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Abstract
In this report we have analyzed the e�ect of Electromagnetically Induced Transparency (EIT).
This has been done by using a quantum dot material to provide the necessary three-level system.
A rotationally symmetric model of a quantum dot has been used to calculate eigenfunctions nu-
merically by solving the Schrödinger equation under the envelope function approximation. These
have been used to calculate the transition matrix elements for the dipole-allowed transitions used
in the EIT analysis.

To simulate the light-matter interaction a semi-classical model has been set up. This consists
of the optical Bloch equations where the interaction is due to a classical electric �eld, describing
both the coupling and probe lasers. A steady state analysis of the Bloch equations in the limit
of CW �elds has been performed, to obtain analytical expressions for the complex susceptibility
and refractive group index. These results have been compared to a dynamic model. In this the
Bloch equations have been coupled to the wave equation for the probe �eld, to allow for pulses.
Strong agreement between the two models is obtained for pulses not spectrally exceeding the EIT
absorption window. If this is not not the case dipole beat oscillations are observed. Lastly, studies
of two-pulse interactions have been done.
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1. Introduction

In this report we deal with two main topics. The main part will be the analysis of slow-light at-
tained through electromagnetically induced transparency (EIT) in an InAs semiconductor quan-
tum dot in GaAs bulk material; both in the steady state solution of the Bloch equations and
in the dynamic case when the full light-matter interaction of the Bloch and Maxwell equations
is included. A smaller part will deal with the numerical calculations of the transition matrix
elements for the optical transitions considered in the quantum dots.

In recent years, great interest has been given to ideas on how to slow down the e�ective speed of
light in an easy and controllable way. If this is achieved it would address many issues in connection
with future optical networks.

Today, almost all modern communication is transferred in optical �bres and converted into elec-
trical form when in need of being processed or switched. This conversion is time-consuming and
the achievable bandwidth is limited by the conversion and signal processing capacity of the elec-
trical equipment. To overcome this limit, great e�ort has been put into developing all-optical
processing and switching systems. These systems have been demonstrated, though one of the
critical key components, a controllable optical bu�er which has the ability to delay a light signal,
is still missing [1].

The obvious approach is to control the group velocity, vg = c
ng
, in a material through the alter-

ing of the refractive group index, ng. Di�erent means to obtain a large refractive group index
exist and have been demonstrated by di�erent groups. Amongst the most interesting are popu-
lation oscillations in quantum wells (PO) by which a refractive group index of more than 31000
has been demonstrated experimentally, photonic crystal �lters and electromagnetically induced
transparency (EIT) [2].

Electromagnetically induced transparency is probably best know as Lene Hau et al. utilized this
e�ect in a ultra cold Bose-Einstein condensate. This was done at 900 nK and slowed a 1 km light
pulse down to 17 m/s, and they later managed to stop a light pulse for almost a millisecond [3].
This was an important result and has clari�ed the potential of EIT. However the used technology
is not well suited for the future applications in optical bu�ers, simply by the fact that gas needs to
be cooled to just above 0 K in ultra high vacuum and the gas cloud has to be held in a magnetic
trap. Which all complicates matter a lot and it is therefore desirable to �nd an alternative
solution.

To achieve EIT one needs a discrete three-level system in which a strong coupling laser couples
two out of the three states. The e�ect is to make it possible for a weak probe laser to propagate
through the material like it was transparent and at the same time experience a high refractive
group index. This occur for frequencies where it would normally be subjected to high absorp-
tion.

One way of obtaining a discrete three-level system is to use quantum dots. These are nanoscale
structures in which the electrons are con�ned in all three dimensions and the QDs exhibit 0D
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1. Introduction

electronic behavior. The electron energy levels become discrete and the quantum dots e�ectively
behave like super atoms. By choosing three of the discrete levels, in our case the highest in the
valence band and the two lowest in the conduction band, we can use them to obtain EIT and
slow-light. In this report we consider InAs semiconductor quantum dots packed in a GaAs bulk
material. One way to make these is by surface deposition of a few nanometer thin layer (wetting
layer) of In and As atoms on a GaAs semiconductor. In the interface, the crystal structures will
try to adjust and due to the small di�erence in lattice parameter (GaAs: 5.65 Å and InAs: 6.05 Å)
surface tension in the wetting layer produces self-assembled quantum dots, randomly distributed.
This is called the Stranski-Krastanow growth technique.

In this report we present two di�erent analyses for simulating the slow-light e�ect through a
material consisting of homogeneously aligned quantum dots. In the �rst case we examine for
both the coupling and probe �elds being continuous waves. This is done by solving the Bloch
equations in steady state which can be done analytically. This allows us to calculate the complex
susceptibility and predict how a low intensity continuous electromagnetic wave will propagate
through the material. This has been extensively studied in a number of papers [1, 4] and a
refractive group index of the order 103 has been obtained which is well suited for 40 Gb/s optical
systems.

This approach does not take into account the full dynamic of the electromagnetic pulse propagat-
ing through the material. The light-matter interaction is coupled. The induced dipoles from the
electromagnetic pulse in the material, interfere with the electromagnetic pulse itself. Therefore,
both the material and the wave are altered along the way. This implies that the front of the
pulse experience a di�erent material compared to the back, or that several pulses can interfere.
These considerations have been taken into account in the second analysis. In this we have made a
full simulation of pulses propagating through a quantum dot material by solving the dynamically
coupled Bloch and Maxwell equations. To our knowledge, this has not been done previously in
relation to the study of slow-light.

2



2. Electromagnetically Induced Transparency

The e�ect utilized in this report, to slow down light, is called electromagnetically induced trans-
parency (EIT)1. It is a quantum phenomenon which allows an electric �eld, resonant with a
transition, to propagate transparently through a medium in which it normally would feel a strong
absorption. Furthermore, the �eld would see a high refractive group index, hence being slowed
down.

To obtain slow-light by EIT, an atomic system containing at least three discrete atomic states
and two laser �elds are needed. A coupling laser which controls the EIT e�ect and the amount of
slow down and a probe laser which is the one we want to slow down. Both lasers must be resonant
(or near resonant) with a dipole allowed transition in the medium and the last transition we shall
take as dipole forbidden. To achieve EIT it is required that the coupling �eld is much stronger
than the probe �eld.

Figure 2.1 shows di�erent setups to obtain EIT and to simplify the description we only consider
the ladder scheme. We label the three eigenstates |1〉 (the ground state), |2〉, and |3〉 corresponding
to increasing energy. The coupling �eld connects |2〉 and |3〉 and the probe �eld couples |1〉 and
|2〉.
If we only turn on the coupling �eld the |2〉 and |3〉 states are no longer eigenstates of the total
system. Each one gets split up in two new dressed states and the splitting is proportional to the
�eld strength, or almost equal twice the Rabi frequency, see �gure 2.2.

When the probe laser is turned on (assumed to be weak), it is only a small perturbation and does
not alter the eigenstates of the system. The probe laser no longer match any transition to either
of the new dressed |2〉 states. In the case of zero linewidth it does not interact with |2〉 at all and
for �nite linewidth the e�ect is cancelled due to destructive quantum interference between the
two transitions. This implies that the carriers are trapped in the ground state, so called coherent
1Excellent reviews of EIT are given in [1, 3, 5, 6] from which we have been inspired.

V scheme Λ scheme Ladder scheme

|3〉

|2〉

|1〉

|3〉

|2〉

|1〉

|3〉

|2〉

|1〉

Coupling

Probe
Probe

Coupling

Coupling

Probe~ωc

~ωp

~ωp

~ωc

~ωp

~ωc

Figure 2.1.: Di�erent schemes for obtaining EIT
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2. Electromagnetically Induced Transparency
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Figure 2.2.: The principle of EIT

population trapping, and no absorption of the probe laser occur. The probe �eld then propagates
through the medium as if it was transparent.

Another description can be given in terms of the absorption and dispersion curves for the probe,
which are related to the imaginary and real part of the complex susceptibility, χ̃ = χ′ + iχ′′,
respectively. The absorption is approximately proportional to χ′′ and the refractive group index
is approximately proportional to the slope of χ′. In the case where we turn o� the coupling �eld,
the two curves look like �gure 2.3(a) with a high absorption at resonance, characteristic of a
normally absorbing material. When the coupling �eld is on the splitting of the |2〉 state is seen in
the absorption spectrum as an spectral window, see �gure 2.3(b). The linewidth of the absorption
peaks is related to the decay rates of the |1〉 ↔ |2〉 and |1〉 ↔ |3〉 dipoles2.

Re[χ]
Im[χ]

Frequency

(a) χ̃ for a normal material

Re[χ]
Im[χ]

Frequency

(b) χ̃ in the EIT state

Figure 2.3.: The real and imaginary part of the complex susceptibility seen by a probe laser. This shows
how the absorbance and the dispersion are related in a normal material (left �gure) and under in�uence
of EIT (right �gure). The characteristic splitting of the |2〉 state in EIT is clearly seen.

The Kramer-Kronig relations, which relate the real and imaginary parts of a complex analyt-
ical function, imply that χ′ and χ′′ should behave like each others derivatives. An extremum
in χ′′ means that χ′ has to pass through zero. At resonance in the middle of the absorption
window, this gives rise to a slope which is positive and corresponds to a large refractive group
index.

2The |1〉 ↔ |3〉 transition is not a directly dipole allowed transition, but is a kind of pseudo-dipole.
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3. Semiconductor Quantum Dots

The goal of this chapter is to calculate the transition matrix elements de�ned in section 5.4,
µnm = e 〈n|y|m〉, for an InAs QD embedded in a GaAs bulk. First we discuss a few properties of
semiconductors and semiconductor QDs and mention the envelope approximation used to describe
localized states in semiconductor QDs. Our QD model will be presented and various parameters
will be described. Actual calculations have been performed in the �nite element package Femlab1,
as these could not be dealt with analytically. The results of the numerical calculations will be
presented throughout the chapter.

3.1. Introduction

The following will be a short introduction to the semiconductors GaAs and InAs, as these are
ones we will use in our QD system. In �gure 3.1 the band structures of GaAs and InAs are shown
for two directions in k-space in the vicinity of the Γ point. Both semiconductors are well suited
for optical transitions, having a direct gap at Γ and a well de�ned e�ective mass of both valence
bands and conduction band. However, these band structures are for bulk materials and we are
going to deal with structures in nanometer regime. When downsizing the continuous nature of
the band structures will become discrete due to new boundary conditions. The discrete energies
of the heavy and light holes will split, due to the large di�erence in e�ective mass. The light hole
states have the lightest mass and thus their highest energy will be much lower than the heavy hole
states of interest. Here it is implicitly assumed that the QDs are large compared to the atomic
unit cells, so that their bulk material parameters can still be used. Throughout the report we will
continue to refer to bands when states of di�erent e�ective mass are discussed, even though this
is not entirely correct.

The energy gap of GaAs is about four times that of InAs. This means that if you embed InAs
QDs in a GaAs bulk, band bending will create a con�ning potential for the electrons in the InAs
QDs. This idea is illustrated in �gure 3.3. It is transitions between these bound states we will
consider. A quantum mechanical description of the bound states involves the so-called envelope
approximation, which we will describe next.

Electron states in bulk semiconductors are Bloch states of the form

ψk(r) = eik·ruk(r).

These are however delocalized throughout the crystal and hence a single of these cannot be used
to describe a bound state. We can consider a linear combination of Bloch states, as done by [7],
to describe our bound states

ψ(r) =
∫

A(k)eik·ruk(r)dk,

1http://www.comsol.com/
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Modelling 3. Semiconductor Quantum Dots

GaAs InAs

Figure 3.1.: These two �gures illustrate the energy band structure, in the vicinity of the Γ point. To the
left is the band structure for GaAs and to the right for InAs. Source: http: // www. ioffe. ru/ SVA/ NSM/
Semicond/

where A(k) are the expansion coe�cients. If we assume that near the band edge uk(r) does
not depend strongly on k. Then we can put k = 0 and take u0(r) outside the integral and
obtain

ψ(r) = u0(r)
∫

A(k)eik·rdk.

The remaining integral we will term, the envelope function. By de�ning u0(r) ≡ u(r) we end up
with

ψ(r) = u(r)F (r). (3.1)
It turns out, as discussed in [8, App. 8], that we do not need to determine the Bloch functions
(the u's) explicitly as their general properties are described in the literature. Thus we are left with
determining the envelope functions. The equation for obtaining these functions is a Schrödinger-
like equation that reads:

[
−~

2

2
∇ ·

(
1

m∗(r)
∇

)
+ V (r)

]
F (r) = EF (r), (3.2)

where V (r) is the con�ning potential due to the band bending and m∗(r) is the e�ective mass
of the respective band, possibly dependent on position. It should be noted that in taking the
envelope approach, we neglect a lot of real physical e�ects. One of the most pronounced e�ects is
the development of strain in the QDs buried in the GaAs bulk. This a�ects their crystal structure
and hence their band structure which ultimately changes the e�ective mass. The excitons that
appear when you excite an electron are also completed neglected and so are all other many-body
e�ects. Due to the simple approach, the calculated results should only be considered as crude
approximations to their real values. In the next section we consider more explicitly the details of
our QD.

3.2. Modelling

We wish to consider QDs grown using the Stranski-Krastanow technique. In this technique, one
deposits a very thin layer, the wetting layer (WL), of InAs on a GaAs surface. Due to the lattice

6
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3. Semiconductor Quantum Dots Modelling

QD WL

r

z

GaAs

GaAs

InAs
h

d

r0

R0

Lz

Figure 3.2.: Schematic illustration of the rotation symmetric QD and wetting layer. Di�erent parameters
used in the modelling are shown.

mismatch between these two crystals, surface tension will build in the WL and eventually small
pyramid-like structures will appear on the GaAs surface. The formation of the QDs are due to
the WL wanting to minimize its surface energy. On top of the WL and QDs a new layer of GaAs
is now deposited and you start over. The result is a layered structure consisting of WLs and QDs
of InAs embedded in GaAs bulk. This is the setup we want to describe.

In order to simplify the modelling we will only consider a single QD, containing a single elec-
tron, on an in�nite WL. Further we will assume that the entire setup has rotational symmetry
around the symmetry axis of the QD, allowing us to reduce the full 3D case to an e�ective 2D
description. The shape of the QD does not allow us to solve the envelope equation analytically,
so we are forced to adopt numerical methods for solving the problem. Due to the numerical
implementation we cannot have in�nite WL or GaAs bulk. So bounded dimensions of these
have been introduced. A schematic illustration of the QD/WL/bulk system is presented in �g-
ure 3.2.

The speci�c states we wish to consider are the two �rst2 electron states in the conduction band
and the last electron state in the valence band, or heavy hole band. These states are depicted
in �gure 3.3 along with other quantities. The bound electron states in the �ipped potential in
the heave hole band are trapped there due to the Pauli principle. This prohibits them to go to
a lower energy state, as they are occupied. Instead of treating electrons in the heavy hole band,
we will consider holes as this is simpler. The holes will act as electrons do in a normal potential
well, basically as bubbles seeking to the top of the �ipped potential well. The cost of treating
holes instead of electrons, is that we have to �ip the energy axis.

2By �rst we mean the two �rst for which we can make transitions between. The selection rules for these transitions
are discussed later in this chapter and in appendix A.3.
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E
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Figure 3.3.: Schematic illustration of the band structures along a arbitrary direction through the InAs QD
embedded in the GaAs bulk. Various parameters are indicated.

3.2.1. The envelope equation

The rotational symmetry makes cylindrical coordinates a natural choice, from now on we use the
coordinates (r, z, ϕ). Having symmetry, suggest that we can separate the envelope function in an
angular part, depending on ϕ, and a part depending on r and z, so that: F (r) = 1√

2π
eimϕf(r, z).

Solutions of the envelope equation must everywhere be continuous and di�erentiable along a
direction given by a unit vector n̂. With a position dependent e�ective mass this can be stated
mathematically as

F (r), (3.3)
1

m∗(r)
n̂ · ∇F (r), (3.4)

both being continuous at every point. From the continuity condition, eq. (3.3), and the fact that
a rotation by 2π brings you back to the same point, we get the condition for m: eim2π = 1 from
which it follows that m must be an integer or zero. Inserting this separated solution into eq. (3.2)
we [9] obtaining the following equation for f :

[
−~

2

2r

∂

∂r

(
r

m∗
∂

∂r

)
− ~

2

2
∂

∂z

(
1

m∗
∂

∂z

)
+
~2m2

2m∗r2
+ V (r, z)

]
f = Ef, (3.5)

where we have used that m∗ = m∗(r, z).

Our eigenvalue problem is not solvable until we specify appropriate boundary conditions for the
domain. This will be discussed with the notation introduced in �gure 3.2.

First we consider boundaries for which r 6= 0. We are interested in states mainly bound to
the QD and we expect that the probability density, and hence the envelope function, will decay
exponentially in the GaAs bulk surrounding it. It is thus fair to assume that if we set Lz to a
large value compared to the QD, we can choose the horizontal domain boundaries at z = ±Lz/2
equal to zero:

f(r 6= 0,±Lz/2) = 0.

8



3. Semiconductor Quantum Dots Modelling

At the boundary at r = R0 the situation is a bit di�erent due to the thin slap of WL. Here we
cannot expect the same exponential decay as in the bulk, as the WL is InAs also. However for
this particular calculation we are only interested in the ground and possibly the �rst excited state,
so we will assume that the energy of these states is low enough for them to still be reasonably
con�ned in the QD. Therefore, if we set R0 to a large value compared to r0 we can safely adopt
zero boundary conditions for this domain edge too:

f(r = R0, z) = 0.

The second boundary condition in r, at r = 0, has to be treated a bit more carefully, as it depends
on m. First we consider the case where m = 0. F now becomes independent of ϕ and hence the
directional derivative along3 r̂, eq. (3.4), has to be zero at r = 0 or else F will not be di�erentiable
on the z-axis. For m 6= 0 we consider a transition through the z-axis, for which the angle changes
from say α to β, from eq. (3.3) we get the condition: f(r = 0, z)eimα = f(r = 0, z)eimβ , if this
has to be valid for any α, β, and z we have to require that f(r = 0, z) = 0. Summarizing the
boundary conditions at r = 0,

f(r = 0, z) = 0, m 6= 0
∂f(r = 0, z)

∂r
= 0, m = 0.

The internal boundaries when going from one material to another are subjected to the general
conditions eq. (3.3) and (3.4). For notational simplicity we de�ne the domain describing the InAs
material in �gure 3.2 as DInAs and DGaAs for GaAs. For each band we now have a standard
particle-in-a-box problem (when treating holes in the valence band), where the potential for a
band j (j = c, v) is given by,

V (r, z) =
{

0 , r ∈ DInAs
∆Ej , r ∈ DGaAs,

and the position dependent e�ective mass is given by

m∗(r, z) =
{

m∗
j,InAs , r ∈ DInAs

m∗
j,GaAs , r ∈ DGaAs.

The di�erent quantities are shown in �gure 3.3. When solving eq. (3.5) with the set of boundary
conditions above, the eigenenergy will be quantized and can be labelled by a set of quantum
numbers. The angular quantum number m has already been introduced. As m appears squared
in eq. (3.5), the same energy will be obtained for ±m, hence the energy is two times degenerate
for m 6= 0. To label the solutions we introduce a quantum number, n, for r and z dimensions.
The energy will not be degenerate in n, as the only symmetry is connected to m. Eq. (3.5) is
associated with a speci�c band, so in order to completely specify an envelope function, a band
indication is needed too. We will use j (j = c, v) as a superscript to show which band we
are talking about. An envelope function, with quantum numbers (j, n, m), will thus have the
form

F j
nm(r) =

1√
2π

eimϕf j
nm(r, z), (3.6)

and when being properly normalized it will satisfy the orthonormality relation, 〈F j
n′m′ |F j

nm〉 =
δn′nδm′m, within a single band. When used with the Bloch function, eq. (3.1), for band j it will sat-
isfy the orthonormality relation, 〈uj′F j′

n′m′ |ujF j
nm〉 = δj′jδn′nδm′m, between bands.

3This is the vector given by: r̂ = cos ϕx̂ + sin ϕŷ
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Numerical solutions 3. Semiconductor Quantum Dots

Quantity Symbol Value Unit
Height of numeric domain Lz 40 nm
Radius of numeric domain R0 100 nm
Radius of QD r0 9 nm
Band gap of GaAs Eg,GaAs 1.424 eV
Band gap of InAs Eg,InAs 0.359 eV
Conduction potential depth ∆Ec 0.697 eV
Valence potential depth ∆Ev 0.368 eV
E�ective mass for GaAs in conduction band m∗

c,GaAs 0.0665 me

E�ective mass for GaAs in valence band m∗
v,GaAs 0.38 me

E�ective mass for InAs in conduction band m∗
c,InAs 0.027 me

E�ective mass for InAs in valence band m∗
v,InAs 0.34 me

Table 3.1.: Fixed parameters used in the numerical solution of the bound QD states.

3.3. Numerical solutions

As mentioned, we cannot solve the envelope equation analytically and have to use numerical
methods. This requires us to specify numerical values for all parameters used. In this section
all calculations will be performed for �xed parameters, except for h and d the height of the QD
and WL respectively. The values for the �xed4 parameters are summarized in the table 3.1.

The equation for f described above has been implemented and solved in FemLab. In �gure 3.4
we have illustrated a few radial probabilities for h = 7 nm and d = 1.25 nm. This will be our
standard QD setup used in all calculations in the chapters to come. Figure 3.4(a) shows the
radial probability for the �rst excited hole state in the valence band, with quantum numbers
(v, 1, 0). The state is nicely con�ned within the QD and many of the further excited states will
also remain bound in the QD due to the large e�ective mass of the heavy hole band, decreasing
the energy spacing between two states. In �gure 3.4(b) the �rst excited state, (c, 1, 0), of the
conduction band is shown, this state also remains bound to the QD. The state (c, 1,±1) is shown
in �gure 3.4(c). Here we clearly see that the state is less con�ned within the QD, than the prior
states were. A few energy levels above this the electron would have escaped into the WL. Here it
would essentially become delocalized in the, in principle in�nite, WL and be part of the continuum
of energy states.

Even though we are not interested in the unbound WL states, we will brie�y discuss this transition
from the bound QD states to the unboundWL states. In �gure 3.5(a) we have calculated an energy
diagram5 for our reference QD for both the conduction and valence band. However, the discussion
will be restricted to the conduction band, as WL states will not be a problem in the valence band,
but basically the same applies.

It is noticeable how the concentration of blue dots (density of states) increases very rapidly near
the thin dashed line. This is due to the fact that the energy of the state has become too high
4The energies and e�ective masses are all at 300 K.
5This diagram should also show the negative values of m, but this would simply be a mirror picture of the part
we show and hence we consider only positive m's.
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3. Semiconductor Quantum Dots Numerical solutions

(a) Radial probability of fv
10, E1 = 0.332 eV. (b) Radial probability of fc

10, E2 = 0.967 eV.

(c) Radial probability of fc
1±1, E3 = 1.112 eV.

Both m = ±1 give the same f .

Figure 3.4.: The radial probability, |f j
nm(r, z)|2r, for the envelope part the states |1〉, |2〉 and |3〉. The

actual calculation domain is truncated for clarity. This particular dot has d = 1.25 nm and h = 7 nm,
this will be our reference dot for other calculations throughout the report. The energies stated are with
reference to the GaAs valence band edge.
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Numerical solutions 3. Semiconductor Quantum Dots

for it to be con�ned in the QD. It enters the WL, which in principle is in�nite and no con�ning
takes place. The energy spectrum becomes continuous and the states delocalized in the entire
WL. Figure 3.5(b) shows the small rectangle in �gure 3.5(a) magni�ed to be able to separate a
few states. Figure 3.5(c) is a plot of the radial probability of the state (c, 2, 0). It is clear that this
state is still pretty much con�ned to the QD, while not as clearly con�ned as the states depicted
in �gure 3.4. Moving to the states (c, 3, 0) and (c, 4, 0), these have a very small energy separation
and hence we would suspect them to be part of WL continuum. The �gures 3.5(d) and 3.5(e)
show that this is the case. These states are clearly not bound to the QD and will not be used in
calculating the transition matrix elements in the next section.
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3. Semiconductor Quantum Dots Numerical solutions
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(a) Energy diagram for the eigenstates, the blue part corresponds
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few states are indicated by their quantum numbers and the thin
dashed lines indicate the onset of the WL continuum. These cal-
culations are done for our reference dot.
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(b) Magni�ed part of the conduction
band energies near the WL energy.
A bound state, (c, 2, 0), is indicated
and two unbound WL states, (c, 3, 0)
and (c, 4, 0).

(c) Radial probability of the bound state (c, 2, 0) from
�gure 3.5(b).

(d) Radial probability of the WL state (c, 3, 0) from
�gure 3.5(b).

(e) Radial probability of the WL state (c, 4, 0) from
�gure 3.5(b).

Figure 3.5.: Energy diagrams and three states indicating the transition from bound QD states to unbound
WL states.
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Transition matrix elements 3. Semiconductor Quantum Dots

3.4. Transition matrix elements

Having solved the envelope equation and found its eigenstates, we now turn to the main subject
of this chapter; the calculation of the transition matrix elements µ12 and µ23, between the states
de�ned in �gure 3.3. We split the calculation in two parts, as the two transitions are di�erent in
nature. The |1〉 ↔ |2〉 transition occurs between the valence and conduction band and hence it is
called an interband transition. The |2〉 ↔ |3〉 transition occurs within the conduction band alone
and is called an intraband, or intersubband, transition.

The main di�erence between the states in the two bands is that the Bloch functions are not the
same. As we recall from eq. (3.1), the full form of a state in a band is described by the product
between a Bloch and an envelope function. This means that the transition matrix element,
divided by e, between two states |A〉 and |B〉, in band a band b respectively, will be of the
form

〈A|y|B〉 = 〈uaF a
nm|y|ubF b

n′m′〉 . (3.7)

This expression is general and will be applied to both the interband and intraband transition
considered below.

3.4.1. Interband transitions

The transition |1〉 ↔ |2〉 corresponds to (v, 1, 0) ↔ (c, 1, 0). Inspecting �gure 3.5(a), we notice that
the states (v, 1, 0) and (v, 1,±1) are quite closely spaced energy wise. Thus you could expect that
light with a photon energy of approximately E32 would couple to all these valence states. However,
it turns out as described in appendix A.3 that the (v, 1, 0) ↔ (v, 1,±1) is not dipole allowed. This
means that we only have to consider the (v, 1, 0) ↔ (c, 1, 0) transition.

Using eq. (3.7) we write the transition matrix element for the |1〉 ↔ |2〉 transition as

〈1|y|2〉 = 〈uvF v
10|y|ucF c

10〉 .

This matrix element is approximately equal to [8, p. 120]

〈1|y|2〉 ≈ 〈uv|y|uc〉 〈F v
10|F c

10〉 = M 〈F v
10|F c

10〉 , (3.8)

where M ≡ 〈uv|y|uc〉. The quantity M we are not able to calculate within our model, as it involves
the lattice periodic Bloch functions. Luckily we do not need to, as this material parameter can
be looked up in tables. An approximate expression for |M | has been derived in appendix A.3 and
the result is,

|M | = 0.699
(ωp[fs−1])

nm. (3.9)

|M | is dependent on the probe �eld frequency and hence a �eld composed of several frequency
components would each have their own |M |. For simplicity we have only calculated |M(ωp = ω21)|,
ω21 = (E2−E1)/~, and will use this even though we do not always consider single frequency �elds.
This is justi�ed whenever the width of the frequency distribution is much smaller than the carrier
frequency.
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3. Semiconductor Quantum Dots Transition matrix elements

The remaining overlap integral between the two envelope functions can be calculated within our
model. Using eq. (3.6) we can write the explicit expression for the overlap integral,

〈F v
10|F c

10〉 =
1
2π

∫
[fv

10]
∗ f c

10rdrdzdϕ =
∫

[fv
10]

∗ f c
10rdrdz. (3.10)

This is the integral we will be calculating using the numerical solutions obtained inFemLab.

3.4.2. Intraband transitions

The transition |2〉 ↔ |3〉 corresponds to (c, 1, 0) ↔ (c, 1 ± 1). From �gure 3.5(a) we see that
(c, 2, 0) has a relatively high energy compared to (c, 1,±1). However a situation where the energy
of these two states were comparable could occur. In this case we would have to worry about the
electron making the transition to (c, 2, 0) instead of that to (c, 1,±1). This transition is however
not allowed due to the selection rules discussed in appendix A.3 and we can concentrate on the
transition to (c, 1,±1).

The energy of the states (c, 1,±1), E3, is two times degenerate. Hence the angular part of the
envelope function is spanned by the two functions 1√

2π
e±iϕ. To simplify the description we choose6

a new basis for the angular part given by:

Φ+ =
1√
π

1
2

(
eiϕ + e−iϕ

)
=

1√
π

cosϕ,

Φ− =
1√
π

1
2i

(
eiϕ − e−iϕ

)
=

1√
π

sinϕ,

being orthonormal. This change of basis essentially decouples the transition to one of the de-
generate states, such that its transition matrix element is zero. From eq. (3.7) the two matrix
elements are

〈2|y|3±〉 =
〈

uc 1√
2π

f c
10

∣∣∣∣ y

∣∣∣∣ucf c
11Φ

±
〉

,

which can be [4] approximated by

〈2|y|3±〉 ≈ 〈uc|uc〉︸ ︷︷ ︸
=1

1√
2π
〈f c

10|y|f c
11Φ

±〉 . (3.12)

We start by calculating 〈2|y|3+〉, as this will turn out extremely simple, which is given by

〈2|y|3+〉 =
1√
2π
〈f c

10|y|f c
11Φ

+〉 =
1√
2π

∫
cosϕ sinϕdϕ

∫
[f c

10]
∗ f c

11r
2drdz.

Sine and cosine are orthogonal functions and hence the integral over these is zero and 〈2|y|3+〉 = 0
as intended. For 〈2|y|3−〉 we write

〈2|y|3−〉 =
1√
2π
〈f c

10|y|f c
11Φ

−〉 =
1√
2π

∫
sin2 ϕdϕ

∫
[f c

10]
∗ f c

11r
2drdz

=
1√
2

∫
[f c

10]
∗ f c

11r
2drdz. (3.13)

By construction the only contribution comes from 〈2|y|3−〉 and we de�ne: µ23 ≡ e 〈2|y|3−〉. The
integral above can be calculated from the solutions acquired from FemLab.
6How to choose your basis cleverly depends, amongst other things, on how your electric �eld is polarized.
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(a) Calculation of µ12/e according to eq. (3.14a).
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(b) Calculation of µ23/e according to eq. (3.14b).

Figure 3.6.: These �gures show the calculation of y12 and y23 for a variety of QD sizes, d ∈ [0 3] nm and
h ∈ [2 8] nm. The cut-o� in the values is where |3〉 has become a WL state.

3.4.3. Numerical calculation of the transition matrix
elements

In the two previous sections we derived the integrals for the transition matrix elements we set
out to �nd. Using the equations (3.9), (3.10) and (3.13) we can sum up what we are to calculate,

µ12 = e 〈1|y|2〉 = e|M(ωp = ω21)|
∫

[fv
10]

∗ f c
10rdrdz (3.14a)

and

µ23 = e 〈2|y|3−〉 = e
1√
2

∫
[f c

10]
∗ f c

11r
2drdz. (3.14b)

The results of these integrals are illustrated in �gure 3.6. Transition matrix elements where |3〉
is part of the WL continuum has been cut o� the plots. The reason for this is that when making
transitions to a continuum of states, our simple integrals do not yield the the correct value and
you need some sort of Fermi's Golden Rule expression. The transition matrix elements we have
calculated are in excellent agreement with the values stated in [1, 4].
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4. Classical Electromagnetic Theory

The light-matter interaction in this report is described by a semiclassical model. In it, the quantum
dot material is modelled by a quantum mechanical description and the electromagnetic �eld is
described by the classical electromagnetic wave theory. Here we present some of the main results
and de�nitions which will be using later.

4.1. The wave equation in matter

The propagation of light as electromagnetic waves is in general governed by the Maxwell equations.
These can be rewritten to the electromagnetic wave equation, see appendix A.5. Assuming a
transverse electric �eld propagating along the x-axis and polarized in the ŷ-direction the wave
equation reduces to1

∂2

∂x2
E − n2

b

c2

∂2

∂t2
E = µ0

∂2

∂t2
P. (4.1)

In our model, P is the polarization induced by the active QD material. It can cause di�er-
ent e�ects like absorption, dispersion and phase changes. The contribution to the polariza-
tion from the linear dielectric medium is included through the background refractive index,
nb.

We will now consider CW �elds. These can be written as the real part of a complex �eld

E(x, t) = Re[Ẽ0e
i(kx−ωt)],

in terms of a complex amplitude, Ẽ0. In a similar fashion we can write the polarization as the
real part of a complex polarization. It is convenient to use these complex functions as they
satisfy the wave equation, (4.1), too. To go back to the physical real quantities we can then
take the real part. The complex complex representation of the CW �eld will then take the
form,

Ẽ(x, t) = Ẽ0e
i(kx−ωt) (4.2)

We can write the polarization in terms of the �rst order susceptibility as a convolution inte-
gral

P (t) = ε0

∫ +∞

−∞
χ(t′)E(t− t′)dt′.

1In the absence of free charges and currents.
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Miscellaneous relations 4. Classical Electromagnetic Theory

If we insert eq. (4.2) into this we can get an expression for the complex polarization for a CW
�eld

P̃ (x, t) = ε0

∫ +∞

−∞
χ(t′)Ẽ0e

i[kx−ω(t−t′)]dt′

= ε0

∫ +∞

−∞
χ(t′)eiωt′dt′Ẽ0e

i(kx−ωt)

= ε0χ̃(ω)Ẽ0e
i(kx−ωt),

where we have recognized the Fourier transform of χ(t) in the last line. In general, this is a
complex number and we adopt the notation, χ̃(ω) = χ̃ = χ′+iχ′′. Similar notation for the real and
imaginary part will be used for other quantities. To get the physical polarization we take the real
part. Using that Ẽ0 is real and neglecting space dependence (k=0), we get

P (t) = Re[ε0χ̃(ω)Ẽ0e
−iωt]

= ε0χ
′(ω)E0 cos(ωt) + ε0χ

′′(ω)E0 sin(ωt). (4.3)

This can be used to compare to a similar expression for the polarization for a CW �eld found
in the quantum model. Thereby we are able to �nd a closed form expression for the frequency
dependent susceptibility, which describe the response from the material. This allows us to extract
the main characteristics of a low intensity probe �eld, like its absorption, dispersion, and group
velocity.

4.2. Miscellaneous relations

If we insert both the complex �eld and polarization into eq. (4.1) and use that µ0ε0 = c−2 we
get

∂2

∂x2
Ẽ − n2

b + χ̃

c2

∂2

∂t2
Ẽ = 0.

We can now introduce the complex refractive index

ñ2 = (n′ + in′′)2 = n2
b + χ̃ = n2

b + χ′ + iχ′′. (4.4)

Using the normal dispersion relation

k̃ =
ω

c
ñ (4.5)

we see that k̃ is now complex. This corresponds to an absorbtion/gain of the �eld in the material
which can be seen by inserting a complex k̃ into eq. (4.2),

Ẽ(x, t) = Ẽ0e
i(k̃x−ωt) = Ẽ0e

ik′(x− ω
k′ t)−k′′x.

From this we can extract the usual expressions for the phase velocity, and the absorption coe�-
cient

vph =
ω

k′
=

c

n′
, α = k′′ =

ωn′′

c
.
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4. Classical Electromagnetic Theory Miscellaneous relations

Superimposing a lot of plane waves with di�erent frequencies, ω, peaked around ω0, we form a wave
packet, characterized by an envelope function Ẽ(x, t). Then vph still describes the velocity of the
phase of the underlying fast oscillations, but does not describe the velocity of the envelope. The
velocity of the envelope is denoted the group velocity and by means of Fourier theory a dispersion
relation for the top of the envelope can be found (see appendix A.6) to give

vg =
∂ω

∂k′
=

c

ng
. (4.6)

The de�nition of the group velocity given in eq. (4.6) has some limitations. This is due to the
fact that vg is derived with the assumption that we �nd the velocity by following the peak point
of the pulse, and see how it develops in time. If the shape of the pulse changes this will not hold.
For strongly dispersive and absorbing media, this can lead to group velocities greater than c or
even negative! This is of course not a violation of special relativity, but simply a limitation of
the de�nition. Despite of this we use this de�nition as it has been applied before with success
[1, 4].

The refractive group index, ng, will be the main parameter throughout the report. This measures
how fast a pulse propagates through a medium. We can �nd an expression for ng in terms of n′

by inserting the real part of the dispersion relation (4.5) into (4.6),

1
vg

=
∂k′

∂ω
=

∂

∂ω

(
ωn′(ω)

c

)
=

n′(ω) + ω ∂n′(ω)
∂ω

c

and get

ng = n′(ω) + ω
∂n′(ω)

∂ω
.

For the pulse �eld we now have two main results

ng = n′(ω) + ω
∂n′(ω)

∂ω
and α =

ωn′′(ω)
c

. (4.7)

We can relate ng and α to the susceptibility using eq. (4.4)

ñ =
√

n2
b + χ̃. (4.8)

As a �rst approximation, (4.8) can be Taylor expanded to �rst order around χ̃ = 0 to get

ñ ≈ nb +
χ̃

2nb
⇒ n′ ≈ nb +

χ′

2nb
, n′′ ≈ χ′′

2nb
.

This is what normally is done and in most cases is a good approximation. It is however not valid
in all our simulations and an exact solution can be found [6, p. 237]

(n′ + in′′)2 = n2
b + χ′ + iχ′′

⇓
n′2 − n′′2 = n2

b + χ′, 2n′n′′ = χ′′,
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Miscellaneous relations 4. Classical Electromagnetic Theory

which can be solved for n′ and n′′ to give

n′ =
1√
2

√√
(n2

b + χ′)2 + χ′′2 + n2
b + χ′, (4.9a)

n′′ =
1√
2

√√
(n2

b + χ′)2 + χ′′2 − (n2
b + χ′) · sgn(χ′′). (4.9b)

This describes how the susceptibility changes the real and imaginary parts of the refractive index
and thus the refractive group index and absorption.
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5. Light-matter Interaction

In this chapter we will consider the e�ect of an applied electric �eld on an atomic system. First
the equations governing the response of the medium will be derived under as general conditions
as possible. These equations, called the optical Bloch equations, will then be applied to the three-
level system we use to achieve EIT. The resulting set of equations will serve as the starting point
for both the steady state and dynamical analysis we will perform. The following derivations are
inspired by the approach taken in [10, chapter 2]

5.1. The stationary system

We set out by considering a one particle quantum mechanical system. A particle, e.g. a carrier,
in this system is governed by the time-dependent Schrödinger equation,

ĤS |Ψ(r, t)〉 = i~
∂

∂t
|Ψ(r, t)〉

which for a time-independent potential can be separated into a time-dependent and time-independent
part. The form of the state vector will then become: |Ψn(r, t)〉 = e−iωnt |ψn(r)〉, where ωn ≡ En/~.
The spatial part of the state vector along with the eigenenergy are obtained from the time-
independent Schrödinger equation,

ĤS |ψn(r)〉 = En |ψn(r)〉 .

The complete solution1 can now be expanded in the eigenstates of ĤS,

|Ψ〉 =
∑

n

bn |Ψn〉 =
∑
n

bne−iωnt |n〉 ,

where the bn's are time-independent probability amplitudes. The eigenstates of the stationary
system will be assumed to known.

5.2. Time-dependent interaction

Introducing a time-dependent interaction Hamiltonian means that the full Hamiltonian of the
system can be written as the sum of the stationary and the new term, Ĥ = ĤS + ĤI. The
time-dependent Schrödinger equation for the whole system now reads,

(ĤS + ĤI) |Ψ〉 = i~
∂

∂t
|Ψ〉 . (5.1)

1For simplicity we omit explicit arguments for the wave functions and further adopt the notation |ψn〉 = |n〉.
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Optical Bloch equations 5. Light-matter Interaction

Having obtained the eigenstates of the eigenvalue equation, these constitute a complete set
and because of that we can expand the solution of eq. (5.1) in this basis. We assume that
the continuous part of the spectrum can be neglected. Thus we write the solution as fol-
lows

|Ψ〉 =
∑
n

cn |Ψn〉 =
∑

n

cne−iωnt |n〉 . (5.2)

The only di�erence from the solution to the stationary system, is that the probability amplitudes
now depends on time (and possibly position), cn = cn(r, t), but they are still unknown. In order
to determine the equations of motion for these, we plug the full solution into the time-dependent
Schrödinger equation describing the system. This yields the following

(ĤS + ĤI)
∑

n

cn |Ψn〉 = i~
∂

∂t

∑
n

cn |Ψn〉 .

Letting the two Hamiltonians operate2 on the left hand side and di�erentiating with respect to
time3 on the right hand side we obtain

ĤI

∑
n

cn |Ψn〉+
∑

n

cn ĤS |Ψn〉︸ ︷︷ ︸
=~ωn|Ψn〉

= i~
∑

n

ċn |Ψn〉+
∑

n

cn~ωn |Ψn〉 ,

cancelling the two sums with the ~ωn-factor we get

ĤI

∑
n

cn |Ψn〉 = i~
∑

n

ċn |Ψn〉 .

To �nd the equation governing each of the cn's, we multiply the above equation by 〈Ψl| from the
left. This results in

∑
n

cnei(ωl−ωn)t 〈l|ĤI|n〉 = i~
∑

n

ei(ωl−ωn)tċn 〈l|n〉︸︷︷︸
=δln

= i~ċl. (5.3)

Rearranging eq. (5.3) yields the equation of motion for the cl's,

ċl =
∑

n

− i

~
cnei(ωl−ωn)t 〈l|ĤI|n〉 . (5.4)

5.3. Optical Bloch equations

The probability coe�cients themselves are not of much interest, but rather their absolute values
squared. These can be interpreted as the probability that the carrier is in that state. What we
want, are equations of motion for the probabilities themselves. For this purpose we adopt the
density matrix formalism, in which the squared probability amplitudes can be viewed as elements
in a matrix. This matrix also contains o�-diagonal elements, which are the ones we are really
2We assume that the r-dependence of cn and ċn is very small compared to the eigenstates.
3The dot denotes partial di�erentiation with respect to time, ḟ ≡ ∂f

∂t
.

22



5. Light-matter Interaction Field interaction

after as they describe the induced dipoles. We now de�ne an element in the density matrix
as

ρjk ≡ cjc
∗
k,

where the ∗ denotes the complex conjugate. Di�erentiating this with respect to time yields

ρ̇jk = ċjc
∗
k + cj ċ

∗
k.

This equation along with eq. (5.4), and its complex conjugate, will provide us with the equations
of motion for the ρ's. Thus we write

ρ̇jk =
∑

n

− i

~
cnc∗k︸︷︷︸
=ρnk

ei(ωj−ωn)t 〈j|ĤI|n〉+
∑

n

i

~
cjc

∗
n︸︷︷︸

=ρjn

e−i(ωk−ωn)t 〈n|ĤI|k〉

=
i

~
∑

n

[
ρjneiωnkt 〈n|ĤI|k〉 − ρnke

iωjnt 〈j|ĤI|n〉
]
, ωab = ωa − ωb. (5.5)

These equations are called the optical Bloch equations. The form above provides a nearly exact
description of the system, within the framework of quantum mechanics.

It is a very di�cult task to write up the complete interaction Hamiltonian, as it contains many
contributions that are hard to describe theoretically. Our model is based on electrons that only in-
teract with the electromagnetic �eld and not with each other, thus many-body e�ects are not con-
sidered through fundamental principles. The e�ects of spontaneous emission, collisions, phonons,
and other terms causing various kinds of decay/dephasing, will be added phenomenologically, as
this is really the best we can do.

To account for the �nite lifetime4 of the electronic states we introduce a diagonal decay matrix,
Γ, such that Γnm = γnδnm [6, p. 161]. To incorporate the decay matrix we expand the anti-
commutator −1

2 [Γ, ρ]+ in the same set as our solution, using the closure relation Î =
∑

n |n〉 〈n|.
Adding this to eq. (5.5) we obtain the following,

ρ̇jk =
i

~
∑

n

[
ρjneiωnkt 〈n|ĤI|k〉 − ρnke

iωjnt 〈j|ĤI|n〉
]
− 1

2

∑
n

[γjδjnρnk + γnδnkρjn] . (5.6)

In expanding the relaxation sum above we will adopt the notation: γab ≡ γa

2 + γb
2 . And further for

the o�-diagonal decays an extra dephase term, γph, will be added to account for elastic interatomic
collisions5 so that: γab,a6=b ⇒ γab+γph. This of course means that the decay rate of the o�-diagonal
elements always will be larger than that of the diagonal elements.

5.4. Field interaction

We now consider the explicit form of the interaction Hamiltonian, ĤI, describing the electric
�eld. Luckily, the main contribution to the interaction Hamiltonian is due to the so-called dipole
4The �nite lifetime is an consequence of various e�ects we do not describe explicitly, but they still in�uence our
electron states. Due to this coupling the energy of the states becomes uncertain by an amount ∆E and through
Heisenberg's uncertainty relation, ∆E∆t ≥ ~

2
, the states will have a �nite lifetime.

5Being elastic the collisions does not change the energy of the states, but rather cause dephasing in the o�-diagonal
elements.
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Field interaction 5. Light-matter Interaction

interaction between the electronic charge distribution and the applied electric �eld. The e�ect
of the magnetic �eld, B, associated with the electromagnetic wave is neglected, as it is a factor
of nb

c smaller than the electric �eld. As described in chapter 2, EIT requires a strong coupling
�eld and a weaker probe �eld carrying the signal you want transmitted. Classically6 these two
electric �elds travelling along the x-axis and polarized along the y-axis, can be represented in the
following way

E(x, t) = E(x, t)ŷ = Ep(x, t) cos(kpx− ωpt + φp(x, t))ŷ + Ec(x, t) cos(kcx− ωct + φc(x, t))ŷ,
(5.7)

where ŷ is a unit vector in the y-direction and E(x, t), k, ω and φ(x, t) is the �eld envelope,
wave vector, frequency, and phase of the respective �eld. This way of representing the �eld is
perfectly valid, but due to some numerical issues discussed in section 7.1, we will rewrite this
representation. Any �eld given on the form of one of the terms in eq. (5.7) can be rewritten
to

E(x, t) =
1
2
Ẽ(x, t)ei(kx−ωt) +

1
2
Ẽ∗(x, t)e−i(kx−ωt), (5.8)

where we have introduced a complex envelope given by: Ẽ = E′ + iE′′. The components of the
new envelope are de�ned as: E′ ≡ E cosφ and E′′ ≡ E sinφ.

The dipole moment operator of the electron is given by: d̂ = −er and the interaction Hamiltonian
is equal to the potential energy of the dipole in a electric �eld,

ĤI = −d̂ ·E = eyE(x, t).

Plugging the rewritten �eld into this yields,

ĤI =
ey

2

(
Ẽpe

i(kpx−ωpt) + Ẽ∗
pe−i(kpx−ωpt) + Ẽce

i(kcx−ωct) + Ẽ∗
c e−i(kcx−ωct)

)
,

plugging this into eq. (5.6) we get

ρ̇jk =
i

2~
∑
n

[
ρjnµnke

iωnkt
(
Ẽpe

i(kpx−ωpt) + Ẽ∗
pe−i(kpx−ωpt) + Ẽce

i(kcx−ωct) + Ẽ∗
c e−i(kcx−ωct)

)

−ρnkµjneiωjnt
(
Ẽpe

i(kpx−ωpt) + Ẽ∗
pe−i(kpx−ωpt) + Ẽce

i(kcx−ωct) + Ẽ∗
c e−i(kcx−ωct)

)]

−1
2

∑
n

[γjδjnρnk + γnδnkρjn] , (5.9)

where the transition matrix elements are de�ned as µnk ≡ e 〈n|y|k〉. In taking the matrix elements
of the interaction Hamiltonian, we assume the electric �eld part is essentially constant over the
dimensions of the QD. Therefore it can be taken outside the braket. This assumption is well meet
for the case of light in the visible range and with envelopes much larger than the QD. As the
name indicates, the transition matrix element measures the strength of a transition. This has the
consequence that we only have a dipole moment for allowed transitions. For the three-level QD
system we are going to consider shortly, the transition matrix elements have been calculated in
6We use the classical representation of the electric �eld, rather than a quantized �eld. This gives a correct
description when a very large number of photons are involved, ie. high �eld amplitudes.
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5. Light-matter Interaction The three-level Bloch equations

chapter 3. Due to the selection rules of the QD system and the fact that7 µnn = e 〈n|y|n〉 = 0,
the only non-zero transition matrix elements are: µ12, µ21, µ23 and µ32.

As seen from eq. (5.9) we will get a lot of complex exponentials oscillating at high and low
frequencies. The frequencies will be of the form: ωab ± ωp or c, with ωab > 0. The maximum
e�ect of EIT is reached when the frequencies of probe and coupling �eld are tuned very close
to transitions they are to match. This means that we will have a few exponentials oscillating
at a frequency close to zero and many who oscillate at much higher frequencies. Neglecting all
other terms than those at low frequency is called the rotating wave approximation (RWA). We
will apply the RWA in the rest of this work, as it yields very signi�cant simpli�cations in the
analytical work and make it possible to solve numerically.

5.5. The three-level Bloch equations

To obtain the equations of motion describing our three-level system, we have to let j and k run
from 1 to 3 in all combinations in eq. (5.9). This will result in 9 equations all in all. To reduce
this number we recall the de�nition of the density matrix elements, ρjk ≡ cjc

∗
k, and notice that,

ρ∗jk = [cjc
∗
k]
∗ = ckc

∗
j = ρkj . The 6 o�-diagonal elements equations reduces to 3 and we are left

with 6 distinct8 equations for the matrix elements. Using eq. (5.9), applying the RWA and the
fact that the only non-zero transition matrix elements are: µ12, µ21, µ23 and µ32, we get the
following equations of motions for the diagonal elements

ρ̇11 = iΩ∗pe
i(kpx+∆pt)ρ12 − iΩpe

−i(kpx+∆pt)ρ21 + γ22ρ22 + γ33ρ33,

ρ̇22 = −iΩ∗pe
i(kpx+∆pt)ρ12 + iΩpe

−i(kpx+∆pt)ρ21 + iΩ∗ce
i(kcx+∆ct)ρ23 − iΩce

−i(kcx+∆ct)ρ32 − γ22ρ22,

ρ̇33 = iΩce
−i(kcx+∆ct)ρ32 − iΩ∗ce

i(kcx+∆ct)ρ23 − γ33ρ33.

We have de�ned the detuning frequencies for the probe and coupling �elds respectively as, ∆p ≡
ω21 − ωp and ∆c ≡ ω32 − ωc, and the complex Rabi frequencies9 are de�ned as Ωp ≡ µ12Ẽ∗p

2~ and
Ωc ≡ µ23Ẽ∗c

2~ , for the probe and coupling �elds respectively. These might have a spatial dependence
as the �eld envelopes might.

The two last terms in the equation for ρ̇11 do not come from eq. (5.9), but these are necessary
in order to conserve probability in the system. Physically this means that decay from the two
upper levels will end up in |1〉. For the o�-diagonal elements we again apply eq. (5.9), this
yields

ρ̇12 = ρ̇∗21 = iΩpe
−i(kpx+∆pt)(ρ11 − ρ22) + iΩ∗ce

i(kcx+∆ct)ρ13 − γ12ρ12,

ρ̇13 = ρ̇∗31 = iΩce
−i(kcx+∆ct)ρ12 − iΩpe

−i(kpx+∆pt)ρ23 − γ13ρ13,

ρ̇23 = ρ̇∗32 = iΩce
−(kcx+∆ct)(ρ22 − ρ33)− iΩ∗pe

i(kpx+∆pt)ρ13 − γ23ρ23.

This set of �rst order equations constitute a fairly complicated problem due to the fact that we
have non-constant coe�cients in the system, that possibly also depends on position. However
7Since the bra and ket will have the same parity, even or odd, and y is inherently odd this integral will equal zero.
8Really it is 5 distinct equations, as conservation of probability requires that: ρ11+ρ22+ρ33 = 1 ⇒ ρ̇11+ρ̇22+ρ̇33 =

0.
9It should be noted that another commonly used de�nition of the Rabi frequency is: Ω = µE

~ , which is twice our
de�nition.
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The three-level Bloch equations 5. Light-matter Interaction

by introducing the following set of transformations of the o�-diagonal elements, we can simplify
the equations a bit (and as a bonus the transformed functions are occurring naturally in the
calculations of the dipoles). The transformations are as follows

ρ12 = σ12e
−i(kpx+∆pt), ρ13 = σ13e

−i((kp+kc)x+(∆p+∆c)t), ρ23 = σ23e
−i(kcx+∆ct), (5.10)

and of course their complex conjugates. Plugging these into our Bloch equations and performing
straight forward di�erentiations and multiplication we obtain the following transformed set of
Bloch equations

ρ̇11 = iΩ∗pσ12 − iΩpσ21 + γ22ρ22 + γ33ρ33, (5.11a)
ρ̇22 = −iΩ∗pσ12 + iΩpσ21 + iΩ∗cσ23 − iΩcσ32 − γ22ρ22, (5.11b)
ρ̇33 = iΩcσ32 − iΩ∗cσ23 − γ33ρ33. (5.11c)

And for the o�-diagonal elements,

σ̇12 = σ̇∗21 = iΩp(ρ11 − ρ22) + iΩ∗cσ13 − γ̃12σ12, (5.11d)
σ̇13 = σ̇∗31 = iΩcσ12 − iΩpσ23 − γ̃13σ13, (5.11e)
σ̇23 = σ̇∗32 = iΩc(ρ22 − ρ33)− iΩ∗pσ13 − γ̃23σ23, (5.11f)

where we for notational simplicity have introduced the complex detunings: γ̃12 ≡ γ12 − i∆p,
γ̃13 ≡ γ13−i(∆p+∆c) and γ̃23 ≡ γ23−i∆c. We now have the complete set of equations describing
our three-level system. In the following chapters these equations will be used for di�erent forms
of the electric �eld envelope.
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6. Steady State Analysis

In this chapter we start our analysis of slow-light by considering the simplest case of the electric
�eld, namely a CW �eld with no phase term. This we can treat analytically and expressions
for the susceptibility are obtained in the steady state and long wavelength limit. In the end we
give numerical examples of the refractive group index and various parameters are discussed. The
following analysis has been performed by [1, 4] and our approach is in large parts inspired by
these papers.

6.1. Continuous wave �elds

In the following analysis we will use CW �elds, with no phase terms. Setting the phase to zero, the
complex envelope we introduced in section 5.4 reduces to a scalar, as cos(0) = 1 and sin(0) = 0.
The total �eld will have the form

E(x, t) = Ep cos(kpx− ωpt)ŷ + Ec cos(kcx− ωct)ŷ.

The �eld envelopes, Ep and Ec, are constant in both position and time corresponding to in�nite
width in these two dimensions. This implies that the spectral width is in�nitely narrow, essentially
a delta spike. In order to simplify, we will use the so-called dipole approximation, in which we
set kc,p = 0 (long wavelength limit). This approximation can be justi�ed by considering the
following: The wavelength of visible light is of the order 5.5× 10−7 m hence k ' 1.0× 107 m−1.
The dimensions of our QDs is of order of nanometers, from which it follows that k∆xQD ' 10−2.
This shows that the contribution from the variation in x is very small and can therefore be
neglected, hence the electric �eld becomes a function of time alone

E(t) = Ep cos(ωpt)ŷ + Ec cos(ωct)ŷ.

Having this functional form of the �eld, we do not allow it to change due to the interaction
with the QDs. This approach can be justi�ed, as very wide pulses consists of very few frequency
components (one in the limit of a true CW �eld). It can be expected that after a certain duration,
the microscopic dipoles and hence the polarization will oscillate out of phase with the �eld, which
corresponds to a frequency-dependent susceptibility.

6.2. The complex susceptibility

In order to obtain the real part of the refractive index, and thus the slowdown factor, we need
an expression for the complex susceptibility that gives rise to the induced polarization in the
medium. From classical electromagnetism we recall that the macroscopic polarization is de�ned
as the density of the microscopic dipoles

P ≡ N 〈d〉 . (6.1)
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The complex susceptibility 6. Steady State Analysis

We de�ne N to be the density of QDs. It really should be the density of dipoles, but each QD
only contains one (two if you include spin) electron(s) at each energy level, so these two densities
are equal. In chapter 5, we derived the theory enabling us to calculate the induced microscopic
dipoles. The average value of the dipole in eq. (6.1) can be obtained through the quantum
mechanical average of the dipole operator

〈d〉 = 〈Ψ| − er|Ψ〉 .

As we have polarized our electric �eld in the y-direction, the dipole becomes a scalar as r → y.
Inserting the full wave function given by eq. (5.2) yields the following

〈d〉 = −e

(
3∑

n=1

c∗neiωnt 〈n|
)

y

(
3∑

n=1

cne−iωnt |n〉
)

.

Exploiting the transition selection rules (i.e. y13 = y31 = 0), the parity of the eigenstates along
with the de�nitions of the density matrix elements the sums reduce to

〈d〉 = −e
(
ρ12y21e

iω21t + ρ21y12e
−iω21t + ρ23y32e

iω32t + ρ32y23e
−iω32t

)
, (6.2)

where yab = 〈a|y|b〉. Introducing the transition matrix elements and the transformation1 of the o�-
diagonal elements given by eq. (5.10) the average of the induced dipoles becomes

〈d〉 = − (
σ12µ21e

iωpt + σ21µ12e
−iωpt + σ23µ32e

iωct + σ32µ23e
−iωct

)
.

The probe �eld, which is the one we want slowed down, only experience the polarization induced
by the two �rst terms in the above expression. This you can realize from the electromagnetic
wave equation. In the same way the coupling �eld only sees the two last. We separate in this
way because in the end we are only interested in the susceptibility seen by the probe �eld. The
polarization seen by the probe is

Pp = N 〈dp〉 = −N
(
σ12µ21e

iωpt + σ21µ12e
−iωpt

)
.

We rewrite this in terms of cosine and sine as this will become handy in a moment,

Pp = −N ([σ12µ21 + σ21µ12] cos(ωpt) + i [σ12µ21 − σ21µ12] sin(ωpt)) .

Comparing to Pp = ε0χ
′Ep cos(ωpt)+ ε0χ

′′Ep sin(ωpt), eq. (4.3), we can immediately read o� the
expressions for the real and imaginary part of the susceptibility. Doing this we obtain for the real
part

χ′ = − N

ε0Ep
[σ12µ21 + σ21µ12] , (6.3)

and for the imaginary part

χ′′ = −i
N

ε0Ep
[σ12µ21 − σ21µ12] . (6.4)

Notice that the second term in both the square brackets is complex conjugate of the �rst, σ21µ12 =
[σ12µ21]

∗, so it is already now clear that the real and imaginary part are real quantities as they
1Due to the dipole approximation we can set kp,c = 0 in these too.
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should be. The equations above indicate that the susceptibility seen by the probe, depends on
the o�-diagonal density matrix elements and transition matrix elements that couple the |1〉 ↔ |2〉
transition. This is reasonable because the probe �elds frequency is tuned to match the |1〉 ↔ |2〉
transition.

From eq. (6.3) and (6.4) it is apparent that we need to obtain the functional expression for σ12 and
σ21, or really just one of them as they are each others complex conjugates. This involves solving the
complete set of Bloch equations eq. (5.11a) to (5.11f) in steady state, that is all the time derivatives
set to zero. The steady state solutions are in closed form very extensive, so through the solution
process we will make a few approximations. The assumptions in these approximations are however
very well justi�ed under normal EIT conditions, see appendix A.2.

Setting the time derivative equal to zero, reduces the equation of motion for σ12 (we only solve
for σ12 as σ21 = σ∗12) to

0 = iΩp(ρ11 − ρ22) + iΩ∗cσ13 − γ̃12σ12.

The �rst term contains the di�erence in occupation between level 1 and 2. When EIT is reached,
almost all carriers will be in the ground state and this di�erence will be ≈ 1. We consider this as
nearly constant and set η ≡ ρ11 − ρ22 and solve for σ12

σ12 =
1

γ̃12
(iΩpη + iΩ∗cσ13) . (6.5)

Next we consider the steady state equation of σ13

0 = iΩcσ12 − iΩpσ23 − γ̃13σ13,

and notice that in the two �rst terms we have the Rabi frequencies for the coupling and probe
�eld as factors. In order for EIT to work, the �eld that couples the two upper levels must be
much stronger than the �eld that couples the two lower levels, this means that Ωc À Ωp. Under
the assumption that this condition is ful�lled, we can neglect the second term in the equation for
σ13. Doing this and solving for σ13 yields

σ13 = i
Ωc
γ̃13

σ12.

This can now be inserted into eq. (6.5), solving again for σ12 we arrive at an approximate steady
state solution for σ12 (and σ21) which is given by

σ12 =
iγ̃13Ωpη

γ̃12γ̃13 + |Ωc|2 .

As seen from eq. (6.3) and (6.4) we need the product σ12µ21 in the calculation of the susceptibility,
so we will calculate this �rst. Inserting the complex detunings, de�ned below eq. (5.11f), and
multiplying with µ21 we get

µ21σ12 =
µ21Ωp((∆p + ∆c) + iγ13)η

(γ12 − i∆p)(γ13 − i∆c) + |Ωc|2 .

Reminding how Ωp is de�ned, namely Ωp = µ12Ep

2~ , we notice that µ21Ωp = µ21µ∗21Ep

2~ = |µ21|2Ep

2~ is
a real number. Using this and for convenience setting the real part of the denominator equal to:
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ξ = γ12γ13−∆p(∆p +∆c)+ |Ωc|2, and the imaginary part equal to: ζ = −(∆p +∆c)γ12−∆pγ13,
we can write

µ21σ12 =
|µ21|2Epη

2~(ξ2 + ζ2)
([(∆p + ∆c)ξ + γ13ζ] + i [γ13ξ − (∆p + ∆c)ζ]) .

Having clearly separated this product into a real and imaginary part makes the calculation of the
susceptibility easier. We are now down to plugging the above determined product into eq. (6.3)
and (6.4). For the real part of the susceptibility we obtain

χ′ = − N

ε0Ep

|µ21|2Epη

2~(ξ2 + ζ2)
([(∆p + ∆c)ξ + γ13ζ] + i [γ13ξ − (∆p + ∆c)ζ] + c.c.)

= − N |µ21|2η
2~ε0(ξ2 + ζ2)

2[(∆p + ∆c)ξ + γ13ζ]

where c.c. denotes the complex conjugate. Inserting ξ and ζ and rearranging yields the wanted
approximate expression for χ′, namely

χ′ =
N |µ21|2η

ε0~
γ2

13∆p + (∆p + ∆c)(∆p(∆p + ∆c)− |Ωc|2)
[γ12γ13 −∆p(∆p + ∆c) + |Ωc|2]2 + [(∆p + ∆c)γ12 + ∆pγ13]

2
. (6.6)

For the imaginary part the procedure is much the same, from eq. (6.4) we get

χ′′ = −i
N

ε0Ep

|µ21|2Epη

2~(ξ2 + ζ2)
([(∆p + ∆c)ξ + γ13ζ] + i [γ13ξ − (∆p + ∆c)ζ]− c.c.)

= −i
N |µ21|2η

2~ε0(ξ2 + ζ2)
2i [γ13ξ − (∆p + ∆c)ζ] ,

again inserting ξ and ζ and rearranging we arrive at the approximate expression for χ′′, which
is

χ′′ =
N |µ21|2η

ε0~
γ13(γ13γ12 + |Ωc|2) + (∆p + ∆c)2γ12

[γ12γ13 −∆p(∆p + ∆c) + |Ωc|2]2 + [(∆p + ∆c)γ12 + ∆pγ13]
2
. (6.7)

We notice that χ′′ always2 will be positive, as intended through our de�nition of the complex
susceptibility. The reason why we wanted χ′′ positive comes from the fact that the imaginary part
of the susceptibility corresponds more or less to the absorption coe�cient, which traditionally3
is a positive quantity. We also notice how the approximations used have made several of the
original parameters drop out of the solutions. These are the decay rates for the states |2〉 and
|3〉, γ22 and γ33. Also the decay rate for the |2〉 ↔ |3〉 dipole transition, has lost its signi�cance.
Most noticeable perhaps is the fact that the probe �eld amplitude Ep (and hence Ωp) is of no
importance, as long as it satis�es Ωp ¿ Ωc.

6.3. The refractive group index

Having obtained the susceptibility we can calculate the refractive group index, the quantity we
are really after. According to eq. (4.7) the group index is given by

ng = n′ + ωp
∂n′

∂ωp
,

2Provided that we have reached EIT, such that η > 0.
3The absorption coe�cient α is approximately equal to ωχ′′

2nbc
and normal exponential decay is usually written in

the form e−αx, with α > 0.
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where n′, the real part of the refractive index, is known from eq. (4.9a),

n′ =
1√
2

√√
(nb + χ′)2 + χ′′2 + n2

b + χ′.

From straightforward substitution and di�erentiation the explicit expression for the group index is
right in front of us. This is however a rather cumbersome a�air and the actual calculation has been
carried out in Mathematica. The detuning of both �elds has been set to zero, thus obtaining a
slightly simpler expression and maximum EIT e�ect, the result is

ng =


εb +

√
ε2
b + ε2

res

2




1
2

1 +

~ω21

2
√

ε2
b + ε2

res

U21(|Ωp|2 − γ̃2
13)

~2(γ̃13γ̃12 + |Ωp|2)2


 , (6.8)

where εb = n2
b, U21 = N |µ21|2η

ε0
, and εres = U21

~
�

γ12+
|Ωp|2
γ13

� . The background dielectric constant is

denoted εb, U21 is related to the oscillator strength of the probe and εres is a kind of resulting
dielectric function seen by the way it adds to εb [4].

6.4. Numerical examples

In order to get a better understanding of the results obtained, we want to illustrate these by sets
of realistic parameter values. By inspection of eq. (6.6), (6.7) and (6.8) we infer that the set of
parameters we need values for are: N , µ21, µ32, γ12, γ13, η, nb and Ωc. The detuning for the
coupling �eld, ∆c, will throughout this section be set to zero.

For the density of QDs we have chosen N = 3×1021 m−3, this leads to a center-to-center distance
for the QDs of 70 nm, assuming they are placed in a square lattice. This is a parameter that we as-
sume will be very controllable in the future, as growth techniques develop.

The values of the transition matrix elements have been calculated in chapter 3 for a variety of
di�erent dot sizes. For these calculations we have used the reference QD introduced in section 3.3.
The calculated values are: µ21 = 1.07 × 10−28 Cm = 0.67 e nm and µ32 = 4.69 × 10−28 Cm =
2.93 e nm.

For the decay rates of the o�-diagonal elements, we have found experimental data for dephasing
times in InAs and InGaAs QDs. We will use these as indicators for the order of magnitude of
our decay rates. These dephasing times have been measured at di�erent temperatures and from
[11, 12] we can compose table 6.1. The table indicates that the decay rate ranges from a few GHz
to around 3.5× 103 GHz, within the temperature range of 7 K to room temperature. The actual
decay rate used will be indicated in the calculation.

The population inversion between level 1 and 2, η, will be set to 1 as almost all carriers are
trapped in the ground state (EIT state). The background refractive index, nb, of GaAs has the
value 3.6. The Rabi frequency for the coupling �eld, Ωc, we will leave as an open parameter, as
this parameter is easily changeable.

To summarize, we have collected all the parameters used in the table 6.2.
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Figure 6.1.: Real and imaginary part of the susceptibility plotted against the probe detuning, for di�erent
sets of parameter values.
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Temperature [K] T2 [ps] γ = 1/T2 [GHz]
7 630 1.59
25 170 5.88
50 37 27.0
75 11 90.9
100 6 161
300 0.29 3448.0

Table 6.1.: Dephasing times [11, 12].

Quantity Symbol Value Unit
Density of QDs N 3× 1021 m−3

Transition matrix element µ21 1.07× 10−28 Cm
Transition matrix element µ32 4.69× 10−28 Cm
O�-diagonal decay rate γ12/13 variable Hz
Population di�erence η 1 -
Background refractive index nb 3.6 -
Rabi frequency for coupling �eld Ωc variable Hz

Table 6.2.: Parameters used in the calculations.

In �gure 6.1 we have illustrated the complex susceptibility eq. (6.6) and (6.7), for a few sets of
parameter values. In section 4.2 it has been shown that under normal conditions the dispersion,
n′, is approximately proportional to χ′ and the absorption, n′′, is approximately proportional to
χ′′. We will adopt this and will often speak of the dispersion and absorption, rather than the
more correct χ′ and χ′′.

Figure 6.1(a) shows a typical EIT situation. A spectral window opens in the absorption spectrum
along with a high slope in the dispersion. The high slope is associated with a high group index.
The point of zero detuning is at the moment the only one of interest to us, as our CW �elds only
have frequency components at this frequency. This example is for decay rates in the lower end of
the range given by table 6.1. The Rabi frequency of the coupling �eld has been set to 50 GHz,
which means that |Ωc| À γ12, γ13.

In �gure 6.1(b) we have raised the decay rates by a factor of 10. We see the same qualitative
shape of the dispersion and absorption as in �gure 6.1(a) except that the peaks are now of lesser
peak value and wider. Notice that the ordinate axis has shifted down by a factor of 10. Actually,
at zero detuning the slope of χ′ is almost the same as for the prior �gure, however the absorption
has gone up by a signi�cant amount.

More dramatic is the situation depicted in �gure 6.1(c), where γ12, γ13 À |Ωc|. Here we see a
radical departure from the EIT situation described in the previous plots. Instead of a window at
∆p
|Ωc| = 0 we now see a peak in the absorption and we have lost the transparency characteristic of
the former examples. The material seems to have gone to a normal absorbing state. This happens
as we increase γ12 and γ13 beyond the value of |Ωc|. The width of the peaks increase as the decay
rates increase and we understand why the decay rates are commonly known as linewidths, due to
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Figure 6.2.: This �gure indicates ∆χ′ and ∆χ′′ given by eqs. (6.10) and (6.9) respectively.

this e�ect.

As one might have noticed, the peaks in the absorption spectrum of the EIT states shown in
�gure 6.1(a) and 6.1(b) occur at a detuning around ±|Ωc|. This is no coincidence and in fact
these peaks are signatures of the level splitting of the second level in our QD system, due to the
coupling laser. This splitting is discussed in further details in chapter 2. In appendix A.1 the
width of this EIT window have been calculated under the assumption that γ13 ¿ |Ωc|, γ12. The
result of this approximation yields

∆χ′′

|Ωc| = 2. (6.9)

The width of the inner window in the dispersion has also been found
∆χ′

|Ωc| =
√

γ12

|Ωc| + 4− γ12

|Ωc| . (6.10)

We see that the peaks do occur at ±|Ωc|. The assumption that γ13 ¿ |Ωc|, γ12 will be discussed in
the dynamic analysis performed in chapter 7, for reasons that will be apparent shortly.

We now turn to the main subject of this chapter; how much can we expect to slow down our
CW probe �eld, ie. alter its refractive group index. The general expression for the group index
was derived in section 4.2. In section 6.3 we presented an explicit expression for ng for the case
of zero detuning for both �elds, as the e�ect of EIT is largest for this setting. The variable
will now be |Ωc| or actually the �eld strength, Ec of the coupling �eld. This parameter will be
easily controllable from the outside of a given future optical device, so naturally it is important
and interesting to know the e�ect of this on ng. As seen in from �gure 6.1 even at ∆p = 0 the
absorption does not drop to zero, except for the ideal case of γ13 = 0. This non-zero absorption
is a trade-o� in using EIT to obtain slow light. This will be much more apparent in the dynamic
analysis. To illustrate the absorption associated with slow-light, ng and χ′′ are presented in the
same �gures for easy comparison.

In �gure 6.3(a) we have plotted the situation where γ = γ12 = γ13 and γ has then been varied
in each of the four series. For the red series we notice a group index of almost 106, but also a
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Figure 6.3.: The refractive group index, eq. (6.8), and absorption, eq. (6.7), of the probe �eld for di�erent
decay rates, plotted against the Rabi frequency of the coupling �eld. The dashed line is the absorption, χ′′,
and the solid line is the refractive group index.

35



Numerical examples 6. Steady State Analysis

correspondingly high absorption. As we increase the decay rates through the blue, green, and
black series, we see that the maximum slow down decreases. For higher |Ωc| yet, ng join with the
curves from the previous series. However, the absorption curves do not join, as the ng curves did.
They remain large for a high decay rate even though the corresponding group indexes are the
same. For very high |Ωc| the group index for all series tends to the background group index, nb,
at a value of 3.6. This happens as the |2〉 level gets more and more split, the slope in χ′ will tend
to zero and ng tends to the background value. The series for the group index are not plotted for
the entire |Ωc| range as one might have noticed. This cut-o� is due to the fact that just left of the
peak in the group index, its value decreases very rapidly and eventually becomes smaller than 1
and it even passes through zero. This is caused by limitations in the group index de�nition, as
discussed in section 4.2.

Figure 6.3(b) illustrates the case where γ12 has been �xed to 1 GHz and γ13 is varied. Comparing
this �gure to �gure 6.3(a) we see both quantitative and qualitative likeness, same trends in ng

and χ′′ for high coupling �eld. This indicates that the signi�cance of γ13 is larger than that of
γ12. In �gure 6.3(c) we have the situation of γ13 being held �xed at 1 GHz, while γ12 is varied.
Here we see something really interesting, the peaks in the series for ng have all moved toward
the same value of |Ωc|, where it is equal to the �xed value of γ13. The curves for ng join up at
much lower values of |Ωc| than in the former �gures. The absorption curves also tend toward the
same curve, namely that characteristic of γ13 = 1 GHz. The independence of γ12 is clear at a
Rabi frequency of around 100 GHz corresponding to a group index of almost 2500, which is still
a fairly high slow down.

An important conclusion that can be drawn from the analysis above is well illustrated in the
sub�gures of �gure 6.3. Namely that the refractive group index and absorption experienced by
a CW (or very broad pulse) �eld mainly depend on the decay rate γ13. This is rather surprising
since the |1〉 ↔ |3〉 is not a dipole-allowed transition and one could expect the signi�cance of γ12

to be more pronounced, since this is the transition the probe couples to. One can also conclude
that in order to see the e�ect of EIT, the Rabi frequency of the coupling must larger than both
γ12 and γ13. Physically this means that the level splitting |2〉 must be larger than the linewidth
of the two dressed states.
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7. Dynamic Analysis

Now that we have gained some insight of how the system behaves in the steady state solution
for various parameters, we want to go one step further. We solve the dynamic case where we
include the coupling between the Bloch and Maxwell equations and allow the probe �eld to
have an arbitrary pulse shape. The coupling �eld we still consider to be a high intensity CW
wave.

The coupling between the two di�erent sets of equations arises from the fact that both electric
�elds induce dipole oscillations in the QD material. These dipoles give rise to a polarization which
is the source term in the wave equation. The mathematical description is a system of coupled
non-linear PDEs consisting of the Bloch equations (5.11) and the wave equation (4.1), which can
only be solved numerically.

Solving this system of coupled PDEs both in time and space (1D), we are able to verify whether
the steady state solution gives correct predictions when applied to more realistic situations. For
example when a pulse train of pulses is sent through the material, we are able to see if the pulses
change shape or are completely destroyed by dipole oscillations.

7.1. The slowly varying envelope approximation

To describe the full dynamics of the system we need to return to the general description of the
electric �eld described by an envelope and a phase, eq. (5.7). The coupling �eld is taken to be a
high intensity CW �eld, compared to the probe, which have been on for all times. This ensures
that the coupling �eld and the material have reached a state in which EIT is possible. Being
much stronger than the probe, we can neglect any changes in the coupling �eld and remove the
dependence of x and t from Ec and φc. The total �eld is now given by

E(x, t) = Ep(x, t) cos(kpx− ωpt + φp(x, t)) + Ec cos(kcx− ωct). (7.1)

The �eld is polarized in the y-direction and travel along the x-axis. For mathematical convince
we take all unknown functions to implicitly be de�ned as f ≡ f(x, t); remembering that Ec is not
a function.

This is the most intuitive way to think of a time dependent electric �eld, as we have separated
the underlying oscillations and the envelope. It allows for a general description, as Ep and φp

are dependent functions. Going through the calculation in this section with this representa-
tion we will end up with two PDEs, one for Ep and φp. The equation for φp turns out to be
highly singular and non-linear. It e�ectively transforms the system into a di�erential-algebraic
system, which is di�cult to solve numerically. None of our implementations could handle this
system.
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Alternatively, we can rewrite the probe �eld in the notation of eq. (5.8), in terms of a complex en-
velope: Ẽp = E′

p+iE′′
p = Ep cosφp+iEp sinφp. The total �eld now reads

E =
1
2
Ẽpe

i(kpx−ωpt) +
1
2
Ẽ∗

pe−i(kpx−ωpt) + Ec cos(kcx− ωct)

= E′
p cos(kpx− ωpt)− E′′

p sin(kpx− ωpt) + Ec cos(kcx− ωct). (7.2)

To go back to the representation of (7.1), we can utilize the usual relations for complex num-
bers,

Ep = |Ẽp| =
√

E′2
p + E′′2

p , φp = arctan
(

E′′
p

E′
p

)
.

Similarly we can write the polarization in complex envelope notation P = 1
2(U + iV )ei(kx−ωt) + c.c..

This can be rewritten to sine and cosine as P = U cos(ky − ωt)− V sin(ky − ωt), which comes in
handy when we have to compare to the quantum model. The two �elds drive the dipoles, so we
expect that these will oscillate near the carrier frequencies of the �elds. If we write a contribution
to the polarization of frequency ωp and ωc, we can expect to get four slowly varying envelopes.
The coupling �eld is assumed to have reached steady state and the corresponding dipoles will
oscillate in resonance, out of phase with the �eld, and we can assume Uc and Vc to be constant1.
The total polarization then becomes,

P = Up cos(kpx− ωpt)− Vp sin(kpx− ωpt) + Uc cos(kcy − ωct)− Vc sin(kcy − ωct). (7.3)

Using the envelope notation we have encapsulated the fast underlying oscillations in the sine and
cosine, and the envelopes will be slowly varying. This is a tremendous advantage in the numerical
solution process as we can solve for the envelopes when applying the slowly varying envelope
approximation (SVEA). To arrive at the approximate equations we insert (7.3) and (7.2) into the
wave equation, (4.1),

∂2

∂x2
E − n2

b

c2

∂2

∂t2
E = µ0

∂2

∂t2
P.

Using that sine and cosine are linear independent we get two complicated non-linear PDEs. These
turn into simple form under the SVEA. In this it is assumed that all space and time derivatives of
the envelopes are slow compared to the underlying oscillations. This is a good approximation as
long as the envelope pulse width does not narrow down to femtoseconds. In mathematical terms
this imply that ∂F/∂t ¿ ωF, ∂F/∂x ¿ kF, ∂2F/∂t2 ¿ ω∂F/∂t, ∂2F/∂x2 ¿ k∂F/∂x, where F
represent the four envelope functions [13]. In practice we end up removing all non-linear and 2.
order terms and thereafter applying the SVEA a few times. See appendix A.7 for calculations.
The result is two simple wave equations of �rst order,

∂E′
p

∂x
+

nb

c

∂E′
p

∂t
= −µ0ωpc

2nb
Vp, (7.4a)

∂E′′
p

∂x
+

nb

c

∂E′′
p

∂t
=

µ0ωpc

2nb
Up. (7.4b)

1This is not truly correct as σ23, which drives the polarization for the |2〉 ↔ |3〉 transition is not zero. But in the
limit of a strong �eld it is very small and can be neglected.
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To �nd Up and Vp we use the same procedure as for χ̃ in section 6.2. Inserting the full transfor-
mation of the o�-diagonal elements, (5.10), into the polarization, (6.2), and rewriting to sine and
cosine we get the following polarization experienced by the probe

Pp = N 〈dp〉 = −N ([σ12µ21 + σ21µ12] cos(kpx− ωpt)− i[σ12µ21 − σ21µ12] sin(kpx− ωpt)) .

We can immediately read o� the expressions for Up and Vp,

Vp = −iN(σ12µ21 − σ21µ12) = 2µ21N Im[σ12], (7.5a)
Up = −N(σ12µ21 + σ21µ12) = −2µ21NRe[σ12]. (7.5b)

Above it has been used that µ12 and µ21 are complex conjugates and real.

The total coupled system now consist of eight PDEs. Two wave equations and the Bloch equations,
all in all eight unknowns, ρ11, ρ22, ρ33, σ12, σ23, σ13, E′

p and E′′
p . The envelope functions couples

to the Bloch equations through Ωp and Ωc which are given by

Ωp ≡
µ12Ẽ

∗
p

2~
, Ωc ≡ µ23Ẽ

∗
c

2~
.

The system is non-linear now that Ωp and Ωc are dependent functions. This makes the system
unsolvable analytically and quite a task to do numerically.

7.2. Numerical implementation

To simplify the description in the numerical analysis, the total system can be written in the
form

∂u
∂t

= ∇Γ(x, t,u) + F(x, t,u),

where u is the solution vector containing all the unknowns. Writing it in this form makes it easy
to point out strategies to solve the problem. We need a method to calculate the space derivatives
of Γ and a method for forward time stepping. For the spatial part methods like �nite di�erence
(FD), �nite element (FEM) or spectral methods (SM) are suitable. One could also discretize the
whole time domain and use any of these methods, but we loose the ability to take variable step size
and thus control the error. When making a space discretization of N points, we get 8 unknown
for each space point and u would contain 8N elements, and looks like

u = [E′
p,1, . . . , E

′
p,N, E′′

p,1, . . . , E
′′
p,N, ρ11,1, . . . , ρ11,N,

ρ22,1, . . . , ρ22,N, ρ33,1, . . . , ρ33,N, σ12,1, . . . , σ12,N, σ13,1, . . . , σ13,N, σ23,1, . . . , σ23,N]T .

T denotes the vector transposed. Γ has only nonzero terms for the elements concerning E′
p and

E′′
p , as only these have spatial derivatives. Hence it is given by

Γ = [E′
p,1, . . . , E

′
p,N, E′′

p,1, . . . , E
′′
p,N, . . . , 0, . . .]T .

In the actual implementation ∇Γ will be calculated separately.

F(x, t,u) is a vector function containing the right hand side of both the Bloch and wave equa-
tions.
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Figure 7.1.: A sketch of the solution domain, and some parameters

Figure 7.1 shows a simpli�ed sketch of our solution domain including a solution for E′
p. We

label the discrete points, xj , the corresponding approximate solution, uj , and the approximate
derivatives, wj . To simplify the notation, we have divided the solution domain into three di�erent
regions; Region I, before the material, region II, the material itself, and region III after the
material. Each region has the length shown on the �gure. The sketch represents the �nal setup
with the 2π periodicity included.

The goal of the implementation is to simulate one or more pulses as they propagate through the
domain, being initiated in region I. No matter what method we choose, a smooth pulse shape
can only be described accurately by a minimum number of space points. This is limited by
the minimum width of the pulse in region II. For spectral methods this is around 3-5 and for
FEM and FD 10-20. These considerations are important as our pulses get squeezed under slow
down.

Moreover, the transition into region II requires a lot of points to describe, as the QD density
changes very rapidly and so does the envelope. These e�ects imply that to get an accurate
solution we need a large number of space points. A simulation of this is shown in �gure 7.2, where
we see a pulse while it propagates at di�erent times. Notice the periodic boundary condition
which we will comment on later.

The initial pulses are implemented through a initial condition, E′
p(x, 0) = g(x). The active

material is modelled by making the QD density parameter, N(x), into a square function in x.
The initial condition for the electron population is that the ground state is fully occupied. As
there are no QDs outside region II, this is given by the same square function dependence as N(x).
All other unknowns are initiated to 0.

7.2.1. The breakdown of FEMLAB

Initially we tried to implement the equations in Femlab v3.1, due to the great success in solving
the envelope equation for the QD (see section 3.3). Femlab is a multipurpose program designed
to solve coupled systems of PDEs, through di�erent implementations of the FEM method in
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Figure 7.2.: Di�erent states of a pulse while it propagates through region II, with a refractive group index of
60. Notice the e�ect of the periodic boundary conditions and that it has been broadened due to dispersion.

space and implicit time stepping methods. It sounded like an ideal solution for implementing the
problem, but turned out to prove some di�culty. In the end we actually gave up in using Femlab
to implement the whole dynamic system and instead decided to write our own solver based on
spectral methods.

Femlab has a large collection of build in di�erential equations, but none of which suited us. All
implementation in Femlab has been carried out using the general mode in which any PDE can
be expressed in the form;

M
∂u
∂t

+∇Γ = F,

which fully matched our needs. M is a mass matrix which is allowed to be singular and u is
the solution vector. Γ and F are arbitrary vector expressions which can contain the solutions
themselves and their time and space derivatives. The boundary condition and initial values
are expressed in a similar manner. We will not go into the theory of FEM, just mention that
the solution is found by discretizing the space domain in a number of points. The solution at
each point is then approximated by a local polynomial of low order (typical 2-4) from which
its derivatives is found. We will comment on the di�erences to spectral methods in the next
section.

We started out by only implementing the dynamic Bloch equations for CW �elds, hence leaving
out the explicit space dependence. This we had easily solved earlier by the build in Matlab
function ode45 for time stepping2. Femlab proved to do it just as easily and found the same
solution at each point.

Implementing the envelope wave equation, leaving out the φp equation3, the time stepping would
not converge and the solution exploded in a matter of a few time steps. This got worse with increas-
ing number of discrete space points, which is characteristic for unstable solutions.

The desired behavior is to get better accuracy by increasing the number of space points, N, so
that the error goes like some polynomial order O(N−p), for a �xed p > 0. This is what normally
2An implicit forth order Runge Kutta method.
3Which turned out to be the di�cult one to solve, as at that time we used the slowly varying envelope approxi-
mated version of eq. (7.1)
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Figure 7.3.: A Femlab solution supposed to be a pulse starting at x = 15 travelling towards a material
beginning at x = 20. The �gure shows that instead of travelling the pulse becomes unstable. To get a
solution we have made the number of space discretization N small (64).

happens. If the solution is unstable, small di�erences from the exact solution blow up and the
accuracy is destroyed. None of our solutions managed to remain stable. Due to the low order
polynomials we need a lot of points to describe a pulse. In �gure 7.3 we see a Femlab solution
at an early state of becoming unstable.

We managed, however, to solve a simple wave equation including a small damping term. Hence
the other equations, combined with the large source term, seemed to have a great impact on the
solution. This happened even though they should not be signi�cant when the wave was outside
the material.

7.3. Spectral methods

When Femlab failed to solve our PDE system we decided to do our own implementation. For
the space discretization we used a spectral method and the ode45 function in Matlab for time
stepping. The main source of this implementation has been taken from [14], which has a good in-
troduction to the subject. Our implementation is a rewritten example from [14], that includes our
equations and use time-stepping function ode45 for better accuracy. A more extended description
of spectral methods is given in [15].

Spectral methods are in general methods which interpolate the solution by a global interpolant
and calculates the derivatives from this approximate function4. Remark the di�erence to FEM,
which uses local interpolants. In most aspects the spectral methods are superior to FEM, at the
cost of �exibility. One of the advantages of spectral methods is that they take the approach of
FEM and FD to the limit.

When calculating the derivative at a point xj , instead of only including a set of neighboring
points, all the points in the discretization are included. This gives much better accuracy, better
4That said, there exist spectral method not based on interpolation but on integration instead, so called non-
interpolation spectral methods.

42



7. Dynamic Analysis Spectral methods

stability, and the need for fewer points. For solutions which have in�nitely many continuously
derivatives the error of the di�erentiation is characterized by the so called spectral or exponential
order. This means that the error goes like O(N−p) for all p's. Where p increases for increasing N,
which is a remarkable feature [14].

The interpolation function is most often a �nite Fourier series or Chebyshev polynomials. As we
are looking for wavelike solutions the Fourier basis is the obvious choice. Choosing the Chebyshev
basis would force us to distribute the space points along the edge of the solution domain, which
is a complete waste in our case as all details are located in the center.

The basic idea when approximating the derivative is to exploit that the derivative in real space
can be found by multiplying by ik in Fourier space5. The strategy is to use the discrete Fourier
transform (DFT) to transform discrete points in real space, multiply by ik, and use the inverse
DFT to �nd the derivatives at each point, wj .

uj
DFT−−−−→ uk

ik−−−−→ wk
IDFT−−−−→ wj

In the actual implementation we have used the fast Fourier transform (FFT) instead of DFT as
it is faster.

Using this method we are forced to use periodic boundary condition as the �nite Fourier series
is 2π periodic. This is implicitly enforced by the solver, which is clearly seen in �gure 7.2 and
imposes some limitations of what can be simulated. It becomes a trade-o� between how long time
we want to simulate and how small structures we want to see.

A basic �owchart of the �nal implementation can be seen in �gure 7.4. The dashed boxes represent
the two key functions involved. The outer box is the ode45 function which control the whole
process and essentially does the time stepping. The inner box, is the right hand side of eq. (7.2)
and gets called one or more times in each time step. It is responsible for calculation the time
derivative at each time and contain the spectral method implementation.

5Whether you multiply by ik or −ik depends on your de�nition of the Fourier transform. Multiplying by ik is
the correct one when using the Matlab fft function.
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End

Initial condition
ul(0, xl) = f(xl)

tn = 0

Save data u(tn,x), tn

tn = tmax
Yes

No

Calculate spatial derivatives
using the spectral method

wl = (∇Γ(tn,x))l

Calculate time derivatives
u̇l = wl + Fl(tn, xl,u(tn,x))

Calculate next time step
using Runge Kutta

tn+1 = tn + ∆tn

ul(tn, xl) → ul(tn+1, xl)

n + 1 → n

ode45 function

Intermediate
steps

Figure 7.4.: Flowchart for the simulation program. u(tn,x) is the solution vector at the time step tn and
subscript l denotes the lth element belonging to the lth discretization point. The dot represent the exact
time derivative at the time tn and wl is the spatial derivative of u(tn,x) at each point .
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7.4. Veri�cation of the implementation

In order to have con�dence in our implementation we need to verify that it behaves correctly.
This can be tested under simple conditions under which we can predict the behavior, and make
sure that the solution converges when we increase N. An obvious test would be for long pulses,
which can be compared to the solutions in chapter 6. For zero amplitude coupling �eld we would
expect nothing to happen except for a high absorption.

7.4.1. Veri�cation of convergence

To verify the convergence we can solve a simple system where an exact solution is known and
compare the two for di�erent N. The time stepping algorithm will of course have an in�uence
too. However, in our case this is not signi�cant as long as the solution converges. This is because
the ode45 solver can take variable time steps and hence keep the error within a chosen tolerance.
If this tolerance is set to a small value like 10−13, we will expect the solution to behave well down
to this tolerance, if not corrupted by instabilities and rounding errors.

The simplest case we can solve analytically is a running envelope in the bulk material, ensuring
that it does not cross the periodic boundary. In �gure 7.5 the 2-norm of the error for such a
calculation is shown in a double-logarithmic plot. The spectral order is clearly noticeable as the
error decreases much faster than a straight line, almost down to the tolerance of the ode45 solver,
at N = 128. This corresponds to 4 points for an entire pulse. For higher N yet, rounding errors
come in to play. But what seems like a increase in the error, is mostly a more smooth distribution
of the error. To represent the squeezed pulses in region II we will most often use between 512 and
1024 points.

7.4.2. Zero coupling �eld veri�cation

The next step is to verify whether the solution behaves correctly for zero coupling �eld. In the
absence of a coupling �eld the pulse will experience a damping like the one shown in �gure 6.1(c).
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Figure 7.5.: The 2-norm of the error for a small pulse which propagates in the bulk material, calculated at
t = 50 ps.
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The splitting of the |2〉 state will not occur and the system will e�ectively behave as a two-level
system. This means that the carrier population of the second level will start to change as the
probe �eld now couples the two levels. We expect to see a high damping and not observe slow
down di�erent from the background refractive group index. To be able to see any e�ect we have
set the QD density to 3× 1020 m−3, which is a order of magnitude lower than other plots in this
chapter. Otherwise we will just observe complete damping in a very short distance. All pulses
have a temporal width, Wt = 15 ps.

Solutions of the envelope and carrier population in the ground state are shown in �gure 7.6 and
7.7. In �gure 7.6(a) we see the expected behavior as the envelope gets damped and experience no
slow down. From �gure 7.6(b) we see that all the carriers no longer remain in the ground state,
but are exited to the |2〉 state. This is calculated for γ12 = 3000 GHz which corresponds to room
temperature, table 6.1.

(a) The envelope function. (b) The population of the ground state.

Figure 7.6.: Veri�cation of the model for Ωc = 0 and for γ12 = 3000 GHz. The solution corresponds to a
two-level system with high absorption and no slow down.

Lowering the dephasing to γ12 = 3 GHz, so that γ−1
12 ¿ Wt, we should experience self induced

transparency, which is seen in �gure 7.7. This is another quantum phenomena which occurs in a
two-level system. In it, a short pulse6 will pass through a normally absorbing medium, like it was
transparent and had a high group refractive index. After some damping it will reach a steady
state and will keep its shape all along the propagation line. This shape can only correspond to
certain areas under the envelope. If we start the pulse with a too small amplitude it will die away
[13, sec. 15.4]. We can not expect the shape to fully remain constant as all the approximations
are not completely met.

7.4.3. Steady state veri�cation

Our last method to verify the implementation is to compare it with the Bloch equations, eq. (5.11),
solved for a space independent CW coupling and probe �eld, not coupled to the wave equation.
The probe �eld is turned on smoothly in time to simulate a very broad pulse approaching region
II. Our new implementation should give the same results for the o�-diagonal elements near the
6Compared to both the dephasing time and relaxing time of the carriers
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(a) The envelope function. (b) The population of the ground state.

Figure 7.7.: Veri�cation of the model for Ωc = 0 and γ12 = 3 GHz, a situation in which self induces
transparency is seen. The pulse continues to propagate even though it should experience a high damping.

edge of the material for very broad pulses (approximate CW �elds), like the one in �gure 7.8(c).
The two comparable solutions are shown in �gure 7.8(a) and 7.8(b).

Having turned on the �eld smoothly we quickly obtain a steady state as compared to a more
steep turn on which would cause a longer transient [6, p. 229]. To reach steady state we used
a solution domain of 20 mm. The plots are not completely equal as one represents a pulse at
a certain x value and the other represents a transient beginning of a CW �eld in a ultra thin
material.

The peak value on both graphs only di�ers by 2.1×10−6 or an error of 0.5%, at the same t value.
The steady state plateau di�ers by 1.4 × 10−6 which corresponds to and an error of 2.8%. The
two solutions match each other well.

It should now be justi�ed that the model behaves correctly and reproduces the desired solutions
under the simple conditions which we can test. This indicates that the model and implementation
can be trusted to produce the correct result with good accuracy.
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(a) Im [σ12] plotted for the uncoupled solution for CW
�elds

(b) The coupled solution of Im [σ12] plotted at a cross
section near the edge of the material.
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(c) The pulse used to verify the steady state solution

Figure 7.8.: Veri�cation of the implementation in the limit of a very broad pulse. The above calculations
have been performed with Ωc = 400 GHz, γ12 = 40 GHz and γ13 = 4.55 GHz.

7.5. Single pulse analysis

In the following section we will analyze the dynamic behavior of a single pulse, using the model
developed in the previous sections. The model is based on the assumption that the complex
envelope is slowly varying and for this function we can solve numerically. The complex envelope
is however not as intuitive as the regular envelope. Hence the solutions presented in this section
will be of the envelopes and not the complex ones. We will often refer to the envelope as the
probe pulse, even though this is not strictly correct. The phase, φp, will generally not be given
much attention as for zero detuning, ∆p = ∆c = 0, its value does not change (continuously), see
appendix A.8. Under certain conditions the phase changes discontinuously, this rather peculiar
phenomena is discussed in section 7.5.2.

The pulses we simulate will be Gaussians. The numerical implementation requires us to state an
initial condition for the complex envelope, Ẽp(x, t = 0). For all simulations in this chapter the
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7. Dynamic Analysis Single pulse analysis

initial condition will have the standard form:

E
′
p(x, t = 0) = Ep exp

[
−2 ln 2

(
x− x0

Wx

)2
]

, E
′′
p (x, t = 0) = 0, (7.6)

where Ep is a �eld strength, x0 is center of the envelope, and �nally Wx is the FWHM7. For a
Gaussian we can obtain the constant characterizing the product between the real space width and
the Fourier space width. This has been done in appendix A.4 and the result is,

WxWk = WtWω = 4 ln 2. (7.7)

Along with the background dispersion relation, c
nb

= Wω
Wk

= Wx
Wt

, this gives the important relation
connecting the width in real space and in frequency space:

WxWω =
4 ln 2c

nb
. (7.8)

This relation will be useful in interpreting some of the results in this chapter, even though it is
not valid in general.

As mentioned in section 7.1, the full set of equations governing the pulse consists of eight coupled
di�erential equations. In analyzing the solution of a given parameter set, one ought to look at the
solutions for all eight dependent variables. We will however focus on a few of these. The �rst is
of course the envelope itself, Ep. Secondly the o�-diagonal element σ12, as this serves as a direct
source term in the wave equation, see eqs. (7.4) and (7.5).

7.5.1. Wide pulses

We will start our analysis by considering spatially wide pulses, and correspondingly narrow fre-
quency wise, through eq. (7.8). These resemble the CW �elds considered in chapter 6 the most.
By wide we mean that Wx should be large enough, so that Wω will �t well inside the EIT window.
In the limit were Wx →∞ the spectral width will tend to zero, Wω → 0, and we are back to the
case studied in chapter 6.

In the steady state analysis we had the luxury that quite a few parameters lost their signi�cance
under the assumption that Ωc À Ωp (appendix A.2). For all calculations from this point we will
adopt the following: |Ωc|

|Ωp| = 230 ⇒ Ep ≈ 1
51Ec. We need to assign values to the decay rates γ22,

γ33, and γ23. These were the ones who dropped out in the steady state analysis. The diagonal
rates will be set so that: γ22 = γ33 = 2 × 109 Hz. This is lower than the o�-diagonal rates, due
to the fact that the o�-diagonal elements experience dephasing and the diagonal elements do not.
For the time being the o�-diagonal decay rates will be set to: γ12 = γ13 = γ23 = 5 × 1011 Hz.
These values are reasonable according to table 6.1.

The frequencies of the probe and coupling �eld are set to achieve maximum e�ect of EIT, ∆p =
∆c = 0, hence ωp = ω21 and ωc = ω32. These will of course change depending on the QD used.
We will use frequencies corresponding to our reference QD, �gure 3.4: ωp = 9.647× 1014 Hz and
ωc = 2.203 × 1014 Hz. The corresponding transition matrix elements are thus the same as used
in the steady state analysis: µ21 = 1.07× 10−28 Cm = 0.67 e nm and µ32 = 4.69× 10−28 Cm =
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(a) The pulse is getting rapidly damped due to the
high γ13. Parameters: γ13 = 5 × 1011 Hz and
Ωc = 450 GHz.

(b) The pulse is allowed to pass through region II due
to low γ13. Parameters: γ13 = 5× 106 Hz and Ωc =
450 GHz.

Figure 7.9.: Two �gures illustration the e�ect of γ13 on the absorption of a pulse. The width of the active
area is: LII = 300 µm.

2.93 e nm. The density of QDs, N , has been set to 3× 1021 m−3 and the background refractive
index, nb, is 3.6.

For the following simulations a value of Ωc = 450 GHz is used. This value does not yield the
highest achievable value of ng, see �gure 6.3. It is necessary to limit the slow down, as the pulse
width is roughly inversely proportional to ng. Hence, a group index of 105 would compress a
2.39 mm pulse to 23.9 nm! In order to describe an envelope, the spectral method needs 3 to 5
discrete points over the envelope. Our calculation domain is 10 mm, so in order to describe the
23.9 nm envelope, we would need approximately 10 mm

23.9 nm × 4 ≈ 106 points in our domain. This
is beyond our computer capacity and the theory cannot describe pulses which vary appreciably
over the size of a QD either. All in all we are forced to go for lower slow down, but in turn we
get nicer illustrations.

In �gure 7.9(a) a simulation is shown for a pulse of Wx = 2.39 mm, Ωc = 450 GHz and the
rest of the parameters are as mentioned above. It shows how the pulse is damped very rapidly
and nothing gets through region II, even though its width is only LII = 300 µm. This result
indicates that for the current parameter set, the absorption in region II is very high. As far
as applications go, it is a serious problem that one cannot send signals through the slow down
device.

From �gure 6.3 one could suspect that it might be the high value of γ13 that causes the high
absorption of the probe. In �gure 7.9(b) we have solved for the same parameters except that we
have lowered γ13 by a factor of 105 so that γ13 = 5 × 106 Hz. Here the situation is completely
di�erent, the pulse is nicely slowed down in region II and comes out much less damped than for the
high value of γ13. One could speculate that in order to reduce the absorption, the density of QDs
could simply be reduced. This does indeed lower the absorption, but unfortunately it also lowers
the group index and you loose your ability to slow down the probe pulse.
7Full Width at Half Maximum, de�ned by: |f(Wx/2)|2 = 1

2
|f(xmax)|2.
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Quantity Symbol Value Unit
Density of QDs N 3× 1021 m−3

Transition matrix element µ12 1.07× 10−28 Cm
Transition matrix element µ23 4.69× 10−28 Cm
Diagonal decay rates γ22, γ33 2 GHz
O�-diagonal decay rates γ12, γ23 50 GHz
O�-diagonal decay rate γ13 5 MHz
Probe �eld frequency ωp 9.647× 1014 Hz
Coupling �eld frequency ωc 2.203× 1014 Hz
Detuning ∆p, ∆c 0 Hz
Rabi frequency coupling �eld Ωc 450 GHz
Rabi frequency probe �eld Ωp 1.96 GHz
Background refractive index nb 3.6 -
Length of region II LII 300 µm

Table 7.1.: Parameters used in the dynamic simulation. These are to be considered as default values, if
anything else is used it will be indicated.

As a consequence of this discouraging result, we are forced to adopt a value of γ13 that is un-
naturally low for a semiconductor QD8, to be able to show some results. From this point on all
calculations will be performed with γ13 = 5× 106 Hz. We will also lower the default value of the
two o�-diagonal elements by a factor of 10. Fortunately γ13 is mainly responsible for the absorp-
tion, so lowering this will hopefully not a�ect the solution much beside decreasing the absorption.
γ12 is the decay rate for the dipole σ12, which is the source of the wave equation. This means
that we can still analyze a lot of interesting scenarios even γ13 has been set very low. The default
parameters used in all simulations to follow are summarized in table 7.1.

As mentioned in the beginning of this section the limiting case of a very wide pulse corresponds
to a CW pulse. This means that we can expect some agreement with the analysis performed in
chapter 6. We have numerically calculated the group index for a range of wide pulses and the
values obtained are in very good agreement with those from eq. (6.8). As long as the pulses are
su�ciently wide.

We will now investigate when we can talk about a pulse being wide, in the sense that it basically
behaves as a CW pulse. CW pulses have essentially zero width in frequency space, but as we
decrease the pulse spatially we increase its spectral width according to eq. (7.8). For these wide
pulses the spectral width is unchanged upon entering the active material. Depending on the
parameters the value of χ′′ and the slope of χ′, can be the same for a range of frequencies.
As long as the spectral width is contained within this range, it will behave as a CW pulse
and we can expect the analytical results from the steady state analysis to be valid. Whether
this can be ful�lled in the region II, is mainly determined by Ωc, γ12, and γ13 as discussed in
section 6.4.

8Other atomic three-level systems exits where γ13 indeed is very low, eg. the Bose-Einstein condensates used by
Lene Hau et al. [3].
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7.5.2. Narrow pulses

Having examined wide pulses, we want go to the regime of spatially narrow pulses which in turn
are wide spectrally. We will look at pulses that possess a spectral width larger than the EIT
window of 2|Ωc|. This means that we are far away from the CW case and qualitative as well as
quantitative di�erences can be expected.

(a) Solution of the envelope for a narrow pulse of
Wx = 0.22 mm and spectral width Wω = 1042 GHz.
Other parameters: γ12 = 10 GHz and Ωc =
450 GHz.

≈ 2|Ωc|

(b) Corresponding solution of Im [σ12].

(c) Corresponding solution of φp.
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(d) Cross section of the solution in �gure 7.10(a) at
x = 1.23 mm, where the kinks in are Ep clear.

Figure 7.10.: Solutions for a narrow pulse with γ12 ¿ Ωc.

In �gure 7.10(a) we have solved for a Wx = 0.22 mm pulse with a spectral width of Wω =
1042 GHz, hence it has frequency components at ±Ωc. The decay rate γ12 has been set to 10 GHz.
The solution shows behavior much di�erent from that of the wide pulses. The pulse is slowed
down, but it seems like the envelope function has started oscillating. These oscillations are caused
by the source term in the wave equation, Im[σ12]. Re[σ12] never changes from its initial value
of zero, as both detunings are zero (see appendix A.8). The corresponding solution for Im[σ12]
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is shown in �gure 7.10(b), and indeed this oscillates with a frequency of approximately 2|Ωc|
(indicated by black arrow). We suspect these oscillating dipoles to be a response from the split
|2〉 state, now that the probe has frequency components directly at these two levels. The equation
of motion for σ12 is now driven by terms with frequencies ±|Ωc|. These are resonant with the two
split levels and the equation responds with large oscillations. These in turn a�ect the envelope
which also starts oscillating, but it lags a bit after Im[σ12] as does not have instantaneously e�ect.
The appearance of the frequency 2|Ωc| can be interpreted as a beat frequency, as it corresponds
to the di�erence between the two.

In the domain where 2|Ωc| ¿ Wω one do not observe the 2|Ωc|-frequency in connection with the
envelope itself. But rather in the oscillations of the dipoles after the pulse has passed a certain
x point. We can expect this from a pulse being spectrally much wider than the splitting. It will
only interact weakly with the two split levels, as it is only a very small number of all the frequency
components that actually see the two levels.

Oscillating envelopes are not an everyday sight and it could be interesting to see how the phase
behaves. The phase is shown in �gure 7.10(c). Focus should be on the data in the right side
of the �gure as the rest are numerical artifacts9. The solution shows that the phase changes
discontinuously between 0 and π. We can understand that this happens by noting that Im[σ12] is
the only source term in the equation for E

′
p. Hence if the value of Im[σ12] changes from a value

to another large value of opposite sign, E
′
p will change sign too. This means that E

′
p can pass

through zero and the envelope, Ep, will have to become zero too (Ep = |E′
p| as E

′′
p = 0 due to

zero detuning).

It seems strange that a nice physical quantity like the phase can be discontinuous. We can
understand this from the requirement that the entire �eld must di�erentiable. We can write the
entire probe �eld as

Eprobe = Ep cos(kpx− ωpt + φp),

di�erentiating this with respect to x and t yields

∂Eprobe

∂x
=

∂Ep

∂x
cos(kpx− ωpt + φp)−Ep sin(kpx− ωpt + φp)(kp +

∂φp

∂x
),

∂Eprobe

∂t
=

∂Ep

∂t
cos(kpx− ωpt + φp)−Ep sin(kpx− ωpt + φp)(−ωp +

∂φp

∂t
).

At the x and t points where the phase jumps, the envelope is zero. Using this to simplify we
get

∂Eprobe

∂x
=

∂Ep

∂x
cos(kpx− ωpt + φp),

∂Eprobe

∂t
=

∂Ep

∂t
cos(kpx− ωpt + φp).

From this it is clear that if the phase suddenly changes by π, both of these will change sign. If they
are to remain continuous, the slope of Ep in x and t would have to change sign, corresponding
to a kink in Ep along a certain x or t direction. Figure 7.10(d) shows a cross section at x =
1.23 mm of the solution in �gure 7.10(a), where it is indicated that we actually do have these
kinks.
9The vertical lines are �uctuations around φp = 0 and the left side is due to the 2π-periodicity.
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(a) Solution of the envelope for a narrow pulse of
Wx = 0.22 mm and spectral width Wω = 1036 GHz.
Other parameters: γ12 = 10000 GHz and
Ωc = 450 GHz.

(b) Corresponding solution of Im [σ12].

(c) Corresponding solution of φp.

Figure 7.11.: Solutions for a narrow pulse with γ12 À Ωc.

Comparing to the wide pulse in �gure 7.9, this narrow pulse is poorly transmitted through region
II (the width LII is of course held �xed). This is due to its large spectral width extending beyond
the EIT window of 2|Ωc| and the hence the narrow pulse will experience absorption and dispersion.

We will now consider the same narrow pulse as above, but set γ12 = 10000 GHz so that γ12 À Ωc.
In the above example we had the opposite case, γ12 ¿ Ωc. The solutions are shown in �gure 7.11.
Figure 7.11(a) shows the envelope being damped as it passes through region II, however its group
index does not seem to be a�ected. The dipole Im [σ12], illustrated in �gure 7.11(b), does not
oscillate as for the low value of γ12. It does however become negative, but apparently not enough
to in�uence the envelope in a signi�cant way. This is also apparent from �gure 7.11(c) showing
that the phase stays at zero. As in �gure 7.10(c) you should disregard the data indicating a phase
of π as these are numerical artifacts.
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This behavior can be explained when interpreting γ12 as a linewidth, contributing to the width of
the two split |2〉 levels. As γ12 becomes much larger than the separation between them, ≈ 2|Ωc|,
the distinct two level nature will be washed out and they will e�ectively behave as a single wide
level. This explains why the QD material appears to has gone normal, much like the situation
depicted in �gure 6.1(c).

7.6. Two pulse analysis

In the last section we examined how single pulses behaved. Hence we are in a better position
to interpret and predict how several pulses will behave. The question of how several pulses
will interact in a slow-light device is of great practical interest. These might become important
components in future optical systems. Our analysis will however still su�er from the fact that γ13

has been set to an unrealistically low value.

From the previous section we can draw some important conclusions on how to obtain well behaving
pulses, ie. pulses not getting destroyed by dipole oscillations or damped too much. First of all,
in order for the split |2〉 levels to be distinct, the linewidth γ12 must be much smaller than the
splitting, 2|Ωc|, itself. We can state the requirement: γ12 ¿ 2|Ωc|. This is a property of the QDs
and hence not very easy to control. Secondly, we observed that if the pulse had a spectral width,
Wω, of the order or larger than the splitting, Im[σ12] began to oscillate and this destroyed the pulse.
Hence another requirement is that Wω must be much smaller than the splitting: Wω ¿ 2|Ωc|.
This is a property which to some degree is controllable, but limited by the bandwidth of the
signal.

Both these requirements limit how low the Rabi frequency of the coupling �eld can be. From
�gure 6.3 we see the general trend that increasing |Ωc| will decrease the group index and thereby
the amount one can slow down light. In a optical network a group index of several thousands
will typically be needed [4] and as we set a lower limit for ng, we could get into trouble with the
ful�llment of the two requirements, γ12 ¿ 2|Ωc| and Wω ¿ 2|Ωc|.
In the following we will present a few examples to show some e�ects, that occur when more than
one pulse is present.

We start out by considering a simulation of two narrow pulses of spectral width Wω = 1358 GHz,
Wω > 2|Ωc|, and with a top-to-top distance of 0.67 mm. The solution is shown in �gure 7.12(a).
As expected the pulse does not behave well, the large dipole oscillations destroy both pulses and
nothing useful is transmitted through region II.

Figure 7.12(b) shows two wide pulses of spectral width Wω = 274.7 GHz, and hence Wω < 2|Ωc|,
separated by a top-to-top distance of 2.40 mm. The plot is cross sections at 7 equidistant times
as this illustrates the point better. Here we expect the pulses to behave nicely as their spectral
width is smaller than the level splitting, and so they do. After transmission through region II, one
can easily distinguish the top of each pulse, which is necessary for them to be able to represent
binary data.

Decreasing the separation between the pulses corresponds to increasing the network bandwidth,
which is of great interest in the industry. In �gure 7.12(c) we have decreased the separation
between the pulses to 1.76 mm. The e�ect is that you are not able to clearly distinguish the two
peaks, as there is no longer anything really separating them. An electronic device that would
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(a) Two narrow pulses of Wx = 0.17 mm and Wω = 1358 GHz, sepa-
rated by a distance ∆x = 0.67 mm.
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(b) Two wide pulses of Wx = 0.84 mm and
Wω = 274.7 GHz, separated by a distance
∆x = 2.40 mm.
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Figure 7.12.: Solutions of di�erent two-pulse situations.
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7. Dynamic Analysis Two pulse analysis

have to decide what binary sequence these represents, would have a problem. This mixing of the
two pulses is caused by the dipole oscillations the �rst pulse induces, as it enters region II. The
dipole oscillations are not as powerful as those induced by the pulse in �gure 7.12(a), and they do
not destroy the pulse itself. As the �rst pulse has passed through a section in region II, it leaves
behind oscillating dipoles. These of course decay according to γ12, but if the second hits region II
before they have vanished, it will interact with the dipoles. Exactly what happens to the second
pulse depends on whether it hits a hill or valley in the oscillating Im[σ12]. This gives rise to many
peculiar and interesting phenomena.

(a) Separation of 2.08 mm. (b) Separation of 1.43 mm.

(c) Separation of 1.27 mm. (d) Separation of 0.95 mm.

Figure 7.13.: Illustrations of how decreasing the separation between two pulses will eventually destroy them
due to dipole oscillations. The separation in the �rst plot corresponds to a 40Gbs signal and a 88Gbs in
the last plot. The pulse width 5 ps for all simulations, Ωc = 650 GHz, and γ12 = 50 GHz.

As a last example we have selected a temporal pulse width of 5 ps suitable of a 40Gbs signal
(corresponds to a separation of 25 ps). We will examine how the two pulses interact when we
decrease the separation between them and hence obtain a minimum of this distance. This is close
to what have been done above, but these pulses do not ful�ll the Wω ¿ 2|Ωc|-requirement as well
as above. A Rabi frequency of |Ωc| = 650 GHz has been selected, to avoid too powerful dipole
oscillations. This means, on the down side, that we can only achieve a group index of around
15.
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Two pulse analysis 7. Dynamic Analysis

A quantity as the extinction ratio10 could be expected to provide a nice number for this kind
of test. This turns out not to be the case for these simulations. The dipole oscillations create
small �elds in between the two pulses and make it di�cult to have a well de�ned extinction ratio.
Instead we will shortly describe what is seen and what can be concluded.

In �gure 7.13(a) the two pulses are well transmitted through region II. This is also the case for the
simulation in �gure 7.13(b), where the separation has been decreased from 2.08 mm to 1.43 mm.
The situation is slightly worse in �gure 7.13(c), where we have further decreased the separation
now to 1.27 mm. The second pulse is now clearly in�uenced by the dipole oscillations induced
by the �rst. Figure 7.13(d) shows a separation of 0.95 mm, where the second pulse is completely
destroyed and somehow mixes up with the �rst.

This example illustrates that a separation of 1.43 mm the two pulses will not mix noticeably,
and the bandwidth would go from 40Gbs to almost 60Gbs. Moving the pulse closer together
will, if maintaining �xed pulse width, of course make the binary data they represent less distinct.
This issue is related to the detection equipment converting the optical signals back to electrical
form and is not considered in this report. We observed that if one move two pulses too close to
each other, they will interact and can not be distinguished in region III. This sets a limit on the
bandwidth, which can only be removed by further increasing |Ωc| and hence a further reduction
of the group index.

10Sometimes de�ned as: re = 10 log10

�
P2
P1

�
, where P2 and P1 are the powers of a peak and a valley in a signal.
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8. Outlook

After �nishing these analyses there are of course interesting subjects which have not been exam-
ined. Most of these are related to how our system performs under conditions used in future real
life applications. That is, it could be interesting to perform a deeper and more systematic analysis
of how several pulses interact. Thereby, obtain a better understanding of the limitations of the
bandwidth and refractive group index on physical grounds. Simpler analyses of this sort have been
performed by di�erent groups for general slow down materials, with considerations similar to the
ones in the steady state chapter [2, 16], but with di�erent conclusions. They do not, however, in-
clude the dynamic coupling and misses some of the limitations it imposes.

As mentioned the dipole oscillations induced by spectrally wide pulses, give rise to many interest-
ing e�ects. Some of these we have been able understand as a beat phenomena. A more thorough
analysis could hopefully lead to a better physical understanding of these phenomena. There are
lots of parameter sets we have not examined and one could hope for exciting new e�ects lurking
somewhere in the parameter wilderness.

In the last chapter we have performed dynamic simulations, but are limited to low group indexes
(∼ 50) and small spacing between two pulses, compared to the material width. These limitations
are mostly due to the periodic boundary conditions and the fact that we can only initiate the
pulses in the space domain, as E(x, 0) = f(x). If we could initiate them in time, E(t, 0) = f(t),
we could simulate many wide pulses and make the material extend to most of the domain and
thus cope with large slowdown factors without using a lot of points.

One way to overrule the periodic boundary conditions is to enforce a strong damping at the right
boundary [15]. Every pulse approaching it would be absorbed and only solutions of zero value
would be reenter at the left boundary. It is however very di�cult to implement the boundary con-
dition in time. This we tried, but the spectral method does not handle these boundary conditions
in time very well, as they are discontinuous at the left boundary.

In our model the coupling �eld is assumed to be constant, as it is much stronger than the probe
�eld. When this is the case our model provides a good description. In situations in which we turn
the coupling �eld on and o� fast, this is not a su�cient description. To analyze this, the model
should be extended to include a dynamic coupling �eld from which we would get two new wave
equations.
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9. Conclusion

In the following we will summarize the results obtained in this project.

We have calculated the transition matrix elements for the interband transition |1〉 ↔ |2〉, and in-
traband transition |2〉 ↔ |3〉 in a rotational symmetric quantum dot on a wetting layer. The calcu-
lated values are of the order a few nanometers, in units of the elementary charge, and are in agree-
ment with previously published results by Chang-Hasnain et al. [1, 4].

A space dependent version of the optical Bloch equations has been derived and applied to the
three-level system in the quantum dot, with an electric �eld interaction.

An analysis of slow-light has been performed for the case both the probe and coupling �eld being
continuous wave �elds. Here analytical results are obtained for the complex susceptibility and
refractive group index. From this we predict slow down factors ranging from the background
value to a staggering 106 and an accompanying absorption which unfortunately increases along
with the group index. Again in accordance with Chang-Hasnain et al.

The analysis has been extended to a model for simulation of the dynamic behavior of pulses.
In this we adopt the slowly varying envelope approximation for equation of the electric �eld. A
numerical implementation based on a combined Runge Kutta/spectral method has been devel-
oped.

With this we have simulated EIT for a wide range of di�erent pulses. From this it is evident
that the linewidth γ13 introduces a large absorption when set to realistic values. This poses a
signi�cant problem for the use of quantum dots for EIT.

For wide pulses the predictions of the steady state and dynamical analyses are in good agreement.
For narrow pulses, spectrally exceeding the level splitting, the dynamical model predicts large
dipole oscillations. In some cases these can destroy the pulse itself. Furthermore the linewidth
γ12 has to be relatively low for the two split levels to remain distinct.

In order for two pulses to be adequately transmitted through the active region we can state
the following requirements: γ12 ¿ 2|Ωc| and Wω ¿ 2|Ωc|. However, if the separation between
two pulses becomes too small, ful�lling the above requirements is not enough for them to be
transmitted nicely. Dipole oscillations, although small, will in worst case destroy the second
pulse.

The parameters γ12 and Wω set the lower limit for Ωc. The bandwidth of the signal will provide
Wω and γ12 is given by the material. The lower limit of Ωc implies that only a certain (low) ng

can be obtained, which is a serious draw-back for applications.

Henri Nielsen Per Nielsen
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A. Appendix

A.1. EIT window in χ̃

We want to obtain approximate expressions for the frequency ranges ∆χ′ and ∆χ′′ shown in
�gure 6.4. In the expressions for χ′ and χ′′ (eq. (6.6) and (6.7) respectively) we put γ13 = 0 as
our main assumption is that: γ13 ¿ γ12, Ωc. Performing this substitution, setting ∆c = 0 which
we are free to do, χ′ and χ′′ reduce to

χ′ =
N |µ21|2η

ε0~
∆p(∆2

p − |Ωc|2)[|Ωc|2 −∆2p
]2 + [∆pγ12]

2
,

and

χ′′ =
N |µ21|2η

ε0~
∆2

pγ12[|Ωc|2 −∆2p
]2 + [∆pγ12]

2
.

As seen from �gure 6.4 ∆χ′ and ∆χ′′ are the distances between two extremum, having zero slope.
This invites us to di�erentiate χ′ and χ′′ with respect to ∆p and equate with zero,

∂χ′

∂∆p
= 0 ⇒ ∆4

p −∆2
pγ

2
12 − 2∆2

p|Ωc|2 + |Ωc|4 = 0

and

∂χ′′

∂∆p
= 0 ⇒ |Ωc|4 −∆4

p = 0.

Solving the equations for χ′ gives four solutions as you could have guessed (χ′ has four extremum),
picking the lowest positive and multiplying by two as we want the full width, gives following
result

∆χ′

|Ωc| =
√

γ12

|Ωc| + 4− γ12

|Ωc| .

The equation for χ′′ is easily solved and after multiplying by two we get

∆χ′′

|Ωc| = 2.

These are the desired results.
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Approximative vs. exact susceptibility A. Appendix

A.2. Approximative vs. exact susceptibility

The purpose of this appendix is to justify the assumption made in section 6.2, by comparing the
approximate solution with the exact solution of the susceptibility. For the case of both the probe
and coupling �eld being CW �elds, the Bloch equations are a set of linear �rst order di�erential
equations. These we are able to solve by using methods from linear algebra, even in the full
time-dependent case. However, we are only interested in the steady state solutions. Setting all
time derivatives equal to zero reduces the Bloch equations to a set of ordinary linear equations.
Along with conservation of probability restriction: ρ11 + ρ22 + ρ33 = 1, these are easily solved
analytically using Mathematica. The solutions are very extensive, so we will not present them
here, but merely show the susceptibility resulting from them.

The assumptions imposed in section 6.2 were the following: First we assumed that all carri-
ers were trapped in the ground state, η = ρ11 − ρ22 ≈ 1, i.e. full EIT state. Secondly we
assumed that Ωc À Ωp, which basically means that |Ẽc| À |Ẽp|. The second assumption is
the only one which we can control directly and it turns out that η ≈ 1 follows from this, see
�gure A.4.

Apart from making the solutions simpler, another e�ect was that the decay rates γ22, γ33 and γ23

and Ωp drop out of the solutions. Hence the susceptibility does not depend on these parameters in
the approximation. When solving without any approximations, we cannot expect this to happen
and it does not. To graphically compare the two di�erent susceptibilities, we of course have assign
values to γ22, γ33, γ23 and Ωp.

First we want to illustrate how gradually increasing the ratio λ = |Ωc|
|Ωp| , will make the approximative

and exact solution converge towards the same. We �x the decay rates for the o�-diagonal elements
so that: γ12 = γ13 = γ23 = 5× 109 Hz. The decay rates for diagonal elements we set a bit lower
since these do not experience dephasing: γ22 = γ33 = 109 Hz. The Rabi frequency for the
coupling �eld is �xed at 50 GHz. This means that when we increase λ we decrease |Ωp|. All other
parameters are as in table 6.2. The �gures A.1(a) to A.1(e) show how increasing λ from 5 to 230
in di�erent steps, make the two solutions tend towards the same susceptibility. The approximate
solution does not change while varying λ, as it does depend on the probe �eld amplitude. The
ratio λ = 230 corresponds to |Ẽc|

|Ẽp| ≈ 51.

Having found a λ where the two solutions seem to coincide with each other, we now �x λ to 230 and
vary the decay rates. In �gure A.2(a) we have used γ23 = 5×109 Hz and γ22 = γ33 = 1×1012 Hz, a
shift of three orders of magnitude in the diagonal decay rates. Remarkably, no change is apparent
from the �gure illustrating the two solutions. Figure A.2(b) shows the case where γ23 = 5×1012 Hz
and γ22 = γ33 = 1 × 109 Hz, here the o�-diagonal decay rate has been raised three orders of
magnitude. Again we see no di�erence between the two solutions. Finally in �gure A.2(c) both
set of decay rates have been set to high values: γ23 = 5× 1012 Hz and γ22 = γ33 = 1× 1012 Hz.
This does not cause any visible di�erence either.

The conclusion to be drawn from this appendix is illustrated in �gures A.1 and A.2. If the
assumption Ωc À Ωp is su�ciently well satis�ed, the values of γ23, γ22 and γ33 do not seem to
matter much.
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(c) λ = 20.
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(d) λ = 60.
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(e) λ = 230.

Figure A.1.: Figures for of the comparison approximate and exact solution of the susceptibility. The ratio
λ = |Ωc|

|Ωp| is increased from 5 to 230 and all other parameters are �xed.
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(a) γ23 = 5× 109 Hz and γ22 = γ33 = 1× 1012 Hz.
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(b) γ23 = 5× 1012 Hz and γ22 = γ33 = 1× 109 Hz.
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(c) γ23 = 5× 1012 Hz and γ22 = γ33 = 1× 1012 Hz.

Figure A.2.: Figures for comparison of the approximate and exact solution of the susceptibility. Here we
�xed λ = 230 and |Ωc| = 50 GHz, while the decay rates are changed.

A.3. Selection rules and |M |

In the �rst part of this appendix we want to show that the interband transitions (v, 1,±1) ↔
(c, 1, 0) and the intraband transition (c, 1, 0) ↔ (c, 2, 0) are non-allowed dipole transitions.

For the interband transition (v, 1,±1) ↔ (c, 1, 0) we know from eq. (3.8) that it is the over-
lap integral, between the two envelope functions, that determines whether or not the transi-
tion is dipole allowed. We use the basis (3.11) to represent the degenerate subspace, thus we
have

〈F v
1±1|F c

10〉 =
〈

fv
11Φ

±
∣∣∣∣

1√
2π

f c
10

〉
=

1√
2π

∫
Φ±dϕ

∫
[fv

11]
∗ f c

10rdrdz.

The integral over Φ± will be either over a pure cosine or sine, both equal to zero and the transition
is not dipole allowed.

The matrix element for the intraband transition (c, 1, 0) ↔ (c, 2, 0) is given by, cf. eq. (3.12):

〈F c
10|r sinϕ|F c

20〉 =
1
2π

∫
sinϕdϕ

∫
[f c

10]
∗ f c

20r
2drdz,
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A. Appendix Real/Fourier space width product

the integral over the sine function will equal zero and hence the transition is not dipole al-
lowed.

In the last part we explain how we arrived at eq. (3.9), |M | = 0.699
(ωp[fs−1])

nm. The matrix element,
absolute squared, for the interband transitions considered in this report, can be written in the
following form:

|〈1|ĤI|2〉|2 = |eE0|2|〈uv|ê · r|uc〉|2|〈F v
10|F c

10〉|2,

where ê is a unit vector in the direction of the polarization of the �eld and E0 is a �eld amplitude.
In the notation of the magnetic vector potential, A, and the momentum operator, p̂, the same
matrix elements can be written

|〈1|ĤI|2〉|2 = |eA0/2m|2|〈uv|ê · p̂|uc〉|2|〈F v
10|F c

10〉|2,

where A0 is the amplitude of the vector potential. Equating these two expressions and cancelling
common factors yields

|E0|2|〈uv|ê · r|uc〉|2 = |A0/2m|2|〈uv|ê · p̂|uc〉|2.

The relation between E0 and A0 can be found from E = −∂A
∂t , and for a CW �eld this implies

that A0 = E0
ω0

. Using this and rearranging we get

|〈uv|ê · r|uc〉|2 =
1

8mω2
0

2
m
|〈uv|ê · p̂|uc〉|2 ≡ 1

8mω2
0

β.

The β parameter can be found in [8, p. 121] and for InAs it has the value 22.2 eV. Inserting this,
the electron mass, and taking the square root gives the following result,

|M | = 0.699
(ωp[fs−1])

nm,

where we have replaced ω0 by ωp, which has to be plugged in in units of fs−1. This is the expression
we were looking for.

A.4. Real/Fourier space width product

In this appendix we will derive the relation WxWk = WtWω = 4 ln 2, eq. (7.7). The initial condi-
tion, eq. (7.6), for the Gaussian pulse we use in the simulations is (x0 = 0)

E
′
p(x) = Ep exp

[
−2 ln 2

(
x

Wx

)2
]

.

The FWHM for this pulse is by construction equal to Wx. The pulse above has a Fourier transform
given by

E
′
p(k) =

∫ +∞

−∞
E
′
p(x)eikxdx = EpWx

√
π

2 ln 2
exp

(
−k2W 2

x

8 ln 2

)
,
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Derivation of the wave equation A. Appendix

the Fourier transform is seen also to be a Gaussian peaked about k = 0. The FWHM if
the Fourier transform can be found from the equation |E′

p(Wk/2)|2 = 1
2 |E

′
p(0)|2. Solving this

with respect to Wk yields: Wk = 1
Wx

4 ln 2. Multiplying Wx and Wk gives the wanted re-
sult

WxWk = 4 ln 2.

One can repeat the above for time and frequency and �nd the same product.

A.5. Derivation of the wave equation

We want to derive the wave equation governing electric waves in matter. This is done from the
four Maxwell equations which are the basic equations of classical electromagnetic theory. We
start out by the Maxwell equations in matter.

∇ ·D = 0 (A.1a)

∇×E = −∂B
∂t

(A.1b)

∇ ·B = 0 (A.1c)

∇×H =
∂D
∂t

. (A.1d)

Where D and H in general are given as

D = ε0E+Pb +P = εE+P (A.2a)

H =
1
µ0

B−M. (A.2b)

In eq. (A.2a) for D, we have split the polarization into two parts. A linear background polar-
ization, εE, in which we can include the dielectric constant, ε = ε0εb. P is the actively induced
polarization which can be time and space dependent. To simplify the calculation we assume that
the material does not have a magnetization, and M can be eliminated. To arrive at the wave
equation for E we need two of the four Maxwell equations.

First we insert the expressions for H and D into eq. (A.1d) and get
1
µ0
∇×B = ε

∂E
∂t

+
∂P
∂t

.

Taking the curl of (A.1b) and inserting the equation above we arrive at the three dimensional
wave equations:

∇× (∇×E) = − ∂

∂t
(∇×B)

= −µ0ε
∂2

∂t2
E− µ0

∂2

∂t2
P.

Using that µ0ε0 = c−2 and de�ning nb ≡ √
εb, called the background refractive index, the wave

equation can be written as,

∇× (∇×E) +
n2

b

c2

∂2

∂t2
E = −µ0

∂2

∂t2
P.
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A. Appendix Group velocity

By using the relation∇×(∇×E) = ∇(∇·E)−∇2E we can rewrite the equation to give,

∇2E−∇(∇ ·E)− n2
b

c2

∂2

∂t2
E = µ0

∂2

∂t2
P. (A.3)

A solution to eq. (A.3) is transverse EM waves in which the electric �eld is orthogonal to
the propagation direction. We can e�ectively reduce the problem to 1D by choosing E =
E(x)ŷ. The second term now equals 0 as ∇(∇ · E(x)ŷ) = ∇(∂E(x)

∂y ) = 0 and eq. (A.3) reduces
to

∂2

∂x2
E − n2

b

c2

∂2

∂t2
E = µ0

∂2

∂t2
P.

A.6. Group velocity

In this appendix we want to give a short derivation of the group velocity used in eq. (4.6)
and some outlook to its de�nition and limitations. The derivation here is greatly inspired by
[17]

If we in 1D consider a wave package, we can de�ne the group velocity as the velocity of its
maximum amplitude. A wave package can be composed by superimposing plane waves with
di�erent wave vectors peeked around k0. The amplitude of each wave is given by Φ(k). To form a
well behaved wave packed we require that Φ(k) goes to zero for large |k| values. The wave packet
in time and space, F̃ (x, t) can then be written as a Fourier transform,

F̃ (x, t) =
∫ ∞

−∞
dkei(kx−ωkt)Φ(k). (A.4)

We assume that the wave packet is con�ned to a narrow region around k0 and thus we can Taylor
expand the dispersion relation, ωk around k0 to �rst order.

ωk ≈ ω0 +
∂ω0

∂k
(k − k0) + O((k − k0)2)

where ωk = ω(k) and ω0 = ω(k0). This inserted into eq. (A.4) and de�ning K = k − k0

yields,

F̃ (x, t) ≈
∫ ∞

−∞
dKei[(K+k0)x−(ω0+

∂ω0
∂k

K)t]Φ(K + k0)

= ei(k0x−ω0t)

∫ ∞

−∞
dKei(x− ∂ω0

∂k
t)KΦ(K + k0)

The complex exponential is just the fast oscillation of the center frequency and just the normal
phase velocity vph = ω0

k0
. The integral is a function with a argument of the form: x− ∂ω

∂k t. This im-
plies that a function value of constant argument, will move with a velocity

vg =
∂ω

∂k

Which is the group velocity.

It can be proved that the group velocity and energy velocity are equal for propagating electro-
magnetic waves in linear, nondissipative and nonmagnetic media [18]. This is not in general the
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case in our study. For absorbing and dispersive media the group velocity can be both larger
than the speed of light or negative. This is due to changes of the pulse shape and the peak
point no longer represents the �ow of energy and the group velocity is no longer a good de�ni-
tion.

A.7. The slowly varying envelope approximation applied to the
wave equation

The derivation of the two envelope equations from the wave equation is a rather lengthy a�air.
In this appendix we will go into some more detail with this calculation.

We want to solve the wave equation

∂2

∂x2
E − n2

b

c2

∂2

∂t2
E = µ0

∂2

∂t2
P, eq. (4.1)

and write the electric �eld and the polarization as envelope functions times an underlying fast
oscillation

E = E′
p cos(kpx− ωpt)− E′′

p sin(kpx− ωpt) + Ec cos(kcx− ωct), eq. (7.2)
P = Up cos(kpx− ωpt)− Vp sin(kpx− ωpt) + Uc cos(kcy − ωct)− Vc sin(kcy − ωct).

eq. (7.3)

All the curled parameters is assumed to be known and constants. This rewriting can be done
in general when we have two functions for each �eld, but is most practical when the chosen
frequency is a resonant frequency of the system. If this is ful�lled we can in most cases assume
that the envelope functions are slowly varying compared to the underlying resonant frequencies.
For optical systems this criteria is easily met as ωc, ωp ≈ 1015 s−1, which is only violated when
considering femtosecond wide envelopes.

We now want to �nd equations for E′
p and E′′

p , which ensure that the electric �eld is satisfying
the wave equation. Inserting (7.2) and eq. (7.3) into (4.1) yields a lengthy nonlinear di�erential
equation.

To simplify this, we apply the slowly varying envelope approximation which in mathematical terms
can stated as: ∂F/∂t ¿ ωF, ∂F/∂x ¿ kF, ∂2F/∂t2 ¿ ω∂F/∂t, ∂2F/∂x2 ¿ k∂F/∂x, where F
represent the four envelope functions, E′

p, E′′
p , Up and Vp. In practice we end up removing

all non-linear and 2. order terms in the unknown and all terms which is di�erentiated twice
[13].

What is left is an equation which still contain all the sine and cosine terms. As all sine and
cosines with di�erent argument are linear independent, we can extract the coe�cients as individual
equations and we get:

The coe�cient to cos(kpx− ωpt):

−k2
pE

′
p +

n2
bω

2
p

c2
E′

p + µ0ω
2
pUp − 2

n2
bωp

c2

∂E′′
p

∂t
− 2µ0ωp

∂Vp

∂t
− 2kp

∂E′′
p

∂x
= 0 (A.5a)
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The coe�cient to sin(kpx− ωpt):

k2
pE

′′
p −

n2
bω

2
p

c2
E′′

p − µ0ω
2
pVp − 2

n2
bωp

c2

∂E′
p

∂t
− 2µ0ωp

∂Up

∂t
− 2kp

∂E′
p

∂x
= 0 (A.5b)

The coe�cient to cos(kcx− ωct):

−k2
cEc +

n2
bω

2
p

c2
Ec + µ0ω

2
cUc = 0 (A.5c)

The coe�cient to sin(kcx− ωct):

µ0ω
2
cVc = 0 (A.5d)

Using the dispersion relation k = nbω
c the E′

p terms cancel from (A.5a) and so does the E′′
p terms

from eq. (A.5b). Hence we have two separate equations for each of the probe �eld envelopes. The
last two equations reduce to

Uc = 0 Vc = 0.

This is a consequence of assuming that Ec is constant. If not so Uc and Vc would act as source
terms to the coupling �eld and thus change it. Uc and Vc are related to σ23 in the same way that
the probe polarization is related to σ12, and σ23 is not zero, see �gure A.7(a). Thus we neglect
the coupling between σ23, Uc, and Vc. This elimination is justi�ed by our assumption that Ec is
strong compared to |Ep|, hence our model is not valid when the two �elds are comparable. By
comparing �gure A.7(a) to �gure A.5(e) we see that σ23 is 2 to 3 magnitudes smaller than σ12,
and the approximations are well satis�ed for our default values.

Equations (A.5a) and (A.5b) now look like

2
n2

bωp

c2

∂E′′
p

∂t
+ 2kp

∂E′′
p

∂x
= µ0ω

2
pUp − 2µ0ωp

∂Vp

∂t

2
n2

bωp

c2

∂E′
p

∂t
+ 2kp

∂E′
p

∂x
= −µ0ω

2
pVp − 2µ0ωp

∂Up

∂t

The last term in each equation can be approximated out, again according to the slowly varying
envelope approximation by using that ∂Vp

∂t ¿ ωpUp and ∂Up

∂t ¿ ωpVp. If we divide by 2kp and
utilize the dispersion relation we get

∂E′′
p

∂x
+

nb

c

∂E′′
p

∂t
=

µ0ωpc

2nb
Up

∂E′
p

∂x
+

nb

c

∂E′
p

∂t
= −µ0ωpc

2nb
Vp

These are the two forward propagating wave equations governing the two envelopes for the probe
�eld, which are valid under the above assumptions.
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A.8. The phase of the electric �eld and detuning

In this appendix we will look at the phase φp of the probe �eld, which from our solutions of E′
p

and E′′
p can be calculated from

φp = arctan
(

E′′
p

E′
p

)

which have to take into account which quadrant the complex envelope Ẽp = E′
p + iE′′

p represent.
When E′′

p = 0 the �eld would ether have φp = 0 or φp = π. This is the case for zero detuning when
∆p = ω21 − ωp = 0 and ∆c = ω32 − ωc = 0. This can be seen by examine of the Bloch equations.
If the initial conditions are zero for all variables except for ρ11 and E′

p, both being real. Then Ωp
is real and we enter a self-consistent mode for the system in which

E′
p ∈ ]−∞;∞[ E′′

p = 0

ρ11 : Real ρ22 : Real
ρ33 : Real σ12 : Imaginary
σ13 : Real ρ23 : Imaginary.

From this we can see that σ12 will never have a real part, which is the source term in the E′′
p wave

equation, (7.5b), and E′′
p will remain zero.

For zero detuning, solutions for all dependent variables are in the left side of �gures A.3 to
A.7. All the white plots are zero, which exactly correspond to the ones predicted by the mode
described above. Though for zero detuning we only have discontinuous phase changes when the
�eld envelope is zero.

If we change the detuning from zero, there are no restrictions on the real and imaginary parts
of the o�-diagonal elements. The source term to the E′′

p-equation is in general no longer zero.
This means that φ can now have any value in the interval [−π; π]. In the plots in the right side
of �gures A.3 to A.7 all dependent variables are plotted again for ∆p = 450 GHz. The Rabi
frequency, Ωc, also has this value.

The main di�erence is, that the phase now changes continuously and seems to rotate linearly in
time, which e�ectively corresponds to a frequency change.
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(a) For no detuning. (b) For ∆p = 450 GHz

Figure A.3.: The electric �eld envelope with and without detuning.

75



The phase of the electric �eld and detuning A. Appendix

(a) For no detuning. (b) For ∆p = 450 GHz

(c) For no detuning. (d) For ∆p = 450 GHz

(e) For no detuning. (f) For ∆p = 450 GHz

Figure A.4.: The phase and population of the ground state and �rst exited state with and without detuning.
All the small ripples outside the wave in the phase plot represent numerical errors, as E′′

p oscillates at a
very low value around zero.
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(a) For no detuning. (b) For ∆p = 450 GHz

(c) For no detuning. (d) For ∆p = 450 GHz

(e) For no detuning. (f) For ∆p = 450 GHz

Figure A.5.: The population of the |3〉 state and σ12 with and without detuning.
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(a) For no detuning. (b) For ∆p = 450 GHz

(c) For no detuning. (d) For ∆p = 450 GHz

(e) For no detuning. (f) For ∆p = 450 GHz

Figure A.6.: σ13 and the real part of σ23 with and without detuning.
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(a) For no detuning. (b) For ∆p = 450 GHz

Figure A.7.: The imaginary part of σ23 with and without detuning.

79


