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Abstract

In recent years much attention has been focused on the possibility of realizing a single-photon source,
due to its possible applications within quantum computing. The efforts have been both experimental and
theoretical, and progress has been made on both fronts. However much work still remains to be done,
in order to obtain a full understanding of the physics underlying a semiconductor single-photon source,
which is a necessity for designing an efficient functional device.

In this thesis we present a theory for describing many-body effects in a semiconductor cavity quantum
electrodynamical system, suitable for modeling a semiconductor single-photon source. We employ a non-
equilibrium Green’s function formalism that is capable of describing the complicated many-body system,
which the relevant physical system consists of. Using the Green’s function approach we formulated a set of
quantum kinetic equations, where we took into account the Coulomb interaction, the interaction between
electrons and longitudinal optical (LO) phonons, and the interaction between electrons and photons.
Furthermore a model of the electronic states in the semiconductor quantum dots was developed, in terms
of which the various interaction matrix elements were calculated.

The quantum kinetic equations were applied to a range of equilibrium and non-equilibrium situations.
In equilibrium the interaction with the LO-phonons, was found to dramatically change the proper-
ties of the electrons. We investigated the linear absorption spectrum, revealing interesting spectral
signatures arising from the LO-phonon coupling, as well as for the Coulomb and photon interaction.
The population dynamics for the both electrons and photons was studied in the time domain, where
amongst other things the approach to a quasi-equilibrium state and the occurrence of Rabi oscillations
was treated.

An attempt to solve for the full two-time Green’s functions of the photons was made, however, due to lack
of time this part of was not fully completed and more work is needed.
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1. Introduction

The emerging field of quantum information technology shows great promise as a possible replacement of
the current classical information technology, as it offers opportunities to perform tasks not possible within
its classical counterpart. A very central object in this new field is the quantum computer that derives its
special properties due to utilization of the qubit. A qubit is a generalization of the classical bit that due to
its quantum nature can be in a superposition of the classical "0" and "1", giving it unique properties as a
computation device. A promising candidate for a qubit are the two polarization states of a photon. Indeed,
ever since it was realized that efficient quantum computing can be performed using single photons and
standard linear optical elements [1], there has been an immense international research activity [2, 3] aiming
at developing single-photon sources. An ideal single-photon source is a device that can deterministically
emit indistinguishable single photons efficiently into a single well defined optical mode. The single photons
need to be indistinguishable, as otherwise they will not behave quantum mechanically and therefore not
be able to interfere as required by the scheme proposed in Ref. [1]. Tt is of similar importance that one
is able to generate a single photon whenever needed, popularly we speak of single-photons on-demand, as
otherwise it will not be possible to effectively interfere the single photons on a beam splitter. Furthermore
the collection efficiency, given as the amount of light emitted into the desired mode normalized by the
total amount of light emitted, should be as high as possible. To summarize and emphasize these essential
facts a good single-photon source should possess

e A high degree of indistinguishability
e The ability to deterministically emit single photons
e A high collection efficiency

The degree of indistinguishability is determined by the amount of decoherence the photonic degrees of
freedom experience through various interaction mechanisms, and as these are always present in a phys-
ical system, one must be prepared to accept some degree of distinguishability. A detailed understand-
ing of these decoherence processes is needed in order to understand the physics underlying a single-
photon source, but also from a more practical point of view to be able to design better single-photon
sources.

In this thesis we will focus mainly on describing decoherence processes, and therefore emphasis will be on
the indistinguishability aspect of single-photon sources.

Semiconductor single-photon sources

In order for quantum computers, or more generally quantum information technologies, to move outside
the laboratory the materials comprising these devices need to practical. Systems such as ultra-cold gases
or single atoms are not well suited for eventual commercialization and suffer from poor scalability, even
though they are excellent for certain fundamental studies. A material that does not suffer from the same
impracticalities is semiconductors, and which for many purposes are highly scalable as witnessed in the
microelectronics industry. A huge advantage of employing semiconductors is the very high degree of
design control the field has developed over the years, enabling construction of devices structured down
to the nanometer scale. It is at these small length scales that quantum effects begin to play a vital
role. This control also makes it possible, to a certain degree, to engineer the electronic energy levels in
the material and through this controlling the energy of the emitted light. Furthermore, the quality of
semiconductor devices grown nowadays is extremely high and various unwanted defects do not pose a
serious problem.
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(a) Self-assembled quantum dots grown using the Stranski-Krastanow (b) Simulated electric field mode profile of a
technique [4]. The diameter of each quantum dot is on the order cavity created by omitting three holes in
of a few tens of nanometers. a 2D photonic crystal membrane [5].

Figure 1.1.: Figures of self-assembled )Ds and an optical cavity.

A promising candidate for a semiconductor single-photon source consists of a single! self-assembled quan-
tum dot (QD), see figure 1.1(a), placed inside an optical cavity, see figure 1.1(b), which offers control over
both the electronic and photonic degrees of freedom. It is this specific system we will deal with in this
thesis and a brief overview will therefore be given.

QDs grown using the Stranski-Krastanow technique [6] are made in a three step evaporation process,
where due to the physical mechanism behind the formation these QDs are called self-assembled. The first
step consists of placing a layer of semiconductor on a substrate, as an example we use GaAs which is a
commonly employed material. In the second step a very thin layer, usually only a few monolayers thick,
of another kind of semiconductor is evaporated onto the the first. The material forming the second layers
should have a slightly different lattice constant than the first, this demand is satisfied by InAs which we
will use and which is further commonly employed in connection with GaAs. The lattice mismatch causes
a stress field to build in the InAs layer with a subsequent increase in surface energy. To minimize the
surface energy small islands of InAs spontaneously form on top of the thin layer of InAs, these islands are
denoted self-assembled QDs and the thin layer below them is denoted the wetting layer (WL). This step of
the process is illustrated in figure 1.1(a), where a scanning electron microscope image shows how the QDs
are randomly distributed on the WL. The last step consists of evaporating a final layer of GaAs on top
of the QDs and WL, completely embedding the InAs in GaAs. Now, the bandgap of InAs is significantly
lower than that of GaAs, and through band bending effects this creates a confining potential for both
electrons and holes, allowing spatially localized states to inside the QDs, see figure 4.3 for a schematic
illustration. Regarding the optical cavity we will not go into details with the specific form, as we only
require it to have a single well defined optical mode. This mode will be described entirely by parameters,
that will be introduced later when needed. For an excellent exposition of different cavity designs we refer
to the review article by Vahala et al. [7].

An often performed experiment in solid-state quantum optics is the photoluminescence experiment, where
one excites electrons in a given structure and measures the light emitted by the structure. The emitted
light carries with it a wealth of information on the various interactions that are present in the structure.
It is therefore of great interest to be able to model a photoluminescence experiment accurately, to be able
to understand the experimental data. For illustration we have in figure 1.2 sketched a typical photolumi-
nescence experiment. The figure shows an energy diagram of a two-band semiconductor which has a bulk
continuum part, arising from the unconfined carriers in the semiconductor bulk, a WL (quasi-) continuum,
due to carriers moving in the quasi-2D WL, and a set of discrete states localized in the QD. In the experi-
ment electrons are generated in the conduction band by some external source, that could either be optical
or electrical in nature. In the optical case the excitation energy is often tuned to the continuum parts of

n practise it is very difficult to place a single QD inside a cavity, due to the fabrication process. Often several QDs are
placed spatially inside the cavity, however, due to size fluctuations and the associated energy fluctuation it is possible to
spectrally select a single QD.
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the spectrum to, avoid exciting with light of the same energy as one wish to detect. The electrons and holes
then undergo a rapid relaxation and dephasing process in the WL or bulk continuum, where the phase
space for scattering is large, through the emission of phonons and scattering with other carriers. Once the
carriers reach the bottom of the WL continuum, they are captured into the localized QD states. From here
on they relax into the ground state of the discrete QD spectrum, and as this part of the relaxation takes
place for discrete electron states, the time scales are typically longer than in the continuum case. Often
the relaxation to the QD ground state for the electrons and holes, occurs sufficiently fast so that only a
very small number of photons are emitted during the process. However, once the the carriers reach their
respective ground states, they start interacting efficiently with the quantized electromagnetic field and
significant photon emission starts to occur. Depending on the strength of the electron-photon interaction
two qualitatively different situation can arise, known as the weak and strong coupling regimes [8, Chap.
7]. In the strong coupling regime the coherent coupling between electrons and photons is stronger than
the decay processes, and coherent transfer of energy between the electronic and photonic subsystems is
observed through so-called Rabi oscillations. In the weak coupling regime the situation is reversed and
the decay processes dominate over the coherent coupling, resulting in an irreversible decay of the excited
electron into its ground state while emitting a photon. It is this basic experiment we will set up a theory
for in this thesis, as it constitutes the fundamental mechanism in a semiconductor single-photon source.

Bulk continuum

WL relaxation ° Conduction band

A\

WL continuum

QD capture /
QD relaxation l External optical excitation
/ X
Weak coupling
Strong coupling f""\ TN
X 7/ 4
*
Ly

/
WL continuum \ e Valence band

Bulk continuum

Figure 1.2.: Schematic energy diagram illustrating the processes involved in a typical photoluminescence experiment,
explanations are given in the main text.

In the context of single-photon sources the weak coupling regime is particular interest due a phenomena
known as the Purcell effect [9], where the spontaneous emission rate is altered due to a change in the
local density of optical states (LDOS). If the spontaneous emission rate is increased to a value near or
above the decoherence rates, it will lead to an increase in the indistinguishability of the emitted photon
[10]. Intuitively we can understand this as the photon being emitted before the impact of dephasing has
rendered the photons distinguishable. Most exploitations of the Purcell effect have employed an optical
cavity to alter the LDOS, however, recently it has been proposed to use a photonic crystal waveguide to
alter the LDOS instead of a cavity [11, 12]. This offers several advantages over a spectrally narrow high-Q
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cavity. First the Purcell effect in a waveguide can be obtain over a larger range of frequencies and secondly
the photon is emitted directly into a strongly directional mode that increases the collection efficiency [13].
We will however only treat cavities and not waveguides in this thesis.

Experimental and theoretical efforts

Much attention is directed towards obtaining a better understanding of the semiconductor cavity quantum
electrodynamical (cQED) system described above, both on the experimental and theoretical side. Indeed
both measurements of the weak and strong coupling regimes have been realized and we will discuss two such
examples. In figure 1.3(a) we show the experimental setup and the result of a coincidence measurement
[14], between the two photon counters depicted in the setup, after two single photons have been interfered
on the beam splitter. The dip in the count rate at 7 = 0 is a signature of two-photon interference and
occurs due to the bosonic nature of photons. One can use the area under the suppressed center peak to
define a measure for the degree of indistinguishability of the emitted single photons, indeed for perfectly
indistinguishable photons the area would vanish [15]. This experiment was performed in the weak coupling
regime utilizing the Purcell effect to obtain a higher degree of two-photon interference. An example of
a measurement in the strong coupling regime is shown in figure 1.3(b). Here the emission spectra for a
photoluminescence experiment is shown at different detunings between between exciton emitter (X) and
the cavity (C) [16]. A clear indication that we are in the strong coupling regime is seen through the
so-called avoided crossing of the two peaks, revealing the formation of an electron-photon quasi-particle,
often called a polariton.
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(a) Figures showing the setup for performing a two-photon (b) Emission spectra for a cQED system in the strong cou-
interference measurement and the corresponding coin- pling regime [16].

cidence histogram [14].

Figure 1.3.: Figures illustrating examples of weak and strong coupling between electrons and photons.

The most basic features of these experiments have been reproduced by simple models [15, 17-19], where
decay processes are treated in relaxation rate approximations. The rates become fitting parameters and
give no understanding or insight into the physics underlying the various decay processes. In order to
understand the effects of e.g. temperature, more advanced models are needed that explicitly take into
account the interactions giving rise to the temperature features. These interactions have an inherent many-
body nature and are therefore notoriously difficult to handle theoretically, and often very computationally
demanding, which are some of the reasons why they are not employed more often in the literature. Recently
there has been several theoretical papers [20-23] that treat cQED systems and some kind of many-body
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interaction, usually phonons. However, they all have the common feature that they use methods? that are
impossible, or very difficult, to extend to realistic systems, which is the ultimate goal and is a prerequisite
for explaining some experiments.

In this thesis we employ a non-equilibrium Green’s function formalism and set up a model for a realistic
cQED system. We take into account the many-body interactions between electrons, phonons, and photons
and go beyond the usual two-level description of the electronic system, in that we consider a multi-level QD
scheme rarely done in the literature. The model is analyzed and discussed for several relevant scenarios,
with the overall conclusion that in order to accurately describe experiments it is imperative to employ a
many-body model, that explicitly describes the various decay mechanisms.

2Many employ the so-called independent boson model [24] that only applies to systems with a single electronic level,
obviously limiting its usefulness.



2. Non-equilibrium Green’s Functions

2.1. Introduction and motivation

The theoretical description of many-body quantum systems is notoriously difficult, and there exists only a
very limited understanding of the vast amount of intriguing phenomena arising from the intricate interac-
tions amongst many identical particles. One reason for the limited understanding of many-body systems
is due the practical problems associated with solving the fundamental governing equation, namely the
time-dependent Schrodinger equation

ihy, | (t)) = H |[U(1)). (2.1)

In standard wavefunction approaches the Hamiltonian and wavefunction are expanded in a many-particle
Hilbert space and the resulting set of linear equations is solved. While this approach is possible and very
often used for single or few particles systems, it becomes impossible to proceed down this path once the
particle number becomes significant. This is so as the corresponding Hilbert space, increases exponentially
in the number of particles and in the number of single-particle states used to expand the many-particle
Hilbert space on. To make progress we turn to the Heisenberg representation of quantum theory, in which
operators rather than the wavefunctions themselves are the primary objects. This approach does however
also have an inherent problem known as the hierarchy problem. The hierarchy problem is nicely illustrated
using an concrete example in which we consider the following Hamiltonian

H = hwlcicl + MQC;CQ + hwa'a + hg(cgcla + a‘LcJ{CQ),

that represents fermions in two states 1 and 2, interacting with a bosonic mode through the interaction
described by the last two terms'. In order to get information on the fermions of the system, we would like
to know the time evolution of the fermion operators, e.g. cg. To obtain the time evolution one needs to
solve the Heisenberg equation of motion, see egs. (2.8) and (2.9), that reads

ihduch(t) = [e}(t), H (1)),

The evaluation of the commutator between cg and H is easily done using the (anti)commutator relations,
see eq. (A.33), for the operators and we get the following more explicit equation

ihdych(t) = —hwacl(t) — hgal(t)el (¢).

The first term on the right hand side (RHS) is identified with the free evolution of cg (t) in the absence of
interactions, while the second term is due to the interaction with the bosonic mode. As this equation is not
closed in c;(t) we have to set up an equation describing the evolution of the operator product a' (t)ci (1),
doing so one discovers that this equation couples to a new product of three operators. The coupling to
higher order products never ends, meaning that a closed set equations is never obtained and therefore the
problem is in principle unsolvable. This infinite number of equations is known as the hierarchy problem

of many-body theory.

There are different ways one can tackle the hierarchy problem. The two dominating methods both focus
on determining the time evolution of expectation values of operators, as here one may focus on obtaining
e.g. single-particle information. This should be contrasted to the wavefunction approach, were one obtains

I This Hamiltonian is equal to the Jaynes-Cummings model studied in appendix A.2, in the rotating wave approximation,
but the point we are trying to make is generic and hence this is not emphasized.
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all information available on the system, much of which is often redundant. An example of such a time

dependent expectation value is the single-particle density matrix, e.g. p11(t) = (cJ{ (t)er (b)) or its two-

time generalization p5 (t,¢) = (¢} (t)e1(t')). The method relying on one-time density matrices is known
as the cluster expansion scheme (for a review see [25]) where, rather intuitively, higher order products
are factored into lower ordered ones, which in the end renders the system of equations finite and hence
in principle solvable. The method relying on two-time density matrices, or more generally two-time
correlation functions, is known as the Green’s function approach. In this approach certain contributions
in all higher order products are kept, and hence these contributions are taken into account to infinite
order. In this thesis we will use the a non-equilibrium version of the Green’s function formalism, as it has
proven efficient in studying semiconductor many-body system out of equilibrium [26]. For discussions on
the differences and similarities of the two methods see [27] and [26, pp. 243-250]

To further motivate the use of Green’s functions we now show how these relate to experimentally accessible
quantities. We start by considering a general one-body operator B, which describes some observable of a
physical system. In creation and annihilation operators B can be written

B =Y BagO}0p,
ap

where O can be either a fermion or boson operator and B,g = (a|B|f) is the single-particle matrix
element. What is measured in experiments is the expectation value of B, defined by tracing over the
density operator of the system

(B(t)) = Te[Bp(t)] = TH{Bul(t, to)p(to)u' (¢, to)] = Tr[ul (¢, to) Bult, to)p(to)] = Te[B(1)p(to)].  (2:2)

In terms of the expansion of B above we may write

(B(t)) =Y _ BapTr [OL(1)Os(t)p(to)] = Y Bag (OL(1)0s(1)) (2:3)

af af

where (- - -) denotes averaging with respect to the initial state of the system described by p(to). The entire
time-dependent bracket (O} (¢+)Og(t)) is proportional to what is known as the equal-time lesser Green’s
function, see eq. (2.24b), and plays the role of the single-particle density matrix. Thus with knowledge
of the lesser Green’s function, the expectation value of any one-body operator can be determined. This
makes this object very desirable to obtain, therefore much effort is put into solving the equations for the
lesser Green’s function and much of this thesis will deal with this issue also. Information on the spectral
properties of a system, e.g. density of states, is often wanted and also these are accessible through the
Green’s functions. One can relate the mean thermal occupation of a state o to the Fourier transform of
the so-called spectral function A, (w) as [28, p. 131]

0100 = [~ B ay ) ), (2.4

— 00

where f(hw) is equal to the Fermi-Dirac (Bose-Einstein) distribution function for fermions (bosons) and
Ay (hw) = —2Im|[GY, (hw)], see eq. (2.24c). This shows that the spectral function is similar to the usual
density of states.

There exists two approaches for generating the equations for the Green’s functions. The first is the
diagrammatic approach pioneered by Richard Feynman, where one represents the equations in terms of
rather intuitive pictograms, that can make it easier to gain an overview of the complicated equations. The
second is a more mathematical approach developed by Julian Schwinger, where a functional derivative
technique is used to generate the governing equations. The two formulations are identical as showed
by Freeman Dyson, but are in practice quite different and we will throughout this thesis employ the
diagrammatic approach as the author finds this more intuitive.

This chapter is meant as a brief introduction to the theory of non-equilibrium Green’s functions and
is a compilation of a number of other texts [24, 26, 28-33], where ref. [33] should be emphasized as
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an especially thorough and lucid introduction. Attention should also pointed to the recent release of a
textbook by Jergen Rammer on the subject [34], which seems to fill a gap in the literature for a modern
formal introduction to non-equilibrium Green’s functions.

2.2. Basics of contour ordered Green’s functions

In this section we will introduce the contour ordered Green’s function and develop an infinite order
perturbation theory for this object. We start by considering the calculation of ensemble averages of
physical observables in non-equilibrium situations, this is done to motivate the introduction of the concept
of contour time and contour time ordering. Next we define the single-particle contour ordered Green’s
function for which we develop an infinite order perturbation theory using the diagrammatic technique.
The culmination is the arrival at the Dyson equation for the contour ordered Green’s function and the
concept of self-energy.

2.2.1. Ensemble averages in non-equilibrium

To be able to discuss quantum mechanical problems we first need to introduce a Hamiltonian for the
system we are considering. We divide the Hamiltonian into three parts that are fundamentally different
and hence write it as

H = Hy+ H; +U(t). (2.5)

The non-interacting part is given by Hp, this contains the quadratic (i.e. terms with two operators)
parts of all the fermionic and bosonic species of the system, and constitutes the basic system upon which
perturbation theory is performed. The interaction part is given by H; and consists of all many-body
interactions between the fermionic and bosonic species. Each term in H; is characterized by having more
than two operators, and hence gives rise to the hierarchy problem mentioned in the introduction to this
chapter. The last part U(t) is the externally applied and explicitly time-dependent disturbance to the
system, which drives it into the non-equilibrium state. We assume U(¢) to be quadratic, which is normally
the case, as this yields a simpler formulation of the theory.

We now proceed by considering the calculation of the expectation of a physical observable described by
the operator O in a system governed by the Hamiltonian eq. (2.5)

(O@)) = Tr [p(to)O(1)] (2.6)

where p(to) is the initial density matrix, before the time-dependent external potential begins to act. The
most natural initial state to consider in a solid-state system is that of thermal equilibrium. The thermal
density matrix is given by [28, p. 2§]

e~ Bl(Ho+Hi)—puN] e—B(Ho+Hi)

p(tO) = Tr [e*ﬁ[(HoJrHi)*MN]] = Tr [efﬁ(HoJrHi)} ) (27)

where we have chosen our energy scale so that the chemical potential is zero, u = 0, to avoid having to deal
explicitly with the particle number operator, N, and 3 = (kgT)~! is the inverse thermal energy. For the
moment we will postpone the problems associated with thermal density matrix to the end of this section
and concentrate on the time development of the expectation value eq. (2.6).

In eq. (2.6) O(t) is the Schrodinger operator O in the Heisenberg picture, also it should be emphasized that
O(t) can describe both fermionic or bosonic species. The Heisenberg picture is defined by

O(t) = uTH(t7t0)OuH(tat0)a (28)
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where u (¢, t9) is the time evolution operator which is governed by the Schrédinger equation
iﬁatuH(t,to) = H’U,H(t,to), (29)

with the initial condition uy (tg, to) = 1. This equation is in general very difficult to solve, if not impossible,
for most realistic systems. Furthermore as the overall goal is to formulate a perturbation theory, we switch
to the interaction picture which facilitates this. In the interaction picture an operators time-dependence
is governed by Hg and is therefore given by

O(t) = uly, (t,to)Our, (t, to), (2.10)

where ug, (¢, to) is the time evolution operator with respect to Hy and assumed known. However to capture
the full time evolution of the system we have to consider Heisenberg time evolution. By using the property
w, (t, to)uLO (t,to) = 1 of unitary operators we rewrite O(t) to a form more suitable for the formulation
of a perturbation theory

O(t) = uly(t,t0)Ou (t,to) = uly (¢, to)um, (£, to)uby, (£, t0)Oup, (¢, to)uly, (t, to)us (t, to)

= vl (t,10)O(t)vm, (. to), (2.11)

where we used eq. (2.10) and defined the very important time evolution operator

v, (t,to) = uly, (¢, to)um (t, to).

The next step is to obtain an equation of motion for vy, (¢,ty), which is done by simply differentiating its
definition

0w, (1 to) = ihdy (uly, (1 to)un (t,t0) ) = [ih0puly, (4t0) | i (b to) + uly, (& to) [ihDun (¢, to)]

The terms in the square brackets are equal to their respective Schrédinger equations, see eq. (2.9),
hence

0w, (t, to) = —Houly, (¢, to)us (t,to) +uly (¢, te) (Ho + H; + U () wr, (£, to)uby, (¢, to)ur (¢, to)

= () + O ) vry (tto) = V(Eory (¢, to),
where we used that uj% (t,to)Houm, (t, to) = Hp, the definition of vy, (t, o), and introduced V () = Hi(t) + U(t)
containing all interactions. To solve this equation we formally integrate once and obtain the follow-
ing

t
VH, (t, to) =1- ih_l/ dt1V(t1)’UH0 (tl, to),
to

where we have used the initial condition vy, (tg,t9) = 1. This can now be iterated to yield vg, (¢,10)
expressed as an infinite sum, namely

o0 t t1 th—1 R R R
v (,10) :Z(—m—l)"/ it dtg---/ AtV (1) () -V (b),
n=0 to to to

where the zeroth term is to be taken as 1. If we introduce the time ordering operator? Ty we can write the
above in a form which allows an easier formulation of the perturbation theory

v (¢, to) :i%/ttdtl /ttdtg"'/tt dtnTt{V(tl)V(tQ)---V(tn)}. (2.12)

n=0

2For a textbook introduction to the time ordering operator see the first chapters in any many-body text, e.g. [24, 28].
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As this expansion looks like that of an exponential function it is common to define the following short
hand notation

VH, (t, tO) =T {efirfl fttg dt'V(t’)} 7

but one should be cautious by treating it as an exponential function in mathematical manipulations.
The operator T; orders operators so that "late times go left", e.g. for a two-operator product we
get

TAV()V ()} = 0t — )V (1) V (£2) + 0(t2 — 1)V (£2)V (1),

which holds for the type of interactions normally considered in solid state physics®>. When considering time
ordered Green’s functions in the sections ahead, we will also need to know the action of the time ordering
operator on the more fundamental bosonic and fermionic operators, and not just the combinations these
occur in in the various interaction Hamiltonians. Here it also holds that operators with "late times go
left", so that for a three operator product we for example get [35]

Ty {A1(t1) Ag(ta) As(ts)} = (—1)7 A, (i, ) Ay (tiy) Aiy (ti,), tiy > tiy > iy, (2.13)

where P is the number of interchangings of fermionic operators performed on the original product, while
there is no sign changes for bosonic operators. Note that this ordering holds for operators governed in
time by any Hamiltonian, both Hy and H. This is so as eq. (2.13) is basically a definition and not
derived from the kind of arguments leading to the introduction of T} in eq. (2.12), but of course they are
consistent.

We are now ready to introduce the concept of contour time which is motivated by the interaction
picture expansion of the operator O(t), eq. (2.11), and the expression for the time evolution opera-
tor v, (t,to), eq. (2.12), we have derived. The expression for vy, (¢,t9) contains an integration from
to to t, while ULO (t,to) contains one from t to ¢, as seen through the hermitian conjugation proce-

dure
/tdtl/t dt - - /tdt Tt tl)V(tQ)---V(tn)})T
/ dtl/ dts - / dtnTat{V(tl)V(t2)~~V(tn)}, (2.14)

where To: {---} = (T3 {-- -})T is called the anti-time ordering operator, as it basically flips the product or-
dered by T;. Having made these observations it becomes apparent that we can write

O(t) = Te, {e=™ e TV Oy, {e e VDL,

tto

i

where C and Cs are the contours depicted in figure 2.1, and their corresponding time ordering operators
Te, =Ty and Te, = Ty, and finally 7 is a complex time variable.

Furthermore it is possible [35] to collect the two time evolution operators into one, which is ordered along
the entire Keldysh contour C' = C7 U Cs, so that we obtain

i /dﬁ/dTg /dTnTC V)V (m) - V(m)00

Te {e_m e dT’WT’)O(t)} =Te {SCO(t)} : (2.15)

3For interactions which does not contain an even number of fermionic creation and annihilation operators, and hence does
not conserve fermionic particle number, a net sign can occur through interchanging of fermionic operators, see eq. (2.13).
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A imaginary time

to Cy t

. N,
J

real time

Cs

Figure 2.1.: Schematic illustration of the Keldysh contour consisting of the branches C1 and Cs. The contour runs
on the real azis, but have been shifted slightly for visual clarity.

where we have defined S¢ = e~ Jodm'V(™) | The contour time ordering operator T¢ orders along the

Keldysh contour C' [35]
Tc {Al (Tl)AQ(TQ)A3 (7—3)} = (71)PA1'1 (Til)Ai2 (Tiz)Aiz (Tiz)v Tiy >C Tiz >C Tig, (216)

where >¢c means "greater than" in the contour sense. This for example means that times on the lower
contour, Cy, will always be greater than those on the upper contour, C;. P is again the number of
interchanges of fermionic operators. As for the normal time ordering operator Tj, eq. (2.13), the T¢
ordering also holds for operators governed by any Hamiltonian. Apart from being a more compact notation
eq. (2.15) has the great advantage that all the interactions in V (¢) are collected in one place, which simplifies
the perturbation theory we are aiming at performing.

We have however not completed the task of isolating all the difficult interactions as we still need to
address the initial density matrix, eq. (2.7), which performs the thermodynamic averaging. Formally this
problem is handled in the same spirit as above, we write a difficult operator as something we know times
something we handle perturbatively. The usual way to proceed is to take advantage of the fact that both
thermal averaging and time development involves exponential functions, and hence it becomes possible to
extend the Keldysh contour into true imaginary time and through this perform the thermal averaging. In
equilibrium theory this is known as the Matsubara technique, see e.g. [28]. We will however not dwell at
the details* as we take the usual approach of letting ty — —oo, corresponding to adiabatically coupling
the interactions contained in H; to the non-interacting Hy equilibrium system, so that the contribution
from the imaginary time branch becomes neglectable. What we end up with is the following expression for
the ensemble average of the operator O(t) taking in an arbitrary non-equilibrium state, which has evolved
from a non-interacting equilibrium state in the distant past,

(Te{ScOt)})q
(O(t)) = Tr[p(to — —00)O(t)] = : (2.17)
(Te{Scth
where the brackets with subscript "0" denote thermal average with respect to Hy
1
N = —BHo , .
()= T [e—ﬁHo]Tr e ] (2.18)

Finally we extend the upper limit on the Keldysh contour from ¢ to oo by inserting v, (0o, t)ULO (00, t) =1
next to S¢ in eq. (2.17), see figure 2.2.

2.2.2. The contour ordered Green's function and Dyson’s
equation

In the previous section we considered the calculation of the expectation value of a physical observable
in a non-equilibrium state, which is often what one is interested in. It has however turned out to be

4For a detailed derivation see [33].
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A imaginary time

Cy

—0oQ o0

»
|

—00 00 real time
Cs

Figure 2.2.: Schematic illustration of the Keldysh contour with the lower and upper limits extended to —oo and oo
respectively.

very difficult to formulate a closed infinite order perturbation theory for observables, due to the fact
that the spatial correlation functions comprising the observables, couple to correlation functions in time
also. Sometimes one might be interested in correlation functions in time (even though they are not direct
physical observables) themselves, especially for the bosonic photons, as this is what is often measured in
experiments. On this basis we define the single-particle contour ordered Green’s function by the follow-
ing

Gap(r,7') = =il (Tc{0a(T)OL(T)}) | (2.19)

where O, (7) and OE(T’ ) are either fermionic or bosonic operators in the Heisenberg picture. The reason for
introducing this rather strange theoretical object is that it possesses a well defined perturbation expansion,
as is hinted by considering the expansion of the time evolution in eq. (2.15). The contour ordered Green’s
function is defined in terms of contour times that live on the Keldysh contour and therefore its relevance
for obtaining observable quantities, which are in real times, might not be clear at the moment. We will
consider this issue of going from contour to real times in section 2.3, but for the moment we will keep on
working on the contour ordered Green’s function.

To make further progress toward a perturbation theory we adopt the result of eq. (2.17) and write the
RHS of the contour ordered Green’s function in the interaction picture

(Te{8c0a(r)OL()})
Gop(t,7) = —ih ! 9. 2.20
T Te (Sc), 220
As seen from eq. (2.15) the time evolution operator S¢ in the above equation is an infinite sum of products
of operators evolving according the Hamiltonian Hy, this generally results in the generation of higher order
contour ordered Green’s functions of the following form

GO i (T s Tl ) = (—ih ™) (To{ O, (1) -+ Oa, (1) O, (74) -+ OF (71)}),

where n indicates a n’th-particle contour ordered Green’s function. These arbitrarily large objects can be
calculated, as the time-dependence is known, using the (anti)commutation relations for the (fermionic)
bosonic operators, but would be very tedious work. A much more elegant and useful approach is provided
by Wick’s theorem®, which states that a n’th-particle contour ordered Green’s function can be decomposed
into products of single-particle contour ordered Green’s functions. It is this decomposition which allows
for the formulation of infinite order perturbation theory. The decomposition can be written compactly as
follows

Gglﬁl (T17 T{) e Gglﬁn (TI; 7.7{1)
Ggl(?')a”vﬁn“'ﬁl(’rl?“' aTn;Trlm"' 77'{) = ) (221)
GO g () oo GO (rmh)|

5 A proof of Wick’s theorem in contour times can be found in [34].
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where + denotes a positive determinant which must be used for bosons and — denotes a regular determinant
with minus signs which must be used for fermions. For Wick’s theorem to hold the time-dependence and
thermal averaging must be governed by Hy, a quadratic Hamiltonian, as in our case.

Applying Wick’s theorem to the denominator in eq. (2.20) results in infinitely many disconnected dia-
grams®, i.e. diagrams that only involve internal integration variables and not the external (a,7) and
(8,7") variables. Applying Wick’s theorem to the numerator eq. (2.20) results in infinitely many con-
nected diagrams, i.e. diagrams that are connect to the external («,7) and (8,7') points, times (as a
factor) all the disconnected diagrams that appeared in the denominator. This means that all disconnected
diagrams cancel resulting in a huge simplification and we can write the following perturbative expression

for the contour ordered Green’s function

@+
—~
3

~
~—
—
~

o — —1\n R R R . R
Gop(r,7') = —ih~ ! ZO % /Cdﬁ /c dry - - - /C dry, (Tc{V (m)V (12) -+ V(10)O0a(1)O

where the subscript "con" indicates that we should only keep connected diagrams. Writing out higher
and higher orders of the above expression it becomes apparent that the structure somehow repeats itself.
One sees that it is possible to perform a resummation to obtain an integral equation for the contour
ordered Green’s function, also known as a Dyson equation. This resummation is most easily illustrated
diagrammatically as shown in figure 2.3. The second term on the RHS describes the interaction with the

(avT) (ﬁle) (a7 T) (/87 Tl) (avT) ()‘7 71) (lu7 Tl) (/87 Tl) (avT) (’\lvTQ) (“/771) (/87 Tl)

A

< = < + < /U\ < + /;\ <
N N

Figure 2.3.: Diagrammatic representation of the Dyson equation for the full contour ordered Green’s function
eq. (2.23). The double (single) line represents the full (free) contour ordered Green’s function, while the U symbol
represents the external potential and the ¥ symbol represents the self-energy. For diagrammatical representations
of U and 3 see figure 2.4.

external potential and as this is a one-body interaction it only results in a simple instantaneous scattering
from one free Green’s function to another with a certain amplitude. This process is illustrated with
the dashed line in figure 2.4(b). The third term on the RHS is the so-called (irreducible) self-energy
which describes the true many-body interactions of the system and has an infinite number of higher order
contributions. A few of the lowest order ones are illustrated in figure 2.4(a). The diagrams in figure 2.4(a)
are meant only to serve as an illustration, where for example the straight lines could represent electrons
and the wiggly lines phonons. In a system with several many-body interactions each involved specie has
its own self-energy dependent on the specific interaction, however the diagrams are topological identical
for so it suffices to show one example. If one truncates the self-energy after, say, the two first terms and
solves the resulting Dyson equation, these two first order processes have been taken into account to infinite
order, which justifies calling this theory infinite order perturbation theory.

In mathematical form the Dyson equation is written as an integral equation in contour time and space
G(r,7") =G, 7)) + / drn G° (7, 1)U (1) G (11, 7") + / drodm GO (1, 70) 2 (19, 71)G(11,7'), (2.23)
c c

where we have transitioned to a matrix notation to reduce the number of sums, i.e. (G(7,7’))ag = Gag(7, 7).
This is the main equation for the rest of this thesis and will be applied to both fermionic and bosonic
particles later on.

SFeynman diagrams, or just diagrams, are drawings of the various terms in the expansion of the Green’s function that can
rigorously be converted to mathematics and vice versa. We will use the term diagram of both the drawings and the
mathematical equivalent as they are basically the same. For an introduction to Feynman diagrams see any many-body
text book.
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(b) *
|
¢

N e o S

Figure 2.4.: Diagrammatic representation of (a) a few of the lowest order contributions to the self-energy where,
as in figure 2.3, the single lines represent free contour ordered Green’s functions and the wiggly lines represent
interaction lines and (b) the scattering verter of the external potential. This self-energy is for fermions, the self-
energy for bosons looks slightly different.

While the contour ordered Green’s function possess a nice perturbation expansion it has no direct rela-
tion to physical observables and further is expressed in contour time and not real time. The process of
translating from contour to real time, known as analytic continuation, and making the connection to more
physically relevant correlation functions is carried out in the next section.

2.3. Real time Green's functions and Langreth
rules

In the previous sections we introduced the concept of contour time, enabling an relatively easy and compact
formulation of the perturbation theory for the contour ordered Green’s function. However experiments
are performed in real time, so we have to link the contour ordered Green’s function to real time Green’s
functions which have to be the relevant objects for describing physical measurements. It turns out to be
convenient to introduce the following four real time Green’s functions

GZy(t,t) = —ih™ (04 (1)ON(t)) (2.24a)
Gt t') = +ih™ (0L ()0a (1)), (2.24D)
ha(t ') = =ik 0(t = 1) ([Oa(t), OF (#)]£) = 0(t — ') (Gog (1) — Gg(t 1)), (2.24c)
Gt t)) = ih 10 — ) ([Oa(t), O ()]2) = =0t — t)(GZ4(t,1) — Gay(t,t), (2.24d)

which are called the greater (>), lesser (<), retarded (r), and advanced (a) Green’s function respectively.
In the lesser Green’s function + is for fermions and — is for bosons. For the retarded and advanced Green’s
functions the + subscript denotes a anti-commutator which is to be used for fermions and the — denotes
a commutator to used for bosons. These Green’s functions are directly related to physically measurable
quantities. The lesser Green’s function can be used to calculate the expectation value of any physical
observable in its equal-time limit. The retarded/advanced Green’s function contains information on the
spectral properties of the system, like the density of states, and can further be used to calculate response
functions.

Being defined on the Keldysh contour the contour ordered Green’s function, eq. (2.19), contains four
real time Green’s functions as components, depending on where on the Keldysh contour its time ar-
guments are located. With reference to eqs. (2.16) and (2.19), and figure 2.2 we deduce the follow-
ing

wa(t,t’), 7,7 € C
G (tt/) TeC T/GCQ
N ag\bt)s )
Gaﬁ(T;T ) Giﬁ(t,t/), re CQ, e o (2.25)
Ggf[j(tat/)a T, o € CQ;
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where the time ordered Green’s function, G 4(t,t'), is given by

Gly(t,t)) =—in! <Tt{0a(t)og ()} =00t =G4t t") + 0t —1)Gs(t, 1) (2.26a)
=Gt )+ GLg(t,t) (2.26b)
=Gt )+ Goplt,t) (2.26¢)

and the anti-time ordered Green’s function, Ggfﬁ (t,t"), is given by

Goly(t,t) = —in ™! (Tat{Oa(t)Og(t’)p =0(t" —t)G5(t,t") +0(t —t)G54(t,t) (2.27a)
= G5yt t) — Goy(t,t) (2.27b)
=Gyt t') — GLg(t,t). (2.27¢)

Even though the time and anti-time ordered Green’s functions naturally arise through the properties of the
Tc operator, these are not practical for calculating physical quantities. For this reason we will formulate
the rest of the theory in terms of the retarded and advanced Green’s functions (using eqs. (2.26b), (2.26c¢),
(2.27b), and (2.27c)) and the greater and lesser Green’s functions. It apparent from the above definitions
of the time and anti-time ordered Green’s functions that the following relationship holds between the
various Green’s functions

gﬁ(ta t/) - gﬁ(ta t/) - G;ﬁ(ta t/) - G;ﬁ(tv t/)a (228)

showing that through their definitions there are only three independent Green’s functions. One can
also show [29, p. 354] that a similar relationship holds between the various components of the self-
energy

ap(t,t)) = 2ot 1) = 225(t,t") — B354, 1), (2.29)
where

ap(t,t)) =0t =) (325(t,t") — B355(t,1)), (2.30a)

ep(t,t’) = =0(t" —t)(X75(t, ') — X54(t,1)). (2.30b)

In the equal-time limit of eq. (2.28), one can obtain a very simple relation between the greater and lesser
Green’s functions, namely

G;ﬁ(t’ t) = G;ﬁ(tv t) — ihilaaﬁa (2.31)

where eqs. (2.24c) and (2.24d) and the fact that, by definition, #(0) = 1 have been used. This relation
clearly shows the roles of the equal-time lesser and greater Green’s functions as occupation factors for
electrons and holes, respectively. The relation eq. (2.31) could also have been derived directly from the
fundamental (anti)commutator relations in their equal-time limit. Furthermore it is possible to use the

relation (1| A|p)" = (¢|At[)) to show [32]
(Gt 1) = =GRt 1) (2.32)

This can be used to prove the following relation between the retarded and advanced Green’s function
[32]

[ Zﬁ(tvt/)]*: %a(t/at)v (2.33)

bringing the final number of independent Green’s functions down to two. One might be inclined to think
that as the self-energies has a symmetry relation, eq. (2.29), similar to that of the Green’s functions,
eq. (2.28), that the relations eqs. (2.32) and (2.33) also holds for the various components of the self-

energy, but this is unfortunately not the case”. The use of both of these symmetry relations for the

Tt is however claimed in the textbook by Haug and Jauho [36, p. 251] that this is the case, but no proof or reference is
made to support this claim. It thus appears to be valid for some self-energies, but whether it holds for all in general is
highly doubtful.
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Green’s functions will yield significant simplifications in the numerical calculations we will be performing
in later chapters. This is so as one can calculate either half the Green’s functions in the entire (¢,¢)-plane
or all the Green’s functions in half the (¢,t')-plane. Usually the later is the most economic choice, due to
the fact that the number of time steps in the numerical simulation usually is vastly larger than the number
of Green’s functions.

We will now move on to show the so-called Langreth theorem. This theorem relates a "contour convolution"
of the form

C(T,T')z/cdﬁA(T,Tl)B(Tl,T'), (2.34)

to its real time lesser component. These contour integrations of contour time quantities appear, amongst
other places, in the Dyson equation eq. (2.23). Maintaining the order the A and B quantities makes the
rules derived below applicable to matrix products as well, so this is done. To find the lesser component of
eq. (2.34) we know from eq. (2.25) that 7 € Cy and 7" € Oy, so that we get

Co(t,t) = / dr A(t, 1) B(ri, t)
C

_ / dr AL (t, 1) B= (ry, ') + / dr A< (t,7) B (1, 1')
Cl 02

_ / Tty [AN(t 0B (10, t) — A (t,0) B (1, ¢)]

— 00

- /OO dty [A"(t,t1)B=(t1,t") + A<(t,t1)B*(t1,1)] (2.35)

— 00

where we have used egs. (2.26) and (2.27) and obtained the minus sign in third line by flipping the
integral limits. The same holds for the greater part, just replace < with >. Using this result it possible
to find the retarded component of eq. (2.34), where we start by using the definitions eqs. (2.24c) and
(2.24d)

C"(t,t") =0(t —tH[C™ (t, ') — C<(t,1)]

:H(t—t’)/oo dty [A"(t,t1)B” (t1,t") + A7 (t,t1) B*(t1,t') — A" (t,t1)B=(t1,t') — A<(t, t1) B (t1,t')]

—00

:H(t—t’)/oo diy [A"(t,t1) {B” (t1, ") — BS(t1, ')} + {A7(t, t1) — AS(t,t1) } B*(t1,1")]
= /oo dt 0t — ') {0(t —t1) — 0t — t1)} {A” (t,t1) — AS(t,t1)} { B~ (t1, ') — B<(t1,t') } .

Making a sketch of the product of step functions one can be convinced that the following relation
holds

Ot —t){0(t —t1) — 0t —t1)} = 0(t — 11)0(t1 — 1),

from which we arrive at the final result

o] t
C’"(t,t’):/ dt A" (t,t1)B" (t1,t') = | dt1 A" (t,t1)B" (t1,t). (2.36)

—00 t’

A similar calculation can be performed for the advanced part and the result is obtained by replacing r with
a and interchanging the integration limits ¢ and ¢’ after the last equal sign. A special kind of "contour con-
volution" is encountered for some instantaneous self-energies and is of the form

D(T):/014(7",7""’)3(7,7')7 (2.37)
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where 77 = 7 + 07 so that 7 >¢ 7. This shift has the consequence that A will always become A< in
real time, for further elaboration see appendix A.5. As this is a one-time object it has no different real
time components in the same sense as two-time objects has, but in order to perform calculations we need
to express the contour time functions under the contour integral in terms of real time functions. We need
to consider the cases of 7 being located in both the upper and lower Keldysh branch and we start with
T E 01

D(t) = / dt’ A<(t',t') [B(t,t') — B=<(t,t)]

— 00

e3¢} t
= / dt' A<(t',¢)B"(t,t') = / dt’ A<(t',t")B" (t,t'),

— 0 —o0
where in the first line we used eq. (2.25) to split B into its contributions on both branches and in the last
line we used eq. (2.26b). This can be repeated for 7 on the lower branch, 7 € Cs, but the result is the same
as could have been expected as we deal with a one-time quantity. If the contour times for B in eq. (2.37)
happen to be interchanged, the same steps leads to B%(t', t) instead of B"(t,t').

Often one encounters, e.g. in the determination of self-energies, products of contour quantities without a
contour time integration of the forms

Ce(r,7") = A(r,7")B(7, "),

C:(Tv T/) = A(Ta T/)B(Tlv T)a
called a parallel and an anti-parallel product respectively, due to the arrangement of the time arguments.
An example of a parallel product is the second self-energy diagram in figure 2.4(a), for the electron-
phonon interaction, while an example of an anti-parallel product occurs in the same figure in the "pair-

bubble" in the third term. For the greater and lesser parts of these two quantities we immediately
obtain

C
C

(t,t") = AZ(t,t")B(t,t'),
(tat/) = Az(tat/)Bg(t/at)a

A 1AV

using eq. (2.25). Again this result is used to find the corresponding retarded components. For Ce (7, 7")
we get

CL(t,t")=0(t—t")[C~(t,t') — C=(t,1")]

Ot —t")[A” (t,t)B” (t,t") — AS(t,t')B=(t,t)]

0t — t[{AS(t,t') + A"(t,t') — A*(t,t')} {B=(t,t') + B"(t, ') — B*(t,t)}
— AS(t,t)B=(t,t)]

= AS(t,t)B"(t,t") + A" (t,t)B" (t,t') + A" (t,t")B<(t,t),

where the relation eq. (2.28) between the four Green’s functions was used in going from the second to third
line, while in the last line we have taken advantage of the fact that A" (¢,t')B*(¢,t') x O(t —t")0(t' —t) =0
and removed the redundant step function in front. For the advanced part, CZ (¢,t'), all 7’s should be
interchanged with a’s and the A®B® term gets a minus sign. The same steps can be repeated for the
anti-parallel product yielding

CL O (t,t') = A<(t,t') B (t',t) + A" @ (£, 4 ) B<(1',1).

All these various rules for obtaining real time parts of contour quantities we collectively call Langreth
rules and they have been summarized in table 2.1. There are of course many more rules that can be
derived, e.g. for products of more than two quantities, but we will only need the ones mentioned in this
section. Some of these "higher order" rules can be obtained by recursive use of the rules presented in table
2.1. For more exhaustive collections we refer to the references mentioned in the beginning of the chapter.
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Real time

Contour time

C(r,7') = [odnA(r,m)B(r1,7) | C2(t,¢') = [7_dty [A7(t,t1) B2 (t1, ') + AZ(t, t1) B (t1,1)]
Cr@(t,t') = [7_dty AT (L, 1) B (11, 1)
D_(r) = [, A", 7"")B(r,7") D (t) = ['_dt'A<(t',t")B"(t,1')
D_(r) = [, A(r',7")B(r',T D_(t)= [ dt/ A<(t',#)B(t',t)
Ce(r,7") = A(r,7")B(7,7") Ci(t,t’) = A= (t,t’)Bz(t,t’)
Cr_(t,t') = A<(L,#) BT (t,t') + A" (t,¢')B" (t,t') + A" (t, ") B<(t, 1)
Co(t,t') = A<(t,¢')B(t,1') — A*(t, ') B(t,t') + A*(t,t')B<(t, 1)
C(r,7') = A(r, ) B(r', 7) CZ (1) = AZ(t,#)BS(t',t)
Cr (4, t) = A<(t,t)BO)(t/ t) + A™@ (¢, ") B< (', 1)

Table 2.1.: Summary of the Langreth rules derived in section 2.3.

2.4. Equations of motion

In the previous sections we have provided the theory which is needed to solve a non-equilibrium prob-
lem, that is the Dyson equation and the Langreth rules for analytical continuation. For some practical
calculations it however turns out to be more advantageous to solve a differential® equation instead of
an integral equation. It is thus the object of this section to derive the equations of motion, usually
called the kinetic equations, for the various relevant Green’s functions introduced in the previous sec-
tions.

In deriving the equations of motion we use the same approach as in the above sections, namely first derive
in contour time and then afterward take the real time components one may need. We start out by defining
two operators which are used to denote differentiation with respect to the two contour times 7 and 7/,
these are

(G(r))™! = ihd, I — Ho(r) = (G°(1))} = (ihd; — hwa)das, (2.38)
for the first time argument and

(GO(r")) ™! = —ihd, I — Ho(r') = (GO(r')7} = (—ihdy — hwg)dag, (2.39)

for the second time argument®, where I is the identity matrix. The arrows indicate on what side they
—

operate, e.g. (G°(7))~! operate on the left side. Defining contour time differentiation this way gives the

following nice property when operating on G° (7, 7')

(GO()1GO(r,7') = GO(r, ) (G°(1')) " = §(r — 7)1, (2.40)

where §(7 — 7') is the contour delta function. The real time properties of this function can be determined
by performing actual real time differentiations on the free Green’s functions of the system, which are
known, and we obtain

0(r—=7")

8We do not obtain a ordinary differential equation, but rather a integro-differential equation containing memory integrals.
One time integral in the Dyson equation is exchanged for a time derivative.

9Note that the notation Ho(7) is not meant to signify any time-dependence in Hp, but is merely meant as a notational
device to indicate that one should take the Hg energy corresponding to the first or second time argument. Also note that
egs. (2.38) and (2.39) assumes Ho to be written in diagonal form.

I\

=0, (B(r—7)) =68(t—1t), (2.41)

18



Non-equilibrium Green's Functions Equations of motion

for the greater/lesser and retarded parts, respectively. For notational and interpretive purposes we intro-
duce the singular self-energy in the following way

33(7) = U(7) + (single time parts of 3). (2.42)

It is called singular as it can formally be multiplied by a delta function, 3°(7;)d(71 — 72), and put under
the double integral along with the two-time self-energy and hence would appear as a singular contribution
to this. A well known single-time self-energy is the Hartree-Fock self-energy arising from electron-electron
interaction, which acts as a instantaneous renormalization to the single-particle energies and external
potential.

To get the equation of motion in the first time argument, 7, the Dyson equation in the form of eq. (2.23)
is used

G(r,7') = G(r,7) + / GO (r, 7 ) ()G, 7') + / drydr GO (v, m3) B (ra, 71)G (1, 7).
C C

which we now let (60(7))—1, eq. (2.38), operate on and on applying eq. (2.40) we obtain

(50(7))*16*(7, ) =0(r — I +X°(1)G(7,7) + /c dr (7, 71)G (1, 7). (2.43)

This is the differential form of the Dyson equation. To get the equation of motion in second time argument,
7/, we reiterate the Dyson equation to the following form, where G and G has switched places under the
integrals,

G(r,7) =G (r,7) + / drG(1,7)Z5(1)G (11, 7) + / drodr G(1,79) 2 (12, 71)G° (11, 7').
c c
Operating with (50(7’))_1, eq. (2.39), on this Dyson equation yields the equation of motion in 7/
G(, 7")(<(_}'0(7"))71 =6(r — I+ G(r,7")Z(7") —|—/ drG(1,7)% (11, 7). (2.44)

C

Having determined the equations of motion for the contour ordered Green’s function, the Langreth rules
presented in section 2.3 can be used to acquire real time equations, and with the appropriate initial con-
ditions the relevant Green’s functions can be calculated in the (¢,¢")-plane. However, in order to compare
with experimental results or apply certain approximation schemes (or both), it is often advantageous to
transform to another set of time variables, instead of the original ones. For this purpose it is customary
to form the sum and difference of the two governing equations, eqs. (2.43) and (2.44), resulting in the
following equations

ih(0r F 0,)G(7,7') — [Ho(1)G(r,7') & G(r,7') Ho(r')] = (1 £ 1)3(r 7)1

+3(1)G(r, 7)) £ G(r, 7" E(7") + /c dry [2(1,71)G (11, 7") £ G(1,71)E(11,7")] .

Using the Langreth rules, eqs. (2.35) and (2.41), we obtain two equations of motion for the greater/lesser
Green’s function

ih(0; F 0p)GR (1, 1) = [Ho(t) + S°(1)] G2 (1, 1) + G=(t,1') [Ho (') + Z°(1')]
+ /OO dt {ET(t,tl)Gz(tl,t’) + 22(4, 1) Gty 1) £ G (1, £) B2 (8, ) £ Gz(t,tl)E“(tl,t’)} :

— 00

(2.45)

and likewise, using eqs. (2.36) and (2.41), equations for the retarded Green’s function can be pro-
duced

ih(0y FOu)G (t,t') = (1 £ 1)0(t — )T + [Ho(t) + Z°(t)] G" (¢, t') £ G"(t,t') [Ho(t') + ("))

+/OO dty [E7(t,t1)G" (t1, 1) £ G (4, 11)Z" (81, )] . (2.46)

— 00
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The new set of time variables most practical for our purposes are given by the transformations

t=t, 7=t—t = 0 =0;+0,, Op=—0,, (2.47)
where the difference or delay time'® 7 measures the distance from the time diagonal, and for the case
7 = 0 the absolute time ¢ sets the position on the time diagonal. Due to the many-body interactions, the
Green’s functions are expected to decay when moving away from the time diagonal, making this specific
set of time variables natural to employ.

The equation of motion for the greater/lesser Green’s function with respect to t is found by taking the
difference part of eq. (2.45) and applying the transformation eq. (2.47)

ihd,GR(t,t — 1) = [Ho(t) + Z5(t)] G2 (t,t — 7) — G2 (t,t — 7) [Ho(t — 7) + 5(t — 7)]

+/ by [37(4,1) G2 (1,8 = 7) + B2 0)G (¢ = 7) = G (4, 1) D2 (0t = 7) — G2 (4, 1) B (0, — 7))

—00

where we have relabeled ¢ — t to lighten the notation. The new set of times (¢,7) defined in eq. (2.47)
appear in eq. (2.48) merely as placeholders for the old set (¢,¢') and no true mathematical transformation
has been applied. Whether the full transformation should be performed, also including the time integral,
depends on what further approximations that are to be made and the numerical solution scheme. For
more on transformation of the time integral see e.g. [29, p. 357]. For certain approximation schemes it
advantageous to replace all retarded and advanced quantities with their greater and lesser counterparts,
this is done using eqs. (2.24c), (2.24d), and (2.30), resulting in

ih0,GZ(t,t — 7) = [Ho(t) + 2°(1)] G2(t,t — 7) — G2(t,t — 7) [Ho(t — 7) + 5(t — 7))

+/t dt [{2>(t,t1)72<(t,t1)}G2(t1,t77)—{G>(t,t1)7G<(t,t1)}22(t1,t—7)}

— 00

/tT dh [B2(t0) {G7 (1,8 = 7) = G (b, t = 1)} = G2 1) {7 (bt = 1) = (0.t - 1)}

(2.49)

where the step function in the definition of the retarded and advanced functions, have been used on the
upper limit in the time integrals. With reference to the discussion below eq. (2.47) these equation take care
of the propagation along the time diagonal for the greater/lesser Green’s function. A particular important
special case of egs. (2.48) and (2.49) is the equal-time limit, 7 = 0, as the equal-time lesser Green’s function
is proportional to the single-particle density matrix, see section 2.1. Taking this limit in eq. (2.49) for the
lesser Green’s function we obtain the following very important equation

ihO,G=<(t,t) = [Ho(t) + ()] G=(t,t) — G=(t,t) [Ho(t) + Z°(t)]

+ /t dty [ (t,11)G=(t1, 1) = 5, 11)G” (t1, 1) — G™ (4, 41) 2" (1, t) + G=(t,£1) 27 (t1,1)]

(2.50)

where several terms under the time integral has canceled compared to eq. (2.49). Even though we have
put 7 = 0 we do not have a closed set of equations for the equal-time lesser'’ Green’s function. This
is due to the fact that the time integral still goes outside the time diagonal, and hence in general we
still need the lesser Green’s function in the full two-time plane. There exists however an approximation
scheme which to some degree can circumvent this problem, for which the specific form of eq. (2.50) (only

10This time variable should not be confused with the contour time, which uses the same symbol, and as the relative time
only is used in connection with real time Green’s functions the notation should be unambiguous.

"' The equal-time greater is related to the equal-time lesser through eq. (2.31), and therefore only the lesser needs to be
considered.

20

(2.48)



Non-equilibrium Green’s Functions Generalized Kadanoff-Baym Ansatz

greater and lesser quantities occurring) is particularly useful. The scheme is known as the Generalized
Kadanoff-Baym Ansatz (GKBA) and is treated in more detail in section 2.5. The equation of motion with
respect to 7 is found by simply taking the lesser component of eq. (2.44) and applying the transformation
eq. (2.47)

ih0,GR(t,t —7) = GZ(t,t — 7) [Ho(t — 7) + Z°(t — 7))

[ dn G )R- )+ GRE )R )]

— 00

and further replacing all retarded and advanced functions with greater and lesser ones we get
ih0,GZ(t,t — 1) = GZ(t,t — 7) [Ho(t — 7) + Z°(t — 7))

+/t dty {{G>(t,t1) —G<(tat1)}22(t1’t_7)]

—00

_ /H dt, [G%(t,tl) {(=>(t1,t—7) - 2<(t1,t—7)}} :

—00

As for the ¢ equation which version to use, depends on what approximations schemes that are to be
employed. This equation can be interpreted as propagating the greater/lesser Green’s function away from
the time diagonal. Applying essentially the same steps with eq. (2.46), the equations of motion for the
retarded Green’s function can be found. The t equation becomes

ihOGT (t,t — 1) = [Ho(t) + S50 G"(t,t — 7) — G"(t, ¢ — ) [Ho(t — 7) + S°(t — 7)]

+ /Oo At (3 (6 4)G (b, — 1) — G (8, 1) (st — 7)),

— 00

while the T equation becomes

ihO-GT(t,t — 1) = 8(r) + G"(t,t — 7) [Ho(t — 1) + =5(t — 7)] + /Oo At G (t,4)S" (t,t — 7).

(2.51)

It should be noted that for both the equations of motion for the retarded Green’s function, the infinite
integrals can be reduced to finite limits as ffooo dt — f:ﬁT dt. For reasons that will be elaborated in
section 5.4.2 only the equation of motion in t is needed to cover the entire two-time plane, assuming that
the solution is known in a sufficiently wide strip around the time diagonal up to some ¢. It is natural
to obtain the Green’s functions on this strip in equilibrium, where they only depend in the difference
time 7, see section 5.3, and hence only the equations of motion in 7 will be needed. Furthermore, due
to the symmetry relations eqs. (2.28) and (2.33) only two of the four Green’s functions are independent,
and one is free to choose these according to what is most appropriate in the present situation. Previous
studies have employed the lesser/retarded Green’s functions [37, 38] and greater/lesser Green’s functions
[39].

The equations derived in this section will be applied to more specific situations in chapter 5.

2.5. Generalized Kadanoff-Baym Ansatz

As mentioned in the previous section the equation of motion for the equal-time lesser Green’s function,
eq. (2.50), is not a closed equation as the scattering integral requires the values of the Green’s function
beyond the time diagonal. In many situations the full two-time lesser Green’s function is not needed, as
only the equal-time lesser Green’s function is required to determine expectation values, see eq. (2.3). It
would therefore be nice if some reasonable approximation could allow us to avoid dealing explicitly with
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the full two-time plane. Such an approximation does fortunately exists and is known as the Generalized
Kadanoff-Baym Ansatz (GKBA) [40].

The basis for obtaining the GKBA is an exact relation obeyed by the greater/lesser Green’s function,
which is [35]

G=(t,t') = ih [Gr(t,t’)Gz(t’,t’) - Gz(t,t)G“(t,t’)}
t t
+9(t—t’)/ dtl/ At G (¢, 1) {ZT(tl,tg)Gz(tg,t’)JrEz(tl,tg)G“(tg,t’)}
t’ —00
t’ t
+9(t’—t)/ dtl/ dts [Gz(t,tg)z“(tQ,tl)+GT(t,t2)22(t2,t1)] G(t1,1). (2.52)
t —00

What should be noted about this relation is that the first term on the RHS contains only equal-time
greater/lesser Green’s functions, multiplied by two-time retarded/advanced Green’s functions. The full
two-time greater/lesser Green’s functions only enter in the more complicated double time integrals on
the second and third lines. The GKBA consists of neglecting the second and third lines containing the
two-time greater/lesser Green’s functions, after which one obtains

WG (6 )G (), t>t

2.53
—ihGZ ()Gt t), t >t (2:53)

G2(t, 1) =ih |G (t,t)GZ(t 1) — G?(t,t)G“(t,t’)} = {

This now allows one to form a closed set of equations in the equal-time lesser Green’s function through the
use of the equal-time identity eq. (2.31), that can be written in the following matrix form

G~ (t,t) = G=(t,t) —ih ', (2.54)

All this assumes that the retarded and advanced Green’s functions are somehow known quantities, which
in general they are not. The range of validity of the GKBA is by no means fully understood in a rigorous
sense [26, p. 95], but it is possible to give a simple naive justification for its use which we will briefly do.
The exact relation eq. (2.52) can be used to generate an expansion to arbitrarily high order in the self-
energy, of the two-time greater/lesser Green’s function in terms of the equal-time greater/lesser Green’s
function. If we then assume that the self-energy contains some small parameter, it makes sense to truncate
this series at some point, where the GKBA is the lowest order approximation of this expansion. Thus we
can expect the GKBA to yield reasonable results in the limit of a weak coupling self-energy, which has
indeed been verified numerically for a few specific systems [37, 38].

Up to now we have assumed that the retarded and advanced Green’s functions appearing in the GKBA
were known, which of course is not true and they represent another issue when applying the GKBA. In
the GKBA these appear in their full two-time non-equilibrium form, and as such obey their own two-time
Dyson equations. However, if these Dyson equations were to solved there would be no idea in applying the
GKBA in the first place, as presumably no computationally advantage would be obtained. We therefore
have to find an appropriate approximation to the spectral Green’s functions, that still yields satisfactory
results. The simplest choice is to use the free Green’s functions of the system as these are always known
on the onset. The free Green’s functions do however not contain any form of decay and will therefore
often yield incorrect or even unphysical results. Another approach that has been applied successfully
in the literature [41, 42] is to employ the equilibrium spectral Green’s functions of the system. These
will contain the renormalized single-particle properties including both energy renormalizations and finite
lifetimes, appropriate for the given system. We have followed this path in all uses of the GKBA in this
thesis.

If for some reason, either exactly or approximately, we can argue that only the diagonal elements of the
spectral Green’s functions are significant, the sums implied in the matrix form of eq. (2.53) reduce to a
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single term and get the following simpler version of the GKBA

G, () GE5(H, 1), t> ¢
. >
—ihGZ4(t )G, T), t >t
(2.55)

> . p > > a
Gt t) = ih |G (t,1)GEa(t 1) — Ggﬁ(t,t)Gﬁﬁ(t,t')} = {

which will be employed throughout this thesis. For further discussion of the GKBA see e.g. [31, pp.
288-291] and [32, pp. 44-46].

2.6. Summary

In this chapter we have given a brief introduction the non-equilibrium Green’s function formalism, which
will be the main theoretical tool in the rest of the thesis. We started out by showing how setting up the
Heisenberg equation of motion for an electronic operator, led to an infinite hierarchy of coupled equations,
yielding a problem that even in principle is unsolvable. The occurrence of this infinite set of equations
is often referred to as the many-body hierarchy problem. In order to tackle the hierarchy problem, we
introduced the contour ordered Green’s function, for which we formulated an integral equation, known
as the Dyson equation, written in terms of the so-called self-energy. Obtaining the Dyson equation is
a huge achievement, as it allows one solve parts of the problem to infinite order. To make the theory
more practical we further introduced the real time Green’s functions, in terms of which the final governing
equations were formulated. In the last section we briefly discussed an important approximation scheme
known as the GKBA, which will be applied throughout the thesis.

23



3. Fundamental Hamiltonians

3.1. Introduction

In this chapter we will deal with the formulation of the general form of the Hamiltonian operator entering
the Schrodinger equation, eq. (2.1). The motivation is to gain an understanding of the origin, and a
general overview of the many different Hamiltonians that appear in many-body physics. This is important
in order to know the range of validity of the various Hamiltonians, but also to be sure that one deals with
a consistent set operators. Even though we will attempt to make the exposition as general as possible, we
should emphasize that the theory is developed for a solid-state system, more specifically a semiconductor
heterostructure, which will sometimes be (implicitly) assumed.

3.2. Hamiltonians

In this section we derive the Hamiltonian for the system described in chapter 1. We start by writing
down the general Hamiltonian for a system of charged particles interacting with a classical and quantized
electromagnetic field!. Using the Coulomb gauge, V - A(r,t) = 0 and in the Schrédinger picture the
Hamiltonian reads

1 2 qiq; 1 1 / 2 1 2
H{r}) =Y — (p, — ¢ A(r;,t —— 4+ [dr(c|E —|B .
(D) =2 o, (e~ s O+ D Gy + g f ar (B2 0F + 1B
(3.1)
The indexes ¢ and j run over all valence electrons and ions of the system, p, = —iAV,; is the momentum

operator, ¢; is the charge, and m; is the mass of the particles. For notational simplicity we assume that the
¢ and j indexes also contain a spin index. The first term in eq. (3.1) describes the kinetic energy of the par-
ticles and the interaction with the vector potential A(r,¢). We will be considering interactions with both
classical and quantized electromagnetic fields, the vector potential must be a sum of these and it is there-
fore written as A(r,t) = Aa(r,t) + Agm(r). In the Coulomb gauge the transverse electric and magnetic
fields are obtained from the vector potential through the following relations

B(r,t) =V x A(r,t), (3.2)
Ex(r,t) = —0.A(r,t), (3.3)

for these relations to hold for the quantized fields, they must be written in the Heisenberg picture
where they are time-dependent. The second term in eq. (3.1) describes the Coulomb interaction be-
tween the various charged particles, which is mediated by the longitudinal component of the electric field,
E1(r) = =V(r), where o(r) is the scalar potential. Note that the vacuum permittivity, o, has been
replaced by a background dielectric constant, e = e,&g, where ¢, is the relative dielectric constant. The
background dielectric constant contains non-resonant contributions to screening [31, p. 44] and it has to
replace g everywhere as it is originates from the Maxwell equations. The last term in eq. (3.1) describes
the energy of the quantized transverse electromagnetic fields, the energy of the classical field is neglected
[44].

The two first terms in eq. (3.1) are by far the most difficult and a few approximations and rearrangements
are needed in order to proceed. Due to the large mass of the ions, compared to the electrons, and the

1See for example sec. 2.2 in [31], sec. 1.5 in [24], or sec. 4.8 in [43].
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relatively weak electromagnetic fields we are considering, the response of the ions to the fields will be much
smaller than that of the electrons. This means that we can neglect the interaction between the ions and
the photons, hence the first term becomes

2mi

1 1
zi: Py (pi - qz'A(Tivt))Q ~ Z 2m (pz + €A Tza + Z —7 (electron = —€, (34)

electrons 1ons
K3

which is a sum of the electrons kinetic energy and interaction with the fields and the kinetic energy of
the ions. Another simplification becomes apparent if we expand the squared parentheses for the elec-
trons

S s it eAGra ) = Y o (B elp Al 0+ Al 0) - py] + A% 1)

electrons electrons
3 K2

~ Z [QP +6A(Tut)'Pia (3.5)

electrons
K3

where in the second line we have neglected the A? term as it is assumed small? [44, p. 150] and further we
have used the fact that® [p;, A(r;,t)] = 0 to obtain the well known A-p interaction.

The Coulomb interaction, second term in eq. (3.1), between the charged particles, produces three qualita-
tively different interactions even though fundamentally they are all of a Coulombic nature. The three differ-
ent combinations of the indexes 7 and j have been written out below for illustration

qiq; 1 1 e 1 1 %i4)
SR . 3.6
dre |r; — 74| 2247r€|ri7r-|+ 47r€|R R|+Z 47r€ [r; R| (36)
i<j J i#£] J
{i,j}={e,e} {i,j}={ion,ion} {i,5}={e,ion}

The first term is the usual electron-electron interaction, which will be kept in its present form. The second
term is the interaction between the positively charged ions. As mentioned above, the ions are much heavier
than the electrons and thus move much slower. This means that a full dynamical analysis is not necessary
and further approximations will be performed on this term, discussed further in section 3.2.1. The third
term involves the interaction between the electrons and ions. This term can be simplified considerably by
first writing the ionic position vector as

Rj = Rgo) + uj, (37)

where Rgo) is the equilibrium position of the ions, the static lattice, and w; is the displacement from
equilibrium. The approximation then consists of Taylor expanding the electron-ion interaction to first
order in w;, which results in

(—e)g 1 (—€)g; 1 1
-~ oy Ve, | — |, (3.8)
Z 4dme |7‘i — RJ| ; 4re |7'i _ R§0)| J |ri o R§0)|

)

notice that there is no factor 1/2 in front of the sum, as there is no double counting for the different
particles. The zeroth order part of this expansion is the well known interaction between electrons and
a static lattice, which for a single crystal resulting in Bloch states for the electrons. The first order
term is what becomes the electron-phonon interaction after the field quantization has been performed, see
section 3.2.2.

2Tn the context of single-photon sources the neglection the A2 term is well justified both for the quantized and classical
case. For the quantized case the magnitude of A is obviously small as the goal is to produce a single photon. For the
classical contribution, here the excitation pulse, we are in the extremely low excitation limit as ultimately we are only
interested in the excitation of a single electron.

3The commutator between p and A is [p, A] = —ihV - A, which is zero in the Coulomb gauge. See p. 311 in [45].
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This concludes the initial discussion of the Hamiltonian of the total system. In the following sections we
will consider non-interacting and interacting parts of the Hamiltonian separately and perform the field
quantization procedure, second quantization for the particles and actual field quantization for the ionic
displacement field. The radiation field is already quantized. The field quantization procedure is discussed
in detail in many textbooks, e.g. [24, 28, 31].

3.2.1. Non-interacting parts

In this section we will consider the non-interacting parts from the discussion of the Hamiltonian, eq. (3.1), in
the previous section. It is important to specify what precisely is meant by a non-interacting Hamiltonian, as
this forms the basis for the many-body perturbation theories we will apply, see chapter 2. A non-interacting
Hamiltonian has no terms with products of more than two operators (often referred to as quadratic
Hamiltonians and denoted Hj) and must be time-independent in the Schrodinger picture. Below we will
go through the quadratic contributions from the three fields we are considering, namely the electronic,
photonic, and phononic fields.

Electrons

The non-interacting contributions from the electrons are the kinetic energy, first term in eq. (3.5), and the
interaction with the static lattice, first term in eq. (3.8)

2 eV
Hul(rih) = 3 g+ gy = 3 o)

— 2m dme |p, - R

The transition to the second quantization representation of the electronic field is done using the standard
formulae

Ho.o = / drpt () Ho o (r)u(r),

where ¢(r) = > (r|v)c, is a field annihilation operator, written in a single-particle basis {|v)} which
consists of spatial part |a) and a spin part |o), |v) = |a) ® |o). The real space/spin representation of |v)
is given by (r|v) = ¢o(r)Xs, Where ¢q(r) is the wave function of the electron in the spatial state o and
Xo 1s a spin function. If we choose the eigenstates of Hy . as the single-particle basis {|v)}, we obtain a
simple diagonal form of the quadratic contribution from the electrons

Hye = Z w,cle, . (3.9)

If the sum over the static ions runs over a single crystal, then the states |v) would become Bloch states
producing the usual band structure energy diagrams. This is however not the case for the nanostructures
we are considering. We use band gap bending to create the confining potentials for the electrons and holes,
that make up the QD, and hence we do not have a single crystal and thus no pure Bloch states. Due to the
large difference in length scales of the QDs and the lattice unit cells, it is fortunately possible to formulate
an effective theory simplifying the calculation of the eigenstates of Hy . immensely. We will employ this ef-
fective mass approach in later chapters, when specific structures are considered.

Photons

The quadratic contributions from the photons originate solely from the last term in eq. (3.1), the total
energy of the transverse electromagnetic, or simply radiation, field

Hp o = %/dr <€|ET(7')|2 + i|B(r)|2) . (3.10)
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There exist several ways to quantize the radiation field, depending on what level of sophistication one
may wish, all resulting in the same result. We will not go further into the quantization procedure, as
this is standard textbook material, but simply proceed with the following?* form of the transverse electric
field

Er(r) = Z Emlal, 4 am)tm(r). (3.11)

In the above the mode functions satisfy the orthonormality relation [ drt,,(r) « wm/ (r) = mm and
Em = (%)1/2, where w,, is the frequency of mode m. This choice of normalization means that the
quantization volume, V', is contained in the mode functions and further these are real quantities found by
solving the classical wave equation for the transverse electric field. The magnetic field can be obtained by
combining eqgs. (3.2) and (3.3) to —9;B(r,t) = V x Ex(r,t). Inserting the quantized radiation field into
eq. (3.10) and performing the integral we get the following result

1
Horaa = Y hwm (aiﬂam + 5) : (3.12)
m

where the composite quantum number m contains the spatial, s, and polarization, A\, quantum num-
bers.

Phonons

The non-interacting contributions from the phonons comes from the kinetic energy of the ions, second
term in eq. (3.4), and the ion-ion Coulomb interaction, second term in eq. (3.6),

2
D; 1 q:q; 1
H ) — i A J_ - 1
o.on({R}) Zj 2m; 2 £ dnc [R; — R} (3.13)

This interaction is in principle the same as the electron-electron interaction and hence should be treated
as a pair interaction and not a quadratic term. The ions are however much heavier than the electrons and
hence react much slower to external perturbations and further they are positioned in a periodic lattice
only exhibiting small oscillations about their equilibrium positions. On this basis we will assume the usual
harmonic approximation for the ions, where the interaction term in eq. (3.13) is Taylor expanded to second
order in the ionic displacement vector, u;, see eq. (3.7). The coefficients in this second order expansion are
elements in the so-called dynamical matrix of the ion system®. The determination of the dynamical matrix
is in general a very complicated task. Values can be obtained for example by fitting models to experiments
or calculated using first principles methods like Density Functional Theory. The remaining Hamiltonian
in the harmonic approximation is then quantized according to the standard procedure®, resulting in the
following Hamiltonian for the phonons

1
Hopn =Y _ hwy, <bLbu + 5) : (3.14)

1%

The quantum number 4 is composed of the quasi-momentum?, q, of the phonon and branch index, A\, which
runs over the various optical and acoustic polarizations (TA, LA, TO, LO). It should be noted that formally
the ¢ = 0 should be left out of the sum, as this term corresponds to a uniform translation of the entire
crystal [24]. By writing the phonon Hamiltonian this way we assume bulk phonons, that is phonons which
live in a system where the periodicity is given by the static lattice. Even though present day semiconductor

4For a derivation of this specific form of the quantized transverse electric field see chap. 19 in [45].
5See e.g. sec. 3.4 in [28] or sec. 11.2.1 in [31].

6See e.g. sec. 1.1 in [24].

"Restricted to the first Brillouin zone.
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nanostructures are rarely pure bulk system, the system of Stranski-Krastanow grown QDs we are consid-
ering, can to a certain extent be considered as a bulk material from the phonons point of view. The WL is
only a few nanometers thick and the QDs are very small compared to the rest of the structure, composed
of the barrier material. We will therefore assume that the phonon modes existing in the barrier material
will pervade the low band gap material justifying the use of bulk phonons.

3.2.2. Interacting parts

In this section we will consider the interaction terms in the Hamiltonian eq. (3.1). Interacting terms
are Hamiltonians containing products of three or more operators, describing the interactions amongst
the various fields. Interacting contributions are fundamentally different from the non-interacting ones
discussed in the previous section. The reason for this is that the self-energy they give rise to contains
infinitely many diagrams and hence has to be truncated and can therefore not be treated exactly. Below
we will go trough the interactions between the various fields separately.

Electron-electron

The Coulomb interaction between the electrons is given by the first term in eq. (3.6)

62
He—e({'r'i}) = Z 2 ZHe e Tszj (315)
17'5

Ame |1y — 1] rj| vy

The second quantized form of the interaction is given by

Heo=1 / drdr' 6t ()t () Ho o (m, 7)o (r' Yo (r) (3.16)
=3 Z Vl/4l/3,l/11/2 Va 1_/361/201/17 (317)

where the interaction matrix element is given by

Viavsanve = (Va,V3|He _e|v1,1v2) = /drdr o ( )¢a3 (r/)Hefe(rar/)d)al(r)d’aQ (r/)504,01503,02a
(3.18)
the Kronecker deltas in the spin indexes appear as the Coulomb interaction is diagonal in spin. For

illustration, a Coulomb scattering event, a single term in eq. (3.17), between two electrons is presented in
figure 3.1.

Electron-photon

The interaction between the electrons and photons is given by the second term in eq. (3.5), the so-called
A - p interaction,

(&
ZEA(TM) Dy
1

We will start by applying the electric dipole approximation, which is commonly used in optics. The
approximation consists of evaluating the space dependent radiation field, A(r,t), at the position of the
electronic system it is interacting with [44]. This can be justified by considering the spatial part of the
exponential function arising from a Fourier decomposition of A(r,t), exp(k - r). The function exp(k - r)
can now be Taylor expanded to lowest order as we assume k - r < 1, which is usually the case for optical
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VV4 v3,Viv2

Figure 3.1.: Diagrammatic illustration of an electron-electron Coulomb scattering event, a single term from
eq. (3.17), where two electrons in the states v1 and v are scattered to the states vs and va with a scattering
amplitude of Vi,vs vivs-

wave vectors. If we further assume that the electrons are located near the origin, all electron positions can
henceforth be evaluated at the origin in the above interaction term.

Next we will replace the A - p interaction with a D - E1 form, where D = —er is the electron dipole
operator, for practical reasons® in connection with the numerical solution later on. The transformation
between the two interactions can be performed more or less rigorously. We choose a simple heuristic
approach, carried out in appendix A.3, more advanced treatments can be found in [31, 43, 46]. According
to this derivation we can write the interaction in the following way

~> D;-Ex(0,1).

?

The total transverse electric field consists of a quantized and an externally applied classical part
E1(0,t) = E1,qm(0) + E1,a(0,1),

the resulting interaction Hamiltonians differ significantly and will therefore be treated separately. The
quantized field is given by eq. (3.11), so that the field quantized form of the interaction becomes

Horot = / drt (r)er - B gm(0)0(r)

= Z hg™ chey(al, + an), (3.19)

vv'm
where the coupling strength is given by
hg,, = um(O)Em/dr@*x(r)eT ey, o’ (1)00,67 (3.20)
For an illustration of the emission and absorption processes originating from the interaction eq. (3.19) see

figure 3.2(a) and (b), respectively. The interaction between the electrons and the classical field depends
explicitly on time, even in the Schrodinger picture, and is therefore very special in many-body perturbation

8Keeping the electron-photon interaction on the A - p form causes no problems for the quantized field, but it is does
however for the external classical excitation pulse. The excitation pulse is known in its electric field form, but in the A-p
interaction the corresponding A should be calculated through the relation Er = —0; A, which for most fields should be
done numerically. The is indeed possible and the approach could be followed in situations where the D - E interaction
problematic, this is however not the case for our model. Also it is always advisable to work with gauge-independent
physical fields, rather than the gauge-dependent potentials, see e.g. chapter 7 in [35] or the discussion [45, p. 359],
especially when doing perturbation theory in the electromagnetic fields.
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theory. The field quantized form of this semi-classical interaction is
U(t) = /drz/ﬁ(r)er - Er.a(0,t)(r)

= dyEa(t)cley, (3.21)

where the notation for the classical field has been simplified and the projected dipole matrix element is
given by

s = [ dréivler -en,60(r)nr. (3.22)

Note that U (t) has Heisenberg picture notation, but it is not in the Heisenberg picture. For an illustration of
the electron scattering provided by this semi-classical interaction see figure 3.2(c).

(a) (b) (c)
>IK duu’Ecl (t)

Figure 3.2.: Diagrammatic illustrations of electron-photon scattering events, described by terms from eq. (3.19) and
eq. (3.21). In (a) and (b) we show the scattering of an electron from state v to v through the emission, (a), or
absorption, (b), of an photon in mode m, both with a scattering amplitude of hg..,. In (c) we show the scattering
of an electron from state v’ to v through the interaction with the classical field, with an amplitude of d,,» Ea(t).

Electron-phonon

The interaction between the electrons and phonons is given by the second term in eq. (3.8)

Hepn({ri}) Zu] [47:5 |r; — O)J ZHe ph(r).

K2

As discussed in section 3.2.1 on the non-interacting phonons, the ionic displacement vector u; is quantized
according the standard procedure” and the quantized displacement vector takes the form

~ . (0)
uj = Z iUMEuezq.Rjo (b;[l, + b#«)a
i

where i = (—g, \), UH is an unspecified'® expansion coefficient, and & ., is a polarization vector. As noted
below eq. (3.14) the ¢ = 0 term should should formally be omitted. Using the above, the field quantized
expression is obtained as

Hefph:/drl/ﬁ( ) e— ph( )7/1(7')

= ZM“,C e ( b L+ D), (3.23)

v’

9See e.g. sec. 1.1 in [24].
10We are not going to use the explicit form of U,. Instead we adapt an effective form of this interaction where tabulated
parameters account for different materials.
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where the coupling strength is given by the expression

e iqg-R\” * €4q; 1
MVV/ :ZU#ZGQR’ /dT‘(ﬁa(T‘)E“'V l4§2| O)|‘| d)a( ) o0
J

As the electron-phonon and electron-photon interaction are formally identical the emission and absorption
processes illustrated in figure 3.2(a) and (b) also apply for phonons, with the appropriate replacement of
symbols.

3.2.3. Generic semiconductor Hamiltonian

The full Hamiltonian can be written as three parts that are qualitatively different
H=Hy+ H; +U(t). (3.24)

The non-interacting (quadratic) part, Hp, has three contribution, one from each of the quantized fields we
are considering

Hy = Ho e + Horada + Hopn,

where the explicit forms are given by

HO,e = Z hfwuclcua
1
HOrad—Zhw (a am+§)7
.I_ 1
HO,ph = Z hw;t bubu + 5 )
m

see eqs. (3.9), (3.12), and (3.14) respectively. The non-interacting system constitutes the basis upon which
we perform perturbation theory. The interacting part, H;, contains the Hamiltonians having three or four
basic operators, namely

Hi = Hefe + Hefrad + Hefpha

where the explicit forms are given by

He o= E Vuwa,ml/z V4 I/gcl/2c’/1’

Vl V2

v3l4
He yaa = Z hg chey (al, + am),
vv'm
He pn = Z M, che, (b +0,),
v’ p

see egs. (3.17), (3.19), and (3.23) respectively. These are the contributions to the Hamiltonian giving
rise to infinitely many terms in their respective self-energies. The last part of the Hamiltonian is the
interaction between the electrons and the externally applied electric field,

t) = Z dyy Ecl(t)clcl,f,

vy’
given by eq. (3.21). The term is singled out as it has an explicit time-dependence, unlike the other terms!!,
making it very special in many-body perturbation theory.

1'We remind the reader that we are currently operating in the Schridinger picture.
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The full Hamiltonian eq. (3.24) is illustrated in figure 3.3, with each subsystem represented by an oval and
with arrows indicating the various interactions between the subsystems. The figure emphasizes the central
role electrons play in semiconductor dynamics as this particle specie interact with all other constituents.

phonons photons

\ electrons /
He,ph Hefrad

HO,e

H€7e

Ut)

external field

Figure 3.3.: Schematic illustration of the Hamiltonian eq. (3.24), indicating the individual subsystems and their
respective interactions.

3.3. Summary

In this chapter we have attempted to give an overview of the many different Hamiltonian operators entering
many-body physics. We started from a very basic form of the full Hamiltonian of a solid-state system,
and gradually performed standard approximations to come closer to a form, that would be applicable in
practical calculations. For each contribution, both non-interacting and interacting, to the full Hamiltonian,
the general second quantized version was presented in a form that is ready for the application of the Green’s
function formalism, derived in the previous chapter.
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4.1. Introduction

As was made apparent in the previous chapters, one needs to know the matrix elements of a number
of operators in order to be able to evaluate a many-body theory, where the basic building blocks for
calculating these matrix elements, are the free single-particle states of the involved species. Our focus is
on many-body simulations and as the name indicates, one often has to evaluate a very large number of
matrix elements. This can be a quite formidable task in itself, even when the single-particle states are
known, especially for two-particle interactions such as the Coulomb interaction, where a 6D integral has to
be evaluated. This calls for a fast and efficient method of evaluating the great number of matrix elements,
which we will develop in the coming sections. However, a first requirement for being able to perform the
calculation of the matrix elements is to have a suitable set of single-particle states. As our focus is on
many-body effects, we will choose a simple description of our electronic single-particle states, and neglect
subtleties introduced by more elaborate methods such as k - p, tight-binding, Density Functional Theory
or other advanced methods.

The outline of this chapter is as follows: In the first section, section 4.2, we describe the model and
method used to obtain the electronic single-particle states, where a simple effective mass model is applied.
In section 4.3 we describe two methods for evaluating the computationally demanding Coulomb matrix
elements, one efficient approximate formulation and a more accurate, but significantly slower method. In
the last section, section 4.4, we describe how to calculate the matrix elements entering the light-matter
interaction in the dipole approximation.

4.2. Electronic single-particle states and energies

In this section we will briefly discuss the model of, and the method used to calculate, the electronic
single-particle states and energies introduced in section 3.2.1. The approach is very basic and pro-
vides the simplest way of consistently including both bound states in the QD and unbound states in
the WL.

4.2.1. Self-assembled quantum dots

As mentioned in chapter 1 we are interested in self-assembled semiconductor quantum dots grown using
the Stranski-Krastanow technique [6]. These form as small islands on top of a WL, as seen in figure 1.1(a),
where the entire WL and QD is embedded in a barrier material. For simplicity we model the QD as a
rotationally symmetric truncated cone, which roughly agrees with what is found experimentally [47, 48],
sitting on an in principle infinite WL. A few scanning tunneling microscope images of self-assembled
quantum dots are shown in figure 4.1, illustrating the rough resemblance with a truncated cone. This setup
is shown schematically in figure 4.2 where cylindrical coordinates have been used to exploit the rotational
symmetry, furthermore various geometrical parameters are indicated.
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Figure 4.1.: Scanning tunneling microscope image of a few self-assembled quantum dots [49].
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Figure 4.2.: Schematic of the effective 2D computational domain used for solving the effective mass Schrodinger
equation, eq. (4.4). The figure shows the high (II) and low (I) bandgap materials, creating the electronic confinement,
along with the relevant lengths entering the model.

4.2.2. Effective mass Schrddinger equation

For the theoretical description of the electronic states, we will assume the validity of a two-band semicon-
ductor model with a single valence and conduction band, as is often done in the literature [50-52]. For
the wavefunctions the envelope function approximation will be employed, in which the full wavefunction
is written as [53, pp. 488-490]

¢(r) = u(r)F(r), (4.1)
where u(r) is the lattice periodic Bloch function and F(r) is the envelope function. The Bloch function

does not need to be determined explicitly, while the envelope function is found from a one-band effective
mass Schrédinger equation

(_gv . [m*#(r)v] + V(r)) F(r) = EF(r). (4.2)

34



Single-Particle States and Matrix Elements Electronic single-particle states and energies

Here V(r) is the confining potential, created by bandbending effects through the embedding of the low
bandgap material (I) in the high bandgap material (II), see figure 4.2, and m*(r) is the position dependent
effective mass. The envelope function F(r) is subject to the conditions that

1

F(r) and m*—(r)n - VF(r) (4.3)
must be continuous and differentiable at every point and further that F'(r) must be finite. Here n is an
arbitrary unit vector. These conditions arise from the fact that the particle number must be conserved
[54, p. 74]. Due to the rotational symmetry, the Hamiltonian commutes with the generator for rotations
about the z-axis, the z-component of the angular momentum operator L. (not to be confused with the
length L, in figure 4.2). This has the consequence that the z-component of the angular momentum is a
conserved quantity, and therefore the envelope can be written as a product of the eigenfunction for L.,
defined as L, ®,,(¢) = hm®P,,(¢), and a part independent of ¢

F(r) = B () (. 2) = \/%—ﬂem“’f(w),

where eq. (4.3) dictates that m must be an integer, see e.g. [45, sec. 7.3]. Inserting this into eq. (4.2) we
obtain the following eigenvalue equation for f(p, z)

K2 h2 1 h2m?2
(“5.0 [200] - 0. | o] + gt 4 V(0)) F02) = EFG0,2), (4.4

where m* = m*(p, z) and we immediately see that E is degenerate in m following from the rotational
symmetry. Eq. (4.4) must also be supplied with a set of boundary conditions for the new function f(p, z),
which can be derived from eq. (4.3). On the internal boundaries between the domains I and IT f(p, z) must
satisfy eq. (4.3) directly, while on the external boundaries and on the z-axis we must be a bit more careful.
Due to the third term in eq. (4.4) one must distinguish between cases of m equal to zero or different from
zero. For m # 0 the third term diverges as p — 0, therefore f(p,z) must go to zero on the z-axis. For
m = 0 the third term does not cause any problems, but now the derivative 0,f(p, z) must be zero on
the z-axis, otherwise f(p,z) would get a non-differentiable kink. Mathematically these conditions can be
written

flp=0,2)=0, m#0, (4.52)
Opf(p=0,2)=0, m=0. (4.5b)
The boundaries at z = +L,/2 and p = Ry are artificial boundaries introduced to be able to solve

the equation numerically, and therefore the solutions must ideally be independent of the position of the
boundaries. For the boundaries at z = +L,/2 there is no practical problem. This is the case as we
are only interested in states bound in the QD or in the WL and hence we expect the states to decay
exponentially as we move in the z-direction from material I into material II. For this reason L, should
simply be chosen large enough that f(p,z = £L,) has approached zero. For the boundary at p = Ry the
problem is more subtle. We are interested in describing the delocalized states in the WL which we know
form an energy continuum. The energy continuum arises from the unbounded nature of the WL and is
an essential feature to maintain in the theoretical description. The effect of introducing a zero boundary
condition at p = Ry, is that the WL energy continuum becomes discreetly sampled, in the way that the
large Ry the finer the sampling. One can then systematically increase R until the physical result one is
considering no longer depends on this artificial boundary. We state these conditions mathematically as

flp#£0,z=+L,/2) =0, (4.6a)
f(p=Ro,z)=0. (4.6b)

The position dependent effective mass and confinement potential are constants within each domain (I and
IT) and jump whenever an internal boundary is crossed, hence

{ mi, (p,z) €l

m”(p; 2) = mi,  (p,z) €11,
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and
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A schematic illustration of the energy landscape experienced by the electrons is shown figure 4.3.
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Figure 4.3.: Schematic illustration of the energy landscape in the QD/WL system. In the potential well the hori-
zontal lines indicate bound QD states, while the grey bozes indicate the WL energy continuum.

The mathematical model for obtaining the electronic states is now fully specified and eq. (4.4) is ready to
be solved for electrons in the conduction band and holes in the valence band. For the numerical values
of the various band parameters, and a small discussion of these, we refer to appendix A.8. The full
identification of a state needs three indexes (when neglecting spin which is not important here), a band
index (b), the z angular momentum (m), and a final index counting the states within each m subspace
(N). An envelope state can now be written as

Fpn (1) = @) iy n (05 2), (4.7)

which, when properly normalized and combined with its respective Bloch function (eq. (4.1)), satisfies the
orthonormality condition

b b b b
(W Ey, NI Fpy no) = OmmsON N+ Ob b

Usually all spatial quantum numbers will be collected into a single one, normally denoted «, to lighten the
notation. Then the orthonormality condition e.g. can be written compactly as: (a]o/) = dqa.a-

For most geometries it is not possible to solve eq. (4.4) analytically, therefore we have to resort to numerical
methods. In our simulations we used the finite element package COMSOL!, which provides an easy
implementation and relatively stable and accurate solutions [52].

4.2.3. Numerical examples

For illustration of the solutions of eq. (4.4) we will in this section present a set of solutions for a typical
system. The geometrical parameters of the QD and WL system were chosen to yield a representative

LFor more information: http://www.comsol.com/
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Quantity Value Unit

h 1.25 nm
d 1.25 nm
1 20 nm
To 10 nm
Ry 300 nm
L, 60 nm

Table 4.1.: Numerical values of the geometrical parameters used in section 4.2.3, see figure 4.2.

selection of states that one would typically encounter, these parameters are given in table 4.1. The band
parameters for the InGaAs system we employ for our heterostructure are discussed and presented in
appendix A.8.

We start out by providing an overview of the energy eigenstates obtained by solving eq. (4.4) in terms
of the energy density of states (DOS), the DOS for the conduction band is shown in figure 4.4(a) and
for the valence band in figure 4.4(b). An alternative overview, slightly more informative, is given in
figure 4.5 showing the energy levels as a function of the angular momentum m. We have defined the DOS?
as

d(B) =Y 8(E - Ea),

but for practical numerical reasons we use a broadened delta function in the form of a Lorentzian with a
width w, so that for the figures the DOS is

w 1

w . 48
T a2 + w? (4.8)

d(E):ZLw(E_Ea)a Lw(x):
(07

The values of the DOS will depend on w and should therefore only be considered as an illustration. By
comparing figures (4.4) and (4.5) for the conduction and valence band, we notice that the overall level
structure is very much alike, which is a consequence of our choice of band parameters, see A.8. The
envelope functions are therefore also very similar for the two bands and for that reason we will focus
on the conduction band states. In the DOS for the conduction band states, the peaks below the onset
of the WL continuum correspond to states bound mainly to the QD, while the states in the contin-
uum are a mixture of so-called quasi-bound states and WL states. We will elaborate on these different
types of states below. Henceforth the notation (b, m, N) will be employed when referring to fﬁn"N(p, z).

We start by considering the bound states. The first peak reflects the non-degenerate state (c, 0, 1), this state
has zero angular momentum and can therefore be found very close to the z-axis, as seen in figure 4.6(a). As
this state has the lowest energy, it is also the one most strongly bound to the QD. The second peak is the
degenerate pair of states (¢, £1,1), where the degeneracy gives twice the DOS of the first peak. Having an
angular momentum of +1, the electron is forced a bit further away from the z-axis than the state (c,0,1)
and therefore less localized in the QD, see figure 4.6(c). The third peak stems from the degenerate pair
of states (¢, 42,1), where the one unit higher angular momentum forces the electrons further out of the
QD, see figure 4.6(d). The fourth peak has zero angular momentum, seen from its max value, and is the
non-degenerate state (c,0,2). This state is still located mainly in the QD, but has acquired a node in the
radial direction to stay orthogonal to the states spatial near it, see figure 4.6(b). The fifth peak is the
degenerate (c,+3, 1) pair of states, which has an envelope similar to states (¢, £1,1) and (¢, +2,1), but is
pushed even further out of the QD due to its higher angular momentum, see figure 4.6(e). The last visible
peak originates from the degenerate (c,+1,2) pair and is similar in nature to the state (c,0,2), which also
has a node in the radial direction, see figure 4.6(f).

2The degeneracy in the spin quantum number is not taken into account here. To include it, one should simply multiply by
a factor of 2.
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Figure 4.4.: Figures illustrating the energy density of states, eq. (4.8), for (left) the electrons in the conduction
band and (right) the electrons in the valence band. The DOS plots are on the same energy scale, with the zero point
placed in the middle of the gap for material I, see figure 4.3. For illustrative reasons a different width was used
for the discrete and continuous part of the spectrum, wdiscreete = 0.05 meV and weontinuous = 0.8 meV, the larger
width of the continuum part reflects the sampling in energy that is needed in the numerical simulation. This trick
is needed in order to reproduce the well-known step-like DOS of 2D structures, otherwise the 2D plateau would be

very spiky and not flat.
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Figure 4.5.: Representation of the energies obtained from solving eq. (4.4). To the left is the conduction band with
m on the horizontal azis and N counting up upwards in energy, while to the right the valence band is shown with
N counting up downwards in energy. The color coding of the dots is arbitrary.
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To be able to discuss the quasi-bound states effectively it is helpful to have been through the WL states
first, as the quasi-bound states are intermediates between the strongly localized and delocalized states.
We will refer to a state as being a WL state when it is basically unaffected by the presence of the QD
potential®. It is of course true that all states in the continuum are affected by the QD potential, but in
practice it turns out that many of these are unaffected (within our numerical accuracy) and therefore it
safe to regard them as pure WL states. This fact becomes very visible when expanding a WL state on the
eigenstates of a pure WL (or quantum well) system as is done in section 4.3.3. Three examples are shown
figures 4.7(b), 4.7(c), and 4.7(d), where it is clearly seen that none of these envelopes are spatially near the
QD, and hence they need not change in order to be orthogonal to the bound QD states. One also notices
that the number of nodes in the radial direction is correlated with IV, and is equal to N — 1. These three
states are all part of the energy continuum that has its onset at around 737 meV, and displays the familiar
step shape known from 2D systems, which is what the WL effectively is. The tail that extends from the
continuum part of the DOS is due to the finite width of our Lorentzian, eq. (4.8), and therefore artificial,
the transition should be sharp as we have no broadening mechanisms yet.

Having discussed both the bound and unbound states, we move on to an intermediate between these two,
namely what we will refer to as quasi-bound states. These are states which are not clearly bound to the
QD and yet not clearly part of the WL continuum of delocalized states either. An example is shown
figure 4.6(g), where we clearly see that the envelope of the state (c,0,3) is located both in the QD and
is delocalized in the full WL; Fig. 4.6(h) shows a zoom in on the QD area. In figure 4.7(a) we show the
states (c,£2,2) which in very large parts is located in the WL, but there is still a small probability of
finding it in the QD. Energetically they usually form near the onset of the energy continuum and a bit
into this, depending on the geometry of the system. What is very special about these states is that they
have a significant amplitude both in the QD and WL, and can therefore overlap both with pure bound and
WL states. This means that effective scattering can take place between the spectrally and spatially well
separated QD and WL states, with the mediator being the quasi-bound states.

It should be emphasized that the present approach for obtaining the electronic states, treats the bound,
quasi-bound, and WL states on the same footing, as they originate from the same differential equation.
This has the consequence that properties such as orthogonality and relative energy difference between
different states are automatically fulfilled. This is in contrast to another commonly used scheme for
describing electronic states in many-body calculations, the so-called Orthogonalized Plane Wave (OPW)
procedure (see e.g. [32, 55]). In the OPW procedure plane waves are made orthogonal to some predefined
bound states, often harmonic oscillator states, and these are then used as the single-particle basis. The
energies are taken as a combination of the unperturbed parabolic dispersion of the plane waves, the energies
of the bound states, and an user chosen offset between these. The OPW approach has the huge advantage
of being semi-analytical, which speeds up calculations considerably, but suffers from the above mentioned
fundamental problem. A study of the significance of various descriptions of the electronic states has been
performed in [51] and shows that it is important to treat the qualitatively different states on the same
footing.

3Tt should be noted that for certain geometries we experienced QD resonances in the WL continuum. These appear for
otherwise pure WL states that are far from the localized QD states, both spectrally and spatially, but which at some
energy rather suddenly become localized in the QD. We expect that these states occur due to the fulfilment of a resonance
conditions for the delocalized WL states, much like the transmission spectra for 1D quantum wells in introductory
textbooks on quantum mechanics.
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Figure 4.6.: Figures showing various solutions to eq. (4.4), namely the envelopes f‘bm‘,N(p, z), for electrons in the

conduction band. We use the notation (b,m,N) when referring to f‘bm‘,N(p, z). Notice that one must carefully
inspect the values on the colorbar in each plot, especially for negative values.
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Figure 4.7.: Figures showing various solutions to eq. (4.4), namely the envelopes f‘meN(p, z), for electrons in the

conduction band. We use the notation (b,m,N) when referring to f‘meN(p, z). Notice that one must carefully
inspect the values on the colorbar in each plot, especially for negative values.

4.3. Coulomb matrix elements

The Coulomb matrix element, eq. (3.18), is one of the central numerical quantities which has to be
evaluated in order to be able to perform many-body calculations*. We will therefore in this section, discuss
various properties and strategies for its evaluation, as it is not a trivial task.

To reduce the amount of computation time needed, it is advantageous to make use of the symmetries the
Coulomb matrix elements possess. These can easily be derived from the definition, eq. (3.18), and by
using the fact that He_o(7,7') = Ho—o(r’, 7). The symmetries are

VV4V37V1V2 = VV*11/271/41/3 = VV3V47V2V1 = VV*2V171/31/4' (49)
The spatial part of the Coulomb matrix element, eq. (3.18), is given by
Va4a3,a1a2 = / deT/(me (T)¢Z3 (T/)He—e(’r‘a T/)¢a1 (T)¢a2 (T/)a (410)

which is the computationally demanding part as the spin overlaps are trivially evaluated. To facilitate the
evaluation of the Coulomb matrix element, and for formal reasons, it is convenient to 3D Fourier transform

41t turns out that also for the interaction between electrons and dispersionless LO phonons, the matrix elements entering
the self-energy can be reformulated in terms of the Coulomb matrix element section 5.2.2.
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H._o(r,r") yielding

21

]_ . ’
Hooor —1') = = 3 Vye ", v, = % = (4.11)
q

where V is the quantization volume and ¢ = (¢s, gy, ¢-) is the 3D wavevector. We use the Fourier transform
defined by [28]

1) = 5 S 1™ gy = [ drfmeion (4.12)
q

Depending on the system under consideration it can be advantageous to perform the ¢, integration ex-
plicitly in eq. (4.11) ending up with the 2D Fourier transform of the Coulomb interaction. Performing this
integration [56, p. 122] yields

1 . , , 21
He—e(r —1') = A Z Vg el P=P)ealz==, Vg = ;__’ (4.13)
a €q
where A is the quantization area, g, = (¢z,qy) is the 2D or in-plane wavevector, and p = (z,y) is the

in-plane position vector. The reason for expanding the Coulomb interaction in plane-waves, and not
evaluating eq. (4.10) directly, is due to the problems generated by the 1/|r — 7/| singularity, which are
difficult to handle numerically.

If one inserts the 3D Fourier transform of the Coulomb interaction into eq. (4.10), the integrations over r
and 7’ can be separated as follows

1 * iq- * —ig-r’
Vasasos = 3 30V [ dreis (r)et”on, (1) [ dr'si, (1) " 60,0, (1.14)
q
so that the integrals which need to be evaluated are all of the form

(asle™ " |ag) = / dr g, ()19 g (1). (4.15)

This separation is made for formal reasons, the result is needed in the next section, while for the actual
evaluation the 2D transform, eq. (4.13), is used.

4.3.1. Bloch part

In the effective mass envelope approximation for the electrons, the wavefunctions in eq. (4.10) are all of
the following form

Pa (1) = F2(m)up(r), (4.16)

where FY(r) is the envelope function and wu,(r) is the Bloch function for the static lattice, both for band
b. Normally the band index b is contained in the general spatial quantum number «, but here we display
it explicitly in the envelope function for clarity. The envelope function is determined from the effective
mass Schrodinger equation, see section 4.2.2; while the Bloch function is generally not known. Below we
will show that for the class of Coulomb matrix elements we are considering, it is not necessary to know the
Bloch function, which is very fortunate as this function is very hard to obtain.

In a semiconductor scattering processes where an electron is scattered from one band and to the other, can
occur due to the Coulomb interaction between the electrons in the semiconductor. However, for a relatively
wide bandgap semiconductor this process will be very non-resonant in nature, with the consequence that
the probability for it to happen will be very small, and for this reason we will neglect such processes in our
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model [56, p. 212]. This approximation does not mean that the carriers do not interact across the bandgap.
There are strong interactions between electrons in the valence and conduction band as their wavefunctions
overlap spatially, giving rise to the excitonic effects that are in general very important. A consequence of
the approximation, which must be kept in mind, is that the number of carriers in each band is conserved,
hence no recombination takes place due to the Coulomb interactions. For the Coulomb integrals, eq. (4.15),
this means that the band index in the wavefunctions is the same

(sl ™) = [ droi (1)eH 1 b0, (1),
z/dr [Ff;s (r)ub(r)}* eﬂq"'FfX’6 (r)up(r).

By assumption the envelope functions are slowly-varying compared to the Bloch functions. If we further
assume that only components of the Coulomb interaction with relatively small wavevectors are needed,
the exponentials e*?9" also become slowly-varying compared to the Bloch part. A more quantitative
requirement would be that gmaxauc < 1, where gnax is the largest wavevector needed in the expansion
of the Coulomb potential and ay. is the typical size of the unit cell. For the InGaAs systems we will
be considering we have ay ~ 5 A [53] leading t0 gmax < 2 x 10° m~!. This value of guay limits us
to the vicinity of the band edges, which is consistent with the fundamental assumption of the effective
mass theory we have employed for the electronic states. Having argued that both the envelopes and
exponentials are slowly-varying compared to the Bloch function, we may follow [53, p. 120] and write the
integral over the entire structure as a sum over all unit cells and an integral over a single periodic® unit
cell

) P 1
(as|eT T |ag) ~ ZV“C [fo’s (ri)] ej”q"’"Fab6 (r;) (V / druZ(r)ub(r))

uc ¢

(up|up)y=1
= / dr [F2 (r)]" X9 FL (1), (4.17)

where in the last line the sum was converted into an integral. This leads to the fact that the Coulomb
matrix elements can be evaluated with out explicitly knowing the Bloch functions and we end up with [32,
p. 86]

Vasas.aras = /drdr’F(;'F4 (r)Fy, (P )He—o(r, 7" ) Foy (1) Foy (7") X by 01 Obs s - (4.18)

4.3.2. Representation in separable basis

The geometry of the QD /WL system we intent to use for practical calculations later in the thesis, will all
be for relatively shallow QDs, that is with a large width to height ratio, as those presented in section 4.2.1.
Due to the shallowness of the QDs, it becomes a good approximation to write the entire envelope function
F(r) on a separable form, see section 4.3.3. However, to set the stage for performing this approximation
we first formulate an exact procedure for calculating the Coulomb matrix elements. This procedure is
based expanding the numerical envelope functions on an analytical basis set, that is separable in each of
the cylindrical coordinates p, ¢, and z, and furthermore this exact formulation will serve as a benchmark
for the approximative formulation.

Denoting the separable basis as {Bg(r)} we may write the expansion of the envelope function as fol-
lows

Fo(r) =Y A4Bs(r), Af=(fla)= /drB;;(r)Fa(r), (4.19)
B

5We will assume that the argument still holds, even though the system under consideration has different kinds of unit cells.
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where the basis states are of the specific form, see appendix A.7,

Bp(r) = Pon(@) Rimi(0) Zn. (2) = 95(p) Z5(2), B = (m,1;nz), (4.20)

and where gg(p) = @ (©)Rjmi(p) has been introduced for notational simplicity. Using the result
eq. (4.18), the 2D transform of the Coulomb potential, eq. (4.13), and the newly introduced basis, a
Coulomb matrix element can be written as

Vasasionos = 3 |AG: ] [A52] 451452 x 0,00
3182
B3Ba

1 * iq - * —iq-p
x 3712 Va / dpgp, (p)e' 1 Pgp, (p) / dp'gp, (p))e”" 1" g, (p")

a
X /dzdz'ZE4(z)Z53(z')e_qlZ_Z/Zgl(z)Z@(z')}
= [Agﬂ [Ags} AGLAGE X Gty by Obs by X V43,8152 (4.21)
8182
B3 PB4

In the last line we have introduced the Coulomb matrix element for a basis state, Vj,3,.3,3,, defined as the
content in the curly brackets on the second and third line. From this formula it is seen that the challenging
task apparently is to calculate Vg,3, 3,8,, as the rest consists of simple summations. For this reason the
following will focus on simplifying the expression for Vg,3,.3,8,-

In the expression for Vg,s, 3,3, two types of integrals occur, one involving the p coordinate and one
involving z and 2/, for which we define short hand notations in the following way

I (5,05 - q)) = / dpgp, (p)e™" P gs,(p), (4.22)
L.(B4, B3, 1, B2 : q) = /dZdZIZ§4(Z)Z§3 (Z')e_q\l‘z—zl‘zﬁl (2)Zp, (7). (4.23)

We start by considering the integral I7-. Using the definition of gs(p) I can be written as

Ro 1 27 ) )
If(ﬁ&ﬁﬁ:qw: ; dppR25(p)Rﬁs(P) [%/0 d(pez([me—ms]wiqupCOb(w—Wu)) ,

where we have used g - p = qpcos(p — @), with o) being the angle of q) with respect to the z-axis.
The angular integral in square brackets can be rewritten to an expression involving Bessel functions, like
those in the p integral. For this we use the following integral representation of the Bessel function [57, p.
684]

Z'fm 27

I (@) = 5— ; dyelmrtecosl -y —0,1,2,3,. ..

and the fact that the integrand in the angular integral is 27-periodic. From this we obtain

1 o ] —ms cos(p— i(me—m -lme—m

2 0 dipelme—msloraypeos(e—e))) — cilme—ms)ey jlme 5|J|m6_m5|(j:q”p).

Finally using the series representation of the Bessel function [57, p. 670] one can show that J,,(—x) =
(=1)™Jp(z) and we arrive at

. Ro
IX(Bs, B : q)) = 1e'(momma)eijlmoe=msl / dppR}, (9)Jmg—ms| (€1) R, (p), (4.24)
0
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where

1. = { L, +qp
(=1)me=msl —qyp.

The most demanding part can now be identified as the integral

Ro

I;(Bs,06 = q)) dpp R}, (0)Jjme—ms| (@0) Rps (p), (4.25)

0
which has to be evaluated numerically. It should be noted that an analytical expression exists for this
integral when Ry — oo, see eq. ([1.] 6.578) in [58]. This is not the case for our system, but it could
possibly yield an excellent approximation under certain conditions, this has however not been investigated
further.

The g sum in eq. (4.21) can be transformed into an integral, assuming that the quantization area is large.
Hence we make the substitution [28, p. 38]

1 1 1 27 0o
SRl Ky Y A -

Due to our choice of basis set the only place ¢| enters is through the exponential in eq. (4.24), therefore
it is possible to perform this integration analytically which is a nice simplification. Applying the rule
eq. (4.26) we can write V3,3, 38,3, as

1 o0
VB4Bs,016: = %/o dqyq)Vy,

x ilmTmal By, By q)(—1)Im2mmslilme=msl (85 By« ) L(Ba, Bs, Br, Bo + q)
27

1 .
d i[(m1—ma)+(ma—m3)]p| 4.2
X 2w Jo 71 7 2

=0mq+mog,mz+my

where the integral in the last line provides us with a selection rule in the angular momentum quantum
number m. The selection rule in the m’s reflects the underlying symmetry of the basis functions, and
basically tells us that the total angular momentum (the sum of the two participating particles) in the
z-direction is conserved. The delta function can further be used on the exponents of ¢ and —1 in the
second line to yield unity
Z‘lm1—m4\(71)|m2—m3|i\'ﬂm—m3\5m1+m2’m3+m4 =1x 5m1+m2,m3+m4'

Going back to eq. (4.27) we can insert V, from eq. (4.13), where the 1/q) singularity is canceled by the
volume element in the g integral, and we obtain a simplified expression for the Coulomb matrix element
of a basis state

e2 0
Vi3.85,618: = 4—m/0 dqy 17 (Bs, Br = q)L5(B3, B2 = q)1=(Ba, B3, 81, B2 : @) X Omytmamstma-  (4.28)

Next we take a closer look at some of the properties of the integrals I; and I, which constitute the basic
building blocks for calculating the Coulomb matrix elements.

Properties of I;
From eq. (4.28) it is apparent that the integration parameter g in principle should be varied continuously

from 0 to oo, this is however impossible to do numerically and in practise not necessary either. The
electronic states we consider are all relatively low in energy and hence we will be able to limit the size of
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the Hilbert space for the basis states used in the expansion eq. (4.19). This means that we can define some
upper cut-off for the quantum number, (§, characterizing the basis. Having put an upper limit on § we
can make some qualitative statements on the integral I, eq. (4.25), as a function of g, more specifically
on the limiting cases of very small and very large g

For very small ¢, the Bessel function in eq. (4.25) containing ¢ will have the following dependency on g:
Jim) (qp — 0) o (qu)‘m|, which is seen from its series representation [57, p. 670]. This tells us that for
|m| # 0, I; will always give zero, while for [m| = 0 we get Jj,,,|(qp — 0) — 1 and hence the value of I;
will depend on the mutual orthogonality of the gz’s. These two observations can be written collectively
as

I5(Bs,86 : q — 0) = Oms,me0ls,16- (4.29)

For very large g the Bessel function .J},, (¢ p) will oscillate much more rapidly than the other two Bessel
functions, and hence the integral will average to zero

1;(Bs, 86 : q — o) — 0. (4.30)

These two statements are illustrated in figure 4.8, where relatively low energy basis states are shown in
figures 4.8(a) and 4.8(c) and a relatively high energy basis states are shown in figures 4.8(b) and 4.8(d).
The first thing ones notices, when comparing the high and low energy cases, is that the cut-off in ¢ seems
to come at a lower value for the low energy states than for the high energy states. This is understandable
in the light of eq. (4.30), as J},,,(qp) faster becomes highly oscillatory compared to the low energy states
than compared to the high energy states, and hence the integral will average to zero at a lower g for
the low energy states than for the high energy ones. The cut-off value in ¢ depends highly on Ry, see
figure 4.2, but in a very simple way and scales basically linearly with Ry, as can be seen by introducing
a unitless radial coordinate, p = p/ Ry, in eq. (4.25). It is also apparent that the high energy states have
more structure below their cut-off and therefore require a finer sampling in g in order to yield correct
results. This makes the high energy states much more challenging numerically, for which reason it is
important to make sure that ones performs the minimum amount of numerical calculations required. One
way to minimize this number is to make use of the symmetries I; possesses in its § quantum numbers,
these symmetries will be discussed next.

From its definition, eq. (4.25),

Ro
IJ(m5Z57m6l6 : QH) = /0 dpper5|l5 (p)‘]lmefm:)\(QHp)R\malle (p)a

we have deduced the symmetries of I

I(;(m5l5, m6l6 : q”) = I}(mﬁlﬁ, m5l5 : q”) (431a
Iy(mels, msls : q|), sign(ms) = sign(me), (
Iy (Fmsls, £msls : q) = 17(Fmels, Tmsls = q)) (4.31c

I;(Fmels, £msls : q)), sign(ms) # sign(me). (4.31d

The sign of the m’s matters as there appears a difference in ms and mg in I;. The number of different
permutations of m and [ in I; equals (2 X Muyay + 1)212,,., this times the numbers of sampling points of
q, which is usually a few hundreds, is the number of integrals needed to be calculated numerically. For
illustration we choose the numbers my.x = 10 and lyax = 50, which are reasonable for a typical QD/WL
system. Plugging in these numbers we get (2 X mmax + 1)212,,, = 1102500, while application of eq. (4.31)
reduces this number to 276775, roughly a factor of 4 lower. This factor of 4 is however not representative
for the computation time spend. This is so as high energy states are more oscillatory than low energy
ones, and thus the sampling in p, used in the numerical quadrature, needs to be correspondingly finer,
leading to longer computation time. The factor of 4 is thus a lower bound for the speed up in computation
time. Parallelization is possible for each I; and hence leads to further efficiency, but the calculation of all

the integrals I is still a considerable numerical task.
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Figure 4.8.: Ezamples of the integral Iy, eq. (4.25), illustrating the behavior stated in eqs. (4.29) and (4.30). It
should be noticed that I; is dependent on Ro, see figure 4.2, as the basis functions also depend on this. For these
illustrations we used Ry = 150 nm.

Properties of I,

As for I; the in-plane wavevector q must be varied between 0 and oo in the integral I., and as for Iy we
can give some general statements in these two limits. From eq. (4.23)

L(n2a,m23,m21, M2 1 q)) = /dZdZ/Z:LM (2)Z;,_, (Z/)eiqu‘Z7Z ‘Z7Lz1(Z)Z7Lz2 (),
it is clearly seen that for ¢ — 0, the exponential e~ ===l will tend toward unity and the 2D integral can

be separated into two 1D integrals. Due to the orthogonality of the Z,,’s we obtain the following simple
result

Iz (nz47 MNz3,Mz1,MNz2 - (J|| - 0) - 6nz47n216n237n227 (432)
similar to the ¢ — 0 limit for I;. For very large g the exponential e al==="1 will dampen the integrand
so strongly that it will give zero for sufficiently large ¢|. On the diagonal in the (z,2’)-plane we have

z — 2 = 0 and hence the exponential will always be 1 regardless of the value of g, however this infinitely
thin line has integral measure zero and will therefore not contribute to a finite value of the entire integral.
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Hence for ¢ — oo we have
Iz(nz4; M23,Mz1,Mz2 2 q) — OO) — 0. (433)

To illustrate egs. (4.32) and (4.33) we show in figure 4.9 three examples of I,. One immediately notices

n24 =5, n23 = 20, nZl =5, n22 =20

0 1 2 3 4 5
q|| [1/nm]

()

Figure 4.9.: Ezamples of the integral I., eq. (4.23), illustrating the behavior stated in eqs. (4.32) and (4.33). It
should be noticed that 1. is dependent on L., see figure 4.2, as the basis functions also depend on this. For these
illustrations we used L. = 60 nm.

that all three curves are remarkably similar, except for the dips at ¢y = 0, when comparing to I;. In
fact all I,’s that have been manually inspected display one of these three kinds of qualitative behavior as
a function of ¢|. The slow convergence towards zero for large g is also characteristic for I, but this is
usually not a problem as I; often has the smallest cut-off and therefore the long tail of I, does not need to
be determined. The absolute value of the cut-off depends on L, see figure 4.2. Comparing again to Iy, I,
shows very little structure as a function of ¢, which is very good news as much fewer sampling points are
needed and interpolation can be used for obtaining the values corresponding to the more dense sampling
required by I;.

The values of I, are obtained by performing 2D integrals numerically, which is much more demanding
than performing 1D integrals, from which [ is calculated. To give an idea of the magnitude, consider a
1D function that needs N function evaluations in order to meet some tolerance set on its integrated value,
the corresponding 2d integration would then need roughly N? evaluations to yield the same accuracy,
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N3 for 3D and so on. If the function values are computationally expensive to obtain, higher dimensional
integrals can be very very demanding to calculate numerically. This is also one of the reasons for choosing
the current approach for evaluation of the Coulomb matrix elements, that initially is determined from a
6D integral.

From the discussion above it is apparent that it is very important to exploit potential symmetries and
selection rules of I, even more than for 7;. We will now address this issue. From eq. (4.23) one can show
the following symmetries for the integral I,

Iz (nz4a Nz3,Mz1,Mz2 * Q||) - I: (nzla N22,Mz4,M23 : q”) - Iz (nzla M22,Mz4,M23 * q”) (4343‘)
= Iz (nz?n MNz4y,Mz2,Mz1 - q||) (434]3)
=1 (nz27 Nz1,Mz3,Mz4 CIH) =1 (nzz, Nz1,Mz3,Mzg - q”), (4.34c)

note the similarity with eq. (4.9). Furthermore it is possible to determine a selection rule for I, by making
the following coordinate transformation

z— —z, 2z — -2,
which does not, change the value of the integral, but yields the following relation in the n,’s
I, (nz4, MNz3, M1, N22 - q”) = (71)”24+n13+n21+n22+41z (nz4a Nz3,Mz1,M22 1 () )

Here we have used the parity of Z,_(2), Z,.(—z) = (=1)17"=Z,,_(2) see appendix A.7, and the fact that
e~917=%'l is even under inversion in the (z,2')-plane®. This tells us that unless the sum of the quantum
numbers 7, is an even number, the integral I, is identically zero. This can be formulated mathematically
using the modulus operation as follows

Iz (nz47 Nz3,Mz1,Mz22 * Q||) = Iz (nz47 MNz3,Mz1,Mz22 * q||)6mod(nz4+n23+nzl+nzz,2),0- (435)

This condition simply means that the product of the four Z,_’s in I, must be an even function, like
el ‘Z’Zl‘, in order for the integral to yield a non-zero value, which could have been intuitively expected.
The fact that the integrand has even inversion symmetry means one can limit the integration domain to
half the (z,z’)-plane, resulting in a significant speed up, roughly a factor of 2, in terms of cpu time. To
give an idea of the reduction in computation time achieved by applying the symmetries eq. (4.34) and the
selection rule eq. (4.35), consider a cut-off of 1, max = 25. This gives njmax = 390625 permutations of n.
in I, using the symmetries and selection rule this number reduces to 49297, almost a factor of 8. Similar
to the calculation of I, calculation of I, with high energy states is more time consuming and thus the
factor of 8 is the minimum gain. On top of the number of permutations in the basis indices the sampling
of ¢ adds another dimesion. For I, usually around 50 sampling point of ¢ are needed, with the majority
clustered near ¢ = 0. Again, as for I, parallelization is possible for each I.

Collecting everything we arrive at the final simplified expression for the Coulomb matrix element

* *
Vasas,aras = Z [Agﬂ [Agg} AgllAgj X Ob.,b10bg,b; X VB4ps,61 62

X 5m1+m2,m3+m4 X 5mod(nz4+nz3+nz1+nz272),0’ (4-36)

with Vg,s,, 8,8, being given by

2

V3.85,615: :46—776/0 dqy1;(Bs, B = q) L1 (B3, B2 = q))1=(Ba, B3, B1, B2 = q))

x 5HIOd(nz4+nz3+nzl+nz272)10 X 5m1+m2,m3+m4- (437)

6This result could also have been reached using the more formal methods of group theory. Here one would introduce the
(z,2')-plane parity operator P,.:, defined by P,.,f(z,z') = f(—z,—2'), and look for the eigenvalues of P,,, with the
involved functions.
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4.3.3. Representation in separable eigenstates

For very shallow, that is small height, QDs it becomes a good approximation to assume that the electronic
envelope function can be factored into a function for each spatial direction [55]. The philosophy is that
for shallow QDs, the effective envelope for the z-direction is very similar for the various types of states
we encounter: bound QD states, quasi-bound states, and unbound WL states. And hence ultimately one
can use the same z-envelope for all states, yielding faster computation times and hopefully fairly accurate
results (see section 4.3.4). In this approximation we write the envelope as follows

Fgﬂ(T) = (I)m(sp)RZH(p)ZZH(z;) = QZH(P)ZZH(Z)a a = (ba m, N)? (4-38)

where due to symmetry the angular part is exact. One possible definition of the effective functions is
described in the next subsection. Inserting eq. (4.38) into eq. (4.18), with the Coulomb potential Fourier
transformed, we obtain

1
Vasas,aias = A E :un X 5b47b15b37b2
q|

X / dplgst (p)]*e" 1P g5t (p) / dp' [958 (P e P g3 (o)
x [ @\ 2 e e 2 ) 23 ),

The procedure executed in section 4.3.2 can now be repeated here and the end result is

2

Va4a3,a1az =

—/ dqyI5™ (o, a1 = q) IS (s, o = q) IS (quay @3, 001, 0 2 )
4’/TE 0

X 51747171 51737172 X 6m1+m27m3+m4' (439)
In analogy with eqs. (4.23) and (4.25) we have introduced the following notation

Ro
I (a5, 06 1 q) = ; dpp[ R (0)]* Jymg—ms | (@ P) R (p),

I (o, 03, 01, 000 2 ) = /dzdz’[Zfo(z)]*[Zzif(z’)]*e‘q”‘Z‘Z"Ziﬁf(z)Zif(z’)-

One definition of the effective functions

Our starting point for defining the effective functions in eq. (4.38) is the general expansion of the envelope
function, eq. (4.19), in terms of the basis given by eq. (4.20)

Fu(r) = A3Bs(r).
B

The spatial quantum number characterizing an envelope function is written as
a=(b,m,N),

where m is the eigenvalue of the z component of the angular momentum operator (see appendix A.7), N
is a quantum number describing the (p, z)-plane, and b is a band index. The spatial quantum number
characterizing a basis state is

ﬂ = (m7 l,nz),

see appendix A.7 for details. It should be emphasized that for a rotationally symmetric system, the
z component of the angular momentum operator is a conserved quantity and m is therefore a good
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quantum number. We will always consider such systems and therefore the angular part of the envelope
and basis function will always be same. More specifically, we write the expansion of the envelope as
follows

Frl;@,N(r) - Z Afn (N 21 nz)Bmlnz (7') (440)

In.

To motivate the definition of the effective functions one can consider an explicit set of coefficients, e.g. as
shown in figure 4.10 for a typical QD ground state; this specific state has the label (b, m, N) = (c,0,1).
The geometry is the same as in section 4.2.3, except for Ry which is 75 nm in these calculations. The first
thing one notices is that the coefficients decay as we go to higher and higher quantum numbers in both
the radial and z direction, as is expected when considering a localized state. Next it is very apparent how
rows for even n, have a much less amplitude than those for odd n., this is simply a manifestation of the
fact that the wavefunction is almost symmetric about the (x,y)-plane. To define the effective function
it seems intuitively correct to focus on the coefficients that have large amplitudes, as these must be the
most significant. For this purpose we identify the coefficient with the largest amplitude and denote its
indexes with stars as superscripts: (I*,n%). We now propose to define the effective functions Rﬁ’sﬁN(p)

Zb,eff

and Zj)

(2) in the following way
Ab (N :1,n})
VAL (N L)

o Al;n N :l* n,
20T (p) = S0 O, N) 2, (), CE(m, N) = € ( )
n- \/an|Aﬁ’n(N 21 ng))?

where ¢ = sign[A% (N :1*,n?)] is a phase factor that ensures that the effective functions have the same
phase as as the original function. Notice that the effective coefficients have been renormalized in order
for the effective functions to be normalized to unity. The coefficients used in the effective functions are
shown graphically in figure 4.10, where the horizontal line indicates those used for R while the vertical
line indicates those used for Z°. In order for this approximation to be good, the two lines should cover
as much "weight" as possible, that is Y| [A% (N : [,n.)|? should be as close to unity as possible, where
L indicate the black lines in figure 4.10. A limiting case where this approximation is exact is for the
pure WL state, where no dot potential is present in the geometry. For this system the eigenstates are
completely separable and for the radial direction the solutions are Bessel functions, the same ones as we
use as our basis (see appendix A.7), hence by definition the factorization procedure is exact for these
states.

Rl (0) =Y O (m N) Ry a(p),  CP(m, N) = ¢
l

This specific definition of the effective functions suffers from a potentially very serious drawback, namely
that the mutual orthogonality of the effective functions is not guarantied in this simple minded separation
procedure. This is however only an issue when considering the overlap between states of equal m, for
different m the integration over the exact angular functions ensures the orthogonality. But for equal m
we have the situation

(FSUIEST) = (RAT|REN(ZSM1Z230) #0, N#N', m=m/, b=V

The importance of having orthogonal wavefunctions depends on what should be calculated using these
wavefunctions. In the case of Coulomb matrix elements orthogonality is crucial, as seen from e.g. figure 4.8
where the point g = 0 corresponds to the pure overlap of two effective radial functions and thus it must
always be zero for different functions. The actual impact of this non-orthogonality will be investigated in
the next subsection.

4.3.4. Comparison of exact and effective Coulomb matrix
elements

In this subsection we will perform a numerical comparison between the Coulomb matrix elements calculated
using the exact expression eq. (4.36) and those obtained through the effective expression eq. (4.39). The
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Figure 4.10.: Plot showing the coefficient AG(1: 1, n.) in the expansion eq. (4.40). The vertical and horizontal black
lines indicate which coefficients that are used in the definition of the effective functions in eq. (4.38).

comparison is performed to estimate the validity of the factorization procedure described in section 4.3.3.
More specifically we test whether the separated wavefunctions provide a good description and how big a
role the non-orthogonality of the separated wavefunctions play.

L7777/
i

Figure 4.11.: Schematic illustration of the level structure of the QD presented in section 4.2.3.

We focus on the same QD/WL geometry as in section 4.2.3, with the exception that Ry = 75 nm in
these calculations. A schematic of the level structure is shown in figure 4.11 where the level notation is
indicated, a more detailed version can be found in figure 4.5. We only perform the comparison for the
clearly bound QD states, as the factorization approximation is expected to be worst for these states, and
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therefore attention is not payed to the delocalized WL states, where the factorization approximation is
expected to be much better.

A representative selection of Coulomb elements is shown in table 4.2, where four different classes of elements
are presented, separated by the horizontal lines. The first class is that of two electrons in the same spatial
state scattering with each other into the same state and can be thought of as a classical electrostatic
interaction energy between two (equal) charge distributions given by the wavefunction squared. The second
class is similar to the first, but now the electrons are in different spatial states and hence these elements can
be expected to be smaller than the first class, as the spatial overlap between the two charge distributions
is smaller. The two first classes of elements, which can be interpreted classically, are usually called direct
elements. The third class contains elements of true quantum mechanical scattering events, that is where
the electrons are scattered to new states and hence this process can not be thought of classically as the
interaction of two charge distributions. These elements are usually called exchange elements, due to their
quantum nature. The fourth class comprises elements giving rise to excitonic effects, as these describe
the repulsion of electrons in the conduction band with electrons in the valence band. For the first three
classes we only consider processes in the conduction band, as those for the valence band are very similar
in magnitude, due to our choice of band parameters, which provide very similar wavefunctions for the two
bands, see appendix A.8. For each set of elements we have calculated the absolute and relative error of
the effective description, defined in the following way

Ve -V
absolute error = |Voxact — Veg|,  relative error = M_
|‘/exact|

In general we observe values ranging from 1 to 14 meV, with the direct elements being clearly larger
than the exchange elements. This is an effect easily understood mathematically in terms of the overlap
integrals, but it also makes sense physically since electrons that are closer spatially interact more strongly.
For almost all the elements considered here the relative error is below one percent, which is perhaps a
bit surprising considering the rather simple definition of the effective wavefunctions we have employed. It
should be noted that none of the elements in classes one, two, and four suffer from the non-orthogonality
issues described in the previous section, as they are either direct elements or exchange elements arising
from scattering between states of different angular momentum (and thus orthogonality is ensured). The
exchange element in the third class does, however, describe a scattering event between states of equal
angular momentum and here the non-orthogonality is expected to play a role. This element also has a
significantly higher relative error than any of the other considered elements, which is in part expected
to originate from the non-orthogonality. To test this presumption a Gram-Schmidt orthogonalization
algorithm was applied to the m = 0 subspace which states (c,1) and (c,5) belong to, to make sure that the
states where orthogonal. This lowered the relative error on V&S to around 6 % from 8.3 % indicating that
non-orthogonality does indeed have an effect. A fundamental problem does, however, arise when applying
various orthogonalization procedures to non-orthogonal quantum states. The issue is that the procedure
is unconstrained, in the sense that it has no connection to the underlying physical equation and hence it
is not ensured that the orthogonalized states continues to be eigenstates of the physical equation. Due to
this issue and the fact that only a small number of the exchange elements, which typically have a small
magnitude compared to other elements, are seriously affected by the non-orthogonality the states were left
not orthogonalized.
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Vbabsbibs — Fyact [meV] Effective [meV]  Absolute error [ueV] Relative error [%)]

a3
Vigeee 13.6855 13.6621 23.4464 0.171
Vigeee 9.80818 9.63959 168.590 1.72
Vises 10.7314 10.6882 43.2419 0.403
Vesss 9.33722 9.27056 66.6584 0.714
Vs 10.9611 10.8305 130.671 1.20
Viges 11.5185 11.4823 36.1249 0.314
Visis 9.94670 9.89138 55.3118 0.556
Visss 9.63071 9.53662 94.0926 0.977
Visss 8.89239 8.80978 82.6087 0.929
Vasss 9.79372 9.73499 58.7227 0.600
Visgee 1.13377 1.03971 94.0645 8.30
ViS5 3.15866 3.14862 10.0423 0.318
Ve 13.6236 13.6005 23.1121 0.170
VS 10.8932 10.7954 97.8453 0.898

Table 4.2.: Table for comparison of Coulomb matriz elements calculated using the ezxact expression given by
eq. (4.36) and the effective expression given by eq. (4.39). For these calculations a background dielectric constant
of €/e0 = 13.6 was used.

4.4. Optical dipole matrix elements

In this section we briefly describe the calculation of the matrix elements entering the quantum and classical
light-matter interaction Hamiltonians, eqs. (3.19) and (3.21) respectively. According to eqs. (3.20) and
(3.22) the matrix element is mainly determined by an apparently simple overlap integral over the position
operator (projected onto the electric field direction)

/dr[d)i(r)]*r cegdar ().

The integral can, however, not be calculated directly due to the fact that we are working in the ef-
fective mass approximation, and therefore do not know the Bloch part of the product wavefunction,
eq. (4.16),

o (1) = Fo(r)us(r),

explicitly. To proceed we wish to take advantage of the different length scales governing the Bloch and
envelope parts, as done with the Coulomb matrix elements in section 4.3.1, and separate the integral into
parts that can be handled. This separation is much easier to perform in the A - p form of the electron-
photon interaction. Therefore we remind the reader of the relation between a dipole and momentum
matrix elements, see eq. (A.13),

' 1
<¢Z|D : eE|¢Z'> = Zwbb’

ao’

(@ lp-elel) (4.41)

e
m
showing proportionality between the two quantities. Using the full product form of the wavefunction a
momentum matrix element may now be written as [53, p. 119]

(@l enldl) = / dr [F2(r)uy(r)] " p - emFY (r)up ()

— [ ar (2 eyntr)) {FL)p- epus(r)] + un(r)lp- exFLr)}

~ (FOIFY) (wlp - epluy) + (Folp - es|F2) (usluy)
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where on the second line we used that p is a differential operator and therefore the chain rule must be
applied on products, and further on the last line we separated out the slowly-varying envelope part as in
eq. (4.17). If we restrict our attention to inter-band transitions, which we will only consider in this thesis,
the second term vanish due to the orthogonality of the Bloch functions, i.e. (uc|uy) = 0, and we are left
with

(0alp - erlon) = (FSIFS) (uclp - epluy) - (4.42)

The part involving the Bloch function and momentum operator can be measured and is tabulated in the
literature, while the simple overlap integral between the envelopes can be calculated within our effective
mass theory. Fixing the polarization to the y-direction and using the formulaes of [53, appendix A 8.3]
one can obtain the following expression for the momentum matrix element

_ ;M
(ue|pyluv) = NoR (4.43)

which holds for a typical ITI-V semiconductor with a single conduction band and where the valence band
is taken to be the heavy hole band. For the material system we consider,In,Ga, _1As, , the parameter
|M| can be parameterized according to the formulae [53, p. 121]

M| = %\/28.8 —6.62 [eV?],

where z is the composition fraction and the [eV%} means the unit eVZ. Inserting now eqs. (4.41),

(4.42), and (4.43) into the expressions for a matrix element of the interaction Hamiltonian as derived in
appendix A.3, eqs. (A.14) and (A.15), we get

e[ M|
V2mw

We note that the only quantity left that depend on the electronic states, is the pure overlap between the
involved states, the electronic transition frequency that entered eq. (4.41) has canceled. As mentioned
in section 4.2.3 the electronic envelopes for conduction and valence band states are often very similar in
nature, meaning that we to a good approximation can assume the following

EO,y

(65 11 o%) = -

(FolFo)

(FRlFS) = daar- (4.44)

This has the consequence that we only consider "direct" or "vertical" optical transitions. This yields very
significant simplifications in the numerical solution of the equations of motion for the electronic density
matrix, as one can neglect "indirect" optical off-diagonal elements of the density matrix as discussed in
section 5.4.1.

The conclusion that can be drawn after this long series of approximations, is that all non-zero dipole
matrix elements has the same value independent of which transition they refer to. For the quantized fields
the dipole matrix element has to be multiplied with a few other constants that are not calculated explicitly,
see eq. (3.20), and hence we might as well treat the entire coupling constant as a parameter. This will not
over parameterize the equations, as often we only consider a single quantized mode. For the semi-classical
interaction, eq. (3.21), the dipole matrix element is multiplied by the externally applied field and it will
therefore only be this effective product, often denoted the Rabi energy, that enters the equations. For
these reasons we will not explicitly evaluate the values of the dipole matrix elements, but simply refer to
the effective numbers that enter the Hamiltonian.

4.5. Summary

In this chapter we considered the electronic single-particle states and the subsequent calculation of various
matrix elements using these states. In the first section we setup a simplified model for describing the

35



Summary Single-Particle States and Matrix Elements

single-particle electronic states bound in the QD and WL. We employed a simple effective mass model, that
treats the bound and unbound states on the same footing, and solved this model for a realistic geometry
using the commercial finite element package COMSOL. To illustrate the model we presented solutions
for a specific geometry and discuss the nature of the different states obtained. In the second part of the
chapter we discussed how to calculate the computationally demanding Coulomb matrix elements, using the
numerically obtained single-particle states. We presented two ways of performing this calculation, an exact
but slow formulation and an approximative but much faster method. The two approaches were compared
for a specific geometry, and for most elements the fast methods yielded relative errors below 1%. In the
last section calculation of matrix elements of the dipole interaction were discussed. We argued why it to a
good approximation was not necessary to perform any actual numerical calculations of the elements, but
rather obtain the numbers needed only using known and tabulated parameters.
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5. Equations of Motion

5.1. Introduction

In this chapter we present approximate forms of the general theory derived in the two first chapters and
develop the final equations of motion describing our cQED system. Selecting the appropriate approximative
forms of the Hamiltonians, and subsequently the truncation of the self-energies, is really the essential part
of doing theoretical many-body physics, as in general there is no chance of including all physical effects.
Our choices in this process will all be guided by previous studies in the literature, with the exception of
the electron-photon interaction which is not often treated in the literature. The end goal of this chapter
is to formulate a set of equations describing the time evolution of our non-equilibrium system. This
will be done in two steps: First we consider the equations governing the cQED system in equilibrium,
as these provide the initial conditions for the general non-equilibrium system and are important input
parameters in the GKBA. Secondly the actual non-equilibrium equations are developed. We treat two
cases of these, namely one where the GKBA is applied to both the electronic and photonic Green’s functions
and one where the full two-time Green’s function for the photon is treated. To our knowledge it is the
first time that the two-time photon Green’s function is being treated within a many-body semiconductor
formalism.

5.2. Approximations

In this section we will discuss various approximations to the general semiconductor Hamiltonian presented
in section 3.2.3, so that it in a feasible way describes the cQED system we wish to examine, see chapter 1.
The system contains three kinds of particles, electrons, phonons, and photons, that interact. Below, we
describe first the free systems, the quadratic parts of the Hamiltonian, and second the interaction parts
of the Hamiltonian. In the last part we consider the truncation of the self-energies, where the actual
derivation of these is performed in appendix A.5.

5.2.1. Hamiltonians
Non-interacting Hamiltonians

The electrons constitute a very important part of the system and hence a good description is needed
for the single-particle states and energies. The basic QD-WL system of the electrons has already been
described in section 4.2 and the band parameters in appendix A.8, hence technical details will be omitted
here. To sum up the most important facts, we operate within a decoupled two-band model, with a
conduction and a valence band. The localized QD states and the delocalized WL states are found from
the same effective mass Schrodinger equation and hence treated on equal footing. This automatically
ensures that orthogonality between the states fulfilled and that the energies are correctly described. The
free Hamiltonian for the electrons is still as in eq. (3.9)

HO,e = Z hwucj,cw
v
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but now we can elaborate on the general quantum number v. It can be written as v = (b, o, o), where
b is the band index that can be either conduction (c) or valence (v), a contains other spatial quantum
numbers within each band, and finally the spin is denoted by o.
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Figure 5.1.: Model calculation of the dispersion of the various phonon branches in bulk GaAs. Taken from [59].

Next, we will discuss the free phonon Hamiltonian. In a ITI-V semiconductor like GaAs there exist several
different kinds of lattice vibrations which eigenmodes are called phonons. These are divided into transverse
and longitudinal polarizations, usually called branches with reference to their band structure diagram.
Furthermore we divide them into so-called acoustical and optical phonons, where acoustical phonons in
general have a linear dispersion for long wavelengths, while the optical ones have a finite energy for
long wavelengths, often with very weak dispersion. To illustrate these facts regarding the dispersion
of the different phonon branches, we show in figure 5.1 a model calculation for bulk GaAs. It is a
textbook fact, e.g. [31, p. 325], that only longitudinal phonons set up strong polarization fields inside a
crystal on which electrons can scatter efficiently, therefore only longitudinal phonons will be considered.
Furthermore for scattering between discrete states in QDs, which is of the primary concern in this thesis,
only longitudinal optical (LO) phonons need be considered, as longitudinal acoustical (LA) phonons do
not have a large enough energy to provide efficient scattering [60, 61]. For larger wavevectors where the
LA-phonon energy becomes comparable to the energy separation between the QD states (typically 20-40
meV), the scattering amplitude for the transition goes to zero' and therefore do not contribute either.
It has however been pointed out [62, 63] that in the low temperature regime, below 150 K, LA-phonons
dominate the dephasing dynamics in QD systems. Based on these arguments and facts we will restrict
our attention to LO-phonons and only consider temperatures above 150 K. The LO-phonons will further
be taken as dispersionless in their long wavelength limit, seen to be reasonable from figure 5.1, which
is a commonly adopted approximation yielding huge computational simplifications. The free LO-phonon

I This tendency can be seen in figure 4.8, where the integral I ; is proportional to the amplitude for electron-phonon scattering
event for both LO- and LA-phonons.
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Hamiltonian can then be written as

Hy1o= Z thobjlbm
q

where q is the phonon wavevector and the zero-point energy appearing in the general form eq. (3.14) has
been dropped as it is without importance in the calculations. The value of fwyo for GaAs is approximately
37 meV. In practice wr,o is often replaced by wro — iTL_Ol, where 71,0 is a phenomenological lifetime for the
LO-phonons, that arise due to anharmonic processes going beyond linear spring model that is normally
assumed [64]. Formally one should not simply insert a complex energy into the Hamiltonian as suggested
above. This makes the Hamiltonian non-Hermitian and does not in general result in the correct dynamics,
one should rather consider a dressed LO-phonon Green’s function that decay with the introduced lifetime.
Values of 71,0 found in the literature are typically in the range 1-5 ps [41, 65]. We will not consider any
temperature dependence of either wy,o or m,0.

In the case of the free photons we are interested in modeling a cavity with a finite lifetime. The density
of states for such a cavity is characterized by having a certain width centered around the main cavity
energy. The cavity peak is made up by summing over many modes supported by the photonic struc-
ture and therefore many equations would be generated to treat the photons correctly. However, as our
main focus is not to provide a highly accurate description of the photonic modes and energies, we will
adopt another approach that enables us to consider only a single quasi-mode of the cavity with a finite
lifetime. To motivate this formally we replace the Hamiltonian eq. (3.12) for the free photons by the
following

HO,rad - hwcavalac + Z hwla;ral + Z (nalal + T‘l*azrac) )
l l

which is inspired by the tight-binding model used for electrons. This Hamiltonian describes a system of a
localized mode, denoted ¢, and a continuum of delocalized leaky modes, denoted by [, where an amplitude
exists, 17, for the process where a photon can "tunnel" from the localized mode and into the continuum
and of course also the reverse process. We are interested in the effect the leaky modes have on the lifetime
of an excitation in the localized cavity mode. To this end one should look for the spectral Green’s functions
of the system, e.g. the retarded Green’s function defined by

Ale(r) = =il 10(7) ([ac(7), all),

where we have used that the system is assumed to be in equilibrium and hence the Green’s functions only
depend on a single time (actually the time difference 7 =t — t’), see e.g. [28, p. 89]. As the Hamiltonian
only contains quadratic terms, and thus does not generate the infinite hierarchy of coupled equations,
A7 (7) can be determined exactly using the Heisenberg equation of motion. This is a textbook exercise
(see e.g. [28, p. 143] for the same model for electrons) and will therefore not be repeated. For one-time
functions, as A’ (7), it is often advantageous to go into the frequency domain and we employ the following
time Fourier transform definition

fw= [ T ate (), f(t) = / T ey, (5.1)

oo e 2

where 1 = 07 is a positive infinitesimal that ensures the existence of the Fourier transform. Physically it
can be seen as adding artificial damping to the system motivated by the fact that in real physical systems
no correlations lasts forever. It will however be replaced by a damping mechanisms in the physical model.
The retarded Green’s function for the cavity mode is given by

1 mr
AT (w) =
ce() hw — hweay — B0 (w)’ Z Mw —w; +1in)’

where X7 _(w) is the retarded self-energy. The self-energy can be written in terms of its real and imaginary
parts X7 (w) = AAL (w) —ihl'% (w), where AL (w) corresponds to an energy shift and ' (w) to an inverse
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lifetime. If we assume the self-energy to be frequency independent a Fourier transform back to the time
domain yields

AZC(T) - *ihi19(7’)671.(“)0"“’+A<T:C)T€*F:c'r,

clearly showing a renormalization of the energy and the acquisition of a finite lifetime when comparing
to its free counterpart given by A% (1) = —ih 10(7) exp(—iweayT). If we further assume that only the
new quasi-cavity mode is spatially resonant with the electronic transitions in the QD, we can neglect the
leaky modes and only treat them implicitly as a reservoir for the quasi-cavity mode and simply use the
quasi-cavity mode with a finite lifetime (neglecting the unimportant energy shift). The free Hamiltonian
for the cavity photons thus reduces to

HO,rad = m}cavaTa7 (52)

where the subscript ¢ has been dropped on the operators. To take into account the finite lifetime of the
photons in the cavity, all cavity photon Green’s functions should be dressed with the decay rate given by
Weav/Q, With @ = weay/I'L. being the usual Q-factor of the cavity. In the density of states picture this
series of approximations yields a Lorentzian shaped cavity with a width proportional to fiwcay /@ in energy
units. This approach is commonly used in the literature, see e.g. [66].

Interacting Hamiltonians

Now we move on to discuss the many-body interaction Hamiltonians of the system. We start with electron-
electron Coulomb interaction given in general by eq. (3.16). The only limitation we will put on this
Hamiltonian is the inability to scatter particles across the band gap, which has already been discussed in
section 4.3.1. We neglect these processes due to their very non-resonant nature and hence the Coulomb
matrix element acquire two delta functions in the band indexes

babs,b1b2
VV4V37V1V2 Va4a3 s X 5b4,b1 5b3,b27 (53)

where the spin index, o, has been absorbed into the spatial index, «. It is illustrative to write out the
sums over the band indexes in the expression for H._. explicitly

E yecsce T VV,VV T T
e e { go3,001 02 c oz4cc as Ce 04260 a1 Va4a3,a1agcv a4cv @3 CV@QCV,al
0(1(12
304
cv,cv T T ve,ve T T }
Va4a3 [e 2R D) cc a4cv ach,az CCyal Va4a3,a1a2 cv a4cc ozgcC,az vaal .

The two first terms describe intra-band processes occurring in the conduction and valence bands respec-
tively. The two last terms describe inter-band processes where particles in each band scatter on each other,
but remains in their respective bands. The inter-band processes give rise to excitonic effects well known
for their importance in semiconductor optics. It should also be noted that this form of the Coulomb inter-
action conserves the number of particles in each band, hence it does not cause recombination of electrons
and holes.

As argued in the previous section, we need only consider LO phonons in the interaction between electrons
and phonons. The interaction Hamiltonian between electrons and dispersionless long-wavelength LO
phonons is often described by the so-called Frolich Hamiltonian [24, p. 44]

M
Hepo=) V;p<q)<biq+bq), (54)
q qv:

where ¢ is the phonon wavevector, p(q) is the Fourier transformed of the electron density operator, and V'
is the quantization volume. The square of the coupling constant M is given by
QMLO ( 1) _ 2tho 1

M2

2 \ew ¢ 2 e
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where hiwpo is the LO phonon energy and ¢ (e4) is the low frequency/background (high frequency)
dielectric constant. This interaction Hamiltonian can be derived from the fundamental form, eq. (3.23),
but this will not be done here, interested readers can consult refs. [24, 31]. The Fourier transformed of the
electron density operator is obtained from its definition p(r) = T (r)y(r) and using the spatial Fourier
transform in eq. (4.12), giving

p(q) = /dre’i‘”p(r) =Y (e W) cher.
Inserting this into eq. (5.4) yields
H,_ 14072‘]\4(1’C CV +bq)v Mllllv’

vv'q

T (vl ),

which is the desired form of the interaction. As with the Coulomb interaction between electrons we limit
the LO phonons to only cause intra-band transitions, which is justified due to the non-resonant nature
of an inter-band transition caused by a LO phonon. This does however not mean that the LO phonons
cannot affect electronic inter-band quantities, such as the optical polarization.

The interaction between the electrons and cavity photons is given by eq. (3.19), which for the quasi-cavity
mode introduced in eq. (5.2) reduces to

He 1oq = Z hguy/cicu’ (aT + a)~ (55)
vy’
We can simplify this interaction further by applying the rotating wave approximation (RWA), in which
terms describing very non-resonant processes where an electron is excited across the bandgap and a pho-
ton is emitted (and the opposite) are neglected. This approximation is well justified when the coupling
constants fg,,, are small compared to the cavity energy hwcay. In the RWA we get the following Hamil-
tonian

He raa = Z hgaa’ (Cl,acwa’a + aTci,acc,a’)a (5-6)
aa’
where we have assumed that ¢&Y, = g%, = gao and again the spin index has been absorbed into the
spatial index. The RWA is investigated further in appendix A.2.

The interaction Hamiltonian for the classical excitation pulse is given by eq. (3.21) which can be used in
this general form. The RWA can however also be applied to this interaction, to which end we write the
classical field as

1 _ _
Ea(t) = 3Bo(t)(" + e="),

where Ey(t) is an envelope function and the exponentials set the carrier frequency of the pulse. Unless
otherwise stated the pulse envelope will be a Gaussian of the form Fy(t) = Egexp(—((t —to)/At)?), with
At being the temporal width and ¢, the peak position. The positive and negative exponentials in Eq)(t) ba-
sically correspond to the photon operators discussed above, i.e. emission and absorption of photons, hence
the same arguments apply and we can immediately write down U (¢) in the RWA

Ey(t
t) = Z daa/# _“’J"thr oCv.ar + e“”"tci oCera’)s (5.7)
aa’
where again we assume that df, = d'°, = d’ and absorb the spin index into the spatial.

The reason for applying the RWA to the Hamiltonians involving the various optical fields is purely practical.
If the RWA was not applied, there would appear terms in the equations of motion oscillating on timescales
on the order of two times the inverse optical frequencies, which in our case are tuned to the band gap of
around 1 eV. These timescales are much smaller than any other in the system and hence set the lower limit
in the time discretization. Furthermore the effect of including these highly non-resonant contributions is
usually small. Thus it is of great practical importance to apply the RWA and this will be done for most
calculations in this thesis.
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5.2.2. Truncation of self-energies

Approximations applied to the Hamiltonians are the most fundamental restrictions one can impose on a
given model of a physical system, and these approximations will set the ultimate limit for the validity
of our physical model. Unfortunately, we are not done with applying approximations. Any many-body
interaction Hamiltonian will generate infinitely many terms in its corresponding self-energy, a situation
that cannot be handled in practice and hence a truncation of the self-energy is needed. The truncation
of the self-energy decreases the accuracy of the quantities calculated using the Green’s functions, as
oppose to the exact quantities obtained through exact diagonalization of the Hamiltonian. The challenge
is then to select the appropriate self-energy, so that ones results has the desired accuracy needed in a
given application. The selection process is often guided by physical intuition, experience, and certain
fundamental conservation laws. However it is not always obvious which self-energy diagrams should be
used.

Notation is a rather important aspect of performing many-body calculations due to the many different
quantities one has to keep track of. We will therefore at this point fix the symbols used for the various
self-energies in a hopefully meaningful fashion. The electrons interact with every other constituent of the
system, including themselves, and therefore we need a total of four self-energies which we will denote by
the following symbols

St (1), S, ST t), U (t),

1274 127 127

The superscripts LO, rad, and ee refer to interactions with phonons, photons, and other electrons (Coulomb)
respectively and U, (t) is the singular self-energy due to the classical excitation pulse. The self-energies
are presented in their real-time form and x refers to one of the four components greater, lesser, re-
tarded or advanced. The photons in the cavity only interact with electrons, and as we only consider a
single quasi-cavity mode, only a single symbol is needed for this self-energy and we will use the follow-

ng
a®(t,t).

The phonons will be assumed to be in thermal equilibrium at all times and therefore a self-energy is not
needed.

Below, we explicitly go through all the self-energies mentioned above, but first we make a comment on some
general features of the self-energies. All the considered self-energies are of lowest order in their respective
coupling strengths, however they are all made self-consistent as dictated by the conservation laws? of
particle number, momentum, and energy [30]. The procedure of making a self-energy self-consistent
consists of replacing free Green’s functions by the corresponding full one, as illustrated diagrammatically
in appendix A.5. A justification for considering only lowest order contributions will be given for each
self-energy below.

The lowest order contribution to the self-energy from the electronic Coulomb interaction is given by
eq. (A.21) and is a singular contribution, in the sense that it does not depend on two times, but rather a
single time see eq. (2.42). This has the effect, that it acts as an effective one-body interaction and not a
true many-body interaction. As such it gives rise to instantaneous renormalizations in the single-particle
energies and external fields, but does not cause broadening of spectral features. In its self-consistent form
it is equal to the well-known mean-field Hartree-Fock (HF) approximation, which is exactly the form we
will use

Eii/HF(t) =1h Z (VVV27V1V/ - VVVZyVIVl) [Gzizq (ta t) - Z'71715171,vésbz,vaul,l/z]~ (5-8)
viva

Notice that the contribution from the full valence band has been subtracted from this self-energy, for
which reason only diagonal Green’s functions should be subtracted ensured by 6y, ., [26, p. 260]. This

20f course a quantity is only conserved if the corresponding symmetry is present in the system. In general in a non-relativistic
non-equilibrium system particle number is the only conserved quantity.
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is done as it is included in the band structure of the single-particle energies we are using, basically it is
contained in the experimentally measured parameters discussed in appendix A.8. This subtraction has
the consequence that in equilibrium (the unexcited semiconductor) the electronic Coulomb interaction
will not contribute, it will only give contributions for non-equilibrium situations. The regime of validity
for the HF self-energy is that of low excitation, where only a small number of electrons are optically
excited. Beyond the low-excitation regime one has to include higher order contributions to the self-
energy to account for complicated effects like screening and true Coulomb scattering. It should also be
noted that the HF mean-field theory does not account for two-pair or higher order correlations as e.g.
biexcitons, see [27, p. 451]. For completeness we mention that the HF self-energy satisfy the following
symmetry

e @) =25 (), (5.9)
which be shown using the symmetry relations for the lesser Green’s function eq. (2.32) and those of the
Coulomb matrix element eq. (4.9). This symmetry can be useful for formal arguments as well as for saving
computation time in the numerics.

In the low excitation regime it is a well established fact [56, p. 222] that the dominant scattering mechanism
is provided by phonons and therefore these are the main sources of intra-band relaxation and inter-band,
as well as intra-band, dephasing. The two lowest order self-consistent contributions to the self-energy
are given by egs. (A.30) and (A.29). However as discussed in the previous subsection we can to a good
approximation limit our attention to LO-phonons if we keep the temperature above 150 K [63], which
yields very significant simplifications as will be discussed next.

We can make some simplifications on the self-energy arising from the LO-phonon interaction, due to the
simple fact that we assume the LO-phonons to be dispersionless. Both contributions to the self-energy,
egs. (A.30) and (A.29), contain a sum over g and a product of two M? ,s multiplied by the free phonon
Green’s function. Due to the dispersionlessness of the LO-phonons, their corresponding free Green’s
function will not depend on energy and therefore not on g either, meaning that it can be taken outside
the g sum. The wavevector sum is therefore limited to run over the M? ;s giving a quantity which can be
considered an effective matrix element in four electron indices. Inserting the definition of M? , into this

quantity gives the following

- 1 1 iq- —ia-
DM ML = MG Sl Iug) (e T
q q

by comparing this to the Coulomb matrix element in the form of eq. (4.14), we see that these quan-
tities are equal®, apart from a few multiplicative constants?. We end up being able to write [32, p.
72]

M2
S M2 e = 2 fwro (5.10)

Vv ) = — I
v s o2 vov1,Vhv] 28*/6 vovy,vhv]
q

This result saves a lot of computation time in two aspects. Firstly we only need to calculate the Coulomb
matrix elements, and not the phonon matrix elements, which is very fortunate as these two are the
most time consuming of all the input matrix elements. Secondly, and more importantly, the g sum
does not have to be carried out explicitly in the numerical solution of the equations of motion for the
Green’s functions, which results in a very significant speed up. With this simplification we write the Fock

3However, it should be noted that formally the wavevector sum for the phonons is restricted to the first Brillouin zone, but
we will assume the matrix elements ng, decay sufficiently fast so that we may extend the sum to all wavevectors.

4In the actual simulations one should be mindful of the fact that the two dielectric constants in eq. (5.10) are for the bulk
material in which the LO-phonons live, whereas the electronics wavefunctions are often calculated for another material
as usually we consider heterostructures. This means that the pure Coulomb matrix elements are often calculated with a
different dielectric constant and hence a simple rescaling is needed.
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contribution using the contour version eq. (A.30) and the appropriate Langreth rule from table 2.1 as
follows®

LOF,> . hwro 0,2
Spo S () =ik Y ﬁv GZ,,(t,t)DI'5 (¢, 1), (5.11)
S 2er e

where DE’O2 (t,t") is free LO-phonon Green’s function defined in eq. (A.35). This self-energy has the
following symmetry under complex conjugation

LO,F,> * LOF.2

[EW, <(t,t’)] = —xEOFR(y g,

shown using the same relations as eq. (5.9). This relation is useful for simplifying the scattering terms
arising from the electron-LO-phonon interaction, as done in section 5.4.1, or to relate values of the self-
energy above and below the time diagonal, which could save some computational effort. The second first
order self-energy is the Hartree contribution, which from eq. (A.29) and using the Langreth rules, see table
2.1, has the following real time expression

t
. hwro -
SEOHG = —in / dt'y T/EV (G5, (8 ) — i 8y, Oty O i | DYG (L), (5.12)
- 1282
where Dgg (t,t') is the free retarded Green’s function of the LO-phonons and where the contribution from
the full valence band has been subtracted for the same reasons as with eq. (5.8). As with the singular
self-energy for the electron-electron interaction this singular self-energy satisfy a symmetry relation similar
to eq. (5.9), namely that under under complex conjugation we get

EEOH ) = 20w,

which is useful in the numerics and for certain formal arguments. The justification for neglecting higher
order self-energies in the electron-LO-phonon coupling, is that we restrict ourselves to treating materials
with weak coupling constants, such as GaAs [26, p. 262].

We will now consider the electronic self-energies arising from the electron-photon interaction. Due to the
formal equivalence of the electron-photon and electron-phonon interaction Hamiltonians, see section 3.2.3,
their corresponding self-energies will also be equal, with the appropriate replacement of symbols of course.
We will therefore simply state these, as basically all the comments made to the phonon case applies to the
photon case as well. From the Hamiltonian eq. (5.5) and eq. (A.23) we obtain the Fock contribution for
the photons

1274

Erad,F,z (t, tl) =1ih Z ﬁgwl hgu21/ Giw (ta tl)Az (tv tl)a (513)

viva

which as for the phonons has the following symmetry

vy’

[Erad,F,é(t’tl)} _ 722‘}311?12@/’15)' (514)

The Hartree contribution from the photons is obtained from eq. (A.22)

t
s () = —in / At " hgu B, (G () = ih™ 0y, Oy O 1] AT (1), (5.15)

—00 Vivs

with the symmetry relation

o) = 0.

v/ v'v

5Tn this section we only present the greater and lesser real time components of the self-energies, as it is these that are used
in the non-equilibrium simulations which are the main focus. If other real components are needed, as in equilibrium, they
will be presented in their respective sections.
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Restricting ourselves to the lowest order self-energies for the electron-photon interaction we limit the
validity of our theory to relatively weak electron-photon coupling constants.

Now we turn to the photonic self-energy arising from the interaction with the electrons. To stay consistent
with the electronic self-energies described above, we keep only the lowest order self-energy diagram in the
expansion of the photonic Dyson equation. This is called the pair-bubble diagram due to its diagrammatic
appearance, see figure A.8. The contour version is given by eq. (A.27) and with the use of the Langreth
rules we get the real time components

211 = —ih Y hgu g,y Go,, (61)GS, (F,1), (5.16)
llllll
1/21/;

which satisfy a symmetry relation similar to that of the electronic self-energies

{az(t,t')r = —o2(t,1). (5.17)

5.3. Equilibrium

In this section we deal with the Green’s function theory describing the equilibrium properties of our
system. It is important to know these for two reasons. The first and most relevant for the present thesis is
the need to supply the GKBA, section 2.5, with suitable retarded and advanced Green’s functions. Even
though one may employ free Green’s functions in the GKBA, the result is often very poor and indeed for
our system it resulted in unphysical populations for all considered situations. Fortunately it turns out
[37, 38, 41] that the equilibrium Green’s functions provide excellent approximations for the retarded and
advanced Green’s functions entering the GKBA. More generally the solution of the equilibrium system is
needed in order to provide any set of non-equilibrium equations with the correct initial conditions, which is
the second reason for considering the equilibrium Green’s functions. The correct set of initial conditions is
needed in order for the initial/equilibrium correlations to enter in the non-equilibrium time development,
as otherwise these will be missing for the rest of the time evolution [26].

5.3.1. Equilibrium spectral Green's functions

A general consequence of a system being in thermal equilibrium is that its Green’s functions become
functions of a single effective time (the time difference), rather than the two-time dependence in non-
equilibrium. This is indeed expected on an intuitive level, as a system in thermal equilibrium can-
not depend more on one time than the other, and hence the only "real" time coordinate must be the
time difference. This is easily shown formally, as for a time-independent Hamiltonian the Heisenberg
time-dependence is given explicitly by O(t) = etHt/hQe=tHt/h  For a greater-like quantity we may

write
1 - i —i iHt' —iHt'
(Oa(t)Og(t’» _ WTY [e BH iHt/h() o ~iHb/hgiHt /hO;rje Hit /h}
1
_ T [ —BH iH(t—t')/h —iH(t—t')/h T}
To[e 7] T Oqe 0]
= (Oa(t —)0}), (5.18)
where we used that the trace operation is invariant under cyclic permutations, Tr[AB] = Tr[BA], and

that the thermal and time operators commute, also the chemical potential is assumed to be zero. The
same can be shown for a lesser-like quantity and hence all the various Green’s functions can be written as
functions of the difference time, G(t,t') = G(t — t') = G(7).
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In the following we will focus on the retarded Green’s function as this object is directly related to the
spectral properties of an equilibrium system, further it is known from the equilibrium Green’s function
formalism that only a single Green’s function is needed® and this is often chosen to be the retarded one. We
will therefore aim for a formulation in terms of the retarded Green’s function within the non-equilibrium
formalism. A natural starting point is the difference (equilibrium) time limit of the equation of motion
for the retarded Green’s function, eq. (2.51),

t
ihd-GT,,(T) = 6(T)u + hwy GT,, (1) + / dtr Y G, (t—11)50, (7 — [t — ta]). (5.19)
t—T1

Vi

In the equation of motion above the step function from the definition of the retarded quantities has been
used to limit the memory integral. In this version we do not consider any contributions from the singular
self-energy. This is correct for the external potential as this is not present in equilibrium. Furthermore,
the instantaneous self-energy from the Coulomb interaction is by construction zero in equilibrium’, see
eq. (5.8) and so are the singular contributions arising from the Hartree self-energies from the LO-phonons
and cavity photons, egs. (5.12) and (5.15) respectively. We can simplify a bit further by introducing the

following transformation of the memory time ¢;

t1=t 7'1=O T
T1=t—t1$d7‘1=—dt1, / dtlz—/ dT1=/ dTl,
ti=t—7 TI=T 0

through which we may write the above equation as

thd, G, (1) = 8(T)0p + hw, Gl (T) + / dm Z Gy, (T (T —T1). (5.20)
0 o

This equation will form the starting point for all spectral functions considered in the rest of the re-
port.

5.3.2. The polaron

In this section we will formulate the theory for the situation where the self-energy in eq. (5.20) describes
the interaction between electrons and dispersionless LO-phonons. The quasi-particle that forms from this
interaction is usually called a polaron [24, p. 497].

LO-phonons cause only intra-band transitions and as no inter-band polarizations are induced otherwise,
all Green’s functions must be diagonal in the band index. It has further been found [41, 61] to be a good
approximation to only include Green’s functions fully diagonal in both band and all other indices. This is
a huge simplification computationally and further we can simplify the notation for all quantities to only
contain a single index (two in practise as we write the band explicitly), hence we can perform the following
replacement everywhere

GOJE(7) = GU (7)0u Baar, St (7) = B (7) 60t O (5.21)
where b is the band index and « contains all other quantum numbers. The fact that the self-energy also

becomes diagonal in its outer indices is a consequence of the matrix structure of the Dyson equation
eq. (5.20).

We consider only the Fock contribution to the lowest order self-energy, as the Hartree term is zero as
mentioned in the discussion below eq. (5.19). From eq. (A.30) and the appropriate Langreth rule from

6The fact that only a single Green’s function is needed in equilibrium can be realized using the fluctuation-dissipation
theorem that links the different Green’s functions together [26, p. 45].

"The equal-time lesser Green’s function that appears in eq. (5.8) becomes proportional to the mean thermal occupation in
equilibrium, which is zero for the conduction band and unity for the valence band so that (cz,acb&) — v =0.
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table 2.1 we get

hw
b,LO,F, LO 1/bbbb
o Tt ) = zhz 20 )z Vo ey

x {G‘;f (14D (4, 1') + Ghy (6, ) DY () + G (1 ¢) DY (1)}

where we have used eq. (5.21) and eq. (5.3) to remove most of the sums. To proceed further we will make
the assumption that no electrons are thermally excited across the bandgap, hence we consider what is some-
times referred to as an electron-hole vacuum. This assumption is well satisfied for the class of ITI-V semicon-
ductors we are considering all having band gaps well above thermal energies typically used in experiments
(26 meV for room temperature). This allows us to assume that [26, p. 296]

GS<(t,t') =0, (5.22)

as GS<(t,t') is related to the probability of detecting an electron in the same state at time ¢ and ¢/,
and in an empty band this probability is zero. More formally this can be realized by considering the
definition of the above Green’s function which is GS<(¢,t') = i~ (cf ,(t')cc,a(t)), this Green’s function
is proportional to the probability of removing an electron in state a in the conduction band at time ¢ and
putting it back at time ¢/, where ¢ < ¢t might be the case. By assumption the brackets describe a system
where no electrons are present in the conduction band, hence the annihilation operator at time ¢ will see
a vacuum and the probability for this process will be zero. For the electrons in the valence band it must
similarly hold that

GYL7 () =0,

as the G~ (t, ') is related to the probability of detecting a hole at times ¢ and ¢’ which is zero in a full
band. As above a more reason can be seen by considering the definition of the greater Green’s function
GY7 (t,t) = —ih ™ (cv.a(t)c] o ('), where an electron is created in the valence band at time ¢’ and removed
at time ¢. By assumption the probability for this process is zero in our full valence band due to the Pauli
principle. From this conclusion and from the definition of the retarded Green’s function, eq. (2.24c), we
get

GUs(t,t') = -Gy (t,1). (5.23)

Considering now the retarded self-energy for the conduction band: The first term is zero through eq. (5.22),
for the second term we use the relation® D" = D> — D< for the LO phonon Green’s functions, which after
a cancelation yields

ECLOFTtt/ ZGcrtt/DcC>(tt)

[e7e 5]
For the valence band simply use eq. (5.23) in the first term after which this and the second one cancels
giving

EVLO,F,rtt ZGVT‘tt DVV<(tt)

aoq

In both of the above self-energies we have introduced an effective LO-phonon Green’s function given
by

hw
DYo2(t ) = ihg LOyyoy DS (t,t)

aog / oo

_ hWLO b bbb
- 25*/{5 [e5Ne e Te 5]

{NLoeii“’Lo(Ft/) + (NLo + l)emwm(t%/)} ) (5.24)

8Even though the phonon Green’s function is not defined in exactly the same way as the electronic Green’s functions, this
relation still holds as it does for electrons in the retarded Green’s function definition eq. (2.24c). See [24, p. 121].
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where D (t t’) is found from eq. (A.35), fiwr,o is the constant LO phonon energy, and N1,o = 1/(exp(fiwro/ksT) — 1)
is the thermal occupation factor of the LO-phonons. In the actual simulations this Green’s function is mul-
tiplied with a decaying exponential exp(—7; 4|t —#|), to simulate the finite lifetime of the LO-phonons, see
section 5.2.1. For completeness and later use we mention that ngo/lz(t7 t') satisfies the following symmetry
relations
DY (1) = DRS¢, 1), (5.25)

[e7e 5] [e7e5)

and under complex conjugation

[e7e 5} [e5Nel

[Dbb 2(t, t’)} = DW.S(t,t') = DYES(1,¢), (5.26)

shown using the symmetries of the Coulomb matrix element, see eq. (4.9), and those of DE’O2 (t,t'), see
eq. (A.36). We can now write down the equation of motion for the retarded Green’s function

ihO.GT (1) = 6(7) + hal GB7 () + / A G (n) ZG — DN (r — ), (5.27)
0

where \. = > and A\, = < is a band specific index. We note that in the present approximation the bands de-
couple completely and can be solved independently simplifying the numerics and interpretation. The initial
condition for G%"(7) can be determined from its definition eq. (2.24c) as follows

Gy (0) = —ih10(0) ([ep,a(t) ¢f o (B)]4) = —ih /2, (5.28)

where the equal-time anti-commutator has been evaluated to unity and we used that 6(0) = 1/2 per
definition.

Eq. (5.27) is in its present form not very suitable for numerical solution, this is due to the presence of the
delta function in the first term and the free energy in the second term. The delta function is hard to repre-
sent numerically while maintaining its essential features and the underlying fast oscillations from the free
evolution will require a very fine time discretization. To avoid having to deal with these issues we perform
a transformation of the retarded Green’s function [67] given by the following

GV (1) = —iliL0(r)e TGl (1), (5.29)

which eliminates the fast oscillations through the exponential and the delta function through the step
function. The transformation is just a slowly-varying envelope representation used in many areas of physics.
The initial condition for G% () is found from that of G%"(7) and we simply get

Ga(0) =1

Transformation of the equation of motion, eq. (5.27), is done using simple substitution, the chainrule for the
time derivative, and the fact that 9, (6(7)) = d(7). This yields the following equation®

T -1 b b
ang(T):fh*Q/O dn G (n) Y etamwalT=migh (7 — 1) DU (1 — 1), (5.30)

Numerical examples

To illustrate the effect LO phonons has on the spectral properties of the electrons, we give a numerical
example which further serves as future reference for the non-equilibrium simulations performed later in

9The time derivative in eq. (5.30) has a step function multiplied onto it, 6(7)0- 95;"(7), from the transformation. However
as it is only different from 1 for 7 < 0, which we do not consider, and for 7 = 0, where the RHS of zero, we have removed
it from the equation.
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Quantity Value Unit | Quantity ~ Value  Unit | Quantity Value Unit

h 1 nm hw§ 665.9697 meV hwr,o 36.8 meV
d 1.25 nm hw§ 702.1410 meV €00 /€0 10.9 1
1 15 nm hws 702.1410 meV g/eo 12.5 1
T9 7.5 nm hwy -563.8878 meV TLO 5 ps
Ry 50 nm hwsy -588.3320 meV
L, 60 nm hwy -588.3320 meV

Table 5.1.: Table presenting various parameters: (left) geometrical parameters of the @D, (mid) free single-particle
of the bound states in the QD, and (right) parameters describing LO-phonons in a bulk GaAs system.

the thesis. For simplicity we focus on a QD with few bound states and to further simplify we neglect the
WL continuum. We stress that the neglection of the WL is not justified for the temperature range we will
be considering, namely the range above 150 K where acoustic phonons can be neglected [63], which are
not included in the present theory. For temperatures near room temperature it can be expected, and has
been demonstrated [42], that electrons will be thermally excited into the WL continuum and hence these
states will become important for the dynamics. In the low temperature regime it is, on the other hand,
expected to be a much better approximation to neglect the WL continuum, as here the thermal excitation
is expected to be smaller [68].

To obtain only a few bound states, the size of the QD has to be relatively small and it turns out that
the geometric parameters shown in table 5.1 (left) (compare with figure 4.2) produces a QD with three
clearly bound states in both conduction and valence band. The energies of these states are shown in table
5.1 (mid), while the corresponding wavefunctions are very similar to those presented in section 4.2. All
matrix elements used in the simulations to come are calculated using these states. A schematic of the
level structure is shown in figure 5.2 where also the notation of the states is indicated, the crossed areas
above and below the dots represents the WL continuum which we neglect. We note that the spin degrees
of freedom of the electron are omitted in the following, this is not an approximation as the electron-
phonon interaction we are considering is diagonal in spin and hence does not couples the spin up and
down subspaces. The parameters describing the LO-phonons are shown in table 5.1 (right) and are taken
as those of a bulk GaAs system, as this is what our embedding barrier material consists of [31], the
LO-phonon lifetime has been taken from the literature [41, 42].

The governing equation eq. (5.30) was solved in the time domain using the methods described in ap-
pendix A.4, but the results are presented in the frequency domain as this domain is usually more familiar
when discussing spectral properties. We use the Fourier transform defined in eq. (5.1) with n =0. It
should be noted that the system consisting of a single electronic state coupled to a continuum of phonon
modes can be solved exactly. This model is known as the independent boson model (IBM) [24, p. 285], and
we will sometimes refer to this model in the following discussion, as it can be useful in the interpretation
and verification of the theory developed here.

In figure 5.3 the spectral functions of the various states are shown at four different temperatures, for the
conduction band in the top figure and the valence band in the bottom figure. The spectral function (or
spectral density) is defined as

Al (w) = —2Im [GL"(w)] (5.31)

where G%"(w) is the Fourier transformed of G%" (7). The spectral function is very similar to the usual
density of states, see eq. (2.4), and therefore has a rather physically intuitive interpretation which is
the reason for showing this quantity. When comparing the polaron densities to that of a free particle,
A%P(w) = 270 (hw — Aw?) marked by the vertical lines, the difference is very significant. The most striking
difference when comparing to normal Lorentzian lineshapes is the formation of the phonon sidebands
situated approximately one LO-phonon energy apart. These form due to the constant energy of the LO-
phonons and are signatures of states where a number phonons have been absorbed or emitted. A small
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Figure 5.2.: Schematic illustration of the level structure of the QD used in the polaron simulations.

energy renormalization is also induced by the phonons, usually called the polaron shift, it is negative for
conduction band states and positive for the valence band states. This difference of sign is expected arise
from the fact that for the conduction band states we are really considering holes (unoccupied states),
while for the valence band we are considering electrons (occupied states) so a difference is definitely
expected.

Another peculiar feature is the multipeak clusters near each of the main peaks, as oppose to just a single
peak at each LO-phonon energy separation that would naively be expected from the IBM. It turns out that
these multipeak structure are due to the coupling between the bound states in the QD, mediated by the
LO-phonons and as such it is an hybridization effect. To support this claim the spectral functions have also
been calculated for the uncoupled system, i.e. where there is no intra-band coupling between states due to
phonons, the result is shown in figure 5.4 and we observe a simple series of single peaks as expected on the
grounds of the IBM. The relatively large difference in the spectrum for the conduction and valence band
is solely due to the difference in transition energies within each band, as the phonon matrix elements are
very similar for the two. For the conduction band the transition energy is hw$; = 36.17 meV while for the
valence band we obtain AwY, = 24.44 meV. This shows that the electronic transitions in the conduction
band are very close to resonant with an LO-phonon energy, while the valence band transition is not nearly
as resonant. Thus a stronger interaction between the conduction band states and the LO-phonons is
expected, which is manifested in the three-peak structure many of the main peaks exhibits. The center
peak is the one which is also present without coupling to other states, while the "shoulder" peaks arise due
to a hybridization splitting seen many places in quantum physics. The three-peak structure is completely
absent for the valence band spectrum, where the hybridization peak is well separate from the phonon peak,
due to the lack of resonance. The main phonon peaks in the valence band all have a small "shoulder" on
one of their sides, this is not a sign of hybridization as it also appears in the decoupled spectra in figure 5.4.
From the IBM we know that the decoupled solutions should no exhibit any "shoulders" but should simply
be a series of Lorentzians, we therefore take the presence of these "shoulders" as unphysical artifacts
present due to the approximations we have performed [69]. The lack of resonance is also seen through the
width of the peaks in the valence band, these are more narrow than those in the conduction, indicating a
longer lifetime as they do not couple as efficiently to the phonon reservoir.
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Figure 5.3.: Plots of the spectral function, eq. (5.31), for the electronic states.
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As we go through the various series for decreasing temperatures we notice that the peak height either
increases or decreases, depending on whether we consider the high or low energy side with respect to the
free energy, further the trend is reversed when going between bands. For the valence band the high energy
side peaks decrease and the low energy side peaks increase in height, while generally narrowing in width.
This observation is taken as evidence that the high energy side corresponds to absorption of LO-phonons,
as generally lowering the temperature decreases the number of phonons, correspondingly the low energy
side must, correspond to emission of LO-phonons. The reason why the emission peaks do not decrease in
height as the temperature is lowered, is due to the contribution from the vacuum field, i.e. spontaneous
phonon emission. This overall picture of the peaks agrees well with the physical intuition that if an electron
absorbs a LO-phonon its energy must increase, while emission must lower its energy. For the conduction
band the situation is reversed, which is expected to arise from the fact that we are dealing with holes
(unoccupied states) rather than electrons. It is easily seen formally that we consider hole properties when
solving for the retarded Green’s function, this is so as for the conduction band G< = 0, eq. (5.22), and
hence per definition G = G~, where G~ describes the properties of unoccupied states, i.e. holes. A more
intuitive physical reason has however not been found.

When comparing the above results to similar calculations in the literature [41] we find excellent agreement
on the overall structure of the spectrum. Furthermore it seems that the main effect of including a WL,
is to broaden all spectral features and many of the fine structure features survives inclusion of the WL.
As a further verification of our implementation, we compared the results of our numerical code to a
numerically exact solution, that can be obtained in the case of a free (non-self-consistent) self-energy. The
result of the comparison was an excellent agreement, between the two approaches, verifying the numerical
code. As a closing note we mention that all the considered spectral functions satisfy the sum rule [28, p.
130]

d(hw)
—— A (hw) =1,
/ 2’/T CE( )
which provides further verification of our implementation and confirms that the particle number is con-
served after turning on the LO-phonon interaction, by virtue of the self-consistent self-energy we have
employed.

5.3.3. The polariton

In this section we will formulate the theory where the self-energy in eq. (5.20) describes the interaction
between electrons and photons in a single cavity mode.

For the case of the LO-phonon interaction treated using non-equilibrium Green’s functions much literature
is available, but this is not the case for the photon, at least to the knowledge of the author. This means that
we must take a more explicit approach for finding out which elements of the retarded Green’s function we
need to solve for. Our starting point is the Fock self-energy arising due to the electron-photon interaction,
which in the RWA and contour time is given by eq. (A.25). It should be noted that the Hartree self-energy
is zero, as we assume all optical inter-band polarizations to vanish!® in equilibrium, see eq. (A.26) or
eq. (5.41). The cavity photons we consider have energies near the band gap hence we will assume that
they only cause inter-band transitions, i.e. are band off-diagonal in their matrix element. Furthermore we
will assume that pairs of states in the conduction and valence band exists, which are spatially similar, so
that the optical matrix elements become diagonal in the in-band quantum number «, see section 4.4. All
in all we may write the optical matrix element gg’j;, = gala,o’ (1 — 0ppr ), further suggesting that it may be
a good approximation to only treat Green’s functions diagonal in the in-band quantum number «. This
simplification is further supported by the observation that only fully diagonal retarded Green’s functions

10Although this statement might seem trivial, it in fact amounts to showing that pS<V(t) = (ci,a(t)cc,a(t» =
(el at —t)cea) = (chace,a) = W’I‘r{e*m{cyacga} is zero. In the presence of interaction mechanisms that

operate across the band, such as the electron-photon interaction, this is not possible and it will remain an assumption,
but for most wide band gap semi-conductors a rather good one.
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do initially have a non-zero value and hence source terms are needed for these to become non-zero, which
are small or zero according to the arguments given above. With the use of these arguments, eq. (A.25),
and the Langreth rules of table 2.1 we may write the retarded self-energy as

Eib,’rad’F’T(t,t/) _ Zhlhga|2 « {
[G;Vv<(t, A" (4, 1) + GEVT () AT () + GLYVT () AS (4, t’)] Sb.c
+ [GEo=(t, ) A (' t) + GO (t, ) AS(E,1)] Gby } Oppy-

As for the phonons we will assume that no electrons are thermally excited and hence that eqs. (5.22)
and (5.23) continue to be valid when considering photons also, therefore we may simplify this self-energy
to

S radEor (4 4) = ih|hga|? x [GLT (4 ) A (8, 1) + G (8, ) AS(t )5y ] St

We now observe that all contributions to this self-energy are proportional to the lesser cavity photon
Green’s function, which in its equal time limit is proportional to the photon number in the cavity and
from appendix A.5 we get that its free version is equal to A%< (t,t') = —ih~le (= )n(hw). Regardless
of whether we consider the full or free photon Green’s function it is very fair to assume that its envelope
will mainly be given by its thermal occupation np(hw) factor. For a 1 eV photon at room temperature
the thermal occupation is equal to np(hw) = 1/(exp(1/0.026) — 1) ~ exp(—38) ~ 107 and therefore we
may put this equal to zero.

After this series of approximations we have arrived at the conclusion that the photons will not affect the
equilibrium properties of the electrons, or vice versa. This means that the electronic spectral Green’s
functions in equilibrium, will be completely determined by the polaron functions discussed in the previous
section. Also, the equilibrium properties of the photons are described by the free photons, as we have
assumed that the photons only interact with electrons. The photons do of course have an influence on the
dynamics of the electrons, and vice versa, but this influence will be limited to non-equilibrium situations
which will be treated later in the next section.

5.4. Non-equilibrium

In this section we will derive the final form of the equations of motion governing our non-equilibrium cQED
system. For the electronic Green’s functions the GKBA will be applied in all cases, which is expected to
be the main limitation of our theory, however it enables us to save vast amounts of computation time. For
the photonic Green’s functions we present, equations of motion both with and without the GKBA applied.
The reason for not applying the GKBA to the photon Green’s functions, is that in some cases the full
two-time lesser Green’s functions is needed in order to give sensible results as shown in section 6.5. The
two-time theory is however significantly more complicated and much more demanding to solve numerically,
as will be discussed in the next chapter.

5.4.1. Electronic equations of motion and scattering terms

In this section we will derive the equations of motion describing the electronic degrees of freedom in our
non-equilibrium system, where we are interested in observable quantities like populations and polarizations.
These quantities are described by the equal-time lesser Green’s function for the electrons, where the fact
that we are only interested in equal-time Green’s functions means that we can apply the GKBA, see
section 2.5, which simplifies the solution process immensely. A natural step when considering the equal-
time lesser Green’s function, is to formulate the equations of motion in terms of the reduced density matrix
of the electronic system, which the equal-time lesser Green’s function is proportional to, see section 2.1.
Next we will discuss an approximation regarding which elements of the density matrix are considered in
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the calculations. In a two-band model of a semiconductor the density matrix may be written in matrix
form as follows

e a0
o) = |0l oty

If we assume an equal number N of single-particle states in each band has (2N)? elements, that each
has their own equation of motion. For a standard quantum kinetic simulation where the dynamics is
mainly confined to the bound states of a QD and where parts of the WL continuum are also included,
one could easily have N = 100 leading to (2N)? = 40000 elements of the density matrix. Even on the
supercomputers of today this is a very difficult computational task that is often not pursuable in practice,
hence we need to consider a reduced number of elements in the density matrix. A number of different
approaches are possible depending on what kind of experiment one is looking to describe. The critical
factor is how the system is excited by external sources.

(5.32)

In the standard experiment of optical inter-band excitation of electrons from the valence to the conduction
band, with subsequent intra-band relaxation and recombination by photons, a large reduction in the
number of elements is possible. For this particular experiment it has turned out [38, 42] to be a good
approximation to only consider diagonal elements in each of the four sub-matrices in eq. (5.32). For the
band diagonal sub-matrices this has the consequence that we only describe populations and no intra-
band polarizations, while for the off-diagonal (in the band index) sub-matrices it means that we only
describe "vertical" or "optical" polarizations. Again assuming an equal number of single-states in each
band, this reduces the considered number of density matrix elements to 3V, which for N = 100 results in
3N = 300 elements, a much more feasible number compared to 40000. It should however be noted that
this approximation is only well-defined in certain systems. There need to exist pairs of states in the two
bands, that are similar in their spatial form so that it is possible to define what is meant by a diagonal
element in e.g. p(t). Only systems where such diagonal elements'! can be unambiguously defined will
be treated in the thesis.

We will proceed the derivations in the approximation described above and hence we make the replacement
P (t) = p% (t)0aas in all equations henceforth. The index b is a band index and a describes all other
indexes. The fundamental forms of our equations of motion from section 2.4 are all formulated in terms
of Green’s functions, so first we present the transformation between the equal-time lesser Green’s function
and the density matrix

G (t,1) = 0 e}y o (Den.a (D)) = i 9 (1), (5.33a)
GO (tt) = —ih ™ (epa(t)ch o (1) = —ih ™ [Gp — P2 (1)), (5.33b)

where also the transformation of the greater Green’s function has been presented as this will be needed
later. These equations serve as our definition of the density matrix elements. Transformation of eq. (2.50)
according to eq. (5.33) yields the equation of motion for the density matrix, which we write in the following
compact form

8tplc)ubl (t) = 8tpgbl (t)|coh + 8tpgbl (t)lscatm (534)

where 8,5;)1;1" (t)|con describes terms giving rise to coherent time evolution and 8,5;)1;1" (t)|scatt describes
terms giving rise to time evolution due to many-body processes, each of which will be described be-
low.

Coherent terms

The coherent term becomes

Dokt (8)leon = =it o (1) — i1 3 [Z = @)pl? (1) — B (T (1)) (5.35)
by

1 One possible definition could be the transition where the overlap integral (c, a|v,’) is the largest.
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The first contribution is that from the free evolution, in the absence of any interactions, where the transition
frequency is written as w?? = w? — w?. This term is not very interesting and we move on to the singular
self-energy. By definition, eq. (2.42), the singular self-energy contains the interaction with the external
fields and any one-time self-energy that might result from the many-body interactions. In our system we

have the following contributions
=0 (t) = U (1) + S (1) 4+ SO () 4 i), (5.36)

which will be described below, but first we discuss some general features of the singular self-energy. Due
to the simple structure of the singular source term in eq. (5.35), we can make some general conclusions on
what effect a singular self-energy has depending on whether it is strictly diagonal or off-diagonal in the
band indexes. To this end we decompose the singular self-energy into a diagonal (d) and an off-diagonal
(od) part

Z5(1) = Za() + 220(),

where matrix notation with respect to the band indexes has been employed. For the diagonal part we get
the following source term
Qo (1)l = —ih™ 1 [S04(0) — SV 0] o (1)1 = 30,

which shows that a diagonal singular self-energy leads to a time-dependent renormalization of the single-
particle energies. For the off-diagonal part we choose the two following cases as illustration

Depl (t)|oon = —ih ™ [pkY (1) — pis ()] 55 (), (5.37a)
Depi (1)[ogn = =2~ Tm [pf (H)ZE°4(8)] (5.37b)

which show that an off-diagonal singular self-energy gives rise to source terms identical to those of

an external field operating on an interband transition [31, p. 89|, hence it will renormalize any such
field.

The first term describes the interaction with the external electric field which in its RWA form is given
given by eq. (5.7), where the matrix elements we use are written as

0, b=V =c,v
Ugb/ (t) _ dcav Eog(t) e—iwot7 b= c, b =v (538)
dve —E°2(t) ewot - p=v, b =c

The dipole matrix elements are written as d5¥ = dS¥, = (c, a|d|v,«), in the spirit of our main approx-
imation discussed in the beginning of section 5.4.1. Actually it turns out, see section 4.4, that in the
dipole approximation for inter-band optical transitions, the dipole matrix element is proportional to the
pure overlap between the involved states in each band, (c,«|v,a’). Hence in systems where these are
very similar in nature d¢, is much larger than d‘;‘;a, and consequently the direct optical transitions are
driven much more strongly that the indirect (o« # ') ones, which is the main reason why it is a good
approximation to only consider the diagonal part of p(t). In general there are other sources, such as the
excitonic Coulomb interaction, to the off-diagonal elements in p¥(t), but these are usually of only minor
importance.

The second term is the mean-field HF energy, eq. (5.8), arising from the Coulomb interaction between the
electrons. In terms of density matrices the HF term is written as

o] o] [e7e RN SRe [e5]

Egb’,ee,HF(t) _ Z (Vbbzb'bl _ bbabad ) [pblbz (t) — 5b1,v5b2,v} . (5.39)
bibs
o
Being a singular self-energy ¥°¢HF with both band diagonal and off-diagonal terms it will give rise to
instantaneous renormalizations in the free energies as well as in the external electric field, the latter giving
rise to the well-known excitonic features in various spectra.
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The third term is the Hartree self-energy from the LO-phonon interaction, eq. (5.12), which in our present
notation may be written as

t
’ hw
OO (1) — / 'y Fﬁvj;g’gfa (P20 (') = Gy ] DGt )b, (5.40)

- b1a1
where Dgg (t,t') is free retarded Green’s function of the LO-phonons. It can be found from the relation
D7(t,t') = 0(t —t')[D~ (t,t') — D<(¢,')] and explicitly reads

DY (t,t') = =20 0(t — ¢') sin(wrot — ¢])e 1 V/meo,

where the equations in eq. (A.35) were used. This self-energy is band diagonal and hence thus it will only
renormalize the free energies of the electrons. The sums in eq. (5.40) only involve electronic populations,
where further the contribution from the full valence band has been subtracted. Thus it can already at this
point be expected, that this self-energy will be of little significance in the low excitation regime'? where
we will primarily be operating.

The fourth term is the Hartree contribution from the electron-photon interaction. From now on we will
employ the RWA version of the electron-photon interaction, eq. (5.6). This unfortunately means that the
notation cannot be kept as compact as it has been up to this point, this is so because when applying the
RWA one has to perform the band summation in order to remove the non-resonant contributions. The
contour version of the RWA Hartree self-energy is given by eq. (A.26) and with the use of the Langreth
rules we get

t

S radH () = / A3 hgahga, [p5 (1) AT (8,1)8 By v + P () AT ()] 6] . (5.41)

— 00 ai

This self-energy is purely band off-diagonal and hence it will renormalize the external field and further
drive the system as an internal field, which it actually is.

Scattering terms

We now move on to consider many-body scattering contributions to the density matrix equation of motion.
The correct description of the various decay processes, be it relaxation or dephasing, that occur in a semi-
conductor nanostructure is the main motivation for employing the non-equilibrium Green’s function formal-
ism to our system. The scattering term in eq. (5.34) can in general be written as

at Pg‘bI (t) |scatt ==

t
_ / dtl Z [Egb17>(t, tl)Gg‘lb ’<(t1,t) _ Egb17<(t, tl)Gg‘lb ’>(t1, t)

— 00 by

—GEP (4 )T (1, )+ GRS ()R (4, 1)] - (5.42)

It is apparent from this form that the values of the electronic Green’s functions are needed away from the
time diagonal in the (¢,t¢')-plane and hence it is in general not possible to formulate a theory entirely in
terms of equal-time Green’s functions, that per definition live on the time diagonal. As we do not wish to
solve for the Green’s functions in the two-time plane an approximation is needed that provides us with a
closed set of equations for the equal-time electronic Green’s functions. Fortunately one such approximation
exits and it is know as the GKBA, see section 2.5. We will employ a version of the GKBA where diagonal

I2Rather surprisingly it turns out that the effects of the LO Hartree self-energy remains small even at high excitation
conditions. This is expected to be connected to the fact that the sine function in the retarded LO-phonon Green’s
function, oscillates with a relatively fast period (TL.o = 27/wpo =~ 0.11 ps in GaAs) and hence will tend to average the
integral to zero, unless the populations change significantly within this time span.
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spectral Green’s functions have been assumed, eq. (2.55), (see the discussion above eq. (5.21)) and in terms
of the density matrix the GKBA may be written as

—GYT (¢, ) pl (¢, and t >t/

<

Gb o (&) [6b,0 — P ()], > andt >t
<
>

be 2(tt) = (5.43)

P ()G (¢, 1), and t <t/
[0y — P2 ()] GE (¢, ), and t <t/

The spectral Green’s functions that occur in the GKBA are for the general non-equilibrium system and
as such obey their respective Dyson equations, in both times. However, if these were to be used not
much (if any) computational time would be saved and it would be a better strategy to simply solve
the original two-time equations of motion for GZ. However, it turns out to be a good approximation
[37, 38] for a weak coupling self-energy to use the equilibrium spectral Green’s functions in the GKBA,
that further only depends on the time difference in the two times. This is a huge simplification as the
equilibrium spectral Green’s functions can be calculated in advance and simply used as an input to the
non-equilibrium calculation, and they only have to be recalculated if any parameters characterizing the
equilibrium system are changed.

The scattering term is linear in the self-energy and the self-energy itself is a sum of each of its contributions,
hence it is possible to write down a scattering term for each interaction and corresponding contribution
to its self-energy. This is a very practical feature of the non-equilibrium Green’s function formalism, as
taking into account new interactions or going to higher orders simply amounts to adding more scattering
terms to already existing equations. This is in contrast to many other methods that depend on expansion
in basis states of the combined system, and not in the individual subsystems as in the non-equilibrium
Green’s function formalism, where inclusion of another kind bosonic interaction would result in a complete
reformulation of the derived equations.

We start off by considering the scattering terms due to the interaction of the electrons and LO-phonons.
The Fock contribution to the lowest order self-energy, eq. (5.11), is in our main approximation given
by

/ hw
TR =i D S Ve, G S ()DL (1)

alaaal

= ZD“’ 2(t, G2 (8,1,

where the effective LO-phonon Green’s function, DZZ’;F (t,t'), is defined in eq. (5.24). Plugging this into

eq. (5.42) and employing the GKBA we obtain the following scattering term

a pbb/( ) LO,F _

scatt

/t iny (Gl;{(t,tl) [Ggﬂ“(t,tl)}*

- bl()él
{ D> (b, 1) 66,5, — P2 (£1)]02Y (t1) + DU (t, 1) o2 (1) [0, 50 — P52 (h)]}
+Ghr () [G8 )]

x { B, — ol (1) ]oBY (8) DR (8, 11) = ol (0) B, — 2! (t)IDRE (1, 41) }) o (5.44)

where eq. (2.33) has been used to formulate it in terms of the retarded Green’s function only and eq. (5.25)
to flip the time arguments in the LO-phonon Green’s function. We can exploit the symmetries under
complex conjugation of the Green’s functions, see eqs. (2.32) and (5.26), to simplify the band diagonal
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scattering terms, that is population relaxation, to the following form

atpgzb(t) gc(;éf =
t
zRe[ / Y (G‘;j(t,tl) (G (k1))

— 00 b1

) {=DE> (t,11)[0p.5, — P20t (11)] P2 (t1) + D= (t, £1) p2 (11) [0, 5 — P21 (t1)]} )} '

This simplification applies to 2/3 of all scattering terms and saves around 50 % computation time on each,
thus leading to an approximate 33.3 % speed up.

Next we consider the scattering terms arising due to the interaction between the electrons and cavity
photons. In the RWA the Fock contribution to the contour self-energy is given by eq. (A.25) and with the
help of the Langreth rules we obtain the following real time components

wb'rad Bo2 (1) = ih|hga|? | G2 (t, ) AZ (E, )0y + G2 (8, )V AS (', 1)0p v | Oyt (5.45)

where we have assumed goa’ = gadaa’, see section 4.4. Below we will present two versions of the electronic
scattering terms due to the cavity photons, in the first version in which the GKBA has been applied to the
photon Green’s function, and a second version in which we keep the photon Green’s function in its general
two-time form. The GKBA has been applied to the electronic Green’s functions in both versions, as we
are only interested in equal-time properties for these. For the photons we are, however, interested in the
full two-time Green’s function'® as this allows for the calculation of quantities such as emission spectra
and indistinguishability, see sections 6.5 and 6.6, while the GKBA is assumed to yield a sufficiently correct
equal-time dynamics.

The GKBA for the photons is given by eq. (5.53), where we have also made use of the relations eq. (5.52) to
express everything in terms of the number of photons in the cavity A(t). We are now ready to determine
the scattering term eq. (5.42) with self-energy given by eq. (5.45) in the GKBA for the electrons and
photons. After straight forward insertion the band diagonal term becomes

t
Buptl(t) |t = 72Re[ / dt1<

— 00

Gy (8, 11) (G (8, 10)]" (ihlhgal AT (£, 81)) {[1 = p&Y (t)][1 + A(#0)]pE (t1) — pa¥ (1) A(#)[L = p&(11)]} G
=G (8, 11) (G (1 40)]" (ihlhga | *[A (8, 80)]) {11 = p& (E0)]A(t) i (t1) = p& (B)[L + A(EDIL = pi (8]} 5b,v)} ;

where we have used the symmetry relations of the Green’s functions and self-energy, eq. (5.14), to
simplify as done above with the LO-phonon scattering terms. It is possible to simplify further due
to the fact that we only need the real part of the integral, and after a few cancelations we end up
with

t
Duphl (1) 22t = —2Re / At Gy (1 1) [GE (8, 10)]" (ilhga AT (1, 11))

— 00

X {A(t) [p5 (t1) — pi” (E)] + 9 (82) [1 = pg¥ (1)1} (G, — 5b,v)] (5.46)

We have grouped contributions due to stimulated and spontaneous processes under the integral. Further-
more note that the sign of the conduction and valence band contributions are opposite, similarly to what
would be expected in a two-level system. This is indeed expected as we only consider diagonal transitions
in the in-band quantum number «, hence we consider effective two-level systems for each «. Indeed if

13Naively one might expect that the GKBA would yield an approximately valid two-time Green’s function, in the full two-
time plane, however when one employs equilibrium retarded Green’s functions in it these seem to determine the spectral
properties. This severely limits its use in calculating e.g. emission spectra as will be discussed further in section 6.5.
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no other interactions were present, the set of equations for each a would decouple and could be solved
independently. The band off-diagonal term becomes

t
o (Ol = [ dn (itlhga P (1.10) (
o0

|Gt )P {[L = piY (E)][L + At)]pg (1) + pi¥ (t) Alt) g (81)}
+[GET ()P {2 (t1)pe (t)[1 + A(ta)] + pe" (1)1 = P2 (t1)]A(t1)} )
and after a few cancelations we obtain the following simplified version

t
Orpl (1) oosit = — / dty (ih|hga|? AT (t,11)) (

|G (8, t0)12 LA P (1) + p& (80)[1 = oY (E)]} + 1GET (8, 40)|2 {A) S (1) + p8 (1) 9 (81) ) )
(5.47)

Again we can group stimulated and spontaneous processes contributing to the electronic dephasing and

we note that 8,pY¢ ()24 can be obtained through complex conjugation.

Next we treat the same scattering terms as above, but now we do not apply the GKBA for the photonic
Green’s function. The structure of the terms will be similar, however, a bit more complicated as we cannot,
anymore make use of the equal-time relation between the greater and lesser photon Green’s function,
eq. (5.52), and hence no cancelations occur. We introduce a new photon Green’s function AZ(,#') by the
following definition

iRAZ (t 1) = e~ Mo (=) A2 (¢ ¢, (5.48)

which is slowly-varying outside the time diagonal. The retarded electronic Green’s functions play a similar
role in the GKBA for the electrons as the exponential in the above definition, except here we kept the
slowly-varying envelope in its two-time form, whereas for the electrons we only consider the equal-time en-
velope. The new photon Green’s functions satisfy the following symmetry relation

[AZ(t, )] = AZ(V', 1), (5.49)

derived from eqgs. (5.48) and (2.32), which will be used to limit the numerical solution to the subdiag-
onal halfplane in the two-time plane, and for other simplifications. The band diagonal scattering term
becomes

t
ozt = —2Re| [ dnilhga(
G () [ ()] ) L1 = 2 (1)L A (1 0)p(t) — o2 (1) A (1 10)[1 = p5(12)] } e
+GS" (1 1) (G (0] e e D L [ ()] A (1, )2 (1) = p (1) A7 (0, 0L = p2 (1)} b ) |,
which can be simplified, for the same reasons as in the GKBA case (and using eq. (5.49)), to

t
O T = —2Re[ [ dilhga PG, 1) (G5 )] e 0

x {11 P2 (A7 (1 1) () = P2 (1) A (6 1)L = pE ()]} (B — )] (5:50)

For the band off-diagonal terms we get

t
O (D)licait = — / dty |hg e~ e =00 (
— 00

Ga (k)P {1 = ok ()JA” (1 )06 (1) + P& (1) A< ()Y (1)}

1G5 () { oS (1)pE (1) A7 (1 1) + o5 (1)1 = i (R))A (1) } ), (5:51)
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where 0;p%¢(1)[2*%F can be obtained through complex conjugation.

5.4.2. Photonic equations of motion and scattering terms

In this section we will derive the equations of motion governing the Green’s functions describing the
photonic degrees of freedom. In the electronic case we were primarily interested in the equal-time lesser
Green’s function, as this describes electronic populations and polarizations. The full two-time electronic
Green’s functions were only of secondary interest in themselves, needed only in order to solve the inherent
two-time equations of motion for the Green’s functions correctly. This enabled us to apply the GKBA
for the electronic Green’s functions, which simplified all aspects of both the formal theory and numerical
solution immensely. In many quantum optical experiments the main task is to perform time correlated
measurements or record emission spectra, to obtain information on the properties of the photons emit-
ted from some excited structure. Both of these quantities require the full two-time photonic Green’s
function in order to be calculated theoretically, thus making the two-time photonic Green’s function of
primary interest in itself, and not just as an device enabling one to obtain equal-time Green’s functions.
The full two-time formulation of the equation of motion is a complicated affair, and we will therefore
start by describing the equal-time GKBA version of the photonic equations of motion first, which are
indeed interesting in their own right, and in the end of the section consider the more general two-time
version.

In the GKBA the fundamental governing equation is the equation of motion for the equal-time lesser
Green’s function, eq. (2.50), which for the single mode cavity reduces to

t
ihOy A< (t, 1) = —ihYeay A< (t, 1) + 2Re {/ dty [07 (t, 1) A< (t1,t) — o= (t,t1) A (t1,1)] }

— 00

To simplify the symmetry relation eq. (5.17) has been used for the self-energy, also a decay term has been
added to take into account the finite photon lifetime in the cavity, with the decay rate being given by
Yeav = Weav/@, see the discussion above eq. (5.2). The equal-time lesser Green’s function, A<(¢,t), is
proportional to the number of photons in the cavity, A(t), which we will eventually formulate the equation
of motion in terms of. To write the GKBA in terms of A(t) we use eq. (2.31) to obtain the following
equal-time relations between the lesser and greater Green’s function

AS(t,t) = —ihi (aT(t)a(t)) = —ih A1), (5.52a)
A (t,t) = —ih~Ha(t)al () = —ih ™11 + A(t)). (5.52b)

Now we may write the GKBA™, eq. (2.55), in terms of the photon density

AT(t, )1+ At)], > andt >t

204 4 — AT (L, ) A(t), < and t >t/
AS(6.8) = [1 + A()JA*(t, '), > andt <t (5.53)

A(t)A%(t, 1), < and t <t

where we will take the retarded and advanced Green’s functions in their equilibrium forms. To proceed
we need the self-energy of the photons due to the electron-photon interaction. In the RWA and at the
pair-bubble level this is given in the contour version by eq. (A.28), with the following real time compo-
nents

oZ(t,t') = fth|hga1| G2 (4L )G S(E ). (5.54)

M\Whether we use the full GKBA, eq. (2.53), or the GKBA assuming diagonal spectral functions, eq. (2.55), is indifferent in
the present case due to the fact that we only consider a single mode.
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Using this self-energy, the GKBA for both the electrons, eq. (5.43), and photons, eq. (5.53), we obtain the
equation of motion for the photon density A(t)

atA(t) = _’YcavA(t)

+2Re{/t

dty 37 GET (4, 40) [GL7 (4 40)] (ilgay [2[A7 (1))

< {1 = p ()] ooy () A(tr) = o3 (t)[1 = pi (t0)][1 + A(ta)] } }
that can be simplified to the following by a few cancelations

Ot A(t) = —Yeav A(l)

_2Re{/ dty Y GST (1) (G (8 1)) (ihlhga, [P[AT(t 1))

—00 a1

x LA [ (01) — o2 (00)] + 95 (1) [1 = i e)] } o (5.55)

Notice the strong similarity between this scattering term and that of electronic population, eq. (5.46), hint-
ing that we have chosen a consistent set of self-energies for the two interacting subsystem.

Now we will consider the equations of motion for the two-time photonic Green’s functions, AZ(t,t — 7),
only applying the GKBA to the electronic Green’s functions. The equation of motion for the two-time
Green’s functions is eq. (2.49). We note that we need to solve for both the greater and lesser Green’s
function, as these couple through the scattering terms in their respective equations of motion, consistent
with the remarks in the beginning of section 2.3. The equation of motion reads

hOAZ (88— 7) = —ilryeay [A?(t,t — ) — AZ (1t — r)}

+/ dt, [{o>(t,t1)—a<(t,t1)}A2(t1,t—T)—{A>(t,t1)—A<(t,t1)}02(t1,t—r)}

— 00

t—7
—/ dt, [a%(t,tl) [A>(t,t—7) — A<(t,t — 1)} — AZ(t,t1) {0™ (t1,t — 7) — o< (t1, 1 — r)}} ,
— 00

where a phenomenological decay term has been added, to take into account the interaction of the cavity
photons with a reservoir through the decay rate 7cay. The effect of the decay term is to make sure that
the photon Green’s functions AZ(t,t — 7) return to their equilibrium values, Aezq(t, t — 1), for sufficiently
long times after the external pulse has acted. For 7 > 0 we!® note that the integration domains in the
memory integrals above overlap for t; € [t — 7, —oo[, furthermore the structure of the integrands of the two
memory integrals is rather similar, hence cancelations between the two could be expected. To anticipate
this cancelation we split the first memory integral as fioo dt; = f;r dt; + fi;f dt; and rearrange to
obtain

Zhatfl2 (t, t— T) = (‘,)tAA2 (t; t— 7_)|phen + atAA2 (t; t— 7—)|scatt,1 + 8t142 (t; t— T)|scatt,H; (556)
where for notational simplicity we have defined the following three scattering terms

atAA2 (t; t— T)|phen = *Z‘ﬁf)/cav |:A’42 (t, t— T) - qu(t, t— T):| ,

t
DeAZ(t,t — 7)|scater = / dt, [{a> (1) — o<(t, 1)} AZ (11,1 — 7) — {A>(t,11) — A<(t, 1)} 02 (11,1 — r)} ,
t—T1
t—1

atAé(t,t—Tﬂscam,H:/ dtl[{a>(t,t1)—a<(t,t1)}A?(t1,t—r)—{A>(t,t1)—A<(t,t1)}a?(t1,t—r)

—00

—o2(t,t1) {A” (t1,t —7) — AS(t1,t — 1)} + A2 (t,t1) {07 (t1,t — 7) — U<(t1,t—7')}].

I5We only need to consider the case of 7 > 0, due to the fact that the values of the greater/lesser Green’s function, on each
side of the time diagonal, are related through complex conjugation. This was already pointed out in section 2.3 and is
contained in eq. (5.49).
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As expected no cancelations occur in 0; AZ(t,t — 7T)|scats,1, while for O AZ (t,t — T)|scats,11 the cancelations
appear to depend on whether the greater or lesser component is considered, however, after actually per-
forming the calculation one finds that 9, A< (¢, ¢ — 7)|scatt. 11 = Ot A~ (£, ¢ — T)|scats 11, I agreement with [39].
The simplified result is

t—T1
Ot A(t,t — T)|scate, 11 = / dtq [J>(t, t1)AS(t1,t —7) — o= (t,t1)A” (t1,t — 7)

— 00

— A7 (t,t1)o = (tr,t — 1) + AS(t, t1)o” (b1t — 7) ],

where the greater /lesser superscript has been dropped as it is no longer necessary. We note that if we take
the equal-time limit, 7 = 0, in 9, A= (t,t—7)|scatt,1 we find that this contribution to the total scattering term
vanish due to the integration limits becoming equal. Hence both the greater and lesser Green’s function
obey the same equation of motion, as d;A<(t,t — 7)|scatt, ;1 = OpA” (t,t — T)|scatt, ;1 This might seem
surprising, but is fully consistent with the exact relation eq. (5.52) between the greater and lesser Green’s
function. Furthermore we observe that the equation of motion reduce to the form given by eq. (2.50), as
indeed it should.

To obtain explicit expressions for the two-time scattering terms we use the pair-bubble (PB) self-energy
eq. (5.54), along with the slowly-varying transformation eq. (5.48). In all scattering terms we have further
employed eq. (5.49) to limit the two-time functions to the subdiagonal half-plane, which simplifies the
numerical labor significantly. We begin with the phenomenological decay term 0;AZ(t,t — T)|phen and
readily obtain

O AZ (8t — T)|phen = —Year [A%(t,t — )= AZ (t,t—7)

Regarding the form of flezq(t,t — 7) we know from section 5.3.3 that the electronic and photonic degrees
of freedom do not influence each other in equilibrium, at our level of approximation. Hence the photon
Green’s functions in equilibrium will be given by their free version, dressed with the decay rate cay, from
appendix A.6 we therefore find

A tt—7)=0, AZ(tt—7)=e T,

where we have assumed 1 (hwcay) = 0, which is very reasonable at any temperatures normally considered
in experiments. For the two-time photonic scattering terms we have employed the GKBA for the electronic

Green’s functions. For the term 9; A (t,t—7) EC]Z’“,I we get the following expression

t
A (t,t — T)|EB s = / dtyS g, ?
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(5.57)

while for 9, A<(t,t — 7)|EB

scatt,1 We obtain a similar expression
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aq

x [ = Ger ) [GUr )] e 08 (1) — g, (1)} A= (11,8 — 7)
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(5.58)
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For the last term, 9; A(t,t — 7)|semte 11, We have a single expression for both the greater and lesser compo-
nent

t—1
uA(t,t —7)[FB 1y = / dtyS g ?
]

X[Gi’f(t,tl) [Gar(t, )] e e MmO {1 (b)) iy (4) [AS (6=, t2)] "+ (t1) [L—pi (1)) [A (=7, 12)]*}

H[GG (=7, 00)] " G (t=7, tr)e e T LAZ (1, 80) pl, (1) [1=ply (81)] = A (8, 81) [1=p, (1)) o7 (1)}
(5.59)

As used and mentioned several times in previous sections, all Green’s functions of an equilibrium system
only depend on the difference between their two different times, which was utilized heavily in section 5.3.
All the non-equilibrium equations of motion derived in this and the previous section, are equations of
motion propagating the Green’s functions along the time diagonal or parallel to it. Along these straight
lines the two times do not change relative to each other, and one would expect all source terms to these
equations of motion to vanish in the case of an equilibrium system. Reminding ourselves that for a
semiconductor in equilibrium we assume that all electrons are in the valence band, hence p%¥(¢) = 1 and
p(t) = 0, and that no photons are thermally excited, A<(t,t—7) = 0. Noting this it is relatively straight
forward to see that all electronic scattering terms indeed vanish in equilibrium, due to the structure alone.
For the photonic scattering terms in the GKBA, it is equally apparent that also these vanish for a system
in equilibrium. However, the situation is not that clear cut for one of the the two-time scattering terms,
namely eq. (5.57), while for the two other it is relatively easy to see that these are zero in equilibrium.
After using the equilibrium values stated above and writing all functions as single-time quantities, we may
basically write eq. (5.57) on the simplified form

t t
/ dtig(ty —t + 1)a(t —t1) f/ dt1g(t —t1)a(ty —t + 7).
t—T1 t—T1

To see that an integral of this type is indeed zero, one may perform a change of integration variable
according to [37] t; = 2t — t; + 7 in one of the integrals, after which it is clearly seen that this scattering
term also vanish in equilibrium.

Path  Scattering term function memory time ¢;
Cii O AR(tt—7)EB | A2(tit—71) [t—r1.1

Cra O AZ(tt—7)EB, | AZ(t, 1) [t —7,1]

O QAL t—7)EB f‘}z(t*T t1) ]—oo,t—7]
CH,Q 8,5A(t,t - T)'Sclgtt,ll A= (t7 t1) ] 00, — T]

Table 5.2.: Table explaining the integration paths shown in figure 5.5.

Due to the significantly more difficult numerical procedure of solving the two-time equations of motion, as
oppose to the single-time equations of motion, we briefly sketch the strategy for doing this. As mentioned
above our equations of motion are formulated so that we propagate the Green’s functions on or parallel to
the time diagonal, which has the consequence that the difference time 7 only enters the equations of motion
as a parameter. This simplifies the numerical solution process, as we only have a single equation of motion,
even though we have two independent times. Furthermore, this allows for a formulation that can be solved
efficiently on a parallel computer. To illustrate the procedure, we show in figure 5.5 the steps needed to
be taken to obtain the values of the two-time photonic Green’s functions in a point (¢ + At,t + At — 1),
where At is time discretization. The area in the figure between the two parallel lines is where we solve for
the two-time Green’s functions, and finite width of this strip illustrate the memory depth of the system,
explicitly given by Timax. Inspecting the scattering terms in eq. (5.56), we find that for the general case
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of non-zero 7 four different integration paths need to be followed. These originate from various argument,
arrangements in the photonic Green’s functions, and are shown as the dashed lines in the figure and defined
in detail in table 5.2. What should be noted from the figure, is that in order to increase ¢t by At, all one
must know is the values of the Green’s functions in grey area in the figure, and this holds for any value
of 7, which is the essential point. One does not have to start at 7 = 0, as could be expected as this is
normally the case when time stepping, and hence the integrals can be calculated independently for each
value of 7, allowing for parallelization, making large simulations possible. One does however have to solve
for all 7’s in the memory strip before ¢ can be increased by yet another At.

second time argument

A
(t.1)
discretized two-time plane ; ®
¢ .
Y Cr2
¢ 1 C(t+ALE+At—T)
Cra :
(t—mt—71) L e mmnnne : o
i i(t,t—17)
i . ° ‘ .
i Y Cr,2
[ ] i [ ) ;
Y Cii :
° ° ! * (t;t - Tmax)
. . ° % S | 2
E first time argument
] { ] [ J [ ] ,

Figure 5.5.: Schematic figure of the discretized two-time plane showing several important sets of time coordinates
and four integration paths, the C’s, followed in the photonic scattering terms.

The equations of motion described above where solved using the numerical methods described in ap-
pendix A.4, further the slowly-varying versions of all source terms are presented in appendix A.9.

5.5. Summary

The main result of this chapter is final formulation of the equations of motion governing our non-equilibrium
system. However, in order to get this far we performed a final set of approximations on the fundamental
Hamiltonians of the system. Also, we treated the truncation of the various self-energies, which were all
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kept in the lowest order, but self-consistent, as dictated by particle conservation. The detailed derivation
was performed in appendix A.5. A section was also devoted to studying the equilibrium properties of our
system. These are important as knowledge of the equilibrium retarded Green’s functions is very important,
for the application of the GKBA. The LO-phonon interaction was found to drastically change the properties
of the non-interacting system, which were discussed for a few numerical examples. Surprisingly, the photon
interaction was found not to alter the equilibrium properties of the electronic system, meaning that no
correlations exists between the two species. In the last section we derived the kinetic equations for both the
electronic and photonic degrees of freedom, in the general case applicable to a non-equilibrium situation.
For the electronic equations the GKBA was applied everywhere, however for the photonic equations we
presented two versions, namely one with and without application of the GKBA.
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6. Results and Discussion

6.1. Introduction

In this chapter we present results of the numerical solution of the equations of motion derived in the previ-
ous chapter. The equations of motion will be applied to a number of interesting situations, which we think
are relevant for obtaining an understanding of the effects of many-body interactions in our cQED system.
A main task of this chapter will be the determination of the absorption spectra for our cQED system.
This will be investigated for variety of different parameters and yield much information on the global spec-
tral properties of the system. Another focus is the investigation of more specific situations where, under
various circumstances, electrons are excited across the bandgap, and the subsequent population dynamics
is analyzed in terms of time resolved series. These series display directly the interplay between electrons,
phonons, and photons and allows one to obtain some intuition on the complicated many-body dynamics.
In the last two sections we investigate properties specific to the photonic degrees of freedom, namely the
emission spectra and indistinguishability of the photons emitted from the cavity. The numerical solution
of the equations is in itself a significant task, and typical simulation times for the system configurations
we have considered, tend to span from hours and up to one week. We will however not discuss the techni-
calities of the numerical solution process, as our focus is on analyzing the physics and theoretical model,
and we only briefly discuss the numerical methods in appendix A.4.

6.2. Unphysical populations

During the verification and testing of the numerical implementation of the equations of motion presented
in chapter 5, certain parameter sets were found to cause the failure of the diagonal elements of the density
matrix, p2°(t), to stay within the interval [0; 1]. This result is of course unphysical as it ruins the statistical
interpretation of the density matrix, and is an unacceptable result of a physical model. It is a known
problem in the literature, that the "uncontrolled approximations" [70] which are involved when deriving
approximate quantum kinetic equations, especially in non-equilibrium, can cause unphysical populations
to appear. To our knowledge there do not exist any systematic way of choosing the self-energy, so that
one is guarantied to obtain populations within [0;1], as it is the case, e.g., with conservation of total
particle number, see appendix A.5. In this section we will describe an example where this failure occurs
and discuss its implications for the developed theory.

A system where the failure occurs is that described in section 5.3.2, which consists of purely discrete states.
The scenario is the following; a weak pulse excites the system through eq. (5.38), while the electrons interact
with LO-phonons through the scattering term eq. (5.44). We do not consider the Coulomb or electron-
photon interaction. The temporal width of the pulse is 100 fs, it has its peak value at t = 0.4 ps, and
we consider five different excitation energies. The Fourier transformed of the five pulses and the linear
absorption spectrum of the system, calculated using the method described in section 6.3, are shown in
figure 6.1. Here it is seen that we consider three cases of non-resonant excitation #1, #3, and #5 and
two cases of resonant excitation #2 and #4, as it turns out that the failure depends very much on the
excitation conditions.

In figure 6.2(a) we show the time evolution of the populations p%(¢) for all states in both conduction
and valence band, for the five excitation energies. After inspection of the solutions it is found that
the populations describing the resonant excitations #2 and #4 behave physically, staying within the
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Figure 6.1.: Figure showing the absorption spectra of the considered system (blue line) and the spectrums of the
five different excitation pulses (red lines).

[0; 1] interval, and eventually reach a quasi-thermal equilibrium after approximately 5 ps (not shown in
figure 6.2(a)). For all the non-resonant excitations #1, #3, and #5 we do, however, observe unphysical
populations below 0 and above 1, but on a longer timescale they all reach a quasi-thermal equilibrium
with fully positive populations. The numbers in the figure show that the failure is quite substantial,
especially for the conduction band, and hence indicates, along with the smoothness of the curves, that we
are not dealing with some numerical noise issue. It should also be noted that the failure also occurs at
stronger excitation where larger occupation probabilities are obtained. The first question that comes to
mind is why does the theory only fail for the non-resonant excitations? To provide a possible answer for
this, we have solved the equations without the LO-phonons, and the results are shown in figure 6.2(b).
For the resonant cases we find what is expected, namely that the pulse excites some of the electrons
which subsequently do not relax or dephase due to the lack of a decay mechanism. For the non-resonant
cases we observe a phenomena known as adiabatic following [71, 72], where the populations are seen
to basically follow the temporal shape of the pulse, hence the populations return to their equilibrium
values after the pulse has passed. This phenomena occurs when the detuning between the excitation
pulse and electronic transitions, is considerably larger than the spectral width of the pulse or any level
broadenings. The adiabatic following of the populations, is thought to be the reason why the theory only
fails when considering the non-resonant excitation cases. In these cases the populations in the conduction
and valence band return to their extremal values of 0 and 1 respectively. As the approximate treatment,
of the LO-phonon interaction does not explicitly guarantee populations in the [0;1] interval, exactly the
cases where adiabatic following occur are thought to be extra sensitive to breaking the physical bounds
of the populations. A quantity as the total particle number is, however, explicitly conserved through
the use of self-consistent self-energies, and in our simulations we do indeed find that the particle number
is conserved down to the numerical accuracy. The particle number conservation is taken as a strong
indication that the equations of motion are solved correctly. It should be noted that including the Hartree
energy renormalization eq. (5.40), does not change the solution to any significant degree, indicating that
this correction is very small for the considered system.

The electronic single-particle wavefunctions used in these simulations are very similar for electrons in the
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Figure 6.2.: The different colored series are for different excitation energies, see figure 6.1, while the solid lines are
Pt (t) and the dashed pg%(t), 3 (t) = pb(t) due to symmetry.

conduction and valence band, which has the consequence that the Coulomb matrix elements that enter
into the LO-phonon self-energy are very similar in magnitude for the electrons in both bands. Also the
single-particle transition energies within each band are not far apart, we have h(w§ — w§) = 36.17 meV
for the conduction band and fi(w) — wy) = 24.44 meV for the valence band, where we notice that the
conduction band transition is almost perfectly resonant with a LO-phonon having an energy of 36.8 meV.
This rather symmetric setup is a consequence of the band parameters we have chosen to describe the free
electrons. They were chosen to yield an equal number of bound QD states for the electrons in both bands,
which is desirable when only describing off-diagonal elements in the band index as we do (see discussion in
section 5.4.1). To narrow down the origin of the population bound breaking another set of band parameters
was tested, see appendix A.8 and section 6.3. This set resulted in more spatially localized valence band
wavefunctions, yielding larger Coulomb matrix elements and smaller transition energies (~ 15 meV), and
much larger transition energies for the conduction band states (=~ 2 x fuwro). The same set of simulations
as described above was performed on this new system, and it was found that no breaking of the population
bounds occurred. To identify whether the reason for this new situation arose from the asymmetric matrix
elements or the difference in transition energies compared to the first system, the transition energy of the
conduction band was manually set to ~ 1.5 X hwpo. After this change the unphysical populations again
started to occur, though not of the magnitude as seen in figure 6.2(a). We must therefore conclude that
the present theory yields the worst results, sometimes even unphysical, when intra-band transitions are
close to resonant with the LO-phonon energy. This conclusion is consistent with the findings of [73], who
study a slightly different, but comparable system, in an exactly solvable model and makes comparisons to
approximations similar to ours.

Negative populations can also occur as a result of the breakdown of the GKBA as investigated by [38].
This is however not thought to be the reason in our case, as we consider a material with a low LO-phonon
coupling as opposed to [38], who consider a strong coupling material. The authors of [38] also raised the
question of whether populations within [0;1] can be guaranteed on formal grounds, but knew of none work
that could provide such a guarantee. More fundamentally the problems in our model are expected to arise
due to the fact that we consider a purely discrete electronic system, i.e. we have neglected the WL con-
tinuum of delocalized states. This suspicion is supported by the fact that several others [41, 42, 74] have
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obtained physical results for QD systems, coupled to a WL continuum, in the same self-energy approxi-
mation as considered here. Systematically going to higher orders in the LO-phonon self-energy should in
principle remedy the problems concerning unphysical populations for the purely discrete system, that we
consider. We suspect, that the reason why the present self-energy approximation appear to be sufficient in
the presence of a WL continuum, is connect to the presumably faster decay of higher order correlations
(i.e. higher order self-energies), due to the access to the larger phase space provided by the continuum.
However, as the ultimate goal is to include the WL continuum in the simulations, we will not pursue
higher order corrections as the present order is expected to be sufficient, in the presence of a continuum
[69]. Due to lack of time in the present project, inclusion of the WL is unrealistic and we will therefore
continue with the material parameters not resulting in unphysical populations.

6.3. Absorption spectra

In this section we present calculations of the linear optical susceptibility for different temperatures in the
range from 150 K to 300 K. The imaginary part of the susceptibility is known to be closely related to
the absorption experienced by a weak probe field, see e.g. [56, p. 11], impinging on a system, and thus
provides us with a valuable source of information on the effects the interactions have had on the free system.
The spectrum will contain energy renormalizations and linewidth broadenings caused by the interactions,
hence knowing this will make it much easier later on to perform specific narrow bandwidth excitations
of the interacting system. The linear susceptibility is also an often treated quantity in the literature
making comparison with other theories and models possible, that could help to verify our implementation.

As described in section 6.2 certain choices of parameters for the QD system resulted in unphysical popula-
tions. For this reason we will not continue our simulations with the system described in section 4.2.3 and
section 5.3.2, but rather chose a new set of parameters not suffering from the unphysical populations. The
band parameters of the new system are presented in table A.2, while the geometrical parameters of the
new QD system are shown in table 6.1 (left), see figure 4.2. The size of the QD was tuned so that three
clearly bound states formed in the conduction band. However due to the new set of band parameters!
no symmetry in the number of bound states between the two bands exists, and the number of bound
states in the valence band is much greater than that of the conduction band. This situation is illustrated
schematically in figure 6.3, but for simplicity we will only consider the first three bound states in the
valence band and all the bound states in the conduction band, indicated by the dashed box in the figure.
We will also neglect the spin degrees of freedom, as we expect that including these will only cause minor

IMost significantly the larger heavy hole mass of the valence band electrons.

Quantity Value Unit | Quantity  Value  Unit | Quantity Value Unit

h 1.25 nm hw§ 567.8 meV VEsy 19.59 meV
d 1.25 nm hws§ 650.5 meV Vasss 13.76 meV
1 10 nm hws§ 650.5 meV Vi 27.05 meV
) ) nm hwy -270.5 meV Vooas' 21.60 meV
Ry 50 nm hws -285.5 meV Ve 2241 meV
L, 40 nm hwy -285.5 meV Vs 16.07 meV

Vs 1535 meV
VY 22.98  meV
VS 408 meV
VN 6.80  meV

Table 6.1.: Table presenting various parameters: (left) geometrical parameters of the QD, (mid) free single-particle
energies of the considered bound states in the QD, and (right) a representative selection of Coulomb matriz elements.
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changes. Indeed it is only the electron-electron Coulomb interaction that mixes subspaces of different spins
in the Hamiltonian, which is not the interaction of main interest. The resulting energies of the levels are
shown in table 6.1 (mid), along with a representative set of Coulomb matrix elements? in table 6.1 (right).
The parameters describing the LO-phonons are given in table 5.1.
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Figure 6.3.: Schematic illustration of the level structure of the QD used in the simulations in section 6.3. The
dashed boz indicates the levels used in the simulations.

Next we describe the theory needed to obtain the susceptibility for our system. The response of a system to
a weak externally applied electric field, E(t), can be described by an induced polarization of the medium.
Within linear response theory the induced polarization can be written as [56]

t

PO = [ dexe.)E(@)
— 00

where x(t,t’) is the linear optical susceptibility that per definition is independent of E(t), and only depends

on the properties of the underlying system that is being probed. It should be noted that we assume pure

scalar quantities and that ¢ > ¢’ due to causality. The above form is completely general and x(¢,¢') can

describe any non-equilibrium system due to its two-time dependence, this form could, e.g., be used for

2The effective static dielectric constant € enters the expression for the Coulomb interaction, which is a well known quantity
for most bulk semiconductors. We do however deal with heterostructures, and here the situation is not as clear cut
as for a bulk system. As we exclusively consider electronic states bound to the QD or WL, and not the surrounding
barrier/bulk material, we choose the dielectric constant of the low bandgap material. In this thesis we only consider the
ternary alloy In,Ga,—1As as the low bandgap material, and therefore we use the following expression for the effective
dielectric constant: 1/e, = x/emas + (1 — x)/eGaas, which seems appropriate for a heterostructure. The values of the
binary compounds are found from [31] for GaAs, egaas/c0 = 12.5, and [75] for InAs, emas/e0 = 14.61. For z = 0.6 we
get the value €, /eg = 13.68 and for pure InAs, x = 1, the value is e, /eg = 14.61. Prior to the discovery of the unphysical
populations described in section 6.2, we used a = 0.6 system and afterwards we switched to a x = 1 system as explained
in the present section. Therefore the values presented in table 6.1 are for the z = 1 system.
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describing the often performed pump-probe experiments. We are in the present section not interested
in probing non-equilibrium systems, but rather systems in thermal equilibrium where it holds that the
susceptibility is only a function of the time difference x(¢,t’) = x(t —t’), due to arguments similar to those
of eq. (5.18). This yields a huge simplification in actually obtaining the susceptibility, as now we may
write the formulae as

P(t) = /_t dt'x(t —t"E(t), (6.1)

which is nothing but a convolution integral that under Fourier transformation, eq. (5.1), transforms into
an algebraic equation for the susceptibility which is easily solved as

x(w) = =2, (6.2)

The next task is to determine the "macroscopic" polarization from our microscopic model of the system.
This is done by calculating the expectation value of the microscopic dipole operator as follows

P(t)=Tr[D-epp(t)] = —Trldp(t)] = — Y _ d2¥ p°(1),
bb’ o

where we use the dipole operator projected onto the direction of the excitation field, d = —D - eg,
as this is the only relevant quantity in a specific experiment, see eq. (3.21). Performing the sums
over the band indices and using d, = d = d)° we arrive at our final expression for the polariza-
tion

vey

P(t) == dalpl (t) + pic(t)] = = > da[dS (e 4 pre(t)e =", (6.3)

In the above expression we have also written the density matrix in terms of its slowly-varying components
through the transformation

’ . bb' 317
o (1) = e o),

that pulls out the fast oscillation due to the free evolution of the system. The actual numerical solution of
the equations of motion was performed for the slowly-varying components, as this yields very significant
advantages in terms of time discretization. See appendix A.9 for the slowly-varying versions of all equations
of motion and appendix A.4 for a presentation of the numerical methods used.

The polarization eq. (6.3) is obtained by solving the equations of motion for the density matrix, after
excitation by an ultra-short pulse of width 15 fs. Even though eq. (6.2) in principle holds for any electric
field, it is in practise important that the pulse is temporally short enough to spectrally cover all resonances
of the system, as otherwise numerical noise will become too much of a factor. For the Gaussian pulse
used in our simulations, the Full Width Half Maximum (FWHM) width is in energy units given by
wr = 4In(2)/Atpuise, which for Atpuse = 15 fs yields wg = 122 meV, being sufficient for our level
scheme.

Our equations of motion are all derived from a theory that deals with reduced density matrices, and
therefore they all contain memory integrals, linking the present state of the system to the past. All these
memory integrals in principle extend from the present and back to the non-interacting past at t = —oo,
which is a situation that can not be treated numerically and fortunately we do not have to. Due to the
interactions in our system, we expects correlations to decay when moving away from the time-diagonal.
This is indeed the case as seen in section 5.3.2, where the finite width of the peaks in the spectrum of the
electronic density of states, corresponds to decay in the time domain. For all electronic scattering terms
it is exactly the equilibrium retarded Green’s functions that set this so-called memory depth, due to the
use of the GKBA, and similarly for the photons when the GKBA is used for these. In the simulations we
present below, we have set the memory depth according to the criteria G2 (Tmemory) < 1074, with G4 (7)
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T [K] Tmemory [pS]

300 7
250 9
200 12
150 18

Table 6.2.: Memory depths used in the absorption simulations performed in this section.

being defined in eq. (5.29). As the retarded Green’s functions always enter in pairs, this means that at
a memory depth of Tihemory, the memory kernel will be suppressed by a factor of at least 10~8, ensuring
that all significant effects have been taken into account. For the specific system and temperatures we
have considered in this section, we used the memory depths presented in table 6.2, which are determined
according to the above mentioned criteria.

We note that being in the linear regime we do not formally induce any changes in the populations of the
different electronic states, this can be deduced by an expansion in the excitation pulse. As such we need
not solve for the diagonal elements of electronic density matrix, reducing the dimension of the equation
system by a factor of 2/3. Furthermore we also note that from the slowly-varying version of eq. (6.3),
we see that its Fourier transform will be peaked at the frequencies w = £[wS|, thus having significant
contributions at both positive and negative frequencies. The two parts of the spectrum are however mirror
images of each other, and therefore essentially yields the same information. Also, only positive frequencies
can be measured in experiments [76, p. 28], therefore we will only show spectrum at positive frequencies.

6.3.1. LO-phonons and Coulomb

In this subsection we will present and discuss absorption spectra for the free system described above with
the effects of LO-phonons, described through eq. (5.44), and the HF Coulomb interaction between the
electrons, described by eq. (5.39). The singular Hartree self-energy from the LO-phonons, eq. (5.40), does
not contribute to the absorption spectra simulations as it only involves populations, that by construction
do not contribute in equilibrium.

In figure 6.4 we show the imaginary part of the susceptibility for four temperatures between 150 K and 300
K, consistent with our choice of only considering LO-phonons, the top figure is with the HF Coulomb self-
energy included and the bottom figure is without. When discussing the spectra we will adopt the terminol-
ogy commonly used in atomic physics and denote the levels in our QD with the letters s, p, d and so on. Due
to the size of our QD we only need s and p states, with s being the lowest /highest in the conduction/valence
and p being the next lowest/highest in the conduction/valence band.

We start out discussing the spectra without the Coulomb interaction as this is the simplest. The most
dominating features of the spectra are still the s and p transitions near the transition energies of the
free system. These have obtained a finite width due to the dephasing caused by the interaction with
LO-phonons and the transition energy has also been renormalized slightly to lower values. It is clear
from the spectra that the lineshape of the s and p transitions are non-Lorentzian, bearing witness of
non-exponential decay of the polarization in the time domain. This non-exponential decay arises due to
the fact that our system has memory, but is limited to a short time span after the excitation by the
external pulse. This time span is set by the decay of the memory kernel ([26, p. 40] and [56, p. 227]),
i.e. the retarded Green’s functions of the electrons. For times longer than the memory depth of the
system, the polarization enters a regime of slow exponential decay, giving rise to the sharp resonances
in the spectra having an approximately Lorentzian lineshape. The reason for the slower decay in the
long-time limit, is due to the time-energy uncertainty relation AEAt¢ > /2. This relation dictates that
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the energy must be conserved to a higher degree in each scattering event, than was the case in the short-
time regime. This yields less efficient scattering in the long-time limit, as oppose to the short-time limit
where energy need not be conserved to such high degree and thus more processes contribute to scattering.
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Figure 6.4.: Absorption spectra of the system shown in figure 6.3 with the effects of LO-phonons and the Coulomb
interaction. The transition energies of the free system are indicated by the dashed vertical lines.

Apart from the main s and p transitions we observe a very rich structure of smaller peaks, positioned on
the high and low energy sides of both main peaks. These are so-called LO-phonon-assisted transitions,
and arise from processes where electrons having absorbed or emitted a number of LO-phonons, make
optical transitions. To illustrate these LO-phonon dressed electrons, we show in figure 6.5 the equilibrium
spectral density of the electron states involved in these simulations, through the GKBA. In principle
we have transitions between every peak in the spectral densities, for equal® in-band quantum numbers
(e.g. Af(hw) and AY(fw)). However, due to the thermal broadening and the accuracy limits imposed
by the numerics, many of these are too weak to be resolved. A general feature when considering the
series for decreasing temperature is that the spectral features sharpen. This is indeed expected as the
broadening is caused by the interaction with the LO-phonons, and as the thermal occupation of these
decrease with temperature less scattering is expected to occur. There is a notable difference in the
behavior of the peaks due to LO-phonon-assisted transitions as a function of temperature, some of them

3This is due to the fact that we only consider direct optical transitions, i.e. where the in-band quantum numbers « are
equal. Allowing for "indirect" transitions would lead to a much more complicated spectrum, however, with smaller peak
heights due to the smaller matrix element causing the transition.
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increase and some decrease in peak height as the temperature is lowered. We expect this behavior to
arise from the fact, that the LO-phonon-assisted transitions are between electron states either having
absorbed or emitted a number of LO-phonons, and these behave differently on temperature. This is
clearly illustrated in the case of the the valence band spectral densities in figure 6.5. Here the peaks on
the high energy side decrease, corresponding to absorption, and those in the low energy side increase,
corresponding to emission, as the temperature is decreased. We will therefore have three different kinds
of LO-phonon-assisted transitions namely: 1) between two absorption sidebands which should therefore
decrease the most for decreasing temperature, 2) between two emission sidebands which should increase for
decreasing temperature, and 3) between an emission and absorption sideband where the height should be
an intermediate between the two first. Predicting the relative strengths and positions of the LO-phonon-
assisted transitions, would be a very complex and difficult procedure and one would have to analyze the
LO-phonon scattering term in great detail. We are quite certain that the overall structure of the LO-
phonon-assisted resonances, can be understood in terms of the above and we will therefore not go into
further detail on this point.

A characteristic feature seen in many of the peaks at 300 K is that they appear to consist of a main peak
and a shoulder on one of the sides, causing an apparent asymmetry of the resonance. For most of these,
however, we observe, as temperature is lowered, that the shoulders are simply lesser pronounced resonances
on their own, and not an asymmetry of the main peak. A curious feature is seen in the height of the s
and p main resonances, where we notice that for all temperatures considered, the s peak is higher than
the p peak. From a simple model of the system where, instead of LO-phonons, a constant dephasing rate
is added to the off-diagonal elements of the density matrix, we expect the p resonance to have twice the
maximum value of the s resonance. This is due to the fact that the p shell is doubly energy degenerate, and
hence contributes twice to the total polarization, see eq. (6.3). In our model the height of the resonances
is directly connected to the slow long-time decay of the polarization, where we can conclude that the s
polarization decays slower than the total p polarization.

Having discussed the spectrum in the absence of the Coulomb interaction, we now consider the spectrum
with this fundamental interaction turned on. In comparing the spectra with and without the Coulomb
interaction, the most noticeable difference is the large negative shift of the s and p resonances, while other
parts of the spectra appear largely unaffected. These shifts are well-known and are usually called exciton
resonances [56, p. 188], and arise due to the effectively attractive interaction between an electron and
a hole, that form the exciton quasi-particle. The magnitude of the exciton shifts can relatively easy be
deduced from a simplified version of the equations of motions and we will briefly show how. We start
by considering the Coulomb HF self-energy eq. (5.39), where we need only consider the band off-diagonal
components, e.g. the cv component. After using the band selection rule of the Coulomb matrix element,
eq. (4.18), we find that the Hartree contribution does not contribute, and that the Fock contribution
reduces to

BEree () = — SV, p (1)

a1

Using eq. (5.37a) we arrive at the equation of motion for p&¥(¢) including only the Coulomb interac-
tion

0Pl (8) = —ilwsy — hVEaaalpal (6) = vapl (8) +ih™" Y VErTh, aplh (8) — b US (8), (6.4)

ajFa

where we have also added a small dephasing rate 7, and an external excitation field USY(t). From this
equation it is easily seen that for a two-level system, we get an energy renormalization given by the direct
exciton Coulomb matrix elements VYo . On an intuitive level it does seems strange that one should
obtain a Coulomb energy shift with only a single electron present in the system, as if the electron interacts
with itself. We therefore suspect that it arises due to virtual processes, that are automatically taken into
account in the Green’s function formalism. We have not fully understood the origin of this shift, but
we do think that it is an unphysical feature that should not appear. A strong possibility is that arises

from the truncation of the self-energy, and therefore solving the problem with the exact self-energy would
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Figure 6.5.: Plots of the spectral function, eq. (5.31), for the electronic states.



Results and Discussion Absorption spectra

T [K] Apolalron [meV]

300 -1.268
250 -1.200
200 -1.185
150 -1.185

Table 6.3.: Temperature dependence of energy renormalization of the s transition, the polaron shift, deduced by
inspecting the data from figure 6.4.

somehow completely cancel the observed shift. For more than two levels the polarizations couple through
the indirect exciton matrix elements in the third term, these are, however, usually several times smaller
in magnitude than the direct ones, see table 6.1. Indeed solving the above equation of motion for our
system, which can be done analytically exact, we find that the direct exciton matrix elements account for
98% and 97% of the entire exciton shift for the s and p transitions, respectively. Inspecting the data in
figure 6.4 we find an excellent agreement with these simulations, when the polaron energy shift is taken
into account.

A peculiar feature of the spectra is that the s resonance apparently split up into two peaks, when we turn
on the Coulomb interaction. Splitting of spectral features is normally indicate that we have entered some
sort of strong coupling regime for a given interaction, where the coupling strength exceeds the relevant
linewidths. As this splitting appears when the Coulomb interaction is turned on, one might be tempted
conclude that it is directly due to this interaction. However, due to the structure of eq. (6.4) and our
experience with its solution, we do not think that the Coulomb interaction, at the HF level and in the
linear regime, can give rise to the usual kind of interaction induced splitting. The only interaction that
is included in these simulations besides the Coulomb, is the interaction with the LO-phonons, and hence
we speculate that the splitting must somehow originate from this interaction. Indeed if we compare the
spectra with and without Coulomb interactions, in the spectral region near the renormalized s resonance,
we observe a rather pronounced LO-phonon-assisted transition in the spectra without Coulomb. This
particular LO-phonon-assisted transition has a main peak and a small shoulder on the high energy side.
We believe that by sheer coincidence (rooted in the specific system parameters of course), the s transition
gets shifted and lands on top of this LO-phonon-assisted transition. This causes the LO-phonon-assisted
transition to be magnified several orders of magnitude, and by coincidence it is the shoulder that gets
magnified the most. The main peak is also magnified to a significant value, even though the exciton shift
does not coincide exactly with this resonance, the reason being that the main peak was originally much
more significant than the shoulder. The net result is what appears to be a Coulomb induced splitting,
which in some sense it is, but fundamentally it is mediated by the LO-phonons.

The last observation we wish to note is that the exciton shift mainly occurs for the original s and p
transitions, while all the LO-phonon-assisted transitions are only very weakly affected by the Coulomb
interaction.

6.3.2. LO-phonons and photons

In this subsection we will discuss the absorption spectra for the same system as above, but now including
the interaction with photons and not the Coulomb interaction. Even though we have derived equations
of motion for the photon Green’s functions in section 5.4.2, these will not be needed in the linear regime.
This is because only electronic densities enter in the source terms of these equations of motion, and
these are not affected in the linear regime, hence we will not change the photon Green’s functions from
their equilibrium values. The only way the photons enter the electronic equations, is through the singular
Hartree self-energy, eq. (5.41), where the retarded photon Green’s function may be taken in its equilibrium
form due to the above arguments.
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The properties of the cavity are treated fully on a parameter basis, which is reasonable as we only consider
a single quasi-mode in the cavity. The first parameter is the energy of the cavity photon hwc,,, which
we in this section will always tune relatively close to the s transition in the QD. Therefore we write the
energy as

Iweay = hwi” — [Apolaron| + 1 X 1 meV, (6.5)

where we have subtracted the small energy shift due to the electron-phonon interaction from the free
energy of the s transition and n is a dimensionless parameters. This is done to be able to control the
detuning of the cavity with respect to the LO-phonon dressed electronic system, and in table 6.3 we show
the temperature dependence of the polaron shift of the s transition. The second parameter describes the
finite lifetime of the photons in the quasi-mode of the cavity. We will usually talk about the linewidth
heay Of the photon, or its inverse counterpart the lifetime .., = v.,., however, another commonly used
measure is the Q-factor defined as QQ = weay/Yeav- In the following discussions we will use the quantity that
best suits the given situation. The last parameter describes the coupling strength between the photons
and electrons and is denoted hg,. However, as discussed in section 4.4 it is reasonable within our model to
consider a single strength for all transitions, and we may therefore drop the a subscript and simply refer
to a single number hAg.
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Figure 6.6.: Figures showing the absorption spectra including the effects of LO-phonons and the cavity photons.
These simulations were done for coupling strengths in the range hg = [0.1,0.2,0.3,0.4,0.5,1,2,3,4,5,6,7) meV, with
hg = 0.1 meV being the blue center peak and hg = 7 meV being the outer purple double peak. Other parameters
in the simulations were: hweay = hw{’ — [Apolaron|; Teav = 2.36 ps = hAycav = 0.28 meV = Q = 3000, and a
temperature of 300 K.

As in the case of the Coulomb interaction in the previous subsection, one may neglect the influence of
the LO-phonons and come up with a much simpler set of equations, that in some cases can be solved
analytically exact. These simpler models are sometimes useful in interpreting the results of more compli-
cated numerical models, we will therefore briefly discuss such a model. As mentioned in the beginning
of this subsection we need only consider the Hartree self-energy of the electrons due to the photons.
Furthermore as the self-energy is purely off-diagonal in the band index, only the following element is
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needed

t
sevradH () — / 05" hgahiga, o5 (E) A7 (1, 1), (6.6)
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where A”(t,t') = —ih 10(t — t/)e~weav(t=t)=Yeavlt=t'] ig the retarded photon Green’s function?. Using
eq. (5.37a) we obtain the equation of motion for the inter-band polarization

t

Oipe (1) = —iwg”pg! (8) — vapl () — ih*l/ di'y " hgahga, pe; (AT (1) =ik U (1), (6.7)
e A

where a dephasing rate v, and an excitation field USY(¢) have been added. In our QD system the difference
in transition energy between the s and p shells is above 90 meV, hence if we tune the cavity energy near
the s transition we may neglect the influence of the p transitions, due to very large detuning. In this
case of a two-level system we may solve eq. (6.7) analytically using the Laplace transform technique, if
we assume a delta pulse excitation at ¢ = 0. The solution yields the time-dependent polarization given
explicitly by

=5 ‘ :)\O) (At +16 = ear] €M = Ao 48 — ean] €X1) e (6.:8)
JF - —

where § = weay — w§¥ is the detuning and Ay = 2(—i6 — 7 — Yeay £ i[49% + (8 4 [y — Yeav])?]/?), the value
of p(t = 0) is determined by the specifics of the excitation pulse but is relatively unimportant when
considering absorption spectra. We note that only the dephasing rate v does not enter in the full model
and hence this is the only adjustable parameter.
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Figure 6.7.: Two alternative representations of the data shown in figure 6.6, (left) shows the peak heights as a
function of hg for the simulation and two-level model, and (right) shows the positions of the peaks as a function of
hg for the simulation and two-level model, the black dashed line show the polaron shift.

To start out the discussion we consider a situation where the photon energy is set so that we obtain a
situation as close to the usual zero detuning case as possible, that is we put n = 0 in eq. (6.5), we choose a

4 Alternatively one may introduce the difference time defined as 7 = t — t/, in terms of which eq. (6.6) transforms to:
Jo© dr >ay M9ahga, pG; (t — 7)AT(7), where T can be interpreted as an absolute memory time.
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Q-factor of 3000, and a temperature of 300 K. The coupling strength is varied from 0.1 meV to 7 meV (the
step size is shown in the figure caption) and the resulting spectra are shown in figure 6.6. We only show
the spectral region of the spectra near the energy of the cavity, as the other parts are basically unaffected
by the presence of the coupling to the photons, which makes sense on an intuitive level. At the lowest
value of g we observe a single peak at the s transition energy, which is slightly broader and lower in
maximum value compared to the spectra without photons. The fact that we see a single peak, indicates
that we are in the so-called weak coupling regime, see the discussion in chapter 1. For the next few values
of the coupling strength, we observe that the single peak gradually splits and becomes a double peak. The
separation increases with the coupling strength, being expected behavior seen in simple textbook models
as e.g. eq. (6.8). This is the regime of so-called strong coupling, see chapter 1. A behavior that is however
not expected from simpler models, is the asymmetry in the peak heights in the double peak structure. We
see through the different values of hg that neither the left or right peak remains dominant, but rather the
maximum shifts several times. To quantify these observations, we show in figure 6.7 the peak heights and
positions as a function of the coupling strength, along with the numbers predicted by eq. (6.8). It should
be noted that the dephasing rate entering eq. (6.8), was chosen so that the peak heights were similar in
magnitude, which coincidentally gave a dephasing rate very similar to the photon decay rate, reflecting
the effective dephasing rate caused by the LO-phonons at this temperature. It is however not the goal of
this discussion to extract dephasing rates, but rather to show qualitative differences, so we will not dwell
on this point. In figure 6.7 we see that the spectral positions of the peaks in the strong coupling regime,
follow rather closely the positions predicted by our simple model, although the right peak seems to drift
a bit more than the left peak. In the case of the peak heights we see a much more dramatic departure
from the predictions of the simple model. The simple model predicts that the left and right peaks should
be of equal magnitude, due to the symmetric lineshape imposed by the constant dephasing rate, and tend
toward a constant value for large hig. Instead of an equal magnitude we observe that the data points from
the simulation, actually cross each other twice in the range of coupling strengths we consider. This deviant
behavior is, of course, caused by the interaction with the LO-phonons, and is the result of the complicated
dynamics between the photons and the LO-phonon dressed electronic states. In order to more precisely
determine the reason for this behavior, one should go back to the spectral functions in figure 6.5, and
investigate exactly which of the LO-phonon and/or hybridization peaks, that give rise to spectral features
near the s transition in the absorption spectra without photons. However, such an extensive analysis is
beyond the scope of this thesis.

Now we will discuss a situation where we vary the detuning parameter n, see eq. (6.5), and fix the
coupling strength at ig = 5 meV, other parameters are as in figure 6.6. The spectra obtained from
these simulations are shown in figure 6.8 for a wide range of detunings. Starting at n = 0 we see a
clear double peak structure indicating that we are in the strong coupling regime. Furthermore, the left
and right peaks are of approximately the same magnitude, which indeed they need not as can be seen in
figure 6.6. In this situation we may not assign a specific peak to either the photon or electron. The system
is in a strong superposition of the two, and it is not possible to distinguish them. We usually say that
a polariton, an electron-photon quasi-particle, has formed. For increasing positive detuning we observe a
clear monotonical increase for the left peak and decrease for the right peak, which is expected on the basis
of our simple model. Having a situation where difference in peak magnitude is as large as for n = 20,
corresponds to a departure from the strong coupling regime and into a regime where we may assign a
peak to each of the involved particles. Here the left peak is the electron and the right is the photon,
which can be seen from the fact that it is the most detuned of the two peaks. For increasing negative
detuning we observe the same trend, but the other way around, until a detuning near n = —12 is reached,
then the right peak is no longer increasing, but actually decreasing. In figure 6.9 the non-monotonical
behavior is more clearly presented, and we see that the right peak continues to decrease for detunings
larger than those shown in figure 6.8. Furthermore we also note a small increase in the left (photon)
peak for the largest negative detuning considered, which might be due to the presence of LO-phonon
assisted transition near this place in the spectrum, see figure 6.4. Comparing to what is predicted by our
simple model, the disagreement is strongest for negative detunings, which is expected to originate from
the spectral asymmetry introduced by the interaction with LO-phonons. In figure 6.9 we also show the
peak positions as a function of the detuning, which are seen to rather closely resemble what is predicted
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Figure 6.8.: Figures showing the absorption  spectra  including the effects of LO-phonons
and the cavity photons. These  simulations were done for detunings in the range n =
[—20, —16,—12,—-10, -8, —6,—4,—2,0,2,4,6,8,10,12,16,20], see eq. (6.5). Other parameters in the simula-
tions were: hg = 5 meV, Tecav = 2.36 ps = hycav = 0.28 meV = @Q = 3000, and a temperature of 300
K.

by the two-level model.

Comparing the results of figures 6.7 and 6.9 we can conclude, that the spectral positions of the peaks in the
strong coupling regime, are not much affected by having an explicitly many-body interaction causing the
dephasing of the optical polarizations. The individual weights in the double peak structures are however
very much affected by having dephasing modeled beyond simple constant dephasing rates, which can give
an indication of when more detailed modeling of experiments is needed.
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Figure 6.9.: Two alternative representations of the spectra shown in 6.8, (left) presents peak heights as a function
of the detuning parameter n for the simulation and model, (right) presents the peak positions as a function n for
the simulation and model, further the black dashed lines are for the free systems.

6.4. Time domain

In the previous section we discussed the absorption spectra of our QD system, which gave detailed spectral
information on the electronic transitions and how these were affected by the various interactions we
considered. However, the simulations were performed in the linear regime, where formally no population
dynamics take place and we need only consider the equations of motion for the off-diagonal elements of the
electronic density matrix. The theory developed throughout this thesis is, however, much more general and
can treat a great range® non-equilibrium situations where the populations of the different states move away
from their equilibrium values. Indeed, if one was solely interested in the linear absorption spectrum this
can to a good approximation be deduced from the equilibrium properties of the system [26, p. 161], and a
true non-equilibrium formalism need not be applied. As one of the main goals of this thesis is to develop
a theory that is capable of describing non-equilibrium processes in semiconductors, this section will be
devoted to discussing solutions of our equations of motion in the time domain under various circumstances
where true non-equilibrium conditions are present.

6.4.1. LO-phonons

In this subsection we consider the time evolution of the electronic density matrix after excitation by an
external pulse including only the interaction with LO-phonons, through the Hartree and Fock self-energies,
eqs. (5.40) and (5.44), respectively. For simplicity we neglect the Coulomb interaction between the
electrons and the interaction with photons, as including these interactions makes the analysis more difficult.
Omitting these interactions of course makes the results less applicable to real physical systems, but it allows
us to study the effect of LO-phonons exclusively. In fact in systems where photons occupy bulk sized
volumes, it is well known that the radiative recombination times are on the order of nanoseconds, whereas
the typical timescale for phonon dynamics is picoseconds. Hence in neglecting the photon interaction we
may simply imagine considering such a system, where photons only become important on much longer
timescales.

5Generally we are limited to the weak excitation regime. Going beyond the weak regime require us to take into account the
effects of screening.
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Figure 6.10.: Figures showing the time evolution of the elements of the electronic density matriz for three la%?)
ferent excitation energies and four different temperatures. In all figures the solid line is 300 K, the dotted
250 K, the dashed-dotted 200, and the dashed 150 K. The strength of the excitation pulse is the same for
series. The scaling numbers {ac,av,b} for the plots are: top: {1.5 x1072,1.2 x 1072,1.9 x 1071}, maddle:
{45x107*,4.0 x 107*,0.92 x 107?}, and bottom: {1.3 x 107%,1.1 x 107%,1.2 x 10~" }.
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Excitation energy T [K] > p¢(t = 10 ps)

hwsY 300 1.7127 x 1072
250 1.7382 x 1072
200 1.7610 x 1072
150 1.7797 x 1072

h(wsY + wiY)/2 300 6.8058 x 104
250 6.2670 x 10~4
200 5.7419 x 104
150 5.2793 x 104

hw§¥ 300 1.0728 x 1072
250 1.0962 x 102
200 1.1168 x 1072
150 1.1335 x 1072

Table 6.4.: Table showing the total number of electrons ezcited into the conduction band, )" po (t = 10 ps), by the
external excitation field.

The first situation we wish to consider is the establishment of a quasi-thermal equilibrium state within each
band, due to thermalization of the electrons through the interaction with the LO-phonons. We consider the
same system as in section 6.3, where we excite the system with a 100 fs pulse of fixed amplitude and vary
the photon energy of the pulse and temperature. The results of the simulations are shown in figure 6.10.
The top figure is for a photon energy of hwS" corresponding to the free p shell transition energy, the middle
one is for an energy of ii(wS” + wSV)/2 corresponding to right between the s and p transitions, and finally
the bottom figure is for an energy of hw$" corresponding to the free s transition. Thus we consider two
cases of resonant excitation® and one case of off-resonant excitation. Each simulation was performed at
four different temperatures, 300 K, 250 K, 200 K, and 150 K.

Generally we observe that all populations reach a quasi-equilibrium state within 4-7 ps. This is consis-
tent with results obtained in the paper [41], even though they reach the quasi-equilibrium slightly faster,
presumably due to the fact that they include a WL continuum that is expected to speed up the thermal-
ization. The simulations all show the expected result, namely that electron states of lower energy are more
populated than those of higher energy, being consistent with the general rule that a subsystem connected
to a reservoir always tries to minimize its total energy. A slightly surprising result in the cases of the
resonant excitations, is that the polarization decays on a significantly longer timescale than the timescale
it takes the populations to reach the quasi-equilibrium. An increase in the lifetime of the polarizations is,
however, observed as the temperature in lowered. Going through the populations at large times when the
quasi-equilibrium has been established, we see a clear tendency of the electron occupation to shift towards
higher/lower energy in the conduction/valence band as the temperature is increased. This is expected
as for higher temperature, the probability of an electron to absorb a LO-phonon increases due to the
thermal occupation factor of the LO-phonons. This trend is, however, not observed for the non-resonant
excitation for reasons that will be explained shortly. As we learned in section 6.3 the absorbtion spectrum
changes with temperature, and thus we can not expect the same number of electrons to be excited, for
a fixed excitation pulse, as we vary the temperature. Inspecting the total number of electrons generated
in the conduction band by the pulse, reveals that it does indeed depend on temperature, see table 6.4.
Comparing the numbers for the two resonant excitations, we see that almost twice as many electrons are
generated in the case of p shell excitation than in the case of the s shell. This is consistent with the fact the

6Tn the section on absorption spectra we were careful to subtract the small polaron energy shift from the energy of the
cavity photon, in order to be able to have full resonance between the s transition and the photon. This is, however, not
as important in this section, as we consider a 100 fs pulse corresponding to a FWHM energy width of 18.2 meV and thus
the polaron shift of the order 1 meV is not important. The situation was different in the absorption simulations, where
the high @ of the cavity made the photon linewidth of the order 0.1 meV, thus making the polaron shift important to
account for.
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p shell is double energy degenerate and hence in the free system one would expect this ratio to be exactly
2. However due to the effects of the LO-phonons this is not the case. For the case of the non-resonant
excitation we see that the numbers depend strongly on temperature, explaining why we do not see the
same trend as for the resonant cases. In fact the dependence of ) pS¢(t = 10 ps) on temperature is so
strong that in order to confirm the above intuition regarding LO-phonon absorption, one should tune the
excitation field so that an equal amount was excited for the different temperatures, or simply initiate the
simulations with electrons already excited”.

We will now turn to a discussion of the transient regime in figure 6.10, between the pulse has excited the
system and the quasi-equilibrium has been reached. In the cases of resonant excitation, we observe an
initial rapid change in the populations of the levels the pulse was tuned onto, however already during the
short time span the pulse is in the system, scattering between the intra-band levels has already occurred.
This shows that the LO-phonons influence the electron dynamics on timescales below the 100 fs mark. In
the non-resonant case we are in the regime where one would expect to see the phenomena of adiabatic
following, already discussed in section 6.2, due to very off-resonant character of the external pulse. Indeed
for a free system, as shown in figure 6.2(b), we see how the populations simply follow the excitation
pulse envelope, illustrating the adiabatic following. Whereas in the present simulations, the LO-phonons
seem to "catch" the electrons near their quasi-equilibrium values, making the pulse unable to "follow"
them back to their true equilibrium values. After the pulse has left the system, the electron populations
approach their quasi-equilibrium values of qualitatively different ways, we observe both exponential-like
monotonical decay and decay with rather powerful oscillations. The exponential-like monotonical decay
occurs mainly in the conduction band and the oscillatory decay occurs mainly in the valence band. We
expect this difference between the bands to arise from the difference in intra-band transition energies, as
this is one of two quantities determining how efficient the electrons and LO-phonons couple, the other
being the matrix element. Indeed from table 6.1 we read off the following intra-band transition energies:

¥y = 0.4 X hwr,o = 15.0 meV and hws§ = 2.2 X hwro = 82.7 meV. These clearly show that the intra-
band transition in the valence band is much more resonant with a LO-phonon energy than the intra-band
transition in the conduction band. Thus we expect a much stronger coupling in the valence band than in
the conduction band. Indeed it has been pointed out in the literature [41, 61] that these oscillations are
analogous to the Rabi oscillations® observed in optics in the strong coupling regime. Studying carefully the
transient regime in the valence band, we notice a pronounced dependence of the oscillations on temperature,
both in oscillation period, amplitude, and decay time. The oscillation period is seen to increase as the
temperature is lowered, which is usually connect to a decrease in a coupling strength. In our case we
expect that this lowering of the effective electron-phonon interaction, arises from the thermal occupation
factors of the LO-phonons. These decrease along with the temperature and enters the LO-phonon Green’s
functions occurring in the self-energy determining the interaction. The damping of the oscillations is
seen to increase along with temperature, which is also consistent with the fact that the effective electron-
phonon interaction increases with increasing temperature. In the low temperature simulations for the
off-resonant case, we observe a lot of small oscillations modulating the larger oscillation. We suspect that
these small oscillations might arise from processes, where the inter-band polarization for both the s and
p transitions enters, so-called P? terms see [26, p. 281] or [56, p. 229]. The reason for this suspicion is
that it is only for the non-resonant case that the polarizations for both inter-band transitions have similar
magnitude.

The simulations discussed above were all done in the weak excitation or linear regime where, as noted
in section 6.3, only the off-diagonal elements of the electronic density matrix change significantly from
their equilibrium value. This is due to the fact that these are first order in the external field, whereas the
populations or diagonal elements are second order?. In this lowest order regime the qualitative shape of
the solutions does not change, only the absolute magnitude does, and this scales linearly for off-diagonal
elements and quadratically for the diagonal elements in the external field. Our model is however not
limited to lowest order in the excitation field, in fact it contains all order of the excitation field, and we

"In the low excitation regime it is actually possible to obtain the quasi-thermal equilibrium populations only through
knowledge of the true equilibrium retarded Green’s functions, through the use of the fluctuation-dissipation theorem [38].

8This is actually not that surprising as photons and phonons are formally identical at our approximation level.

9This can be realized by performing a formal expansion in the external field, see [31].
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will therefore spend some time discussing how the solutions change qualitatively as we move away from the
linear regime. To illustrate the change we have plotted in figure 6.11 the incoherently summed polarization
Yoo |98 (t)] and the population of the s shell in the conduction band, for a range of different strengths
of the excitation field. The simulations were performed with a 15 fs pulse and a temperature of 300 K.
The reason for choosing such a short pulse, is that it creates solutions that are more oscillatory than a
100 fs pulse, making the point easier to illustrate. All solutions are scaled to facilitate comparison of the
qualitative shape, even though their absolute values are quite different.

For the two sets of solutions with relative field strengths of 0.75 and 1 we are clearly in the linear regime,
seen through the fact that these solution are of the same scaled shape. For the next two of strengths
2.5 and 5, we still see an overall agreement in the shape of the solutions, compared to the linear regime,
however they do start to differ slightly. At relative strengths of 7.5 and 8.75 the departure from the linear
regime is even more pronounced, especially for the solutions of the populations, whereas the incoherently
summed polarization is not affected that much. For the largest relative strength considered, equal to
10, the qualitative shape of the solution for the population has totally changed, and again we see that
the polarization is not as sensitive. Increasing the excitation strength even further, we enter a regime
where Rabi oscillations start to occur, due to the interaction between the classical excitation field and
the electrons. These are, however, not presented as the focus is on changes in the dynamics due to
LO-phonons.

To understand the origin of these qualitative changes in the dynamics, one should look at the scattering
terms originating from the electron-phonon interaction, the Hartree contribution 5.40 and the Fock contri-
bution eq. (5.44). The Fock contribution is the more important of the two and therefore we will only treat
this in the following. More specifically one should consider the factors in the scattering terms containing
the electronic density matrix. Upon examination of eq. (5.44) we find that all these factors appear in the
following forms: [0p,5, — p22t (t1)]pl (t1) and 22 (t1)[0p, 0 — p2¥ (1)) b, ¥/, and « are fixed depending on
which element of the density matrix is considered, while b; and a; are integration variables that should
be summed over all their possible values. Considering the scattering term of the polarization, b = ¢ and
b = v, we get the following kinds of contributions

lowest order :  p%Y(t1)
higher order :  pi (t1)pg" (t1),  piy (£1)pd (1)

and for the conduction band population, b = ¢ and b’ = ¢,

lowest order :  pg’ (t1)pn (t1), P& (t1)
higher order :  pg(t1)pg (t1)

where we have arranged the different contributions according to their order in the excitation field. We
note that the lowest order for the polarization is first and second for the population. In the linear
regime the dynamics is governed by the lowest order contributions presented above, whereas the higher
order contributions become significant when the strength of the excitation field is increased. Physically
what happens in this weak to strong transition is that population dynamics start to become significant.

6.4.2. LO-phonons and photons

In this section we will describe and discuss solutions of our equations including LO-phonons, as in the
previous subsection, and now with the electron-photon interaction also. In section 6.3 we have already
considered the effect of adding photons to the equations of motion, but as these simulations were done
in the linear regime, no electrons were excited and thus no real photons generated. In this section we
will allow for excitation of electrons across the bandgap and hence for the generation of real photons. In
section 5.4 we derived two versions of equations of motion containing photons, one where photons where
treated in the GKBA and one where the full two-time photonic Green’s functions were retained. In this
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Figure 6.11.: Figures illustrating the transition from the weak to the strong excitation regime, (left) shows the
incoherently summed polarization and (right) shows the occupation of the s shell in the QD. The legends indicate
the relative strength of the excitation field and further all solutions have been scaled to facilitate comparison. The
simulations were performed with a 15 fs pulse at a temperature of 300 K.

section we will only consider photon dynamics in the GKBA, the two-time version of the equations will
be treated in later sections. To include photons in the electronic equations we add the following terms
in the simulations: Eqs. (5.41), (5.46), and (5.47). In the GKBA for the photon, the only dynamical
quantity is the photon density in the cavity, A(¢), which obeys the equation of motion given in eq. (5.55).

To illustrate the more interesting effects photons has on the dynamics of the system, we present, simula-
tions in the short-time regime where coherent effects are still present in the scattering processes taking
place. More specifically we will look for Rabi oscillations, i.e. coherent exchange of energy between two
subsystems, between the electrons and photons, as these are signatures of the electron-photon system
being in the strong coupling regime. The strong coupling regime is where most of the interesting physics
takes place and it is therefore of great interest to obtain a better theoretical understanding of this. We
consider the same electronic system as in the previous sections, which we excite with a 100 fs pulse and
we choose a rather strong pulse. We use a strong excitation pulse in order excite a significant number
of electrons, that again is the prerequisite for generating enough real photons to make stimulated pro-
cesses significant. Going into the strong excitation regime is actually not justified in our model, as in this
regime the Coulomb interaction starts to become the dominant dephasing mechanism, which we can not
describe in lowest order self-energy approximation. For simplicity we do however not include the Coulomb
interaction in these simulations, and hence the simulations are not expected to yield results similar to
what would be measured, but hopefully they highlight some general features in electron-photon-phonon
dynamics.

In figure 6.12 we show the results of the simulations in the case of p and s shell excitation, and with the
cavity tuned to the renormalized s transition, other parameters are given in the figure caption. Comparing
the two different excitation conditions we observe a substantial difference in the dynamics, especially
within the first 5 ps after excitation. In the case of p shell excitation we observe an initial rapid relaxation
of electrons toward the s shells, where they are resonant with the cavity, and photons are generated in
the cavity in a smooth way. Even though the s shells are populated very fast by the efficient LO-phonon
scattering, we observe no significant signs of Rabi oscillations neither in the populations nor polarizations.
We suspect that the reason for the absence of Rabi oscillations, is due to the very rapid dephasing of the s
polarization, in which the resulting loss of coherence of the electrons, prevents the coherent energy exchange
between electrons and photons. In figure 6.14 we see how the conduction band is gradually emptied of
electrons, with the rate of decay increasing with increasing g as expected. In the case of s shell excitation,
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Figure 6.12.: Figures showing the solution of all electron and photon quantities in our model. The pulse excitation
energy is hws' (top) and hwi" (bottom), and a strong pulse magnitude was used. The cavity is tuned so that
I g = hwi¥ — |Apolaron|. The different series are: (solid) hg = 0.1 meV, (dotted) hg = 0.5 meV, (dashed-dotted)
}i = 2 meV, and (dashed) hg =5 meV, and a Q-factor of 3000 was used. The temperature is 300 K.
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Figure 6.13.: As in figure 6.12, but with a temperature of 150 K.
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powerful Rabi oscillations are observed for the two highest values of the electron-photon coupling strengths
considered. The fact that the slowly-varying s polarization is modulated with an oscillation depending on
hg can understood in terms of eq. (6.8), where we see that in the strong coupling regime, oscillations are
indeed expected in the time domain. As in the previous case the conduction band electrons decay into the
valence band, however, at much lower rate, see figure 6.14 (top).

The origin of the lower decay rate for the s excitation, is expected to be found in the part of the scattering
term describing spontaneous processes, the part with the blocking factor structure p& (t1) [1 — p¥Y¥ (t1)].
These terms give relatively high values when the occupation in the conduction band is high and low in the
valence band, i.e. right after the excitation pulse has excited the system. Whereas when the occupation
in the conduction band decreases and the valence band increases, these terms give relatively low values.
To support this argument a simulation was made where the conduction band occupation after p shell
excitation, reached a level comparable to that of the s shell excitation. Figure 6.14 (bottom) shows that
the rate of decay for the p shell excitation, drops dramatically once fewer electrons are present in the
conduction band. This effect is most clearly illustrated when dealing with a two-level one electron system,
where the relation p°°(¢1) + p"V(¢1) = 1 holds yielding a blocking term of the form (p°(¢;))?. This should
be contrasted to the usual exponential decay known for a two-level system, arising from "blocking" terms
of the form p°“(t1), where no extra slow down is experienced when the occupation is low. This discrepancy
between the two methods in the case of a two-level system is not fully understood yet, but we are certain
that it is the Green’s function approach which yields the incorrect result'?, manifested in a sort of artificial
Pauli blocking. The blocking factor structure described above is also obtained in the cluster expansion
scheme, however in this formalism the artificial blocking issue may be resolved as described in [68]. In
the case of a system containing more than one electron, it is however clear that the various scattering
terms must contain blocking terms of the form encountered in our theory, supported by the literature
[68, 77].

The important difference between the two excitation cases is that in the present, coherent electrons are
excited directly to states interacting through the cavity mode, whereas in the previous case the initially
coherent electrons had to undergo scattering processes in order to arrive at the cavity resonant states.
During these scattering processes they lost enough of their coherence, so that Rabi oscillations were not
observable. This indicates that if we could maintain the coherence of the p shell excited electrons for a
longer time, Rabi oscillations for this excitation case could become observable. Our handle for providing
longer coherence time, is to lower the temperature and hence the amount of LO-phonons available to
participate in scattering. In figure 6.13 we show simulations identical to those in figure 6.12, but with
a temperature of 150 K, and indeed Rabi oscillations start to become visible for the p shell excitation.
Oscillations due to LO-phonons also become more pronounced, especially for the valence band population,
however, they have a larger period than those induced by the photons and can therefore be distinguished,
compare with figure 6.10. For the s shell excitation the already existing Rabi oscillations have become
greater in amplitude, in particular in photon density where we observe negative populations. This indicates
the either the GKBA or lowest order self-energy approximation has broken down, and that lower hg values
should be used to obtain sensible results.

Comparison with numerically exact solution

To be able to formulate and solve the equations of motion for the Green’s functions as done above, we have
applied two major approximations, namely the truncation of the various (self-consistent) self-energies and
the employment, of the GKBA. The exact validity and range of either of these approximations are not fully
understood yet in a formal rigorous sense, and thus it is always interesting to compare with other solution
methods. In this section we will perform such a comparison, with a simplified version of the cQED system
considered above that can be solved numerically exact.

The first simplification we employ is to neglect the interaction with the LO-phonons, which is done to
be able to span the Hilbert space with a finite set of basis vectors. This removes the basic dissipation

100r our inability to apply it correctly.
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and 6.13. The lower figure is the same as 6.12, but for a longer simulation time.

(t), for all the simulations presented in figures 6.12
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mechanism and thus no dephasing or relaxation will occur, unless it is added phenomenologically. Next
we limit ourselves to only considering the s shells of our QD, hence we only treat two electronic states.
This system is described by the following Hamiltonian

dEo(t)

5 (Clcve—lwot + c;fjcce-‘rlw()t)7

H = thchC + hwvcicv + hweava'a + hg(cicva + aTcJL,cC) +h
in the case where no loss processes are present. To include losses one may use a master equation approach
as the Lindblad form, see [78]. Here the equation of motion for the reduced density operator of the system
described by the lossless Hamiltonian above reads

Dip(t) = iﬁ [H, p(t)] - %Z (LLLio(t) + p(O)LLLy — 2Lkp()L] ) (6.9)
k

In this formula L, = \/Yas |a) (b| are Lindblad operators, describing a loss process occurring at a rate
Ya,b in the transition from state b to a. In this formalism pure dephasing can easily be added by including
Lindblad operators of the form L, = \/Ya.a |a) (a|, that can be thought of as a virtual transition, not
changing the occupation of level a. Now in order to perform a comparison between the Green’s function
approach and a solution obtained through that Lindblad master equation, we can not include losses that
can not be unambiguously included in both formalisms. This rules out adding pure dephasing, as it is
not clear how it should be included in the Green’s function approach. One might naively think that a
simple term like —vqepnp®¥ (¢) could be added to the equation of motion for the polarization. However,
as we have learned in the previous sections, decay mechanisms also affect the retarded Green’s functions
entering the GKBA, and it is not clear how these functions should be modified to include pure dephasing.
The situation is quite different for the case of the cavity loss rate, vcav, which can easily be included in
both the Lindblad formalism and Green’s function approach.

To proceed with the solution eq. (6.9), we need to span a Hilbert space capable of describing the physical
situation we wish to consider. The situation is the usual, in which the electron is initially in the ground
state and at some point it is excited by the external field, and the system is left to evolve according
to the rest of the Hamiltonian. Due to the application of the RWA for the light-matter interaction,
and the assumption that we only excite that system once with a ultra-fast pulse, we may limit the
Hilbert space to only contain basis states with at maximum a single photon added. Choosing the set
{I1) =cl10),|2) = a’cl |0),|3) = ¢ |0)} we may expand the operator equation eq. (6.9) and by including
the Lindblad operator L. = \/cavcicya, loss is introduces for the cavity photons. We obtain the
following equations for the reduced density matrix

¢ ~ —i
9ip11(t) = Yeavp2z + §dE0(t)[p13(t)e %t _ el
Oip22(t) = —Yeavpoz + ig[p23(t) — c.c.],

. { ~ —i
Orpas(t) = —ig[pas(t) — c.c.] — §dE0(t)[p13(t)e %t _ el
~ cav ~ .o~ —i ) % s
Oupra(t) = =252 pra(t) + igpa(t)e ™" — ZdEo(t)pss(B)e ",

- g i i i8
Dz (t) = igpa(t)e’™ + 7dEo(t)e 2 [p11 () — pas(t)],

Dupaa(t) = =15 pag(t) — i0pas(t) + iglpaa(t) — paa()] + 5dEo(t)pis (e ™",

where we have defined the following detunings § = w—w®, §p = wo —w®’, and ¢’ = w—wy, and the slowly-
varying functions py3(t) = e tp13(t) and pi1a(t) = €!p1a(t). In the case of the Green’s functions we use
the equations described in the beginning of this subsection. In the GKBA for the electrons we employ
free retarded Green’s functions, which is actually exact in this case where only the photon interaction
is considered. This we know from section 5.3.3, where it was established that there are no correlations
between the electrons and photons in equilibrium, and thus no initial correlations need to be included
through the retarded Green’s functions.
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Figure 6.15.: Figures comparing the solution of the Jaynes-Cummings model using an ezxact method (dashed) and
our Green’s function method (solid). The excitation was done with a 100 fs pulse with a large magnitude and the
colors are for: (red) @@ = 3000 and hg = 0.1 meV, (blue) Q = 3000 and hg = 1 meV, (green) Q = 100 and
hg = 0.1 meV, and (black) @ = 100 and hg = 1 meV. The detuning between the photon energy and electronic
transition is in all cases zero.

In figure 6.15 we show the results simulations using the two different methods. We consider four represen-
tative parameters sets combining a large/small coupling strength fig and high/low damping through the
Q-factor. The exact numbers are given in the figure caption. We show the population of the conduction
band state, the valence band population can be obtained through particle conservation, the polariza-
tion, and the photon density. The agreement appears to be best for the red series describing both a low
coupling strength and damping. The agreement is worst for the case of high coupling strength and low
damping, which could intuitively have been expected, as formally we consider an expansion in hg. For
certain times we even have negative populations for both the electrons and photons, see section 6.2 for
more on this feature of the theory. The overall conclusion of this brief comparison is that we can only
expect qualitative agreement in the case of the electron-photon interaction, however, quantitative agree-
ment can not be expected on the basis of this investigation. For the full system where the LO-phonons
are also included, we do not expect the disagreement with the exact result to be as large is in this partic-
ular situation. This is due to the fact that dissipative processes, introduced by the LO-phonons, tend to
make higher order correlations decay faster. This hopefully lowers the need to go to higher order in the
self-energy in order to avoid unphysical populations. Also the present system is a two level one electron
system, where the effects of the artificial Pauli blocking discussed in section 6.4.2 are expected to be most
severe.
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6.5. Emission spectra

In this section we will describe and discuss our attempts to model the emission spectrum of the cavity
photons in our semiconductor cQED system. This is an interesting quantity as it is often measured in
experiments, see e.g. [16, 79].

We begin with an expression for the emission spectrum [44, p. 299] for an idealized two-level detector.
Assuming an infinite detection time, the expression reads

+oo +oo ) ,
S(R,ws) / ' / dte=is¥ =0 (EC) (R, ¢ EG (R, 1)),
— 00 — 00

where R is the position of the detector, wg is the detection frequency, and E*) (R, t) are the electric field
operators, assumed to be scalars. Note that we have neglected an unimportant prefactor and therefore
we only write "proportional to" at the moment. In principle the electric field operators contain a sum
over all modes, including those in the far field where the emitted photons are actually measured, these
modes can be important to obtain agreement with experiment. It is, however, beyond the scope of this
thesis to describe all these modes and we limit ourselves to only considering the local cavity mode, as also
done in appendix A.1, which greatly reduces the complexity of calculating the spectra. This corresponds
to the rather unrealistic experiment where the detector is placed inside the cavity, or to the case where
the photon propagates without changing its properties from the cavity to the detector in the far field. In
any case it does not make much sense, to assign any significance to the mode function of the cavity that
enter the expression for the field operator, and we will simply neglect this overall prefactor and therefore
also the dependence on the detector position R. The emission spectrum is now expressed only in terms
of the creation and annihilation operators of the cavity, and this expression will be used in the rest of the
thesis

+oo +oo
S(ws) = / dt’ / dte s (gt (t")a(t))
+oo +oo ) , B
= / dt’ / dte”{Ws—wear) (=) A< (¢ ¢/, (6.10)

where in the second line we have expressed the photon bracket in terms of the slowly-varying lesser Green’s
function defined in eq. (5.48). The two time integrals in eq. (6.10) cover the entire two-time plane and thus
the two-time photon Green’s function is needed at all these points. However, due to the symmetry relation
eq. (5.49), that relates the values of the lesser Green’s function above and below the time diagonal, it is pos-
sible to reduce the double time integral to run over either the half plane above or below the time diagonal.
Choosing below the time diagonal we may derive the following expression

+oo +oo _
S(ws) = 2Re{ / drelws ~wea)T / th<(t,tT)}, (6.11)

0 —00
using eq. (5.49).

As a first approximation one may attempt to use the GKBA version of the two-time photonic Green’s
function as given by eq. (5.53), where the retarded Green’s function is taken in its equilibrium form. In
the GKBA the slowly-varying lesser Green’s function has the form

A<(t,t — T) = exp(—YeayT)A(t — 7), (6.12)

where A(t—7) is simply the photon density and we have assumed 7 > 0. Inserting this form into eq. (6.11)
we get

o0 400
S(ws) = 2Re { / dre!(ws ~wea) T YenrT / dtA(t — T)} :
0

— 00
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The integral over ¢ deals only with the photon density, and due to the functional dependence of A on 7
we may change the integration variable ¢ — ¢ — 7 so that we get the integral fj;: dtA(t), which is clearly
independent of 7 and we will simply denote it by the real constant A. Performing the integral over the
remaining exponential and taking the real part yields

’YCB‘V
b
(Ws—weav)? + Y2y

S(ws) = 2A (6.13)

revealing a Lorentzian lineshape centered around the cavity frequency. We note that the only requirement
for performing this calculation, is that the retarded Green’s function used in the GKBA only depends on
the time difference. This result tells us that one can only obtain a Lorentzian emission spectrum, if the
GKBA is used as an approximation for the two-time photon Green’s function. All information on how the
electrons were initially excited, and exactly how the photons were emitted is all contained in the constant
A. This simple constant only scales the magnitude of the Lorentzian lineshape, and hence application of
the GKBA will be of very little use in interpreting experimental emission spectra. The fact that the GKBA
fails spectacularly for this type of calculation, is perhaps a bit surprising since it is an approximation, that
is very often used in the literature. It has, however, mainly been applied in situations where the object of
primary interest was the equal-time lesser Green’s function of the electrons. In these situations knowledge
of the Green’s function outside the time-diagonal is as such redundant. The situation here is very different,
in that the quantity we wish to determine depends strongly on the values of the Green’s function outside
the time diagonal. Considering that all propagation outside the time diagonal in the GKBA is handled by
the retarded Green’s function, it might not be that surprising after all that the properties of the retarded
Green’s function, will be very significant in quantities depending strongly on the off-diagonal values of
the two-time lesser Green’s function. On the basis of this discussion, we must conclude that in order
to calculate emission spectra of light emitted under strong non-equilibrium conditions, the full two-time
machinery must be set in motion, at least for the photonic Green’s functions.

6.5.1. Present stage results

As discussed above we have to work with the two-time versions of the equations of motion for the photonic
Green’s functions, as oppose to the one-time GKBA version, in order to obtain meaningful emission
spectra. This is a significantly more complicated task, both formally, as seen by comparing eqgs. (5.55)
and (5.56), and especially numerically. In the GKBA one should only perform a single memory integral
for each discretized t value, while in the two-time formalism a memory integral must be performed for
each discretized t and 7 value. Furthermore, this should be done for both the greater and lesser photonic
Green’s function, as these are both independent functions in the two-time formalism. Depending on the
required memory depth of the memory integrals, the computationally demands are increased many times,
and as a consequence of this the implementation and verification process becomes more difficult and more
time consuming. This stage of the project was not initialized until the very end of the assigned time
period, and therefore enough time was not available to obtain a completely satisfactory result. We will,
however, describe the present stage of our progress and discuss what further steps need to be taken.

To start off the discussion we in figure 6.16 show our solutions for the two-time photonic Green’s functions.
To reduce the computationally demands we only consider the two s shells of our QD, and excite the system
on resonance with a strong 100 fs pulse, other parameters are given in the figure caption. The solution
for the lesser Green’s function shows a behavior that is somewhat expected, in that we observe an initial
increase in magnitude, due to the electron and hole recombining by photon emission, and afterwards a
decay in both the ¢ and 7 is seen. For the greater Green’s function the behavior is much different and
we observe a strong increase in the 7 direction, where we would expect a decay on physical grounds. The
apparent plateaus in the figure are artificial and represent, areas where the magnitude is larger than the
color scale. Indeed, we are quite certain that this behavior is not physical, and arises from numerical
instabilities that eventually would lead to a blow up of the solution. This kind of behavior is usually a sign
that one should lower the discretization size until a converged result is reached. Due to very long integration
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Figure 6.16.: Solutions of the two-time photonic Green’s functions for the following parameters: hweay = hwi’,
Q = 100 = hycav = 8.38 meV, hg = 8 meV, and T = 300 K. Note that the pizellation does not represent the time
discretization used in the simulations, where At = AT = 1 s was used.

times, such a systematic study was not performed for the present set of parameters. We did, however, take
another route and increased the physical damping in the system, through lowering the @Q-factor from 100
to 30. This was done expecting that it would help to prevent the numerical instabilities from occurring. In
figure 6.17 we show our solution for the Q-factor of 30. The excitation was performed with a 50 fs pulse,
instead of 100 fs, other parameters are as in figure 6.16. The figure shows that the numerical instabilities
are indeed damped significantly, even though one still observes some bands in the 7 direction near ¢t = 2.2
ps and t = 2.6 ps for the greater Green’s function that do not appear physical. The magnitude of the
bands does, however, decrease for increasing 7, and hence we do not expect that this solution would blow
up if one calculated it for larger 7 values than considered here.
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Figure 6.17.: Solutions of the two-time photonic Green’s functions with parameters as in figure 6.16, except for
Q = 30 = hYecay = 27.94 meV and the use of a 50 fs pulse for excitation.

These observations hint that the problem is at least partly due to numerical instabilities, that in principle
can be cured by decreasing the time discretization, and not due to flaws in our theory or implementation.
Indeed it is reasonable to think that a finer time discretization is needed in a two-time calculation, than
would be necessary in a single-time calculation, due to the much more progressive accumulation of errors.
This is so as we basically solve a differential equation for each discretized value of 7, each of which has an
numerical error and an accumulated error due to the memory integral. Each of these solutions are used
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every time we increase ¢, and the net result is a much larger error on the overall solution, which could
easily lead to the instabilities we observe. We would like to point out that the solutions satisfy particle
conservation and fulfil the relation A>(¢,t) — A<(t,t) = 1, see eq. (2.31). This indicates that our theory
and implementation at least to some extent are correct. In order to get rid of the numerical instabilities,
one could perform a thorough analysis of the error as a function of the time discretization, and compare
it to a formal error analysis of the equations, to see if the two agree.

Even though we are quite convinced that the two-time solutions presented above, do not represent the
true solutions to our equations, we have still calculated the emission spectrum according to eq. (6.11) to
see if some physical signatures could be identified. The results are shown in figure 6.18 for the considered
cases. Both spectra display a large emission near the free cavity frequency, where the renormalized cavity
frequency is slightly lower than the free. The set of sidebands situated on each side of the main peak are
signatures of LO-phonons, confirmed through the fact that appear approximately a LO-phonon energy on
each side of the main peak. Furthermore, the spectrum for the highest Q-factor also display a splitting of
the main peak, which shows that this system is in the strong coupling regime, see chapter 1. The small
ripples in this spectrum are expected to occur, as we have basically performed a Fourier transformation
of a function that has not fully decayed in a smooth manner.
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Figure 6.18.: Emission spectra calculated from eq. (6.11) using the solutions in figure 6.16 (left) and figure 6.17
(right).

6.6. Indistinguishability

In order for a single-photon source to be used in a quantum computer, it is essential that the single photons
it emits are indistinguishable, as otherwise one will not be able to make them interfere. This makes it very
important to obtain an understanding of what physical processes, causes the single photons to become
distinguishable. In this section we will discuss how to define and determine the indistinguishability of the
single photons emitted from our cQED system.

As discussed in chapter 1, one way to quantify the indistinguishability is to perform a Hong-Ou-Mandel
(HOM) interference experiment as shown in figure 1.3(a). The result of such a measurement is a coincidence
histogram for photon detection events, in the two photon detectors on each of the output arms of the BS,
as shown in the bottom of the figure. Two perfectly indistinguishable photons would coalesce into a two-
photon state, when impinging simultaneously on the two input arms of a BS. Therefore one would not
observe simultaneous clicks in both detectors for this case, leading to the vanishing of the peak near 7 =0
in the histogram. Real single photons are, however, always slightly distinguishable, due to interactions
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with the environment, causing the peak at 7 = 0 to not vanish completely. We may therefore use the
magnitude of the peak near 7 = 0 as a measure of the indistinguishability [15, 17], normalized in an
appropriate way. To quantify this proposal we denote the function describing the coincidence histogram,
as a function of the delay time 7, with the symbol Gg()p(r). With this quantity we may define the degree
of indistinguishability I in the following way

dTGS%, (1)

T=1— fpeak near 7=0
dTGS()p (1)

(6.14)

fpeak away from 7=0

where the normalization must be chosen as the integral over a peak sufficiently far away from the center
peak at 7 = 0, so that no two-photon interference occurs. The peaks far away from 7 = 0 are basically
what would be measured with no BS in the experiment.

Next one needs to relate the experimental function GS%,(T) to a function that can be calculated the-
oretically. The relevant function is the second order correlation function for the photon [17], which is
proportional to the probability of detecting a photon at one space-time point and another photon at some
other (or the same) space-time point. In our case the two different space points are the two detectors
in the HOM experiment, and the two times are the arrival times of the photons on the detectors. We
denote this function as G(?) (¢, ') = G(?) (t,t —7), where reference to the space points has been omitted and
further we have employed the time transformation used throughout the thesis. The second order correla-
tion function is, however, a true two-time function and not an effective single-time function as Gg()p(T).
It turns out that in order to obtain the experimental function one must average the time ¢, as this is
what is done with the experimental data'!, due to large uncertainties in ¢. Performing the averaging we
obtain

) L S
G o o /_ GO (1 - 7), (6.15)

where T must be chosen large enough so that G?) (¢, t—7) has fully decayed, furthermore only "proportional
to" can be used due to several unknown prefactors pertaining to the experimental setup.

The above approach for defining and obtaining the indistinguishability was motivated by the experimental
procedure. We may however choose a simpler approach as we work with pure theory and are not limited
by the technicalities of the experiment. The motivation is the fact that G(2) (t,t — 7) vanishes everywhere
for two perfectly indistinguishable photons, in the case of a single!? simultaneous excitation of the two
single-photon sources. The degree on indistinguishability may then be defined as

, [rodt [T arG® (1,1 — 1)
- [t [T arG® (it — 1) (6.16)
—00 —00 no BS\"

where we have chosen the normalization as the integral over G(?) (t,t — 1) with no BS present, and thus
no interference effects. With this definition one obtains I = 1 for perfectly indistinguishable photons
and I = 0 when no interference occurs at all, with the extreme being the case of no BS present in the
experiment.

Returning to the second order correlation function we note that it is a special case of the two-particle
Green’s function for the photon, which is a difficult object to handle in a many-body formalism. Fortu-
nately it turns out that due to the specifics of our system, we may to a good approximation express the
two-particle Green’s function in terms of single-particle Green’s functions. An expression for G(? (¢, t — 1),

We thank Henri Thyrrestrup Nielsen and Toke Lund-Hansen of DTU Fotonik for enlightening discussions.

127t is important that the single-photon sources are only excited once, as otherwise one would get peaks away from 7 = 0
similar to those in figure 1.3(a). The peaks in this experiment [14] are due to technicalities of the experiment, i.e. the
need to build up a proper statistics through many identical excitations of the emitter.
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appropriate for our experiment, has been derived in appendix A.1 and is given by
GP(t3,ta) = (al (t3)alts)) (a'(ta)a(ta)) — (a¥(ta)a(ta)) (o' (ta)alts)) + (o' (t3)a’ (ta)a(ta)alts))
+ % [(a¥(ts)al (ta)alts)) (a(ts)) + (a(t)a(ts)alts)) (o' (ta))
—{al (tz)a’ (ta)a(ts)) (a(ts)) — (al(ta)a(ta)a(ts)) (a' (t3))] -

The two first terms in this expression are proportional to single-particle photonic Green’s functions, while
the third is a two-particle Green’s function and the rest represent other contributions. In appendix A.2 it
was shown that in the RWA it is well justified to neglect all other terms than the two first in the above
expression. Hence we end up with a much more manageable object

GO (t,t —7) = (a'(t)a(t)) (al(t — T)a(t — 7)) — (a(t)a(t — 7)) (a' (t — T)a(t))
= AS(t,)A(t — 7.t —7) — |A<(t,t — 7)|?, (6.17)

where in the last line we have used the definition of the slowly-varying photon Green’s function eq. (5.48)
and also the symmetry eq. (2.32) to write the second term as an absolute value. The second order
correlation function with no BS introduced in eq. (6.16), may be found from eq. (6.17) by simply removing
the last term

Gl(’120) BS (t7t - T) = A< (ta t)A< (t - T7t - T)a (618)

as this is what introduces correlations between the photons. For a proper formal derivation of this
result, one may go back to eq. (A.4) and realize that without the action of the BS, one may sim-
ply factor this expectation value right away, due to the assumption of independence of the two emit-
ters.

As done in section 6.5, where we found that the determination of the emission spectrum required the full
two-time lesser Green’s function of the photon, we may attempt to use the GKBA to express the two-time
Green’s function in the expression eq. (6.17). To apply the GKBA we simply have to insert eq. (6.12) into
eq. (6.17) which yields the following

GO(t,t—7)= At —7) [A(t) — e DT At — 7)]

where we have used that both the decaying exponential and the photon density are real functions. In
section 6.5 the GKBA was found to be of no use as the replacement for the true two-time Green’s function,
however at first sight the situation does not look as critical here as in the case of the emission spectrum.
A further investigation has unfortunately not yet been performed.

6.6.1. Present stage results

In the section we present calculations of G(?) (¢, —7) and GS%,(T) based on the two-time solutions already
introduced in section 6.5.1. As the solutions themselves have already been discussed we will simply make
a brief comments on the obtained results for G(?)(t,t — 1) and Gg()p(T).

In figure 6.19 we show the results of calculating G(?)(¢,t — 7) based on the formulae eq. (6.17). The first
thing one notices is the fact that the values become negative. This is clearly unphysical as G (t,t — 7)
expresses a probability, which is another indication that the two-time solutions presented section 6.5.1 are
not the actual physical solutions to the equations. Other than this unacceptable property, we notice that
the value goes to zero for 7 = 0, being consistent with eq. (6.17), and that it decays in both the ¢ and 7
directions.

The corresponding Gg()p (7) functions are shown figure 6.20. These also display negative values, due to the
fact that G®)(t,t—7) does, again being an unphysical property. The red curves display the so-called HOM

dip, which is a sign that interference has occurred. The blue curves illustrate Géi)p(r) with no BS present,
eq. (6.18), and for this reason they do not display any signs of correlation.
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Figure 6.19.: G (t,t —7) calculated from eq. (6.17) for the solutions shown in figure 6.16 to the left and figure 6.17
to the right.
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Figure 6.20.: calculated from eq. (6.17) for the solutions shown in figure 6.16 to the left and figure 6.17 to the right.

6.7. Summary

In this chapter we have applied the equations of motion derived in the previous chapter, to a number of
specific situations, including probing the equilibrium system in linear response theory and investigating
the full non-equilibrium dynamics of our cQED system. Below we go through the findings and results of
the different sections in the chapter.

In section 6.2 we discussed the occurrence of unphysical populations within our theory. These occur for
certain excitation schemes, when conditions for very efficient coupling are present within the bands. We
suspect that these unphysical features are due to a break down of the GKBA and/or the lowest order
self-energy approximation, a suspicion which is supported by the literature. Using a level structure with
transitions less resonant with the LO-phonon energy, did, however, provide us with a quick fix of the prob-
lem, but more work is needed to fully resolve this issue in a satisfactory manner.

The linear absorption spectrum was treated in section 6.3, where the effects of all many-body interactions
were systematically investigated. Only including the LO-phonon interaction, we found that the main s
and p transitions were broadened and slightly shifted. Beside the renormalizations of the main peaks, a

120



Results and Discussion Summary

very rich structure of lesser pronounced peaks arose. It turns out that the rich peak structure can be
understood in terms of the spectral functions of the polaron quasi-particles, where a number of sidebands
and hybridization effects enter in a dramatic way. The quasi-particles give rise to so-called LO-phonon-
assisted transitions, manifesting themselves as a complicated background of peaks. Including the Coulomb
interaction mainly resulted in a large negative shift of the s and p transitions, known as exciton shifts.
The magnitude of the shifts could be explained using a relatively simple model. The combined effects of
both the LO-phonons and photons was also investigated, and several parameters controlling the electron-
photon coupling were systematically varied. The results from the numerical simulations, were compared
to a simple model where dephasing was treated in the constant decay rate approximation. In the strong
coupling regime, the transition resonant with cavity photon developed into a double peak, as expected, and
the positions and relative weights of the two peaks were compared to the simple model. It was found that
the spectral positions of the peaks could be relatively well explained by the model, whereas the relative
weights could not, due to symmetric Lorentzian lineshape implicitly assumed in the constant decay rate
approximation.

In section 6.4 time domain solutions to our equations were investigated. The first part dealt with the
approach to a quasi-equilibrium state, due to LO-phonon scattering after excitation by a short optical
pulse. In all considered cases a quasi-equilibrium state was reached within a time span of 5 ps. Furthermore
Rabi oscillations between the electrons in valence band and LO-phonons was observed, which are analogous
to well-known Rabi oscillations between electrons and photons. In the second part we considered a similar
situation, but now photons were included in the equations, and in this investigation we looked specifically
for Rabi oscillations between the electrons and photons. The occurrence of Rabi oscillations was found,
not surprisingly, to depend on temperature, which is reasonable as the number of LO-phonons causing
dephasing decreases with temperature. A much stronger dependence was, however, found on exactly how
the electrons were excited, and the strongest Rabi oscillations were found for excitation directly into the
levels being resonant with the cavity photon. In the last part we compared our Green’s function approach
to a numerically exact solution to a simplified system. Quantitatively the agreement was not overwhelming,
but qualitatively the agreement was reasonable. It is, however, difficult to gauge the accuracy of solutions
obtained using Green’s functions for more realistic systems, as exact solutions to many-body problems are
in general very difficult to obtain.

In the last couple of sections, 6.5 and 6.6, we discussed how to determine the emission spectrum and
indistinguishability of the emitted photons using the Green’s function formalism. In the case of the
emission spectrum, it was found that in order to obtain lineshapes other than Lorentzians, the GKBA
could not be employed for the photonic Green’s functions. This called for the use of the full two-time
photonic Green’s function theory, which is much more complicated than the effective single-time version
provided by the GKBA. The present stage of progress on solving the two-time theory was discussed in
section 6.5.1. Even though it was concluded that we had not yet obtained the correct physical solution,
the solutions that had been obtained, still produced emission spectra containing some of the expected
physics, such as the strong coupling splitting and sidebands due to LO-phonons. In section 6.6 two-time
findings in connection to indistinguishability were discussed, but these were to a large degree unphysical
and therefore inconclusive.
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In this thesis we have investigated many-body effects in self-assembled semiconductor QDs, with the
main motivation of describing relaxation and dephasing processes beyond a simple constant decay rate
picture. The main emphasis has been on the interaction between electrons and LO-phonons, which is
known to be the main scattering mechanism in the low excitation and high temperature regime. To
model a single-photon source the QD has been placed in an optical cavity, in which the interaction with
photons becomes important on short time-scales. To describe the dynamics, a many-body formalism has
been employed, which is based on non-equilibrium Green’s functions. Invoking complicated theoretical
methods is necessary in order to correctly describe a true many-body system, which a semiconductor QD
is. The governing equations derived using the many-body formalism, have been solved numerically and the
solutions analyzed and discussed for a range of parameters. Below we go through the individual chapters
and summarize the results obtained in these in greater detail.

A general introduction to the subject is given in chapter 1, where we have tried to motivate the present
work and give an introduction to the physical system being considered.

In chapter 2 we took on the task of introducing the reader to the formal theory of non-equilibrium Green’s
functions. We started from a basic calculation of an ensemble average for a non-equilibrium system written
as an infinite series, and ended up with the celebrated Dyson equation, formulated in terms of the contour
ordered Green’s function and its corresponding self-energy. From this we were able to formulate a set of
equations for various real time Green’s functions, that are capable of describing physically observables.
The equations are the foundation for almost all calculations performed in this thesis. Last we introduced
an extremely important approximation known as the Generalized Kadanoff-Baym Ansatz (GKBA), that
in some cases enables us to reduce the general two-time structure of the Green’s functions to an effective
single-time structure.

The most fundamental ingredient in any quantum theory, namely the Hamiltonian operator, was treated in
chapter 3 for a general semiconductor system. Even though this is normally regarded as textbook material,
we went through many of the steps necessary to go from a fully general Hamiltonian, to a form more
appropriate for practical calculations. This was done in order to gain an overview and understanding of
the many different Hamiltonians that enter many-body physics. We have at least to some degree succeeded
in doing this.

The more practical problem of obtaining a sufficient description of the electronic single-particle states, and
the computationally demanding task of subsequent calculating of the various interaction matrix elements,
was treated in chapter 4. In this chapter we set up a simple model for the combined QD and WL system,
that captures the essential features of the self-assembled QDs grown in the laboratory. We numerically
solved the model for a specific geometry and discussed the qualitatively different states. Next we proposed
two ways of calculating Coulomb matrix elements on the basis of the states obtained from our model.
One which is exact but slow and one which is approximate but much faster. The need for a fast and
efficient method is paramount, as the number of Coulomb matrix elements grows extremely fast with the
number of basis states. The two methods were compared and for most elements the relative error of the
approximative method was below 1 %.

In chapter 5 we performed a last set of approximations on the Hamiltonians and truncated the many-body
self-energies, further we formulated the final versions of equations describing our equilibrium and non-
equilibrium system. The self-energies were truncated at the lowest order level, but made self-consistent in
the electronic and photonic Green’s functions, as dictated by the particle conservation law in the case of
the electrons. An analysis of the equilibrium properties of our system was performed, and it was found
that the coupling to the LO-phonons strongly modified the spectral properties of the electrons, compared
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to the free or slightly lifetime broadened case. These quasi-particle properties are very important to
incorporate into the non-equilibrium theory, as otherwise the initial or equilibrium correlations will be
missing in the non-equilibrium dynamics. In contrast to the LO-phonons, the photons were found not to
have any equilibrium correlations with the electrons, at least at our level of approximation. This was a
bit surprising due to the formal similarities between phonons and photons. In the last part of the chapter
the non-equilibrium equations of motion were derived. In these derivations the main approximation was
employment of the GKBA. The GKBA was applied to all electronic Green’s functions, whereas for the
photonic Green’s functions we presented two versions, one in the GKBA and one where we retained the
full two-time form of the Green’s functions.

The application of the equations of motion to non-equilibrium situations was treated in chapter 6. Due
to the size of this chapter, we will only summarize a few of the main results obtained here, referring the
reader to section 6.7 for a more complete summary. A large part of this chapter was devoted to studying
many-body effects on the linear absorption spectrum of our system. The most dramatic effect occurred due
to inclusion of LO-phonons into the Hamiltonian. A very rich spectrum resulted where beside the already
existing the main s and p transitions, a large number of lesser pronounced peaks came into existence. It
was established that these smaller peaks were manifestations of LO-phonon-assisted transitions, arising
due to transitions between LO-phonon dressed electron states, illustrated clearly through the polaron
spectral functions. Including photons into the theory, we were able to study the effects of LO-phonons on
the vacuum Rabi splitting, that appears in the spectrum in the strong coupling regime. We systematically
varied the coupling strength hg and detuning, between the cavity and s transition, and compared the
results to a simple analytical model. We found that the spectral positions of the two peaks characterizing
the vacuum Rabi splitting, were well described by the simple model, however the relative weights of the
peaks were not. Another main focus was the investigation of population dynamics after excitation by
a short optical pulse, displaying the full power of the non-equilibrium theory developed in this thesis.
The approach to a quasi-thermal equilibrium state was studied, and it was found that this state was
established within 5 ps for all the cases considered. Furthermore, Rabi oscillations between the LO-
phonons and valence band electrons was observed, indicating that these couple strongly for the considered
system. The occurrence of Rabi oscillations due to the electron-photon interaction was also treated, and
we investigated under which conditions these were most pronounced. Not surprisingly it was confirmed
that lowering the temperature made it more likely to observe these coherent exchanges of energy. This is
consistent with the fact that the thermal occupation of LO-phonons decreases for decreasing temperature,
and hence the decoherence caused by them. More surprisingly it was found that the Rabi oscillations
depended much stronger on exactly how the electrons were excited. More specifically the more powerful
oscillations were observed when electrons were excited into the shell being resonant with the cavity. We
expect this to be due to the electrons losing their coherence while relaxing into the cavity resonant s shell,
and thereby not being able to interact coherently with the photons.

7.1. Outlook

In the limited time span of this project we have not been able to pursue all the directions and ideas we
would have liked to. In the following we describe several extensions of the present work, that would be
natural to investigate in the future.

One of the most obvious improvements of the present theory would be the inclusion of the electronic
states in the WL continuum, that we know are part of the real physical system we are trying to describe.
At elevated temperatures it is known that electrons are thermally excited into the WL states [42], hence
making these important for a proper description. Although the WL continuum has been taken into account
in several many-body calculations [41, 55], this was done in a scheme where the bound and unbound states
of the QD and WL respectively, were not treated on the same footing, which could potentially be a serious
problem. A consistent solution to this problem would be the implementation of the WL states described
in section 4.2.3, into the theory developed in this thesis. It is further expected that adding an electronic
continuum would remedy the issues we have experienced regarding the unphysical populations described
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in section 6.2, in that they would provide more efficient scattering making the application of the lowest
order self-energy sufficient,.

Many quantum optical experiments are performed at very low temperatures, where it is known that
LA-phonons become the dominant dephasing mechanism. It would indeed be very interesting to include
LA-phonons into our theory, as this would enable us to help interpreting many of the experiments currently
being performed around the world, some of which even in the Quantum Photonics group at DTU Fotonik.
Going to low temperatures would furthermore drastically lower the amount of electrons being thermally
excited, that could serve as an argument for neglecting the WL continuum. The fact that LA-phonons
constitute an energy continuum could possibly, in analog to adding a electronic continuum, help us avoid
unphysical populations, due to the increased scattering efficiency.

A more practical improvement, but no less important, would be to implement the numerical code in a low
level programming language such as Fortran or C. The present implementation of the theory has been done
in the commercial script language MATLAB, which offers easy access to complicated functionality and
relatively easy debugging capabilities, however often at the cost computational efficiency. Implementation
in a low level language would offer great speed and the opportunity to use existing parallelization packages,
making large scale computations possible. A faster implementation of the theory, would also ease the
analysis of the unresolved issues remaining in the two-time theory of the photonic Green’s functions
described in sections 6.5 and 6.6.

The ultimate goal for future developments of the work presented in this thesis, is to provide a practical
theory that takes into account all the important many-body interactions in a cQED system. From this
theory it should be is possible to extract all wanted information on the emitted photons, which is the most
important property to describe as it is what is being measured in experiments. We have initiated this by
setting up a theory for the two-time photonic Green’s functions, but as has been reported much work still
remains to be done.
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A. Appendix

A.1. Second order correlation function for a Hong-Ou-Mandel
type experiment

As mentioned in chapter 1 we are interested in determining the indistinguishability of single photons
emitted from a semiconductor cQED system, for this we may perform an interference experiment as
interference and quantum indistinguishability are intimately connected. Indeed it is known [15, 17] that
if two perfectly indistinguishable photons are interfered on a BS, these will coalesce into a two-photon
state. The corresponding coincidence detection probability in a Hong-Ou-Mandel (HOM) two-photon
interference experiment [80] will be zero. The experiment we wish to describe is shown schematically in
figure A.1. It consists of two systems, denoted 1 and 2, that are capable of emitting photons, which are
directed onto a beam-splitter (BS) where they may interfere and the output arms of the BS are equipped
with photon detectors.

| Mirror

- |
System 2 } N %

Arm 2
Beam splitter Photon detector at r3

System 1 ) l \ '
— Arm 1 Arm 3

variable delay device

Arm 4

' Photon detector at r4

Figure A.1.: Schematic illustration of the experiment designed to measure G(g)(’f’gt3, rata;rata, r3ts). The variable
delay device is inserted to adjust the path length for the photons from system 1, so that one may control the arrival
times for the photons from system 1 on the BS.

Theoretically the relevant quantity for describing such an experiment is the second order correlation
function of the quantized electric field [45, p. 564], with its spatial coordinates evaluated at the detector
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positions in each of the output arms 3 and 4. The explicit expression for the second order correlation
function is

G(Q)(T‘zgtg,T‘4t4;’l"4t4,’l"3t3) = <E(_)(T‘3,tg)E(_)(T4,t4)E(+) (7‘4,t4)E(+)(7‘3, t3)> 5 (Al)

where the positive and negative frequency parts of the quantized electric field are given by
EM (1) =) Emamum(r), BT (rt) = Enal,(t)um(r), (A2)
m m

and the mode functions and expansion coefficients are assumed to be real. For simplicity we will assume
that the fields on the output side of the BS can be represented by a single mode in each arm so that we
may write the field as

ECO(r.t) = ES7) (r,t) + ES7 (1) = Esad(Hus(r) + Exal(t)ua(r), (A.3)

where only the negative frequency part is shown. The reason for making this assumption is that we only
wish to model a single quasi-mode of the cavity, from which the photons originate, and therefore also the
input side of the BS will be represented by a simple two mode field as above. In this approximation we only
solve for the local cavity mode and through this we implicitly assume that propagation effects from the
cavity to the detectors are neglectable. This often used assumption has recently been questioned [81], for
some types of photonic structures, and may therefore not be valid in all cases, but it is beyond the scope
of this thesis to improve upon this approximation. To proceed we insert eq. (A.3) into eq. (A.1) which
results in a total of 2% = 16 contributions. Fortunately most of these can be neglected as they contain
spatial cross terms of the type us(r4) or us(rs), where a spatially localized mode function is evaluated at
the detector position in the other output arm, which can safely neglected. After throwing all these cross
terms away we end up with the expression

G(Q)(’I‘;gtg,7‘4t4;7‘4t4,7‘3t3) ~ |83U3(7‘3)|2|83U4(7‘4)|2 (ag(tg)al(t4)a4(t4)a3(t3)> ,

where we may further remove the constant prefactors. This is allowed due to the fact that the considered
second order correlation function is only proportional to the probability we are looking for, and hence it
must be normalized at some point anyway. We may now simply the notation and write the second order
correlation function as follows

G (t3,ta) = (al(ts)al(ta)aa(ta)as(ts)) . (A4)

The next thing is to relate the output photon operators to those on the input side, which is done with a
standard BS relation of the form [17]

s [ i) e oo (), (4.5)

ay(t) e'? sin(€) cos(&) as(t)

that performs the BS action as a unitary operation. The number £ determines the reflection and transmis-
sion of the BS and ¢ is an arbitrary phase. To express Géi) (t3,t4) in terms of the input photon operators we
use eq. (A.5) on eq. (A.4) which generates 2* = 16 terms of four-operator brakets in the photon operators
for the two input arms. We assume the photon operators of the input to be equal to the photon operators
of system 1 and 2, respectively. To simplify this expression and the further analysis of the problem, we will
assume that system 1 and 2 are identical and independent. The identical part means that their respective
Hamiltonians are equal, except for the index, and the independence means that their Hamiltonians com-
mute, [H;, Hz] = 0, i.e. do not interact. The fact that their Hamiltonians commutes, has the consequence
that any expectation value involving operators of the two subsystems may be factored into an expectation
value for each of the subsystems, e.g. (a%(tg)ai (ta)ai(ts)as(ts)) = (a% (t3)az(ts)) (aJ{ (t4)ai(ts)). The fact
that the are equal means that after the factorization we may simply remove the subscript referring to the
individual subsystems, so that effectively we only consider a single system. In practise this situation can
realized by using the same system as both system 1 and 2. The first emitted photon could be sent on
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a longer path, while the system returned to equilibrium and could be excited again to emit the second
photon. Performing the steps described above and specializing to the case of a 50/50 BS, obtained by
setting £ = 7/4, and choosing the arbitrary phase as ¢ = 7/4 we arrive at

G (ts,ta) = (a' (ta)alta)) (af (ta)a(ts)) — (af (ta)a(t)) (o' (ta)alts)) + (al(ts)a' (ta)a(ts)alts))

+ \% [(a®(t3)at (ta)alts)) (a(ts)) + (ol (t3)a(ts)alts)) (o' (ta))

—(a¥(ts)a’ (ta)a(ts)) (alts)) — (a' (ta)a(ta)alts)) (a¥(ts))] | (A.6)
where an overall factor of 1/2 has been removed. The two first terms in this expression are first order
correlation functions or single-particle Green’s functions and are expected to play an important role as we
are considering single-photon states. The third term is a second order correlation function, or two-particle
Green’s function, and is not expected to yield significant contributions due to its two particle nature.
This may sound strange as we are interfering two photons, however, we have expressed the two-photon
detection probability in terms of quantities of the single emitter, where only a single photon is generated.
The last four terms are more difficult to have an intuition about, as they are not directly related to photon
detection probabilities as the first three terms are. The importance of all terms will be investigated further
in appendix A.2.

A.2. Higher Order Correlation Functions

The purpose of this appendix is to estimate the relative magnitude of the various photon correlation
functions appearing in the expression for Géi) (ts,t4), see eq. (A.6), and show or argue that higher order
correlation functions are identically zero or negligible. For reference we reproduce the expression for
G(Si) (t3,t4) below

G (ts,ta) = (a' (ta)alta)) (a' (ta)a(ta)) — (af (ta)a(t)) (o' (ta)alts)) + (ol (ts)a' (ta)a(ts)alts))

1
7 [(a¥(ta)a' (ta)a(ts)) (a(ts)) + (a' (ta)a(ts)alts)) (o' (ta))
—(a¥(ts)a’ (ta)a(te)) (a(ts)) — (a' (ta)a(ts)a(ts)) (a¥(ts))] (A7)
To avoid having to deal with the full solid-state system, see section 3.2.3, we will focus on a much simpler
system, namely the well known Jaynes-Cummings model' (JCM). The JCM describes a system of a single
electron interacting with a single cavity mode through the dipole coupling, for a illustration see figure A.2.
The Hamiltonian for the JCM is given by

H=Hy+ H;, Hy= Z ﬁwicjci + hw(ata+1/2), H; = Zhgcjcj(aT +a), (A.8)
i=1,2 i#j

where w; is the frequency of electron state i, w is the frequency of the cavity mode, and g is the coupling
constant between the two systems which we assume to be real. The operators cj, ¢, af, and a are
the standard second quantization operators for fermions and bosons. We note that the rotating wave
approximation (RWA) has not been applied, as it is partly the validity of this we wish to examine, also the
spin index of the electron has been omitted for notational simplicity. The part of the Hamiltonian for the
full system which is responsible photon emission into the cavity is exactly given by the JCM Hamiltonian.
The extra terms occurring, all lead to various forms of the decay. On this basis, we can expect the JCM
to exhibit stronger photon correlations than the full system, and hence it can be used as an ideal system
to investigate higher order correlations. We will then assume that photon correlation functions, which are
zero or negligible for the JCM will be of even smaller significance for the full system, and hence can be
omitted in the full analysis.

LSee e.g. chapter 6 in [44].
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Figure A.2.: Schematic illustration of the Jaynes-Cummings model, with the electronic and photonic systems in-
teracting through Hi.

In order to obtain the photon correlation functions we need to determine the time evolution of the photon
operators (a and a') in the Heisenberg picture. This is given by

a’(t) = UT (ta tO)au(tv tO)a (Ag)
where u(t, to) is the time evolution operator
ihowu(t, to) = Hu(t,to) = u(t,to) = exp (—iH(t — to)/h),

and where the initial condition wu(tg,tp) = 1 has been used. In the following we will set to = 0 and drop
the second time argument in u(t,tg). The explicit form of u(t) is most easily obtained by diagonalizing
H, as u(t) will be diagonal in the eigenstates of H.

The next step is to choose a suitable basis for our system. A general basis vector containing one electron
and N photons will be of the form

\N
[n1,ne; N) = (CD”1 (cg)m% |0), where njy,my=0,1 and N =0,1,2... (A.10)

Usually when considering the JCM, in the RWA, the basis {|1,0;1),|0,1;0)} is used, as this generates a
closed set of equations for the initial state |1)(t = 0)) = |0,1;0). However due to the fact that we have not
applied the RWA | the same initial condition will couple to states containing more than one photon, and in
general generate an infinite set of equations. These other states contain virtual photons, that is photons
that would not be allowed to exist if strict energy conservation was to hold. In quantum mechanics strict
energy conservation does not hold, due to the energy-time uncertainty relation? AEAt > h/2, and breaking
energy conservation is allowed within small time spans. The main reason for going beyond the RWA is to

examine the effect of the virtual photons on the higher order terms in Géi) (t3,ta).

2For a critical comment on the usual interpretation of the energy-time uncertainty relation see [45, p. 343]. The comment is
based on the fact that there does not exist a time operator in quantum mechanics and hence an energy-time uncertainty
relation, in the usual sense, cannot be derived.
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As a truncated basis we will choose the following five states, denoted the bare basis,

1) =[1,0;0) = c] |0), (A.11a)

12) =[1,0;1) = clal |0), (A.11b)

13) = 10,1;0) = ¢} 0) (A.11c)

[4) =10,1;1) = cha' |0), (A.11d)

5 = 11,0:2) = ¢l 9 o). (AllLe)
» YUy 1 \/5

These are chosen as they possess the two lowest free transition energies for a system initially in the |3)
state, assuming a zero detuning setup, ws —wi = w. The free transition energy between two states is given
by: |Ho(|final) — |initial))|, so that for our basis we get

Ho(|2) = [3)) =0, [Ho(|1) = [3))] = Ho(|4) — [3)) = Ho([5) — [3)) = hw.

This way we allow the initial excitation to propagate into states which are energetically unfavorable, but
nevertheless occur as we have not applied the energy-conserving RWA. In the case of having applied the
RWA there would be no need to expand the basis beyond {|2), |3)}, as these are the only states conserving
energy for a system initially in state |2) or |3).

The matrix representation of H in the basis {|1),]2),3),[4),]5)} is given by

huon 0 0 hg 0
0 HAw +w) hg 0 0
H=10 hg  huws 0 0 ,
hg 0 0 Alw+w) V2hg
0 0 0 V2hg  Bi(wr + 20)

where the zero-point energy of the photons has been neglected, as it only corresponds to a shift of hw/2
to all energy levels and hence is without any dynamical significance. Finding eigenvalues- and vectors
of this 5 x 5 matrix can be done analytically, as the solution of the characteristic equation for deter-
mining the eigenvalues only involves a third order polynomial. The explicit form of the eigenvalues-
and vectors is however not very important in the present context and would take up a lot of space, so
these will not be shown. Instead we present the general form of the solution and argue on the basis of
this.

The eigenvalues- and vectors will be represented by the following symbols

(1]€%)
(21€2:)
(41€)
(51€%:)

respectively and the vectors have been normalized, i.e. (£;|€2;) = d;;. Representing the Hamiltonian in
the basis of its eigenstates, the dressed states, diagonalizes the matrix form of H. Mathematically the
diagonalization is performed by applying the following transformation to H

H =V 'HV = (Hl)ij = hQiéij.

Here the prime (’) signifies representation in the dressed basis and V is a unitary transformation ma-
trix, which columns are given by the eigenvectors of H, i.e. (V);; = (i|Q;). Having diagonalized the
Hamiltonian, it is easy to obtain the time evolution operator as this is also diagonal in the dressed ba-
sis

u'(t) = exp (—iH't/h) = (u'(t));; = exp(—i€it)d;;.

129



Higher Order Correlation Functions Appendix

We could proceed to work in the dressed basis, but we will transform back to the more intuitive bare basis,
eq. (A.11), where the time evolution operator is given by the inverse transformation

u(t) = Va' () V1

The last thing needed to calculate the photon correlation functions is to determine the matrix representa-
tion of the photon operators a and af. The elements of a are found by writing a general matrix element,
of a in two states of the form eq. (A.10)

mao mq (CT)nl (CT)nz (G’T)

(m1, ma; Mla|ni, no; N) = (0] ey ey tale

aM
VM!
= <M|a|N> Omy 1 Oma ma

= VNOM N 10my 1y Oz mns

where in the last line we have used a [N) = VN |N — 1). The matrix representing a can now be written
as

0
V2

0
0
0

S

I
cocoocoo
coocor
cocoocoo
cor~ro o

The matrix form of a is easily found from the above by the definition of Hermitian conjugation (a');; = [(a);i]*.

Obtaining the time evolution of the various correlation functions in Ggi) (t3,t4), €q. (A.7), is now a simple
matter of matrix multiplication as seen from eq. (A.9). One last thing that needs to be discussed is the
meaning of the brackets in eq. (A.7). The usual meaning of the bracket is that of taking the expectation
value of a certain operator O(t), that is (O(t)) = Tr [poO(t)], where pg is the initial density matrix of the
system. For a pure state the density matrix can be written as pg = |[¢o) (¢g|, so that the expectation value
of O(t) can rewritten as follows

(O(t)) = Tr [poO(t)] = Tr [|tho) (¢o| O(t)] = (Y| O(t)¢0) ,

where |1)p) is the initial state vector of the system. This means that we simply have to take the matrix
element of the product of operator matrices corresponding to the desired initial state. To mimic the
situation in an optically excited semiconductor intended for single photon production, we choose the state
corresponding to a single excited electron, [ig) = |3).

We will start by considering the correlation functions on the second and third line of eq. (A.7), containing
an uneven number of photon operators inside the brackets. It can be shown explicitly by multiplying all
the various matrices and in the end taking the (3|---|3) element, that both brackets of single and three
photon operators are identically zero for all times. None of the other terms in G:(gi) (t3,t4) are identically
zero, but we have still achieved a major simplification and we are down to brackets of two and four photon
operators

G (3, t4) = (al (t3)alts)) (al (ta)a(ta)) — (al (t)a(ta)) (o' (ta)alts)) + (al (t3)al (t)a(ta)a(ts)) .

single—particle contributions two—particle contributions

(A.12)

The correlation function with four operators constitutes a two-particle Green’s function, which is a
much more difficult object to handle than the correlation functions with two photon operators, single-
particle Green’s functions. Due to this fact we are interested in examining the importance of the two-
particle Green’s function contributions, relative to the contributions from the one-particle Green’s func-
tions.
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Appendix From A - p to d - E1 interaction

To start off the discussion of the last remaining terms in Géi) (t3,t4), it is useful to mention a few prop-
erties of the JCM in the RWA. When applying the RWA to the JCM Hamiltonian we remove the term
hg(cgclaJr + cJ{cQa), as this corresponds to the creation of virtual photons, see [44, p. 196]. The justifi-
cation for performing the RWA, rests on the assumption that coupling energy hg is small compared to
the transition energies of the free system, i.e. fw and h(ws — wy). This is certainly the case for present
semiconductor nanostructures [82]. Applying the RWA has the consequence that the elements Hy4 and
H,; of the Hamiltonian become zero, which leads to a new matrix form of H

hwq 0 0 0 0
0 Aw +w) hg 0 0
H = 0 hg hwg 0 0
0 0 0  Jf(ws+w) V2hg
0 0 0 V2hg (w4 2w)

It is clearly seen that the new system consists of three independent subsystems, which do not mix due to
the RWA. For this Hamiltonian all correlation functions, except those composed of single-particle Green’s
functions, are identically zero for all times. On the basis of this, one could therefore expect that the
contributions from (af(t3)af(t4)a(t4)a(t3)) would become negligible for small g for the full JCM. However,
it was found not to be the case. For the following set of parameters®: hw; = 2hw; = 2hw = 2.64 eV
and hg = 85 peV, the single- and two-particle contributions in eq. (A.12) were of the same order of
magnitude. However, the absolute value of the single-particle Green’s functions was much larger than
for the two-particle Green’s functions . This picture did not change for even lower g, down to hg =
15 peV. To be able to see the expected behavior, the bare basis was extended by the following two basis
states

at)?
|6>|o,1;2>c£(¢% 0).,

0.3y — ot @)?
|7> - |17073> =0 \/g |0>,
thereby allowing for the creation of another pair of virtual photons, breaking the strict energy conservation
by 2hw. This enlargement of the basis did not cause any visible changes in the single-particle contributions,
but it did cause small changes in the two-particle contributions, not in magnitude but rather shifting
various oscillations in the two-time plane. It was indeed expected that the inclusion of more virtual
photons would change the two-particle contributions, but not have much effect on the single-particle ones.
Due to this observation and the strong expectation that enough virtual photon processes* and sufficiently
low g will cause us to reach the RWA limit of vanishing two-particle contributions, we will assume that

the two-particle contributions in Géi) (t3,ts) can be neglected.

A.3. From A -p to d- E interaction

In this appendix we will rewrite the electron-photon interaction from the A - p to the D - Ev form.
To do this we employ a relatively simple heuristic approach, more rigorous methods [31, 43, 46] can be
used involving unitary transformations but the result is basically the same, hence we will use the more
transparent simple approach. We consider the A - p interaction between a classical field® and a single
electron in the electric dipole approximation

e
Hi:—A - D.
—A(0)-p

3Representative for present day semiconductor nanostructures, see [82].

4Enough virtual photon processes could mean taking certain processes to infinite order and would therefore not be practically
possible in the present approach of diagonalizing a Hamiltonian matrix.

5Basically the same argument can be performed with a quantized field of the form E1(0) = %((ﬂ + a).
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From A - p to d - Ev interaction Appendix

To connect the two different forms a relation between the momentum, p and position, 7, is needed. This
is found by using the definition of momentum [31, p. 26] as the time derivative of the position times the
(free) mass of the electron

m

E [T‘, Ho] 5

where Hj is the single-electron Hamiltonian, whose eigenstates we use as basis Hy [n) = fwy, [n). We
proceed by taking an arbitrary matrix element of H;

GIHlR) = —A(0) - (ilplk) = = A(0) - {(j|5 (rHo — Hor) [k) } = —iw; Dy - A(0), (A.13)

where wji = wj —wy and D = —er is the electrons dipole. The connection between A and Er is given
by the gauge relation eq. (3.3)

p=moir =

ET(O,t) —8,5A(0 t) = A 0, t /thT O t

Assuming that we have a classical electric field for which dominating time-dependence is given by

E, . .
Br(0,1) = = (e™ e,
the corresponding vector potential becomes
E, . .
A(0. 1) = — iwt —zwt.
( ) ) ZW2 (e € )

Inserting this into the matrix elements above yields

FE . .
(GlHilk) = <Dy - (et — 7o),
w 2
To show that these matrix elements are identical to those of H; = —D - Er, and hence that it is the same

operator, we consider the cases wj, > 0 and w;r < 0 separately. The case w;, > 0 corresponds to the
excitation of the electron, and hence the dominating contribution will come from the term where a photon
is absorbed, so that

. Wik Eo _
R (A.14)
The case wjr, < 0 = wjr = —wy; corresponds to the deexcitation of the electron, and therefore the
dominating contribution comes from the term where a photon is emitted yielding
E
(1Hlk) = == Dy S0 (A.15)

For both cases we con51der only the resonant part of the interaction, so that the fraction containing
the transition frequency and field frequency is very close to unity. This completes the derivation and
we have shown that the A - p and D - Er interactions are identical within the approximations used
above. Considering only resonant contributions in the electron-photon interaction is commonly known
as the rotating-wave approximation (RWA), thus in order for the arguments stated in this appendix to
hold, the RWA should be applied in every electron-photon interaction Hamiltonian. The more advanced
derivations referred to in the beginning, do however not make use of the RWA to prove equivalence between
the two forms, hence using the D - E1 interaction and not applying the RWA will still be a consistent
choice.

A possible issue should be noted regarding the current approach. The unitary transformation applied in
the references [46, p. 636] generates a dipole-dipole interaction of the form D- D in the transformed Hamil-
tonian, which does not appear in our derivation performed above. This indicates that the approximations
we have used correspond to neglecting this dipole-dipole interaction. The validity of this approximation
can be assessed by comparing two review articles written by the same main authors [25, 83]. In the
oldest article the dipole-dipole term is kept in the calculations, whereas in the more recent article this
term has been neglected. The calculations were performed on semiconductor nanostructures comparable
to those we are considering, indicating that the neglection of the dipole-dipole interaction is hopefully
justified.
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Appendix Numerics

A.4. Numerics

The numerical methods for solving the equations of motion of the Green’s functions are an extremely
important aspect of performing many-body simulations. This is due to the often huge computations that
need to be performed and choosing the wrong method can easily result in several orders of magnitude
longer computation time. Of similar importance is how the algorithms are implemented on a computer
system, we will however not describe this part of the project. For the above reason we will briefly describe
different methods used in the numerical solution of our equations.

The differential equations we need to solve are all of the following general form

Ou(t) = g(t) +/_ dt'k(t, tu(t') = f(t), (A.16)

where for simplicity we write it is a scalar, generalization to a more general matrix form is straight-forward.
In the above differential equation u(t) is function we solve for, g(t) is some general function, and the last
term is a memory integral with a memory kernel k(¢,¢'). In the following we will denote the entire RHS
as a single source term f(¢).

The goal in numerics is to achieve as high a degree of computational efficiency as possible, i.e. obtain
a sufficiently accurate solution in the least amount of time, which is what guides ones choice of method.
Accuracy is generally obtained through the use of high order methods, while the time consumption is
kept low by minimizing the number of function evaluations. We are not in search of extremely accurate
solutions, but we do have the rather special problem that our source term f(t) is often very expensive to
evaluate. This is due to the presence of many sums in the self-energies and especially the memory integral
over the past. Fortunately there exists a class of methods known as linear multistep or Adams methods,
that are designed to minimize the number of source evaluations, while still being available to high order.
For our type of problem a specific set of schemes have proved themselves useful [26, p. 284], these are
known as predictor-corrector (PC) schemes. A particular choice is the so-called Adams-Bashforth-Moulton
(ABM) procedure [84, p. 943] which is a third order method. The time-stepping formulas are given by
two contributions, a predictor and a corrector part,

h

predictor :  wu,11 = Uy + E(23fn —16fp—1+5fn—2)+ O(h4), (A.17)
h

corrector :  Upy1 = Uy + E(5fn+1 +8fn— fn-1)+ O(h4). (A.18)

In these formulas h is the distance between two consecutive time discretization points, the integer n
refers to the discrete time axis, and O(hP*1) is an order of magnitude error term with p being the order
of the method. The predictor part is an explicit method in that w,41 only depends on quantities at
previous times, whereas the corrector part is an implicit method as u,41 depends on the source term
at the present time n + 1. The reason for combining these two methods is that the explicit predictor is
easy to implement but has bad stability properties, while the implicit method is difficult® to implement
but has good stability properties. The strategy is then to calculate an initial estimate of u, 11 using the
predictor, and then calculate a better estimate using the corrector, using at each n the predictor guess to
evaluate the unknown source f,, 1. This procedure can be repeated many times, but usually only a single
iteration is performed, the rather subtle reason for this is explained in [84, p. 944]. The great advantage
of Adams methods is, as mentioned, that it minimizes the number of source evaluations needed. This can
be realized by considering the RHS of eqs. (A.18) and (A.17) where reference is to previous grid points
only (except for f,,41 in the predictor), meaning that these evaluations can be reused by employing a bit
of bookkeeping. This is in contrast to e.g. high order Runge-Kutta methods, where several intermediate
source evaluations are needed in between the actual grid points. The memory of the Adams method is
in general an advantage, but it does cause some problems for the first few initial steps of the algorithm,

6Eq. (A.18) is actually an implicit equation in wu,41, through f,11, that would have to be solved somehow, which would
be very time consuming.
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as basically one has to known the solution in the first few grid points in order to start the time stepping.
This is not a problem for the non-equilibrium simulations performed in chapter 6, where prior to the
arrival of the excitation pulse the solution is known and all source terms are zero. For the simulations
of the retarded Green’s function performed in section 5.3 we are however not that fortunate, and we
have to apply some other method to solve the problem or somehow obtain the solution in first few grid
points. One solution is to use the most simple of all the Adams methods, namely the well-known Euler
formulae

Upt1 = Up + hfp + O(hQ).

Being a first order method a very small h is often needed in order to obtain a desired accuracy, hence
solution of the full problem using the Euler scheme is often not feasible. An alternative strategy is to use
the Euler scheme to obtain the solution in the grid points needed to initiate the PC ABM procedure and
subsequently use this method, with a feasible h, for the rest of the time stepping. This strategy has been
applied whenever needed. A more serious drawback of the Adams is the fact that they rely on equidistant
time grids, thus making adaptive time grids difficult to implement.

During the implementation and testing of the PC ABM procedure, the numerical solution was for some
situations found to be subjected to numerical dispersion, that is damping of the solution not related to
any physical damping mechanisms but purely due to the numerical method. The numerical dispersion
was however only an issue during time spans when energy was being put into the system through the
excitation pulse, after the pulse had passed no significant numerical dispersion was observed. This could
become a serious issue for certain excitation conditions that occur over long periods of time, e.g. con-
tinuous wave excitation, but for our system where only short pulses are considered it was no practical
problem.

So far we discussed the solution of eq. (A.16) assuming that the source term could be evaluated without
any special effort, this is not the case as an integral has to be evaluated. The memory kernel and solution
are both discrete functions, hence one of the easiest and most intuitive ways of performing the integral,
would be using the trapezoid rule [84]

h(n+1) h )
/ dtu(t) = §(un + uny1) + O(R®),
hn
as it integrates piecewise linear functions exactly. Being a second order method one could speculate whether
using the trapezoid rule for calculating the source term, would ruin the advantage of using the third order
ABM method for the time stepping, as the second order method in principle should introduce a larger
error than the third order in each time step. To test this the Simpson’s rule [84]

h(n+2) h
/h dtu(t) = g(un + 41+ Ung2) + O(RP),
n

which is of fourth order was tested, but turned out to yield the same result as using the trapezoid rule.
For this reason the trapezoid rule was used in the simulations, as it has the advantage of being able to
integrate both an even and odd number of grid points, as oppose to the Simpson rule which can only
integrate an odd number.

A.5. Self-energies

In this appendix we will derive the self-energies to be used in this thesis. To keep the theory as simple
as possible only lowest order self-energies will be considered, which means that the self-energy can be
identified from the second non-zero term in the expansion of the contour ordered Green’s functions, see
eq. (2.22),

Gop(r,7') = Gop(r, ) +/ dradr Z Gog, (7, T2)E(ﬁll)al(T2,Tl)Gglﬁ(Tl,Tl) + - (A.19)
c
a1
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The superscript on the self-energy signifies that this is a lowest/first order self-energy. It should be noted
that this approach for obtaining the self-energy can be applied for both fermions and bosons, as long
as the Green’s function is defined according to eq. (2.19). All the self-energies derived in this appendix
will be made self-consistent, in the sense that all free Green’s functions appearing will be replaced by the
corresponding full Green’s functions, G° — G, except for the phonons which are treated as a reservoir.
The procedure for making the self-energy self-consistent, is to include a wide enough subclass of diagrams
into E(ﬁ )a (12,71) in eq. (A.19), until one can replace all free Green’s functions with the corresponding
full ones. This has the consequence that the self-consistent self-energy has infinite many terms, whereas
the corresponding non-self-consistent self-energy only has a single term. This is illustrated for a Fock
type self-energy in figure A.3, where all terms up to third order are shown and a few of fourth order.
The self-consistent scheme ensures that the different subsystems couple and also that the self-energies
satisfy important physical conservation laws, such as particle number [85]. The physical justifications, and
limitations, for only considering lowest order self-energies are given in the main text, see section 5.2.2, hence
this appendix will only present the formal details with the physics postponed.

S P S i, K,

T, g

Figure A.3.: Diagrams illustrating a self-consistent Fock self-energy for electrons interacting with phonons.

Below we will go through the self-energies arising from the various interactions presented in generic form
in section 3.2.3. The following symbols will be used to the denote the various Green’s functions: G for
electrons, A for photons, and D for phonons. Their diagrammatic counterparts are shown in figure A.4.

Figure A.4.: Diagrams used for the various Green’s functions; G is for electrons, A is for photons, and D is for
phonons.
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Excitation pulse

The semi-classical interaction between the electrons and the classical excitation pulse is given eq. (3.21)
t) = de/Ecl(t)CICl,/.
According to eq. (2.22) the first two terms in the expansion of the electron Green’s function are given
by
G (7’7 T/) = Ggyl (7'7 T/) + (_Z’hil)Q / dr <TC{Uv(Tl)éV(T)ézT/ (T/)}>O,con o

=GO (1,7 / A7 Y iy Ba(r)(—ih ™) (Te e, (m)ew (m)én (e, (7)1, o +

viv)

Wick’s theorem, eq. (2.21), can now be applied to the two-particle Green’s function in the second term
above, this results in a connected and a disconnected diagram. Keeping only the connected diagram yields
for the second term

/ drm Z GWl 7,71) |duy v Ecl(ﬁ)] GO (11,71,

viv)

comparing to eq. (A.19) we can identify the (singular) self-energy as the content of the square brack-
ets

leui (Tl) - dului ECI(TI)- (A20)

It should be noted that as this interaction is a one-body interaction, it does not generate anymore terms
to its self-energy and is therefore treated exactly. A diagrammatic representation is shown in figure A.5.

X
:
|
:
|

®

Figure A.5.: Diagram used for the singular self-energy eq. (A.20).

Electron-electron

The Coulomb interaction between the electrons is given by eq. (3.17)

He o= E VV4V3,V1V2 V4 u3CV2CV1'

V1 v2
V3V

The first two terms in the expansion of the electron Green’s function are given by

(™) D o,con T

G (7 7) = GO (7 7") + (—ih~1)? / i (ToA Heo(r1)éy (1)
C

For the second term we further get

L = 3 (09 T () () () () (6L () -

vivy
v3V4
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Applying Wick’s theorem to the three-particle Green’s function we obtain six diagrams, two of which are
disconnected, and therefore disregarded, and four connected diagrams. Of the four connected diagrams
there are only two that are topologically different, each occurring in pairs, hence the "double counting" %

factor cancels. For the first connected diagram we get

/C dTl Z Ggm (Ta Tl) [_Zh Z VV4V3,V1V2 G(V)Ql/g (Tla Tl+) Ggl v/ (Tla T/)a

V1V4 vavs

where T1+ =7 + 07" so that T1+ >c 71. This interpretation of the equal-time contour ordered Green’s
function, GY (7, 7), as slightly contour time shifted, GO, (r,77"), is necessary to make sure that the oper-

1274

ators in the Hamiltonian are ordered correctly, i.e. that creation operators stand to the left of annihilation
operators’. This has the consequence that G ,(7,7%) becomes an equal-time lesser Green’s functions
Gg’f, (t,t) no matter where 7 is located on the Keldysh contour. The self-consistent self-energy can now
be identified as

Eleﬂ;_uefH(Tl) = —ih Z VV4V37V1V2 GV2V3 (Tl’ TlJr)a

Val3

which is usually called the Hartree self-energy or direct interaction. The second connected diagram
yields

/ dTl Z G10/u4 (Ta Tl) [Zﬁ Z Vl/4l/3,l/1 v G10/1 V3 (Tlv T1+) GSQV’ (Tla Tl)a
C

valy vivs

from which we get the self-consistent self-energy

Ei:ueg’F(Tl) = th VV4V3,V1V2GV1V3 (7-177—14_)7

vivs

this self-energy is usually called the Fock self-energy or exchange interaction. These two contributions
look formally quite similar and by interchanging 11 and v, in the Fock part they can be collected into the
well known Hartree-Fock self-energy

Ere/:uefHF(Tl) =1h Z (VV4V3,V2V1 - VV4V3,V1V2) Gryvs (TlleJr)- (A-Ql)

1200 %3

A diagrammatic representation is shown in figure A.6.

(b)

(a)

Figure A.6.: Diagrams used for (a) the Coulomb Fock self-energy and (b) the Coulomb Hartree self-energy, see
eq. (A.21).

"See e.g. [24, p. 97-98] or [28, p. 227]
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Electron-photon

The interaction between the electrons and photons is given by eq. (3.19)

He vaa = Z gl chey (al, + am).

vv'm

The first three terms in the electronic Green’s function are

G (7, 7') :GBVI(TvT')Jr(*ih_I)Q/Cdﬁ (ToA Heraa(10)é0 (T)E, (7)1 o +

(—ih1)?

2! /CdTldTQ <TC{Hefrad (Tl)Hefrad (TQ)éV(T)éj/ (T/)}>O,con t-

The second term in this expansion is identically zero due to the fact that the electron-photon interaction
does not conserve the number photons. More specifically one gets terms of the form <CI(32030;§((N +a))y,
which can be factored into an electron and a photon part, (cJ{CQCchO (a’ + a),, as Hy for the electrons
and photons commute. The photon factor is identically zero as the brackets denote thermal averaging,
where each contribution to the trace has the same number of photons in it. This has the consequence
that one has to go to second order in the interaction Hamiltonian to obtain a non-zero contribution. The
second order term becomes

/C dridry 3 (—ih™) " g g, (—ih ) (To{ [aly, (1) + G, ()] [, (72) + dna (72)] 1),

17510 V{ml
7
vavyama

X %(—i"fl)3 (TeAé), (m)éy; (11)él, (ra)én, (r2)é, (r)el, (7')})

0,con *

In the photon bracket on the first line it would be natural to simply define the entire object as the photon
Green’s function, as is usually done for phonons (see last part of this section). However to set the stage for
solving the Dyson equation for the photon Green’s functions, we choose to write out the big bracket into
two Green’s functions of the usual form Ap,,m,(11,72) = —ih™' (Te {am, (11)a},, (72)}). We do however
keep the symbol A for the sum for notational reasons, hence we write

A (11, 72) = =il (T [al, (1) + am, ()] [a],, (72) + @my (12)] 1),

=A% o, (11, 72) + AD o (12, 71).

It should be noted that this relation does not hold for a general non-thermal state, as in this case terms
like {(afa') and (aa) are not necessarily zero. The three-particle electron Green’s function is evaluated
using Wick’s theorem and yields two disconnected diagrams, that are disregarded, and four connected
diagrams. As in the electron-electron case only two of these diagrams are topologically different, canceling
the % factor. The first connected contribution to the second order term is

/chlzGlO,Vl(T,Tl) —ih/CdTg Z hgziithiéGgéyz(Tg,T;)Agan(Tl,Tg) Ggiy,(ﬁ,q—%

mimz

’
vivy ’
VaVy

where the self-energy can then be identified as the content of the square brackets. This self-energy is usually
called the Hartree part, due to its diagrammatical similarity to the Hartree part for the electron-electron
interaction and the self-consistent version is given by

—rad,H .
Eillza (r1) = —zh/cdrg Z hgz;ihgziéGuéw(Tg,T;).AmlmQ (11, 72). (A.22)

mimsz
VQV;
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As we integrate over 7o this self-energy becomes singular and will therefore not cause any relaxation
or dephasing, but will only act as an instantaneous renormalization quantity. The second connected
contribution is the following

/CdTldTQZGgyl (1,71) |ih Z hgl?;ihgziéGgiw (Tl,Tg)A?mm2(ﬁ,Tg) Ggéy/(rg,r’),

vV, mimsz
vV

where the self-consistent self-energy, usually called the Fock part again due to its diagrammatical appear-
ance, can be identified and is given by

Ee_md’F(Tla 7—2) =ih Z hg,", kg, GV{VQ (Tla TQ)Am1m2 (7—17 TQ)' (AQS)

/ /
ViV, vivy valVy
mimsz
’
vV

For diagrammatic illustrations of these contributions to the self-energy see figure A.7.

(b)

Figure A.7.: Diagrams used for the electron-photon interaction, where (a) is the Fock-type self-energy and (b) is
the Hartree-type self-energy, see eqs. (A.23) and (A.22) respectively.

In practise we will employ the RWA in the interaction Hamiltonian between the electrons and photons
that is given by eq. (5.6)

He raa = Z hgaa (Cl,acv,a/am + aincj/,acc,a/)~ (A.24)

aa’m

The above derivation can be repeated for this Hamiltonian and the result for the Fock contribution
is

Ebb’,efrad,F(Th,,é) —ih Z hgml hgm2

aral, aral Fagal
mima2
aza)

X {G:;\’iag (Tl, TQ)Am1m2 (Tl, Tg)éb,c + ngaz (Tl, TQ)Am2m1 (TQ, 71)6;”} 5b,b’7 (A25)

while for the Hartree contribution we get

bb’ ,e—rad,H . mi ma
Eala’l (1) = —zh/ dry E hgala,lhgaw,2
c mims
04204/2

X {GZZOZQ (T2a7—2+)Am1m2 (71, 72)0p,c0 v + G;Zozz (7'2772+)Am2m1('r2aTl)(sb,v(sb/,C}- (A.26)
We note that due to the selection rules of g and the application of the RWA, the Fock self-energy is

purely diagonal in the band indices and the Hartree self-energy is purely off-diagonal in the band in-
dices.
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Photon-electron

In the previous section we calculated the self-energy of the electrons due to the interaction with the
photons, here we determine the self-energy of the photons arising from the interaction with the electrons.
This means that it is of course the same interaction Hamiltonian, but now we consider the photon Green’s
function to second order

A (T, Tl) = A'ronm’ (T, 7'/) + (_m_l)Q /c dmy <T0{ﬁe—rad(71)dm(7)d;' (TI)}>O,con +

_ih—1)3 . .
@ /C dTldT2 <TC{He—rad(Tl)He—rad(TQ)dm(T)djn’ (TI)}>0,con e

The first order term is zero due to basically the same reason as above, i.e. after factorization of the electron
and photon brackets, we obtain terms like (aaa'), and (a'aa'), which are identically zero. For the second
order term we get

Jdndn S i g g (< (Tedil, () ()L () (D))

vy l/lml
1/21/21’)12

x o (=i (T [al, (1) + @y (10)] [ah, (72) + Gma (72)] @ (T)ad (7)1 o -

Through Wick’s theorem the electron bracket gives a connected and disconnect diagram, where only the
connected is kept. Multiplying out the two square brackets in photon bracket yields two equal contri-
butions, which can be realized by relabeling the integration variables, thus canceling the —, Further
apphcatlon of Wick’s theorem gives a connected and disconnect dlagram, where only the connected is
kept. In the end the second order term can be written as

/ dridmy Z Amm2 T, T2) —thhg;"l; hg:/";/ Gl,,l,l (Tg,Tl)Ggil,Q(Tl,Tg) A,Omm,(ﬁ,r'),

mimz V1 1/1
1%5) I/2

where the self-energy can be identified and in its self-consistent form it is given by

S PB (1, 71) = —ih hg s hgs, G, (11, 72) Gy, (T2, 71). (A.27)
ulz/i
Vzljé

Due to its diagrammatic form this self-energy is often called a pair-bubble term, for an illustration
see figure A.8. As mentioned in the previous section we in practise employ the RWA form of the
electron-photon interaction eq. (A.24), for this interaction Hamiltonian we get the following photon self-
energy

Efn;nai PB(1y, 1) = —ih Z hggllla hggfa Ga/al(rg,ﬁ)Ga a, (T1,T2). (A.28)
ara
aza;

Electron-phonon

The interaction between the electrons and phonons is given by eq. (3.23)

H,_ phsz“,c e (bl +b,),

e
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Figure A.8.: Diagram used for the photon-electron interaction, see eq. (A.27).

and is seen to be formally equivalent to the electron-photon interaction, eq. (3.19), this has the consequence
that the self-energy must be the same also. Referring to eqs. (A.22) and (A.23) we can immediately
write down the two first order contributions to the self-energy of the electrons due to interaction with
phonons

e—ph,H . =
Evllz (7_1) - 7171/0 dr Mliu{ Mliué GV§V2 (7_2’ TQJF)DS,[/,(TM 7_2)a (A29)
vavhp
and
—ph,F . n I
Zle/wpé (Tl’TQ) =ih Z lezluilezguéGV{lQ (TlvTQ)D;Om(ThTQ)- (A.30)

vivap
Where we have defined the free phonon Green’s function as follows
DY, (11,72) = =il (ToA (B, (71) + by (10)][B], (72) + by (72)]1) (A.31)

note that we do not make this self-energy self-consistent in the phonon Green’s function, as the phonons
are treated as a reservoir, i.e. the phonons are assumed to in thermal equilibrium at all times. For the
free phonon Green’s function we have the following nice property

Dglm (Tlv 7_2) = D21ﬂ1 (Tlv 7_2)5%#2’

which has been used to simplify the above self-energies. For diagrammatic illustrations of these self-energies
see figure A.9.
(b)

%

Figure A.9.: Diagrams used for the electron-phonon interaction, where (a) is the Fock-type self-energy and (b) is
the Hartree-type self-energy, see eqs. (A.30) and (A.29) respectively.

A.6. Free real-time Green’s functions

In this appendix we derive explicit expressions for free (non-interacting) real-time Green’s functions. These
can be found in any textbook, but are used frequently in this thesis, hence this appendix.
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The Green’s functions we are looking for are defined by eq. (2.24)

Gog (t,1") = =ik (0a(OL(X)),

Gog (t,1)) = i (O (1) 0a(1)),

Gop(t,t) = =i 0(t — ') ([Oa(t), Of(t))]x) .
Gog (1) =i 0(t' = ) ([Oa(t), OL (1)),

where the + is for fermions and the — for bosons. The procedure we are about to go through can be
performed simultaneously for both fermions and bosons, when minding a few signs underway. For a non-
interacting system the Hamiltonian is quadratic and time-independent and can without loss of generality
be chosen to be diagonal, hence we write it as

Hy =Y hw,O}0,.

To obtain the time evolution of the operators comprising the Green’s functions, we need to solve the
Heisenberg equation of motion for these quantities, namely

ih0:0a(t) = [Oa(t), Ho(t)] = [Oa, Hol () = Y hws[Oa, O50p](t).
B

Evaluating the remaining commutator as [O,, O;Og] = Opgdap is easily done using the (anti)commutator
relations for the O, ’s

[Oa, Of)+ = 8ap,  [Oas Ople = [0, O]+ =0, (A.33)
where again + is for fermions and — for bosons. The equation of motions becomes

1110104 (t) = fiwa 04 (1),
which is solved using the initial condition O, (t = 0) = O, to give

O, (t) = e7™t0,, = Of (t) = e*™=tO] | (A.34)

applying for both fermions and bosons.

These solutions can now be plugged into the definitions of the Green’s functions. We start with the greater
Green’s function

Gg[;(ta t) = _ih—le—iwa(t—t/)[l —np(hwq)]|dag, Fermions
Gg’;(t, t) = _ih—1e—iwa(t—t/)[1 + np(hwa)]das, Bosons.

The distribution functions np,p, the Fermi-Dirac and Bose-Einstein functions respectively, arise when
performing thermal averaging over the number operator n, = O} O,, see eq. (2.18). The lesser Green’s
function yields

GO () = +ih ™ e o= (hwy )dap,  Fermions
G5 (t,t) = —ih e ™o (" (hw,)dap,  Bosons.

The retarded and advanced Green’s functions are equal for the fermions and bosons and are given
by

GUn(t,t)) = —ih 10t — t')e ™55,
GUa(t, ) = +ih 10t — t)e (15,
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Appendix Analytical basis set for the electronic single-particle states

Two important common features of all the free Green’s functions are that they 1) only depend on their
time difference, effective being one-time functions and not two-time, and 2) that they are diagonal in
their quantum numbers. The time difference dependence can in fact be shown to hold for any equilib-
rium Green’s function, regardless of what interactions might be present. This feature makes equilibrium
retarded and advanced Green’s functions very attractive to use in connection with the GKBA, see sec-
tion 2.5.

We make use of one last free Green’s function which is not defined the same way as above. This is the
free phonon Green’s function introduced in eq. (A.31)

D}, (7,7') = =ih™ (TeA[B(r) + bu(M)[bf (') + b (7]}, -

To obtain its real-time components we put it on a more familiar form by defining B, (1) = bj](r) +b,(1) = B;(T),
so that we may write

(1, 7') = —ih " (To{B(1) Bl (7)), -

The greater and lesser Green’s functions are thus given by

Dy (8,t') = =ik~ (Bu(t)BL (), ,
—ih~ (Bl () Bu(t)), -

.l:)O < ( /)
The time evolution of B, (t) is easily found from eq. (A.34) and we get

D

!

DY (t,t) = —ih ! {etnt=p )+e—wu<t—t/>[n3(m#)+1]}5ﬂ/,#, (A.35a)

e

DR (t.t) = =it it >n3<m> e () + 1] b (A.35D)

From these expressions the following relations are seen holds between the greater and lesser phonon Green’s
functions

DY2(t,t)) = DS (¢, t) = —[D"S (¢, )", (A.36)

e W e

this redundancy in Green’s functions is due to the way the phonon Green’s function is defined eq. (A.31).

A.7. Analytical basis set for the electronic single-particle
states

The purpose of this appendix is to describe how to obtain the basis functions used in section 4.3.2 to
expand the numerical solutions from COMSOL. The most important properties of a basis is that it
must be complete and further that it must satisfy the same outer boundary conditions as the function
it is to expand. The simplest way to satisfy both of these requirements is to use the same geometry as
for the COMSOL solution, see figure 4.2, but simply for a homogenous medium and impose the same
zero boundary conditions on the outer boundaries. This empty cylinder is schematically shown in A.10.

As for the COMSOL solution we deal with rotationally symmetric system and thus the angular dependence
can readily be obtained as in section 4.2.2, and we are left with an equation of the form eq. (4.4) for the
two remaining directions. Due to the fact that we have no internal boundaries, it is reasonable to assume
that we may further factorize the remaining function into a part for the radial coordinate, p, and for the
z-direction, f(p,z) = R(p)Z(z). Substituting this into eq. (4.4) we end up with a Schrédinger equation of
the form

K2 1 m?2
o (Lol + 5 + 0. ) R9ZG) = BRGIZ(2)

2m
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v

! T
-

Figure A.10.: Figure of the geometry used to obtain the free basis functions.

This kind of equation may be solved using the separation of variables technique and is done in any textbook
on partial differential equations, see e.g. [86], and we will therefore simply state the solution satisfying
the boundary conditions given in egs. (4.5) and (4.6). The full solution may be written on the following
form

Boin, ("“) = cI)m(SO)Rhn\l (p)an (Z)a

where the explicit form of each of the three functions will be briefly described below. For the angular part
we obtain
1 .
O (p) = —€"?, m=0,%1,4£2,43, ...

V2r

which are the well-known eigenstates of the z-component of the angular momentum operator. For the
radial part we have

\/5 Yml|i
= ), g = 22
R()J"’”|+1(7\7n|l) ‘ |( [m|l ) |m|l o

R‘m”(p) [1=1,2,3,... (A.37)

where ,,; is the I’th root of Jj,,|, with J|,,,| being the Bessel function of the first kind. For illustration
we show a few of the radial functions in figure A.11. For the z-direction we get

1 ™. ™.

Zn = i y 211,2, PN
_(2) LZ/Qsm(LZer 5 ) n 3

Each of the above functions have been normalized and hence the full product form is also normalized. The
eigenenergy is given by the following expression

K2 K2 Yml|l ? 7T ?
FE = — 2 2 = Im] T
min., 2m* ((k\m”) + (k”Z) ) 2m* <|: Ro * L, " ’

where we notice the degeneracy in m, due to the rotational symmetry of the system.
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Figure A.11.: Figures showing a few of the radial basis functions eq. (A.37).
A.8. Semiconductor band parameters

In this appendix we will briefly discuss the parameters that enter in the one-band effective mass Schrodinger
equation, we use to obtain the electronic wavefunctions, see eq. (4.4). Figure A.12 illustrates the energy
landscape we are considering. We use an uncoupled two-band model with a conduction and valence band,
where IT (I) denotes the high (low) bandgap material. It should be emphasized that no effects due to
strain or piezo electric effects are explicitly taken into account, apart of course from the fact that we have
a QD that have formed due to strain/surface tension. This is a huge approximation and the calculated
energies and wavefunctions should therefore only be considered as crude estimates to the real quantities.
Hopefully the calculated physical quantities will still display qualitatively correct behavior. Apart from

the various energies shown in figure A.12 we also need to know the effective masses of the electrons and
holes.

We will use GaAs as the high bandgap material and In,Ga,_1As as the low bandgap material, with®
2 = 0.60 to simulate the diffusion of Ga into the shallow InAs QD and WL. We will adopt bulk values
for all parameters, except for the hole masses which need special attention due to anisotropy in k-space

8Obtained through personal communication with Sgren Stobbe of DTU Fotonik.
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A Energy
11 I II Conduction band
A
—_ AE,
Eq 11 By
— AE,
Y
11 I II Valence band

Figure A.12.: Schematic illustration of the energy landscape in the QD/WL system. In the potential well the
horizontal lines indicate bound QD states, while the grey box indicate the WL energy continuum.

for the valence band. The parameters for the high bandgap material are tabulated in table A.1, while
those for the low bandgap material are obtained using interpolation formulas, to take into account the Ga
concentration in the InAs. For the bandgap we use the formulae [87]

Eg,I = ng,InAs + (1 - JJ‘)E‘g,GaAs - l‘(l - x)cg,GaInAS7

where Cg Gamas is known as a bowing parameter. The so-called conduction band offset (CBO), AE,, and
valence band offset (VBO), AE,, are assumed to be given by the 60/40 ratio so that

AE. = 0.60 x (Eg 11 — Eg1),
AE, = 0.40 x (Eg11 — Eg1).

For the hole mass we use the heavy hole (hh) mass and choose the component the in-plane direction,
(z,y)-plane in real space, as this is where most of our dynamics is. Furthermore we adopt the hh mass
appropriate for quantum well structures as our QD/WL system is very similar to this, this choice is
supported in the literature see e.g. [88]. It is however an open question what input parameters to use
when performing simulations using effective descriptions, like the effective mass Schrédinger equation, on
semiconductor heterostructures and there is no broad consensus on this point in the scientific literature.
We take the hh mass as given by [89, p. 171]

[110]
mo
[—*] =7 +72.
Mph 1w

The high bandgap material hh mass is readily obtained, while for the low bandgap material we use the
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Quantity ~Value Unit Reference | Quantity ~Value  Unit
V1,GaAs 6.98 1 [87] By 1.519 eV
V2,GaAs 2.06 1 [87] Eq1 0.7433 €V
V3,GaAs 2.93 1 87] AFE;, 0.465 €V
Y1,InAs 20.0 1 [87] AFE, 0.310 eV
7Y2,InAs 8.5 1 [87] méH 0.067 mo
7Y3,InAs 9.2 1 [87] m:’l 0.0344 mo
mz,GaAs 0.067 mo [87] m\t,II 0.111 mo
Mg I As 0.026  my [87] my 0.0483 myg
Eg,GaAs 1.519 eV [87]

Eg nas 0.417 eV [87]

Cg.camas 0477 eV [87]

Table A.1.: First set of the band parameters used in the effective mass Schrédinger equation simulations.

Quantity  Value  Unit
Eg711 1.424 eV
Eg1 0.359 eV
AE, 0.697 eV
AL, 0.368 eV
me 0.0665  mg
mg g 0.027  myg
mg 0.38 mo
my 0.34 mo

Table A.2.: Second set of the band parameters used in the effective mass Schrodinger equation simulations. All

values are taken from [53].

following interpolation formulae

[110] [110]
] g ]
MynlQw,r Mpn 1 QW, InAs

All the parameters are summarized in table A.1.

+(1x){

o ] [110]

*
Myn

QW,GaAs

After it was realized that the set of parameters described above yielded unphysical population for some
excitation conditions, see section 6.2, another set was chosen that did not suffer from this problem. We
will briefly describe the new set in the following. The materials are the same as above, but now we use
pure InAs as the low bandgap material, i.e. 2 = 1. Furthermore we use the effective mass in the [001],
z, direction, as oppose to the [110] direction above, which is considerably larger, leading in general to
more confined valence band states. For the CBO and VBO we choose a slightly different ratio given by

0.654/0.346 so that

AE. = 0.654 x (Eg,caas — Eg mAs),

AE, = 0.346 % (Ey.qans —

Eg,InAs)a

where the number of digits has historical reasons. The new parameters are summarized in table A.2.
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A.9. Slowly-varying equations

In this appendix we list the slowly-varying versions of the equations of motion presented in chapter 77,
which are the quantities that are solved for numerically. We define the slowly-varying transformation for
the electronic density matrix as follows

/ bt b
oY () = e R 1), (A.38)
that removes the fast underlying oscillations in the off-diagonal elements of the density matrix due to

the free evolution of the system. Eq. (A.38) transforms the equation of motion for the density matrix,
eq. (5.34), into the form

8tﬁgzb/ (t) = atﬁgzbl (t)|coh + atﬁgb/ (t)|scatt-

Below we list each of the contributions to the coherent and scattering terms used in the simulations in
their slowly-varying version

A.9.1. Coherent terms
The coherent source term, eq. (5.35), transforms into

hp! L b1 ) by b’ ~bb, i1’ N
Oy (1) con = —ih ™1 D [{e e rstis )} g (1) — gl () {e " sl 2 1)}
b1

were the term due to the free evolution has disappeared and hence the fast oscillations associated with
it.

Now we list the slowly-varying transformed of the terms in eq. (5.36):

Eq. (5.38):
0, b=V =c,v
U(l;b’ (t) = ey E02(t) emiwot  h—c Y =v
dve E02(t) Wt h=v, b =c
Eq. (5.39):

Egb/’HF(t) = Z (Vbb?blbl — Vbb?blb/ ) e_iwillbzt [ﬁg}fh (t) - 6b1,V6b21V}

oo oy a1
b1bs
Qg
Eq. (5.40):
t
! hw
bb',LOH _ LO 1 7b1bb1b [ =b1b 0,r
Ea (t) - /700 dtlbz F/Evallacila [pall l(t/) - 6b1,V} DLO(t’t/)5b7b”
1001
Eq. (5.41):
t

Egb',rad,H(t) _ / dtl Z hgahgal [e—iwg"l t’ﬁco;1 (t/)Ar (t, tl)(sb,céb’,v + e—iw;“l t/ﬁzcl (t/)[Ar (t, tl)]*(sb,v(sb’,c} )

— 00 aq
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A.9.2. Electronic scattering terms
LO-phonons: Eq. (5.44):

~bb’ 1\ |F,LO
0t/)g¢b (t) =

scatt

’ t , * ) ’
't [ Y (Gl [61 (e )T
— 00

b1a1
% {7D22{>(tat1)[5b,b1 — ()]0 (b)) + DY (8, 40) B (1) 8y 5 — Y (h)]}
+ Ggﬂ“(t’tl) [ngl’r(t,tl)} il )t

x {[5b,b1 — R ()| EY (4) DB (1 b)) — pEY (41) [0, — BV (81)] DBE (2, t1)})
RWA GKBA photons: Eq. (5.46):

t
Oty (b)| L2 = —2Re| / Gy (t1) [GE (8, 10)]” (ilhga AT (1, 11))

X {A(8) g7 (t1) = pa” (0] + 957 (81) [1 = 55" (8]} (db,e — 5b,v)]
Eq. (5.47):

t
0P (1) |sears. = —€™=" / dty (ihlhgal?A"(t, 1) e~

— 00

|GET (6 1) {A(R) A8 (t) + 587 () [L = po ()1} + |G (8, 1) {A(0) A8 (t1) + 53 (t1) 75 (1)} )
RWA two-time photons: Eq. (5.50):

t
OO = ~2Re[ [ dnafhga PG () (6570 t)]" e )
[ee]

x {1 A )] A7 (1 00) A5 (1) — B () A (8 10) L= A2 ()]} (e — G-

Eq. (5.51):
:, ,CV t :, ,CV :
AR =~ [ g e et
— 00

G (k)P {10 = A (A (1 )7 (1) + i (1) A (1 )56 (1) }

lGg () {6 () () A7 (b 1) 4+ 55 ()L = ()] A< (1 1) } ).
A.9.3. Photonic scattering terms

As only electronic populations enter these terms, the slowly-varying versions are identical to those presented
in the main section and however for completeness we repeat them here.
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Eq. (5.59):

A N St
s Gt 12) [G (10)] e B0 1=, ()] () A (= b)) 455 (1) 1= ()[4 (t=r 1))}

LGSt — 7 )] G (b e e T LA (1 1) 56 () (1= (00)]— A (8, 1) 135 () (02)) ],
Eq. (5.57):
~ t
A (1.t~ T)EB, = / dt, ngaf
t—1

— Gal(t ) (G5 ()] e I (1) = S (1)} A (b1t = 7)

F GG (bt —7) [GR (= 7)) e e U LA (1 1y) — AS (¢, 81) Y1 — 555 (¢ — 7)1 (¢ — T)} :
Eq. (5.58):

t
A% (1.t —T)EB, = / dt, ngm 2
t—1
Gt ) [GY (8 0] e e O L5 (1) — 5 (1)} AS (b1, — 7)

GG (bt =) (Gl (bt —7)] T e e T LA (1 41) — AS (1 40) 1526 (¢ — 7)1 — pi (¢ — T)]} ;
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