orrelated with N , and is equal to N − 1. These threestates are all part of the energy ontinuum that has its onset at around 737 meV, and displays the familiarstep shape known from 2D systems, whih is what the WL e�etively is. The tail that extends from theontinuum part of the DOS is due to the �nite width of our Lorentzian, eq. (4.8), and therefore arti�ial,the transition should be sharp as we have no broadening mehanisms yet.Having disussed both the bound and unbound states, we move on to an intermediate between these two,namely what we will refer to as quasi-bound states. These are states whih are not learly bound to theQD and yet not learly part of the WL ontinuum of deloalized states either. An example is shown�gure 4.6(g), where we learly see that the envelope of the state (c, 0, 3) is loated both in the QD andis deloalized in the full WL; Fig. 4.6(h) shows a zoom in on the QD area. In �gure 4.7(a) we show thestates (c,±2, 2) whih in very large parts is loated in the WL, but there is still a small probability of�nding it in the QD. Energetially they usually form near the onset of the energy ontinuum and a bitinto this, depending on the geometry of the system. What is very speial about these states is that theyhave a signi�ant amplitude both in the QD and WL, and an therefore overlap both with pure bound andWL states. This means that e�etive sattering an take plae between the spetrally and spatially wellseparated QD and WL states, with the mediator being the quasi-bound states.It should be emphasized that the present approah for obtaining the eletroni states, treats the bound,quasi-bound, and WL states on the same footing, as they originate from the same di�erential equation.This has the onsequene that properties suh as orthogonality and relative energy di�erene betweendi�erent states are automatially ful�lled. This is in ontrast to another ommonly used sheme fordesribing eletroni states in many-body alulations, the so-alled Orthogonalized Plane Wave (OPW)proedure (see e.g. [32, 55℄). In the OPW proedure plane waves are made orthogonal to some prede�nedbound states, often harmoni osillator states, and these are then used as the single-partile basis. Theenergies are taken as a ombination of the unperturbed paraboli dispersion of the plane waves, the energiesof the bound states, and an user hosen o�set between these. The OPW approah has the huge advantageof being semi-analytial, whih speeds up alulations onsiderably, but su�ers from the above mentionedfundamental problem. A study of the signi�ane of various desriptions of the eletroni states has beenperformed in [51℄ and shows that it is important to treat the qualitatively di�erent states on the samefooting.
3It should be noted that for ertain geometries we experiened QD resonanes in the WL ontinuum. These appear forotherwise pure WL states that are far from the loalized QD states, both spetrally and spatially, but whih at someenergy rather suddenly beome loalized in the QD. We expet that these states our due to the ful�lment of a resonaneonditions for the deloalized WL states, muh like the transmission spetra for 1D quantum wells in introdutorytextbooks on quantum mehanis. 39
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|m|,N (ρ, z). Notie that one must arefullyinspet the values on the olorbar in eah plot, espeially for negative values.4.3. Coulomb matrix elementsThe Coulomb matrix element, eq. (3.18), is one of the entral numerial quantities whih has to beevaluated in order to be able to perform many-body alulations4. We will therefore in this setion, disussvarious properties and strategies for its evaluation, as it is not a trivial task.To redue the amount of omputation time needed, it is advantageous to make use of the symmetries theCoulomb matrix elements possess. These an easily be derived from the de�nition, eq. (3.18), and byusing the fat that He−e(r, r
′) = He−e(r

′, r). The symmetries are
Vν4ν3,ν1ν2 = V ∗ν1ν2,ν4ν3

= Vν3ν4,ν2ν1 = V ∗ν2ν1,ν3ν4
. (4.9)The spatial part of the Coulomb matrix element, eq. (3.18), is given by

Vα4α3,α1α2 =

∫

drdr′φ∗α4
(r)φ∗α3

(r′)He−e(r, r
′)φα1 (r)φα2 (r

′), (4.10)whih is the omputationally demanding part as the spin overlaps are trivially evaluated. To failitate theevaluation of the Coulomb matrix element, and for formal reasons, it is onvenient to 3D Fourier transform4It turns out that also for the interation between eletrons and dispersionless LO phonons, the matrix elements enteringthe self-energy an be reformulated in terms of the Coulomb matrix element setion 5.2.2. 41
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He−e(r, r

′) yielding
He−e(r − r′) =

1

V

∑

q

Vqe
iq·(r−r′), Vq =

e2

ε

1

q2
, (4.11)where V is the quantization volume and q = (qx, qy, qz) is the 3D wavevetor. We use the Fourier transformde�ned by [28℄

f(r) =
1

V

∑

q

fqe
iq·r, fq =

∫

V

drf(r)e−iq·r. (4.12)Depending on the system under onsideration it an be advantageous to perform the qz integration ex-pliitly in eq. (4.11) ending up with the 2D Fourier transform of the Coulomb interation. Performing thisintegration [56, p. 122℄ yields
He−e(r − r′) =

1

A

∑

q‖

Vq‖e
iq‖·(ρ−ρ′)e−q‖|z−z′|, Vq‖ =

e2

2ε

1

q‖
, (4.13)where A is the quantization area, q‖ = (qx, qy) is the 2D or in-plane wavevetor, and ρ = (x, y) is thein-plane position vetor. The reason for expanding the Coulomb interation in plane-waves, and notevaluating eq. (4.10) diretly, is due to the problems generated by the 1/|r − r′| singularity, whih aredi�ult to handle numerially.If one inserts the 3D Fourier transform of the Coulomb interation into eq. (4.10), the integrations over rand r′ an be separated as follows

Vα4α3,α1α2 =
1

V

∑

q

Vq

∫

drφ∗α4
(r)eiq·rφα1(r)

∫

dr′φ∗α3
(r′)e−iq·r′

φα2(r
′), (4.14)so that the integrals whih need to be evaluated are all of the form

〈α5|e±iq·r|α6〉 =
∫

drφ∗α5
(r)e±iq·rφα6(r). (4.15)This separation is made for formal reasons, the result is needed in the next setion, while for the atualevaluation the 2D transform, eq. (4.13), is used.4.3.1. Bloh partIn the e�etive mass envelope approximation for the eletrons, the wavefuntions in eq. (4.10) are all ofthe following form

φα(r) = F b
α(r)ub(r), (4.16)where F b

α(r) is the envelope funtion and ub(r) is the Bloh funtion for the stati lattie, both for band
b. Normally the band index b is ontained in the general spatial quantum number α, but here we displayit expliitly in the envelope funtion for larity. The envelope funtion is determined from the e�etivemass Shrödinger equation, see setion 4.2.2, while the Bloh funtion is generally not known. Below wewill show that for the lass of Coulomb matrix elements we are onsidering, it is not neessary to know theBloh funtion, whih is very fortunate as this funtion is very hard to obtain.In a semiondutor sattering proesses where an eletron is sattered from one band and to the other, anour due to the Coulomb interation between the eletrons in the semiondutor. However, for a relativelywide bandgap semiondutor this proess will be very non-resonant in nature, with the onsequene thatthe probability for it to happen will be very small, and for this reason we will neglet suh proesses in our42



Single-Partile States and Matrix Elements Coulomb matrix elementsmodel [56, p. 212℄. This approximation does not mean that the arriers do not interat aross the bandgap.There are strong interations between eletrons in the valene and ondution band as their wavefuntionsoverlap spatially, giving rise to the exitoni e�ets that are in general very important. A onsequene ofthe approximation, whih must be kept in mind, is that the number of arriers in eah band is onserved,hene no reombination takes plae due to the Coulomb interations. For the Coulomb integrals, eq. (4.15),this means that the band index in the wavefuntions is the same
〈α5|e±iq·r|α6〉 =

∫

drφ∗α5
(r)e±iq·rφα6(r)δb5,b6

=

∫

dr
[
F b

α5
(r)ub(r)

]∗
e±iq·rF b

α6
(r)ub(r).By assumption the envelope funtions are slowly-varying ompared to the Bloh funtions. If we furtherassume that only omponents of the Coulomb interation with relatively small wavevetors are needed,the exponentials e±iq·r also beome slowly-varying ompared to the Bloh part. A more quantitativerequirement would be that qmaxauc ≪ 1 , where qmax is the largest wavevetor needed in the expansionof the Coulomb potential and auc is the typial size of the unit ell. For the InGaAs systems we willbe onsidering we have auc ≈ 5 Å [53℄ leading to qmax ≪ 2 × 109 m−1. This value of qmax limits usto the viinity of the band edges, whih is onsistent with the fundamental assumption of the e�etivemass theory we have employed for the eletroni states. Having argued that both the envelopes andexponentials are slowly-varying ompared to the Bloh funtion, we may follow [53, p. 120℄ and write theintegral over the entire struture as a sum over all unit ells and an integral over a single periodi5 unitell

〈α5|e±iq·r|α6〉 ≈
∑

uc i

Vuc

[
F b

α5
(ri)

]∗
e±iq·riF b

α6
(ri)

(
1

Vuc

∫

uc

dru∗b(r)ub(r)

)

︸ ︷︷ ︸

〈ub|ub〉=1

=

∫

dr
[
F b

α5
(r)
]∗
e±iq·rF b

α6
(r), (4.17)where in the last line the sum was onverted into an integral. This leads to the fat that the Coulombmatrix elements an be evaluated with out expliitly knowing the Bloh funtions and we end up with [32,p. 86℄

Vα4α3,α1α2 =

∫

drdr′F ∗α4
(r)F ∗α3

(r′)He−e(r, r
′)Fα1(r)Fα2 (r

′)× δb4,b1δb3,b2 . (4.18)4.3.2. Representation in separable basisThe geometry of the QD/WL system we intent to use for pratial alulations later in the thesis, will allbe for relatively shallow QDs, that is with a large width to height ratio, as those presented in setion 4.2.1.Due to the shallowness of the QDs, it beomes a good approximation to write the entire envelope funtion
F (r) on a separable form, see setion 4.3.3. However, to set the stage for performing this approximationwe �rst formulate an exat proedure for alulating the Coulomb matrix elements. This proedure isbased expanding the numerial envelope funtions on an analytial basis set, that is separable in eah ofthe ylindrial oordinates ρ, ϕ, and z, and furthermore this exat formulation will serve as a benhmarkfor the approximative formulation.Denoting the separable basis as {Bβ(r)} we may write the expansion of the envelope funtion as fol-lows

Fα(r) =
∑

β

Aα
βBβ(r), Aα

β = 〈β|α〉 =
∫

drB∗β(r)Fα(r), (4.19)5We will assume that the argument still holds, even though the system under onsideration has di�erent kinds of unit ells.43



Coulomb matrix elements Single-Partile States and Matrix Elementswhere the basis states are of the spei� form, see appendix A.7,
Bβ(r) = Φm(ϕ)R|m|l(ρ)Znz

(z) = gβ(ρ)Zβ(z), β = (m, l, nz), (4.20)and where gβ(ρ) = Φm(ϕ)R|m|l(ρ) has been introdued for notational simpliity. Using the resulteq. (4.18), the 2D transform of the Coulomb potential, eq. (4.13), and the newly introdued basis, aCoulomb matrix element an be written as
Vα4α3,α1α2 =

∑

β1β2

β3β4

[

Aα4

β4

]∗ [
Aα3

β3

]∗
Aα1

β1
Aα2

β2
× δb4,b1δb3,b2

×







1

A

∑

q‖

Vq‖

∫

dρg∗β4
(ρ)eiq‖·ρgβ1(ρ)

∫

dρ′g∗β3
(ρ′)e−iq‖·ρ′

gβ2(ρ
′)

×
∫

dzdz′Z∗β4
(z)Z∗β3

(z′)e−q‖|z−z′|Zβ1(z)Zβ2(z
′)

}

=
∑

β1β2

β3β4

[

Aα4

β4

]∗ [
Aα3

β3

]∗
Aα1

β1
Aα2

β2
× δb4,b1δb3,b2 × Vβ4β3,β1β2 . (4.21)In the last line we have introdued the Coulomb matrix element for a basis state, Vβ4β3,β1β2 , de�ned as theontent in the urly brakets on the seond and third line. From this formula it is seen that the hallengingtask apparently is to alulate Vβ4β3,β1β2 , as the rest onsists of simple summations. For this reason thefollowing will fous on simplifying the expression for Vβ4β3,β1β2 .In the expression for Vβ4β3,β1β2 two types of integrals our, one involving the ρ oordinate and oneinvolving z and z′, for whih we de�ne short hand notations in the following way

I±ρ (β5, β6 : q‖) =

∫

dρg∗β5
(ρ)e±iq‖·ρgβ6(ρ), (4.22)

Iz(β4, β3, β1, β2 : q‖) =

∫

dzdz′Z∗β4
(z)Z∗β3

(z′)e−q‖|z−z′|Zβ1(z)Zβ2(z
′). (4.23)We start by onsidering the integral I±ρ . Using the de�nition of gβ(ρ) I±ρ an be written as

I±ρ (β5, β6 : q‖) =

∫ R0

0

dρρR∗β5
(ρ)Rβ6(ρ)

[
1

2π

∫ 2π

0

dϕei([m6−m5]ϕ±q‖ρ cos(ϕ−ϕ‖))

]

,where we have used q‖ · ρ = q‖ρ cos(ϕ − ϕ‖), with ϕ‖ being the angle of q‖ with respet to the x-axis.The angular integral in square brakets an be rewritten to an expression involving Bessel funtions, likethose in the ρ integral. For this we use the following integral representation of the Bessel funtion [57, p.684℄
Jm(x) =

i−m

2π

∫ 2π

0

dγei[mγ+x cos(γ)], m = 0, 1, 2, 3, . . .and the fat that the integrand in the angular integral is 2π-periodi. From this we obtain
1

2π

∫ 2π

0

dϕei([m6−m5]ϕ±q‖ρ cos(ϕ−ϕ‖)) = ei(m6−m5)ϕ‖i|m6−m5|J|m6−m5|(±q‖ρ).Finally using the series representation of the Bessel funtion [57, p. 670℄ one an show that Jm(−x) =
(−1)mJm(x) and we arrive at

I±ρ (β5, β6 : q‖) = 1±e
i(m6−m5)ϕ‖i|m6−m5|

∫ R0

0

dρρR∗β5
(ρ)J|m6−m5|(q‖ρ)Rβ6(ρ), (4.24)44



Single-Partile States and Matrix Elements Coulomb matrix elementswhere
1± =

{
1, +q‖ρ

(−1)|m6−m5|, −q‖ρ.The most demanding part an now be identi�ed as the integral
IJ (β5, β6 : q‖) =

∫ R0

0

dρρR∗β5
(ρ)J|m6−m5|(q‖ρ)Rβ6(ρ), (4.25)whih has to be evaluated numerially. It should be noted that an analytial expression exists for thisintegral when R0 → ∞, see eq. ([1.℄ 6.578) in [58℄. This is not the ase for our system, but it ouldpossibly yield an exellent approximation under ertain onditions, this has however not been investigatedfurther.The q‖ sum in eq. (4.21) an be transformed into an integral, assuming that the quantization area is large.Hene we make the substitution [28, p. 38℄

1

A

∑

q‖

→ 1

(2π)2

∫

dq‖ =
1

(2π)2

∫ 2π

0

dϕ‖

∫ ∞

0

dq‖q‖. (4.26)Due to our hoie of basis set the only plae ϕ‖ enters is through the exponential in eq. (4.24), thereforeit is possible to perform this integration analytially whih is a nie simpli�ation. Applying the ruleeq. (4.26) we an write Vβ4β3,β1β2 as
Vβ4β3,β1β2 =

1

2π

∫ ∞

0

dq‖q‖Vq‖

× i|m1−m4|IJ (β4, β1 : q‖)(−1)|m2−m3|i|m2−m3|IJ (β3, β2 : q‖)Iz(β4, β3, β1, β2 : q‖)

× 1

2π

∫ 2π

0

dϕ‖e
i[(m1−m4)+(m2−m3)]ϕ‖

︸ ︷︷ ︸

=δm1+m2,m3+m4

, (4.27)where the integral in the last line provides us with a seletion rule in the angular momentum quantumnumber m. The seletion rule in the m's re�ets the underlying symmetry of the basis funtions, andbasially tells us that the total angular momentum (the sum of the two partiipating partiles) in the
z-diretion is onserved. The delta funtion an further be used on the exponents of i and −1 in theseond line to yield unity

i|m1−m4|(−1)|m2−m3|i|m2−m3|δm1+m2,m3+m4 = 1× δm1+m2,m3+m4 .Going bak to eq. (4.27) we an insert Vq‖ from eq. (4.13), where the 1/q‖ singularity is aneled by thevolume element in the q‖ integral, and we obtain a simpli�ed expression for the Coulomb matrix elementof a basis state
Vβ4β3,β1β2 =

e2

4πε

∫ ∞

0

dq‖IJ (β4, β1 : q‖)IJ (β3, β2 : q‖)Iz(β4, β3, β1, β2 : q‖)× δm1+m2,m3+m4 . (4.28)Next we take a loser look at some of the properties of the integrals IJ and Iz , whih onstitute the basibuilding bloks for alulating the Coulomb matrix elements.Properties of IJFrom eq. (4.28) it is apparent that the integration parameter q‖ in priniple should be varied ontinuouslyfrom 0 to ∞, this is however impossible to do numerially and in pratise not neessary either. Theeletroni states we onsider are all relatively low in energy and hene we will be able to limit the size of45



Coulomb matrix elements Single-Partile States and Matrix Elementsthe Hilbert spae for the basis states used in the expansion eq. (4.19). This means that we an de�ne someupper ut-o� for the quantum number, β, haraterizing the basis. Having put an upper limit on β wean make some qualitative statements on the integral IJ , eq. (4.25), as a funtion of q‖, more spei�allyon the limiting ases of very small and very large q‖.For very small q‖ the Bessel funtion in eq. (4.25) ontaining q‖ will have the following dependeny on q‖:
J|m|(q‖ρ→ 0) ∝ (q‖ρ)

|m|, whih is seen from its series representation [57, p. 670℄. This tells us that for
|m| 6= 0, IJ will always give zero, while for |m| = 0 we get J|m|(q‖ρ→ 0)→ 1 and hene the value of IJwill depend on the mutual orthogonality of the gβ's. These two observations an be written olletivelyas

IJ (β5, β6 : q‖ → 0)→ δm5,m6δl5,l6 . (4.29)For very large q‖ the Bessel funtion J|m|(q‖ρ) will osillate muh more rapidly than the other two Besselfuntions, and hene the integral will average to zero
IJ (β5, β6 : q‖ →∞)→ 0. (4.30)These two statements are illustrated in �gure 4.8, where relatively low energy basis states are shown in�gures 4.8(a) and 4.8() and a relatively high energy basis states are shown in �gures 4.8(b) and 4.8(d).The �rst thing ones noties, when omparing the high and low energy ases, is that the ut-o� in q‖ seemsto ome at a lower value for the low energy states than for the high energy states. This is understandablein the light of eq. (4.30), as J|m|(q‖ρ) faster beomes highly osillatory ompared to the low energy statesthan ompared to the high energy states, and hene the integral will average to zero at a lower q‖ forthe low energy states than for the high energy ones. The ut-o� value in q‖ depends highly on R0, see�gure 4.2, but in a very simple way and sales basially linearly with R0, as an be seen by introduinga unitless radial oordinate, ρ̃ = ρ/R0, in eq. (4.25). It is also apparent that the high energy states havemore struture below their ut-o� and therefore require a �ner sampling in q‖ in order to yield orretresults. This makes the high energy states muh more hallenging numerially, for whih reason it isimportant to make sure that ones performs the minimum amount of numerial alulations required. Oneway to minimize this number is to make use of the symmetries IJ possesses in its β quantum numbers,these symmetries will be disussed next.From its de�nition, eq. (4.25),
IJ (m5l5,m6l6 : q‖) =

∫ R0

0

dρρR∗|m5|l5(ρ)J|m6−m5|(q‖ρ)R|m6|l6(ρ),we have dedued the symmetries of IJ
IJ (m5l5,m6l6 : q‖) = I∗J (m6l6,m5l5 : q‖) (4.31a)

= IJ (m6l6,m5l5 : q‖), sign(m5) = sign(m6), (4.31b)
IJ (∓m5l5,±m6l6 : q‖) = I∗J (∓m6l6,±m5l5 : q‖) (4.31)

= IJ (∓m6l6,±m5l5 : q‖), sign(m5) 6= sign(m6). (4.31d)The sign of the m's matters as there appears a di�erene in m5 and m6 in IJ . The number of di�erentpermutations of m and l in IJ equals (2 ×mmax + 1)2l2max, this times the numbers of sampling points of
q‖, whih is usually a few hundreds, is the number of integrals needed to be alulated numerially. Forillustration we hoose the numbers mmax = 10 and lmax = 50, whih are reasonable for a typial QD/WLsystem. Plugging in these numbers we get (2×mmax + 1)2l2max = 1102500, while appliation of eq. (4.31)redues this number to 276775, roughly a fator of 4 lower. This fator of 4 is however not representativefor the omputation time spend. This is so as high energy states are more osillatory than low energyones, and thus the sampling in ρ, used in the numerial quadrature, needs to be orrespondingly �ner,leading to longer omputation time. The fator of 4 is thus a lower bound for the speed up in omputationtime. Parallelization is possible for eah IJ and hene leads to further e�ieny, but the alulation of allthe integrals IJ is still a onsiderable numerial task.46
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(d)Figure 4.8.: Examples of the integral IJ , eq. (4.25), illustrating the behavior stated in eqs. (4.29) and (4.30). Itshould be notied that IJ is dependent on R0, see �gure 4.2, as the basis funtions also depend on this. For theseillustrations we used R0 = 150 nm.Properties of IzAs for IJ the in-plane wavevetor q‖ must be varied between 0 and ∞ in the integral Iz , and as for IJ wean give some general statements in these two limits. From eq. (4.23)
Iz(nz4, nz3, nz1, nz2 : q‖) =

∫

dzdz′Z∗nz4
(z)Z∗nz3

(z′)e−q‖|z−z′|Znz1(z)Znz2(z
′),it is learly seen that for q‖ → 0, the exponential e−q‖|z−z′| will tend toward unity and the 2D integral anbe separated into two 1D integrals. Due to the orthogonality of the Zn's we obtain the following simpleresult

Iz(nz4, nz3, nz1, nz2 : q‖ → 0)→ δnz4,nz1δnz3,nz2, (4.32)similar to the q‖ → 0 limit for IJ . For very large q‖ the exponential e−q‖|z−z′| will dampen the integrandso strongly that it will give zero for su�iently large q‖. On the diagonal in the (z, z′)-plane we have
z − z′ = 0 and hene the exponential will always be 1 regardless of the value of q‖, however this in�nitelythin line has integral measure zero and will therefore not ontribute to a �nite value of the entire integral.47



Coulomb matrix elements Single-Partile States and Matrix ElementsHene for q‖ →∞ we have
Iz(nz4, nz3, nz1, nz2 : q‖ →∞)→ 0. (4.33)To illustrate eqs. (4.32) and (4.33) we show in �gure 4.9 three examples of Iz . One immediately noties
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Single-Partile States and Matrix Elements Coulomb matrix elements
N3 for 3D and so on. If the funtion values are omputationally expensive to obtain, higher dimensionalintegrals an be very very demanding to alulate numerially. This is also one of the reasons for hoosingthe urrent approah for evaluation of the Coulomb matrix elements, that initially is determined from a6D integral.From the disussion above it is apparent that it is very important to exploit potential symmetries andseletion rules of Iz , even more than for IJ . We will now address this issue. From eq. (4.23) one an showthe following symmetries for the integral Iz

Iz(nz4, nz3, nz1, nz2 : q‖) = I∗z (nz1, nz2, nz4, nz3 : q‖) = Iz(nz1, nz2, nz4, nz3 : q‖) (4.34a)
= Iz(nz3, nz4, nz2, nz1 : q‖) (4.34b)

= I∗z (nz2, nz1, nz3, nz4 : q‖) = Iz(nz2, nz1, nz3, nz4 : q‖), (4.34)note the similarity with eq. (4.9). Furthermore it is possible to determine a seletion rule for Iz by makingthe following oordinate transformation
z → −z, z′ → −z′,whih does not hange the value of the integral, but yields the following relation in the nz's
Iz(nz4, nz3, nz1, nz2 : q‖) = (−1)nz4+nz3+nz1+nz2+4Iz(nz4, nz3, nz1, nz2 : q‖).Here we have used the parity of Znz

(z), Znz
(−z) = (−1)1+nzZnz

(z) see appendix A.7, and the fat that
e−q‖|z−z′| is even under inversion in the (z, z′)-plane6. This tells us that unless the sum of the quantumnumbers nz is an even number, the integral Iz is identially zero. This an be formulated mathematiallyusing the modulus operation as follows

Iz(nz4, nz3, nz1, nz2 : q‖) = Iz(nz4, nz3, nz1, nz2 : q‖)δmod(nz4+nz3+nz1+nz2,2),0. (4.35)This ondition simply means that the produt of the four Znz
's in Iz must be an even funtion, like

e−q‖|z−z′|, in order for the integral to yield a non-zero value, whih ould have been intuitively expeted.The fat that the integrand has even inversion symmetry means one an limit the integration domain tohalf the (z, z′)-plane, resulting in a signi�ant speed up, roughly a fator of 2, in terms of pu time. Togive an idea of the redution in omputation time ahieved by applying the symmetries eq. (4.34) and theseletion rule eq. (4.35), onsider a ut-o� of nz,max = 25. This gives n4
z,max = 390625 permutations of nzin Iz , using the symmetries and seletion rule this number redues to 49297, almost a fator of 8. Similarto the alulation of IJ , alulation of Iz with high energy states is more time onsuming and thus thefator of 8 is the minimum gain. On top of the number of permutations in the basis indies the samplingof q‖ adds another dimesion. For Iz usually around 50 sampling point of q‖ are needed, with the majoritylustered near q‖ = 0. Again, as for IJ , parallelization is possible for eah Iz .Colleting everything we arrive at the �nal simpli�ed expression for the Coulombmatrix element

Vα4α3,α1α2 =
∑

β1β2

β3β4

[

Aα4

β4

]∗ [
Aα3

β3

]∗
Aα1

β1
Aα2

β2
× δb4,b1δb3,b2 × Vβ4β3,β1β2

× δm1+m2,m3+m4 × δmod(nz4+nz3+nz1+nz2,2),0, (4.36)with Vβ4β3,β1β2 being given by
Vβ4β3,β1β2 =

e2

4πε

∫ ∞

0

dq‖IJ (β4, β1 : q‖)IJ (β3, β2 : q‖)Iz(β4, β3, β1, β2 : q‖)

× δmod(nz4+nz3+nz1+nz2,2),0 × δm1+m2,m3+m4 . (4.37)6This result ould also have been reahed using the more formal methods of group theory. Here one would introdue the
(z, z′)-plane parity operator Pzz′ , de�ned by Pzz′f(z, z′) = f(−z,−z′), and look for the eigenvalues of Pzz′ with theinvolved funtions. 49



Coulomb matrix elements Single-Partile States and Matrix Elements4.3.3. Representation in separable eigenstatesFor very shallow, that is small height, QDs it beomes a good approximation to assume that the eletronienvelope funtion an be fatored into a funtion for eah spatial diretion [55℄. The philosophy is thatfor shallow QDs, the e�etive envelope for the z-diretion is very similar for the various types of stateswe enounter: bound QD states, quasi-bound states, and unbound WL states. And hene ultimately onean use the same z-envelope for all states, yielding faster omputation times and hopefully fairly aurateresults (see setion 4.3.4). In this approximation we write the envelope as follows
F eff

α (r) = Φm(ϕ)Reff
α (ρ)Zeff

α (z) = geff
α (ρ)Zeff

α (z), α = (b,m,N), (4.38)where due to symmetry the angular part is exat. One possible de�nition of the e�etive funtions isdesribed in the next subsetion. Inserting eq. (4.38) into eq. (4.18), with the Coulomb potential Fouriertransformed, we obtain
Vα4α3,α1α2 =

1

A

∑

q‖

Vq‖ × δb4,b1δb3,b2

×
∫

dρ[geff
α4

(ρ)]∗eiq‖·ρgeff
α1

(ρ)

∫

dρ′[geff
α3

(ρ′)]∗e−iq‖·ρ′

geff
α2

(ρ′)

×
∫

dzdz′[Zeff
α4

(z)]∗[Zeff
α3

(z′)]∗e−q‖|z−z′|Zeff
α1

(z)Zeff
α2

(z′).The proedure exeuted in setion 4.3.2 an now be repeated here and the end result is
Vα4α3,α1α2 =

e2

4πε

∫ ∞

0

dq‖I
eff
J (α4, α1 : q‖)I

eff
J (α3, α2 : q‖)I

eff
z (α4, α3, α1, α2 : q‖)

× δb4,b1δb3,b2 × δm1+m2,m3+m4 . (4.39)In analogy with eqs. (4.23) and (4.25) we have introdued the following notation
Ieff
J (α5, α6 : q‖) =

∫ R0

0

dρρ[Reff
α5

(ρ)]∗J|m6−m5|(q‖ρ)R
eff
α6

(ρ),

Ieff
z (α4, α3, α1, α2 : q‖) =

∫

dzdz′[Zeff
α4

(z)]∗[Zeff
α3

(z′)]∗e−q‖|z−z′|Zeff
α1

(z)Zeff
α2

(z′).One de�nition of the e�etive funtionsOur starting point for de�ning the e�etive funtions in eq. (4.38) is the general expansion of the envelopefuntion, eq. (4.19), in terms of the basis given by eq. (4.20)
Fα(r) =

∑

β

Aα
βBβ(r).The spatial quantum number haraterizing an envelope funtion is written as

α = (b,m,N),where m is the eigenvalue of the z omponent of the angular momentum operator (see appendix A.7), Nis a quantum number desribing the (ρ, z)-plane, and b is a band index. The spatial quantum numberharaterizing a basis state is
β = (m, l, nz),see appendix A.7 for details. It should be emphasized that for a rotationally symmetri system, the

z omponent of the angular momentum operator is a onserved quantity and m is therefore a good50



Single-Partile States and Matrix Elements Coulomb matrix elementsquantum number. We will always onsider suh systems and therefore the angular part of the envelopeand basis funtion will always be same. More spei�ally, we write the expansion of the envelope asfollows
F b

m,N (r) =
∑

lnz

Ab
m(N : l, nz)Bmlnz

(r). (4.40)To motivate the de�nition of the e�etive funtions one an onsider an expliit set of oe�ients, e.g. asshown in �gure 4.10 for a typial QD ground state; this spei� state has the label (b,m,N) = (c, 0, 1).The geometry is the same as in setion 4.2.3, exept for R0 whih is 75 nm in these alulations. The �rstthing one noties is that the oe�ients deay as we go to higher and higher quantum numbers in boththe radial and z diretion, as is expeted when onsidering a loalized state. Next it is very apparent howrows for even nz have a muh less amplitude than those for odd nz, this is simply a manifestation of thefat that the wavefuntion is almost symmetri about the (x, y)-plane. To de�ne the e�etive funtionit seems intuitively orret to fous on the oe�ients that have large amplitudes, as these must be themost signi�ant. For this purpose we identify the oe�ient with the largest amplitude and denote itsindexes with stars as supersripts: (l∗, n∗z). We now propose to de�ne the e�etive funtions Rb,eff
|m|,N(ρ)and Zb,eff

|m|,N(z) in the following way
Rb,eff
|m|,N(ρ) =

∑

l

CR,b
l (m,N)R|m|,l(ρ), CR,b

l (m,N) = ξ
Ab

m(N : l, n∗z)
√∑

l|Ab
m(N : l, n∗z)|2

,

Zb,eff
|m|,N(ρ) =

∑

nz

CZ,b
l (m,N)Znz

(z), CZ,b
nz

(m,N) = ξ
Ab

m(N : l∗, nz)
√
∑

nz
|Ab

m(N : l∗, nz)|2
,where ξ = sign[Ab

m(N : l∗, n∗z)] is a phase fator that ensures that the e�etive funtions have the samephase as as the original funtion. Notie that the e�etive oe�ients have been renormalized in orderfor the e�etive funtions to be normalized to unity. The oe�ients used in the e�etive funtions areshown graphially in �gure 4.10, where the horizontal line indiates those used for Reff while the vertialline indiates those used for Zeff . In order for this approximation to be good, the two lines should overas muh "weight" as possible, that is ∑⊥|Ab
m(N : l, nz)|2 should be as lose to unity as possible, where

⊥ indiate the blak lines in �gure 4.10. A limiting ase where this approximation is exat is for thepure WL state, where no dot potential is present in the geometry. For this system the eigenstates areompletely separable and for the radial diretion the solutions are Bessel funtions, the same ones as weuse as our basis (see appendix A.7), hene by de�nition the fatorization proedure is exat for thesestates.This spei� de�nition of the e�etive funtions su�ers from a potentially very serious drawbak, namelythat the mutual orthogonality of the e�etive funtions is not guarantied in this simple minded separationproedure. This is however only an issue when onsidering the overlap between states of equal m, fordi�erent m the integration over the exat angular funtions ensures the orthogonality. But for equal mwe have the situation
〈F eff

α |F eff
α′ 〉 = 〈Reff

α |Reff
α′ 〉 〈Zeff

α |Zeff
α′ 〉 6= 0, N 6= N ′, m = m′, b = b′.The importane of having orthogonal wavefuntions depends on what should be alulated using thesewavefuntions. In the ase of Coulomb matrix elements orthogonality is ruial, as seen from e.g. �gure 4.8where the point q‖ = 0 orresponds to the pure overlap of two e�etive radial funtions and thus it mustalways be zero for di�erent funtions. The atual impat of this non-orthogonality will be investigated inthe next subsetion.4.3.4. Comparison of exat and e�etive Coulomb matrixelementsIn this subsetion we will perform a numerial omparison between the Coulomb matrix elements alulatedusing the exat expression eq. (4.36) and those obtained through the e�etive expression eq. (4.39). The51



Coulomb matrix elements Single-Partile States and Matrix Elements

2 4 6 8 10 12

5

10

15  

l, Bessel quantum number

 n z, S
in

us
 q

ua
nt

um
 n

um
be

r

−0.2

−0.1

0

0.1

0.2

Figure 4.10.: Plot showing the oe�ient Ac
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Single-Partile States and Matrix Elements Coulomb matrix elementstherefore attention is not payed to the deloalized WL states, where the fatorization approximation isexpeted to be muh better.A representative seletion of Coulomb elements is shown in table 4.2, where four di�erent lasses of elementsare presented, separated by the horizontal lines. The �rst lass is that of two eletrons in the same spatialstate sattering with eah other into the same state and an be thought of as a lassial eletrostatiinteration energy between two (equal) harge distributions given by the wavefuntion squared. The seondlass is similar to the �rst, but now the eletrons are in di�erent spatial states and hene these elements anbe expeted to be smaller than the �rst lass, as the spatial overlap between the two harge distributionsis smaller. The two �rst lasses of elements, whih an be interpreted lassially, are usually alled diretelements. The third lass ontains elements of true quantum mehanial sattering events, that is wherethe eletrons are sattered to new states and hene this proess an not be thought of lassially as theinteration of two harge distributions. These elements are usually alled exhange elements, due to theirquantum nature. The fourth lass omprises elements giving rise to exitoni e�ets, as these desribethe repulsion of eletrons in the ondution band with eletrons in the valene band. For the �rst threelasses we only onsider proesses in the ondution band, as those for the valene band are very similarin magnitude, due to our hoie of band parameters, whih provide very similar wavefuntions for the twobands, see appendix A.8. For eah set of elements we have alulated the absolute and relative error ofthe e�etive desription, de�ned in the following way
absolute error = |Vexact − Veff |, relative error =

|Vexact − Veff |
|Vexact|

.In general we observe values ranging from 1 to 14 meV, with the diret elements being learly largerthan the exhange elements. This is an e�et easily understood mathematially in terms of the overlapintegrals, but it also makes sense physially sine eletrons that are loser spatially interat more strongly.For almost all the elements onsidered here the relative error is below one perent, whih is perhaps abit surprising onsidering the rather simple de�nition of the e�etive wavefuntions we have employed. Itshould be noted that none of the elements in lasses one, two, and four su�er from the non-orthogonalityissues desribed in the previous setion, as they are either diret elements or exhange elements arisingfrom sattering between states of di�erent angular momentum (and thus orthogonality is ensured). Theexhange element in the third lass does, however, desribe a sattering event between states of equalangular momentum and here the non-orthogonality is expeted to play a role. This element also has asigni�antly higher relative error than any of the other onsidered elements, whih is in part expetedto originate from the non-orthogonality. To test this presumption a Gram-Shmidt orthogonalizationalgorithm was applied to the m = 0 subspae whih states (,1) and (,5) belong to, to make sure that thestates where orthogonal. This lowered the relative error on V cccc
5313 to around 6 % from 8.3 % indiating thatnon-orthogonality does indeed have an e�et. A fundamental problem does, however, arise when applyingvarious orthogonalization proedures to non-orthogonal quantum states. The issue is that the proedureis unonstrained, in the sense that it has no onnetion to the underlying physial equation and hene itis not ensured that the orthogonalized states ontinues to be eigenstates of the physial equation. Due tothis issue and the fat that only a small number of the exhange elements, whih typially have a smallmagnitude ompared to other elements, are seriously a�eted by the non-orthogonality the states were leftnot orthogonalized.
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Optial dipole matrix elements Single-Partile States and Matrix Elements
V b4b3b1b2

α4α3α1α2
Exat [meV℄ E�etive [meV℄ Absolute error [µeV℄ Relative error [%℄

V cccc
1111 13.6855 13.6621 23.4464 0.171
V cccc

5555 9.80818 9.63959 168.590 1.72
V cccc

3333 10.7314 10.6882 43.2419 0.403
V cccc

6666 9.33722 9.27056 66.6584 0.714
V cccc

1515 10.9611 10.8305 130.671 1.20
V cccc

1313 11.5185 11.4823 36.1249 0.314
V cccc

1616 9.94670 9.89138 55.3118 0.556
V cccc

5353 9.63071 9.53662 94.0926 0.977
V cccc

5656 8.89239 8.80978 82.6087 0.929
V cccc

3636 9.79372 9.73499 58.7227 0.600
V cccc

5313 1.13377 1.03971 94.0645 8.30
V cvcv

1331 3.15866 3.14862 10.0423 0.318
V cvcv

1111 13.6236 13.6005 23.1121 0.170
V cvcv

1515 10.8932 10.7954 97.8453 0.898Table 4.2.: Table for omparison of Coulomb matrix elements alulated using the exat expression given byeq. (4.36) and the e�etive expression given by eq. (4.39). For these alulations a bakground dieletri onstantof ε/ε0 = 13.6 was used.4.4. Optial dipole matrix elementsIn this setion we brie�y desribe the alulation of the matrix elements entering the quantum and lassiallight-matter interation Hamiltonians, eqs. (3.19) and (3.21) respetively. Aording to eqs. (3.20) and(3.22) the matrix element is mainly determined by an apparently simple overlap integral over the positionoperator (projeted onto the eletri �eld diretion)
∫

dr[φb
α(r)]∗r · eEφα′(r).The integral an, however, not be alulated diretly due to the fat that we are working in the ef-fetive mass approximation, and therefore do not know the Bloh part of the produt wavefuntion,eq. (4.16),

φb
α(r) = F b

α(r)ub(r),expliitly. To proeed we wish to take advantage of the di�erent length sales governing the Bloh andenvelope parts, as done with the Coulomb matrix elements in setion 4.3.1, and separate the integral intoparts that an be handled. This separation is muh easier to perform in the A · p form of the eletron-photon interation. Therefore we remind the reader of the relation between a dipole and momentummatrix elements, see eq. (A.13),
〈φb

α|D · eE |φb′

α′〉 = i
1

ωbb′
αα′

e

m
〈φb

α|p · e|φb′

α′〉 , (4.41)showing proportionality between the two quantities. Using the full produt form of the wavefuntion amomentum matrix element may now be written as [53, p. 119℄
〈φb

α|p · eE|φb′

α′ 〉 =
∫

dr
[
F b

α(r)ub(r)
]∗

p · eEF
b′

α′ (r)ub′(r)

=

∫

dr
[
F b

α(r)ub(r)
]∗ {

F b′

α′ (r)[p · eEub′(r)] + ub′(r)[p · eEF
b′

α′(r)]
}

≈ 〈F b
α|F b′

α′〉 〈ub|p · eE |ub′〉+ 〈F b
α|p · eE|F b′

α′〉 〈ub|ub′〉 ,54



Single-Partile States and Matrix Elements Summarywhere on the seond line we used that p is a di�erential operator and therefore the hain rule must beapplied on produts, and further on the last line we separated out the slowly-varying envelope part as ineq. (4.17). If we restrit our attention to inter-band transitions, whih we will only onsider in this thesis,the seond term vanish due to the orthogonality of the Bloh funtions, i.e. 〈uc|uv〉 = 0, and we are leftwith
〈φc

α|p · eE|φv
α′〉 = 〈F c

α|F v
α′ 〉 〈uc|p · eE |uv〉 . (4.42)The part involving the Bloh funtion and momentum operator an be measured and is tabulated in theliterature, while the simple overlap integral between the envelopes an be alulated within our e�etivemass theory. Fixing the polarization to the y-diretion and using the formulaes of [53, appendix A 8.3℄one an obtain the following expression for the momentum matrix element

〈uc|py|uv〉 = −i |M |√
2
, (4.43)whih holds for a typial III-V semiondutor with a single ondution band and where the valene bandis taken to be the heavy hole band. For the material system we onsider,InxGax−1Asx , the parameter

|M | an be parameterized aording to the formulae [53, p. 121℄
|M | = m

2

√
28.8− 6.6x [eV

1
2 ],where x is the omposition fration and the [eV 1

2

] means the unit eV
1
2 . Inserting now eqs. (4.41),(4.42), and (4.43) into the expressions for a matrix element of the interation Hamiltonian as derived inappendix A.3, eqs. (A.14) and (A.15), we get

〈φc
α|Hi|φv

α′〉 = e|M |√
2mω

〈F c
α|F v

α′〉 E0,y

2
.We note that the only quantity left that depend on the eletroni states, is the pure overlap between theinvolved states, the eletroni transition frequeny that entered eq. (4.41) has aneled. As mentionedin setion 4.2.3 the eletroni envelopes for ondution and valene band states are often very similar innature, meaning that we to a good approximation an assume the following

〈F c
α|F v

α′〉 = δα,α′ . (4.44)This has the onsequene that we only onsider "diret" or "vertial" optial transitions. This yields verysigni�ant simpli�ations in the numerial solution of the equations of motion for the eletroni densitymatrix, as one an neglet "indiret" optial o�-diagonal elements of the density matrix as disussed insetion 5.4.1.The onlusion that an be drawn after this long series of approximations, is that all non-zero dipolematrix elements has the same value independent of whih transition they refer to. For the quantized �eldsthe dipole matrix element has to be multiplied with a few other onstants that are not alulated expliitly,see eq. (3.20), and hene we might as well treat the entire oupling onstant as a parameter. This will notover parameterize the equations, as often we only onsider a single quantized mode. For the semi-lassialinteration, eq. (3.21), the dipole matrix element is multiplied by the externally applied �eld and it willtherefore only be this e�etive produt, often denoted the Rabi energy, that enters the equations. Forthese reasons we will not expliitly evaluate the values of the dipole matrix elements, but simply refer tothe e�etive numbers that enter the Hamiltonian.4.5. SummaryIn this hapter we onsidered the eletroni single-partile states and the subsequent alulation of variousmatrix elements using these states. In the �rst setion we setup a simpli�ed model for desribing the55



Summary Single-Partile States and Matrix Elementssingle-partile eletroni states bound in the QD and WL. We employed a simple e�etive mass model, thattreats the bound and unbound states on the same footing, and solved this model for a realisti geometryusing the ommerial �nite element pakage COMSOL. To illustrate the model we presented solutionsfor a spei� geometry and disuss the nature of the di�erent states obtained. In the seond part of thehapter we disussed how to alulate the omputationally demanding Coulomb matrix elements, using thenumerially obtained single-partile states. We presented two ways of performing this alulation, an exatbut slow formulation and an approximative but muh faster method. The two approahes were omparedfor a spei� geometry, and for most elements the fast methods yielded relative errors below 1%. In thelast setion alulation of matrix elements of the dipole interation were disussed. We argued why it to agood approximation was not neessary to perform any atual numerial alulations of the elements, butrather obtain the numbers needed only using known and tabulated parameters.
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5. Equations of Motion5.1. IntrodutionIn this hapter we present approximate forms of the general theory derived in the two �rst hapters anddevelop the �nal equations of motion desribing our QED system. Seleting the appropriate approximativeforms of the Hamiltonians, and subsequently the trunation of the self-energies, is really the essential partof doing theoretial many-body physis, as in general there is no hane of inluding all physial e�ets.Our hoies in this proess will all be guided by previous studies in the literature, with the exeption ofthe eletron-photon interation whih is not often treated in the literature. The end goal of this hapteris to formulate a set of equations desribing the time evolution of our non-equilibrium system. Thiswill be done in two steps: First we onsider the equations governing the QED system in equilibrium,as these provide the initial onditions for the general non-equilibrium system and are important inputparameters in the GKBA. Seondly the atual non-equilibrium equations are developed. We treat twoases of these, namely one where the GKBA is applied to both the eletroni and photoni Green's funtionsand one where the full two-time Green's funtion for the photon is treated. To our knowledge it is the�rst time that the two-time photon Green's funtion is being treated within a many-body semiondutorformalism.5.2. ApproximationsIn this setion we will disuss various approximations to the general semiondutor Hamiltonian presentedin setion 3.2.3, so that it in a feasible way desribes the QED system we wish to examine, see hapter 1.The system ontains three kinds of partiles, eletrons, phonons, and photons, that interat. Below, wedesribe �rst the free systems, the quadrati parts of the Hamiltonian, and seond the interation partsof the Hamiltonian. In the last part we onsider the trunation of the self-energies, where the atualderivation of these is performed in appendix A.5.5.2.1. HamiltoniansNon-interating HamiltoniansThe eletrons onstitute a very important part of the system and hene a good desription is neededfor the single-partile states and energies. The basi QD-WL system of the eletrons has already beendesribed in setion 4.2 and the band parameters in appendix A.8, hene tehnial details will be omittedhere. To sum up the most important fats, we operate within a deoupled two-band model, with aondution and a valene band. The loalized QD states and the deloalized WL states are found fromthe same e�etive mass Shrödinger equation and hene treated on equal footing. This automatiallyensures that orthogonality between the states ful�lled and that the energies are orretly desribed. Thefree Hamiltonian for the eletrons is still as in eq. (3.9)
H0,e =

∑

ν

~ωνc
†
νcν , 57



Approximations Equations of Motionbut now we an elaborate on the general quantum number ν. It an be written as ν = (b, α, σ), where
b is the band index that an be either ondution () or valene (v), α ontains other spatial quantumnumbers within eah band, and �nally the spin is denoted by σ.

Figure 5.1.: Model alulation of the dispersion of the various phonon branhes in bulk GaAs. Taken from [59℄.Next we will disuss the free phonon Hamiltonian. In a III-V semiondutor like GaAs there exist severaldi�erent kinds of lattie vibrations whih eigenmodes are alled phonons. These are divided into transverseand longitudinal polarizations, usually alled branhes with referene to their band struture diagram.Furthermore we divide them into so-alled aoustial and optial phonons, where aoustial phonons ingeneral have a linear dispersion for long wavelengths, while the optial ones have a �nite energy forlong wavelengths, often with very weak dispersion. To illustrate these fats regarding the dispersionof the di�erent phonon branhes, we show in �gure 5.1 a model alulation for bulk GaAs. It is atextbook fat, e.g. [31, p. 325℄, that only longitudinal phonons set up strong polarization �elds inside arystal on whih eletrons an satter e�iently, therefore only longitudinal phonons will be onsidered.Furthermore for sattering between disrete states in QDs, whih is of the primary onern in this thesis,only longitudinal optial (LO) phonons need be onsidered, as longitudinal aoustial (LA) phonons donot have a large enough energy to provide e�ient sattering [60, 61℄. For larger wavevetors where theLA-phonon energy beomes omparable to the energy separation between the QD states (typially 20-40meV), the sattering amplitude for the transition goes to zero1 and therefore do not ontribute either.It has however been pointed out [62, 63℄ that in the low temperature regime, below 150 K, LA-phononsdominate the dephasing dynamis in QD systems. Based on these arguments and fats we will restritour attention to LO-phonons and only onsider temperatures above 150 K. The LO-phonons will furtherbe taken as dispersionless in their long wavelength limit, seen to be reasonable from �gure 5.1, whihis a ommonly adopted approximation yielding huge omputational simpli�ations. The free LO-phonon1This tendeny an be seen in �gure 4.8, where the integral IJ is proportional to the amplitude for eletron-phonon satteringevent for both LO- and LA-phonons.58



Equations of Motion ApproximationsHamiltonian an then be written as
H0,LO =

∑

q

~ωLOb
†
qbq,where q is the phonon wavevetor and the zero-point energy appearing in the general form eq. (3.14) hasbeen dropped as it is without importane in the alulations. The value of ~ωLO for GaAs is approximately37 meV. In pratie ωLO is often replaed by ωLO− iτ−1

LO, where τLO is a phenomenologial lifetime for theLO-phonons, that arise due to anharmoni proesses going beyond linear spring model that is normallyassumed [64℄. Formally one should not simply insert a omplex energy into the Hamiltonian as suggestedabove. This makes the Hamiltonian non-Hermitian and does not in general result in the orret dynamis,one should rather onsider a dressed LO-phonon Green's funtion that deay with the introdued lifetime.Values of τLO found in the literature are typially in the range 1-5 ps [41, 65℄. We will not onsider anytemperature dependene of either ωLO or τLO.In the ase of the free photons we are interested in modeling a avity with a �nite lifetime. The densityof states for suh a avity is haraterized by having a ertain width entered around the main avityenergy. The avity peak is made up by summing over many modes supported by the photoni stru-ture and therefore many equations would be generated to treat the photons orretly. However, as ourmain fous is not to provide a highly aurate desription of the photoni modes and energies, we willadopt another approah that enables us to onsider only a single quasi-mode of the avity with a �nitelifetime. To motivate this formally we replae the Hamiltonian eq. (3.12) for the free photons by thefollowing
H0,rad = ~ωcava

†
cac +

∑

l

~ωla
†
lal +

∑

l

(

Tla
†
cal + T ∗l a

†
lac

)

,whih is inspired by the tight-binding model used for eletrons. This Hamiltonian desribes a system of aloalized mode, denoted , and a ontinuum of deloalized leaky modes, denoted by l, where an amplitudeexists, T ∗l , for the proess where a photon an "tunnel" from the loalized mode and into the ontinuumand of ourse also the reverse proess. We are interested in the e�et the leaky modes have on the lifetimeof an exitation in the loalized avity mode. To this end one should look for the spetral Green's funtionsof the system, e.g. the retarded Green's funtion de�ned by
Ar

cc(τ) = −i~−1θ(τ) 〈[ac(τ), a
†
c]〉 ,where we have used that the system is assumed to be in equilibrium and hene the Green's funtions onlydepend on a single time (atually the time di�erene τ = t− t′), see e.g. [28, p. 89℄. As the Hamiltonianonly ontains quadrati terms, and thus does not generate the in�nite hierarhy of oupled equations,

Ar
cc(τ) an be determined exatly using the Heisenberg equation of motion. This is a textbook exerise(see e.g. [28, p. 143℄ for the same model for eletrons) and will therefore not be repeated. For one-timefuntions, as Ar

cc(τ), it is often advantageous to go into the frequeny domain and we employ the followingtime Fourier transform de�nition
f(ω) =

∫ ∞

−∞
dtei(ω+iη)tf(t), f(t) =

∫ ∞

−∞

dω

2π
e−iωtf(ω), (5.1)where η = 0+ is a positive in�nitesimal that ensures the existene of the Fourier transform. Physially itan be seen as adding arti�ial damping to the system motivated by the fat that in real physial systemsno orrelations lasts forever. It will however be replaed by a damping mehanisms in the physial model.The retarded Green's funtion for the avity mode is given by

Ar
cc(ω) =

1

~ω − ~ωcav − Σr
cc(ω)

, Σr
cc(ω) =

∑

l

|Tl|2
~(ω − ωl + iη)

,where Σr
cc(ω) is the retarded self-energy. The self-energy an be written in terms of its real and imaginaryparts Σr

cc(ω) = ~Λr
cc(ω)− i~Γr

cc(ω), where ~Λr
cc(ω) orresponds to an energy shift and Γr

cc(ω) to an inverse59



Approximations Equations of Motionlifetime. If we assume the self-energy to be frequeny independent a Fourier transform bak to the timedomain yields
Ar

cc(τ) = −i~−1θ(τ)e−i(ωcav+Λr
cc)τe−Γr

ccτ ,learly showing a renormalization of the energy and the aquisition of a �nite lifetime when omparingto its free ounterpart given by A0,r
cc (τ) = −i~−1θ(τ) exp(−iωcavτ). If we further assume that only thenew quasi-avity mode is spatially resonant with the eletroni transitions in the QD, we an neglet theleaky modes and only treat them impliitly as a reservoir for the quasi-avity mode and simply use thequasi-avity mode with a �nite lifetime (negleting the unimportant energy shift). The free Hamiltonianfor the avity photons thus redues to

H0,rad = ~ωcava
†a, (5.2)where the subsript  has been dropped on the operators. To take into aount the �nite lifetime of thephotons in the avity, all avity photon Green's funtions should be dressed with the deay rate given by

ωcav/Q, with Q = ωcav/Γ
r
cc being the usual Q-fator of the avity. In the density of states piture thisseries of approximations yields a Lorentzian shaped avity with a width proportional to ~ωcav/Q in energyunits. This approah is ommonly used in the literature, see e.g. [66℄.Interating HamiltoniansNow we move on to disuss the many-body interation Hamiltonians of the system. We start with eletron-eletron Coulomb interation given in general by eq. (3.16). The only limitation we will put on thisHamiltonian is the inability to satter partiles aross the band gap, whih has already been disussed insetion 4.3.1. We neglet these proesses due to their very non-resonant nature and hene the Coulombmatrix element aquire two delta funtions in the band indexes

Vν4ν3,ν1ν2 = V b4b3,b1b2
α4α3,α1α2

× δb4,b1δb3,b2 , (5.3)where the spin index, σ, has been absorbed into the spatial index, α. It is illustrative to write out thesums over the band indexes in the expression for He−e expliitly
He−e =

1

2

∑

α1α2
α3α4

{
V cc,cc

α4α3,α1α2
c†c,α4

c†c,α3
cc,α2cc,α1 + V vv,vv

α4α3,α1α2
c†v,α4

c†v,α3
cv,α2cv,α1

+V cv,cv
α4α3,α1α2

c†c,α4
c†v,α3

cv,α2cc,α1 + V vc,vc
α4α3,α1α2

c†v,α4
c†c,α3

cc,α2cv,α1

}
.The two �rst terms desribe intra-band proesses ourring in the ondution and valene bands respe-tively. The two last terms desribe inter-band proesses where partiles in eah band satter on eah other,but remains in their respetive bands. The inter-band proesses give rise to exitoni e�ets well knownfor their importane in semiondutor optis. It should also be noted that this form of the Coulomb inter-ation onserves the number of partiles in eah band, hene it does not ause reombination of eletronsand holes.As argued in the previous setion, we need only onsider LO phonons in the interation between eletronsand phonons. The interation Hamiltonian between eletrons and dispersionless long-wavelength LOphonons is often desribed by the so-alled Frölih Hamiltonian [24, p. 44℄

He−LO =
∑

q

M

qV
1
2

ρ(q)(b†−q + bq), (5.4)where q is the phonon wavevetor, ρ(q) is the Fourier transformed of the eletron density operator, and Vis the quantization volume. The square of the oupling onstant M is given by
M2 =

e2~ωLO

2

(
1

ε∞
− 1

ε

)

=
e2~ωLO

2

1

ε∗
,60



Equations of Motion Approximationswhere ~ωLO is the LO phonon energy and ε (ε∞) is the low frequeny/bakground (high frequeny)dieletri onstant. This interation Hamiltonian an be derived from the fundamental form, eq. (3.23),but this will not be done here, interested readers an onsult refs. [24, 31℄. The Fourier transformed of theeletron density operator is obtained from its de�nition ρ(r) = ψ†(r)ψ(r) and using the spatial Fouriertransform in eq. (4.12), giving
ρ(q) =

∫

dre−iq·rρ(r) =
∑

νν′

〈ν|e−iq·r|ν′〉 c†νcν′ .Inserting this into eq. (5.4) yields
He−LO =

∑

νν′q

Mq
νν′c

†
νcν′(b†−q + bq), Mq

νν′ =
M

qV
1
2

〈ν|e−iq·r|ν′〉 ,whih is the desired form of the interation. As with the Coulomb interation between eletrons we limitthe LO phonons to only ause intra-band transitions, whih is justi�ed due to the non-resonant natureof an inter-band transition aused by a LO phonon. This does however not mean that the LO phononsannot a�et eletroni inter-band quantities, suh as the optial polarization.The interation between the eletrons and avity photons is given by eq. (3.19), whih for the quasi-avitymode introdued in eq. (5.2) redues to
He−rad =

∑

νν′

~gνν′c†νcν′(a† + a). (5.5)We an simplify this interation further by applying the rotating wave approximation (RWA), in whihterms desribing very non-resonant proesses where an eletron is exited aross the bandgap and a pho-ton is emitted (and the opposite) are negleted. This approximation is well justi�ed when the ouplingonstants ~gνν′ are small ompared to the avity energy ~ωcav. In the RWA we get the following Hamil-tonian
He−rad =

∑

αα′

~gαα′(c†c,αcv,α′a+ a†c†v,αcc,α′), (5.6)where we have assumed that gcv
αα′ = gvc

αα′ = gαα′ and again the spin index has been absorbed into thespatial index. The RWA is investigated further in appendix A.2.The interation Hamiltonian for the lassial exitation pulse is given by eq. (3.21) whih an be used inthis general form. The RWA an however also be applied to this interation, to whih end we write thelassial �eld as
Ecl(t) =

1

2
E0(t)(e

iω0t + e−iω0t),where E0(t) is an envelope funtion and the exponentials set the arrier frequeny of the pulse. Unlessotherwise stated the pulse envelope will be a Gaussian of the form E0(t) = E0 exp(−((t− t0)/∆t)2), with
∆t being the temporal width and t0 the peak position. The positive and negative exponentials in Ecl(t) ba-sially orrespond to the photon operators disussed above, i.e. emission and absorption of photons, henethe same arguments apply and we an immediately write down U(t) in the RWA

U(t) =
∑

αα′

dαα′

E0(t)

2
(e−iω0tc†c,αcv,α′ + eiω0tc†v,αcc,α′), (5.7)where again we assume that dcv

αα′ = dvc
αα′ = dαα′ and absorb the spin index into the spatial.The reason for applying the RWA to the Hamiltonians involving the various optial �elds is purely pratial.If the RWA was not applied, there would appear terms in the equations of motion osillating on timesaleson the order of two times the inverse optial frequenies, whih in our ase are tuned to the band gap ofaround 1 eV. These timesales are muh smaller than any other in the system and hene set the lower limitin the time disretization. Furthermore the e�et of inluding these highly non-resonant ontributions isusually small. Thus it is of great pratial importane to apply the RWA and this will be done for mostalulations in this thesis. 61



Approximations Equations of Motion5.2.2. Trunation of self-energiesApproximations applied to the Hamiltonians are the most fundamental restritions one an impose on agiven model of a physial system, and these approximations will set the ultimate limit for the validityof our physial model. Unfortunately, we are not done with applying approximations. Any many-bodyinteration Hamiltonian will generate in�nitely many terms in its orresponding self-energy, a situationthat annot be handled in pratie and hene a trunation of the self-energy is needed. The trunationof the self-energy dereases the auray of the quantities alulated using the Green's funtions, asoppose to the exat quantities obtained through exat diagonalization of the Hamiltonian. The hallengeis then to selet the appropriate self-energy, so that ones results has the desired auray needed in agiven appliation. The seletion proess is often guided by physial intuition, experiene, and ertainfundamental onservation laws. However it is not always obvious whih self-energy diagrams should beused.Notation is a rather important aspet of performing many-body alulations due to the many di�erentquantities one has to keep trak of. We will therefore at this point �x the symbols used for the variousself-energies in a hopefully meaningful fashion. The eletrons interat with every other onstituent of thesystem, inluding themselves, and therefore we need a total of four self-energies whih we will denote bythe following symbols
ΣLO,x

νν′ (t, t′), Σrad,x
νν′ (t, t′), Σee,x

νν′ (t, t′), Uνν′(t).The supersripts LO, rad, and ee refer to interations with phonons, photons, and other eletrons (Coulomb)respetively and Uνν′(t) is the singular self-energy due to the lassial exitation pulse. The self-energiesare presented in their real-time form and x refers to one of the four omponents greater, lesser, re-tarded or advaned. The photons in the avity only interat with eletrons, and as we only onsider asingle quasi-avity mode, only a single symbol is needed for this self-energy and we will use the follow-ing
σx(t, t′).The phonons will be assumed to be in thermal equilibrium at all times and therefore a self-energy is notneeded.Below, we expliitly go through all the self-energies mentioned above, but �rst we make a omment on somegeneral features of the self-energies. All the onsidered self-energies are of lowest order in their respetiveoupling strengths, however they are all made self-onsistent as ditated by the onservation laws2 ofpartile number, momentum, and energy [30℄. The proedure of making a self-energy self-onsistentonsists of replaing free Green's funtions by the orresponding full one, as illustrated diagrammatiallyin appendix A.5. A justi�ation for onsidering only lowest order ontributions will be given for eahself-energy below.The lowest order ontribution to the self-energy from the eletroni Coulomb interation is given byeq. (A.21) and is a singular ontribution, in the sense that it does not depend on two times, but rather asingle time see eq. (2.42). This has the e�et, that it ats as an e�etive one-body interation and not atrue many-body interation. As suh it gives rise to instantaneous renormalizations in the single-partileenergies and external �elds, but does not ause broadening of spetral features. In its self-onsistent formit is equal to the well-known mean-�eld Hartree-Fok (HF) approximation, whih is exatly the form wewill use
Σee,HF

νν′ (t) = i~
∑

ν1ν2

(Vνν2,ν1ν′ − Vνν2,ν′ν1) [G<
ν1ν2

(t, t)− i~−1δb1,vδb2,vδν1,ν2 ]. (5.8)Notie that the ontribution from the full valene band has been subtrated from this self-energy, forwhih reason only diagonal Green's funtions should be subtrated ensured by δν1,ν2 [26, p. 260℄. This2Of ourse a quantity is only onserved if the orresponding symmetry is present in the system. In general in a non-relativistinon-equilibrium system partile number is the only onserved quantity.62



Equations of Motion Approximationsis done as it is inluded in the band struture of the single-partile energies we are using, basially it isontained in the experimentally measured parameters disussed in appendix A.8. This subtration hasthe onsequene that in equilibrium (the unexited semiondutor) the eletroni Coulomb interationwill not ontribute, it will only give ontributions for non-equilibrium situations. The regime of validityfor the HF self-energy is that of low exitation, where only a small number of eletrons are optiallyexited. Beyond the low-exitation regime one has to inlude higher order ontributions to the self-energy to aount for ompliated e�ets like sreening and true Coulomb sattering. It should also benoted that the HF mean-�eld theory does not aount for two-pair or higher order orrelations as e.g.biexitons, see [27, p. 451℄. For ompleteness we mention that the HF self-energy satisfy the followingsymmetry
[Σee,HF

νν′ (t)]∗ = Σee,HF
ν′ν (t), (5.9)whih be shown using the symmetry relations for the lesser Green's funtion eq. (2.32) and those of theCoulomb matrix element eq. (4.9). This symmetry an be useful for formal arguments as well as for savingomputation time in the numeris.In the low exitation regime it is a well established fat [56, p. 222℄ that the dominant sattering mehanismis provided by phonons and therefore these are the main soures of intra-band relaxation and inter-band,as well as intra-band, dephasing. The two lowest order self-onsistent ontributions to the self-energyare given by eqs. (A.30) and (A.29). However as disussed in the previous subsetion we an to a goodapproximation limit our attention to LO-phonons if we keep the temperature above 150 K [63℄, whihyields very signi�ant simpli�ations as will be disussed next.We an make some simpli�ations on the self-energy arising from the LO-phonon interation, due to thesimple fat that we assume the LO-phonons to be dispersionless. Both ontributions to the self-energy,eqs. (A.30) and (A.29), ontain a sum over q and a produt of two Mq

νν′s multiplied by the free phononGreen's funtion. Due to the dispersionlessness of the LO-phonons, their orresponding free Green'sfuntion will not depend on energy and therefore not on q either, meaning that it an be taken outsidethe q sum. The wavevetor sum is therefore limited to run over the Mq
νν′s giving a quantity whih an beonsidered an e�etive matrix element in four eletron indies. Inserting the de�nition of Mq

νν′ into thisquantity gives the following
∑

q

Mq

ν1ν′
1
M−q

ν2ν′
2

= M2 1

V

∑

q

1

q2
〈ν2|eiq·r|ν′2〉 〈ν1|e−iq·r|ν′1〉 ,by omparing this to the Coulomb matrix element in the form of eq. (4.14), we see that these quan-tities are equal3, apart from a few multipliative onstants4. We end up being able to write [32, p.72℄

∑

q

Mq

ν1ν′
1
M−q

ν2ν′
2

=
M2ε

e2
Vν2ν1,ν′

2ν′
1

=
~ωLO

2ε∗/ε
Vν2ν1,ν′

2ν′
1
. (5.10)This result saves a lot of omputation time in two aspets. Firstly we only need to alulate the Coulombmatrix elements, and not the phonon matrix elements, whih is very fortunate as these two are themost time onsuming of all the input matrix elements. Seondly, and more importantly, the q sumdoes not have to be arried out expliitly in the numerial solution of the equations of motion for theGreen's funtions, whih results in a very signi�ant speed up. With this simpli�ation we write the Fok3However, it should be noted that formally the wavevetor sum for the phonons is restrited to the �rst Brillouin zone, butwe will assume the matrix elements Mq

νν′ deay su�iently fast so that we may extend the sum to all wavevetors.4In the atual simulations one should be mindful of the fat that the two dieletri onstants in eq. (5.10) are for the bulkmaterial in whih the LO-phonons live, whereas the eletronis wavefuntions are often alulated for another materialas usually we onsider heterostrutures. This means that the pure Coulomb matrix elements are often alulated with adi�erent dieletri onstant and hene a simple resaling is needed. 63



Approximations Equations of Motionontribution using the ontour version eq. (A.30) and the appropriate Langreth rule from table 2.1 asfollows5
Σ

LO,F,≷
νν′ (t, t′) = i~

∑

ν1ν2

~ωLO

2ε∗/ε
Vν2ν,ν′ν1G

≷
ν1ν2

(t, t′)D0,≷
LO (t, t′), (5.11)where D0,≷

LO (t, t′) is free LO-phonon Green's funtion de�ned in eq. (A.35). This self-energy has thefollowing symmetry under omplex onjugation
[

Σ
LO,F,≷
νν′ (t, t′)

]∗
= −Σ

LO,F,≷
ν′ν (t′, t),shown using the same relations as eq. (5.9). This relation is useful for simplifying the sattering termsarising from the eletron-LO-phonon interation, as done in setion 5.4.1, or to relate values of the self-energy above and below the time diagonal, whih ould save some omputational e�ort. The seond �rstorder self-energy is the Hartree ontribution, whih from eq. (A.29) and using the Langreth rules, see table2.1, has the following real time expression

ΣLO,H
νν′ (t) = −i~

∫ t

−∞
dt′
∑

ν1ν2

~ωLO

2ε∗/ε
Vν2ν,ν1ν′

[
G<

ν1ν2
(t′, t′)− i~−1δb1,vδb2,vδν1,ν2

]
D0,r

LO(t, t′), (5.12)where D0,r
LO(t, t′) is the free retarded Green's funtion of the LO-phonons and where the ontribution fromthe full valene band has been subtrated for the same reasons as with eq. (5.8). As with the singularself-energy for the eletron-eletron interation this singular self-energy satisfy a symmetry relation similarto eq. (5.9), namely that under under omplex onjugation we get

[ΣLO,H
νν′ (t)]∗ = ΣLO,H

ν′ν (t),whih is useful in the numeris and for ertain formal arguments. The justi�ation for negleting higherorder self-energies in the eletron-LO-phonon oupling, is that we restrit ourselves to treating materialswith weak oupling onstants, suh as GaAs [26, p. 262℄.We will now onsider the eletroni self-energies arising from the eletron-photon interation. Due to theformal equivalene of the eletron-photon and eletron-phonon interation Hamiltonians, see setion 3.2.3,their orresponding self-energies will also be equal, with the appropriate replaement of symbols of ourse.We will therefore simply state these, as basially all the omments made to the phonon ase applies to thephoton ase as well. From the Hamiltonian eq. (5.5) and eq. (A.23) we obtain the Fok ontribution forthe photons
Σ

rad,F,≷
νν′ (t, t′) = i~

∑

ν1ν2

~gνν1~gν2ν′G≷
ν1ν2

(t, t′)A≷(t, t′), (5.13)whih as for the phonons has the following symmetry
[

Σ
rad,F,≷
νν′ (t, t′)

]∗
= −Σ

rad,F,≷
ν′ν (t′, t). (5.14)The Hartree ontribution from the photons is obtained from eq. (A.22)

Σrad,H
νν′ (t) = −i~

∫ t

−∞
dt′
∑

ν1ν2

~gνν′~gν2ν1

[
G<

ν1ν2
(t′, t′)− i~−1δb1,vδb2,vδν1,ν2

]
A

r(t, t′), (5.15)with the symmetry relation
[Σrad,H

νν′ (t)]∗ = Σrad,H
ν′ν (t).5In this setion we only present the greater and lesser real time omponents of the self-energies, as it is these that are usedin the non-equilibrium simulations whih are the main fous. If other real omponents are needed, as in equilibrium, theywill be presented in their respetive setions.64



Equations of Motion EquilibriumRestriting ourselves to the lowest order self-energies for the eletron-photon interation we limit thevalidity of our theory to relatively weak eletron-photon oupling onstants.Now we turn to the photoni self-energy arising from the interation with the eletrons. To stay onsistentwith the eletroni self-energies desribed above, we keep only the lowest order self-energy diagram in theexpansion of the photoni Dyson equation. This is alled the pair-bubble diagram due to its diagrammatiappearane, see �gure A.8. The ontour version is given by eq. (A.27) and with the use of the Langrethrules we get the real time omponents
σ≷(t, t′) = −i~

∑

ν1ν′
1

ν2ν′
2

~gν1ν′
1
~gν2ν′

2
G

≷
ν′
2ν1

(t, t′)G≶
ν′
1ν2

(t′, t), (5.16)whih satisfy a symmetry relation similar to that of the eletroni self-energies
[

σ≷(t, t′)
]∗

= −σ≷(t′, t). (5.17)5.3. EquilibriumIn this setion we deal with the Green's funtion theory desribing the equilibrium properties of oursystem. It is important to know these for two reasons. The �rst and most relevant for the present thesis isthe need to supply the GKBA, setion 2.5, with suitable retarded and advaned Green's funtions. Eventhough one may employ free Green's funtions in the GKBA, the result is often very poor and indeed forour system it resulted in unphysial populations for all onsidered situations. Fortunately it turns out[37, 38, 41℄ that the equilibrium Green's funtions provide exellent approximations for the retarded andadvaned Green's funtions entering the GKBA. More generally the solution of the equilibrium system isneeded in order to provide any set of non-equilibrium equations with the orret initial onditions, whih isthe seond reason for onsidering the equilibrium Green's funtions. The orret set of initial onditions isneeded in order for the initial/equilibrium orrelations to enter in the non-equilibrium time development,as otherwise these will be missing for the rest of the time evolution [26℄.5.3.1. Equilibrium spetral Green's funtionsA general onsequene of a system being in thermal equilibrium is that its Green's funtions beomefuntions of a single e�etive time (the time di�erene), rather than the two-time dependene in non-equilibrium. This is indeed expeted on an intuitive level, as a system in thermal equilibrium an-not depend more on one time than the other, and hene the only "real" time oordinate must be thetime di�erene. This is easily shown formally, as for a time-independent Hamiltonian the Heisenbergtime-dependene is given expliitly by O(t) = eiHt/~Oe−iHt/~. For a greater-like quantity we maywrite
〈Oα(t)O†β(t′)〉 = 1

Tr[e−βH ]
Tr
[

e−βHeiHt/~Oαe
−iHt/~eiHt′/~O†βe

−iHt′/~

]

=
1

Tr[e−βH ]
Tr
[

e−βHeiH(t−t′)/~Oαe
−iH(t−t′)/~O†β

]

= 〈Oα(t− t′)O†β〉 , (5.18)where we used that the trae operation is invariant under yli permutations, Tr[AB] = Tr[BA], andthat the thermal and time operators ommute, also the hemial potential is assumed to be zero. Thesame an be shown for a lesser-like quantity and hene all the various Green's funtions an be written asfuntions of the di�erene time, G(t, t′) = G(t− t′) = G(τ). 65



Equilibrium Equations of MotionIn the following we will fous on the retarded Green's funtion as this objet is diretly related to thespetral properties of an equilibrium system, further it is known from the equilibrium Green's funtionformalism that only a single Green's funtion is needed6 and this is often hosen to be the retarded one. Wewill therefore aim for a formulation in terms of the retarded Green's funtion within the non-equilibriumformalism. A natural starting point is the di�erene (equilibrium) time limit of the equation of motionfor the retarded Green's funtion, eq. (2.51),
i~∂τG

r
νν′(τ) = δ(τ)δνν′ + ~ων′Gr

νν′(τ) +

∫ t

t−τ

dt1
∑

ν1

Gr
νν1

(t− t1)Σr
ν1ν′(τ − [t− t1]). (5.19)In the equation of motion above the step funtion from the de�nition of the retarded quantities has beenused to limit the memory integral. In this version we do not onsider any ontributions from the singularself-energy. This is orret for the external potential as this is not present in equilibrium. Furthermore,the instantaneous self-energy from the Coulomb interation is by onstrution zero in equilibrium7, seeeq. (5.8) and so are the singular ontributions arising from the Hartree self-energies from the LO-phononsand avity photons, eqs. (5.12) and (5.15) respetively. We an simplify a bit further by introduing thefollowing transformation of the memory time t1

τ1 = t− t1 ⇒ dτ1 = −dt1,
∫ t1=t

t1=t−τ

dt1 = −
∫ τ1=0

τ1=τ

dτ1 =

∫ τ

0

dτ1,through whih we may write the above equation as
i~∂τG

r
νν′(τ) = δ(τ)δνν′ + ~ων′Gr

νν′(τ) +

∫ τ

0

dτ1
∑

ν1

Gr
νν1

(τ1)Σ
r
ν1ν′(τ − τ1). (5.20)This equation will form the starting point for all spetral funtions onsidered in the rest of the re-port.5.3.2. The polaronIn this setion we will formulate the theory for the situation where the self-energy in eq. (5.20) desribesthe interation between eletrons and dispersionless LO-phonons. The quasi-partile that forms from thisinteration is usually alled a polaron [24, p. 497℄.LO-phonons ause only intra-band transitions and as no inter-band polarizations are indued otherwise,all Green's funtions must be diagonal in the band index. It has further been found [41, 61℄ to be a goodapproximation to only inlude Green's funtions fully diagonal in both band and all other indies. This isa huge simpli�ation omputationally and further we an simplify the notation for all quantities to onlyontain a single index (two in pratise as we write the band expliitly), hene we an perform the followingreplaement everywhere

Gbb′,x
αα′ (τ) = Gb,x

α (τ)δbb′δαα′ , Σbb′,r
αα′ (τ) = Σb,r

α (τ)δbb′δαα′ , (5.21)where b is the band index and α ontains all other quantum numbers. The fat that the self-energy alsobeomes diagonal in its outer indies is a onsequene of the matrix struture of the Dyson equationeq. (5.20).We onsider only the Fok ontribution to the lowest order self-energy, as the Hartree term is zero asmentioned in the disussion below eq. (5.19). From eq. (A.30) and the appropriate Langreth rule from6The fat that only a single Green's funtion is needed in equilibrium an be realized using the �utuation-dissipationtheorem that links the di�erent Green's funtions together [26, p. 45℄.7The equal-time lesser Green's funtion that appears in eq. (5.8) beomes proportional to the mean thermal oupation inequilibrium, whih is zero for the ondution band and unity for the valene band so that 〈c†b,αcb,α〉 − δb,v = 0.66



Equations of Motion Equilibriumtable 2.1 we get
Σb,LO,F,r

α (t, t′) = i~
∑

α1

~ωLO

2ε∗/ε
V bbbb

α1ααα1

×
{

Gb,<
α1

(t, t′)D0,r
LO(t, t′) +Gb,r

α1
(t, t′)D0,r

LO(t, t′) +Gb,r
α1

(t, t′)D0,<
LO (t, t′)

}

,where we have used eq. (5.21) and eq. (5.3) to remove most of the sums. To proeed further we will makethe assumption that no eletrons are thermally exited aross the bandgap, hene we onsider what is some-times referred to as an eletron-hole vauum. This assumption is well satis�ed for the lass of III-V semion-dutors we are onsidering all having band gaps well above thermal energies typially used in experiments(26 meV for room temperature). This allows us to assume that [26, p. 296℄
Gc,<

α (t, t′) = 0, (5.22)as Gc,<
α (t, t′) is related to the probability of deteting an eletron in the same state at time t and t′,and in an empty band this probability is zero. More formally this an be realized by onsidering thede�nition of the above Green's funtion whih is Gc,<

α (t, t′) = i~−1 〈c†c,α(t′)cc,α(t)〉, this Green's funtionis proportional to the probability of removing an eletron in state α in the ondution band at time t andputting it bak at time t′, where t′ < t might be the ase. By assumption the brakets desribe a systemwhere no eletrons are present in the ondution band, hene the annihilation operator at time t will seea vauum and the probability for this proess will be zero. For the eletrons in the valene band it mustsimilarly hold that
Gv,>

α (t, t′) = 0,as the Gv,>
α (t, t′) is related to the probability of deteting a hole at times t and t′ whih is zero in a fullband. As above a more reason an be seen by onsidering the de�nition of the greater Green's funtion

Gv,>
α (t, t′) = −i~−1 〈cv,α(t)c†v,α(t′)〉, where an eletron is reated in the valene band at time t′ and removedat time t. By assumption the probability for this proess is zero in our full valene band due to the Paulipriniple. From this onlusion and from the de�nition of the retarded Green's funtion, eq. (2.24), weget

Gv,<
α (t, t′) = −Gv,r

α (t, t′). (5.23)Considering now the retarded self-energy for the ondution band: The �rst term is zero through eq. (5.22),for the seond term we use the relation8 Dr = D>−D< for the LO phonon Green's funtions, whih aftera anelation yields
Σc,LO,F,r

α (t, t′) =
∑

α1

Gc,r
α1

(t, t′)Dcc,>
αα1

(t, t′).For the valene band simply use eq. (5.23) in the �rst term after whih this and the seond one anelsgiving
Σv,LO,F,r

α (t, t′) =
∑

α1

Gv,r
α1

(t, t′)Dvv,<
αα1

(t, t′).In both of the above self-energies we have introdued an e�etive LO-phonon Green's funtion givenby
Dbb′,≷

αα1
(t, t′) = i~

~ωLO

2ε∗/ε
V b′bb′b

α1ααα1
D

0,≷
LO (t, t′)

=
~ωLO

2ε∗/ε
V b′bb′b

α1ααα1

{

NLOe
±iωLO(t−t′) + (NLO + 1)e∓iωLO(t−t′)

}

, (5.24)8Even though the phonon Green's funtion is not de�ned in exatly the same way as the eletroni Green's funtions, thisrelation still holds as it does for eletrons in the retarded Green's funtion de�nition eq. (2.24). See [24, p. 121℄. 67



Equilibrium Equations of MotionwhereD0,≷
LO (t, t′) is found from eq. (A.35), ~ωLO is the onstant LO phonon energy, andNLO = 1/(exp(~ωLO/kBT )− 1)is the thermal oupation fator of the LO-phonons. In the atual simulations this Green's funtion is mul-tiplied with a deaying exponential exp(−τ−1

LO|t− t′|), to simulate the �nite lifetime of the LO-phonons, seesetion 5.2.1. For ompleteness and later use we mention that Dbb′,≷
αα1 (t, t′) satis�es the following symmetryrelations

Dbb′,≷
αα1

(t, t′) = Dbb′,≶
αα1

(t′, t), (5.25)and under omplex onjugation
[

Dbb′,≷
αα1

(t, t′)
]∗

= Dbb′,≶
α1α (t, t′) = Db′b,≶

αα1
(t, t′), (5.26)shown using the symmetries of the Coulomb matrix element, see eq. (4.9), and those of D0,≷

LO (t, t′), seeeq. (A.36). We an now write down the equation of motion for the retarded Green's funtion
i~∂τG

b,r
α (τ) = δ(τ) + ~ωb

αG
b,r
α (τ) +

∫ τ

0

dτ1G
b,r
α (τ1)

∑

α1

Gb,r
α1

(τ − τ1)Dbb,λb
αα1

(τ − τ1), (5.27)where λc = > and λv = < is a band spei� index. We note that in the present approximation the bands de-ouple ompletely and an be solved independently simplifying the numeris and interpretation. The initialondition for Gb,r
α (τ) an be determined from its de�nition eq. (2.24) as follows

Gb,r
α (0) = −i~−1θ(0) 〈[cb,α(t), c†b,α(t)]+〉 = −i~−1/2, (5.28)where the equal-time anti-ommutator has been evaluated to unity and we used that θ(0) = 1/2 perde�nition.Eq. (5.27) is in its present form not very suitable for numerial solution, this is due to the presene of thedelta funtion in the �rst term and the free energy in the seond term. The delta funtion is hard to repre-sent numerially while maintaining its essential features and the underlying fast osillations from the freeevolution will require a very �ne time disretization. To avoid having to deal with these issues we performa transformation of the retarded Green's funtion [67℄ given by the following

Gb,r
α (τ) = −i~−1θ(τ)e−iωb

ατ
G

b
α(τ), (5.29)whih eliminates the fast osillations through the exponential and the delta funtion through the stepfuntion. The transformation is just a slowly-varying envelope representation used in many areas of physis.The initial ondition for Gb

α(τ) is found from that of Gb,r
α (τ) and we simply get

Gb
α(0) = 1.Transformation of the equation of motion, eq. (5.27), is done using simple substitution, the hainrule for thetime derivative, and the fat that ∂τ (θ(τ)) = δ(τ). This yields the following equation9
∂τGb

α(τ) = −~
−2

∫ τ

0

dτ1G
b
α(τ1)

∑

α1

ei[ωb
α−ωb

α1
](τ−τ1)Gb

α1
(τ − τ1)Dbb,λb

αα1
(τ − τ1). (5.30)Numerial examplesTo illustrate the e�et LO phonons has on the spetral properties of the eletrons, we give a numerialexample whih further serves as future referene for the non-equilibrium simulations performed later in9The time derivative in eq. (5.30) has a step funtion multiplied onto it, θ(τ)∂τ G

b,r
α (τ), from the transformation. Howeveras it is only di�erent from 1 for τ < 0, whih we do not onsider, and for τ = 0, where the RHS of zero, we have removedit from the equation.68



Equations of Motion EquilibriumQuantity Value Unit Quantity Value Unit Quantity Value Unit
h 1 nm ~ωc

1 665.9697 meV ~ωLO 36.8 meV
d 1.25 nm ~ωc

2 702.1410 meV ε∞/ε0 10.9 1
r1 15 nm ~ωc

3 702.1410 meV ε/ε0 12.5 1
r2 7.5 nm ~ωv

1 -563.8878 meV τLO 5 ps
R0 50 nm ~ωv

2 -588.3320 meV
Lz 60 nm ~ωv

3 -588.3320 meVTable 5.1.: Table presenting various parameters: (left) geometrial parameters of the QD, (mid) free single-partileof the bound states in the QD, and (right) parameters desribing LO-phonons in a bulk GaAs system.the thesis. For simpliity we fous on a QD with few bound states and to further simplify we neglet theWL ontinuum. We stress that the negletion of the WL is not justi�ed for the temperature range we willbe onsidering, namely the range above 150 K where aousti phonons an be negleted [63℄, whih arenot inluded in the present theory. For temperatures near room temperature it an be expeted, and hasbeen demonstrated [42℄, that eletrons will be thermally exited into the WL ontinuum and hene thesestates will beome important for the dynamis. In the low temperature regime it is, on the other hand,expeted to be a muh better approximation to neglet the WL ontinuum, as here the thermal exitationis expeted to be smaller [68℄.To obtain only a few bound states, the size of the QD has to be relatively small and it turns out thatthe geometri parameters shown in table 5.1 (left) (ompare with �gure 4.2) produes a QD with threelearly bound states in both ondution and valene band. The energies of these states are shown in table5.1 (mid), while the orresponding wavefuntions are very similar to those presented in setion 4.2. Allmatrix elements used in the simulations to ome are alulated using these states. A shemati of thelevel struture is shown in �gure 5.2 where also the notation of the states is indiated, the rossed areasabove and below the dots represents the WL ontinuum whih we neglet. We note that the spin degreesof freedom of the eletron are omitted in the following, this is not an approximation as the eletron-phonon interation we are onsidering is diagonal in spin and hene does not ouples the spin up anddown subspaes. The parameters desribing the LO-phonons are shown in table 5.1 (right) and are takenas those of a bulk GaAs system, as this is what our embedding barrier material onsists of [31℄, theLO-phonon lifetime has been taken from the literature [41, 42℄.The governing equation eq. (5.30) was solved in the time domain using the methods desribed in ap-pendix A.4, but the results are presented in the frequeny domain as this domain is usually more familiarwhen disussing spetral properties. We use the Fourier transform de�ned in eq. (5.1) with η = 0. Itshould be noted that the system onsisting of a single eletroni state oupled to a ontinuum of phononmodes an be solved exatly. This model is known as the independent boson model (IBM) [24, p. 285℄, andwe will sometimes refer to this model in the following disussion, as it an be useful in the interpretationand veri�ation of the theory developed here.In �gure 5.3 the spetral funtions of the various states are shown at four di�erent temperatures, for theondution band in the top �gure and the valene band in the bottom �gure. The spetral funtion (orspetral density) is de�ned as
Ab

α(ω) = −2Im
[
Gb,r

α (ω)
]
, (5.31)where Gb,r

α (ω) is the Fourier transformed of Gb,r
α (τ). The spetral funtion is very similar to the usualdensity of states, see eq. (2.4), and therefore has a rather physially intuitive interpretation whih isthe reason for showing this quantity. When omparing the polaron densities to that of a free partile,

A0,b
α (ω) = 2πδ(~ω − ~ωb

α) marked by the vertial lines, the di�erene is very signi�ant. The most strikingdi�erene when omparing to normal Lorentzian lineshapes is the formation of the phonon sidebandssituated approximately one LO-phonon energy apart. These form due to the onstant energy of the LO-phonons and are signatures of states where a number phonons have been absorbed or emitted. A small69
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Figure 5.2.: Shemati illustration of the level struture of the QD used in the polaron simulations.energy renormalization is also indued by the phonons, usually alled the polaron shift, it is negative forondution band states and positive for the valene band states. This di�erene of sign is expeted arisefrom the fat that for the ondution band states we are really onsidering holes (unoupied states),while for the valene band we are onsidering eletrons (oupied states) so a di�erene is de�nitelyexpeted.Another peuliar feature is the multipeak lusters near eah of the main peaks, as oppose to just a singlepeak at eah LO-phonon energy separation that would naively be expeted from the IBM. It turns out thatthese multipeak struture are due to the oupling between the bound states in the QD, mediated by theLO-phonons and as suh it is an hybridization e�et. To support this laim the spetral funtions have alsobeen alulated for the unoupled system, i.e. where there is no intra-band oupling between states due tophonons, the result is shown in �gure 5.4 and we observe a simple series of single peaks as expeted on thegrounds of the IBM. The relatively large di�erene in the spetrum for the ondution and valene bandis solely due to the di�erene in transition energies within eah band, as the phonon matrix elements arevery similar for the two. For the ondution band the transition energy is ~ωc
21 = 36.17 meV while for thevalene band we obtain ~ωv

12 = 24.44 meV. This shows that the eletroni transitions in the ondutionband are very lose to resonant with an LO-phonon energy, while the valene band transition is not nearlyas resonant. Thus a stronger interation between the ondution band states and the LO-phonons isexpeted, whih is manifested in the three-peak struture many of the main peaks exhibits. The enterpeak is the one whih is also present without oupling to other states, while the "shoulder" peaks arise dueto a hybridization splitting seen many plaes in quantum physis. The three-peak struture is ompletelyabsent for the valene band spetrum, where the hybridization peak is well separate from the phonon peak,due to the lak of resonane. The main phonon peaks in the valene band all have a small "shoulder" onone of their sides, this is not a sign of hybridization as it also appears in the deoupled spetra in �gure 5.4.From the IBM we know that the deoupled solutions should no exhibit any "shoulders" but should simplybe a series of Lorentzians, we therefore take the presene of these "shoulders" as unphysial artifatspresent due to the approximations we have performed [69℄. The lak of resonane is also seen through thewidth of the peaks in the valene band, these are more narrow than those in the ondution, indiating alonger lifetime as they do not ouple as e�iently to the phonon reservoir.70
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Figure 5.3.: Plots of the spetral funtion, eq. (5.31), for the eletroni states. 71



Equilibrium Equations of Motion

10
−5

10
−3

10
−1

10
1

S
pe

ct
ra

l d
en

si
ty

 [1
/m

eV
]

 

 
150 K
200 K
250 K
300 K

−2 −1 0 1 2 3 4

10
−5

10
−3

10
−1

(h̄ω − h̄ωc
1)/h̄ωLO

Ac
1(ω)

Ac
2/3(ω)

10
−5

10
−3

10
−1

10
1

S
pe

ct
ra

l d
en

si
ty

 [1
/m

eV
]

 

 
150 K
200 K
250 K
300 K

−3 −2 −1 0 1 2

10
−5

10
−3

10
−1

(h̄ω − h̄ωv
1 )/h̄ωLO

Av
1(ω)

Av
2/3(ω)
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Equations of Motion EquilibriumAs we go through the various series for dereasing temperatures we notie that the peak height eitherinreases or dereases, depending on whether we onsider the high or low energy side with respet to thefree energy, further the trend is reversed when going between bands. For the valene band the high energyside peaks derease and the low energy side peaks inrease in height, while generally narrowing in width.This observation is taken as evidene that the high energy side orresponds to absorption of LO-phonons,as generally lowering the temperature dereases the number of phonons, orrespondingly the low energyside must orrespond to emission of LO-phonons. The reason why the emission peaks do not derease inheight as the temperature is lowered, is due to the ontribution from the vauum �eld, i.e. spontaneousphonon emission. This overall piture of the peaks agrees well with the physial intuition that if an eletronabsorbs a LO-phonon its energy must inrease, while emission must lower its energy. For the ondutionband the situation is reversed, whih is expeted to arise from the fat that we are dealing with holes(unoupied states) rather than eletrons. It is easily seen formally that we onsider hole properties whensolving for the retarded Green's funtion, this is so as for the ondution band G< = 0, eq. (5.22), andhene per de�nition Gr = G>, where G> desribes the properties of unoupied states, i.e. holes. A moreintuitive physial reason has however not been found.When omparing the above results to similar alulations in the literature [41℄ we �nd exellent agreementon the overall struture of the spetrum. Furthermore it seems that the main e�et of inluding a WL,is to broaden all spetral features and many of the �ne struture features survives inlusion of the WL.As a further veri�ation of our implementation, we ompared the results of our numerial ode to anumerially exat solution, that an be obtained in the ase of a free (non-self-onsistent) self-energy. Theresult of the omparison was an exellent agreement between the two approahes, verifying the numerialode. As a losing note we mention that all the onsidered spetral funtions satisfy the sum rule [28, p.130℄
∫
d(~ω)

2π
Ab

α(~ω) = 1,whih provides further veri�ation of our implementation and on�rms that the partile number is on-served after turning on the LO-phonon interation, by virtue of the self-onsistent self-energy we haveemployed.5.3.3. The polaritonIn this setion we will formulate the theory where the self-energy in eq. (5.20) desribes the interationbetween eletrons and photons in a single avity mode.For the ase of the LO-phonon interation treated using non-equilibrium Green's funtions muh literatureis available, but this is not the ase for the photon, at least to the knowledge of the author. This means thatwe must take a more expliit approah for �nding out whih elements of the retarded Green's funtion weneed to solve for. Our starting point is the Fok self-energy arising due to the eletron-photon interation,whih in the RWA and ontour time is given by eq. (A.25). It should be noted that the Hartree self-energyis zero, as we assume all optial inter-band polarizations to vanish10 in equilibrium, see eq. (A.26) oreq. (5.41). The avity photons we onsider have energies near the band gap hene we will assume thatthey only ause inter-band transitions, i.e. are band o�-diagonal in their matrix element. Furthermore wewill assume that pairs of states in the ondution and valene band exists, whih are spatially similar, sothat the optial matrix elements beome diagonal in the in-band quantum number α, see setion 4.4. Allin all we may write the optial matrix element gbb′

αα′ = gαδα,α′(1− δb,b′), further suggesting that it may bea good approximation to only treat Green's funtions diagonal in the in-band quantum number α. Thissimpli�ation is further supported by the observation that only fully diagonal retarded Green's funtions10Although this statement might seem trivial, it in fat amounts to showing that ρcv
α (t) = 〈c†v,α(t)cc,α(t)〉 =

〈c†v,α(t − t)cc,α〉 = 〈c†v,αcc,α〉 = 1
Tr{e−βH}

Tr
{

e−βHc†v,αcc,α

} is zero. In the presene of interation mehanisms thatoperate aross the band, suh as the eletron-photon interation, this is not possible and it will remain an assumption,but for most wide band gap semi-ondutors a rather good one. 73



Non-equilibrium Equations of Motiondo initially have a non-zero value and hene soure terms are needed for these to beome non-zero, whihare small or zero aording to the arguments given above. With the use of these arguments, eq. (A.25),and the Langreth rules of table 2.1 we may write the retarded self-energy as
Σbb′,rad,F,r

α (t, t′) = i~|~gα|2 × {
[
Gvv,<

α (t, t′)Ar(t, t′) +Gvv,r
α (t, t′)Ar(t, t′) +Gvv,r

α (t, t′)A<(t, t′)
]
δb,c

+
[
Gcc,<

α (t, t′)Aa(t′, t) +Gcc,r
α (t, t′)A<(t′, t)

]
δb,v } δb,b′ .As for the phonons we will assume that no eletrons are thermally exited and hene that eqs. (5.22)and (5.23) ontinue to be valid when onsidering photons also, therefore we may simplify this self-energyto

Σbb′,rad,F,r
α (t, t′) = i~|~gα|2 ×

[
Gvv,r

α (t, t′)A<(t, t′)δb,c +Gcc,r
α (t, t′)A<(t′, t)δb,v

]
δb,b′ .We now observe that all ontributions to this self-energy are proportional to the lesser avity photonGreen's funtion, whih in its equal time limit is proportional to the photon number in the avity andfrom appendix A.5 we get that its free version is equal to A0,<(t, t′) = −i~−1e−iω(t−t′)nB(~ω). Regardlessof whether we onsider the full or free photon Green's funtion it is very fair to assume that its envelopewill mainly be given by its thermal oupation nB(~ω) fator. For a 1 eV photon at room temperaturethe thermal oupation is equal to nB(~ω) = 1/(exp(1/0.026)− 1) ≈ exp(−38) ≈ 10−17 and therefore wemay put this equal to zero.After this series of approximations we have arrived at the onlusion that the photons will not a�et theequilibrium properties of the eletrons, or vie versa. This means that the eletroni spetral Green'sfuntions in equilibrium, will be ompletely determined by the polaron funtions disussed in the previoussetion. Also, the equilibrium properties of the photons are desribed by the free photons, as we haveassumed that the photons only interat with eletrons. The photons do of ourse have an in�uene on thedynamis of the eletrons, and vie versa, but this in�uene will be limited to non-equilibrium situationswhih will be treated later in the next setion.5.4. Non-equilibriumIn this setion we will derive the �nal form of the equations of motion governing our non-equilibrium QEDsystem. For the eletroni Green's funtions the GKBA will be applied in all ases, whih is expeted tobe the main limitation of our theory, however it enables us to save vast amounts of omputation time. Forthe photoni Green's funtions we present equations of motion both with and without the GKBA applied.The reason for not applying the GKBA to the photon Green's funtions, is that in some ases the fulltwo-time lesser Green's funtions is needed in order to give sensible results as shown in setion 6.5. Thetwo-time theory is however signi�antly more ompliated and muh more demanding to solve numerially,as will be disussed in the next hapter.5.4.1. Eletroni equations of motion and sattering termsIn this setion we will derive the equations of motion desribing the eletroni degrees of freedom in ournon-equilibrium system, where we are interested in observable quantities like populations and polarizations.These quantities are desribed by the equal-time lesser Green's funtion for the eletrons, where the fatthat we are only interested in equal-time Green's funtions means that we an apply the GKBA, seesetion 2.5, whih simpli�es the solution proess immensely. A natural step when onsidering the equal-time lesser Green's funtion, is to formulate the equations of motion in terms of the redued density matrixof the eletroni system, whih the equal-time lesser Green's funtion is proportional to, see setion 2.1.Next we will disuss an approximation regarding whih elements of the density matrix are onsidered in74



Equations of Motion Non-equilibriumthe alulations. In a two-band model of a semiondutor the density matrix may be written in matrixform as follows
ρ(t) =

[
ρcc(t) ρcv(t)
ρvc(t) ρvv(t)

]

. (5.32)If we assume an equal number N of single-partile states in eah band has (2N)2 elements, that eahhas their own equation of motion. For a standard quantum kineti simulation where the dynamis ismainly on�ned to the bound states of a QD and where parts of the WL ontinuum are also inluded,one ould easily have N = 100 leading to (2N)2 = 40000 elements of the density matrix. Even on thesuperomputers of today this is a very di�ult omputational task that is often not pursuable in pratie,hene we need to onsider a redued number of elements in the density matrix. A number of di�erentapproahes are possible depending on what kind of experiment one is looking to desribe. The ritialfator is how the system is exited by external soures.In the standard experiment of optial inter-band exitation of eletrons from the valene to the ondutionband, with subsequent intra-band relaxation and reombination by photons, a large redution in thenumber of elements is possible. For this partiular experiment it has turned out [38, 42℄ to be a goodapproximation to only onsider diagonal elements in eah of the four sub-matries in eq. (5.32). For theband diagonal sub-matries this has the onsequene that we only desribe populations and no intra-band polarizations, while for the o�-diagonal (in the band index) sub-matries it means that we onlydesribe "vertial" or "optial" polarizations. Again assuming an equal number of single-states in eahband, this redues the onsidered number of density matrix elements to 3N , whih for N = 100 results in
3N = 300 elements, a muh more feasible number ompared to 40000. It should however be noted thatthis approximation is only well-de�ned in ertain systems. There need to exist pairs of states in the twobands, that are similar in their spatial form so that it is possible to de�ne what is meant by a diagonalelement in e.g. ρcv(t). Only systems where suh diagonal elements11 an be unambiguously de�ned willbe treated in the thesis.We will proeed the derivations in the approximation desribed above and hene we make the replaement
ρbb′

αα′(t) = ρbb′

α (t)δαα′ in all equations heneforth. The index b is a band index and α desribes all otherindexes. The fundamental forms of our equations of motion from setion 2.4 are all formulated in termsof Green's funtions, so �rst we present the transformation between the equal-time lesser Green's funtionand the density matrix
Gbb′,<

α (t, t) = i~−1 〈c†b′,α(t)cb,α(t)〉 = i~−1ρbb′

α (t), (5.33a)
Gbb′,>

α (t, t) = −i~−1 〈cb,α(t)c†b′,α(t)〉 = −i~−1[δb,b′ − ρbb′

α (t)], (5.33b)where also the transformation of the greater Green's funtion has been presented as this will be neededlater. These equations serve as our de�nition of the density matrix elements. Transformation of eq. (2.50)aording to eq. (5.33) yields the equation of motion for the density matrix, whih we write in the followingompat form
∂tρ

bb′

α (t) = ∂tρ
bb′

α (t)|coh + ∂tρ
bb′

α (t)|scatt, (5.34)where ∂tρ
bb′

α (t)|coh desribes terms giving rise to oherent time evolution and ∂tρ
bb′

α (t)|scatt desribesterms giving rise to time evolution due to many-body proesses, eah of whih will be desribed be-low.Coherent termsThe oherent term beomes
∂tρ

bb′

α (t)|coh = −iωbb′

α ρbb′

α (t)− i~−1
∑

b1

[

Σbb1,s
α (t)ρb1b′

α (t)− ρbb1
α (t)Σb1b′,s

α (t)
]

. (5.35)11One possible de�nition ould be the transition where the overlap integral 〈c, α|v, α′〉 is the largest. 75



Non-equilibrium Equations of MotionThe �rst ontribution is that from the free evolution, in the absene of any interations, where the transitionfrequeny is written as ωbb′

α = ωb
α − ωb′

α . This term is not very interesting and we move on to the singularself-energy. By de�nition, eq. (2.42), the singular self-energy ontains the interation with the external�elds and any one-time self-energy that might result from the many-body interations. In our system wehave the following ontributions
Σbb′,s

α (t) = U bb′

α (t) + Σbb′,ee,HF
α (t) + Σbb′,LO,H

α (t) + Σbb′,rad,H
α (t), (5.36)whih will be desribed below, but �rst we disuss some general features of the singular self-energy. Dueto the simple struture of the singular soure term in eq. (5.35), we an make some general onlusions onwhat e�et a singular self-energy has depending on whether it is stritly diagonal or o�-diagonal in theband indexes. To this end we deompose the singular self-energy into a diagonal (d) and an o�-diagonal(od) part

Σ
s
α(t) = Σ

d
α(t) + Σ

od
α (t),where matrix notation with respet to the band indexes has been employed. For the diagonal part we getthe following soure term

∂tρ
bb′

α (t)|dcoh = −i~−1
[

Σbb,d
α (t)− Σb′b′,d

α (t)
]

ρbb′

α (t)(1 − δb,b′),whih shows that a diagonal singular self-energy leads to a time-dependent renormalization of the single-partile energies. For the o�-diagonal part we hoose the two following ases as illustration
∂tρ

cv
α (t)|od

coh = −i~−1[ρvv
α (t)− ρcc

α (t)]Σcv,od
α (t), (5.37a)

∂tρ
cc
α (t)|od

coh = −2~
−1Im

[
ρcv

α (t)Σvc,od
α (t)

]
, (5.37b)whih show that an o�-diagonal singular self-energy gives rise to soure terms idential to those ofan external �eld operating on an interband transition [31, p. 89℄, hene it will renormalize any suh�eld.The �rst term desribes the interation with the external eletri �eld whih in its RWA form is givengiven by eq. (5.7), where the matrix elements we use are written as

U bb′

α (t) =







0, b = b′ = c, v

dcv
α

E0(t)
2 e−iω0t, b = c, b′ = v

dvc
α

E0(t)
2 eiω0t, b = v, b′ = c

(5.38)The dipole matrix elements are written as dcv
α = dcv

αα = 〈c, α|d|v, α〉, in the spirit of our main approx-imation disussed in the beginning of setion 5.4.1. Atually it turns out, see setion 4.4, that in thedipole approximation for inter-band optial transitions, the dipole matrix element is proportional to thepure overlap between the involved states in eah band, 〈c, α|v, α′〉. Hene in systems where these arevery similar in nature dcv
αα is muh larger than dcv

α6=α′ and onsequently the diret optial transitions aredriven muh more strongly that the indiret (α 6= α′) ones, whih is the main reason why it is a goodapproximation to only onsider the diagonal part of ρcv(t). In general there are other soures, suh as theexitoni Coulomb interation, to the o�-diagonal elements in ρcv(t), but these are usually of only minorimportane.The seond term is the mean-�eld HF energy, eq. (5.8), arising from the Coulomb interation between theeletrons. In terms of density matries the HF term is written as
Σbb′,ee,HF

α (t) =
∑

b1b2
α1

(

V bb2b′b1
αα1αα1

− V bb2b1b′

αα1α1α

) [
ρb1b2

α1
(t)− δb1,vδb2,v

]
. (5.39)Being a singular self-energy Σee,HF with both band diagonal and o�-diagonal terms it will give rise toinstantaneous renormalizations in the free energies as well as in the external eletri �eld, the latter givingrise to the well-known exitoni features in various spetra.76



Equations of Motion Non-equilibriumThe third term is the Hartree self-energy from the LO-phonon interation, eq. (5.12), whih in our presentnotation may be written as
Σbb′,LO,H

α (t) =

∫ t

−∞
dt′
∑

b1α1

~ωLO

2ε∗/ε
V b1bb1b

α1αα1α

[
ρb1b1

α1
(t′)− δb1,v

]
D0,r

LO(t, t′)δb,b′ , (5.40)where D0,r
LO(t, t′) is free retarded Green's funtion of the LO-phonons. It an be found from the relation

Dr(t, t′) = θ(t− t′)[D>(t, t′)−D<(t, t′)] and expliitly reads
D0,r

LO(t, t′) = −2~
−1θ(t− t′) sin(ωLO[t− t′])e−|t−t′|/τLO ,where the equations in eq. (A.35) were used. This self-energy is band diagonal and hene thus it will onlyrenormalize the free energies of the eletrons. The sums in eq. (5.40) only involve eletroni populations,where further the ontribution from the full valene band has been subtrated. Thus it an already at thispoint be expeted, that this self-energy will be of little signi�ane in the low exitation regime12 wherewe will primarily be operating.The fourth term is the Hartree ontribution from the eletron-photon interation. From now on we willemploy the RWA version of the eletron-photon interation, eq. (5.6). This unfortunately means that thenotation annot be kept as ompat as it has been up to this point, this is so beause when applying theRWA one has to perform the band summation in order to remove the non-resonant ontributions. Theontour version of the RWA Hartree self-energy is given by eq. (A.26) and with the use of the Langrethrules we get

Σbb′,rad,H
α (t) =

∫ t

−∞
dt′
∑

α1

~gα~gα1

[
ρcv

α1
(t′)Ar(t, t′)δb,cδb′,v + ρvc

α1
(t′)[Ar(t, t′)]∗δb,vδb′,c

]
. (5.41)This self-energy is purely band o�-diagonal and hene it will renormalize the external �eld and furtherdrive the system as an internal �eld, whih it atually is.Sattering termsWe now move on to onsider many-body sattering ontributions to the density matrix equation of motion.The orret desription of the various deay proesses, be it relaxation or dephasing, that our in a semi-ondutor nanostruture is the main motivation for employing the non-equilibrium Green's funtion formal-ism to our system. The sattering term in eq. (5.34) an in general be written as

∂tρ
bb′

α (t)|scatt =

−
∫ t

−∞
dt1
∑

b1

[

Σbb1,>
α (t, t1)G

b1b′,<
α (t1, t)− Σbb1,<

α (t, t1)G
b1b′,>
α (t1, t)

−Gbb1,>
α (t, t1)Σ

b1b′,<
α (t1, t) +Gbb1,<

α (t, t1)Σ
b1b′,>
α (t1, t)

]

. (5.42)It is apparent from this form that the values of the eletroni Green's funtions are needed away from thetime diagonal in the (t, t′)-plane and hene it is in general not possible to formulate a theory entirely interms of equal-time Green's funtions, that per de�nition live on the time diagonal. As we do not wish tosolve for the Green's funtions in the two-time plane an approximation is needed that provides us with alosed set of equations for the equal-time eletroni Green's funtions. Fortunately one suh approximationexits and it is know as the GKBA, see setion 2.5. We will employ a version of the GKBA where diagonal12Rather surprisingly it turns out that the e�ets of the LO Hartree self-energy remains small even at high exitationonditions. This is expeted to be onneted to the fat that the sine funtion in the retarded LO-phonon Green'sfuntion, osillates with a relatively fast period (TLO = 2π/ωLO ≈ 0.11 ps in GaAs) and hene will tend to average theintegral to zero, unless the populations hange signi�antly within this time span. 77



Non-equilibrium Equations of Motionspetral Green's funtions have been assumed, eq. (2.55), (see the disussion above eq. (5.21)) and in termsof the density matrix the GKBA may be written as
Gbb′,≷

α (t, t′) =







−Gb,r
α (t, t′)ρbb′

α (t′), < and t > t′

Gb,r
α (t, t′)[δb,b′ − ρbb′

α (t′)], > and t > t′

ρbb′

α (t)Gb′,a
α (t, t′), < and t < t′

−[δb,b′ − ρbb′

α (t)]Gb′,a
α (t, t′), > and t < t′

(5.43)The spetral Green's funtions that our in the GKBA are for the general non-equilibrium system andas suh obey their respetive Dyson equations, in both times. However, if these were to be used notmuh (if any) omputational time would be saved and it would be a better strategy to simply solvethe original two-time equations of motion for G≷. However, it turns out to be a good approximation[37, 38℄ for a weak oupling self-energy to use the equilibrium spetral Green's funtions in the GKBA,that further only depends on the time di�erene in the two times. This is a huge simpli�ation as theequilibrium spetral Green's funtions an be alulated in advane and simply used as an input to thenon-equilibrium alulation, and they only have to be realulated if any parameters haraterizing theequilibrium system are hanged.The sattering term is linear in the self-energy and the self-energy itself is a sum of eah of its ontributions,hene it is possible to write down a sattering term for eah interation and orresponding ontributionto its self-energy. This is a very pratial feature of the non-equilibrium Green's funtion formalism, astaking into aount new interations or going to higher orders simply amounts to adding more satteringterms to already existing equations. This is in ontrast to many other methods that depend on expansionin basis states of the ombined system, and not in the individual subsystems as in the non-equilibriumGreen's funtion formalism, where inlusion of another kind bosoni interation would result in a ompletereformulation of the derived equations.We start o� by onsidering the sattering terms due to the interation of the eletrons and LO-phonons.The Fok ontribution to the lowest order self-energy, eq. (5.11), is in our main approximation givenby
Σbb′,LO,F,≷

α (t, t′) = i~
∑

α1

~ωLO

2ε∗/ε
V b′bb′b

α1ααα1
Gbb′,≷

α1
(t, t′)D0,≷

LO (t, t′)

=
∑

α1

Dbb′,≷
αα1

(t, t′)Gbb′,≷
α1

(t, t′),where the e�etive LO-phonon Green's funtion, Dbb′,≷
αα1 (t, t′), is de�ned in eq. (5.24). Plugging this intoeq. (5.42) and employing the GKBA we obtain the following sattering term

∂tρ
bb′

α (t)|LO,F
scatt =

∫ t

−∞
dt1

∑

b1α1

(

Gb,r
α1

(t, t1)
[

Gb′,r
α (t, t1)

]∗

×
{

−Dbb1,>
αα1

(t, t1)[δb,b1 − ρbb1
α1

(t1)]ρ
b1b′

α (t1) +Dbb1,<
αα1

(t, t1)ρ
bb1
α1

(t1)[δb1,b′ − ρb1b′

α (t1)]
}

+Gb,r
α (t, t1)

[

Gb′,r
α1

(t, t1)
]∗

×
{

[δb,b1 − ρbb1
α (t1)]ρ

b1b′

α1
(t1)D

b1b′,>
αα1

(t, t1)− ρbb1
α (t1)[δb1,b′ − ρb1b′

α1
(t1)]D

b1b′,<
αα1

(t, t1)
})

, (5.44)where eq. (2.33) has been used to formulate it in terms of the retarded Green's funtion only and eq. (5.25)to �ip the time arguments in the LO-phonon Green's funtion. We an exploit the symmetries underomplex onjugation of the Green's funtions, see eqs. (2.32) and (5.26), to simplify the band diagonal78



Equations of Motion Non-equilibriumsattering terms, that is population relaxation, to the following form
∂tρ

bb
α (t)|LO,F

scatt =

2Re
[ ∫ t

−∞
dt1

∑

b1α1

(

Gb,r
α1

(t, t1)
[
Gb,r

α (t, t1)
]∗

×
{
−Dbb1,>

αα1
(t, t1)[δb,b1 − ρbb1

α1
(t1)]ρ

b1b
α (t1) +Dbb1,<

αα1
(t, t1)ρ

bb1
α1

(t1)[δb1,b − ρb1b
α (t1)]

})]

.This simpli�ation applies to 2/3 of all sattering terms and saves around 50 % omputation time on eah,thus leading to an approximate 33.3 % speed up.Next we onsider the sattering terms arising due to the interation between the eletrons and avityphotons. In the RWA the Fok ontribution to the ontour self-energy is given by eq. (A.25) and with thehelp of the Langreth rules we obtain the following real time omponents
Σbb′,rad,F,≷

α (t, t′) = i~|~gα|2
[

Gvv,≷
α (t, t′)A≷(t, t′)δb,c +Gcc,≷

α (t, t′)A≶(t′, t)δb,v
]

δb,b′ , (5.45)where we have assumed gαα′ = gαδαα′ , see setion 4.4. Below we will present two versions of the eletronisattering terms due to the avity photons, in the �rst version in whih the GKBA has been applied to thephoton Green's funtion, and a seond version in whih we keep the photon Green's funtion in its generaltwo-time form. The GKBA has been applied to the eletroni Green's funtions in both versions, as weare only interested in equal-time properties for these. For the photons we are, however, interested in thefull two-time Green's funtion13 as this allows for the alulation of quantities suh as emission spetraand indistinguishability, see setions 6.5 and 6.6, while the GKBA is assumed to yield a su�iently orretequal-time dynamis.The GKBA for the photons is given by eq. (5.53), where we have also made use of the relations eq. (5.52) toexpress everything in terms of the number of photons in the avity A(t). We are now ready to determinethe sattering term eq. (5.42) with self-energy given by eq. (5.45) in the GKBA for the eletrons andphotons. After straight forward insertion the band diagonal term beomes
∂tρ

bb
α (t)|rad,F

scatt = −2Re
[ ∫ t

−∞
dt1

(

Gv,r
α (t, t1) [Gc,r

α (t, t1)]
∗ (
i~|~gα|2Ar(t, t1)

)
{[1− ρvv

α (t1)][1 +A(t1)]ρ
cc
α (t1)− ρvv

α (t1)A(t1)[1− ρcc
α (t1)]} δb,c

−Gc,r
α (t, t1) [Gv,r

α (t, t1)]
∗ (i~|~gα|2[Ar(t, t1)]

∗) {[1− ρcc
α (t1)]A(t1)ρ

vv
α (t1)− ρcc

α (t1)[1 +A(t1)][1 − ρvv
α (t1)]} δb,v

)]

,where we have used the symmetry relations of the Green's funtions and self-energy, eq. (5.14), tosimplify as done above with the LO-phonon sattering terms. It is possible to simplify further dueto the fat that we only need the real part of the integral, and after a few anelations we end upwith
∂tρ

bb
α (t)|rad,F

scatt = −2Re
[ ∫ t

−∞
dt1G

v,r
α (t, t1) [Gc,r

α (t, t1)]
∗ (
i~|~gα|2Ar(t, t1)

)

× {A(t1) [ρcc
α (t1)− ρvv

α (t1)] + ρcc
α (t1) [1− ρvv

α (t1)]} (δb,c − δb,v)
]

. (5.46)We have grouped ontributions due to stimulated and spontaneous proesses under the integral. Further-more note that the sign of the ondution and valene band ontributions are opposite, similarly to whatwould be expeted in a two-level system. This is indeed expeted as we only onsider diagonal transitionsin the in-band quantum number α, hene we onsider e�etive two-level systems for eah α. Indeed if13Naively one might expet that the GKBA would yield an approximately valid two-time Green's funtion, in the full two-time plane, however when one employs equilibrium retarded Green's funtions in it these seem to determine the spetralproperties. This severely limits its use in alulating e.g. emission spetra as will be disussed further in setion 6.5. 79



Non-equilibrium Equations of Motionno other interations were present, the set of equations for eah α would deouple and ould be solvedindependently. The band o�-diagonal term beomes
∂tρ

cv
α (t)|rad,F

scatt = −
∫ t

−∞
dt1
(
i~|~gα|2Ar(t, t1)

) (

|Gv,r
α (t, t1)|2 {[1− ρvv

α (t1)][1 +A(t1)]ρ
cv
α (t1) + ρvv

α (t1)A(t1)ρ
cv
α (t1)}

+ |Gc,r
α (t, t1)|2 {ρcv

α (t1)ρ
cc
α (t1)[1 +A(t1)] + ρcv

α (t1)[1− ρcc
α (t1)]A(t1)}

)

,and after a few anelations we obtain the following simpli�ed version
∂tρ

cv
α (t)|rad,F

scatt = −
∫ t

−∞
dt1
(
i~|~gα|2Ar(t, t1)

) (

|Gv,r
α (t, t1)|2 {A(t1)ρ

cv
α (t1) + ρcv

α (t1)[1− ρvv
α (t1)]}+ |Gc,r

α (t, t1)|2 {A(t1)ρ
cv
α (t1) + ρcv

α (t1)ρ
cc
α (t1)}

)

.(5.47)Again we an group stimulated and spontaneous proesses ontributing to the eletroni dephasing andwe note that ∂tρ
vc
α (t)|rad,F

scatt an be obtained through omplex onjugation.Next we treat the same sattering terms as above, but now we do not apply the GKBA for the photoniGreen's funtion. The struture of the terms will be similar, however, a bit more ompliated as we annotanymore make use of the equal-time relation between the greater and lesser photon Green's funtion,eq. (5.52), and hene no anelations our. We introdue a new photon Green's funtion Ã≷(t, t′) by thefollowing de�nition
i~A≷(t, t′) = e−iωcav(t−t′)Ã≷(t, t′), (5.48)whih is slowly-varying outside the time diagonal. The retarded eletroni Green's funtions play a similarrole in the GKBA for the eletrons as the exponential in the above de�nition, exept here we kept theslowly-varying envelope in its two-time form, whereas for the eletrons we only onsider the equal-time en-velope. The new photon Green's funtions satisfy the following symmetry relation
[Ã≷(t, t′)]∗ = Ã≷(t′, t), (5.49)derived from eqs. (5.48) and (2.32), whih will be used to limit the numerial solution to the subdiag-onal halfplane in the two-time plane, and for other simpli�ations. The band diagonal sattering termbeomes
∂tρ

bb
α (t)|rad,F

scatt = −2Re
[ ∫ t

−∞
dt1|~gα|2

(

Gv,r
α (t, t1) [Gc,r

α (t, t1)]
∗ e−iωcav(t−t1)

{

[1− ρvv
α (t1)]Ã

>(t, t1)ρ
cc
α (t1)− ρvv

α (t1)Ã
<(t, t1)[1 − ρcc

α (t1)]
}

δb,c

+Gc,r
α (t, t1) [Gv,r

α (t, t1)]
∗
e−iωcav(t1−t)

{

[1− ρcc
α (t1)]Ã

<(t1, t)ρ
vv
α (t1)− ρcc

α (t1)Ã
>(t1, t)[1 − ρvv

α (t1)]
}

δb,v

)]

,whih an be simpli�ed, for the same reasons as in the GKBA ase (and using eq. (5.49)), to
∂tρ

bb
α (t)|rad,F

scatt = −2Re
[ ∫ t

−∞
dt1|~gα|2Gv,r

α (t, t1) [Gc,r
α (t, t1)]

∗
e−iωcav(t−t1)

×
{

[1− ρvv
α (t1)]Ã

>(t, t1)ρ
cc
α (t1)− ρvv

α (t1)Ã
<(t, t1)[1 − ρcc

α (t1)]
}

(δb,c − δb,v)
]

. (5.50)For the band o�-diagonal terms we get
∂tρ

cv
α (t)|rad,F

scatt = −
∫ t

−∞
dt1|~gα|2e−iωcav(t−t1)

(

|Gv,r
α (t, t1)|2

{

[1− ρvv
α (t1)]Ã

>(t, t1)ρ
cv
α (t1) + ρvv

α (t1)Ã
<(t, t1)ρ

cv
α (t1)

}

+ |Gc,r
α (t, t1)|2

{

ρcv
α (t1)ρ

cc
α (t1)Ã

>(t, t1) + ρcv
α (t1)[1 − ρcc

α (t1)]Ã
<(t, t1)

})

, (5.51)80



Equations of Motion Non-equilibriumwhere ∂tρ
vc
α (t)|rad,F

scatt an be obtained through omplex onjugation.5.4.2. Photoni equations of motion and sattering termsIn this setion we will derive the equations of motion governing the Green's funtions desribing thephotoni degrees of freedom. In the eletroni ase we were primarily interested in the equal-time lesserGreen's funtion, as this desribes eletroni populations and polarizations. The full two-time eletroniGreen's funtions were only of seondary interest in themselves, needed only in order to solve the inherenttwo-time equations of motion for the Green's funtions orretly. This enabled us to apply the GKBAfor the eletroni Green's funtions, whih simpli�ed all aspets of both the formal theory and numerialsolution immensely. In many quantum optial experiments the main task is to perform time orrelatedmeasurements or reord emission spetra, to obtain information on the properties of the photons emit-ted from some exited struture. Both of these quantities require the full two-time photoni Green'sfuntion in order to be alulated theoretially, thus making the two-time photoni Green's funtion ofprimary interest in itself, and not just as an devie enabling one to obtain equal-time Green's funtions.The full two-time formulation of the equation of motion is a ompliated a�air, and we will thereforestart by desribing the equal-time GKBA version of the photoni equations of motion �rst, whih areindeed interesting in their own right, and in the end of the setion onsider the more general two-timeversion.In the GKBA the fundamental governing equation is the equation of motion for the equal-time lesserGreen's funtion, eq. (2.50), whih for the single mode avity redues to
i~∂tA

<(t, t) = −i~γcavA
<(t, t) + 2Re

{∫ t

−∞
dt1
[
σ>(t, t1)A

<(t1, t)− σ<(t, t1)A
>(t1, t)

]
}

.To simplify the symmetry relation eq. (5.17) has been used for the self-energy, also a deay term has beenadded to take into aount the �nite photon lifetime in the avity, with the deay rate being given by
γcav = ωcav/Q, see the disussion above eq. (5.2). The equal-time lesser Green's funtion, A<(t, t), isproportional to the number of photons in the avity, A(t), whih we will eventually formulate the equationof motion in terms of. To write the GKBA in terms of A(t) we use eq. (2.31) to obtain the followingequal-time relations between the lesser and greater Green's funtion

A<(t, t) = −i~−1 〈a†(t)a(t)〉 = −i~−1A(t), (5.52a)
A>(t, t) = −i~−1 〈a(t)a†(t)〉 = −i~−1[1 +A(t)]. (5.52b)Now we may write the GKBA14, eq. (2.55), in terms of the photon density
A≷(t, t′) =







Ar(t, t′)[1 +A(t′)], > and t > t′

Ar(t, t′)A(t′), < and t > t′

−[1 +A(t)]Aa(t, t′), > and t < t′

−A(t)Aa(t, t′), < and t < t′

(5.53)where we will take the retarded and advaned Green's funtions in their equilibrium forms. To proeedwe need the self-energy of the photons due to the eletron-photon interation. In the RWA and at thepair-bubble level this is given in the ontour version by eq. (A.28), with the following real time ompo-nents
σ≷(t, t′) = −i~

∑

α1

|~gα1 |2Gcc,≷
α1

(t, t′)Gvv,≶
α1

(t′, t). (5.54)14Whether we use the full GKBA, eq. (2.53), or the GKBA assuming diagonal spetral funtions, eq. (2.55), is indi�erent inthe present ase due to the fat that we only onsider a single mode. 81



Non-equilibrium Equations of MotionUsing this self-energy, the GKBA for both the eletrons, eq. (5.43), and photons, eq. (5.53), we obtain theequation of motion for the photon density A(t)

∂tA(t) = −γcavA(t)

+ 2Re
{∫ t

−∞
dt1
∑

α1

Gc,r
α1

(t, t1)
[
Gv,r

α1
(t, t1)

]∗ (
i~|~gα1 |2[Ar(t, t1)]

∗)

×
{
[1− ρcc

α1
(t1)]ρ

vv
α1

(t1)A(t1)− ρcc
α1

(t1)[1− ρvv
α1

(t1)][1 +A(t1)]
}}

,that an be simpli�ed to the following by a few anelations
∂tA(t) = −γcavA(t)

− 2Re
{∫ t

−∞
dt1
∑

α1

Gc,r
α1

(t, t1)
[
Gv,r

α1
(t, t1)

]∗ (
i~|~gα1 |2[Ar(t, t1)]

∗)

×
{
A(t1)

[
ρcc

α1
(t1)− ρvv

α1
(t1)

]
+ ρcc

α1
(t1)

[
1− ρvv

α1
(t1)

]}}

. (5.55)Notie the strong similarity between this sattering term and that of eletroni population, eq. (5.46), hint-ing that we have hosen a onsistent set of self-energies for the two interating subsystem.Now we will onsider the equations of motion for the two-time photoni Green's funtions, A≷(t, t − τ),only applying the GKBA to the eletroni Green's funtions. The equation of motion for the two-timeGreen's funtions is eq. (2.49). We note that we need to solve for both the greater and lesser Green'sfuntion, as these ouple through the sattering terms in their respetive equations of motion, onsistentwith the remarks in the beginning of setion 2.3. The equation of motion reads
i~∂tA

≷(t, t− τ) = −i~γcav

[

A≷(t, t− τ)−A≷
eq(t, t− τ)

]

+

∫ t

−∞
dt1

[{
σ>(t, t1)− σ<(t, t1)

}
A≷(t1, t− τ)−

{
A>(t, t1)−A<(t, t1)

}
σ≷(t1, t− τ)

]

−
∫ t−τ

−∞
dt1

[

σ≷(t, t1)
{
A>(t1, t− τ) −A<(t1, t− τ)

}
−A≷(t, t1)

{
σ>(t1, t− τ) − σ<(t1, t− τ)

}]

,where a phenomenologial deay term has been added, to take into aount the interation of the avityphotons with a reservoir through the deay rate γcav. The e�et of the deay term is to make sure thatthe photon Green's funtions A≷(t, t− τ) return to their equilibrium values, A≷
eq(t, t− τ), for su�ientlylong times after the external pulse has ated. For τ > 0 we15 note that the integration domains in thememory integrals above overlap for t1 ∈ [t−τ,−∞[, furthermore the struture of the integrands of the twomemory integrals is rather similar, hene anelations between the two ould be expeted. To antiipatethis anelation we split the �rst memory integral as ∫ t

−∞ dt1 =
∫ t

t−τ
dt1 +

∫ t−τ

−∞ dt1 and rearrange toobtain
i~∂tA

≷(t, t− τ) = ∂tA
≷(t, t− τ)|phen + ∂tA

≷(t, t− τ)|scatt,I + ∂tA
≷(t, t− τ)|scatt,II, (5.56)where for notational simpliity we have de�ned the following three sattering terms

∂tA
≷(t, t− τ)|phen = −i~γcav

[

A≷(t, t− τ)−A≷
eq(t, t− τ)

]

,

∂tA
≷(t, t− τ)|scatt,I =

∫ t

t−τ

dt1

[{
σ>(t, t1)− σ<(t, t1)

}
A≷(t1, t− τ)−

{
A>(t, t1)−A<(t, t1)

}
σ≷(t1, t− τ)

]

,

∂tA
≷(t, t− τ)|scatt,II =

∫ t−τ

−∞
dt1

[ {
σ>(t, t1)− σ<(t, t1)

}
A≷(t1, t− τ)−

{
A>(t, t1)−A<(t, t1)

}
σ≷(t1, t− τ)

−σ≷(t, t1)
{
A>(t1, t− τ)−A<(t1, t− τ)

}
+A≷(t, t1)

{
σ>(t1, t− τ) − σ<(t1, t− τ)

} ]

.15We only need to onsider the ase of τ > 0, due to the fat that the values of the greater/lesser Green's funtion, on eahside of the time diagonal, are related through omplex onjugation. This was already pointed out in setion 2.3 and isontained in eq. (5.49).82



Equations of Motion Non-equilibriumAs expeted no anelations our in ∂tA
≷(t, t− τ)|scatt,I, while for ∂tA

≷(t, t− τ)|scatt,II the anelationsappear to depend on whether the greater or lesser omponent is onsidered, however, after atually per-forming the alulation one �nds that ∂tA
<(t, t− τ)|scatt,II = ∂tA

>(t, t− τ)|scatt,II, in agreement with [39℄.The simpli�ed result is
∂tA(t, t− τ)|scatt,II =

∫ t−τ

−∞
dt1

[

σ>(t, t1)A
<(t1, t− τ) − σ<(t, t1)A

>(t1, t− τ)

− A>(t, t1)σ
<(t1, t − τ) + A<(t, t1)σ

>(t1, t − τ)
]

,where the greater/lesser supersript has been dropped as it is no longer neessary. We note that if we takethe equal-time limit, τ = 0, in ∂tA
≷(t, t−τ)|scatt,I we �nd that this ontribution to the total sattering termvanish due to the integration limits beoming equal. Hene both the greater and lesser Green's funtionobey the same equation of motion, as ∂tA

<(t, t − τ)|scatt,II = ∂tA
>(t, t − τ)|scatt,II. This might seemsurprising, but is fully onsistent with the exat relation eq. (5.52) between the greater and lesser Green'sfuntion. Furthermore we observe that the equation of motion redue to the form given by eq. (2.50), asindeed it should.To obtain expliit expressions for the two-time sattering terms we use the pair-bubble (PB) self-energyeq. (5.54), along with the slowly-varying transformation eq. (5.48). In all sattering terms we have furtheremployed eq. (5.49) to limit the two-time funtions to the subdiagonal half-plane, whih simpli�es thenumerial labor signi�antly. We begin with the phenomenologial deay term ∂tA

≷(t, t − τ)|phen andreadily obtain
∂tÃ

≷(t, t− τ)|phen = −γcav

[

Ã≷(t, t− τ)− Ã≷
eq(t, t− τ)

]Regarding the form of Ã≷
eq(t, t − τ) we know from setion 5.3.3 that the eletroni and photoni degreesof freedom do not in�uene eah other in equilibrium, at our level of approximation. Hene the photonGreen's funtions in equilibrium will be given by their free version, dressed with the deay rate γcav, fromappendix A.6 we therefore �nd

Ã<
eq(t, t− τ) = 0, Ã>

eq(t, t− τ) = e−γcavτ ,where we have assumed nB(~ωcav) = 0, whih is very reasonable at any temperatures normally onsideredin experiments. For the two-time photoni sattering terms we have employed the GKBA for the eletroniGreen's funtions. For the term ∂tÃ
>(t, t−τ)|PB

scatt,I we get the following expression
∂tÃ

>(t, t− τ)|PB
scatt,I =

∫ t

t−τ

dt1
∑

α1

|~gα1 |2

×
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α1

(t, t1)
[
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]∗
e−iωcav(t1−t){ρvv

α1
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α1
(t1)}Ã>(t1, t− τ)
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α1
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Gv,r

α1
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]∗
e−iωcav(t−τ−t1){Ã>(t, t1)− Ã<(t, t1)}[1− ρcc

α1
(t− τ)]ρvv

α1
(t− τ)

]

,(5.57)while for ∂tÃ
<(t, t− τ)|PB

scatt,I we obtain a similar expression
∂tÃ

<(t, t− τ)|PB
scatt,I =

∫ t

t−τ
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α1

|~gα1 |2

×
[

−Gc,r
α1

(t, t1)
[
Gv,r

α1
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]∗
e−iωcav(t1−t){ρvv

α1
(t1)− ρcc

α1
(t1)}Ã<(t1, t− τ)

+Gc,r
α1
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Gv,r

α1
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]∗
e−iωcav(t−τ−t1){Ã>(t, t1)− Ã<(t, t1)}ρcc

α1
(t− τ)[1− ρvv

α1
(t− τ)]

]

.(5.58)83



Non-equilibrium Equations of MotionFor the last term, ∂tÃ(t, t− τ)|PB
scatt,II, we have a single expression for both the greater and lesser ompo-nent

∂tÃ(t, t− τ)|PB
scatt,II =

∫ t−τ

−∞
dt1
∑

α1

|~gα1 |2

×
[

Gc,r
α1

(t, t1)
[
Gv,r

α1
(t, t1)

]∗
e−iωcav(t1−t){−[1−ρcc

α1
(t1)]ρ

vv
α1

(t1)[Ã
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α1
(t1)[1−ρvv

α1
(t1)][Ã

>(t−τ, t1)]∗}

+
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α1
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Gv,r

α1
(t−τ, t1)e−iωcav(t−τ−t1){Ã>(t, t1)ρ

cc
α1

(t1)[1−ρvv
α1

(t1)]−Ã<(t, t1)[1−ρcc
α1

(t1)]ρ
vv
α1

(t1)}
]

.(5.59)As used and mentioned several times in previous setions, all Green's funtions of an equilibrium systemonly depend on the di�erene between their two di�erent times, whih was utilized heavily in setion 5.3.All the non-equilibrium equations of motion derived in this and the previous setion, are equations ofmotion propagating the Green's funtions along the time diagonal or parallel to it. Along these straightlines the two times do not hange relative to eah other, and one would expet all soure terms to theseequations of motion to vanish in the ase of an equilibrium system. Reminding ourselves that for asemiondutor in equilibrium we assume that all eletrons are in the valene band, hene ρvv
α (t) = 1 and

ρcc
α (t) = 0, and that no photons are thermally exited, Ã<(t, t− τ) = 0. Noting this it is relatively straightforward to see that all eletroni sattering terms indeed vanish in equilibrium, due to the struture alone.For the photoni sattering terms in the GKBA, it is equally apparent that also these vanish for a systemin equilibrium. However, the situation is not that lear ut for one of the the two-time sattering terms,namely eq. (5.57), while for the two other it is relatively easy to see that these are zero in equilibrium.After using the equilibrium values stated above and writing all funtions as single-time quantities, we maybasially write eq. (5.57) on the simpli�ed form

∫ t

t−τ

dt1g(t1 − t+ τ)a(t− t1)−
∫ t

t−τ

dt1g(t− t1)a(t1 − t+ τ).To see that an integral of this type is indeed zero, one may perform a hange of integration variableaording to [37℄ t̃1 = 2t− t1 + τ in one of the integrals, after whih it is learly seen that this satteringterm also vanish in equilibrium.Path Sattering term funtion memory time t1
CI,1 ∂tÃ

≷(t, t− τ)|PB
scatt,I Ã≷(t1, t− τ) [t− τ, t]

CI,2 ∂tÃ
≷(t, t− τ)|PB

scatt,I Ã≷(t, t1) [t− τ, t]
CII,1 ∂tÃ(t, t− τ)|PB

scatt,II Ã≷(t− τ, t1) ]−∞, t− τ ]
CII,2 ∂tÃ(t, t− τ)|PB

scatt,II Ã≷(t, t1) ]−∞, t− τ ]Table 5.2.: Table explaining the integration paths shown in �gure 5.5.Due to the signi�antly more di�ult numerial proedure of solving the two-time equations of motion, asoppose to the single-time equations of motion, we brie�y sketh the strategy for doing this. As mentionedabove our equations of motion are formulated so that we propagate the Green's funtions on or parallel tothe time diagonal, whih has the onsequene that the di�erene time τ only enters the equations of motionas a parameter. This simpli�es the numerial solution proess, as we only have a single equation of motion,even though we have two independent times. Furthermore, this allows for a formulation that an be solvede�iently on a parallel omputer. To illustrate the proedure, we show in �gure 5.5 the steps needed tobe taken to obtain the values of the two-time photoni Green's funtions in a point (t + ∆t, t + ∆t− τ),where ∆t is time disretization. The area in the �gure between the two parallel lines is where we solve forthe two-time Green's funtions, and �nite width of this strip illustrate the memory depth of the system,expliitly given by τmax. Inspeting the sattering terms in eq. (5.56), we �nd that for the general ase84



Equations of Motion Summaryof non-zero τ four di�erent integration paths need to be followed. These originate from various argumentarrangements in the photoni Green's funtions, and are shown as the dashed lines in the �gure and de�nedin detail in table 5.2. What should be noted from the �gure, is that in order to inrease t by ∆t, all onemust know is the values of the Green's funtions in grey area in the �gure, and this holds for any valueof τ , whih is the essential point. One does not have to start at τ = 0, as ould be expeted as this isnormally the ase when time stepping, and hene the integrals an be alulated independently for eahvalue of τ , allowing for parallelization, making large simulations possible. One does however have to solvefor all τ 's in the memory strip before t an be inreased by yet another ∆t.
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Figure 5.5.: Shemati �gure of the disretized two-time plane showing several important sets of time oordinatesand four integration paths, the C's, followed in the photoni sattering terms.
The equations of motion desribed above where solved using the numerial methods desribed in ap-pendix A.4, further the slowly-varying versions of all soure terms are presented in appendix A.9.5.5. SummaryThe main result of this hapter is �nal formulation of the equations of motion governing our non-equilibriumsystem. However, in order to get this far we performed a �nal set of approximations on the fundamentalHamiltonians of the system. Also, we treated the trunation of the various self-energies, whih were all85



Summary Equations of Motionkept in the lowest order, but self-onsistent as ditated by partile onservation. The detailed derivationwas performed in appendix A.5. A setion was also devoted to studying the equilibrium properties of oursystem. These are important as knowledge of the equilibrium retarded Green's funtions is very importantfor the appliation of the GKBA. The LO-phonon interation was found to drastially hange the propertiesof the non-interating system, whih were disussed for a few numerial examples. Surprisingly, the photoninteration was found not to alter the equilibrium properties of the eletroni system, meaning that noorrelations exists between the two speies. In the last setion we derived the kineti equations for both theeletroni and photoni degrees of freedom, in the general ase appliable to a non-equilibrium situation.For the eletroni equations the GKBA was applied everywhere, however for the photoni equations wepresented two versions, namely one with and without appliation of the GKBA.

86



6. Results and Disussion6.1. IntrodutionIn this hapter we present results of the numerial solution of the equations of motion derived in the previ-ous hapter. The equations of motion will be applied to a number of interesting situations, whih we thinkare relevant for obtaining an understanding of the e�ets of many-body interations in our QED system.A main task of this hapter will be the determination of the absorption spetra for our QED system.This will be investigated for variety of di�erent parameters and yield muh information on the global spe-tral properties of the system. Another fous is the investigation of more spei� situations where, undervarious irumstanes, eletrons are exited aross the bandgap, and the subsequent population dynamisis analyzed in terms of time resolved series. These series display diretly the interplay between eletrons,phonons, and photons and allows one to obtain some intuition on the ompliated many-body dynamis.In the last two setions we investigate properties spei� to the photoni degrees of freedom, namely theemission spetra and indistinguishability of the photons emitted from the avity. The numerial solutionof the equations is in itself a signi�ant task, and typial simulation times for the system on�gurationswe have onsidered, tend to span from hours and up to one week. We will however not disuss the tehni-alities of the numerial solution proess, as our fous is on analyzing the physis and theoretial model,and we only brie�y disuss the numerial methods in appendix A.4.6.2. Unphysial populationsDuring the veri�ation and testing of the numerial implementation of the equations of motion presentedin hapter 5, ertain parameter sets were found to ause the failure of the diagonal elements of the densitymatrix, ρbb
α (t), to stay within the interval [0; 1]. This result is of ourse unphysial as it ruins the statistialinterpretation of the density matrix, and is an unaeptable result of a physial model. It is a knownproblem in the literature, that the "unontrolled approximations" [70℄ whih are involved when derivingapproximate quantum kineti equations, espeially in non-equilibrium, an ause unphysial populationsto appear. To our knowledge there do not exist any systemati way of hoosing the self-energy, so thatone is guarantied to obtain populations within [0; 1], as it is the ase, e.g., with onservation of totalpartile number, see appendix A.5. In this setion we will desribe an example where this failure oursand disuss its impliations for the developed theory.A system where the failure ours is that desribed in setion 5.3.2, whih onsists of purely disrete states.The senario is the following; a weak pulse exites the system through eq. (5.38), while the eletrons interatwith LO-phonons through the sattering term eq. (5.44). We do not onsider the Coulomb or eletron-photon interation. The temporal width of the pulse is 100 fs, it has its peak value at t = 0.4 ps, andwe onsider �ve di�erent exitation energies. The Fourier transformed of the �ve pulses and the linearabsorption spetrum of the system, alulated using the method desribed in setion 6.3, are shown in�gure 6.1. Here it is seen that we onsider three ases of non-resonant exitation #1, #3, and #5 andtwo ases of resonant exitation #2 and #4, as it turns out that the failure depends very muh on theexitation onditions.In �gure 6.2(a) we show the time evolution of the populations ρbb

α (t) for all states in both ondutionand valene band, for the �ve exitation energies. After inspetion of the solutions it is found thatthe populations desribing the resonant exitations #2 and #4 behave physially, staying within the87
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Figure 6.1.: Figure showing the absorption spetra of the onsidered system (blue line) and the spetrums of the�ve di�erent exitation pulses (red lines).
[0; 1] interval, and eventually reah a quasi-thermal equilibrium after approximately 5 ps (not shown in�gure 6.2(a)). For all the non-resonant exitations #1, #3, and #5 we do, however, observe unphysialpopulations below 0 and above 1, but on a longer timesale they all reah a quasi-thermal equilibriumwith fully positive populations. The numbers in the �gure show that the failure is quite substantial,espeially for the ondution band, and hene indiates, along with the smoothness of the urves, that weare not dealing with some numerial noise issue. It should also be noted that the failure also ours atstronger exitation where larger oupation probabilities are obtained. The �rst question that omes tomind is why does the theory only fail for the non-resonant exitations? To provide a possible answer forthis, we have solved the equations without the LO-phonons, and the results are shown in �gure 6.2(b).For the resonant ases we �nd what is expeted, namely that the pulse exites some of the eletronswhih subsequently do not relax or dephase due to the lak of a deay mehanism. For the non-resonantases we observe a phenomena known as adiabati following [71, 72℄, where the populations are seento basially follow the temporal shape of the pulse, hene the populations return to their equilibriumvalues after the pulse has passed. This phenomena ours when the detuning between the exitationpulse and eletroni transitions, is onsiderably larger than the spetral width of the pulse or any levelbroadenings. The adiabati following of the populations, is thought to be the reason why the theory onlyfails when onsidering the non-resonant exitation ases. In these ases the populations in the ondutionand valene band return to their extremal values of 0 and 1 respetively. As the approximate treatmentof the LO-phonon interation does not expliitly guarantee populations in the [0; 1] interval, exatly theases where adiabati following our are thought to be extra sensitive to breaking the physial boundsof the populations. A quantity as the total partile number is, however, expliitly onserved throughthe use of self-onsistent self-energies, and in our simulations we do indeed �nd that the partile numberis onserved down to the numerial auray. The partile number onservation is taken as a strongindiation that the equations of motion are solved orretly. It should be noted that inluding the Hartreeenergy renormalization eq. (5.40), does not hange the solution to any signi�ant degree, indiating thatthis orretion is very small for the onsidered system.The eletroni single-partile wavefuntions used in these simulations are very similar for eletrons in the88
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1 (t) and the dashed ρbb

2/3(t), ρbb
3 (t) = ρbb

2 (t) due to symmetry.ondution and valene band, whih has the onsequene that the Coulomb matrix elements that enterinto the LO-phonon self-energy are very similar in magnitude for the eletrons in both bands. Also thesingle-partile transition energies within eah band are not far apart, we have ~(ωc
2 − ωc

1) = 36.17 meVfor the ondution band and ~(ωv
1 − ωv

2 ) = 24.44 meV for the valene band, where we notie that theondution band transition is almost perfetly resonant with a LO-phonon having an energy of 36.8 meV.This rather symmetri setup is a onsequene of the band parameters we have hosen to desribe the freeeletrons. They were hosen to yield an equal number of bound QD states for the eletrons in both bands,whih is desirable when only desribing o�-diagonal elements in the band index as we do (see disussion insetion 5.4.1). To narrow down the origin of the population bound breaking another set of band parameterswas tested, see appendix A.8 and setion 6.3. This set resulted in more spatially loalized valene bandwavefuntions, yielding larger Coulomb matrix elements and smaller transition energies (≈ 15 meV), andmuh larger transition energies for the ondution band states (≈ 2× ~ωLO). The same set of simulationsas desribed above was performed on this new system, and it was found that no breaking of the populationbounds ourred. To identify whether the reason for this new situation arose from the asymmetri matrixelements or the di�erene in transition energies ompared to the �rst system, the transition energy of theondution band was manually set to ≈ 1.5 × ~ωLO. After this hange the unphysial populations againstarted to our, though not of the magnitude as seen in �gure 6.2(a). We must therefore onlude thatthe present theory yields the worst results, sometimes even unphysial, when intra-band transitions arelose to resonant with the LO-phonon energy. This onlusion is onsistent with the �ndings of [73℄, whostudy a slightly di�erent, but omparable system, in an exatly solvable model and makes omparisons toapproximations similar to ours.Negative populations an also our as a result of the breakdown of the GKBA as investigated by [38℄.This is however not thought to be the reason in our ase, as we onsider a material with a low LO-phononoupling as opposed to [38℄, who onsider a strong oupling material. The authors of [38℄ also raised thequestion of whether populations within [0;1℄ an be guaranteed on formal grounds, but knew of none workthat ould provide suh a guarantee. More fundamentally the problems in our model are expeted to arisedue to the fat that we onsider a purely disrete eletroni system, i.e. we have negleted the WL on-tinuum of deloalized states. This suspiion is supported by the fat that several others [41, 42, 74℄ have89



Absorption spetra Results and Disussionobtained physial results for QD systems, oupled to a WL ontinuum, in the same self-energy approxi-mation as onsidered here. Systematially going to higher orders in the LO-phonon self-energy should inpriniple remedy the problems onerning unphysial populations for the purely disrete system, that weonsider. We suspet that the reason why the present self-energy approximation appear to be su�ient inthe presene of a WL ontinuum, is onnet to the presumably faster deay of higher order orrelations(i.e. higher order self-energies), due to the aess to the larger phase spae provided by the ontinuum.However, as the ultimate goal is to inlude the WL ontinuum in the simulations, we will not pursuehigher order orretions as the present order is expeted to be su�ient, in the presene of a ontinuum[69℄. Due to lak of time in the present projet, inlusion of the WL is unrealisti and we will thereforeontinue with the material parameters not resulting in unphysial populations.6.3. Absorption spetraIn this setion we present alulations of the linear optial suseptibility for di�erent temperatures in therange from 150 K to 300 K. The imaginary part of the suseptibility is known to be losely related tothe absorption experiened by a weak probe �eld, see e.g. [56, p. 11℄, impinging on a system, and thusprovides us with a valuable soure of information on the e�ets the interations have had on the free system.The spetrum will ontain energy renormalizations and linewidth broadenings aused by the interations,hene knowing this will make it muh easier later on to perform spei� narrow bandwidth exitationsof the interating system. The linear suseptibility is also an often treated quantity in the literaturemaking omparison with other theories and models possible, that ould help to verify our implementation.As desribed in setion 6.2 ertain hoies of parameters for the QD system resulted in unphysial popula-tions. For this reason we will not ontinue our simulations with the system desribed in setion 4.2.3 andsetion 5.3.2, but rather hose a new set of parameters not su�ering from the unphysial populations. Theband parameters of the new system are presented in table A.2, while the geometrial parameters of thenew QD system are shown in table 6.1 (left), see �gure 4.2. The size of the QD was tuned so that threelearly bound states formed in the ondution band. However due to the new set of band parameters1no symmetry in the number of bound states between the two bands exists, and the number of boundstates in the valene band is muh greater than that of the ondution band. This situation is illustratedshematially in �gure 6.3, but for simpliity we will only onsider the �rst three bound states in thevalene band and all the bound states in the ondution band, indiated by the dashed box in the �gure.We will also neglet the spin degrees of freedom, as we expet that inluding these will only ause minor1Most signi�antly the larger heavy hole mass of the valene band eletrons.Quantity Value Unit Quantity Value Unit Quantity Value Unit
h 1.25 nm ~ωc

1 567.8 meV V cccc
1111 19.59 meV

d 1.25 nm ~ωc
2 650.5 meV V cccc

2222 13.76 meV
r1 10 nm ~ωc

3 650.5 meV V vvvv
1111 27.05 meV

r2 5 nm ~ωv
1 -270.5 meV V vvvv

2222 21.60 meV
R0 50 nm ~ωv

2 -285.5 meV V cvcv
1111 22.41 meV

Lz 40 nm ~ωv
3 -285.5 meV V cvcv

2222 16.07 meV
V cccc

1212 15.35 meV
V vvvv

1212 22.98 meV
V cccc

2112 4.08 meV
V vvvv

2112 6.80 meVTable 6.1.: Table presenting various parameters: (left) geometrial parameters of the QD, (mid) free single-partileenergies of the onsidered bound states in the QD, and (right) a representative seletion of Coulomb matrix elements.90



Results and Disussion Absorption spetrahanges. Indeed it is only the eletron-eletron Coulomb interation that mixes subspaes of di�erent spinsin the Hamiltonian, whih is not the interation of main interest. The resulting energies of the levels areshown in table 6.1 (mid), along with a representative set of Coulomb matrix elements2 in table 6.1 (right).The parameters desribing the LO-phonons are given in table 5.1.
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Figure 6.3.: Shemati illustration of the level struture of the QD used in the simulations in setion 6.3. Thedashed box indiates the levels used in the simulations.Next we desribe the theory needed to obtain the suseptibility for our system. The response of a system toa weak externally applied eletri �eld, E(t), an be desribed by an indued polarization of the medium.Within linear response theory the indued polarization an be written as [56℄
P (t) =

∫ t

−∞
dt′χ(t, t′)E(t′),where χ(t, t′) is the linear optial suseptibility that per de�nition is independent of E(t), and only dependson the properties of the underlying system that is being probed. It should be noted that we assume puresalar quantities and that t > t′ due to ausality. The above form is ompletely general and χ(t, t′) andesribe any non-equilibrium system due to its two-time dependene, this form ould, e.g., be used for2The e�etive stati dieletri onstant ε enters the expression for the Coulomb interation, whih is a well known quantityfor most bulk semiondutors. We do however deal with heterostrutures, and here the situation is not as lear utas for a bulk system. As we exlusively onsider eletroni states bound to the QD or WL, and not the surroundingbarrier/bulk material, we hoose the dieletri onstant of the low bandgap material. In this thesis we only onsider theternary alloy InxGax−1As as the low bandgap material, and therefore we use the following expression for the e�etivedieletri onstant: 1/εx = x/εInAs + (1 − x)/εGaAs, whih seems appropriate for a heterostruture. The values of thebinary ompounds are found from [31℄ for GaAs, εGaAs/ε0 = 12.5, and [75℄ for InAs, εInAs/ε0 = 14.61. For x = 0.6 weget the value εx/ε0 = 13.68 and for pure InAs, x = 1, the value is εx/ε0 = 14.61. Prior to the disovery of the unphysialpopulations desribed in setion 6.2, we used a x = 0.6 system and afterwards we swithed to a x = 1 system as explainedin the present setion. Therefore the values presented in table 6.1 are for the x = 1 system. 91



Absorption spetra Results and Disussiondesribing the often performed pump-probe experiments. We are in the present setion not interestedin probing non-equilibrium systems, but rather systems in thermal equilibrium where it holds that thesuseptibility is only a funtion of the time di�erene χ(t, t′) = χ(t− t′), due to arguments similar to thoseof eq. (5.18). This yields a huge simpli�ation in atually obtaining the suseptibility, as now we maywrite the formulae as
P (t) =

∫ t

−∞
dt′χ(t− t′)E(t′), (6.1)whih is nothing but a onvolution integral that under Fourier transformation, eq. (5.1), transforms intoan algebrai equation for the suseptibility whih is easily solved as

χ(ω) =
P (ω)

E(ω)
. (6.2)The next task is to determine the "marosopi" polarization from our mirosopi model of the system.This is done by alulating the expetation value of the mirosopi dipole operator as follows

P (t) = Tr [D · eEρ(t)] = −Tr [dρ(t)] = −
∑

bb′α

dbb′

α ρb′b
α (t),where we use the dipole operator projeted onto the diretion of the exitation �eld, d = −D · eE,as this is the only relevant quantity in a spei� experiment, see eq. (3.21). Performing the sumsover the band indies and using dα = dcv

α = dvc
α we arrive at our �nal expression for the polariza-tion

P (t) = −
∑

α

dα[ρcv
α (t) + ρvc

α (t)] = −
∑

α

dα[ρ̃cv
α (t)e−iωcv

α t + ρ̃vc
α (t)e−iωvc

α t]. (6.3)In the above expression we have also written the density matrix in terms of its slowly-varying omponentsthrough the transformation
ρbb′

α (t) = e−iωbb′

α tρ̃bb′

α (t),that pulls out the fast osillation due to the free evolution of the system. The atual numerial solution ofthe equations of motion was performed for the slowly-varying omponents, as this yields very signi�antadvantages in terms of time disretization. See appendix A.9 for the slowly-varying versions of all equationsof motion and appendix A.4 for a presentation of the numerial methods used.The polarization eq. (6.3) is obtained by solving the equations of motion for the density matrix, afterexitation by an ultra-short pulse of width 15 fs. Even though eq. (6.2) in priniple holds for any eletri�eld, it is in pratise important that the pulse is temporally short enough to spetrally over all resonanesof the system, as otherwise numerial noise will beome too muh of a fator. For the Gaussian pulseused in our simulations, the Full Width Half Maximum (FWHM) width is in energy units given by
wE = 4 ln(2)~/∆tpulse, whih for ∆tpulse = 15 fs yields wE = 122 meV, being su�ient for our levelsheme.Our equations of motion are all derived from a theory that deals with redued density matries, andtherefore they all ontain memory integrals, linking the present state of the system to the past. All thesememory integrals in priniple extend from the present and bak to the non-interating past at t = −∞,whih is a situation that an not be treated numerially and fortunately we do not have to. Due to theinterations in our system, we expets orrelations to deay when moving away from the time-diagonal.This is indeed the ase as seen in setion 5.3.2, where the �nite width of the peaks in the spetrum of theeletroni density of states, orresponds to deay in the time domain. For all eletroni sattering termsit is exatly the equilibrium retarded Green's funtions that set this so-alled memory depth, due to theuse of the GKBA, and similarly for the photons when the GKBA is used for these. In the simulations wepresent below, we have set the memory depth aording to the riteria Gb

α(τmemory) < 10−4, with Gb
α(τ)92
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T [K℄ τmemory [ps℄300 7250 9200 12150 18Table 6.2.: Memory depths used in the absorption simulations performed in this setion.being de�ned in eq. (5.29). As the retarded Green's funtions always enter in pairs, this means that ata memory depth of τmemory, the memory kernel will be suppressed by a fator of at least 10−8, ensuringthat all signi�ant e�ets have been taken into aount. For the spei� system and temperatures wehave onsidered in this setion, we used the memory depths presented in table 6.2, whih are determinedaording to the above mentioned riteria.We note that being in the linear regime we do not formally indue any hanges in the populations of thedi�erent eletroni states, this an be dedued by an expansion in the exitation pulse. As suh we neednot solve for the diagonal elements of eletroni density matrix, reduing the dimension of the equationsystem by a fator of 2/3. Furthermore we also note that from the slowly-varying version of eq. (6.3),we see that its Fourier transform will be peaked at the frequenies ω = ±|ωcv

α |, thus having signi�antontributions at both positive and negative frequenies. The two parts of the spetrum are however mirrorimages of eah other, and therefore essentially yields the same information. Also, only positive frequeniesan be measured in experiments [76, p. 28℄, therefore we will only show spetrum at positive frequenies.6.3.1. LO-phonons and CoulombIn this subsetion we will present and disuss absorption spetra for the free system desribed above withthe e�ets of LO-phonons, desribed through eq. (5.44), and the HF Coulomb interation between theeletrons, desribed by eq. (5.39). The singular Hartree self-energy from the LO-phonons, eq. (5.40), doesnot ontribute to the absorption spetra simulations as it only involves populations, that by onstrutiondo not ontribute in equilibrium.In �gure 6.4 we show the imaginary part of the suseptibility for four temperatures between 150 K and 300K, onsistent with our hoie of only onsidering LO-phonons, the top �gure is with the HF Coulomb self-energy inluded and the bottom �gure is without. When disussing the spetra we will adopt the terminol-ogy ommonly used in atomi physis and denote the levels in our QD with the letters s, p, d and so on. Dueto the size of our QD we only need s and p states, with s being the lowest/highest in the ondution/valeneand p being the next lowest/highest in the ondution/valene band.We start out disussing the spetra without the Coulomb interation as this is the simplest. The mostdominating features of the spetra are still the s and p transitions near the transition energies of thefree system. These have obtained a �nite width due to the dephasing aused by the interation withLO-phonons and the transition energy has also been renormalized slightly to lower values. It is learfrom the spetra that the lineshape of the s and p transitions are non-Lorentzian, bearing witness ofnon-exponential deay of the polarization in the time domain. This non-exponential deay arises due tothe fat that our system has memory, but is limited to a short time span after the exitation by theexternal pulse. This time span is set by the deay of the memory kernel ([26, p. 40℄ and [56, p. 227℄),i.e. the retarded Green's funtions of the eletrons. For times longer than the memory depth of thesystem, the polarization enters a regime of slow exponential deay, giving rise to the sharp resonanesin the spetra having an approximately Lorentzian lineshape. The reason for the slower deay in thelong-time limit, is due to the time-energy unertainty relation ∆E∆t ≥ ~/2. This relation ditates that93



Absorption spetra Results and Disussionthe energy must be onserved to a higher degree in eah sattering event, than was the ase in the short-time regime. This yields less e�ient sattering in the long-time limit, as oppose to the short-time limitwhere energy need not be onserved to suh high degree and thus more proesses ontribute to sattering.
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Figure 6.4.: Absorption spetra of the system shown in �gure 6.3 with the e�ets of LO-phonons and the Coulombinteration. The transition energies of the free system are indiated by the dashed vertial lines.Apart from the main s and p transitions we observe a very rih struture of smaller peaks, positioned onthe high and low energy sides of both main peaks. These are so-alled LO-phonon-assisted transitions,and arise from proesses where eletrons having absorbed or emitted a number of LO-phonons, makeoptial transitions. To illustrate these LO-phonon dressed eletrons, we show in �gure 6.5 the equilibriumspetral density of the eletron states involved in these simulations, through the GKBA. In priniplewe have transitions between every peak in the spetral densities, for equal3 in-band quantum numbers(e.g. Ac
1(~ω) and Av

1(~ω)). However, due to the thermal broadening and the auray limits imposedby the numeris, many of these are too weak to be resolved. A general feature when onsidering theseries for dereasing temperature is that the spetral features sharpen. This is indeed expeted as thebroadening is aused by the interation with the LO-phonons, and as the thermal oupation of thesederease with temperature less sattering is expeted to our. There is a notable di�erene in thebehavior of the peaks due to LO-phonon-assisted transitions as a funtion of temperature, some of them3This is due to the fat that we only onsider diret optial transitions, i.e. where the in-band quantum numbers α areequal. Allowing for "indiret" transitions would lead to a muh more ompliated spetrum, however, with smaller peakheights due to the smaller matrix element ausing the transition.94



Results and Disussion Absorption spetrainrease and some derease in peak height as the temperature is lowered. We expet this behavior toarise from the fat, that the LO-phonon-assisted transitions are between eletron states either havingabsorbed or emitted a number of LO-phonons, and these behave di�erently on temperature. This islearly illustrated in the ase of the the valene band spetral densities in �gure 6.5. Here the peaks onthe high energy side derease, orresponding to absorption, and those in the low energy side inrease,orresponding to emission, as the temperature is dereased. We will therefore have three di�erent kindsof LO-phonon-assisted transitions namely: 1) between two absorption sidebands whih should thereforederease the most for dereasing temperature, 2) between two emission sidebands whih should inrease fordereasing temperature, and 3) between an emission and absorption sideband where the height should bean intermediate between the two �rst. Prediting the relative strengths and positions of the LO-phonon-assisted transitions, would be a very omplex and di�ult proedure and one would have to analyze theLO-phonon sattering term in great detail. We are quite ertain that the overall struture of the LO-phonon-assisted resonanes, an be understood in terms of the above and we will therefore not go intofurther detail on this point.A harateristi feature seen in many of the peaks at 300 K is that they appear to onsist of a main peakand a shoulder on one of the sides, ausing an apparent asymmetry of the resonane. For most of these,however, we observe, as temperature is lowered, that the shoulders are simply lesser pronouned resonaneson their own, and not an asymmetry of the main peak. A urious feature is seen in the height of the sand p main resonanes, where we notie that for all temperatures onsidered, the s peak is higher thanthe p peak. From a simple model of the system where, instead of LO-phonons, a onstant dephasing rateis added to the o�-diagonal elements of the density matrix, we expet the p resonane to have twie themaximum value of the s resonane. This is due to the fat that the p shell is doubly energy degenerate, andhene ontributes twie to the total polarization, see eq. (6.3). In our model the height of the resonanesis diretly onneted to the slow long-time deay of the polarization, where we an onlude that the spolarization deays slower than the total p polarization.Having disussed the spetrum in the absene of the Coulomb interation, we now onsider the spetrumwith this fundamental interation turned on. In omparing the spetra with and without the Coulombinteration, the most notieable di�erene is the large negative shift of the s and p resonanes, while otherparts of the spetra appear largely una�eted. These shifts are well-known and are usually alled exitonresonanes [56, p. 188℄, and arise due to the e�etively attrative interation between an eletron anda hole, that form the exiton quasi-partile. The magnitude of the exiton shifts an relatively easy bededued from a simpli�ed version of the equations of motions and we will brie�y show how. We startby onsidering the Coulomb HF self-energy eq. (5.39), where we need only onsider the band o�-diagonalomponents, e.g. the v omponent. After using the band seletion rule of the Coulomb matrix element,eq. (4.18), we �nd that the Hartree ontribution does not ontribute, and that the Fok ontributionredues to
Σcv,ee,F

α (t) = −
∑

α1

V cvcv
αα1α1αρ

cv
α1

(t).Using eq. (5.37a) we arrive at the equation of motion for ρcv
α (t) inluding only the Coulomb intera-tion
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αααα]ρcv
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αα1α1αρ
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(t)− i~−1U cv
α (t), (6.4)where we have also added a small dephasing rate γα and an external exitation �eld U cv
α (t). From thisequation it is easily seen that for a two-level system, we get an energy renormalization given by the diretexiton Coulomb matrix elements V cvcv

αααα. On an intuitive level it does seems strange that one shouldobtain a Coulomb energy shift with only a single eletron present in the system, as if the eletron interatswith itself. We therefore suspet that it arises due to virtual proesses, that are automatially taken intoaount in the Green's funtion formalism. We have not fully understood the origin of this shift, butwe do think that it is an unphysial feature that should not appear. A strong possibility is that arisesfrom the trunation of the self-energy, and therefore solving the problem with the exat self-energy would95
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T [K℄ ∆polaron [meV℄300 -1.268250 -1.200200 -1.185150 -1.185Table 6.3.: Temperature dependene of energy renormalization of the s transition, the polaron shift, dedued byinspeting the data from �gure 6.4.somehow ompletely anel the observed shift. For more than two levels the polarizations ouple throughthe indiret exiton matrix elements in the third term, these are, however, usually several times smallerin magnitude than the diret ones, see table 6.1. Indeed solving the above equation of motion for oursystem, whih an be done analytially exat, we �nd that the diret exiton matrix elements aount for98% and 97% of the entire exiton shift for the s and p transitions, respetively. Inspeting the data in�gure 6.4 we �nd an exellent agreement with these simulations, when the polaron energy shift is takeninto aount.A peuliar feature of the spetra is that the s resonane apparently split up into two peaks, when we turnon the Coulomb interation. Splitting of spetral features is normally indiate that we have entered somesort of strong oupling regime for a given interation, where the oupling strength exeeds the relevantlinewidths. As this splitting appears when the Coulomb interation is turned on, one might be temptedonlude that it is diretly due to this interation. However, due to the struture of eq. (6.4) and ourexperiene with its solution, we do not think that the Coulomb interation, at the HF level and in thelinear regime, an give rise to the usual kind of interation indued splitting. The only interation thatis inluded in these simulations besides the Coulomb, is the interation with the LO-phonons, and henewe speulate that the splitting must somehow originate from this interation. Indeed if we ompare thespetra with and without Coulomb interations, in the spetral region near the renormalized s resonane,we observe a rather pronouned LO-phonon-assisted transition in the spetra without Coulomb. Thispartiular LO-phonon-assisted transition has a main peak and a small shoulder on the high energy side.We believe that by sheer oinidene (rooted in the spei� system parameters of ourse), the s transitiongets shifted and lands on top of this LO-phonon-assisted transition. This auses the LO-phonon-assistedtransition to be magni�ed several orders of magnitude, and by oinidene it is the shoulder that getsmagni�ed the most. The main peak is also magni�ed to a signi�ant value, even though the exiton shiftdoes not oinide exatly with this resonane, the reason being that the main peak was originally muhmore signi�ant than the shoulder. The net result is what appears to be a Coulomb indued splitting,whih in some sense it is, but fundamentally it is mediated by the LO-phonons.The last observation we wish to note is that the exiton shift mainly ours for the original s and ptransitions, while all the LO-phonon-assisted transitions are only very weakly a�eted by the Coulombinteration.6.3.2. LO-phonons and photonsIn this subsetion we will disuss the absorption spetra for the same system as above, but now inludingthe interation with photons and not the Coulomb interation. Even though we have derived equationsof motion for the photon Green's funtions in setion 5.4.2, these will not be needed in the linear regime.This is beause only eletroni densities enter in the soure terms of these equations of motion, andthese are not a�eted in the linear regime, hene we will not hange the photon Green's funtions fromtheir equilibrium values. The only way the photons enter the eletroni equations, is through the singularHartree self-energy, eq. (5.41), where the retarded photon Green's funtion may be taken in its equilibriumform due to the above arguments. 97



Absorption spetra Results and DisussionThe properties of the avity are treated fully on a parameter basis, whih is reasonable as we only onsidera single quasi-mode in the avity. The �rst parameter is the energy of the avity photon ~ωcav, whihwe in this setion will always tune relatively lose to the s transition in the QD. Therefore we write theenergy as
~ωcav = ~ωcv

1 − |∆polaron|+ n× 1 meV, (6.5)where we have subtrated the small energy shift due to the eletron-phonon interation from the freeenergy of the s transition and n is a dimensionless parameters. This is done to be able to ontrol thedetuning of the avity with respet to the LO-phonon dressed eletroni system, and in table 6.3 we showthe temperature dependene of the polaron shift of the s transition. The seond parameter desribes the�nite lifetime of the photons in the quasi-mode of the avity. We will usually talk about the linewidth
~γcav of the photon, or its inverse ounterpart the lifetime τcav = γ−1

cav, however, another ommonly usedmeasure is the Q-fator de�ned as Q = ωcav/γcav. In the following disussions we will use the quantity thatbest suits the given situation. The last parameter desribes the oupling strength between the photonsand eletrons and is denoted ~gα. However, as disussed in setion 4.4 it is reasonable within our model toonsider a single strength for all transitions, and we may therefore drop the α subsript and simply referto a single number ~g.
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Figure 6.6.: Figures showing the absorption spetra inluding the e�ets of LO-phonons and the avity photons.These simulations were done for oupling strengths in the range ~g = [0.1, 0.2, 0.3, 0.4, 0.5, 1, 2, 3, 4, 5, 6, 7] meV, with
~g = 0.1 meV being the blue enter peak and ~g = 7 meV being the outer purple double peak. Other parametersin the simulations were: ~ωcav = ~ωcv

1 − |∆polaron|, τcav = 2.36 ps ⇒ ~γcav = 0.28 meV ⇒ Q = 3000, and atemperature of 300 K.As in the ase of the Coulomb interation in the previous subsetion, one may neglet the in�uene ofthe LO-phonons and ome up with a muh simpler set of equations, that in some ases an be solvedanalytially exat. These simpler models are sometimes useful in interpreting the results of more ompli-ated numerial models, we will therefore brie�y disuss suh a model. As mentioned in the beginningof this subsetion we need only onsider the Hartree self-energy of the eletrons due to the photons.Furthermore as the self-energy is purely o�-diagonal in the band index, only the following element is98



Results and Disussion Absorption spetraneeded
Σcv,rad,H
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∑
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(t′)Ar(t, t′), (6.6)where Ar(t, t′) = −i~−1θ(t − t′)e−iωcav(t−t′)−γcav|t−t′| is the retarded photon Green's funtion4. Usingeq. (5.37a) we obtain the equation of motion for the inter-band polarization
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cv
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(t′)Ar(t, t′)− i~−1U cv
α (t), (6.7)where a dephasing rate γα and an exitation �eld U cv

α (t) have been added. In our QD system the di�erenein transition energy between the s and p shells is above 90 meV, hene if we tune the avity energy nearthe s transition we may neglet the in�uene of the p transitions, due to very large detuning. In thisase of a two-level system we may solve eq. (6.7) analytially using the Laplae transform tehnique, ifwe assume a delta pulse exitation at t = 0. The solution yields the time-dependent polarization givenexpliitly by
ρcv(t) =

ρcv(t = 0)

λ+ − λ−
(
[λ+ + iδ − γcav] e

λ+t − [λ− + iδ − γcav] e
λ−t
)
e−iωcv

1 t (6.8)where δ = ωcav−ωcv
1 is the detuning and λ± = 1

2 (−iδ− γ− γcav ± i[4g2 + (δ+ i[γ− γcav])
2]1/2), the valueof ρcv(t = 0) is determined by the spei�s of the exitation pulse but is relatively unimportant whenonsidering absorption spetra. We note that only the dephasing rate γ does not enter in the full modeland hene this is the only adjustable parameter.
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~g for the simulation and two-level model, the blak dashed line show the polaron shift.To start out the disussion we onsider a situation where the photon energy is set so that we obtain asituation as lose to the usual zero detuning ase as possible, that is we put n = 0 in eq. (6.5), we hoose a4Alternatively one may introdue the di�erene time de�ned as τ = t − t′, in terms of whih eq. (6.6) transforms to:
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(t − τ)Ar(τ), where τ an be interpreted as an absolute memory time. 99
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Q-fator of 3000, and a temperature of 300 K. The oupling strength is varied from 0.1 meV to 7 meV (thestep size is shown in the �gure aption) and the resulting spetra are shown in �gure 6.6. We only showthe spetral region of the spetra near the energy of the avity, as the other parts are basially una�etedby the presene of the oupling to the photons, whih makes sense on an intuitive level. At the lowestvalue of ~g we observe a single peak at the s transition energy, whih is slightly broader and lower inmaximum value ompared to the spetra without photons. The fat that we see a single peak, indiatesthat we are in the so-alled weak oupling regime, see the disussion in hapter 1. For the next few valuesof the oupling strength, we observe that the single peak gradually splits and beomes a double peak. Theseparation inreases with the oupling strength, being expeted behavior seen in simple textbook modelsas e.g. eq. (6.8). This is the regime of so-alled strong oupling, see hapter 1. A behavior that is howevernot expeted from simpler models, is the asymmetry in the peak heights in the double peak struture. Wesee through the di�erent values of ~g that neither the left or right peak remains dominant, but rather themaximum shifts several times. To quantify these observations, we show in �gure 6.7 the peak heights andpositions as a funtion of the oupling strength, along with the numbers predited by eq. (6.8). It shouldbe noted that the dephasing rate entering eq. (6.8), was hosen so that the peak heights were similar inmagnitude, whih oinidentally gave a dephasing rate very similar to the photon deay rate, re�etingthe e�etive dephasing rate aused by the LO-phonons at this temperature. It is however not the goal ofthis disussion to extrat dephasing rates, but rather to show qualitative di�erenes, so we will not dwellon this point. In �gure 6.7 we see that the spetral positions of the peaks in the strong oupling regime,follow rather losely the positions predited by our simple model, although the right peak seems to drifta bit more than the left peak. In the ase of the peak heights we see a muh more dramati departurefrom the preditions of the simple model. The simple model predits that the left and right peaks shouldbe of equal magnitude, due to the symmetri lineshape imposed by the onstant dephasing rate, and tendtoward a onstant value for large ~g. Instead of an equal magnitude we observe that the data points fromthe simulation, atually ross eah other twie in the range of oupling strengths we onsider. This deviantbehavior is, of ourse, aused by the interation with the LO-phonons, and is the result of the ompliateddynamis between the photons and the LO-phonon dressed eletroni states. In order to more preiselydetermine the reason for this behavior, one should go bak to the spetral funtions in �gure 6.5, andinvestigate exatly whih of the LO-phonon and/or hybridization peaks, that give rise to spetral featuresnear the s transition in the absorption spetra without photons. However, suh an extensive analysis isbeyond the sope of this thesis.Now we will disuss a situation where we vary the detuning parameter n, see eq. (6.5), and �x theoupling strength at ~g = 5 meV, other parameters are as in �gure 6.6. The spetra obtained fromthese simulations are shown in �gure 6.8 for a wide range of detunings. Starting at n = 0 we see alear double peak struture indiating that we are in the strong oupling regime. Furthermore, the leftand right peaks are of approximately the same magnitude, whih indeed they need not as an be seen in�gure 6.6. In this situation we may not assign a spei� peak to either the photon or eletron. The systemis in a strong superposition of the two, and it is not possible to distinguish them. We usually say thata polariton, an eletron-photon quasi-partile, has formed. For inreasing positive detuning we observe alear monotonial inrease for the left peak and derease for the right peak, whih is expeted on the basisof our simple model. Having a situation where di�erene in peak magnitude is as large as for n = 20,orresponds to a departure from the strong oupling regime and into a regime where we may assign apeak to eah of the involved partiles. Here the left peak is the eletron and the right is the photon,whih an be seen from the fat that it is the most detuned of the two peaks. For inreasing negativedetuning we observe the same trend, but the other way around, until a detuning near n = −12 is reahed,then the right peak is no longer inreasing, but atually dereasing. In �gure 6.9 the non-monotonialbehavior is more learly presented, and we see that the right peak ontinues to derease for detuningslarger than those shown in �gure 6.8. Furthermore we also note a small inrease in the left (photon)peak for the largest negative detuning onsidered, whih might be due to the presene of LO-phononassisted transition near this plae in the spetrum, see �gure 6.4. Comparing to what is predited by oursimple model, the disagreement is strongest for negative detunings, whih is expeted to originate fromthe spetral asymmetry introdued by the interation with LO-phonons. In �gure 6.9 we also show thepeak positions as a funtion of the detuning, whih are seen to rather losely resemble what is predited100
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Figure 6.8.: Figures showing the absorption spetra inluding the e�ets of LO-phononsand the avity photons. These simulations were done for detunings in the range n =
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Time domain Results and DisussionExitation energy T [K℄ ∑

α ρ̃
cc
α (t = 10 ps)

~ωcv
2 300 1.7127× 10−2250 1.7382× 10−2200 1.7610× 10−2150 1.7797× 10−2

~(ωcv
2 + ωcv

1 )/2 300 6.8058× 10−4250 6.2670× 10−4200 5.7419× 10−4150 5.2793× 10−4

~ωcv
1 300 1.0728× 10−2250 1.0962× 10−2200 1.1168× 10−2150 1.1335× 10−2Table 6.4.: Table showing the total number of eletrons exited into the ondution band, ∑α ρ̃cc

α (t = 10 ps), by theexternal exitation �eld.The �rst situation we wish to onsider is the establishment of a quasi-thermal equilibrium state within eahband, due to thermalization of the eletrons through the interation with the LO-phonons. We onsider thesame system as in setion 6.3, where we exite the system with a 100 fs pulse of �xed amplitude and varythe photon energy of the pulse and temperature. The results of the simulations are shown in �gure 6.10.The top �gure is for a photon energy of ~ωcv
2 orresponding to the free p shell transition energy, the middleone is for an energy of ~(ωcv

2 + ωcv
1 )/2 orresponding to right between the s and p transitions, and �nallythe bottom �gure is for an energy of ~ωcv

1 orresponding to the free s transition. Thus we onsider twoases of resonant exitation6 and one ase of o�-resonant exitation. Eah simulation was performed atfour di�erent temperatures, 300 K, 250 K, 200 K, and 150 K.Generally we observe that all populations reah a quasi-equilibrium state within 4-7 ps. This is onsis-tent with results obtained in the paper [41℄, even though they reah the quasi-equilibrium slightly faster,presumably due to the fat that they inlude a WL ontinuum that is expeted to speed up the thermal-ization. The simulations all show the expeted result, namely that eletron states of lower energy are morepopulated than those of higher energy, being onsistent with the general rule that a subsystem onnetedto a reservoir always tries to minimize its total energy. A slightly surprising result in the ases of theresonant exitations, is that the polarization deays on a signi�antly longer timesale than the timesaleit takes the populations to reah the quasi-equilibrium. An inrease in the lifetime of the polarizations is,however, observed as the temperature in lowered. Going through the populations at large times when thequasi-equilibrium has been established, we see a lear tendeny of the eletron oupation to shift towardshigher/lower energy in the ondution/valene band as the temperature is inreased. This is expetedas for higher temperature, the probability of an eletron to absorb a LO-phonon inreases due to thethermal oupation fator of the LO-phonons. This trend is, however, not observed for the non-resonantexitation for reasons that will be explained shortly. As we learned in setion 6.3 the absorbtion spetrumhanges with temperature, and thus we an not expet the same number of eletrons to be exited, fora �xed exitation pulse, as we vary the temperature. Inspeting the total number of eletrons generatedin the ondution band by the pulse, reveals that it does indeed depend on temperature, see table 6.4.Comparing the numbers for the two resonant exitations, we see that almost twie as many eletrons aregenerated in the ase of p shell exitation than in the ase of the s shell. This is onsistent with the fat the6In the setion on absorption spetra we were areful to subtrat the small polaron energy shift from the energy of theavity photon, in order to be able to have full resonane between the s transition and the photon. This is, however, notas important in this setion, as we onsider a 100 fs pulse orresponding to a FWHM energy width of 18.2 meV and thusthe polaron shift of the order 1 meV is not important. The situation was di�erent in the absorption simulations, wherethe high Q of the avity made the photon linewidth of the order 0.1 meV, thus making the polaron shift important toaount for.104



Results and Disussion Time domainp shell is double energy degenerate and hene in the free system one would expet this ratio to be exatly2. However due to the e�ets of the LO-phonons this is not the ase. For the ase of the non-resonantexitation we see that the numbers depend strongly on temperature, explaining why we do not see thesame trend as for the resonant ases. In fat the dependene of ∑α ρ̃
cc
α (t = 10 ps) on temperature is sostrong that in order to on�rm the above intuition regarding LO-phonon absorption, one should tune theexitation �eld so that an equal amount was exited for the di�erent temperatures, or simply initiate thesimulations with eletrons already exited7.We will now turn to a disussion of the transient regime in �gure 6.10, between the pulse has exited thesystem and the quasi-equilibrium has been reahed. In the ases of resonant exitation, we observe aninitial rapid hange in the populations of the levels the pulse was tuned onto, however already during theshort time span the pulse is in the system, sattering between the intra-band levels has already ourred.This shows that the LO-phonons in�uene the eletron dynamis on timesales below the 100 fs mark. Inthe non-resonant ase we are in the regime where one would expet to see the phenomena of adiabatifollowing, already disussed in setion 6.2, due to very o�-resonant harater of the external pulse. Indeedfor a free system, as shown in �gure 6.2(b), we see how the populations simply follow the exitationpulse envelope, illustrating the adiabati following. Whereas in the present simulations, the LO-phononsseem to "ath" the eletrons near their quasi-equilibrium values, making the pulse unable to "follow"them bak to their true equilibrium values. After the pulse has left the system, the eletron populationsapproah their quasi-equilibrium values of qualitatively di�erent ways, we observe both exponential-likemonotonial deay and deay with rather powerful osillations. The exponential-like monotonial deayours mainly in the ondution band and the osillatory deay ours mainly in the valene band. Weexpet this di�erene between the bands to arise from the di�erene in intra-band transition energies, asthis is one of two quantities determining how e�ient the eletrons and LO-phonons ouple, the otherbeing the matrix element. Indeed from table 6.1 we read o� the following intra-band transition energies:

~ωvv
12 = 0.4 × ~ωLO = 15.0 meV and ~ωcc

21 = 2.2 × ~ωLO = 82.7 meV. These learly show that the intra-band transition in the valene band is muh more resonant with a LO-phonon energy than the intra-bandtransition in the ondution band. Thus we expet a muh stronger oupling in the valene band than inthe ondution band. Indeed it has been pointed out in the literature [41, 61℄ that these osillations areanalogous to the Rabi osillations8 observed in optis in the strong oupling regime. Studying arefully thetransient regime in the valene band, we notie a pronouned dependene of the osillations on temperature,both in osillation period, amplitude, and deay time. The osillation period is seen to inrease as thetemperature is lowered, whih is usually onnet to a derease in a oupling strength. In our ase weexpet that this lowering of the e�etive eletron-phonon interation, arises from the thermal oupationfators of the LO-phonons. These derease along with the temperature and enters the LO-phonon Green'sfuntions ourring in the self-energy determining the interation. The damping of the osillations isseen to inrease along with temperature, whih is also onsistent with the fat that the e�etive eletron-phonon interation inreases with inreasing temperature. In the low temperature simulations for theo�-resonant ase, we observe a lot of small osillations modulating the larger osillation. We suspet thatthese small osillations might arise from proesses, where the inter-band polarization for both the s andp transitions enters, so-alled P 2 terms see [26, p. 281℄ or [56, p. 229℄. The reason for this suspiion isthat it is only for the non-resonant ase that the polarizations for both inter-band transitions have similarmagnitude.The simulations disussed above were all done in the weak exitation or linear regime where, as notedin setion 6.3, only the o�-diagonal elements of the eletroni density matrix hange signi�antly fromtheir equilibrium value. This is due to the fat that these are �rst order in the external �eld, whereas thepopulations or diagonal elements are seond order9. In this lowest order regime the qualitative shape ofthe solutions does not hange, only the absolute magnitude does, and this sales linearly for o�-diagonalelements and quadratially for the diagonal elements in the external �eld. Our model is however notlimited to lowest order in the exitation �eld, in fat it ontains all order of the exitation �eld, and we7In the low exitation regime it is atually possible to obtain the quasi-thermal equilibrium populations only throughknowledge of the true equilibrium retarded Green's funtions, through the use of the �utuation-dissipation theorem [38℄.8This is atually not that surprising as photons and phonons are formally idential at our approximation level.9This an be realized by performing a formal expansion in the external �eld, see [31℄. 105



Time domain Results and Disussionwill therefore spend some time disussing how the solutions hange qualitatively as we move away from thelinear regime. To illustrate the hange we have plotted in �gure 6.11 the inoherently summed polarization
∑

α |ρ̃cv
α (t)| and the population of the s shell in the ondution band, for a range of di�erent strengthsof the exitation �eld. The simulations were performed with a 15 fs pulse and a temperature of 300 K.The reason for hoosing suh a short pulse, is that it reates solutions that are more osillatory than a100 fs pulse, making the point easier to illustrate. All solutions are saled to failitate omparison of thequalitative shape, even though their absolute values are quite di�erent.For the two sets of solutions with relative �eld strengths of 0.75 and 1 we are learly in the linear regime,seen through the fat that these solution are of the same saled shape. For the next two of strengths2.5 and 5, we still see an overall agreement in the shape of the solutions, ompared to the linear regime,however they do start to di�er slightly. At relative strengths of 7.5 and 8.75 the departure from the linearregime is even more pronouned, espeially for the solutions of the populations, whereas the inoherentlysummed polarization is not a�eted that muh. For the largest relative strength onsidered, equal to10, the qualitative shape of the solution for the population has totally hanged, and again we see thatthe polarization is not as sensitive. Inreasing the exitation strength even further, we enter a regimewhere Rabi osillations start to our, due to the interation between the lassial exitation �eld andthe eletrons. These are, however, not presented as the fous is on hanges in the dynamis due toLO-phonons.To understand the origin of these qualitative hanges in the dynamis, one should look at the satteringterms originating from the eletron-phonon interation, the Hartree ontribution 5.40 and the Fok ontri-bution eq. (5.44). The Fok ontribution is the more important of the two and therefore we will only treatthis in the following. More spei�ally one should onsider the fators in the sattering terms ontainingthe eletroni density matrix. Upon examination of eq. (5.44) we �nd that all these fators appear in thefollowing forms: [δb,b1 − ρbb1

α1
(t1)]ρ

b1b′

α (t1) and ρbb1
α1

(t1)[δb1,b′ − ρb1b′

α (t1)]. b, b′, and α are �xed depending onwhih element of the density matrix is onsidered, while b1 and α1 are integration variables that shouldbe summed over all their possible values. Considering the sattering term of the polarization, b =  and
b′ = v, we get the following kinds of ontributions

lowest order : ρcv
α (t1)

higher order : ρcc
α1

(t1)ρ
cv
α (t1), ρvv

α1
(t1)ρ

cv
α (t1)and for the ondution band population, b =  and b′ = ,

lowest order : ρcv
α (t1)ρ

vc
α1

(t1), ρcc
α (t1)

higher order : ρcc
α (t1)ρ

cc
α1

(t1)where we have arranged the di�erent ontributions aording to their order in the exitation �eld. Wenote that the lowest order for the polarization is �rst and seond for the population. In the linearregime the dynamis is governed by the lowest order ontributions presented above, whereas the higherorder ontributions beome signi�ant when the strength of the exitation �eld is inreased. Physiallywhat happens in this weak to strong transition is that population dynamis start to beome signi�ant.6.4.2. LO-phonons and photonsIn this setion we will desribe and disuss solutions of our equations inluding LO-phonons, as in theprevious subsetion, and now with the eletron-photon interation also. In setion 6.3 we have alreadyonsidered the e�et of adding photons to the equations of motion, but as these simulations were donein the linear regime, no eletrons were exited and thus no real photons generated. In this setion wewill allow for exitation of eletrons aross the bandgap and hene for the generation of real photons. Insetion 5.4 we derived two versions of equations of motion ontaining photons, one where photons wheretreated in the GKBA and one where the full two-time photoni Green's funtions were retained. In this106
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Figure 6.12.: Figures showing the solution of all eletron and photon quantities in our model. The pulse exitationenergy is ~ωcv
2 (top) and ~ωcv

1 (bottom), and a strong pulse magnitude was used. The avity is tuned so that
~ωcav = ~ωcv

1 − |∆polaron|. The di�erent series are: (solid) ~g = 0.1 meV, (dotted) ~g = 0.5 meV, (dashed-dotted)
~g = 2 meV, and (dashed) ~g = 5 meV, and a Q-fator of 3000 was used. The temperature is 300 K.108
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Figure 6.13.: As in �gure 6.12, but with a temperature of 150 K. 109



Time domain Results and Disussionpowerful Rabi osillations are observed for the two highest values of the eletron-photon oupling strengthsonsidered. The fat that the slowly-varying s polarization is modulated with an osillation depending on
~g an understood in terms of eq. (6.8), where we see that in the strong oupling regime, osillations areindeed expeted in the time domain. As in the previous ase the ondution band eletrons deay into thevalene band, however, at muh lower rate, see �gure 6.14 (top).The origin of the lower deay rate for the s exitation, is expeted to be found in the part of the satteringterm desribing spontaneous proesses, the part with the bloking fator struture ρcc

α1
(t1)

[
1− ρvv

α1
(t1)

].These terms give relatively high values when the oupation in the ondution band is high and low in thevalene band, i.e. right after the exitation pulse has exited the system. Whereas when the oupationin the ondution band dereases and the valene band inreases, these terms give relatively low values.To support this argument a simulation was made where the ondution band oupation after p shellexitation, reahed a level omparable to that of the s shell exitation. Figure 6.14 (bottom) shows thatthe rate of deay for the p shell exitation, drops dramatially one fewer eletrons are present in theondution band. This e�et is most learly illustrated when dealing with a two-level one eletron system,where the relation ρcc(t1) + ρvv(t1) = 1 holds yielding a bloking term of the form (ρcc(t1))
2. This shouldbe ontrasted to the usual exponential deay known for a two-level system, arising from "bloking" termsof the form ρcc(t1), where no extra slow down is experiened when the oupation is low. This disrepanybetween the two methods in the ase of a two-level system is not fully understood yet, but we are ertainthat it is the Green's funtion approah whih yields the inorret result10, manifested in a sort of arti�ialPauli bloking. The bloking fator struture desribed above is also obtained in the luster expansionsheme, however in this formalism the arti�ial bloking issue may be resolved as desribed in [68℄. Inthe ase of a system ontaining more than one eletron, it is however lear that the various satteringterms must ontain bloking terms of the form enountered in our theory, supported by the literature[68, 77℄.The important di�erene between the two exitation ases is that in the present, oherent eletrons areexited diretly to states interating through the avity mode, whereas in the previous ase the initiallyoherent eletrons had to undergo sattering proesses in order to arrive at the avity resonant states.During these sattering proesses they lost enough of their oherene, so that Rabi osillations were notobservable. This indiates that if we ould maintain the oherene of the p shell exited eletrons for alonger time, Rabi osillations for this exitation ase ould beome observable. Our handle for providinglonger oherene time, is to lower the temperature and hene the amount of LO-phonons available topartiipate in sattering. In �gure 6.13 we show simulations idential to those in �gure 6.12, but witha temperature of 150 K, and indeed Rabi osillations start to beome visible for the p shell exitation.Osillations due to LO-phonons also beome more pronouned, espeially for the valene band population,however, they have a larger period than those indued by the photons and an therefore be distinguished,ompare with �gure 6.10. For the s shell exitation the already existing Rabi osillations have beomegreater in amplitude, in partiular in photon density where we observe negative populations. This indiatesthe either the GKBA or lowest order self-energy approximation has broken down, and that lower ~g valuesshould be used to obtain sensible results.Comparison with numerially exat solutionTo be able to formulate and solve the equations of motion for the Green's funtions as done above, we haveapplied two major approximations, namely the trunation of the various (self-onsistent) self-energies andthe employment of the GKBA. The exat validity and range of either of these approximations are not fullyunderstood yet in a formal rigorous sense, and thus it is always interesting to ompare with other solutionmethods. In this setion we will perform suh a omparison, with a simpli�ed version of the QED systemonsidered above that an be solved numerially exat.The �rst simpli�ation we employ is to neglet the interation with the LO-phonons, whih is done tobe able to span the Hilbert spae with a �nite set of basis vetors. This removes the basi dissipation10Or our inability to apply it orretly.110
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Time domain Results and Disussionmehanism and thus no dephasing or relaxation will our, unless it is added phenomenologially. Nextwe limit ourselves to only onsidering the s shells of our QD, hene we only treat two eletroni states.This system is desribed by the following Hamiltonian
H = ~ωcc†ccc + ~ωvc†vcv + ~ωcava

†a+ ~g(c†ccva+ a†c†vcc) + ~
dE0(t)

2
(c†ccve

−iω0t + c†vcce
+iω0t),in the ase where no loss proesses are present. To inlude losses one may use a master equation approahas the Lindblad form, see [78℄. Here the equation of motion for the redued density operator of the systemdesribed by the lossless Hamiltonian above reads

∂tρ(t) =
1

i~
[H, ρ(t)]− 1

2

∑

k

(

L†kLkρ(t) + ρ(t)L†kLk − 2Lkρ(t)L
†
k

)

. (6.9)In this formula La,b =
√
γa,b |a〉 〈b| are Lindblad operators, desribing a loss proess ourring at a rate

γa,b in the transition from state b to a. In this formalism pure dephasing an easily be added by inludingLindblad operators of the form La,a =
√
γa,a |a〉 〈a|, that an be thought of as a virtual transition, nothanging the oupation of level a. Now in order to perform a omparison between the Green's funtionapproah and a solution obtained through that Lindblad master equation, we an not inlude losses thatan not be unambiguously inluded in both formalisms. This rules out adding pure dephasing, as it isnot lear how it should be inluded in the Green's funtion approah. One might naively think that asimple term like −γdephρ

cv(t) ould be added to the equation of motion for the polarization. However,as we have learned in the previous setions, deay mehanisms also a�et the retarded Green's funtionsentering the GKBA, and it is not lear how these funtions should be modi�ed to inlude pure dephasing.The situation is quite di�erent for the ase of the avity loss rate, γcav, whih an easily be inluded inboth the Lindblad formalism and Green's funtion approah.To proeed with the solution eq. (6.9), we need to span a Hilbert spae apable of desribing the physialsituation we wish to onsider. The situation is the usual, in whih the eletron is initially in the groundstate and at some point it is exited by the external �eld, and the system is left to evolve aordingto the rest of the Hamiltonian. Due to the appliation of the RWA for the light-matter interation,and the assumption that we only exite that system one with a ultra-fast pulse, we may limit theHilbert spae to only ontain basis states with at maximum a single photon added. Choosing the set
{
|1〉 = c†v |0〉 , |2〉 = a†c†v |0〉 , |3〉 = c†c |0〉

} we may expand the operator equation eq. (6.9) and by inludingthe Lindblad operator Lγcav =
√
γcavc

†
vcva, loss is introdues for the avity photons. We obtain thefollowing equations for the redued density matrix

∂tρ11(t) = γcavρ22 +
i

2
dE0(t)[ρ̃13(t)e

−iδ0t − c.c.],

∂tρ22(t) = −γcavρ22 + ig[ρ23(t)− c.c.],

∂tρ33(t) = −ig[ρ23(t)− c.c.]− i

2
dE0(t)[ρ̃13(t)e

−iδ0t − c.c.],

∂tρ̃12(t) = −γcav

2
ρ̃12(t) + igρ̃13(t)e

−iδt − i

2
dE0(t)ρ

∗
23(t)e

−iδ′t,

∂tρ̃13(t) = igρ̃12(t)e
iδt +

i

2
dE0(t)e

iδ0t[ρ11(t)− ρ33(t)],

∂tρ23(t) = −γcav

2
ρ23(t)− iδρ23(t) + ig[ρ22(t)− ρ33(t)] +

i

2
dE0(t)ρ̃

∗
12(t)e

−iδ′t,where we have de�ned the following detunings δ = ω−ωcv, δ0 = ω0−ωcv, and δ′ = ω−ω0, and the slowly-varying funtions ρ13(t) = eiωcvtρ̃13(t) and ρ12(t) = eiωtρ̃12(t). In the ase of the Green's funtions we usethe equations desribed in the beginning of this subsetion. In the GKBA for the eletrons we employfree retarded Green's funtions, whih is atually exat in this ase where only the photon interationis onsidered. This we know from setion 5.3.3, where it was established that there are no orrelationsbetween the eletrons and photons in equilibrium, and thus no initial orrelations need to be inludedthrough the retarded Green's funtions.112
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Emission spetra Results and Disussion6.5. Emission spetraIn this setion we will desribe and disuss our attempts to model the emission spetrum of the avityphotons in our semiondutor QED system. This is an interesting quantity as it is often measured inexperiments, see e.g. [16, 79℄.We begin with an expression for the emission spetrum [44, p. 299℄ for an idealized two-level detetor.Assuming an in�nite detetion time, the expression reads
S(R, ωS) ∝

∫ +∞

−∞
dt′
∫ +∞

−∞
dte−iωS(t′−t) 〈E(−)(R, t′)E(+)(R, t)〉 ,where R is the position of the detetor, ωS is the detetion frequeny, and E(±)(R, t) are the eletri �eldoperators, assumed to be salars. Note that we have negleted an unimportant prefator and thereforewe only write "proportional to" at the moment. In priniple the eletri �eld operators ontain a sumover all modes, inluding those in the far �eld where the emitted photons are atually measured, thesemodes an be important to obtain agreement with experiment. It is, however, beyond the sope of thisthesis to desribe all these modes and we limit ourselves to only onsidering the loal avity mode, as alsodone in appendix A.1, whih greatly redues the omplexity of alulating the spetra. This orrespondsto the rather unrealisti experiment where the detetor is plaed inside the avity, or to the ase wherethe photon propagates without hanging its properties from the avity to the detetor in the far �eld. Inany ase it does not make muh sense, to assign any signi�ane to the mode funtion of the avity thatenter the expression for the �eld operator, and we will simply neglet this overall prefator and thereforealso the dependene on the detetor position R. The emission spetrum is now expressed only in termsof the reation and annihilation operators of the avity, and this expression will be used in the rest of thethesis

S(ωS) =

∫ +∞

−∞
dt′
∫ +∞

−∞
dte−iωS(t′−t) 〈a†(t′)a(t)〉

=

∫ +∞

−∞
dt′
∫ +∞

−∞
dte−i(ωS−ωcav)(t′−t)Ã<(t, t′), (6.10)where in the seond line we have expressed the photon braket in terms of the slowly-varying lesser Green'sfuntion de�ned in eq. (5.48). The two time integrals in eq. (6.10) over the entire two-time plane and thusthe two-time photon Green's funtion is needed at all these points. However, due to the symmetry relationeq. (5.49), that relates the values of the lesser Green's funtion above and below the time diagonal, it is pos-sible to redue the double time integral to run over either the half plane above or below the time diagonal.Choosing below the time diagonal we may derive the following expression

S(ωS) = 2Re

{∫ +∞

0

dτei(ωS−ωcav)τ

∫ +∞

−∞
dtÃ<(t, t− τ)

}

, (6.11)using eq. (5.49).As a �rst approximation one may attempt to use the GKBA version of the two-time photoni Green'sfuntion as given by eq. (5.53), where the retarded Green's funtion is taken in its equilibrium form. Inthe GKBA the slowly-varying lesser Green's funtion has the form
Ã<(t, t− τ) = exp(−γcavτ)A(t − τ), (6.12)where A(t−τ) is simply the photon density and we have assumed τ > 0. Inserting this form into eq. (6.11)we get
S(ωS) = 2Re

{∫ +∞

0

dτei(ωS−ωcav)τ−γcavτ

∫ +∞

−∞
dtA(t− τ)

}

.114



Results and Disussion Emission spetraThe integral over t deals only with the photon density, and due to the funtional dependene of A on τwe may hange the integration variable t→ t− τ so that we get the integral ∫ +∞
−∞ dtA(t), whih is learlyindependent of τ and we will simply denote it by the real onstant A. Performing the integral over theremaining exponential and taking the real part yields

S(ωS) = 2A
γcav

(ωS−ωcav)2 + γ2
cav

, (6.13)revealing a Lorentzian lineshape entered around the avity frequeny. We note that the only requirementfor performing this alulation, is that the retarded Green's funtion used in the GKBA only depends onthe time di�erene. This result tells us that one an only obtain a Lorentzian emission spetrum, if theGKBA is used as an approximation for the two-time photon Green's funtion. All information on how theeletrons were initially exited, and exatly how the photons were emitted is all ontained in the onstant
A. This simple onstant only sales the magnitude of the Lorentzian lineshape, and hene appliation ofthe GKBA will be of very little use in interpreting experimental emission spetra. The fat that the GKBAfails spetaularly for this type of alulation, is perhaps a bit surprising sine it is an approximation, thatis very often used in the literature. It has, however, mainly been applied in situations where the objet ofprimary interest was the equal-time lesser Green's funtion of the eletrons. In these situations knowledgeof the Green's funtion outside the time-diagonal is as suh redundant. The situation here is very di�erent,in that the quantity we wish to determine depends strongly on the values of the Green's funtion outsidethe time diagonal. Considering that all propagation outside the time diagonal in the GKBA is handled bythe retarded Green's funtion, it might not be that surprising after all that the properties of the retardedGreen's funtion, will be very signi�ant in quantities depending strongly on the o�-diagonal values ofthe two-time lesser Green's funtion. On the basis of this disussion, we must onlude that in orderto alulate emission spetra of light emitted under strong non-equilibrium onditions, the full two-timemahinery must be set in motion, at least for the photoni Green's funtions.6.5.1. Present stage resultsAs disussed above we have to work with the two-time versions of the equations of motion for the photoniGreen's funtions, as oppose to the one-time GKBA version, in order to obtain meaningful emissionspetra. This is a signi�antly more ompliated task, both formally, as seen by omparing eqs. (5.55)and (5.56), and espeially numerially. In the GKBA one should only perform a single memory integralfor eah disretized t value, while in the two-time formalism a memory integral must be performed foreah disretized t and τ value. Furthermore, this should be done for both the greater and lesser photoniGreen's funtion, as these are both independent funtions in the two-time formalism. Depending on therequired memory depth of the memory integrals, the omputationally demands are inreased many times,and as a onsequene of this the implementation and veri�ation proess beomes more di�ult and moretime onsuming. This stage of the projet was not initialized until the very end of the assigned timeperiod, and therefore enough time was not available to obtain a ompletely satisfatory result. We will,however, desribe the present stage of our progress and disuss what further steps need to be taken.To start o� the disussion we in �gure 6.16 show our solutions for the two-time photoni Green's funtions.To redue the omputationally demands we only onsider the two s shells of our QD, and exite the systemon resonane with a strong 100 fs pulse, other parameters are given in the �gure aption. The solutionfor the lesser Green's funtion shows a behavior that is somewhat expeted, in that we observe an initialinrease in magnitude, due to the eletron and hole reombining by photon emission, and afterwards adeay in both the t and τ is seen. For the greater Green's funtion the behavior is muh di�erent andwe observe a strong inrease in the τ diretion, where we would expet a deay on physial grounds. Theapparent plateaus in the �gure are arti�ial and represent areas where the magnitude is larger than theolor sale. Indeed, we are quite ertain that this behavior is not physial, and arises from numerialinstabilities that eventually would lead to a blow up of the solution. This kind of behavior is usually a signthat one should lower the disretization size until a onverged result is reahed. Due to very long integration115



Emission spetra Results and Disussion
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1 ,
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Results and Disussion Indistinguishabilityevery time we inrease t, and the net result is a muh larger error on the overall solution, whih ouldeasily lead to the instabilities we observe. We would like to point out that the solutions satisfy partileonservation and ful�l the relation Ã>(t, t) − Ã<(t, t) = 1, see eq. (2.31). This indiates that our theoryand implementation at least to some extent are orret. In order to get rid of the numerial instabilities,one ould perform a thorough analysis of the error as a funtion of the time disretization, and ompareit to a formal error analysis of the equations, to see if the two agree.Even though we are quite onvined that the two-time solutions presented above, do not represent thetrue solutions to our equations, we have still alulated the emission spetrum aording to eq. (6.11) tosee if some physial signatures ould be identi�ed. The results are shown in �gure 6.18 for the onsideredases. Both spetra display a large emission near the free avity frequeny, where the renormalized avityfrequeny is slightly lower than the free. The set of sidebands situated on eah side of the main peak aresignatures of LO-phonons, on�rmed through the fat that appear approximately a LO-phonon energy oneah side of the main peak. Furthermore, the spetrum for the highest Q-fator also display a splitting ofthe main peak, whih shows that this system is in the strong oupling regime, see hapter 1. The smallripples in this spetrum are expeted to our, as we have basially performed a Fourier transformationof a funtion that has not fully deayed in a smooth manner.
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Figure 6.18.: Emission spetra alulated from eq. (6.11) using the solutions in �gure 6.16 (left) and �gure 6.17(right).6.6. IndistinguishabilityIn order for a single-photon soure to be used in a quantum omputer, it is essential that the single photonsit emits are indistinguishable, as otherwise one will not be able to make them interfere. This makes it veryimportant to obtain an understanding of what physial proesses, auses the single photons to beomedistinguishable. In this setion we will disuss how to de�ne and determine the indistinguishability of thesingle photons emitted from our QED system.As disussed in hapter 1, one way to quantify the indistinguishability is to perform a Hong-Ou-Mandel(HOM) interferene experiment as shown in �gure 1.3(a). The result of suh a measurement is a oinidenehistogram for photon detetion events, in the two photon detetors on eah of the output arms of the BS,as shown in the bottom of the �gure. Two perfetly indistinguishable photons would oalese into a two-photon state, when impinging simultaneously on the two input arms of a BS. Therefore one would notobserve simultaneous liks in both detetors for this ase, leading to the vanishing of the peak near τ = 0in the histogram. Real single photons are, however, always slightly distinguishable, due to interations117



Indistinguishability Results and Disussionwith the environment, ausing the peak at τ = 0 to not vanish ompletely. We may therefore use themagnitude of the peak near τ = 0 as a measure of the indistinguishability [15, 17℄, normalized in anappropriate way. To quantify this proposal we denote the funtion desribing the oinidene histogram,as a funtion of the delay time τ , with the symbol G(2)
exp(τ). With this quantity we may de�ne the degreeof indistinguishability I in the following way

I = 1−
∫

peak near τ=0
dτG

(2)
exp(τ)

∫

peak away from τ=0
dτG

(2)
exp(τ)

, (6.14)where the normalization must be hosen as the integral over a peak su�iently far away from the enterpeak at τ = 0, so that no two-photon interferene ours. The peaks far away from τ = 0 are basiallywhat would be measured with no BS in the experiment.Next one needs to relate the experimental funtion G
(2)
exp(τ) to a funtion that an be alulated the-oretially. The relevant funtion is the seond order orrelation funtion for the photon [17℄, whih isproportional to the probability of deteting a photon at one spae-time point and another photon at someother (or the same) spae-time point. In our ase the two di�erent spae points are the two detetorsin the HOM experiment, and the two times are the arrival times of the photons on the detetors. Wedenote this funtion as G(2)(t, t′) = G(2)(t, t−τ), where referene to the spae points has been omitted andfurther we have employed the time transformation used throughout the thesis. The seond order orrela-tion funtion is, however, a true two-time funtion and not an e�etive single-time funtion as G(2)

exp(τ).It turns out that in order to obtain the experimental funtion one must average the time t, as this iswhat is done with the experimental data11, due to large unertainties in t. Performing the averaging weobtain
G(2)

exp(τ) ∝
1

2T

∫ +T

−T

dtG(2)(t, t− τ), (6.15)where T must be hosen large enough so thatG(2)(t, t−τ) has fully deayed, furthermore only "proportionalto" an be used due to several unknown prefators pertaining to the experimental setup.The above approah for de�ning and obtaining the indistinguishability was motivated by the experimentalproedure. We may however hoose a simpler approah as we work with pure theory and are not limitedby the tehnialities of the experiment. The motivation is the fat that G(2)(t, t− τ) vanishes everywherefor two perfetly indistinguishable photons, in the ase of a single12 simultaneous exitation of the twosingle-photon soures. The degree on indistinguishability may then be de�ned as
I = 1−

∫ +∞
−∞ dt

∫ +∞
−∞ dτG(2)(t, t− τ)

∫ +∞
−∞ dt

∫ +∞
−∞ dτG

(2)
no BS(t, t− τ)

, (6.16)where we have hosen the normalization as the integral over G(2)(t, t − τ) with no BS present, and thusno interferene e�ets. With this de�nition one obtains I = 1 for perfetly indistinguishable photonsand I = 0 when no interferene ours at all, with the extreme being the ase of no BS present in theexperiment.Returning to the seond order orrelation funtion we note that it is a speial ase of the two-partileGreen's funtion for the photon, whih is a di�ult objet to handle in a many-body formalism. Fortu-nately it turns out that due to the spei�s of our system, we may to a good approximation express thetwo-partile Green's funtion in terms of single-partile Green's funtions. An expression for G(2)(t, t− τ),11We thank Henri Thyrrestrup Nielsen and Toke Lund-Hansen of DTU Fotonik for enlightening disussions.12It is important that the single-photon soures are only exited one, as otherwise one would get peaks away from τ = 0similar to those in �gure 1.3(a). The peaks in this experiment [14℄ are due to tehnialities of the experiment, i.e. theneed to build up a proper statistis through many idential exitations of the emitter.118



Results and Disussion Indistinguishabilityappropriate for our experiment, has been derived in appendix A.1 and is given by
G(2)(t3, t4) = 〈a†(t3)a(t3)〉 〈a†(t4)a(t4)〉 − 〈a†(t3)a(t4)〉 〈a†(t4)a(t3)〉+ 〈a†(t3)a†(t4)a(t4)a(t3)〉

+
1√
2

[
〈a†(t3)a†(t4)a(t3)〉 〈a(t4)〉+ 〈a†(t3)a(t4)a(t3)〉 〈a†(t4)〉

− 〈a†(t3)a†(t4)a(t4)〉 〈a(t3)〉 − 〈a†(t4)a(t4)a(t3)〉 〈a†(t3)〉
]
.The two �rst terms in this expression are proportional to single-partile photoni Green's funtions, whilethe third is a two-partile Green's funtion and the rest represent other ontributions. In appendix A.2 itwas shown that in the RWA it is well justi�ed to neglet all other terms than the two �rst in the aboveexpression. Hene we end up with a muh more manageable objet

G(2)(t, t− τ) = 〈a†(t)a(t)〉 〈a†(t− τ)a(t− τ)〉 − 〈a†(t)a(t− τ)〉 〈a†(t− τ)a(t)〉
= Ã<(t, t)Ã<(t− τ, t− τ)− |Ã<(t, t− τ)|2, (6.17)where in the last line we have used the de�nition of the slowly-varying photon Green's funtion eq. (5.48)and also the symmetry eq. (2.32) to write the seond term as an absolute value. The seond orderorrelation funtion with no BS introdued in eq. (6.16), may be found from eq. (6.17) by simply removingthe last term

G
(2)
no BS(t, t− τ) = Ã<(t, t)Ã<(t− τ, t− τ), (6.18)as this is what introdues orrelations between the photons. For a proper formal derivation of thisresult, one may go bak to eq. (A.4) and realize that without the ation of the BS, one may sim-ply fator this expetation value right away, due to the assumption of independene of the two emit-ters.As done in setion 6.5, where we found that the determination of the emission spetrum required the fulltwo-time lesser Green's funtion of the photon, we may attempt to use the GKBA to express the two-timeGreen's funtion in the expression eq. (6.17). To apply the GKBA we simply have to insert eq. (6.12) intoeq. (6.17) whih yields the following

G(2)(t, t− τ) = A(t− τ)
[
A(t)− e−2γcavτA(t− τ)

]
,where we have used that both the deaying exponential and the photon density are real funtions. Insetion 6.5 the GKBA was found to be of no use as the replaement for the true two-time Green's funtion,however at �rst sight the situation does not look as ritial here as in the ase of the emission spetrum.A further investigation has unfortunately not yet been performed.6.6.1. Present stage resultsIn the setion we present alulations of G(2)(t, t− τ) and G(2)

exp(τ) based on the two-time solutions alreadyintrodued in setion 6.5.1. As the solutions themselves have already been disussed we will simply makea brief omments on the obtained results for G(2)(t, t− τ) and G(2)
exp(τ).In �gure 6.19 we show the results of alulating G(2)(t, t− τ) based on the formulae eq. (6.17). The �rstthing one noties is the fat that the values beome negative. This is learly unphysial as G(2)(t, t − τ)expresses a probability, whih is another indiation that the two-time solutions presented setion 6.5.1 arenot the atual physial solutions to the equations. Other than this unaeptable property, we notie thatthe value goes to zero for τ = 0, being onsistent with eq. (6.17), and that it deays in both the t and τdiretions.The orresponding G(2)

exp(τ) funtions are shown �gure 6.20. These also display negative values, due to thefat that G(2)(t, t−τ) does, again being an unphysial property. The red urves display the so-alled HOMdip, whih is a sign that interferene has ourred. The blue urves illustrate G(2)
exp(τ) with no BS present,eq. (6.18), and for this reason they do not display any signs of orrelation. 119
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Figure 6.20.: alulated from eq. (6.17) for the solutions shown in �gure 6.16 to the left and �gure 6.17 to the right.6.7. SummaryIn this hapter we have applied the equations of motion derived in the previous hapter, to a number ofspei� situations, inluding probing the equilibrium system in linear response theory and investigatingthe full non-equilibrium dynamis of our QED system. Below we go through the �ndings and results ofthe di�erent setions in the hapter.In setion 6.2 we disussed the ourrene of unphysial populations within our theory. These our forertain exitation shemes, when onditions for very e�ient oupling are present within the bands. Wesuspet that these unphysial features are due to a break down of the GKBA and/or the lowest orderself-energy approximation, a suspiion whih is supported by the literature. Using a level struture withtransitions less resonant with the LO-phonon energy, did, however, provide us with a quik �x of the prob-lem, but more work is needed to fully resolve this issue in a satisfatory manner.The linear absorption spetrum was treated in setion 6.3, where the e�ets of all many-body interationswere systematially investigated. Only inluding the LO-phonon interation, we found that the main sand p transitions were broadened and slightly shifted. Beside the renormalizations of the main peaks, a120



Results and Disussion Summaryvery rih struture of lesser pronouned peaks arose. It turns out that the rih peak struture an beunderstood in terms of the spetral funtions of the polaron quasi-partiles, where a number of sidebandsand hybridization e�ets enter in a dramati way. The quasi-partiles give rise to so-alled LO-phonon-assisted transitions, manifesting themselves as a ompliated bakground of peaks. Inluding the Coulombinteration mainly resulted in a large negative shift of the s and p transitions, known as exiton shifts.The magnitude of the shifts ould be explained using a relatively simple model. The ombined e�ets ofboth the LO-phonons and photons was also investigated, and several parameters ontrolling the eletron-photon oupling were systematially varied. The results from the numerial simulations, were omparedto a simple model where dephasing was treated in the onstant deay rate approximation. In the strongoupling regime, the transition resonant with avity photon developed into a double peak, as expeted, andthe positions and relative weights of the two peaks were ompared to the simple model. It was found thatthe spetral positions of the peaks ould be relatively well explained by the model, whereas the relativeweights ould not, due to symmetri Lorentzian lineshape impliitly assumed in the onstant deay rateapproximation.In setion 6.4 time domain solutions to our equations were investigated. The �rst part dealt with theapproah to a quasi-equilibrium state, due to LO-phonon sattering after exitation by a short optialpulse. In all onsidered ases a quasi-equilibrium state was reahed within a time span of 5 ps. FurthermoreRabi osillations between the eletrons in valene band and LO-phonons was observed, whih are analogousto well-known Rabi osillations between eletrons and photons. In the seond part we onsidered a similarsituation, but now photons were inluded in the equations, and in this investigation we looked spei�allyfor Rabi osillations between the eletrons and photons. The ourrene of Rabi osillations was found,not surprisingly, to depend on temperature, whih is reasonable as the number of LO-phonons ausingdephasing dereases with temperature. A muh stronger dependene was, however, found on exatly howthe eletrons were exited, and the strongest Rabi osillations were found for exitation diretly into thelevels being resonant with the avity photon. In the last part we ompared our Green's funtion approahto a numerially exat solution to a simpli�ed system. Quantitatively the agreement was not overwhelming,but qualitatively the agreement was reasonable. It is, however, di�ult to gauge the auray of solutionsobtained using Green's funtions for more realisti systems, as exat solutions to many-body problems arein general very di�ult to obtain.In the last ouple of setions, 6.5 and 6.6, we disussed how to determine the emission spetrum andindistinguishability of the emitted photons using the Green's funtion formalism. In the ase of theemission spetrum, it was found that in order to obtain lineshapes other than Lorentzians, the GKBAould not be employed for the photoni Green's funtions. This alled for the use of the full two-timephotoni Green's funtion theory, whih is muh more ompliated than the e�etive single-time versionprovided by the GKBA. The present stage of progress on solving the two-time theory was disussed insetion 6.5.1. Even though it was onluded that we had not yet obtained the orret physial solution,the solutions that had been obtained, still produed emission spetra ontaining some of the expetedphysis, suh as the strong oupling splitting and sidebands due to LO-phonons. In setion 6.6 two-time�ndings in onnetion to indistinguishability were disussed, but these were to a large degree unphysialand therefore inonlusive.
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7. Summary and OutlookIn this thesis we have investigated many-body e�ets in self-assembled semiondutor QDs, with themain motivation of desribing relaxation and dephasing proesses beyond a simple onstant deay ratepiture. The main emphasis has been on the interation between eletrons and LO-phonons, whih isknown to be the main sattering mehanism in the low exitation and high temperature regime. Tomodel a single-photon soure the QD has been plaed in an optial avity, in whih the interation withphotons beomes important on short time-sales. To desribe the dynamis, a many-body formalism hasbeen employed, whih is based on non-equilibrium Green's funtions. Invoking ompliated theoretialmethods is neessary in order to orretly desribe a true many-body system, whih a semiondutor QDis. The governing equations derived using the many-body formalism, have been solved numerially and thesolutions analyzed and disussed for a range of parameters. Below we go through the individual haptersand summarize the results obtained in these in greater detail.A general introdution to the subjet is given in hapter 1, where we have tried to motivate the presentwork and give an introdution to the physial system being onsidered.In hapter 2 we took on the task of introduing the reader to the formal theory of non-equilibrium Green'sfuntions. We started from a basi alulation of an ensemble average for a non-equilibrium system writtenas an in�nite series, and ended up with the elebrated Dyson equation, formulated in terms of the ontourordered Green's funtion and its orresponding self-energy. From this we were able to formulate a set ofequations for various real time Green's funtions, that are apable of desribing physially observables.The equations are the foundation for almost all alulations performed in this thesis. Last we introduedan extremely important approximation known as the Generalized Kadano�-Baym Ansatz (GKBA), thatin some ases enables us to redue the general two-time struture of the Green's funtions to an e�etivesingle-time struture.The most fundamental ingredient in any quantum theory, namely the Hamiltonian operator, was treated inhapter 3 for a general semiondutor system. Even though this is normally regarded as textbook material,we went through many of the steps neessary to go from a fully general Hamiltonian, to a form moreappropriate for pratial alulations. This was done in order to gain an overview and understanding ofthe many di�erent Hamiltonians that enter many-body physis. We have at least to some degree sueededin doing this.The more pratial problem of obtaining a su�ient desription of the eletroni single-partile states, andthe omputationally demanding task of subsequent alulating of the various interation matrix elements,was treated in hapter 4. In this hapter we set up a simple model for the ombined QD and WL system,that aptures the essential features of the self-assembled QDs grown in the laboratory. We numeriallysolved the model for a spei� geometry and disussed the qualitatively di�erent states. Next we proposedtwo ways of alulating Coulomb matrix elements on the basis of the states obtained from our model.One whih is exat but slow and one whih is approximate but muh faster. The need for a fast ande�ient method is paramount, as the number of Coulomb matrix elements grows extremely fast with thenumber of basis states. The two methods were ompared and for most elements the relative error of theapproximative method was below 1 %.In hapter 5 we performed a last set of approximations on the Hamiltonians and trunated the many-bodyself-energies, further we formulated the �nal versions of equations desribing our equilibrium and non-equilibrium system. The self-energies were trunated at the lowest order level, but made self-onsistent inthe eletroni and photoni Green's funtions, as ditated by the partile onservation law in the ase ofthe eletrons. An analysis of the equilibrium properties of our system was performed, and it was foundthat the oupling to the LO-phonons strongly modi�ed the spetral properties of the eletrons, ompared122



Summary and Outlook Outlookto the free or slightly lifetime broadened ase. These quasi-partile properties are very important toinorporate into the non-equilibrium theory, as otherwise the initial or equilibrium orrelations will bemissing in the non-equilibrium dynamis. In ontrast to the LO-phonons, the photons were found not tohave any equilibrium orrelations with the eletrons, at least at our level of approximation. This was abit surprising due to the formal similarities between phonons and photons. In the last part of the hapterthe non-equilibrium equations of motion were derived. In these derivations the main approximation wasemployment of the GKBA. The GKBA was applied to all eletroni Green's funtions, whereas for thephotoni Green's funtions we presented two versions, one in the GKBA and one where we retained thefull two-time form of the Green's funtions.The appliation of the equations of motion to non-equilibrium situations was treated in hapter 6. Dueto the size of this hapter, we will only summarize a few of the main results obtained here, referring thereader to setion 6.7 for a more omplete summary. A large part of this hapter was devoted to studyingmany-body e�ets on the linear absorption spetrum of our system. The most dramati e�et ourred dueto inlusion of LO-phonons into the Hamiltonian. A very rih spetrum resulted where beside the alreadyexisting the main s and p transitions, a large number of lesser pronouned peaks ame into existene. Itwas established that these smaller peaks were manifestations of LO-phonon-assisted transitions, arisingdue to transitions between LO-phonon dressed eletron states, illustrated learly through the polaronspetral funtions. Inluding photons into the theory, we were able to study the e�ets of LO-phonons onthe vauum Rabi splitting, that appears in the spetrum in the strong oupling regime. We systematiallyvaried the oupling strength ~g and detuning, between the avity and s transition, and ompared theresults to a simple analytial model. We found that the spetral positions of the two peaks haraterizingthe vauum Rabi splitting, were well desribed by the simple model, however the relative weights of thepeaks were not. Another main fous was the investigation of population dynamis after exitation bya short optial pulse, displaying the full power of the non-equilibrium theory developed in this thesis.The approah to a quasi-thermal equilibrium state was studied, and it was found that this state wasestablished within 5 ps for all the ases onsidered. Furthermore, Rabi osillations between the LO-phonons and valene band eletrons was observed, indiating that these ouple strongly for the onsideredsystem. The ourrene of Rabi osillations due to the eletron-photon interation was also treated, andwe investigated under whih onditions these were most pronouned. Not surprisingly it was on�rmedthat lowering the temperature made it more likely to observe these oherent exhanges of energy. This isonsistent with the fat that the thermal oupation of LO-phonons dereases for dereasing temperature,and hene the deoherene aused by them. More surprisingly it was found that the Rabi osillationsdepended muh stronger on exatly how the eletrons were exited. More spei�ally the more powerfulosillations were observed when eletrons were exited into the shell being resonant with the avity. Weexpet this to be due to the eletrons losing their oherene while relaxing into the avity resonant s shell,and thereby not being able to interat oherently with the photons.7.1. OutlookIn the limited time span of this projet we have not been able to pursue all the diretions and ideas wewould have liked to. In the following we desribe several extensions of the present work, that would benatural to investigate in the future.One of the most obvious improvements of the present theory would be the inlusion of the eletronistates in the WL ontinuum, that we know are part of the real physial system we are trying to desribe.At elevated temperatures it is known that eletrons are thermally exited into the WL states [42℄, henemaking these important for a proper desription. Although the WL ontinuum has been taken into aountin several many-body alulations [41, 55℄, this was done in a sheme where the bound and unbound statesof the QD and WL respetively, were not treated on the same footing, whih ould potentially be a seriousproblem. A onsistent solution to this problem would be the implementation of the WL states desribedin setion 4.2.3, into the theory developed in this thesis. It is further expeted that adding an eletroniontinuum would remedy the issues we have experiened regarding the unphysial populations desribed123



Outlook Summary and Outlookin setion 6.2, in that they would provide more e�ient sattering making the appliation of the lowestorder self-energy su�ient.Many quantum optial experiments are performed at very low temperatures, where it is known thatLA-phonons beome the dominant dephasing mehanism. It would indeed be very interesting to inludeLA-phonons into our theory, as this would enable us to help interpreting many of the experiments urrentlybeing performed around the world, some of whih even in the Quantum Photonis group at DTU Fotonik.Going to low temperatures would furthermore drastially lower the amount of eletrons being thermallyexited, that ould serve as an argument for negleting the WL ontinuum. The fat that LA-phononsonstitute an energy ontinuum ould possibly, in analog to adding a eletroni ontinuum, help us avoidunphysial populations, due to the inreased sattering e�ieny.A more pratial improvement, but no less important, would be to implement the numerial ode in a lowlevel programming language suh as Fortran or C. The present implementation of the theory has been donein the ommerial sript language MATLAB, whih o�ers easy aess to ompliated funtionality andrelatively easy debugging apabilities, however often at the ost omputational e�ieny. Implementationin a low level language would o�er great speed and the opportunity to use existing parallelization pakages,making large sale omputations possible. A faster implementation of the theory, would also ease theanalysis of the unresolved issues remaining in the two-time theory of the photoni Green's funtionsdesribed in setions 6.5 and 6.6.The ultimate goal for future developments of the work presented in this thesis, is to provide a pratialtheory that takes into aount all the important many-body interations in a QED system. From thistheory it should be is possible to extrat all wanted information on the emitted photons, whih is the mostimportant property to desribe as it is what is being measured in experiments. We have initiated this bysetting up a theory for the two-time photoni Green's funtions, but as has been reported muh work stillremains to be done.
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A. AppendixA.1. Seond order orrelation funtion for a Hong-Ou-Mandeltype experimentAs mentioned in hapter 1 we are interested in determining the indistinguishability of single photonsemitted from a semiondutor QED system, for this we may perform an interferene experiment asinterferene and quantum indistinguishability are intimately onneted. Indeed it is known [15, 17℄ thatif two perfetly indistinguishable photons are interfered on a BS, these will oalese into a two-photonstate. The orresponding oinidene detetion probability in a Hong-Ou-Mandel (HOM) two-photoninterferene experiment [80℄ will be zero. The experiment we wish to desribe is shown shematially in�gure A.1. It onsists of two systems, denoted 1 and 2, that are apable of emitting photons, whih aredireted onto a beam-splitter (BS) where they may interfere and the output arms of the BS are equippedwith photon detetors.System 2
System 1

Mirror

variable delay devie
Arm 2Arm 1 Arm 3Arm 4

Beam splitter
Photon detetor at r4

Photon detetor at r3

Figure A.1.: Shemati illustration of the experiment designed to measure G(2)(r3t3, r4t4; r4t4, r3t3). The variabledelay devie is inserted to adjust the path length for the photons from system 1, so that one may ontrol the arrivaltimes for the photons from system 1 on the BS.Theoretially the relevant quantity for desribing suh an experiment is the seond order orrelationfuntion of the quantized eletri �eld [45, p. 564℄, with its spatial oordinates evaluated at the detetor125



Seond order orrelation funtion for a Hong-Ou-Mandel type experiment Appendixpositions in eah of the output arms 3 and 4. The expliit expression for the seond order orrelationfuntion is
G(2)(r3t3, r4t4; r4t4, r3t3) = 〈E(−)(r3, t3)E

(−)(r4, t4)E
(+)(r4, t4)E

(+)(r3, t3)〉 , (A.1)where the positive and negative frequeny parts of the quantized eletri �eld are given by
E(+)(r, t) =

∑

m

Emam(t)um(r), E(−)(r, t) =
∑

m

Ema
†
m(t)um(r), (A.2)and the mode funtions and expansion oe�ients are assumed to be real. For simpliity we will assumethat the �elds on the output side of the BS an be represented by a single mode in eah arm so that wemay write the �eld as

E(−)(r, t) = E
(−)
3 (r, t) + E

(−)
4 (r, t) = E3a

†
3(t)u3(r) + E4a

†
4(t)u4(r), (A.3)where only the negative frequeny part is shown. The reason for making this assumption is that we onlywish to model a single quasi-mode of the avity, from whih the photons originate, and therefore also theinput side of the BS will be represented by a simple two mode �eld as above. In this approximation we onlysolve for the loal avity mode and through this we impliitly assume that propagation e�ets from theavity to the detetors are negletable. This often used assumption has reently been questioned [81℄, forsome types of photoni strutures, and may therefore not be valid in all ases, but it is beyond the sopeof this thesis to improve upon this approximation. To proeed we insert eq. (A.3) into eq. (A.1) whihresults in a total of 24 = 16 ontributions. Fortunately most of these an be negleted as they ontainspatial ross terms of the type u3(r4) or u4(r3), where a spatially loalized mode funtion is evaluated atthe detetor position in the other output arm, whih an safely negleted. After throwing all these rossterms away we end up with the expression

G(2)(r3t3, r4t4; r4t4, r3t3) ≈ |E3u3(r3)|2|E3u4(r4)|2 〈a†3(t3)a†4(t4)a4(t4)a3(t3)〉 ,where we may further remove the onstant prefators. This is allowed due to the fat that the onsideredseond order orrelation funtion is only proportional to the probability we are looking for, and hene itmust be normalized at some point anyway. We may now simply the notation and write the seond orderorrelation funtion as follows
G

(2)
34 (t3, t4) = 〈a†3(t3)a†4(t4)a4(t4)a3(t3)〉 . (A.4)The next thing is to relate the output photon operators to those on the input side, whih is done with astandard BS relation of the form [17℄
[
a3(t)
a4(t)

]

=

[
cos(ξ) −e−iφ sin(ξ)

eiφ sin(ξ) cos(ξ)

] [
a1(t)
a2(t)

]

, (A.5)that performs the BS ation as a unitary operation. The number ξ determines the re�etion and transmis-sion of the BS and φ is an arbitrary phase. To expressG(2)
34 (t3, t4) in terms of the input photon operators weuse eq. (A.5) on eq. (A.4) whih generates 24 = 16 terms of four-operator brakets in the photon operatorsfor the two input arms. We assume the photon operators of the input to be equal to the photon operatorsof system 1 and 2, respetively. To simplify this expression and the further analysis of the problem, we willassume that system 1 and 2 are idential and independent. The idential part means that their respetiveHamiltonians are equal, exept for the index, and the independene means that their Hamiltonians om-mute, [H1, H2] = 0, i.e. do not interat. The fat that their Hamiltonians ommutes, has the onsequenethat any expetation value involving operators of the two subsystems may be fatored into an expetationvalue for eah of the subsystems, e.g. 〈a†2(t3)a†1(t4)a1(t4)a2(t3)〉 = 〈a†2(t3)a2(t3)〉 〈a†1(t4)a1(t4)〉. The fatthat the are equal means that after the fatorization we may simply remove the subsript referring to theindividual subsystems, so that e�etively we only onsider a single system. In pratise this situation anrealized by using the same system as both system 1 and 2. The �rst emitted photon ould be sent on126



Appendix Higher Order Correlation Funtionsa longer path, while the system returned to equilibrium and ould be exited again to emit the seondphoton. Performing the steps desribed above and speializing to the ase of a 50/50 BS, obtained bysetting ξ = π/4, and hoosing the arbitrary phase as φ = π/4 we arrive at
G

(2)
34 (t3, t4) = 〈a†(t3)a(t3)〉 〈a†(t4)a(t4)〉 − 〈a†(t3)a(t4)〉 〈a†(t4)a(t3)〉+ 〈a†(t3)a†(t4)a(t4)a(t3)〉

+
1√
2

[
〈a†(t3)a†(t4)a(t3)〉 〈a(t4)〉+ 〈a†(t3)a(t4)a(t3)〉 〈a†(t4)〉

− 〈a†(t3)a†(t4)a(t4)〉 〈a(t3)〉 − 〈a†(t4)a(t4)a(t3)〉 〈a†(t3)〉
]
, (A.6)where an overall fator of 1/2 has been removed. The two �rst terms in this expression are �rst orderorrelation funtions or single-partile Green's funtions and are expeted to play an important role as weare onsidering single-photon states. The third term is a seond order orrelation funtion, or two-partileGreen's funtion, and is not expeted to yield signi�ant ontributions due to its two partile nature.This may sound strange as we are interfering two photons, however, we have expressed the two-photondetetion probability in terms of quantities of the single emitter, where only a single photon is generated.The last four terms are more di�ult to have an intuition about, as they are not diretly related to photondetetion probabilities as the �rst three terms are. The importane of all terms will be investigated furtherin appendix A.2.A.2. Higher Order Correlation FuntionsThe purpose of this appendix is to estimate the relative magnitude of the various photon orrelationfuntions appearing in the expression for G(2)

34 (t3, t4), see eq. (A.6), and show or argue that higher orderorrelation funtions are identially zero or negligible. For referene we reprodue the expression for
G

(2)
34 (t3, t4) below

G
(2)
34 (t3, t4) = 〈a†(t3)a(t3)〉 〈a†(t4)a(t4)〉 − 〈a†(t3)a(t4)〉 〈a†(t4)a(t3)〉+ 〈a†(t3)a†(t4)a(t4)a(t3)〉

+
1√
2

[
〈a†(t3)a†(t4)a(t3)〉 〈a(t4)〉+ 〈a†(t3)a(t4)a(t3)〉 〈a†(t4)〉

− 〈a†(t3)a†(t4)a(t4)〉 〈a(t3)〉 − 〈a†(t4)a(t4)a(t3)〉 〈a†(t3)〉
] (A.7)To avoid having to deal with the full solid-state system, see setion 3.2.3, we will fous on a muh simplersystem, namely the well known Jaynes-Cummings model1 (JCM). The JCM desribes a system of a singleeletron interating with a single avity mode through the dipole oupling, for a illustration see �gure A.2.The Hamiltonian for the JCM is given by

H = H0 +Hi, H0 =
∑

i=1,2

~ωic
†
i ci + ~ω(a†a+ 1/2), Hi =

∑

i6=j

~gc†icj(a
† + a), (A.8)where ωi is the frequeny of eletron state i, ω is the frequeny of the avity mode, and g is the ouplingonstant between the two systems whih we assume to be real. The operators c†i , ci, a†, and a arethe standard seond quantization operators for fermions and bosons. We note that the rotating waveapproximation (RWA) has not been applied, as it is partly the validity of this we wish to examine, also thespin index of the eletron has been omitted for notational simpliity. The part of the Hamiltonian for thefull system whih is responsible photon emission into the avity is exatly given by the JCM Hamiltonian.The extra terms ourring, all lead to various forms of the deay. On this basis, we an expet the JCMto exhibit stronger photon orrelations than the full system, and hene it an be used as an ideal systemto investigate higher order orrelations. We will then assume that photon orrelation funtions, whih arezero or negligible for the JCM will be of even smaller signi�ane for the full system, and hene an beomitted in the full analysis.1See e.g. hapter 6 in [44℄. 127



Higher Order Correlation Funtions Appendix
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Figure A.2.: Shemati illustration of the Jaynes-Cummings model, with the eletroni and photoni systems in-terating through Hi.In order to obtain the photon orrelation funtions we need to determine the time evolution of the photonoperators (a and a†) in the Heisenberg piture. This is given by
a(t) = u†(t, t0)au(t, t0), (A.9)where u(t, t0) is the time evolution operator
i~∂tu(t, t0) = Hu(t, t0)⇒ u(t, t0) = exp (−iH(t− t0)/~) ,and where the initial ondition u(t0, t0) = 1 has been used. In the following we will set t0 = 0 and dropthe seond time argument in u(t, t0). The expliit form of u(t) is most easily obtained by diagonalizing

H , as u(t) will be diagonal in the eigenstates of H .The next step is to hoose a suitable basis for our system. A general basis vetor ontaining one eletronand N photons will be of the form
|n1, n2;N〉 = (c†1)

n1(c†2)
n2

(a†)N

√
N !
|0〉 , where n1, n2 = 0, 1 and N = 0, 1, 2 . . . (A.10)Usually when onsidering the JCM, in the RWA, the basis {|1, 0; 1〉 , |0, 1; 0〉} is used, as this generates alosed set of equations for the initial state |ψ(t = 0)〉 = |0, 1; 0〉. However due to the fat that we have notapplied the RWA, the same initial ondition will ouple to states ontaining more than one photon, and ingeneral generate an in�nite set of equations. These other states ontain virtual photons, that is photonsthat would not be allowed to exist if strit energy onservation was to hold. In quantum mehanis stritenergy onservation does not hold, due to the energy-time unertainty relation2 ∆E∆t ≥ ~/2, and breakingenergy onservation is allowed within small time spans. The main reason for going beyond the RWA is toexamine the e�et of the virtual photons on the higher order terms inG(2)

34 (t3, t4).2For a ritial omment on the usual interpretation of the energy-time unertainty relation see [45, p. 343℄. The omment isbased on the fat that there does not exist a time operator in quantum mehanis and hene an energy-time unertaintyrelation, in the usual sense, annot be derived.128



Appendix Higher Order Correlation FuntionsAs a trunated basis we will hoose the following �ve states, denoted the bare basis,
|1〉 = |1, 0; 0〉 = c†1 |0〉 , (A.11a)
|2〉 = |1, 0; 1〉 = c†1a

† |0〉 , (A.11b)
|3〉 = |0, 1; 0〉 = c†2 |0〉 , (A.11)
|4〉 = |0, 1; 1〉 = c†2a

† |0〉 , (A.11d)
|5〉 = |1, 0; 2〉 = c†1

(a†)2√
2
|0〉 . (A.11e)These are hosen as they possess the two lowest free transition energies for a system initially in the |3〉state, assuming a zero detuning setup, ω2−ω1 = ω. The free transition energy between two states is givenby: |H0(|final〉 − |initial〉)|, so that for our basis we get

H0(|2〉 − |3〉) = 0, |H0(|1〉 − |3〉)| = H0(|4〉 − |3〉) = H0(|5〉 − |3〉) = ~ω.This way we allow the initial exitation to propagate into states whih are energetially unfavorable, butnevertheless our as we have not applied the energy-onserving RWA. In the ase of having applied theRWA there would be no need to expand the basis beyond {|2〉 , |3〉}, as these are the only states onservingenergy for a system initially in state |2〉 or |3〉.The matrix representation of H in the basis {|1〉 , |2〉 , |3〉 , |4〉 , |5〉} is given by
H =









~ω1 0 0 ~g 0
0 ~(ω1 + ω) ~g 0 0
0 ~g ~ω2 0 0

~g 0 0 ~(ω2 + ω)
√

2~g

0 0 0
√

2~g ~(ω1 + 2ω)









,where the zero-point energy of the photons has been negleted, as it only orresponds to a shift of ~ω/2to all energy levels and hene is without any dynamial signi�ane. Finding eigenvalues- and vetorsof this 5 × 5 matrix an be done analytially, as the solution of the harateristi equation for deter-mining the eigenvalues only involves a third order polynomial. The expliit form of the eigenvalues-and vetors is however not very important in the present ontext and would take up a lot of spae, sothese will not be shown. Instead we present the general form of the solution and argue on the basis ofthis.The eigenvalues- and vetors will be represented by the following symbols
~Ωi, |Ωi〉 =









〈1|Ωi〉
〈2|Ωi〉
〈3|Ωi〉
〈4|Ωi〉
〈5|Ωi〉









,respetively and the vetors have been normalized, i.e. 〈Ωi|Ωj〉 = δij . Representing the Hamiltonian inthe basis of its eigenstates, the dressed states, diagonalizes the matrix form of H . Mathematially thediagonalization is performed by applying the following transformation to H
H ′ = V −1HV ⇒ (H ′)ij = ~Ωiδij .Here the prime (′) signi�es representation in the dressed basis and V is a unitary transformation ma-trix, whih olumns are given by the eigenvetors of H , i.e. (V )ij = 〈i|Ωj〉. Having diagonalized theHamiltonian, it is easy to obtain the time evolution operator as this is also diagonal in the dressed ba-sis
u′(t) = exp (−iH ′t/~)⇒ (u′(t))ij = exp(−iΩit)δij . 129



Higher Order Correlation Funtions AppendixWe ould proeed to work in the dressed basis, but we will transform bak to the more intuitive bare basis,eq. (A.11), where the time evolution operator is given by the inverse transformation
u(t) = V u′(t)V −1.The last thing needed to alulate the photon orrelation funtions is to determine the matrix representa-tion of the photon operators a and a†. The elements of a are found by writing a general matrix elementof a in two states of the form eq. (A.10)
〈m1,m2;M |a|n1, n2;N〉 = 〈0| a

M

√
M !

cm2
2 cm1

1 a(c†1)
n1(c†2)

n2
(a†)N

√
N !
|0〉

= 〈M |a|N〉 δm1,n1δm2,n2

=
√
NδM,N−1δm1,n1δm2,n2 ,where in the last line we have used a |N〉 =

√
N |N − 1〉. The matrix representing a an now be writtenas

a =









0 1 0 0 0

0 0 0 0
√

2
0 0 0 1 0
0 0 0 0 0
0 0 0 0 0









.The matrix form of a† is easily found from the above by the de�nition of Hermitian onjugation (a†)ij = [(a)ji]
∗.Obtaining the time evolution of the various orrelation funtions in G(2)

34 (t3, t4), eq. (A.7), is now a simplematter of matrix multipliation as seen from eq. (A.9). One last thing that needs to be disussed is themeaning of the brakets in eq. (A.7). The usual meaning of the braket is that of taking the expetationvalue of a ertain operator O(t), that is 〈O(t)〉 = Tr [ρ0O(t)], where ρ0 is the initial density matrix of thesystem. For a pure state the density matrix an be written as ρ0 = |ψ0〉 〈ψ0|, so that the expetation valueof O(t) an rewritten as follows
〈O(t)〉 = Tr [ρ0O(t)] = Tr [|ψ0〉 〈ψ0|O(t)] = 〈ψ0|O(t)|ψ0〉 ,where |ψ0〉 is the initial state vetor of the system. This means that we simply have to take the matrixelement of the produt of operator matries orresponding to the desired initial state. To mimi thesituation in an optially exited semiondutor intended for single photon prodution, we hoose the stateorresponding to a single exited eletron, |ψ0〉 = |3〉.We will start by onsidering the orrelation funtions on the seond and third line of eq. (A.7), ontainingan uneven number of photon operators inside the brakets. It an be shown expliitly by multiplying allthe various matries and in the end taking the 〈3| · · · |3〉 element, that both brakets of single and threephoton operators are identially zero for all times. None of the other terms in G(2)

34 (t3, t4) are identiallyzero, but we have still ahieved a major simpli�ation and we are down to brakets of two and four photonoperators
G

(2)
34 (t3, t4) = 〈a†(t3)a(t3)〉 〈a†(t4)a(t4)〉 − 〈a†(t3)a(t4)〉 〈a†(t4)a(t3)〉

︸ ︷︷ ︸

single−particle contributions

+ 〈a†(t3)a†(t4)a(t4)a(t3)〉
︸ ︷︷ ︸

two−particle contributions

.(A.12)The orrelation funtion with four operators onstitutes a two-partile Green's funtion, whih is amuh more di�ult objet to handle than the orrelation funtions with two photon operators, single-partile Green's funtions. Due to this fat we are interested in examining the importane of the two-partile Green's funtion ontributions, relative to the ontributions from the one-partile Green's fun-tions.130



Appendix From A · p to d · ET interationTo start o� the disussion of the last remaining terms in G(2)
34 (t3, t4), it is useful to mention a few prop-erties of the JCM in the RWA. When applying the RWA to the JCM Hamiltonian we remove the term

~g(c†2c1a
† + c†1c2a), as this orresponds to the reation of virtual photons, see [44, p. 196℄. The justi�-ation for performing the RWA, rests on the assumption that oupling energy ~g is small ompared tothe transition energies of the free system, i.e. ~ω and ~(ω2 − ω1). This is ertainly the ase for presentsemiondutor nanostrutures [82℄. Applying the RWA has the onsequene that the elements H14 and

H41 of the Hamiltonian beome zero, whih leads to a new matrix form of H
H =









~ω1 0 0 0 0
0 ~(ω1 + ω) ~g 0 0
0 ~g ~ω2 0 0

0 0 0 ~(ω2 + ω)
√

2~g

0 0 0
√

2~g ~(ω1 + 2ω)









.It is learly seen that the new system onsists of three independent subsystems, whih do not mix due tothe RWA. For this Hamiltonian all orrelation funtions, exept those omposed of single-partile Green'sfuntions, are identially zero for all times. On the basis of this, one ould therefore expet that theontributions from 〈a†(t3)a†(t4)a(t4)a(t3)〉 would beome negligible for small g for the full JCM. However,it was found not to be the ase. For the following set of parameters3: ~ω2 = 2~ω1 = 2~ω = 2.64 eVand ~g = 85 µeV, the single- and two-partile ontributions in eq. (A.12) were of the same order ofmagnitude. However, the absolute value of the single-partile Green's funtions was muh larger thanfor the two-partile Green's funtions . This piture did not hange for even lower g, down to ~g =
15 µeV. To be able to see the expeted behavior, the bare basis was extended by the following two basisstates

|6〉 = |0, 1; 2〉 = c†2
(a†)2√

2
|0〉 ,

|7〉 = |1, 0; 3〉 = c†1
(a†)3√

3!
|0〉 ,thereby allowing for the reation of another pair of virtual photons, breaking the strit energy onservationby 2~ω. This enlargement of the basis did not ause any visible hanges in the single-partile ontributions,but it did ause small hanges in the two-partile ontributions, not in magnitude but rather shiftingvarious osillations in the two-time plane. It was indeed expeted that the inlusion of more virtualphotons would hange the two-partile ontributions, but not have muh e�et on the single-partile ones.Due to this observation and the strong expetation that enough virtual photon proesses4 and su�ientlylow g will ause us to reah the RWA limit of vanishing two-partile ontributions, we will assume thatthe two-partile ontributions in G(2)

34 (t3, t4) an be negleted.A.3. From A · p to d ·ET interationIn this appendix we will rewrite the eletron-photon interation from the A · p to the D · ET form.To do this we employ a relatively simple heuristi approah, more rigorous methods [31, 43, 46℄ an beused involving unitary transformations but the result is basially the same, hene we will use the moretransparent simple approah. We onsider the A · p interation between a lassial �eld5 and a singleeletron in the eletri dipole approximation
Hi =

e

m
A(0) · p.3Representative for present day semiondutor nanostrutures, see [82℄.4Enough virtual photon proesses ould mean taking ertain proesses to in�nite order and would therefore not be pratiallypossible in the present approah of diagonalizing a Hamiltonian matrix.5Basially the same argument an be performed with a quantized �eld of the form ET(0) = E0

2
(a† + a). 131



From A · p to d · ET interation AppendixTo onnet the two di�erent forms a relation between the momentum, p and position, r, is needed. Thisis found by using the de�nition of momentum [31, p. 26℄ as the time derivative of the position times the(free) mass of the eletron
p = m∂tr =

m

i~
[r, H0] ,where H0 is the single-eletron Hamiltonian, whose eigenstates we use as basis H0 |n〉 = ~ωn |n〉. Weproeed by taking an arbitrary matrix element of Hi

〈j|Hi|k〉 =
e

m
A(0) · 〈j|p|k〉 = e

m
A(0) ·

{

〈j|m
i~

(rH0 −H0r) |k〉
}

= −iωjkDjk ·A(0), (A.13)where ωjk = ωj − ωk and D = −er is the eletrons dipole. The onnetion between A and ET is givenby the gauge relation eq. (3.3)
ET(0, t) = −∂tA(0, t)⇒ A(0, t) = −

∫

dt̃ET(0, t̃).Assuming that we have a lassial eletri �eld for whih dominating time-dependene is given by
ET(0, t) =

E0

2
(eiωt + e−iωt),the orresponding vetor potential beomes

A(0, t) = −E0

iω2
(eiωt − e−iωt).Inserting this into the matrix elements above yields

〈j|Hi|k〉 =
ωjk

ω
Djk ·

E0

2
(eiωt − e−iωt).To show that these matrix elements are idential to those of Hi = −D ·ET, and hene that it is the sameoperator, we onsider the ases ωjk > 0 and ωjk < 0 separately. The ase ωjk > 0 orresponds to theexitation of the eletron, and hene the dominating ontribution will ome from the term where a photonis absorbed, so that

〈j|Hi|k〉 ≈ −
ωjk

ω
Djk ·

E0

2
e−iωt. (A.14)The ase ωjk < 0 ⇒ ωjk = −ωkj orresponds to the deexitation of the eletron, and therefore thedominating ontribution omes from the term where a photon is emitted yielding

〈j|Hi|k〉 ≈ −
ωkj

ω
Djk ·

E0

2
eiωt. (A.15)For both ases we onsider only the resonant part of the interation, so that the fration ontainingthe transition frequeny and �eld frequeny is very lose to unity. This ompletes the derivation andwe have shown that the A · p and D · ET interations are idential within the approximations usedabove. Considering only resonant ontributions in the eletron-photon interation is ommonly knownas the rotating-wave approximation (RWA), thus in order for the arguments stated in this appendix tohold, the RWA should be applied in every eletron-photon interation Hamiltonian. The more advanedderivations referred to in the beginning, do however not make use of the RWA to prove equivalene betweenthe two forms, hene using the D · ET interation and not applying the RWA will still be a onsistenthoie.A possible issue should be noted regarding the urrent approah. The unitary transformation applied inthe referenes [46, p. 636℄ generates a dipole-dipole interation of the form D ·D in the transformed Hamil-tonian, whih does not appear in our derivation performed above. This indiates that the approximationswe have used orrespond to negleting this dipole-dipole interation. The validity of this approximationan be assessed by omparing two review artiles written by the same main authors [25, 83℄. In theoldest artile the dipole-dipole term is kept in the alulations, whereas in the more reent artile thisterm has been negleted. The alulations were performed on semiondutor nanostrutures omparableto those we are onsidering, indiating that the negletion of the dipole-dipole interation is hopefullyjusti�ed.132



Appendix NumerisA.4. NumerisThe numerial methods for solving the equations of motion of the Green's funtions are an extremelyimportant aspet of performing many-body simulations. This is due to the often huge omputations thatneed to be performed and hoosing the wrong method an easily result in several orders of magnitudelonger omputation time. Of similar importane is how the algorithms are implemented on a omputersystem, we will however not desribe this part of the projet. For the above reason we will brie�y desribedi�erent methods used in the numerial solution of our equations.The di�erential equations we need to solve are all of the following general form
∂tu(t) = g(t) +

∫ t

−∞
dt′k(t, t′)u(t′) = f(t), (A.16)where for simpliity we write it is a salar, generalization to a more general matrix form is straight-forward.In the above di�erential equation u(t) is funtion we solve for, g(t) is some general funtion, and the lastterm is a memory integral with a memory kernel k(t, t′). In the following we will denote the entire RHSas a single soure term f(t).The goal in numeris is to ahieve as high a degree of omputational e�ieny as possible, i.e. obtaina su�iently aurate solution in the least amount of time, whih is what guides ones hoie of method.Auray is generally obtained through the use of high order methods, while the time onsumption iskept low by minimizing the number of funtion evaluations. We are not in searh of extremely auratesolutions, but we do have the rather speial problem that our soure term f(t) is often very expensive toevaluate. This is due to the presene of many sums in the self-energies and espeially the memory integralover the past. Fortunately there exists a lass of methods known as linear multistep or Adams methods,that are designed to minimize the number of soure evaluations, while still being available to high order.For our type of problem a spei� set of shemes have proved themselves useful [26, p. 284℄, these areknown as preditor-orretor (PC) shemes. A partiular hoie is the so-alled Adams-Bashforth-Moulton(ABM) proedure [84, p. 943℄ whih is a third order method. The time-stepping formulas are given bytwo ontributions, a preditor and a orretor part

predictor : un+1 = un +
h

12
(23fn − 16fn−1 + 5fn−2) + O(h4), (A.17)

corrector : un+1 = un +
h

12
(5fn+1 + 8fn − fn−1) + O(h4). (A.18)In these formulas h is the distane between two onseutive time disretization points, the integer nrefers to the disrete time axis, and O(hp+1) is an order of magnitude error term with p being the orderof the method. The preditor part is an expliit method in that un+1 only depends on quantities atprevious times, whereas the orretor part is an impliit method as un+1 depends on the soure termat the present time n + 1. The reason for ombining these two methods is that the expliit preditor iseasy to implement but has bad stability properties, while the impliit method is di�ult6 to implementbut has good stability properties. The strategy is then to alulate an initial estimate of un+1 using thepreditor, and then alulate a better estimate using the orretor, using at eah n the preditor guess toevaluate the unknown soure fn+1. This proedure an be repeated many times, but usually only a singleiteration is performed, the rather subtle reason for this is explained in [84, p. 944℄. The great advantageof Adams methods is, as mentioned, that it minimizes the number of soure evaluations needed. This anbe realized by onsidering the RHS of eqs. (A.18) and (A.17) where referene is to previous grid pointsonly (exept for fn+1 in the preditor), meaning that these evaluations an be reused by employing a bitof bookkeeping. This is in ontrast to e.g. high order Runge-Kutta methods, where several intermediatesoure evaluations are needed in between the atual grid points. The memory of the Adams method isin general an advantage, but it does ause some problems for the �rst few initial steps of the algorithm,6Eq. (A.18) is atually an impliit equation in un+1, through fn+1, that would have to be solved somehow, whih wouldbe very time onsuming. 133



Self-energies Appendixas basially one has to known the solution in the �rst few grid points in order to start the time stepping.This is not a problem for the non-equilibrium simulations performed in hapter 6, where prior to thearrival of the exitation pulse the solution is known and all soure terms are zero. For the simulationsof the retarded Green's funtion performed in setion 5.3 we are however not that fortunate, and wehave to apply some other method to solve the problem or somehow obtain the solution in �rst few gridpoints. One solution is to use the most simple of all the Adams methods, namely the well-known Eulerformulae
un+1 = un + hfn + O(h2).Being a �rst order method a very small h is often needed in order to obtain a desired auray, henesolution of the full problem using the Euler sheme is often not feasible. An alternative strategy is to usethe Euler sheme to obtain the solution in the grid points needed to initiate the PC ABM proedure andsubsequently use this method, with a feasible h, for the rest of the time stepping. This strategy has beenapplied whenever needed. A more serious drawbak of the Adams is the fat that they rely on equidistanttime grids, thus making adaptive time grids di�ult to implement.During the implementation and testing of the PC ABM proedure, the numerial solution was for somesituations found to be subjeted to numerial dispersion, that is damping of the solution not related toany physial damping mehanisms but purely due to the numerial method. The numerial dispersionwas however only an issue during time spans when energy was being put into the system through theexitation pulse, after the pulse had passed no signi�ant numerial dispersion was observed. This ouldbeome a serious issue for ertain exitation onditions that our over long periods of time, e.g. on-tinuous wave exitation, but for our system where only short pulses are onsidered it was no pratialproblem.So far we disussed the solution of eq. (A.16) assuming that the soure term ould be evaluated withoutany speial e�ort, this is not the ase as an integral has to be evaluated. The memory kernel and solutionare both disrete funtions, hene one of the easiest and most intuitive ways of performing the integral,would be using the trapezoid rule [84℄
∫ h(n+1)

hn

dtu(t) =
h

2
(un + un+1) + O(h3),as it integrates pieewise linear funtions exatly. Being a seond order method one ould speulate whetherusing the trapezoid rule for alulating the soure term, would ruin the advantage of using the third orderABM method for the time stepping, as the seond order method in priniple should introdue a largererror than the third order in eah time step. To test this the Simpson's rule [84℄

∫ h(n+2)

hn

dtu(t) =
h

3
(un + 4un+1 + un+2) + O(h5),whih is of fourth order was tested, but turned out to yield the same result as using the trapezoid rule.For this reason the trapezoid rule was used in the simulations, as it has the advantage of being able tointegrate both an even and odd number of grid points, as oppose to the Simpson rule whih an onlyintegrate an odd number.A.5. Self-energiesIn this appendix we will derive the self-energies to be used in this thesis. To keep the theory as simpleas possible only lowest order self-energies will be onsidered, whih means that the self-energy an beidenti�ed from the seond non-zero term in the expansion of the ontour ordered Green's funtions, seeeq. (2.22),

Gαβ(τ, τ ′) = G0
αβ(τ, τ ′) +

∫

C

dτ2dτ1
∑

α1β1

G0
αβ1

(τ, τ2)Σ
(1)
β1α1

(τ2, τ1)G
0
α1β(τ1, τ

′) + · · · (A.19)134



Appendix Self-energiesThe supersript on the self-energy signi�es that this is a lowest/�rst order self-energy. It should be notedthat this approah for obtaining the self-energy an be applied for both fermions and bosons, as longas the Green's funtion is de�ned aording to eq. (2.19). All the self-energies derived in this appendixwill be made self-onsistent, in the sense that all free Green's funtions appearing will be replaed by theorresponding full Green's funtions, G0 → G, exept for the phonons whih are treated as a reservoir.The proedure for making the self-energy self-onsistent, is to inlude a wide enough sublass of diagramsinto Σ
(1)
β1α1

(τ2, τ1) in eq. (A.19), until one an replae all free Green's funtions with the orrespondingfull ones. This has the onsequene that the self-onsistent self-energy has in�nite many terms, whereasthe orresponding non-self-onsistent self-energy only has a single term. This is illustrated for a Foktype self-energy in �gure A.3, where all terms up to third order are shown and a few of fourth order.The self-onsistent sheme ensures that the di�erent subsystems ouple and also that the self-energiessatisfy important physial onservation laws, suh as partile number [85℄. The physial justi�ations, andlimitations, for only onsidering lowest order self-energies are given in the main text, see setion 5.2.2, henethis appendix will only present the formal details with the physis postponed.
ΣF

SC = = + +

+ +

+ + + · · ·Figure A.3.: Diagrams illustrating a self-onsistent Fok self-energy for eletrons interating with phonons.Below we will go through the self-energies arising from the various interations presented in generi formin setion 3.2.3. The following symbols will be used to the denote the various Green's funtions: G foreletrons, A for photons, and D for phonons. Their diagrammati ounterparts are shown in �gure A.4.
G0 = G =

A0 = A =

D0 =Figure A.4.: Diagrams used for the various Green's funtions; G is for eletrons, A is for photons, and D is forphonons.
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Self-energies AppendixExitation pulseThe semi-lassial interation between the eletrons and the lassial exitation pulse is given eq. (3.21)
U(t) =

∑

νν′

dνν′Ecl(t)c
†
νcν′ .Aording to eq. (2.22) the �rst two terms in the expansion of the eletron Green's funtion are givenby

Gνν′(τ, τ ′) = G0
νν′(τ, τ ′) + (−i~−1)2

∫

C

dτ1 〈TC{Û(τ1)ĉν(τ)ĉ†ν′ (τ
′)}〉0,con + · · ·

= G0
νν′(τ, τ ′) +

∫

C

dτ1
∑

ν1ν′
1

dν1ν′
1
Ecl(τ1)(−i~−1)2 〈TC{ĉ†ν1

(τ1)ĉν′
1
(τ1)ĉν(τ)ĉ†ν′ (τ

′)}〉
0,con

+ · · ·Wik's theorem, eq. (2.21), an now be applied to the two-partile Green's funtion in the seond termabove, this results in a onneted and a disonneted diagram. Keeping only the onneted diagram yieldsfor the seond term
∫

C

dτ1
∑

ν1ν′
1

G0
νν1

(τ, τ1)
[
dν1ν′

1
Ecl(τ1)

]
G0

ν′
1ν′(τ1, τ

′),omparing to eq. (A.19) we an identify the (singular) self-energy as the ontent of the square brak-ets
Uν1ν′

1
(τ1) = dν1ν′

1
Ecl(τ1). (A.20)It should be noted that as this interation is a one-body interation, it does not generate anymore termsto its self-energy and is therefore treated exatly. A diagrammati representation is shown in �gure A.5.
Figure A.5.: Diagram used for the singular self-energy eq. (A.20).Eletron-eletronThe Coulomb interation between the eletrons is given by eq. (3.17)

He−e =
1

2

∑

ν1ν2
ν3ν4

Vν4ν3,ν1ν2c
†
ν4
c†ν3
cν2cν1 .The �rst two terms in the expansion of the eletron Green's funtion are given by

Gνν′(τ, τ ′) = G0
νν′(τ, τ ′) + (−i~−1)2

∫

C

dτ1 〈TC{Ĥe−e(τ1)ĉν(τ)ĉ†ν′ (τ
′)}〉0,con + · · ·For the seond term we further get

∫

C

dτ1
(−i~−1)−1

2

∑

ν1ν2
ν3ν4

Vν4ν3,ν1ν2(−i~−1)3 〈TC{ĉ†ν4
(τ1)ĉ

†
ν3

(τ1)ĉν2(τ1)ĉν1(τ1)ĉν(τ)ĉ†ν′ (τ
′)}〉

0,con
.136



Appendix Self-energiesApplying Wik's theorem to the three-partile Green's funtion we obtain six diagrams, two of whih aredisonneted, and therefore disregarded, and four onneted diagrams. Of the four onneted diagramsthere are only two that are topologially di�erent, eah ourring in pairs, hene the "double ounting" 1
2fator anels. For the �rst onneted diagram we get

∫

C

dτ1
∑

ν1ν4

G0
νν4

(τ, τ1)

[

−i~
∑

ν2ν3

Vν4ν3,ν1ν2G
0
ν2ν3

(τ1, τ
+
1 )

]

G0
ν1ν′(τ1, τ

′),where τ+
1 = τ1 + 0+ so that τ+

1 >C τ1. This interpretation of the equal-time ontour ordered Green'sfuntion, G0
νν′(τ, τ), as slightly ontour time shifted, G0

νν′(τ, τ+), is neessary to make sure that the oper-ators in the Hamiltonian are ordered orretly, i.e. that reation operators stand to the left of annihilationoperators7. This has the onsequene that G0
νν′(τ, τ+) beomes an equal-time lesser Green's funtions

G0,<
νν′ (t, t) no matter where τ is loated on the Keldysh ontour. The self-onsistent self-energy an nowbe identi�ed as

Σe−e,H
ν4ν1

(τ1) = −i~
∑

ν2ν3

Vν4ν3,ν1ν2Gν2ν3(τ1, τ
+
1 ),whih is usually alled the Hartree self-energy or diret interation. The seond onneted diagramyields

∫

C

dτ1
∑

ν2ν4

G0
νν4

(τ, τ1)

[

i~
∑

ν1ν3

Vν4ν3,ν1ν2G
0
ν1ν3

(τ1, τ
+
1 )

]

G0
ν2ν′(τ1, τ

′),from whih we get the self-onsistent self-energy
Σe−e,F

ν4ν2
(τ1) = i~

∑

ν1ν3

Vν4ν3,ν1ν2Gν1ν3(τ1, τ
+
1 ),this self-energy is usually alled the Fok self-energy or exhange interation. These two ontributionslook formally quite similar and by interhanging ν1 and ν2 in the Fok part they an be olleted into thewell known Hartree-Fok self-energy

Σe−e,HF
ν4ν1

(τ1) = i~
∑

ν2ν3

(Vν4ν3,ν2ν1 − Vν4ν3,ν1ν2)Gν2ν3(τ1, τ
+
1 ). (A.21)A diagrammati representation is shown in �gure A.6.(a) (b)

Figure A.6.: Diagrams used for (a) the Coulomb Fok self-energy and (b) the Coulomb Hartree self-energy, seeeq. (A.21).7See e.g. [24, p. 97-98℄ or [28, p. 227℄ 137



Self-energies AppendixEletron-photonThe interation between the eletrons and photons is given by eq. (3.19)
He−rad =

∑

νν′m

~gm
νν′c†νcν′(a†m + am).The �rst three terms in the eletroni Green's funtion are

Gνν′(τ, τ ′) = G0
νν′(τ, τ ′) + (−i~−1)2

∫

C

dτ1 〈TC{Ĥe−rad(τ1)ĉν(τ)ĉ†ν′ (τ
′)}〉0,con +

(−i~−1)3

2!

∫

C

dτ1dτ2 〈TC{Ĥe−rad(τ1)Ĥe−rad(τ2)ĉν(τ)ĉ†ν′ (τ
′)}〉0,con + · · ·The seond term in this expansion is identially zero due to the fat that the eletron-photon interationdoes not onserve the number photons. More spei�ally one gets terms of the form 〈c†1c2c3c†3(a† + a)〉0,whih an be fatored into an eletron and a photon part, 〈c†1c2c3c†4〉0 〈a† + a〉0, as H0 for the eletronsand photons ommute. The photon fator is identially zero as the brakets denote thermal averaging,where eah ontribution to the trae has the same number of photons in it. This has the onsequenethat one has to go to seond order in the interation Hamiltonian to obtain a non-zero ontribution. Theseond order term beomes

∫

C

dτ1dτ2
∑

ν1ν′
1m1

ν2ν′
2m2

(−i~−1)−1
~gm1

ν1ν′
1
~gm2

ν2ν′
2
(−i~−1) 〈TC{

[
â†m1

(τ1) + âm1(τ1)
] [
â†m2

(τ2) + âm2(τ2)
]
}〉

0

× 1

2!
(−i~−1)3 〈TC{ĉ†ν1

(τ1)ĉν′
1
(τ1)ĉ

†
ν2

(τ2)ĉν′
2
(τ2)ĉν(τ)ĉ†ν′ (τ

′)}〉
0,con

.In the photon braket on the �rst line it would be natural to simply de�ne the entire objet as the photonGreen's funtion, as is usually done for phonons (see last part of this setion). However to set the stage forsolving the Dyson equation for the photon Green's funtions, we hoose to write out the big braket intotwo Green's funtions of the usual form Am1m2(τ1, τ2) = −i~−1 〈TC

{
am1(τ1)a

†
m2

(τ2)
}
〉. We do howeverkeep the symbol A for the sum for notational reasons, hene we write

A
0
m1m2

(τ1, τ2) = −i~−1 〈TC{
[
â†m1

(τ1) + âm1(τ1)
] [
â†m2

(τ2) + âm2(τ2)
]
}〉

0

= A0
m1m2

(τ1, τ2) +A0
m2m1

(τ2, τ1).It should be noted that this relation does not hold for a general non-thermal state, as in this ase termslike 〈a†a†〉 and 〈aa〉 are not neessarily zero. The three-partile eletron Green's funtion is evaluatedusing Wik's theorem and yields two disonneted diagrams, that are disregarded, and four onneteddiagrams. As in the eletron-eletron ase only two of these diagrams are topologially di�erent, anelingthe 1
2! fator. The �rst onneted ontribution to the seond order term is
∫

C

dτ1
∑

ν1ν′
1

G0
νν1

(τ, τ1)






−i~

∫

C

dτ2
∑

m1m2

ν2ν′
2

~gm1

ν1ν′
1
~gm2

ν2ν′
2
G0

ν′
2ν2

(τ2, τ
+
2 )A0

m1m2
(τ1, τ2)






G0

ν′
1ν′(τ1, τ

′),where the self-energy an then be identi�ed as the ontent of the square brakets. This self-energy is usuallyalled the Hartree part, due to its diagrammatial similarity to the Hartree part for the eletron-eletroninteration and the self-onsistent version is given by
Σe−rad,H

ν1ν′
1

(τ1) = −i~
∫

C

dτ2
∑

m1m2

ν2ν′
2

~gm1

ν1ν′
1
~gm2

ν2ν′
2
Gν′

2ν2
(τ2, τ

+
2 )Am1m2(τ1, τ2). (A.22)

138



Appendix Self-energiesAs we integrate over τ2 this self-energy beomes singular and will therefore not ause any relaxationor dephasing, but will only at as an instantaneous renormalization quantity. The seond onnetedontribution is the following
∫

C

dτ1dτ2
∑

ν1ν′
2

G0
νν1

(τ, τ1)






i~
∑

m1m2

ν2ν′
1

~gm1

ν1ν′
1
~gm2

ν2ν′
2
G0

ν′
1ν2

(τ1, τ2)A
0
m1m2

(τ1, τ2)






G0

ν′
2ν′(τ2, τ

′),where the self-onsistent self-energy, usually alled the Fok part again due to its diagrammatial appear-ane, an be identi�ed and is given by
Σe−rad,F

ν1ν′
2

(τ1, τ2) = i~
∑

m1m2

ν2ν′
1

~gm1

ν1ν′
1
~gm2

ν2ν′
2
Gν′

1ν2
(τ1, τ2)Am1m2(τ1, τ2). (A.23)For diagrammati illustrations of these ontributions to the self-energy see �gure A.7.(a) (b)

Figure A.7.: Diagrams used for the eletron-photon interation, where (a) is the Fok-type self-energy and (b) isthe Hartree-type self-energy, see eqs. (A.23) and (A.22) respetively.In pratise we will employ the RWA in the interation Hamiltonian between the eletrons and photonsthat is given by eq. (5.6)
He−rad =

∑

αα′m

~gm
αα′(c†c,αcv,α′am + a†mc

†
v,αcc,α′). (A.24)The above derivation an be repeated for this Hamiltonian and the result for the Fok ontributionis

Σbb′,e−rad,F
α1α′

2
(τ1, τ2) = i~

∑

m1m2

α2α′
1

~gm1

α1α′
1
~gm2

α2α′
2

×
{

Gvv
α′

1α2
(τ1, τ2)Am1m2(τ1, τ2)δb,c +Gcc

α′
1α2

(τ1, τ2)Am2m1(τ2, τ1)δb,v

}

δb,b′ , (A.25)while for the Hartree ontribution we get
Σbb′,e−rad,H

α1α′
1

(τ1) = −i~
∫

C

dτ2
∑

m1m2

α2α′
2

~gm1

α1α′
1
~gm2

α2α′
2

×
{

Gcv
α′

2α2
(τ2, τ

+
2 )Am1m2(τ1, τ2)δb,cδb′,v +Gvc

α′
2α2

(τ2, τ
+
2 )Am2m1(τ2, τ1)δb,vδb′,c

}

. (A.26)We note that due to the seletion rules of g and the appliation of the RWA, the Fok self-energy ispurely diagonal in the band indies and the Hartree self-energy is purely o�-diagonal in the band in-dies. 139



Self-energies AppendixPhoton-eletronIn the previous setion we alulated the self-energy of the eletrons due to the interation with thephotons, here we determine the self-energy of the photons arising from the interation with the eletrons.This means that it is of ourse the same interation Hamiltonian, but now we onsider the photon Green'sfuntion to seond order
Amm′(τ, τ ′) = A0

mm′(τ, τ ′) + (−i~−1)2
∫

C

dτ1 〈TC{Ĥe−rad(τ1)âm(τ)â†m′ (τ
′)}〉0,con +

(−i~−1)3

2!

∫

C

dτ1dτ2 〈TC{Ĥe−rad(τ1)Ĥe−rad(τ2)âm(τ)â†m′ (τ
′)}〉0,con + · · ·The �rst order term is zero due to basially the same reason as above, i.e. after fatorization of the eletronand photon brakets, we obtain terms like 〈aaa†〉0 and 〈a†aa†〉0 whih are identially zero. For the seondorder term we get

∫

C

dτ1dτ2
∑

ν1ν′
1m1

ν2ν′
2m2

(−i~−1)−1
~gm1

ν1ν′
1
~gm2

ν2ν′
2
(−i~−1)2 〈TC{ĉ†ν1

(τ1)ĉν′
1
(τ1)ĉ

†
ν2

(τ2)ĉν′
2
(τ2)}〉0,con

× 1

2!
(−i~−1)2 〈TC{

[
â†m1

(τ1) + âm1(τ1)
] [
â†m2

(τ2) + âm2(τ2)
]
âm(τ)â†m′ (τ

′)}〉
0,con

.Through Wik's theorem the eletron braket gives a onneted and disonnet diagram, where only theonneted is kept. Multiplying out the two square brakets in photon braket yields two equal ontri-butions, whih an be realized by relabeling the integration variables, thus aneling the 1
2! . Furtherappliation of Wik's theorem gives a onneted and disonnet diagram, where only the onneted iskept. In the end the seond order term an be written as

∫

C

dτ1dτ2
∑

m1m2

A0
mm2

(τ, τ2)







−i~

∑

ν1ν′
1

ν2ν′
2

~gm1

ν1ν′
1
~gm2

ν2ν′
2
G0

ν′
2ν1

(τ2, τ1)G
0
ν′
1ν2

(τ1, τ2)







A0

m1m′(τ1, τ
′),where the self-energy an be identi�ed and in its self-onsistent form it is given by

Σe−rad,PB
m2m1

(τ2, τ1) = −i~
∑

ν1ν′
1

ν2ν′
2

~gm1

ν1ν′
1
~gm2

ν2ν′
2
Gν′

1ν2
(τ1, τ2)Gν′

2ν1
(τ2, τ1). (A.27)Due to its diagrammati form this self-energy is often alled a pair-bubble term, for an illustrationsee �gure A.8. As mentioned in the previous setion we in pratise employ the RWA form of theeletron-photon interation eq. (A.24), for this interation Hamiltonian we get the following photon self-energy

Σe−rad,PB
m2m1

(τ2, τ1) = −i~
∑

α1α′
1

α2α′
2

~gm1

α1α′
1
~gm2

α2α′
2
Gcc

α′
2α1

(τ2, τ1)G
vv
α′

1α2
(τ1, τ2). (A.28)

Eletron-phononThe interation between the eletrons and phonons is given by eq. (3.23)
He−ph =

∑

νν′µ

Mµ
νν′c

†
νcν′(b†µ̄ + bµ),140



Appendix Free real-time Green's funtions
Figure A.8.: Diagram used for the photon-eletron interation, see eq. (A.27).and is seen to be formally equivalent to the eletron-photon interation, eq. (3.19), this has the onsequenethat the self-energy must be the same also. Referring to eqs. (A.22) and (A.23) we an immediatelywrite down the two �rst order ontributions to the self-energy of the eletrons due to interation withphonons

Σe−ph,H
ν1ν′

1
(τ1) = −i~

∫

C

dτ2
∑

ν2ν′
2µ

Mµ
ν1ν′

1
M µ̄

ν2ν′
2
Gν′

2ν2
(τ2, τ

+
2 )D0

µµ̄(τ1, τ2), (A.29)and
Σe−ph,F

ν1ν′
2

(τ1, τ2) = i~
∑

ν′
1ν2µ

Mµ
ν1ν′

1
M µ̄

ν2ν′
2
Gν′

1ν2
(τ1, τ2)D

0
µµ̄(τ1, τ2). (A.30)Where we have de�ned the free phonon Green's funtion as follows

D0
µ1µ2

(τ1, τ2) = −i~−1 〈TC{[b̂†µ̄1
(τ1) + b̂µ1(τ1)][b̂

†
µ̄2

(τ2) + b̂µ2(τ2)]}〉0 , (A.31)note that we do not make this self-energy self-onsistent in the phonon Green's funtion, as the phononsare treated as a reservoir, i.e. the phonons are assumed to in thermal equilibrium at all times. For thefree phonon Green's funtion we have the following nie property
D0

µ1µ2
(τ1, τ2) = D0

µ1µ̄1
(τ1, τ2)δµ̄1µ2 ,whih has been used to simplify the above self-energies. For diagrammati illustrations of these self-energiessee �gure A.9. (a) (b)

Figure A.9.: Diagrams used for the eletron-phonon interation, where (a) is the Fok-type self-energy and (b) isthe Hartree-type self-energy, see eqs. (A.30) and (A.29) respetively.A.6. Free real-time Green's funtionsIn this appendix we derive expliit expressions for free (non-interating) real-time Green's funtions. Thesean be found in any textbook, but are used frequently in this thesis, hene this appendix. 141



Free real-time Green's funtions AppendixThe Green's funtions we are looking for are de�ned by eq. (2.24)
G0,>

αβ (t, t′) = −i~−1 〈Oα(t)O†β(t′)〉
0
,

G0,<
αβ (t, t′) = ±i~−1 〈O†β(t′)Oα(t)〉

0
,

G0,r
αβ(t, t′) = −i~−1θ(t− t′) 〈[Oα(t), O†β(t′)]±〉0 ,

G0,a
αβ (t, t′) = i~−1θ(t′ − t) 〈[Oα(t), O†β(t′)]±〉0 ,where the + is for fermions and the − for bosons. The proedure we are about to go through an beperformed simultaneously for both fermions and bosons, when minding a few signs underway. For a non-interating system the Hamiltonian is quadrati and time-independent and an without loss of generalitybe hosen to be diagonal, hene we write it as

H0 =
∑

α

~ωαO
†
αOα.To obtain the time evolution of the operators omprising the Green's funtions, we need to solve theHeisenberg equation of motion for these quantities, namely

i~∂tOα(t) = [Oα(t), H0(t)] = [Oα, H0] (t) =
∑

β

~ωβ[Oα, O
†
βOβ ](t).Evaluating the remaining ommutator as [Oα, O

†
βOβ ] = Oβδαβ is easily done using the (anti)ommutatorrelations for the Oα's

[Oα, O
†
β ]± = δαβ , [Oα, Oβ ]± = [O†α, O

†
β ]± = 0, (A.33)where again+ is for fermions and− for bosons. The equation of motions beomes

i~∂tOα(t) = ~ωαOα(t),whih is solved using the initial ondition Oα(t = 0) = Oα to give
Oα(t) = e−iωαtOα ⇒ O†α(t) = e+iωαtO†α, (A.34)applying for both fermions and bosons.These solutions an now be plugged into the de�nitions of the Green's funtions. We start with the greaterGreen's funtion
G0,>

αβ (t, t′) = −i~−1e−iωα(t−t′)[1− nF (~ωα)]δαβ , Fermions

G0,>
αβ (t, t′) = −i~−1e−iωα(t−t′)[1 + nB(~ωα)]δαβ , Bosons.The distribution funtions nF/B , the Fermi-Dira and Bose-Einstein funtions respetively, arise whenperforming thermal averaging over the number operator nα = O†αOα, see eq. (2.18). The lesser Green'sfuntion yields

G0,<
αβ (t, t′) = +i~−1e−iωα(t−t′)nF (~ωα)δαβ , Fermions

G0,<
αβ (t, t′) = −i~−1e−iωα(t−t′)nB(~ωα)δαβ , Bosons.The retarded and advaned Green's funtions are equal for the fermions and bosons and are givenby

G0,r
αβ(t, t′) = −i~−1θ(t− t′)e−iωα(t−t′)δαβ,

G0,a
αβ (t, t′) = +i~−1θ(t′ − t)e−iωα(t−t′)δαβ.142



Appendix Analytial basis set for the eletroni single-partile statesTwo important ommon features of all the free Green's funtions are that they 1) only depend on theirtime di�erene, e�etive being one-time funtions and not two-time, and 2) that they are diagonal intheir quantum numbers. The time di�erene dependene an in fat be shown to hold for any equilib-rium Green's funtion, regardless of what interations might be present. This feature makes equilibriumretarded and advaned Green's funtions very attrative to use in onnetion with the GKBA, see se-tion 2.5.We make use of one last free Green's funtion whih is not de�ned the same way as above. This is thefree phonon Green's funtion introdued in eq. (A.31)
D0

µµ′(τ, τ ′) = −i~−1 〈TC{[b†µ̄(τ) + bµ(τ)][b†µ̄′ (τ
′) + bµ′(τ ′)]}〉

0
.To obtain its real-time omponents we put it on a more familiar form by de�ningBµ(τ) ≡ b†µ̄(τ) + bµ(τ) = B†µ̄(τ),so that we may write

D0
µµ′(τ, τ ′) = −i~−1 〈TC{Bµ(τ)B†µ̄′ (τ

′)}〉
0
.The greater and lesser Green's funtions are thus given by

D0,>
µµ′ (t, t

′) = −i~−1 〈Bµ(t)B†µ̄′(t
′)〉

0
,

D0,<
µµ′ (t, t

′) = −i~−1 〈B†µ̄′(t
′)Bµ(t)〉

0
.The time evolution of Bµ(t) is easily found from eq. (A.34) and we get

D0,>
µµ′ (t, t

′) = −i~−1
{

eiωµ(t−t′)nB(~ωµ) + e−iωµ(t−t′)[nB(~ωµ) + 1]
}

δµ̄′,µ, (A.35a)
D0,<

µµ′ (t, t
′) = −i~−1

{

e−iωµ(t−t′)nB(~ωµ) + eiωµ(t−t′)[nB(~ωµ) + 1]
}

δµ̄′,µ. (A.35b)From these expressions the following relations are seen holds between the greater and lesser phonon Green'sfuntions
D

0,≷
µµ′ (t, t

′) = D
0,≶
µ′µ(t′, t) = −[D

0,≶
µµ′ (t, t

′)]∗, (A.36)this redundany in Green's funtions is due to the way the phonon Green's funtion is de�ned eq. (A.31).A.7. Analytial basis set for the eletroni single-partilestatesThe purpose of this appendix is to desribe how to obtain the basis funtions used in setion 4.3.2 toexpand the numerial solutions from COMSOL. The most important properties of a basis is that itmust be omplete and further that it must satisfy the same outer boundary onditions as the funtionit is to expand. The simplest way to satisfy both of these requirements is to use the same geometry asfor the COMSOL solution, see �gure 4.2, but simply for a homogenous medium and impose the samezero boundary onditions on the outer boundaries. This empty ylinder is shematially shown in A.10.As for the COMSOL solution we deal with rotationally symmetri system and thus the angular dependenean readily be obtained as in setion 4.2.2, and we are left with an equation of the form eq. (4.4) for thetwo remaining diretions. Due to the fat that we have no internal boundaries, it is reasonable to assumethat we may further fatorize the remaining funtion into a part for the radial oordinate, ρ, and for the
z-diretion, f(ρ, z) = R(ρ)Z(z). Substituting this into eq. (4.4) we end up with a Shrödinger equation ofthe form

− ~
2

2m∗

(
1

ρ
∂ρ [ρ∂ρ] +

m2

ρ2
+ ∂zz

)

R(ρ)Z(z) = ER(ρ)Z(z). 143
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x

y

z

R0

Lz

Figure A.10.: Figure of the geometry used to obtain the free basis funtions.This kind of equation may be solved using the separation of variables tehnique and is done in any textbookon partial di�erential equations, see e.g. [86℄, and we will therefore simply state the solution satisfyingthe boundary onditions given in eqs. (4.5) and (4.6). The full solution may be written on the followingform
Bmlnz

(r) = Φm(ϕ)R|m|l(ρ)Znz
(z),where the expliit form of eah of the three funtions will be brie�y desribed below. For the angular partwe obtain

Φm(ϕ) =
1√
2π
eimϕ, m = 0,±1,±2,±3, . . .whih are the well-known eigenstates of the z-omponent of the angular momentum operator. For theradial part we have

R|m|l(ρ) =

√
2

R0J|m|+1(γ|m|l)
J|m|(k|m|lρ), k|m|l =

γ|m|l
R0

, l = 1, 2, 3, . . . (A.37)where γ|m|l is the l'th root of J|m|, with J|m| being the Bessel funtion of the �rst kind. For illustrationwe show a few of the radial funtions in �gure A.11. For the z-diretion we get
Znz

(z) =
1

√

Lz/2
sin

(
πnz

Lz
z +

πnz

2

)

, nz = 1, 2, 3, . . .Eah of the above funtions have been normalized and hene the full produt form is also normalized. Theeigenenergy is given by the following expression
Emlnz

=
~

2

2m∗
(
(k|m|l)

2 + (knz
)2
)

=
~

2

2m∗

([
γ|m|l
R0

]2

+

[
π

Lz
nz

]2
)

,where we notie the degeneray inm, due to the rotational symmetry of the system.
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(d)Figure A.11.: Figures showing a few of the radial basis funtions eq. (A.37).A.8. Semiondutor band parametersIn this appendix we will brie�y disuss the parameters that enter in the one-band e�etive mass Shrödingerequation, we use to obtain the eletroni wavefuntions, see eq. (4.4). Figure A.12 illustrates the energylandsape we are onsidering. We use an unoupled two-band model with a ondution and valene band,where II (I) denotes the high (low) bandgap material. It should be emphasized that no e�ets due tostrain or piezo eletri e�ets are expliitly taken into aount, apart of ourse from the fat that we havea QD that have formed due to strain/surfae tension. This is a huge approximation and the alulatedenergies and wavefuntions should therefore only be onsidered as rude estimates to the real quantities.Hopefully the alulated physial quantities will still display qualitatively orret behavior. Apart fromthe various energies shown in �gure A.12 we also need to know the e�etive masses of the eletrons andholes.We will use GaAs as the high bandgap material and InxGax−1As as the low bandgap material, with8
x = 0.60 to simulate the di�usion of Ga into the shallow InAs QD and WL. We will adopt bulk valuesfor all parameters, exept for the hole masses whih need speial attention due to anisotropy in k-spae8Obtained through personal ommuniation with Søren Stobbe of DTU Fotonik. 145



Semiondutor band parameters AppendixEnergy
Eg,II Eg,I

∆Ec

∆Ev

Condution band

Valene band

II

II

I

I

II

IIFigure A.12.: Shemati illustration of the energy landsape in the QD/WL system. In the potential well thehorizontal lines indiate bound QD states, while the grey box indiate the WL energy ontinuum.for the valene band. The parameters for the high bandgap material are tabulated in table A.1, whilethose for the low bandgap material are obtained using interpolation formulas, to take into aount the Gaonentration in the InAs. For the bandgap we use the formulae [87℄
Eg,I = xEg,InAs + (1− x)Eg,GaAs − x(1 − x)Cg,GaInAs,where Cg,GaInAs is known as a bowing parameter. The so-alled ondution band o�set (CBO), ∆Ec, andvalene band o�set (VBO),∆Ev, are assumed to be given by the 60/40 ratio so that
∆Ec = 0.60× (Eg,II − Eg,I),

∆Ev = 0.40× (Eg,II − Eg,I).For the hole mass we use the heavy hole (hh) mass and hoose the omponent the in-plane diretion,
(x, y)-plane in real spae, as this is where most of our dynamis is. Furthermore we adopt the hh massappropriate for quantum well strutures as our QD/WL system is very similar to this, this hoie issupported in the literature see e.g. [88℄. It is however an open question what input parameters to usewhen performing simulations using e�etive desriptions, like the e�etive mass Shrödinger equation, onsemiondutor heterostrutures and there is no broad onsensus on this point in the sienti� literature.We take the hh mass as given by [89, p. 171℄

[
m0

m∗hh

][110]

QW

= γ1 + γ2.The high bandgap material hh mass is readily obtained, while for the low bandgap material we use the146



Appendix Semiondutor band parametersQuantity Value Unit Referene Quantity Value Unit
γ1,GaAs 6.98 1 [87℄ Eg,II 1.519 eV
γ2,GaAs 2.06 1 [87℄ Eg,I 0.7433 eV
γ3,GaAs 2.93 1 [87℄ ∆Ec 0.465 eV
γ1,InAs 20.0 1 [87℄ ∆Ev 0.310 eV
γ2,InAs 8.5 1 [87℄ m∗c,II 0.067 m0

γ3,InAs 9.2 1 [87℄ m∗c,I 0.0344 m0

m∗e,GaAs 0.067 m0 [87℄ m∗v,II 0.111 m0

m∗e,InAs 0.026 m0 [87℄ m∗v,I 0.0483 m0

Eg,GaAs 1.519 eV [87℄
Eg,InAs 0.417 eV [87℄
Cg,GaInAs 0.477 eV [87℄Table A.1.: First set of the band parameters used in the e�etive mass Shrödinger equation simulations.Quantity Value Unit

Eg,II 1.424 eV
Eg,I 0.359 eV
∆Ec 0.697 eV
∆Ev 0.368 eV
m∗c,II 0.0665 m0

m∗c,I 0.027 m0

m∗v,II 0.38 m0

m∗v,I 0.34 m0Table A.2.: Seond set of the band parameters used in the e�etive mass Shrödinger equation simulations. Allvalues are taken from [53℄.following interpolation formulae
[
m0

m∗hh

][110]

QW,I

= x

[
m0

m∗hh

][110]

QW,InAs

+ (1− x)
[
m0

m∗hh

][110]

QW,GaAs

.All the parameters are summarized in table A.1.After it was realized that the set of parameters desribed above yielded unphysial population for someexitation onditions, see setion 6.2, another set was hosen that did not su�er from this problem. Wewill brie�y desribe the new set in the following. The materials are the same as above, but now we usepure InAs as the low bandgap material, i.e. x = 1. Furthermore we use the e�etive mass in the [001℄,
z, diretion, as oppose to the [110℄ diretion above, whih is onsiderably larger, leading in general tomore on�ned valene band states. For the CBO and VBO we hoose a slightly di�erent ratio given by
0.654/0.346 so that

∆Ec = 0.654× (Eg,GaAs − Eg,InAs),

∆Ev = 0.346× (Eg,GaAs − Eg,InAs),where the number of digits has historial reasons. The new parameters are summarized in table A.2.
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Slowly-varying equations AppendixA.9. Slowly-varying equationsIn this appendix we list the slowly-varying versions of the equations of motion presented in hapter ??,whih are the quantities that are solved for numerially. We de�ne the slowly-varying transformation forthe eletroni density matrix as follows
ρbb′

α (t) = e−iωbb′

α tρ̃bb′

α (t), (A.38)that removes the fast underlying osillations in the o�-diagonal elements of the density matrix due tothe free evolution of the system. Eq. (A.38) transforms the equation of motion for the density matrix,eq. (5.34), into the form
∂tρ̃

bb′

α (t) = ∂tρ̃
bb′

α (t)|coh + ∂tρ̃
bb′

α (t)|scatt.Below we list eah of the ontributions to the oherent and sattering terms used in the simulations intheir slowly-varying versionA.9.1. Coherent termsThe oherent soure term, eq. (5.35), transforms into
∂tρ̃

bb′

α (t)|coh = −i~−1
∑

b1

[{

eiωbb1
α tΣbb1,s

α (t)
}

ρ̃b1b′

α (t)− ρ̃bb1
α (t)

{

eiωb1b′

α tΣb1b′,s
α (t)

}]

,were the term due to the free evolution has disappeared and hene the fast osillations assoiated withit.Now we list the slowly-varying transformed of the terms in eq. (5.36):Eq. (5.38):
U bb′

α (t) =







0, b = b′ = c, v

dcv
α

E0(t)
2 e−iω0t, b = c, b′ = v

dvc
α

E0(t)
2 eiω0t, b = v, b′ = cEq. (5.39):

Σbb′,HF
α (t) =

∑

b1b2
α1

(

V bb2b′b1
αα1αα1

− V bb2b1b′

αα1α1α

)

e−iωb1b2
α1

t [ρ̃b1b2
α1

(t)− δb1,vδb2,v

]Eq. (5.40):
Σbb′,LO,H

α (t) =

∫ t

−∞
dt′
∑

b1α1

~ωLO

2ε∗/ε
V b1bb1b

α1αα1α

[
ρ̃b1b1

α1
(t′)− δb1,v

]
D0,r

LO(t, t′)δb,b′ ,Eq. (5.41):
Σbb′,rad,H

α (t) =

∫ t

−∞
dt′
∑

α1

~gα~gα1

[

e−iωcv
α1

t′ ρ̃cv
α1

(t′)Ar(t, t′)δb,cδb′,v + e−iωvc
α1

t′ ρ̃vc
α1

(t′)[Ar(t, t′)]∗δb,vδb′,c
]

.148



Appendix Slowly-varying equationsA.9.2. Eletroni sattering termsLO-phonons: Eq. (5.44):
∂tρ̃

bb′

α (t)|F,LO
scatt =

eiωbb′

α t

∫ t

−∞
dt1

∑

b1α1

(

Gb,r
α1

(t, t1)
[

Gb′,r
α (t, t1)

]∗
e−i(ωbb1

α1
+ωb1b′

α )t1

×
{

−Dbb1,>
αα1

(t, t1)[δb,b1 − ρ̃bb1
α1

(t1)]ρ̃
b1b′

α (t1) +Dbb1,<
αα1

(t, t1)ρ̃
bb1
α1

(t1)[δb1,b′ − ρ̃b1b′

α (t1)]
}

+Gb,r
α (t, t1)

[

Gb′,r
α1

(t, t1)
]∗
e−i(ωbb1

α +ωb1b′

α1
)t1

×
{

[δb,b1 − ρ̃bb1
α (t1)]ρ̃

b1b′

α1
(t1)D

b1b′,>
αα1

(t, t1)− ρ̃bb1
α (t1)[δb1,b′ − ρ̃b1b′

α1
(t1)]D

b1b′,<
αα1

(t, t1)
})RWA GKBA photons: Eq. (5.46):

∂tρ̃
bb
α (t)|rad,F

scatt = −2Re
[ ∫ t

−∞
dt1G

v,r
α (t, t1) [Gc,r

α (t, t1)]
∗ (i~|~gα|2Ar(t, t1)

)

× {A(t1) [ρ̃cc
α (t1)− ρ̃vv

α (t1)] + ρ̃cc
α (t1) [1− ρ̃vv

α (t1)]} (δb,c − δb,v)
]

.Eq. (5.47):
∂tρ̃

cv
α (t)|rad,F

scatt = −eiωcv
α t

∫ t

−∞
dt1
(
i~|~gα|2Ar(t, t1)

)
e−iωcv

α t1
(

|Gv,r
α (t, t1)|2 {A(t1)ρ̃

cv
α (t1) + ρ̃cv

α (t1)[1− ρ̃vv
α (t1)]}+ |Gc,r

α (t, t1)|2 {A(t1)ρ̃
cv
α (t1) + ρ̃cv

α (t1)ρ̃
cc
α (t1)}

)

.RWA two-time photons: Eq. (5.50):
∂tρ̃

bb
α (t)|rad,F

scatt = −2Re
[ ∫ t

−∞
dt1|~gα|2Gv,r

α (t, t1) [Gc,r
α (t, t1)]

∗
e−iωcav(t−t1)

×
{

[1− ρ̃vv
α (t1)]Ã

>(t, t1)ρ̃
cc
α (t1)− ρ̃vv

α (t1)Ã
<(t, t1)[1− ρ̃cc

α (t1)]
}

(δb,c − δb,v)
]

.Eq. (5.51):
∂tρ̃

cv
α (t)|rad,F

scatt = −eiωcv
α t

∫ t

−∞
dt1|~gα|2e−iωcv

α t1e−iωcav(t−t1)
(

|Gv,r
α (t, t1)|2

{

[1− ρ̃vv
α (t1)]Ã

>(t, t1)ρ̃
cv
α (t1) + ρ̃vv

α (t1)Ã
<(t, t1)ρ̃

cv
α (t1)

}

+ |Gc,r
α (t, t1)|2

{

ρ̃cv
α (t1)ρ̃

cc
α (t1)Ã

>(t, t1) + ρ̃cv
α (t1)[1 − ρ̃cc

α (t1)]Ã
<(t, t1)

})

.A.9.3. Photoni sattering termsAs only eletroni populations enter these terms, the slowly-varying versions are idential to those presentedin the main setion and however for ompleteness we repeat them here. 149



Slowly-varying equations AppendixEq. (5.59):
∂tÃ(t, t− τ)|PB

scatt,II =

∫ t−τ

−∞
dt1
∑

α1

|~gα1 |2

×
[

Gc,r
α1

(t, t1)
[
Gv,r

α1
(t, t1)

]∗
e−iωcav(t1−t){−[1−ρ̃cc

α1
(t1)]ρ̃

vv
α1

(t1)[Ã
<(t−τ, t1)]∗+ρ̃cc

α1
(t1)[1−ρ̃vv

α1
(t1)][Ã

>(t−τ, t1)]∗}

+
[
Gc,r

α1
(t− τ, t1)

]∗
Gv,r

α1
(t−τ, t1)e−iωcav(t−τ−t1){Ã>(t, t1)ρ̃

cc
α1

(t1)[1−ρ̃vv
α1

(t1)]−Ã<(t, t1)[1−ρ̃cc
α1

(t1)]ρ̃
vv
α1

(t1)}
]

,Eq. (5.57):
∂tÃ

>(t, t− τ)|PB
scatt,I =

∫ t

t−τ

dt1
∑

α1

|~gα1 |2

×
[

−Gc,r
α1

(t, t1)
[
Gv,r

α1
(t, t1)

]∗
e−iωcav(t1−t){ρ̃vv

α1
(t1)− ρ̃cc

α1
(t1)}Ã>(t1, t− τ)

+Gc,r
α1

(t1, t− τ)
[
Gv,r

α1
(t1, t− τ)

]∗
e−iωcav(t−τ−t1){Ã>(t, t1)− Ã<(t, t1)}[1− ρ̃cc

α1
(t− τ)]ρ̃vv

α1
(t− τ)

]

,Eq. (5.58):
∂tÃ

<(t, t− τ)|PB
scatt,I =

∫ t

t−τ

dt1
∑

α1

|~gα1 |2

×
[

−Gc,r
α1

(t, t1)
[
Gv,r

α1
(t, t1)

]∗
e−iωcav(t1−t){ρ̃vv

α1
(t1)− ρ̃cc

α1
(t1)}Ã<(t1, t− τ)

+Gc,r
α1

(t1, t− τ)
[
Gv,r

α1
(t1, t− τ)

]∗
e−iωcav(t−τ−t1){Ã>(t, t1)− Ã<(t, t1)}ρ̃cc

α1
(t− τ)[1− ρ̃vv

α1
(t− τ)]

]

,
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