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Abstract

It is well-known that dephasing plays a major role in semiconductor cavity QED systems, and
that this effect deteriorates the properties of, e.g., photonic crystal and micropillar realizations of
single-photon sources. Even at low temperatures, scattering with phonons leads to decoherence.

We consider the possibility of altering the dephasing properties of the electron-phonon cou-
pling by changing the electronic and phononic confinement. The starting point of our work is
a recently published theory by P. Kaer et. al. (2010) [1], which considers longitudinal acous-
tic phonons described by a non-Markovian reservoir. These interact through the deformation
potential coupling with a coupled quantum dot-cavity system. By applying a quantum master
equation approach, we solve the equations of motion for the reduced density matrix, where the
phonon degrees of freedom have been traced out.

Regarding the electronic confinement, we suggest an approach which relies on the asymmetry
between electron and hole wavefunctions in the quantum dot. Commonly in the literature, this
asymmetry is neglected in analyses of phonon-mediated dephasing effects in semiconductors.
Our calculations show, that for a cavity QED system with the cavity and quantum dot tuned
out of resonance, these assumptions neglect significant dynamics.

We demonstrate that for idealized spherical, but unequal, electron and hole wavefunctions
there exists a non-zero cavity detuning where the phonon scattering is identically zero. The
effect is due to a balancing between the carrier deformation potentials and the wavefunction
asymmetry and only appears in materials where the deformation potential interaction shifts the
energy bands in the same direction. For realistic truncated conical QD structures, analyzed by
FEM calculations, a complete suppression of phonon scattering is not observed, but an optimal
cavity detuning is still present where the phonon-induced pure dephasing is significantly reduced.

When confining the coupled QD-cavity system in an infinite slab, two resonant phonon
modes appear, corresponding to the symmetric and anti-symmetric vibrational slab mode. We
show that by tuning the optical cavity onto one of the resonance energies, the phonon-assisted
cavity feeding increases significantly. At slightly lower phonon energies, a suppression of the
phonon modes appears, which, with great possibility, could be used to decrease phonon-induced
dephasing. A bulk description of the phonon modes is shown to be sufficient above 50 nm when
considering a single reasonably-sized self-assembled QD placed in the center plane.

We believe these effects can be important for engineering the coherence properties of state-
of-the-art QD-cavity structures.





Resume

Det er velkendt, at dephasing har stor indflydelse p̊a kvanteelektrodynamikken (KED) i kaviteter
for nanoskala-halvlederstrukturer, og at denne effekt forringer realiseringen af fotoniske krys-
taller og mikrosøjle-resonatorer som enkelt-fotonkilder. Selv ved lave temperatuers giver fonon-
spredning til dekohærens.

Vi undersøger muligheden for at ændre dephasing-egenskaberne af elektron–fonon-koblingen
ved at ændre det elektroniske og fononiske confinement. Udgangspunktet for vores arbejde er en
nyligt publiceret teori af P. Kaer et. al. (2010) [1], som betragter longitudinale akustiske fononer
beskrevet ved et ikke-Markoviansk reservoir. Disse vekselvirker gennem deformationspotentiale-
interaktion med et koblet kvantedot–kavitetssystem. Ved at anvende kvante-master equation-
formalisme løser vi bevægelsesligningerne for den reducerede tæthedsmatrix, hvor frihedsgraderne
for fononerne er blevet tracet ud.

For det elektroniske confinement foresl̊ar vi en fremgangsm̊ade som bygger p̊a asymmetrien
mellem elektron- og hul-bølgefuntionen i kvantedotten. Denne asymmetri bliver ofte ignoreret
i litteraturen i analyser af fonon-medierede dephasing-effekter i halvledere. Vores udregninger
viser, at for et kavitets-KED-system, hvor kavitet og kvantedot er ude af resonans, kan disse
antagelser overse vigtig dynamik.

Vi viser, at for idealiserede sfæriske, men uens, elektron- og hul-bølgefunktioner, eksisterer
detunings forskellig fra nul, hvor fonon-spredningen identisk er nul. Denne effekt skyldes en
balance mellem ladningsbærernes deformationspotentiale og bølgefunktionens asymmetri, som
kun opst̊ar i materialer, hvor valens- og ledningsb̊and bliver forskudt i samme retning, n̊ar
krystallen sammenpresses. For realistiske strukturer af trunkerede koniske kvantedots, som vi
analyserer med FEM-udregninger, opn̊as ikke en komplet elimination af fonon-spredningen, men
der forekommer en optimal kavitets-detuning, hvor den fonon-inducerede pure dephasing-rate
er reduceret markant.

Ved at placere kvantedot-kavitetssystemet i en uendelig plade opst̊ar der to resonante vibra-
tionstilstande, svarende til den symmetriske og anti-symmetriske vibrationelle mode i pladen. Vi
p̊aviser, at ved at tune den optiske kavitet til en af disse resonanser, s̊a vil den fonon-assistered
kavitets-feeding øges markant. Ved frekvenser lidt lavere end resonansfrekvenserne opn̊as en
undertrykkelse af fonon-modes, og det vil med stor sandsynlighed kunne udnyttes til at mindske
den inducerede dephasing. En bulk beskrivelse af fononerne ses tilstrækkelig for plader tykkere
end 50 nm med for et enkelt selv-dannet kvantedot i center-planet af pladen.

De p̊aviste effekter formodes at have en vigtig effekt for at kunne kontrollere kohærensegen-
skaberne i nutidens kvantedot–kavitets-strukturer.
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Chapter 1

Introduction

Information may be considered the most fundamental thing that must propagate from a cause
to an effect, and how that information is transmitted and processed in physical systems has
been a great research topic the last couple of decades. Through the evolving field of quantum
mechanics, the classical information theory was expanded and the so-called quantum information
technology was introduced, opening for new ways of treating information in ways that was not
possible according to classical theory. A new feature was the concept of quantum cryptography,
where quantum states are used to transport classical information in a perfectly secure way,
revealing possible eavesdroppers [2].

Another hot topic in the field of quantum information technology is quantum computation.
In standard computation technology, information is stored in bits, which are logical states that
attain a value of ”0” or ”1”. In quantum computation, logical states are also described by two-
state systems, which may be the two spin states of a spin 1/2-particle [3], the ground and excited
state of an atom [4, 5], or vertically and horisontally polarised light [6]. The fundamental unit
in a quantum computer is the qubit (quantum binary digit), the quantum mechanical analogy
to the classical bit. The difference is that the qubit may not only be in the state |0〉 or the state
|1〉, but also in a linear superposition of these two states. This creates an infinite number of bit
states not available according to classical theory, and this could be used to increase the effiency
of computer algorithms such as factorizing of large numbers [7].

An important aspect of quantum information technology is the ability of a light source to
emit a single quantum of light, the so-called photon. The first experimental realization of a
single-photon source was done in 1977, where a strictly quantum mechanical light source was
presented [8], (see [9, 10] for review articles on single-photon sources). A lot of research has been
done on single-photon sources ever since, and the qubit, described by the two polarisation states
of a photon, shows promising features. The photon has the advantage that it only interacts
weakly with the surroundings, and due to its propagating nature, it carries information along.
A drawback is, however, that photons do not mutually interact, making the construction of
two-qubit quantum gates challenging, but several designs have been proposed [6].

A physical system may only be used for quantum information technology if certain criteria
are fulfilled [11]. The ideal single-photon source must have directional emission into a single
mode of the radiation field, and the photon must be emitted when it is needed, ”on demand” [12].
Furthermore the emitted phonons must be indistinguishable, which is a measure of how well the
photon overlap is from emission to emission.

The improvement of nanoscale fabrication enables the construction of even smaller quantum
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Chapter 1. Introduction

systems. The properties of light emitters may no longer be described by the intrinsic properties
of the light source only, but the effects of the environment has to be taken into account to
describe the light-matter interaction correctly. These interactions introduce decoherence of the
photonic degrees of freedom, which reduces the indistinguishability, and thus, for a realistic
system, full indistinguishability will be unachievable.

In the literature the coherence time, Tcoh, is usually phenomenologically expressed as [13],
[14]

1

Tcoh
=

1

Tdephasing
+

1

2Tlifetime
, (1.1)

where Tdephasing is a characteristic time of all relevant dephasing processes and Tlifetime is the
emission lifetime of the excited QD state. The ratio Tcoh/(2Tlifetime) may be interpreted as the
”degree of indistinguishability” and is less than unity when dephasing processes are present.
The indistinguishabilty may be increased in two ways, either by increasing Tdephasing through
minimization of the dephasing effects, or by shortening the emission lifetime. Both approaches
will be discussed in this thesis.

A promising structure for a single-photon emitter is a so-called quantum dot (QD) placed
inside a photonic cavity [15, 16, 17]. These QD single-photon emitters have shown applications
in both quantum cryptography [18] and quantum computation [19]. The QD-cavity system will
be the main system of this thesis. Therefore we describe the properties of a QD and a photonic
cavity in details.

(a) (b)

Figure 1.1: (a) Quantum dots on a wetting layer are formed by strain effects when evaporating InAs
onto a GaAs substrate due a difference in lattice constants, picture taken from [20]. (b) Micrograph of
self-assembled QDs, where the height scale indicates 5 nm/division. Courtesy of Steve Lyon [20].
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(a) (b) (c)

Figure 1.2: (a) Scanning electron micrograph of a 1.2 µm diameter pillar cavity, where the optical
cavity is in the growing direction. Fabricated at University of Würzburg, courtesy of D. Press et. al.
[33]. (b) Scanning electron microscopy picture of a 2 µm diameter microdisk seen from the side, where
the optical modes propagate in the ring-structure, the so-called whispering gallery modes. Fabricated at
LPN/CNRS, courtesy of E. Peter et. al., [34]. (c) Scanning electron micrograph image of a single laser
cavity where light is trapped in the missing hole-defect in the periodic structure of changing refractive
index on the same scale as the wavelength of the light. The volume of the cavity is 0.03 cubic microns.
Courtesy of O. Painter, California Institute of Technology [35].

Semiconductor quantum dots and photonic cavities

The semiconductor industry is developing rapidly, and the possibility of creating nanoscale
structures has become a reality. Semiconductors posses a high degree of freedom in designing
structures with specific electronic properties, making semiconductors very viable for implement-
ing efficient single-photon sources and to integrate these in larger solid-state systems.

Semiconductor quantum dots are point-like nanoscale heterostructures, in which electrons are
confined in all three dimensions. A standard way to create QDs in a semiconductor is by epitaxial
growth using the Stranski-Krastanow technique [21, 22, 23, 24]. By molecular beam epitaxy [25],
a very thin semiconductor layer, e.g. InAs, is evaporated onto a substrate consisting of another
semiconductor material, e.g. GaAs. The difference in lattice constants builds up strain in the
material leading to the formation of small InAs-islands randomly positioned over a thin wetting
layer (WL), see Fig. 1.1a. Finally a thick layer of the substrate is grown on the top. Due to
this procedure of growing the dots by strain effects, the dots are called self-assembled quantum
dots, and they typically vary between 4-100 nm in size [26, 27], depending on the exact growing
parameters, see Fig. 1.1b.

Photonic cavities are structures in which light is confined in resonant modes which depend on
the structure material and geometries. In semiconductors three different types of microcavities
have shown to interact strongly with light and are often discussed as efficient cavity quantum
electrodynamical systems [28], see Fig. 1.2a-c. These are micropillar resonators [29], micro-
discs [30], and photonic crystal cavities (PCCs) [31], see [32] for a review on semiconductor
photonic cavities. Considering a PCC as example, light is confined due to a defect in a periodic
structure of materials with changing dielectric constant on a length scale that is comparable to
the wavelength of light.

3



Chapter 1. Introduction

Figure 1.3: Energy diagram of a QD-wetting layer model, where the QD is excited through the
wetting layer. The captions and drawings in blue indicates the interaction of the QD with an
optical cavity. For further explanations, see the main text. Inspired by picture in [36].

1.1 Dynamics in a cavity-QD system

To understand the dynamics in a cavity-QD system, the physical properties of the quantum dot
must first be understood. In a QD the electrons and holes are confined by having a semiconductor
with lower band edges than the surrounding semiconductor material, see Fig. 1.3. The nano-
scale confinement implies that carrier modes is described by a discrete set of energies in the dot.
In the wetting layer the carriers are confined only in one direction in a so-called quantum well
structure, where the two unconfined dimensions gives a continuum of WL modes. In the barrier
material the electrons are unconfined and are described by a bulk continuum.

Due to various decay mechanisms, the lifetime of a carrier an excited QD state is finite, and
eventually an electron and a hole will recombine and a photon will be emitted by spontaneous
emission. A standard experiment carried out in solid-states quantum optics, used e.g. to charac-
terize quantum dots, is photoluminescence spectroscopy, where spectral information about the
emitted light is obtained1 [38]. The excitation of a QD is indicated in Fig. 1.3 by the black
arrows. Typically a WL mode is excited by an external optical excitation2, which creates an

1If the QD is grown with the Stranski-Krastanow technique, a lot of dots appear in the sample, each having
different optical transition frequencies due to their different sizes, and these are all excited when the WL initially
is excited. By using a photodiode with a narrow spectrum, it is, however, possible to pick out a single quantum
dot for the measurements [37].

2The excitation of a WL mode and not directly a QD mode is due to practical purposes such that the
detection frequency is different from the excitation frequency. If the frequencies were equal, it would be difficult
to distinguish the emitted light from the excitation pulse in the measured spectrum.
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1.1. Dynamics in a cavity-QD system

electron in the conduction band and a hole in the valence band. In the WL the probability of
scattering on phonons (quantized lattice vibrations) and other carriers is large, and the carriers
quickly scatters to the bottom of the WL band. The ground state of the carriers is in the bottom
of their respective bands, such that holes actually ”scatter upwards” as indicated in Fig. 1.3.
The carriers are captured into the QD states and through scattering processes they relax to the
ground state of the QD, from which the carriers may recombine at the creation of a photon.

As bare QD as a light source has the advantage of being described by all solid states, but the
light emission is non-directional. By placing the QD in an optical cavity, directional emission
is obtained, and two physically different regimes appear for the combined QD-cavity system,
the strong and the weak coupling limit [39]. The dynamics in the two regimes are illustrated in
Fig. 1.3 by the blue lines and captions. In the strong coupling limit, the strength of the light-
matter coupling is large compared to the loss mechanisms, and energy oscillates between the
QD and the cavity. The weak coupling limit is characterized by loss mechanisms dominating
the coherent coupling, giving an irreversible decay of the excited QD, where the cavity acts
like an additional loss mechanism. The weak coupling limit is especially interesting for single-
photon sources due to the so-called Purcell effect, where a change in the local optical density of
states due to the optical cavity enhances the spontaneous emission rate. When the spontaneous
emission rate increases compared to the decoherence rate, the indistinguishability of the emitted
photons is increased, making this a promising single-photon source.

Experiments on various configurations with QDs inside photonic cavities have been carried
out, showing features of either the weak or the strong coupling regime [40, 41], and from the
latter a value of the electron-photon coupling strength for the given system may be extracted.
The dynamics of the system has been described by basic analytical models, where the phonon
interaction is examined only by a pure dephasing rate [42]. This approximation have recently
been shown to omit important effects of e.g. temperature, which may only be realized analyti-
cally by applying a many-body picture describing the interaction between electron, photons and
phonons [1, 43].

In this thesis we explore the many-body model of [1] by applying a master-equation formalism
and determining the reduced density matrix for a two-level quantum dot inside a single-mode
cavity, where the interaction with a large phonon reservoir has been traced out. We assume
that the phonon dispersion is not changed by the presence of the optical cavity, and we neglect
multi-phonon processes. We present a thorough description of the physics that the model in
[1] contains, and we exploit the model to qualitatively discuss the phonon-induced decrease in
emitter lifetime and the indistinguishability of the emitted photons. In the literature, simple
assumptions are always made concerning the electronic confinement in similar models, and to
our knowledge this is something that has not examined in details. We show in this thesis that
these simple assumptions miss relevant physical features, and we demonstrate how both the
electronic and phononic confinement may be engineered to change the effect of electron-phonon
scattering on the emitter lifetime and pure dephasing.

Other approaches to describe the dynamics of a coupled QD-cavity system is considered in
[44, 45], where a Green’s function formalism is used.
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Chapter 1. Introduction

1.2 Outline of the thesis

This thesis is divided into eight chapters, and a short outline of the contents is given below

Chapter 2: Fundamental Theory We start from the Hamiltonian of a charged particle inter-
acting with an electromagnetic field and derive a Hamiltonian in second quantization describing
the basic form of the Hamiltonian describing the QD-cavity system. An elaborating discussion
of the electron-phonon interaction is given for three different electron-phonon coupling mecha-
nisms.

Chapter 3: Equations of Motion The basic theory of quantum dynamics is reviewed, and we
derive the reduced density matrix for the QD-cavity system by tracing out the phonon degrees
of freedom in a time-local scattering assumption.

Chapter 4: Model: Cavity QED System The equation of motion from Chapter 3 is applied
to the model Hamiltonian derived in Chapter 2, and the resulting equations of motion (EOM)
may be formulated as a linear matrix differential equation.

Chapter 5: Exploring the Model The EOM from Chapter 4 are solved, and by starting from
a basic lossless system we thoroughly demonstrate the physical interpretation of the different
terms in the EOM, when the lossless model is expanded. We introduce the effective phonon
spectrum and describe how this is related to the relaxation time of the QD. Finally, we relate
the physics in this model with recent publications.

Chapter 6: Pure Dephasing and Indistinguishability An analytic expression for the time-
evolution operator of the QD-cavity system i derived. This is used to discuss the phonon-induced
pure dephasing effects and relate these to indistinguishability.

Chapter 7: Engineering the Electronic Confinement The influence of the shape of the
electron wavefunction on the electron-phonon interaction is examined in details, first with an ap-
proximate ellipsoidal wavefunction and then with wavefunctions obtained from FEM-calculation,
showing promising QD configurations for achieving low dephasing.

Chapter 8: Engineering the Phononic Confinement - Phonons in an Infinite Slab
The confinement of phonons in a simple slab structure is considered, showing both resonant and
suppressed phonon modes, which are discussed in relation to the QD-cavity system.

The simulations in this thesis are carried out using the parameters in Appendix A when nothing
else is mentioned.
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Chapter 2

Fundamental Many-Body Theory

In the first half of this chapter, we will sketch the origin of the Hamiltonian used to describe
the semiconductor QD-cavity system and clarify the various assumptions. The description is
based on standard textbooks [46, 47, 48], following [36]. The second half discusses the three
major electron-phonon scattering mechanisms, namely the deformation potential interaction,
the piezoelectric interaction, and the Fröhlich coupling.

2.1 The Hamiltonian

In the many-body description of the QD-cavity system, several different interaction mechanisms
contribute to the total Hamiltonian. To clarify the different contributions to the total Hamilto-
nian of the system, we divide the interaction into three fundamentally different parts,

H(t) = H0 +Hint + U(t). (2.1)

H0 describes the non-interacting part of H(t), and the interaction part, Hint, constitutes all
possible interactions between the particles. As discussed later when describing the operators in
second quantization, H0 only contains quadratic terms in the fermionic or bosonic operators,
whereas Hint consists of the product of more than two fermionic or bosonic operators. U(t)
represent all effects which have an explicit time dependence and these effects drive the system
from equilibrium. All the derivations are made keeping in mind that we want to use the theory
to describe a semiconductor heterostructure.

In this work we consider interaction of charged particles with a classical and quantized
electromagnetic field. The corresponding Hamiltonian is described in [49, 50, 48, 51] and is in
the Schrödinger picture given by

H =
∑
i

Ti(t) +
1

2

∫
dr

[
ε|E(r)|2 +

1

µ0
|B(r)|2

]
. (2.2)

The first term is the sum over all single-particle Hamiltonians describing the kinetic Ti(t) energy
of each individual particle, and the second term constitutes the energy of the total electromag-
netic field. Due to the time invariance of the equations of motion, H is a constant of motion,
see e.g. [48]. In Eq. (2.2) we have included non-resonant contributions to screeing by replacing
the vacuum permittivity ε0 by the background dielectric constant, ε = εrε0, with εr being the
relative permittivity [50].
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Chapter 2. Fundamental Many-Body Theory

Choosing to work in the Coulomb gauge where the vector potential A is transverse, i.e.
∇ ·A(r, t) = 0, we have

Et(r, t) = −∂A(r, t)

∂t
, El(r, t) = −∇ϕ(r, t), B(r, t) = ∇×A(r, t), (2.3)

where the electric field is divided into a transverse part determined by the vector potential and
a longitudinal part described by the scalar potential ϕ(r, t). Furthermore the quantized field
must be given in the Heisenberg picture where the operators are time-dependent. We will be
dealing with both classical and quantized electromagnetic fields, and thus the vector potential
must be written as a sum of these A(r, t) = Acl(r, t) + Aqm(r).

A standard way of introducing the electromagnetic interaction is in a gauge-invariant way
by the method of minimal substitution p→ p− qA, see e.g. [52]. Applying this in the Coulomb
gauge, the kinetic energy of the individual particles may be written as∑

i

Ti(t) =
∑
i

1

2mi
[pi − qiA(ri, t)]

2 (2.4)

≈
∑
i,ions

p2
i

2mi
+
∑
i,elec

[
p2
i

2mi
+

e

mi
A(ri, t) · pi

]
, (2.5)

where qi indicates the charge of the particle, qelec = −e, and where summation over the spin
index of the electron is contained in the sum to easen the notation. Three assumptions have
been made to arrive at this expression, see e.g. [36]:

1. The response of the ions to the field will be much smaller than the response of the electrons
due to the larger ion mass, and thus we neglect the ion-field interaction.

2. In the Coulomb gauge, A(ri) is transverse, and by using that pi = −i~∇i one may show
that A(ri) · pi = pi ·A(ri).

3. By considering low intensity fields, we may neglect terms of second order in A(ri).

To understand the contribution from the integral appearing in Eq. (2.2), it is advantageous to
divide it into a transverse and a longitudinal part

Htrans =
1

2

∫
dr

[
ε|Et(r, t)|2 +

1

µ0
|B(r, t)|2

]
, Hlong =

1

2

∫
dr ε|El(r, t)|2, (2.6)

using that the magnetic field is purely transverse, according to Maxwell’s equations. As shown
in [48], Hlong is just the Coulomb electrostatic energy of the system of charges plus the Coulomb
self-energy of the particle, which does not affect the dynamics, and we neglect it in this thesis.
For a system of point charges,

Hlong = VCoulomb =
1

2

∑
i 6=j

qiqj
4πε

1

|ri − rj |
, (2.7)

The Coulomb interaction may be written for the individual particle types,

VCoulomb = Vion-ion + Velec-elec + Velec-ion (2.8)

=
1

2

∑
i 6=j

ion-ion

qiqj
4πε

1

|Ri −Rj |
+

1

2

∑
i 6=j

elec-elec

e2

4πε

1

|ri − rj |
+
∑
i 6=j

elec-ion

(−e)qj
4πε

1

|ri −Rj |
.(2.9)
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2.1. The Hamiltonian

Note that no factor of 1/2 is included in Velec-ion because double counting is not present in
that sum. The last term Velec-ion may be simplified by considering displacements uj of the ions

relative to their equilibrium positions R
(0)
j in the static lattice,

Rj = R
(0)
j + uj . (2.10)

The displacement will be smaller for the heavy ions than for the lighter electrons, and we may

Taylor expand Velec-ion around Rj = R
(0)
j ,

Velec-ion =
∑
i 6=j

(−e)qj
4πε

1

|ri −Rj |
≈
∑
i 6=j

(−e)qj
4πε

[
1

|ri −R
(0)
j |
− uj ·∇ri

(
1

|ri −R
(0)
j |

)]
, (2.11)

neglecting terms of second or higher order in the displacement. The first term may be recog-
nized as the potential of electrons in a static lattice which we denote by U(ri). For an infinite
and homogeneous lattice has well-known periodic Bloch state solutions for the electron wave
functions, see e.g. [46, p. 36].

Summarizing from Eq. (2.5), (2.6), (2.9), and (2.11), we may divide the Hamiltonian in
Eq. (2.2) into non-interacting parts,

H0,elec{ri} =
∑
i,elec

[
p2
i

2mi
+ U(ri)

]
, (2.12)

H0,rad =
1

2

∫
dr

[
ε|Et(r, t)|2 +

1

µ0
|B(r, t)|2

]
, (2.13)

H0,ion{ri} =
∑
i,ion

[
p2
i

2mi

]
, (2.14)

and interacting parts

Helec-rad{ri} =
∑
i,elec

e

mi
A(ri, t) · pi, (2.15)

Helec-ion{ri} =
∑
i 6=j

uj ·∇ri

(
eqj
4πε

1

|ri −R
(0)
j |

)
, (2.16)

Helec-elec{ri} =
1

2

∑
i 6=j,elec-elec

e2

4πε

1

|ri − rj |
, (2.17)

Hion-ion{Ri} =
1

2

∑
i 6=j,ion-ion

qiqj
4πε

1

|Ri −Rj |
. (2.18)

Note that the Hamiltonian Eq. (2.2) only is valid for non-relativistic particles. For relativistic
particle modes, which obey ~ω & mc2, interaction happens at high particle velocities with the
possibility of creating new particles, which is not included in Eq. (2.2). A way to neglect the
relativistic modes is to introduce an upper frequency limit for the modes to be included, see e.g.
[48, p. 201].
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Chapter 2. Fundamental Many-Body Theory

2.1.1 Hamiltonian in first and second quantization

Assuming that the considered crystal lattice is approximately homogeneous, we are dealing with
a system of different groups of identical particles. To deal with such many-body systems of
identical particles it is convenient to formulate the problem in second quantization, see. e.g.
[46] or [53]. Below we introduce the main point of the quantization procedure.

The state of a quantum mechanical particle is described by the wavefunction ψν(r) = 〈r|ν〉
where |ν〉 is the state ket described by a complete set of quantum numbers denoted ν. Here ν
may label both a set of discrete or continuous quantum numbers.

In first quantization, a system of N identical particles is described by extending the single
particle state function to an N -particle wavefunction ψ(r1, r2, ..., rN ). The basis for the N -
particle system may be constructed from any orthonormal single-particle basis. Any given local
one-particle operator Oj = O(rj ,∇rj ), such as the kinetic operator − ~2

2m∇
2
rj , may be written in

the |ν〉-representation,

Oj =
∑
νa,νb

Oνaνb |ψνa(rj)〉〈ψνb(rj)|, (2.19)

with

Oνaνb =

∫
drj ψ

∗
νa(rj)O(rj ,∇rj )ψνb(rj), (2.20)

and the total contribution is found by summing over all positions, Otot =
∑

j Oj .

Two-particle operators such as the Coulomb interaction between particles at rj and rk,

V (rj − rk) = e2

4πε0
1

|rj−rk| , is in the |ν〉-representation given by

Vjk =
∑

νa,νb,νc,νd

Vνcνdνaνb |ψνc(rj)〉|ψνd(rk)〉〈ψνa(rj)|〈ψνb(rk)|, (2.21)

with

Vνcνdνaνb =

∫
drj

∫
drk ψ

∗
νc(rj)ψ

∗
νd

(rk)V (rj − rk)ψνa(rj)ψνb(rk), (2.22)

where the total contribution is Vtot = 1
2

∑
j,k 6=j Vjk.

When considering systems with a lot of particles, calculations with the full wavefunction
ψ(r1, r2, ..., rN ) quickly becomes cumbersome, and calculations may more easily be carried out
in second quantization representation or the so-called occupation number representation. Instead
of describing the particles by wavefunctions, we count the number of particles in each orbital
|ν〉.

The main concept is to create an N -particle Hilbert space which is spanned by products of
complete orthonormal sets of the single particle states |ν〉. Each single-particle state consists of
a spatial part |α〉 and a spin part |σ〉, giving |ν〉 = |α〉 ⊗ |σ〉.

This enables the description of operators by creation and annihilation operators in this new
occupation number representation. As stated earlier, the non-interacting parts of the Hamilto-
nian are described in the general form of a one-particle operator O with two creation/annihilation
operators, where interactions, such as the Coulomb interaction illustrated here, are described

10



2.1. The Hamiltonian

by three or more [46, 47],

O =
∑
νiνj

Oνiνja
†
νiaνj , (2.23)

V =
1

2

∑
νiνjνkνl

Vνiνj ,νkνla
†
νia
†
νjaνlaνk . (2.24)

Here a† indicates a creation operator and a an annihilation operator.

To describe an operator in second quantization, the quantum field creation and annihilation
operators Ψ†(r) and Ψ(r) are introduced,

Ψ†(r) =
∑
ν

ψ∗ν(r)a†ν =
∑
ν

〈r|ν〉∗a†ν , Ψ(r) =
∑
ν

ψν(r)aν =
∑
ν

〈r|ν〉aν . (2.25)

These operators may be interpreted as being the sum of all the possible ways that a particle can
be added to/removed from the position r trough any of the basis states ψν(r). Using these we
obtain the real space representation of a single-particle operator in second quantization,

O =
∑
νaνb

Oνaνba
†
νaaνb (2.26)

=
∑
νaνb

(∫
drψ∗νa(r)O(r)ψνb

)
a†νaaνb (2.27)

=

∫
dr

(∑
νa

ψ∗νa(r)a†νa

)
O(r)

(∑
νb

ψνb(r)aνb

)
(2.28)

=

∫
dr Ψ†(r)O(r)Ψ(r), (2.29)

and a similar expression exists for two-particle operators.

In the following we will write the different term of the total Hamiltonian,Eq. (2.12)-(2.18), in
second quantization, following [36]. We denote the bosonic creation and annihilation operators
for photons by a† and a, the bosonic operators for the phonons by b† and b, and the fermionic
operators describing the electron by c† and c.

Non-interacting parts of the Hamiltonian

By non-interacting parts of the Hamiltonian we refer to the terms containing products of two
bosonic or fermionic operators, and these terms has to be time-independent in the Schrödinger
picture. The non-interacting part of H consists of an electronic, a photonic, and a phononic
part, which are described below.

Electrons The non-interacting electron part of the Hamiltonian is Eq. (2.12) and may be
written as

H0,e({ri}) =
∑
i

H0,e(ri). (2.30)
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Chapter 2. Fundamental Many-Body Theory

In second quantization a preferred basis for electrons is the eigenstates of H0,elec obeying the
Schrödinger equation H0,e(r)ψν(r) = ~ωνψν(r), in which the Hamiltonian Eq. (2.12) diagonalizes
using Eq. (2.28),

H0,e =

∫
dr Ψ†(r)H0,e(r)Ψ(r) =

∑
νaνb

c†νacνb~ωνbδνaνb =
∑
ν

~ωνc†νcν . (2.31)

The number operator c†νcν ,,counts” if there is 0 or 1 electron (due to its fermionic nature) in
state ν. If one electron is present in the state ν, ~ων is added to the total energy.

Photons The non-interacting photonic Hamiltonian stems from the energy of the transverse
electromagnetic field Eq. (2.13). The quantization of the radiation field is described in details in
many textbooks [39, 53]. The E-field may be expressed as a weighted sum of orthonormal mode
functions {wn(r)} which are determined by the boundary conditions of the specific problem.
The quantum number n is combined of both the spatial and polarization quantum numbers.
The total transverse electric field is obtained by summing over all modes

Et(r, t) =
∑
n

En[a†n(t) + an(t)]wn(r), (2.32)

where the time-dependence of the photonic annihilation and creation operators a†n(t) and an(t) is
described in the Heisenberg picture. The weight factor En = i

√
~ωn/(2ε0VP ) may be understood

as the electric field ,,per photon” of energy ~ωm, where ε0 is the vacuum permittivity and VP is
the quantization of the photon modes.

With Eq. (2.3) we may relate the magnetic field to the electric field,

∇×Et(r, t) = −∂(∇×A(r, t))

∂t
= −∂B(r, t)

∂t
, (2.33)

and by using this when inserting the expression for the quantized electric field, Eq. (2.32), into
H0,rad, we arrive at

H0,rad =
∑
n

~ωn
(
a†nan +

1

2

)
, (2.34)

where the 1/2 describes the energy of the vacuum field.

Phonons The non-interacting part describing the phonons stems from the kinetic energy of the
ions in Eq. (2.14) and the Coulomb-interaction between the ions in Eq. (2.18). Due to the heavy
masses of the ions compared to the electron, the ions react slower to external perturbations.
Furthermore the ions are placed in a static lattice, and under the harmonic approximation, as
we will introduce below, the ion-ion interaction may be approximately described by a quadratic
term in the bosonic operators, which is why it considered in this section, see e.g. [47, sec. 1.1]
or [46, chap. 3].

We consider the displacement of an ion, Qi, from its equilibrium position in the static

lattice, R
(0)
i , such that Ri = R

(0)
i +Qi. In the same way as done for the electron-ion interaction

in Eq. (2.11) a Taylor-expansion of Hion-ion is done around Qi = 0. The zeroth order term
becomes a constant which does not affect the dynamics, and this is neglected. Furthermore the
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2.1. The Hamiltonian

equilibrium position may be defined such that the first order term is zero [46]. The first actual
contribution comes from the second order term. The harmonic approximation states that due to
the heavy ion masses and the static lattice, it is reasonable only to include the second order term
in the Hamiltonian, in which case the quantized Hamiltonian describing the non-interacting part
of the phonon Hamiltonian becomes [47, 54]

H0,ph =
∑
µ

~ωµ
(
b†µbµ +

1

2

)
. (2.35)

The quantum number µ is a combination of the wavevector k, restricted to the first Brillouin
zone, and the phonon branch λ dictating the polarization of the phonon. The term corresponding
to q = 0 corresponds to a uniform translation of the crystal and should formally not be included
in the sum [46].

To express this Hamiltonian in second quantization we assume bulk phonons, i.e. the phonons
are assumed to exist in a perfectly periodic lattice. For QDs grown with the Stranski-Krastranow
technique, the QDs are typically small and the wetting layers thin, so this approximation is
reasonable.

What is excluded in the harmonic approximation is terms of third or higher order in the
displacement. These are the so-called anharmonic effects, where the first term has the form∑

kq
λ1λ2λ3

Qk,λ1Qq,λ2Q−k−q,λ3Mkq,λ1λ2λ3 , (2.36)

with Qi = |Qi| and where Mkq,λ1λ2λ3 describes the interaction strength. As we see from
Eq. (2.36), the anharmonic effets includes the possibility of one phonon decaying into two or
more phonons vice versa. It is reasonable to neglect the anharmonic terms when considering
the phonon dispersion relation, but they has to be included when looking at decay of phonon
modes [55].

Interaction parts of the Hamiltonian

Electron-photon The interaction of the electrons with the electromagnetic field Eq. (2.15) is in
the literature denoted the A·p-interaction. It is well-known that in the dipole approximation the
A · p-interaction may be replaced by a d ·Et-interaction, where di = −eri is the electric dipole
operator describing the interaction of light with an electron at ri, [39]. The dipole approximation
is valid when the wavelength of the radiation field is much larger than the characteristic size
of the atoms in the solid. Typically optical wavelengths ∼ 400− 700 nm are used, and the size
of the atoms are on the order of a few ångströms, and the requirement is fulfilled, allowing us
to consider the vector field as spatially uniform, A(r, t) ≈ A(t). In this case, the interaction
Hamiltonian becomes [53],

Helec-rad = −
∑
i

di ·Et(t). (2.37)

The transverse electric field is the sum of a classical and a quantized field, Et(t) = Et,clas(t) +
Et,QM, where the quantized part is time independent in the Schrödinger picture.
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Chapter 2. Fundamental Many-Body Theory

The semi-classical interaction between electrons and a classical field is denoted U(t) and is
determined using Eq. (2.29),

U(t) =

∫
dr Ψ†(r)Et,clas(t)Ψ(r) (2.38)

= Eclas(t)
∑
νaνb

dνaνbc
†
νacνb , (2.39)

in which the projected dipole matrix element has been introduced,

dνaνb =

∫
drψ∗αa(r)er · ξEclas

ψαb(r)δσa,σb . (2.40)

Here ξEclas
is the polarisation vector of Eclas, and again the spin-dependence has been extracted

from the wavefunctions by writing ψν = ψαχσ, where χσ describes the spin. The time depen-
dence appearing in U(t) is not to be understood in the Heisenberg picture, but rather describes
any explicit time dependence in the classical field.

The interaction due to the quantized part of the electrical field is obtained by using the
expression for the quantized field in Eq. (2.32). With Eq. (2.29) we obtain in the Schrödinger
picture

Helec-rad =

∫
dr Ψ†(r)er ·Et,QMΨ(r) (2.41)

=
∑
νaνbn

~gnνaνbc
†
νacνb(a

†
n + an), (2.42)

where ~gnνaνb describes the coupling strength,

~gnνaνb = wnEn
∫

drψ∗αa(r)er · ξwnψαb(r)δσaσb . (2.43)

Here wn = |wn| is independent of r and may be evaluated everywhere due to the dipole approx-
imation.

Electron-phonon The electron-phonon interaction is described by the interaction of the elec-
trons with the ion displacements in the lattice and is given by Eq. (2.16), which may be written
as

Helec-ph({ri}) =
∑
i

Helec-ph(ri) (2.44)

where Helec-ph(ri) contains the quantized ionic displacement operator u. Following a standard
derivation as in [47, sec. 1.1] or [46, sec. 3.6], the form of the quantized displacement vector in
is

u(r) = i
∑
µ

√
~

2ρV ωµ(k)
ξµ

(
b†µ + bµ

)
eik·r, (2.45)

where µ = (−k, λ) with λ being the polarization quantum number. Here u(r) has to be evaluated

from the equilibrium points of the ions, r = R
(0)
j . Furthermore ρ is the crystal density, V is
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2.1. The Hamiltonian

the normalization volume of the phonon modes, ξµ is the polarization vector, and ωµ(k) is the
phonon frequency.

Using Eq. (2.29) we may express the interaction using the second quantization formalism,

Helec-ph =

∫
dr Ψ†(r)Helec-ph(r)Ψ(r) (2.46)

=
∑
νaνb,µ

Mµ
νaνb

c†νacνb

(
bµ + b†µ̄

)
, (2.47)

where the coupling strength is given by

Mµ
νaνb

= i

√
~

2ρV ωµ(k)

∑
j

eik·R(0)
j

∫
drψ∗αa(r)ξµ ·∇r

[
eqj
4πε

1

|r−R
(0)
j |

]
ψαb(r)δσaσb . (2.48)

Electron-electron The electron-electron interaction given by Eq. (2.17) and may be written as

Helec-elec({r}) =
1

2

∑
i 6=j

Helec-elec(ri − rj). (2.49)

In second quantization this may be expressed as

Helec-elec =
1

2

∑
νiνjνkνl

Vνiνj ,νkνlc
†
νic
†
νjcνlcνk , (2.50)

where Vνiνj ,νkνl is the Coulomb matrix element given by Eq. (2.22),

Vνcνdνaνb =

∫
dr

∫
dr′ ψ∗αc(r)ψ∗αd(r

′)V (r− r′)ψαa(r)ψαb(r
′)δσi,σkδσj ,σl , (2.51)

where the spin dependency notationally have been pulled out of the wavefunctions to clarify
with the Kronecker-δs, that the Coulomb interaction is diagonal in spin.

The total Hamiltonian in second quantization

All elements of the Hamiltonian

H(t) = H0 +Hint + U(t), (2.52)

have been expressed in second quantization and is summed up in the table below.

Non-interacting part Interacting part

H0 = H0,elec +H0,rad +H0,ph Hint = Helec-elec +Helec-rad +Helec-ph

H0,elec =
∑

ν ~ωνc
†
νcν Helec-elec = 1

2

∑
νiνjνkνl

Vνiνj ,νkνlc
†
νic
†
νjcνlcνk

H0,rad =
∑

n ~ωn
(
a†nan + 1

2

)
Helec-rad =

∑
νaνbn

~gnνaνbc
†
νacνb(a

†
n + an)

H0,ph =
∑

µ ~ωµ
(
b†µbµ + 1

2

)
Helec-ph =

∑
νaνb,µ

Mµ
νaνbc

†
νacνb

(
bµ + b†µ̄

)
Externally applied field U(t) = Eclas(t)

∑
νaνb

dνaνbc
†
νacνb
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Chapter 2. Fundamental Many-Body Theory

The parts of the Hamiltonian describing the photons look similar to the part describing the
phonon due to the bosonic nature of both particle types.

2.2 Carrier-phonon interaction

Phonons are quantizations of lattice vibrations, and for crystals with two or more atoms per
primitive basis such as GaAs, the phonons may divided into two classes, acoustic and optical
phonons, see e.g. [54, chap. 5]. Each of these classes are divided into transverse (respectively
TA and TO) phonons and longitudinal (LA and LO) phonons. They are characterized by their
dispersion properties seen in Fig. 2.1a: For the acoustic phonons, the ions move in phase with
each other. In the long-wavelength limit (close to the center of the Brillouiin zone, Γ) the acoustic
phonons have a linear dependence between frequency and wavevector, and the frequency tends
to zero for λ → ∞ corresponding to sound waves in a lattice, which is the reason for calling
them ,,acoustic phonons”. In this limit, the speed of the acoustic and transverse phonons may
be extracted as the slope of the dispersion curve, which gives a larger sound speed for the
LA-phonons than for the TA-phonons.

Optical phonons on the other hand are called optical because they may be excited by infrared
radiation. They correspond to a vibrational mode in an ionic crystal when the differently
charged ions oscillate out of phase, creating a time-varying electrical dipole moment. Thus
optical phonons induce a relative displacement inside the primitive unit cell of the crystal in
contrast to the acoustic phonons that are more like a macroscopic strain of the crystal.

The carrier-phonon interaction can be described by three major mechanisms [47]: Deforma-
tion potential, piezoelectric interaction and polar coupling. Below we give a description of the
three types of interactions, considering that the interaction may happen with both electrons and
holes.

(a) (b)

Figure 2.1: (a) Phonon dispersion curve for GaAs from calculations (solid line) and experimental points
found using neutron diffraction [56]. The plot shows the angular frequency as a function of the wavevector
k. In some regions the TA and TO branches split into two different branches. (b) GaAs crystallizes in
a Zinc-blende structure and is in reciprocal space described by a truncated octahedron shaped Brillouin
zone as seen in the figure with indications of some high-symmetry points (picture from Wikipedia.org).
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2.2. Carrier-phonon interaction

2.2.1 Deformation potential

The concept of deformation potentials was first introduced by Bardeen & Shockley in 1950
[57] and has been discussed and developed in many articles and books, ex. [58, 59]. The
deformation potential describes local site deformations that are caused by dilations associated
with acoustic lattice waves. For long-wavelength acoustic phonons, the displacement corresponds
to a deformation of the crystal leading to a shift of the electronic bands. The deformation
potential is defined as the energy change per unit strain of an electronic level.

Following derivations in [60, 61, 62, 63, 64], we for simplicity consider a non-degenerate band
which appears e.g. at Γ in Fig. 2.1b. The dilation covers both rotation and strain, but since a
rotation of the crystal does not change the energy bands, the energy shift depends only on the
strain. To the leading order, the energy shift is proportional to the relative volume change δV ,
and we may write the the interaction Hamiltonian as

H
(DP)
e/h = ∆Ec/v = De/h

δV

V
= De/hTr{σ̂}, (2.53)

where De/h is the deformation potential constant for the electron/hole, V is the volume of a
unit cell of the crystal, and Tr{σ̂} is the trace of the strain tensor. When De/h < 0, the bottom
of the energy bands are shifted toward higher energies in when the crystal is compressed.

The strain tensor for a homogeneous material, assuming that the strains are small and obey
Hooke’s law, has the elements [54, chap. 3],

σij =
1

2

(
∂ui
∂rj

+
∂uj
∂ri

)
, (2.54)

where ui is the vector components of the local displacement field of the phonons, u(r). This
allows us to write

H
(DP)
e/h = De/h

(
∂ux
∂x

+
∂uy
∂y

+
∂uz
∂z

)
= De/h∇ · u(r), (2.55)

with u(r) = (ux(r), uy(r), uz(r)) being the displacement as given in Eq. (2.45).

The displacement may be divided into a longitudinal variation described by ulong(r) =
(ux(x), uy(y), uz(z)) and a transverse variation utrans(r) = (ux(y, z), uy(x, z), uz(x, y)). As we
see from Eq. (2.55), only the longitudinal acoustic phonons contribute to ∇ ·u(r), and the final
Hamiltonian in coordinate representation is

H
(DP)
e/h (r) = −De/h

∑
k

k

√
~

2ρV ωLA(k)

(
b†−k,LA + bk,LA

)
eik·r. (2.56)

In the literature the minus is as standard adapted into the value of De/h, such that the usually
given values of the deformation potential already contains this minus1 [60]. We will do that
from now on. Transforming this into second quantization with respect to the electron/hole

1In some publications, other sign conventions are used, so it is always important to check this in details.
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states using Eq. (2.29), gives

H
(DP)
e/h =

∑
νν′

〈ν|H(DP)
e/h (r)|ν ′〉c†νcν′ (2.57)

=
∑
νν′

∫
drψ∗e/h,ν′(r)H

(DP)
e/h (r)ψe/h,ν′(r)c†νcν′ (2.58)

= De/h

∑
k,νν′

k

√
~

2ρV ωLA(k)
Fe/h,νν′(k)

(
b†−k,LA + bk,LA

)
c†νcν′ . (2.59)

where the form factor is

Fe/h,νν′(k) =

∫
drψ∗e/h,ν(r)ψe/h,ν′(r)eik·r. (2.60)

The form factor has the symmetry properties Fe/h,νν′(k) = F∗e/h,ν′ν(−k).

Comparing Eq. (2.59) with the general form of the electron-phonon interaction in Eq. (2.47),
we find the interaction matrix element to be given by

M
(DP)
e/h,νν′

(k) = De/hk

√
~

2ρV ωLA(k)
Fe/h,νν′(k), (2.61)

At some other symmetry points in the crystal, where the bands are degenerate, e.g. at X or L
point in Fig. 2.1b, the De/h in Eq. (2.53) is not a scalar but rather a tensor and more complex
equations involving also TA phonons has to be considered [55].

2.2.2 Piezoelectric interaction

In non-centrosymmetric materials the presence of stress induces a macroscopic electric polariza-
tion, and this effect is know as the piezo-electric effect. The effects also works the other way, such
that a acoustic phonon will induce a polarization which will interact will the electrons, and this
is called the piezoelectric interaction. If the strain tensor σ̂ describes the crystal deformation,
the piezoelectric polarisation is P = d̂σ̂, where d̂ is the piezoelectric tensor [63].

The piezoelectric interaction is described in details in e.g. [47, 63], and we will only provide
the result written in second quantization,

H
(PE)
e/h =

∑
k,s,νν′

M
(PE)
e/h,νν′,s(k)

(
b†−k,s + bk,s

)
c†νcν′ , (2.62)

where

M
(PE)
e/h,νν′,s(k) = ∓i

√
~

2ρV ωs(k)

de

ε0ε1
Ms(k̂)Fe/h,νν′(k), (2.63)

d = {d̂}xyz = {d̂}yzx = {d̂}zxy for a zinc-blende structure, and Ms(k̂) is a unitless factor
depending on the phonon polarization. The form factor is as given in Eq. (2.60). The index s
indicates eiter TA or LA phonons in contrast to the deformation potential interaction, where
only LA phonons are present.
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2.3. Summary and discussion

2.2.3 Fröhlich interaction

Polar coupling appears only in polar crystals, which have two or more atoms in the primitive
unit cell with different charge. When an optical field is present, different ions move out of phase
and oscillate in different directions creating a polarization field, which scatters the electrons.
Only the LO and not the TO phonons set up a field when vibrating that is strong enough for
the electrons to couple to. A derivation of the Hamiltonian for this so-called Fröhlich interaction
may be found in [47, 65, 63] and is

H
(Fr)
e/h =

∑
k,s,νν′

c†νcν′M
(Fr)
e/h,νν′,s(k)

(
bk,LO + b†−k,LO

)
, (2.64)

where

M
(Fr)
e/h,νν′(k) = ∓ e

k

√
~ωLO(k)

2V ε0ε̄
Fe/h,νν′(k). (2.65)

Here ωLO(k) is the angular frequency of the LO-phonon, and ε̄ = (1/ε∞−1/εs)
−1 is the effective

dielectric constant with ε∞ and εs being respectively the high-frequency and static dielectric
constant.

2.3 Summary and discussion

In this chapter we have sketched the derivation of the various parts of the Hamiltonian for
a many-body semiconductor system describing interactions between electrons, photons, and
phonons.

The three major electron-phonon are introduced to describe the various kinds of electron-
phonon interaction mechanisms: The deformation potential coupling, the piezoelectric interac-
tion, and the Fröhlich interaction. The matrix elements describing these interactions all contain
the same form factor describing the interaction of the electronic confinement with bulk phonons.

In a QD structure, the Fröhlich coupling give rise to phonon sidebands in the absorption
spectrum well separated from the zero phonon line, whereas the acoustical phonons introduce a
broadening of the zero phonon line [66]. We only consider a phonon-assisted coupling between
the QD and a cavity, where the detuning is much smaller than the energy of the LO-phonons,
and thus we will neglect the Fröhlich coupling in our calculations.

The piezoelectric interaction depends strongly on the separation of the electron and hole
wavefunctions. In GaAs the deformation potential is dominating the piezoelectric coupling,
but a material like GaN possesses strong polarisation charges at the interfaces which gives a
strong build in polarisation, in which the piezoelectric interaction will be much stronger than
the deformation potential coupling [42]. In our calculations we consider GaAs as bulk substrate,
in which case it is reasonable to disregard the piezoelectric coupling too.
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Chapter 3

Equations of Motion

The dynamics of a quantum mechanical system is determined by the time-dependent Schrödinger
equation,

i~∂t|ψ(t)〉 = H(t)|ψ(t)〉, (3.1)

with |ψ(t)〉 being the state vector, and where H(t) in general may have an explicit time depen-
dence. When few particles are considered, Eq. (3.1) may be solved by expanding the Hamiltonian
and wavefunction into a many-particle Hilbert space, which converts the problem into a system
of linear differential equations.

For an open quantum system, where a small system interacts with a many-body environ-
ment, a standard approach to determine the system dynamics is the quantum master-equation
approach [67]. The environment is modelled as a reservoir, and the reduced density matrix for
the system is obtained by tracing out the reservoir degrees of freedom.

In Section 3.1 we give a brief review of basic quantum dynamics based on [53, 46]. In
Section 3.2 we derive specific equations of motion for a quantum system interacting weakly with a
large bosonic reservoir, keeping in mind that this general theory later on is going to be applied to
a QD-cavity system interaction with a phonon reservoir. Our approach has similarities with the
standard Markovian quantum master-equation approach, but we obtain non-Markovian time-
local scattering terms which still contain memory. This method also has similarities with the
more advanced ”time convolutionless approach” [68]. The derivations follow [69] and standard
textbooks [70, 71, 72].

3.1 Basic quantum dynamics theory

If an initial state is given at a time t = t0, a solution to the time-dependent Schrödinger equation,
Eq. (3.1), may formally be described by a time evolution operator,

|ψ(t)〉 = U(t, t0)|ψ(t0)〉, (3.2)

From Eq. (3.1) we see by insertion that U(t, t0) must obey

i~∂tU(t, t0) = H(t)U(t, t0). (3.3)

with the initial condition U(t0, t0) = I, with I being the identity operator, corresponding to an
unchanged system. Provided that H(t) is Hermitian and using Eq. (3.3), we have

i~∂t
{
U †U

}
= −U †H†U + U †HU = 0. (3.4)
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Chapter 3. Equations of Motion

This means that U †U has to be constant, and due to the initial condition we have

U †(t, t0)U(t, t0) = I, (3.5)

or, said in another way, that U(t, t0) is a unitary operator.

For a time-dependent Hamiltonian, U may be expressed as a time-ordered exponential [46],

U(t, t0) = T̂
(

e
−i~−1

∫ t
t0

dt′H(t′)
)
, (3.6)

where T̂ is the chronological time-ordering operator, which orders the product of time-dependent
operators such their time argument increase from right to left1. For an isolated physical sys-
tem, which is a system that do not interact with the environment at all, the Hamiltonian is
time-independent. For time-independent Hamiltonians, Eq. (3.6) reduces to the well-known
expression

U(t, t0) = e−i~−1H(t−t0). (3.7)

If the considered system is not in a pure quantum state but instead in a mix of different
quantum states, we characterize the ensemble of quantum states by the density matrix operator
ρ(t). We consider the time evolution of such a system, which at initial time t = t0 is described
by

ρ(t0) =
∑
a

wa|ψa(t0)〉〈ψa(t0)|. (3.8)

The initial state is a mix of normalized quantum states, where the probability of the system to
be in a given state |ψa〉 is equal to the positive weight factor wa,

∑
awa = 1. Each state vector

evolves according to Eq. (3.2), so at time t, the system will be in the state

ρ(t) =
∑
a

waU(t, t0)|ψa(t0)〉〈ψa(t)|U †(t, t0) = U(t, t0)ρ(t0)U †(t, t0). (3.9)

By simple differentiation of ρ(t) and exploitation of Eq. (3.3), we arrive an equation of motion
for the density operator

dρ(t)

dt
=

1

i~
[H(t), ρ(t)] . (3.10)

This is often referred to as the von Neumann equation. Constant terms in H commutes with
ρ(t) and thus do not affect the dynamics of the system but only contribute to an energy shift.

A natural initial state for a solid-state system is the thermal equilibrium, described by the
density matrix

ρ =
exp(−βH)

Tr{exp(−βH)}
, (3.11)

where β = 1/(kBT ) and Tr{·} =
∑

n〈n| · |n〉 indicates the trace, where the sum is over all
possible states.

1An elaborate description is provided in many textbooks, e.g. [46].
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3.1. Basic quantum dynamics theory

The Schrödinger, Heisenberg, and Interaction Picture

What is measured in experiments is the expectation value of a physical observable A. It may be
calculated using the density matrix of the system and the time evolution operator from Eq. (3.6),

〈A(t)〉 = Tr [Aρ(t)] (3.12)

= Tr
[
AU(t, t0)ρ(t0)U †(t, t0)

]
= Tr

[
U †(t, t0)AU(t, t0)ρ(t0)

]
(3.13)

= Tr [AHeis(t)ρ(t0)] , (3.14)

where we exploit the invariance of the trace of a product with respect to cyclic permutation.
Eqs. (3.12) and (3.14) demonstrate two different frames for calculating the same expectation
value. In the Schrödinger picture in Eq. (3.12), the time-dependence is contained in the state
operator (wave function), and the time evolution is governed by the equation of motion in
the Schrödinger picture, Eq. (3.10), in which H(t) is given in the Schrödinger picture. In
contradiction to this frame is the Heisenberg picture illustrated by Eq. (3.14), where the state
operator is independent of time, and the time evolution is contained in the Heisenberg operator
AHeis(t), given by

AHeis = U †(t, t0)AU(t, t0). (3.15)

for the Schrödinger operator A. The Schrödinger and Heisenberg pictures are equivalent pictures
giving the same expectation value of A, since 〈A(t)〉 only depends on the relative motion of A
and ρ.

A third frame is generally known as the interaction picture (IP), which typically is used when
H contains a part H0, with know energy eigen-solutions {εn, |n〉}, and a small perturbation V (t)
that may be time dependent,

H(t) = H0(t) + V (t), H0(t)|n〉 = εn|n〉. (3.16)

The main point by using the IP is to separate trivial time evolution due to H0 from the total
Hamiltonian. This is achieved by applying the unitary time evolution operator U as described
in Eq. (3.6) with H(t) replaced by H0(t) which we indicate notationally as UH0(t). An operator
in the IP is thus given as

Ã(t) = U †H0(t)(t, t0)AUH0(t)(t, t0). (3.17)

To clarify the purpose of the IP description, we calculate the time derivative of a state |ψ̃(t)〉 =

U †H0(t)|ψ(t)〉 described in the IP,

i~∂t|ψ̃(t)〉 = i~∂t{U †H0(t)(t, t0)}|ψ(t)〉+ i~U †H0(t)(t, t0)∂t{|ψ(t)〉}. (3.18)

Using Eqs. (3.3) and (3.1) and the fact that H0(t) and UH0(t)(t, t0) commute, we get

i~∂t|ψ̃(t)〉 = −U †H0(t)(t, t0)H0(t)|ψ(t)〉+ U †H0(t)(t, t0)H(t)|ψ(t)〉 (3.19)

= U †H0(t)(t, t0)

(
H(t)−H0(t)

)
|ψ(t)〉 (3.20)

= Ṽ (t)|ψ̃(t)〉, (3.21)
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Chapter 3. Equations of Motion

where we exploit the unitarity of U as shown in Eq. (3.5) and furthermore Eq. (3.17) to write
V (t) in the IP.

In the limit of an infinitely small perturbation, V (t) ≈ 0, the IP is similar to the Heisenberg
picture. In the limit of H0 = 0, UH0(t)(t, t0) is equal to the identity operator, and the IP is
similar to the Schrödinger picture. The choice on which of the three pictures to use, depends
on the specific Hamiltonian for a given problem.

3.2 Equations of motion

In this section we introduce the equation of motion for a system interacting with a large bosonic
reservoir. The main focus in the derivation is to trace out the reservoir degrees of freedom and
only consider a reduced density matrix description.

The Hilbert space describing the total system, Htotal = HS ⊗ HR, is the product of the
subspace belonging to the system and the subspace of the reservoir. From the density operator
χ(t) of the total system S⊕R, the reduced density opreator for the system can be obtained by
tracing out the reservoir as ρ(t) = TrR {χ(t)}. If Ô is an operator in the system Hilbert space,
S, the average value of Ô is

〈Ô〉 = TrR⊕S

{
Ôχ(t)

}
= TrS

{
ÔTrR {χ(t)}

}
= TrS

{
Ôρ(t)

}
. (3.22)

Thus to calculate average values of system operators we only need to know the reduced density
matrix, ρ(t), and not the full, χ(t).

We separate the Hamiltonian into three different parts: A Hamiltonian for the system, HS, a
part only connected to the reservoir, HR, and a last part HSR describing the interaction between
the system and the reservoir,

H = HS +HR +HSR = H0 +HSR. (3.23)

where we limit ourselves to only consider the case of a time-independent Hamiltonian. The time
evolution of the total density matrix in the Schrödinger picture is given by

∂tχ(t) =
1

i~
[H,χ(t)] . (3.24)

To separate the time evolution described by H0 from the one arising from the interaction HSR,
we describe χ(t) in the interaction picture,

χ̃(t) = e
i
~H0tχ(t)e

−i
~ H0t. (3.25)

If the interaction is weak, the interaction picture provides a good angle for examining the slow
motion stemming from HSR because the fast motion due to H0 is suppressed. Differentiation of
χ̃(t) gives

∂tχ̃(t) = − 1

i~
e

i
~H0t [H0, χ(t)] e

−i
~ H0t + e

i
~H0t∂t{χ(t)}e

−i
~ H0t. (3.26)

By using Eq. (3.24) and that unitary properties of the operator e−
−i
~ H0t (described in Eq. (3.7)),

we arrive at

∂tχ̃(t) = − 1

i~
e

i
~H0t [H0, χ(t)] e

−i
~ H0t +

1

i~

[
e

i
~H0t(H0 +HSR)e

−i
~ H0t, e

i
~H0tχ(t)e

−i
~ H0t

]
=

1

i~

[
H̃SR(t), χ̃(t)

]
, (3.27)
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where

H̃SR(t) = e
i
~H0tHSRe

−i
~ H0t. (3.28)

We may formally integrate Eq. (3.27),

χ̃(t) = χ̃(t0) +
1

i~

∫ t

t0

dt′
[
H̃SR(t′), χ̃(t′)

]
. (3.29)

By inserting this back into Eq. (3.27), we get

∂tχ̃(t) =
1

i~

[
H̃SR(t), χ̃(t0)

]
− 1

~2

∫ t

t0

dt′
[
H̃SR(t),

[
H̃SR(t′), χ̃(t′)

]]
. (3.30)

We consider the expression for ρ(t) in the interaction picture,

ρ̃(t) = e
i
~HStρ(t)e−

i
~HSt, (3.31)

noting that ρ(t) in the interaction picture only is described by the free Hamiltonian of the system
and not the total H0 as in Eq. (3.25). Exploiting the cyclic properties of the trace, we have

TrR {χ̃(t)} = TrR

{
e

i
~H0tχ(t)e

−i
~ H0t

}
(3.32)

= e
i
~HStTrR

{
e

i
~HRtχ(t)e

−i
~ HRt

}
e−

i
~HSt (3.33)

= e
i
~HStρ(t)e−

i
~HSt (3.34)

= ρ̃(t). (3.35)

Using this we may trace over the reservoir in Eq. (3.30),

∂tρ̃(t) =
1

i~
TrR

{[
H̃SR(t), χ̃(t0)

]}
− 1

~2

∫ t

t0

dt′TrR

{[
H̃SR(t),

[
H̃SR(t′), χ̃(t′)

]]}
. (3.36)

This expression is exact, but still contains expressions related to the reservoir. To handle these
terms, we have to make a couple of assumptions.

Factorization and assumptions

We assume that there is no correlation between the subsystems S and R when the system is
turned on at an initial time t = t0, meaning that we may factorize the density operator,

χ(t0) = ρ(t0)⊗R0, (3.37)

where R0 is the initial density operator for the reservoir.
If the reservoir is very large and the coupling between the system and reservoir is weak, we

may assume that the reservoir remains in the thermal state R0 = exp(−βHR)
TrR{exp(−βHR)} at all times,

β = 1/(kBT ). We assume that HSR contains terms with exactly one bosonic operator, b† or b,
and because R0 contains only terms with an even number of bosonic operators (seen by a Taylor-
expansion of the exponential because HR contains only quadratic terms in bosonic operators),
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H̃SR(t)R0 will contain an odd number of bosonic operators. In that case TrR

{
H̃SR(t)R0

}
= 0

due to the fact that 〈n|b†|n〉 = 〈n|b|n〉 = 0, and thus the first term in Eq. (3.36) becomes zero.

The assumption that the reservoir remains in the same state furthermore allows us to fac-
torize χ(t) for all t,

χ̃(t) = ρ̃(t)⊗R0 +O(HSR), (3.38)

where the deviations from the uncorrelated state should be on the order of HSR due to the weak
coupling [72, sec. 1.2].

To proceed we make our first major approximation, the so-called Born approximation. When
inserting Eq. (3.38) into Eq. (3.36) we neglect terms higher than second order in HSR,

∂tρ̃(t) = − 1

~2

∫ t

t0

dt′TrR

{[
H̃SR(t),

[
H̃SR(t′), ρ̃(t′)⊗R0

]]}
. (3.39)

This gives a closed integro-differential equation for the density operator ρ(t) of the system in
the interaction picture. More detailed analysis of the Born approximation may be carried out
by the projection operator formalism, see [68] for details.

To further simplify Eq. (3.39), we have to specify the interaction Hamiltonian. Thus we
assume that HSR may be written on the form

HSR =
∑
νν′

Pνν′ ⊗Bνν′ , (3.40)

where Pνν′ is a pure system operator and Bνν′ is a pure reservoir operator. Using this notation
and omitting the use of ⊗, we have

∂tρ̃(t) = − 1

~2

∫ t

t0

dt′TrR

 ∑
ν1ν2ν′1ν

′
2

[
P̃ν1ν′1(t)B̃ν1ν′1(t),

[
P̃ν2ν′2(t′)B̃ν2ν′2(t′), ρ̃(t′)R0

]] . (3.41)

The system part may now be distinguished from the reservoir part. This may be realized by
exploiting the cyclic property of the trace and by the procedure of operator averaging defined in
Eq. (3.14). The averaging is with respect to the reservoir Hamiltonian only, i.e. TrR {AR0} =
〈A〉, giving

∂tρ̃(t) = − 1

~2

∫ t

t0

dt′
∑

ν1ν′1ν2ν
′
2

{
[
P̃ν1ν′1(t)P̃ν2ν′2(t′)ρ̃(t′)− P̃ν2ν′2(t′)ρ̃(t′)P̃ν1ν′1(t)

]
〈B̃ν1ν′1(t)B̃ν2ν′2(t′)〉

+
[
ρ̃(t′)P̃ν2ν′2(t′)P̃ν1ν′1(t)− P̃ν1ν′1(t′)ρ̃(t′)P̃ν2ν′2(t)

]
〈B̃ν2ν′2(t′)B̃ν1ν′1(t)〉

}
. (3.42)

Due to the t′ dependence of ρ̃ in the integral, the evolution of ρ(t) is non-Markovian, meaning
that the evolution depends on the past due to interaction with earlier states that are reflected
back.
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The Markov approximation

To handle Eq. (3.42), further approximations have to be introduced. A commonly used but
simple approach is the Markov approximation described in [70, 71, 72, 68] which is obtained by
the substitution ρ̃(t′) → ρ̃(t) such that the time evolution only depends on the present state
ρ̃(t). This assumption seems reasonable if we consider a large bath in thermal equilibrium, since
we expect minor changes to be equalized so fast that they do not affect the dynamics of the
system. According to [72, sec. 1.2], the Markov approximation is only valid if the correlation
time of the reservoir τR is small compared to the time scale describing changes in ρ̃(t) described
by HSR. What is important is that the substitution is made in the interaction picture such that
Eq. (3.42) still contains memory related to the dynamics caused by HS, and in that way the
system behaviour is still non-Markovian in our description.

The Born- and Markov-approximations together are often just denoted the Born-Markov
approximations. The important point for the assumptions is that the time scale over which the
system varies is much larger than decay times of the reservoir correlation functions.

A non-Markovian description could also be obtained with other theories such as the time-
convolutionless approach (TCLA), where the time evolution depends solely on the present state of
the system, but where the reservoir interaction appears in time-dependent coefficients [68, 73, 74].
The second order result of the TCLA is actually equal to the result in Eq. (3.42), as long as the
substitution ρ̃(t′)→ ρ̃(t) is done in the interaction picture [68].

The dynamics of ρ(t) is only governed by the Hamiltonian of the system, HS, given by the
cavity-QD Hamiltonian and may as in Eq. (3.6) be described using the unitary operator

US(t, t0) = T̂
(

e
−i~−1

∫ t
t0

dt′HS(t′)
)
. (3.43)

Transforming back to the Schrödinger picture using US and Eq. (3.3), gives

∂tρ(t) = ∂t

{
US(t, t0)ρ̃(t)U †S(t, t0)

}
= − i

~
[HS, ρ(t)] + S(t), (3.44)

where S(t) defines the time-local scattering terms induced by the reservoir,

S(t) = US(t, t0) (∂t{ρ̃(t)})U †S(t, t0). (3.45)

By exploiting the properties of US , we have the two relations

US(t, t0)ρ̃(t′)U †S(t, t0) = US(t, t0)U †S(t′, t0)ρ(t′)US(t′, t0)U †S(t, t0) (3.46)

= US(t, t′)ρ(t′)U †S(t, t′), (3.47)

and similarly

US(t, t0)P̃ν1ν′1(t′)U †S(t, t0) = US(t, t′)Pν1ν′1U
†
S(t, t′). (3.48)

Using these, the time-local scattering term may be achieved from Eq. (3.42) by substituting
ρ̃(t′)→ ρ̃(t), before transforming back to the Schrödinger picture,

S(t) = − 1

~2

∫ t

t0

dt′
∑

ν1ν′1ν2ν
′
2

{
[
Pν1ν′1US(t, t′)Pν2ν′2U

†
S(t, t′)ρ(t)− US(t, t′)Pν2ν′2U

†
S(t, t′)ρ(t)Pν1ν′1

]
〈B̃ν1ν′1(t)B̃ν2ν′2(t′)〉

+
[
ρ(t)US(t, t′)Pν2ν′2U

†
S(t, t′)Pν1ν′1 − Pν1ν′1ρ(t)US(t, t′)Pν2ν′2U

†
S(t, t′)

]
〈B̃ν2ν′2(t′)B̃ν1ν′1(t)〉

}
. (3.49)
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Chapter 3. Equations of Motion

3.3 Summary

In this chapter we have reviewed the basics of quantum dynamics. By applying a quantum master
equation approach, we have derived an equation of motion for the reduced density matrix of a
system, where the reservoir degrees of freedom have been traced out. In this way the equation
of motion, Eq. (3.44), contains a term describing the pure system evolution, and a time-local
scattering term in Eq. (3.49), where interaction with the reservoir enters.
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Chapter 4

Model: Cavity QED system

The model considered in this thesis is a system consisting of a QD coupled to a cavity, in-
teracting with the surroundings through various loss mechanisms, including interaction with
a large phonon reservoir. In this chapter we apply the equation of motion derived in Chap-
ter 3 to the many-body Hamiltonians stated in Chapter 2, and by doing this we treat only the
electron-phonon interaction as a perturbation. This leads to a linear differential equation system
for the elements of the reduced density matrix, which may be solved numerically by standard
procedures. The derivation given here is a detailed description of the derivation given in [69].

In the rest of this thesis we refer to the two states of the two-level QD as either being an
electron in the excited state or an electron in the ground state. In the electron-hole picture this
is equal to having a single excitation of an electron-hole pair or no excitation, respectively.

4.1 Model description

In this work we consider a cavity-QD system interacting with a phonon bath, see Fig. 4.1. The
total system may be described by the Hamiltonian

H = Hs +H0,ph +He-ph +Hloss, (4.1)

where Hs represents the cavity-QD system, H0,ph describes the part of the Hamiltonian repre-
senting the phonon bath, and He-ph describes the interaction between the cavity-QD system and
the phonons. The last term, Hloss, describe various interactions with the environment, repre-
sented by Lindblad terms and described by the population decay rates Γ, κ, and dephasing rate
γ.

In this thesis we limit ourselves to only consider a single excitation of a two-level QD that
may be in either the ground state |g〉 or the excited state |e〉. The energy of the electron is
described by Eq. (2.31) and no electron-electron interaction is present. We consider coupling to
a single cavity-mode, where the photons may be described by Eq. (2.34), neglecting the 1/2-term
describing the vacuum field, which does not contribute to the dynamics. The electron-photon
interaction is obtained from Eq. (2.42), where the standard rotating wave approximation have
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Chapter 4. Model: Cavity QED system

Figure 4.1: The considered cavity-QED system including interaction with a phonon bath and
loss rates (blue symbols). An explanation of the different coupling rates and loss rates is given
in the main text. The QD-cavity detuning, ∆, is positive when the transition frequency in the
QD is larger than the frequency of the cavity mode.

been applied1,

Hs =
∑
i=e,g

~ωic†ici + ~ωcava
†a+ ~g

(
a†c†gce + c†ecga

)
, (4.2)

where the energy of the excited (ground) state is ~ωe (~ωg) and the energy of a cavity photon
is ~ωcav. The phonon bath is described by Eq. (2.35),

H0,ph =
∑
j,k

~ωj(k)b†j,kbj,k, (4.3)

where the 1/2-term also is omitted. Finally, the interaction between the electrons and the
phonons is expressed by Eq. (2.47)

He-ph =
∑
j,k

(
Mk
j,ggc

†
gcg +Mk

j,eec
†
ece

)(
b†j,−k + bj,k

)
. (4.4)

Here, we set the matrix elements Mk
j,ge and Mk

j,ge to zero because the interlevel distance is much
larger than the phonon energies considered in this thesis.

4.1.1 Electron-phonon interaction

In the derivations of the Hamiltonian we assumed bulk phonon mode, which was reasonable
when the QD was small and the wetting layer thin. As discussed in [69], the LO phonons have
energies, ∼ 37 meV in GaAs, which are much larger than the relevant phonon energies in this
model, and we may neglect the Fröhlich coupling. According to the discussion in Section 2.3,
the piezoelectric interaction may also be neglected when considering GaAs.

The only electron-phonon interaction that is included in the following calculations is thus the
deformation potential interaction through LA-phonons, and the sum over the phonon branches

1In the rotating wave approximation, fast oscillating terms are ignored, because they will average out to a net
contribution of zero as the time increases, see [75] for more details.
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4.2. Transforming the Hamiltonian

j in Eq. (4.4) is only over these LA-phonons. We express the interaction matrix elements in a
notational slightly simpler way from now on,

Mk
νν = Dνk

√
~

2ρV ωLA(k)
Fν(k), Fν(k) =

∫
dr |ψν(r)|2eik·r, (4.5)

where ν = e describes an electron in the excited QD state and ν = g an electron in the ground
state. For bulk phonons, ωLA(k) = cl|k|, with cl being the longitudinal speed of sound.

The value of cl and De/h both posses a large uncertainty. The value of cl varies depending
on the propagation direction in the crystal, and may in GaAs vary from 4.8− 5.4 km/s. In the
literature, many different values of De/g appear, because the value of De/g is difficult to estimate
experimentally. We use same parameters as in other articles close to our subject, [43, 76, 66],
and for an elaborating discussion of parameter values, see Appendix A.

4.1.2 Lindblad loss terms

Losses are included in a phenomenological way by including the possibility for the cavity-QD
system to interact with other reservoirs than the phonon bath. We describe the losses by decay
terms according to the the Lindblad formalism, which was introduced by Lindblad in 1976 [77]
and is described in various articles and textbooks [68, 78, 70]. According to Lindblad, each loss
mechanism γi contributes with a term

L{Oi, γi}ρ(t) = −γi
2

[
O†Oρ(t) + ρ(t)O†O − 2Oρ(t)O†

]
, (4.6)

that has to be added to the equation of motion for ρ(t). The term L{Oi, γi} describes the decay
of the ith loss mechanism by the rate γi of the transition determined by the operator Oi. By
including the loss mechanisms as decay rates, we implicitly assume that the interaction with the
surroundings only is included as a mean, giving a Markovian description of the losses.

For the specific system, three loss mechanisms are considered: The first one described by the
rate Γ is the population decay of the excited QD state due to spontaneous emission of photons
into a large reservoir containing a continuum of non-radiant modes. The parameter κ describes
the rate at which photons are lost in the cavity, e.g. due to a finite reflectivity of the cavity
mirrors. The last rate γ concerns the pure dephasing of all transitions connected to the QD.

The LA phonons contribute to the pure dephasing rate [66], and we wish to describe this
contribution separately, so this effect is not included into γ. Instead γ covers the pure dephasing
that appears by including a finite lifetime of the phonons, e.g. from anharmonic effects [79, 65]
or the optical transitions to higher energy levels of the QD assisted by phonons [80, 81].

4.2 Transforming the Hamiltonian

Because we are only considering a single electron in a two-level QD interacting with a single-
mode cavity, it is convenient to consider a subspace of the full QD-cavity Hilbert space including
only one electron or photon. The transformation of the Hamiltonian is goes as follows, where
each part of the Hamiltonian Eq. (4.1) is treated separately.

Our model includes only a single electron in a two-level system, which results in the com-
pleteness relation

c†gcg + c†ece = 1, (4.7)
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Chapter 4. Model: Cavity QED system

which is used to eliminate c†gcg from Eq. (4.2) to give

Hs = ~ωg + ~ωegc†ece + ~ωcava
†a+ ~g(a†c†gce + c†ecga), (4.8)

where the transition frequency of the quantum dot is defined as ωeg = ωe − ωg. The first term
~ωg is just a constant added to the total Hamiltonian and is neglected.

The electron-phonon interaction Hamiltonian Eq. (4.4) is also rewritten using Eq. (4.7),

He-ph =
∑
k

Mkc†ece

(
b†−k + bk

)
+
∑
k

Mk
gg

(
b†−k + bk

)
, (4.9)

with Mk = Mk
ee −Mk

gg.
The last term in Eq. (4.9) describes the phonon interaction with a fully occupied ground

state of the electron. In thermal equilibrium the ground state of the whole system consists
of an electron in the QD surrounded by a lattice deformation due to phonons. Because we
want to describe deviations from this combined ground state, we take into account the phonon
interaction with this new, combined ground state by shifting the phonon operators by [82, 69],

bk → bk −
M−kgg
~ωk

. (4.10)

corresponding to a unitary transformation of the phonon operators. The Hamiltonians including
phonon operators become

H0,ph →
∑
k

~ωkb
†
kbk −

∑
k

Mk
gg

(
bk + b†−k

)
+
∑
k

1

~ωk
Mk
ggM

−k
gg , (4.11)

He-ph →
∑
k

Mk
(
b†−k + bk

)
c†ece − 2

∑
k

1

~ωk
MkM−kgg c

†
ece (4.12)

+
∑
k

Mk
gg

(
b†−k + bk

)
− 2

∑
k

1

~ωk
Mk
ggM

−k
gg , (4.13)

where we in the calculation of H0,ph use that the sum is over all k’s and we thus may substitute
k with −k in the terms which are summed. Furthermore, we have assumed that the dispersion
relation is symmetric in k, i.e. ωk = ω−k (due to the symmetry of the Brillouin zone in Fig. 2.1b),
meaning that

(
Mk
gg

)∗
= M−kgg according to the description of Mgg in Eq. (4.5).

Eq. (4.13) now contains non-interacting terms, but those are cancelled by terms in Eq. (4.11),
meaning that the non-interacting phonon part, H0,ph, may be considered unchanged after the
transformation, and that

He-ph =
∑
k

Mkc†ece

(
b†−k + bk

)
. (4.14)

Here we removed the term −2
∑

k
1

~ωk
MkM−kgg c

†
ece by an energy renormalization by absorbing

this term into the bare excited state energy ~ωe [69], and we also omit the term−
∑

k
1

~ωk
MkM−kgg

because it is a constant term that do not contribute to the dynamics of the system as discussed
in Section 3.1. This transformation does not have significant impact on Hloss

2.

2From discussions with Per Kær Nielsen
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4.3. Equation of motion for the system

The subspace of the QD-cavity Hilbert space including one electron is spanned by the three
basis states: |1〉 = |e, n = 0〉, |2〉 = |g, n = 1〉, and |3〉 = |g, n = 0〉. The first index corresponds
to the state of the electron in the QD, and the second index refers to the number of photons in
the cavity.

The parts of H containing operators of the QD-cavity system can be expressed in this basis
by calculating the matrix elements 〈i|H|j〉 , i, j = 1, 2, 3, giving

Hs = ~ωegσ11 + ~ωcavσ22 + ~g(σ12 + σ21), (4.15)

He-ph = Bσ11, (4.16)

where B =
∑

kM
k(b†−k + bk) and σij = |i〉〈j|.

The system Hamiltonian may be further simplified by moving into a rotating frame de-
termined by the unitary operator T (t) = exp(−iωcav[σ11 + σ22]t) as described in details in
Appendix B. By introducing the cavity-QD detuning ∆ = ωeg − ωcav, the system Hamiltonian
is transformed into

Hs = ~∆σ11 + ~g(σ12 + σ21). (4.17)

Summarizing the derivations, we have obtained a final expression for the total Hamiltonian
(excluding the loss terms),

H = Hs +H0,ph +He-ph (4.18)

= ~∆σ11 + ~g(σ12 + σ21) +
∑
k

~ωkb
†
kbk +Bσ11. (4.19)

with B =
∑

kM
k(b†−k + bk).

The explicit Lindblad terms

With the introduction of the QD-cavity subspace, we are able to identify the decay mechanisms
with operators describing the relevant transitions. The decay of the population of the excited
QD is described by L{σ31,Γ}, the decay of the cavity population by L{σ32, κ}, and the pure
dephasing rate3 L{σ11, 2γ}.

4.3 Equation of motion for the system

The simple expression for the Hamiltonian in Eq. (4.19) may now be used in the calculation
of the equations of motion derived in Chapter 3, where the phonon interaction appeared as a
scattering term.

By comparing the interaction part in Eq. (4.19) with the general form of the electron-phonon
interaction in Eq. (3.40), we see that Pνν′ = σ11δ1νδ1ν′ and Bνν′ = Bδ1νδ1ν′ . Using this, the
electron-phonon scattering term in Eq. (3.49) becomes

SLA(t) = − 1

~2

∫ t

t0

dt′
[(
σ11U(t, t′)σ11U

†(t, t′)ρ(t)− U(t, t′)σ11U
†(t, t′)ρ(t)σ11

)
〈B̃(t)B̃(t′)〉

+
(
ρ(t)U(t, t′)σ11U

†(t, t′)σ11 − σ11ρ(t)U(t, t′)σ11U
†(t, t′)

)
〈B̃(t′)B̃(t)〉

]
, (4.20)

3We use 2γ and not just γ for notational simplicity, such that the rate equations for the polarisations contain
a term ∂t〈σ12(t)〉 = . . .− γ〈σ12(t)〉 and not . . .− 1

2
γ〈σ12(t)〉, as will be shown later on.
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Chapter 4. Model: Cavity QED system

omitting to write the S-subscript on the Us indicating that the time evolution is determined by
Hs.

From Eq. (3.7) we know that U depends only on the time difference, U(t, t′) = U(t − t′).
Thus, an integral on the following form, with f being a function that only depends on the time
difference t− t′, may be rewritten∫ t

t0

dt′ f(t− t′)〈B̃(t)B̃(t′)〉 =

∫ t−t0

0
dt′ f(t′)〈B̃(t)B̃(t− t′)〉 (4.21)

=

∫ t−t0

0
dt′ f(t′)〈B̃(t′)B̃(0)〉, (4.22)

where we in the last equality use the cyclic property of the trace. This leads as in [69] to the
definition of the phonon bath correlation function

D≷(t− t′) = 〈B̃(±[t− t′])B̃(0)〉, (4.23)

noting that [D>(t)]∗ = D<(t) due to the swap of plus and minus in the time evolution. The
final expression of the scattering term becomes

SLA(t) = − 1

~2

∫ t

0
dt′
[(
σ11U(t′)σ11U

†(t′)ρ(t)− U(t′)σ11U
†(t′)ρ(t)σ11

)
D>(t′)

+
(
ρ(t)U(t′)σ11U

†(t′)σ11 − σ11ρ(t)U(t′)σ11U
†(t′)

)
D<(t′)

]
(4.24)

where we for simplicity set t0 = 0.

By including the loss terms discussed in Section 4.1.2, the equation of motion for the reduced
density matrix operator in Eq. (3.44) becomes

∂tρ(t) = −i~−1 [Hs, ρ(t)] + (L{σ31,Γ}+ L{σ32, κ}+ L{σ11, 2γ}) ρ(t) + SLA(t). (4.25)

Converting to a matrix problem

The equation of motion in Eq. (4.25) is linear in the reduced density matrix, making it preferable
to describe the problem using linear algebra, where we follow the approach in [69]. Using the
notation 〈σqp〉 = Trs{ρ(t)σqp} = ρpq(t), where Trs indicates the trace with respect to the QD-
cavity system, the reduced density matrix is mapped onto the vector

〈σ(t)〉 =

[
〈σ11(t)〉, 〈σ22(t)〉, 〈σ12(t)〉, 〈σ21(t)〉, 〈σ23(t)〉, 〈σ32(t)〉, 〈σ13(t)〉, 〈σ31(t)〉

]T
. (4.26)

We omit the population of the QD-cavity ground state 〈σ33(t)〉 because it does not contribute
to the dynamics, and it may be calculated through population conservation. As in [69], the
coupling between the different matrix elements is split into three main contributions,

∂t〈σ(t)〉 = [Mcoh +MLindblad +MLA(t)] 〈σ(t)〉 = M(t)〈σ(t)〉. (4.27)

Here, Mcoh denotes terms stemming from the coherent evolution of the QD-cavity system,
MLindblad the loss terms described in Section 4.1.2, and MLA(t) is the scattering terms from
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4.3. Equation of motion for the system

the electron coupling to phonons. In the following derivations we will simplify the notation by
realizing that M(t) may be divided into two submatrices,

M(t) =

[
m(11)(t) 0

0 m(22)(t)

]
, (4.28)

where m(11)(t) couples the first four elements of Eq. (4.26) and m(22)(t) couples the last four.
An important point here is that due to the form of M(t), there is no coupling between the two
systems described by the two submatrices, and Eq. (4.27) may be solved independently for the
two subsystems as 4× 4 matrix problems.

Inserting the Hamiltonian

We now want to apply the matrix formulation to the Hamilton described in Eq. (4.19). With

this Hamiltonian, the excited QD population is 〈c†e(t)ce(t)〉 = 〈σ11(t)〉 and the population of the
cavity is 〈a†(t)a(t)〉 = 〈σ22(t)〉. The matrix elements of Mcoh may be calculated for example as

〈σ12(t)〉coh = ρ21,coh(t) = −i~−1〈2|[Hs, ρ(t)]|1〉 (4.29)

= −i〈2|
(

[∆|1〉〈1|+ g (|1〉〈2|+ |2〉〈1|) , ρ(t)]

)
|1〉 (4.30)

= −i

(
gρ11(t)−∆ρ21(t)− gρ22(t)

)
(4.31)

= −ig〈σ11(t)〉+ ig〈σ22(t)〉+ i∆〈σ12(t)〉 (4.32)

giving the third line in the first of the two submatrices

m
(11)
coh =


0 0 −ig ig
0 0 ig −ig
−ig ig i∆ 0
ig −ig 0 −i∆

 , m
(22)
coh =


0 0 ig 0
0 0 0 ig
ig 0 i∆ 0
0 −ig 0 −i∆

 . (4.33)

The Lindblad terms are calculated using Eq. (4.6) for the three loss terms L{σ31,Γ}, L{σ32, κ},
and L{σ11, 2γ}. As an example we show the calculation of the matrix elements of L{σ31,Γ},

〈n|L{σ31,Γ}ρ(t)|m〉 = −Γ

2
〈n|
[
σ†31σ31ρ(t) + ρ(t)σ†31σ31 − 2σ31ρ(t)σ†31

]
|m〉 (4.34)

= −Γ

2
[δn1ρ1m(t) + ρn1(t)δ1m − 2δn3ρ11(t)δ3m] . (4.35)

The total Lindblad matrix becomes a diagonal matrix,

diag{MLindblad} = −1

2
[2Γ, 2κ,Γ + κ+ 2γ,Γ + κ+ 2γ, κ, κ,Γ + 2γ,Γ + 2γ]. (4.36)

The scattering matrix is more complicated, and we provide an example on how to calculate some
of the matrix elements. By calculating the element 〈1|SLA(t)|1〉, with SLA given in Eq. (4.24),
we find that 〈1|SLA(t)|1〉 = 0 because the terms cancel each other. In the same way we find
〈2|SLA(t)|2〉 = 0, but now all the terms are identically zero. Thus phonon scattering does not
affect the population in the QD and the cavity directly. This is a consequence of our assumption
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Chapter 4. Model: Cavity QED system

about neglecting the possibility of transitions in the QD only by emission/absorption of a phonon
by letting Mk

eg = Mk
ge = 0 in Eq. (2.47), because the interlevel distance in our model is much

larger than the phonon energies.
As an example, we calculate an element of MLA from Eq. (4.24) using the completeness

relation
∑

n |n〉〈n| = I, where I is the identity operator,

〈2|S(t)|1〉 = − 1

~2

∫ t

0
dt′ 〈2|

[
0− U(t′)σ11U

†(t′)Iρ(t)σ11D
>(t′)

+ρ(t)IU(t′)σ11U
†(t′)σ11D

<(t′)− 0

]
|1〉 (4.37)

= − 1

~2

∫ t

0
dt′
[
− U21(t′)

(
U †11(t′)ρ11(t) + U †12(t′)ρ21(t)

)
D>(t′)

+
(
ρ21(t)U11(t′) + ρ22(t)U21(t′)

)
U †11(t′)D<(t′)

]
, (4.38)

defining Uij(t) = 〈i|U(t)|j〉 with the form of U(t) as given in Eq. (3.7) describing the time
evolution of the cavity-QD system,

U(t) = e−i~−1HSt. (4.39)

Physically U(t) may be interpreted as an operator which introduces a photon-dressed QD into
the phonon scattering terms. By defining also

G≷(t) = i~−2

∫ t

0
dt′ U∗11(t′)U21(t′)D≷(t′), (4.40)

γ12(t) = ~−2

∫ t

0
dt′
[
|U11(t′)|2D<(t′)− |U21(t′)|2D>(t′)

]
, (4.41)

γ13(t) = ~−2

∫ t

0
dt′ |U11(t′)|2D<(t′), (4.42)

∆pol = Im{γ12(∞)}, (4.43)

∆′pol = Im{γ13(∞)}, (4.44)

we may write

〈σ12(t)〉scat = 〈2|S(t)|1〉 = −iG>(t)〈σ11(t)〉+ iG<(t)〈σ22(t)〉 − γ12(t)〈σ12(t)〉, (4.45)

giving the third line in the first of the two submatrices that describe the scattering,

m
(11)
LA =


0 0 0 0
0 0 0 0

−iG>(t) iG<(t) −[γ12(t)− i∆pol] 0
i[G>(t)]∗ −i[G<(t)]∗ 0 −[γ∗12(t) + i∆pol]

 , (4.46)

and

m
(22)
LA =


0 0 0 0
0 0 0 0

iG<(t) 0 −[γ13(t)− i∆′pol] 0

0 −i[G<(t)]∗ 0 −[γ∗13(t) + i∆′pol]

 . (4.47)
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4.3. Equation of motion for the system

To provide a physical interpretation of the effects of the electron-phonon scattering, we compare

m
(11)
LA with m

(11)
coh in Eq. (4.33) and MLindblad in Eq. (4.36) as done also in [69]; similar arguments

may be carried out for the elements of m
(22)
LA .

The function γ12(t) appears as a diagonal element in m
(11)
LA and is multiplied by 〈σ12(t)〉 as

seen e.g. in Eq. (4.45). In this way Re{γ12(t)} may be interpreted as a pure dephasing rate
caused by the electron-phonon interaction, because γ12(t) only introduces a decay/gain in the
polarisation and not in the populations. The imaginary part of γ12(t) introduces an energy
shift, and to be consistent with the unitary transformation in Eq. (4.10), the long-time value
of the energy shift, ∆pol, has to be subtracted from γ12(t). This compensate for the energy
shift which is introduced for the system ground state in the transformation when a combined
electron-phonon ground state is considered. A similar discussion applies to γ13(t).

Furthermore the phonons introduce a cavity-QD coupling strength taking into account the
electron-phonon interaction,

g → g + G≷(t), (4.48)

where > is for terms containing 〈σ11(t)〉 and < is for terms with 〈σ22(t)〉. The real part of G≷(t)
gives a renormalisation of g, but in general Re{G≷(t)} 6= Re{G<(t)}, introducing an asymmetry
in the polarisations 〈σ12(t)〉 and 〈σ21(t)〉. This will be studied in great details later on. Thus
additional decoherence is obtained from Im{G≷(t)} if 〈σ11(t)〉 or 〈σ22(t)〉 is non-zero.

The phonon bath correlation function

The phonons are described by the phonon bath correlation function,

D≷(t) = 〈B̃(±t)B̃(0)〉, (4.49)

with B =
∑

kM
k(b†−k + bk) and by the Hamiltonian H0,ph =

∑
k ~ωkb

†
kbk. For such a time-

independent Hamiltonian, the time evolution of b† and b is trivial [46],

b†k(t) = eiωktb†k, bk(t) = e−iωktbk. (4.50)

In thermal equilibrium, we define the thermal occupation factor for the phonon mode with
wavevector k,

nk = 〈b†kbk〉 =
1

exp(β~ωk)− 1
, (4.51)

with β = 1/(kBT ). Using these expressions and standard bosonic commutation relations, and
that [M−k]∗ = Mk, the correlation function may be written as

D≷(t) =
∑
k

|Mk|2
[
nke±iωkt + (nk + 1)e∓iωkt

]
(4.52)

=
∑
k

|Mk|2 [(2nk + 1) cos(ωkt)∓ i sin(ωkt)] . (4.53)

The real part of D≷(t) increases with temperature, whereas the imaginary part of D≷ is tem-
perature independent.
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4.4 Summary

In this chapter we inserted the many-body Hamiltonian derived in Chapter 2 into the equations
of motion from Chapter 3 to arrive at a linear differential equation description in the reduced
density matrix of the system with time-dependent coefficients as in Eq. (4.27), which we are
able to solve numerically. Many different quantities and functions have been introduced in the
model, and we will go through the description of these in details in the following chapter.
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Chapter 5

Exploring the Model

In this chapter we explore the physics contained in our model step by step, starting from the
lossless QD-cavity system in Section 5.1 and ending with the full model in Section 5.2, where
phonon scattering from a non-Markovian phonon reservoir and the other loss mechanisms are
included. On the way we verify the numerical implementation of the linear differential matrix
equation from Chapter 4 by comparing to known results from the literature. In Section 5.3 we
relate the features of this model to recent publications.

The parameters used in the simulation are described in details in Appendix A, if nothing
else is stated.

5.1 Neglecting phonon scattering

The basics of the model described in Chapter 4 are first described without including the phonon
scattering.

5.1.1 No loss, no phonon scattering

To get a basic understanding of the behaviour of the cavity-QD system, we first consider a lossless
system without electron-phonon scattering, i.e. M(t) = Mcoh in Eq. (4.27), and we assume that
the initial state of the system is |1〉, corresponding to an excited QD and no photons in the
cavity. In this case the system is described by the (lossless) Jaynes-Cummings model1, and the
population of the QD evolves according to

〈σ11(t)〉 = 1− g2

g2 + (∆/2)2
sin2

(√
g2 + (∆/2)2t

)
, (5.1)

which is derived in Appendix C. In Fig. 5.1a the simulation results are plotted, and these agree
with Eq. (5.1). According to the Jaynes-Cummings model, the dynamics of the QD-cavity
system is described by Rabi-oscillations, where the system evolves as a superposition of state
|1〉, and state |2〉 (defined as a single photon in the cavity mode without excitations in the QD).
Physically Fig. 5.1a should be interpreted as the probability of finding an excited QD when
measuring on the system at a given time, meaning that for ∆ = 0 at t = 10 ps, the probability
of measuring an excited QD is ≈ 40% and an excited cavity mode is ≈ 60%.

1This model is discussed in many textbooks, see e.g. [39].
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(a) (b)

Figure 5.1: (a) Time-evolution of the population of the excited QD state, where loss and phonon-
scattering is neglected; the different curves are for different detunings with ~g = 150µeV. The simulations
agree with Eq. (5.1), and the results are the same if the sign of the detuning is changed. (b) Same as in
(a), but where the loss term Γ = 10 ns−1 (corresponding to 7µeV) is included.

At resonance, ∆ = 0, the system oscillates between a fully populated QD and a fully popu-
lated cavity, and the population transfer occurs with a period 2π

2g , where the factor of 2 in front

of g is due to the fact that sin2(·) oscillates with twice the frequency of sin(·). Out of resonance,
∆ 6= 0, the coupling is not perfect, meaning that the excited state is never fully depleted, and
the oscillation period is decreased. In the limit of infinite detuning or g = 0, 〈σ11(t)〉 ≈ 1, no
coupling will appear, and the system will remain in the excited QD state |1〉.

Physically this model states that when no losses are present, the spontaneous emission from
the QD is a reversible process, where a photon is emitted into the cavity, then absorbed again
in the QD, emitted, and so on. The dynamics in this model remains unchanged if the sign of
the detuning is changed, which also may be realized from Eq. (5.1).

5.1.2 Loss included, no phonon scattering

When including the losses as discussed in Section 4.1.2, but still not phonon scattering, M(t) =
Mcoh + MLindblad, where M(t) still is time-independent. Three different coupling terms are
included: Γ and κ are the population decay rates from the excited QD state and the cavity
mode respectively, and γ indicates the rate of pure dephasing for all transitions connected to
the QD. We present a discussion of each of the loss effects separately, keeping the other two loss
mechanisms turned off.

Having a non-zero Γ leads to decay of the system towards |3〉, where the QD is in the ground
state and no photons in the cavity, see Fig. 5.1b. The oscillating behaviour is maintained
throughout the decay, because all energy coupled to a cavity mode returns to the QD by virtue
of the loss-free cavity. The value of Γ in Fig. 5.1b is choosen such that the dynamics of the
three loss mechanisms may be considered on the same time scale for realistic values of κ and γ,
see Appendix A for details on the parameter values. In practice Γ ∼ 1 ns−1 [26], which gives a
slower decay than illustrated in Fig. 5.1b.
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5.1. Neglecting phonon scattering

(a) (b)

Figure 5.2: (a) Time evolution of population of excited QD state, plotted for different detunings with
~κ = 100µeV as the only loss mechanism. (b) The same simulation as in (a), but with ~γ = 100µeV as
the only loss mechanism.

A non-zero κ also makes the system decay into |3〉 as shown in Fig. 5.2a. Now only the part
of the excitation coupled to the cavity experiences loss, and thus the oscillating behaviour of
the decay curve dies out, in contrast to the Γ-decay. As expected, the κ-decay is fastest for the
smallest detunings where the coupling to the lossy cavity is largest.

At last, a non-zero γ introduces pure dephasing to all transitions connected to the QD. When
no other losses are present, we may thus expect the coupling between the QD and the cavity to
die out, and the better coupling between the cavity and the QD, the more the pure dephasing
influences, giving the fastest population decays for the lowest detuning, see Fig. 5.2b. From the
equation of motion for the polarization in Section 4.3,

∂t〈σ12(t)〉 = −ig(〈σ11(t)〉 − 〈σ22(t)〉) + (i∆− γ)〈σ12(t)〉, (5.2)

we see that in the long time limit, (〈σ11(t)〉 − 〈σ22(t)〉) = 0. Because the no population losses
are included, we have from population conservation, 〈σ11(t)〉+ 〈σ22(t)〉 = 1, that the population
of the excited state has to be 1/2 in the long time limit, which we see in Fig. 5.2b.

It is important to note that in all cases the decay curves still look similar for simulations
with detunings with the same magnitude but opposite sign. We use γ = 0 in the simulations in
this thesis for simplicity, such that anharmonic effects are negelected and we only consider the
pure dephasing induced by phonons.

Different coupling regimes

Depending on the magnitude of the loss terms compared to the coupling strength g, the cavity
QD system evolves in qualitatively different ways or in different regimes.

The dynamics are described by the lossy or dissipative Jaynes-Cummings model. A basic
description of this model is provided in [83, chap. 8] or [84, chap. 18], where γ = 0 is considered.
Two regimes exist, the strong and the weak coupling regime. In the strong coupling regime, the
coupling strength is much larger than the dissipative terms, i.e. the decoherence period is slow
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compared to the period of the Rabi-oscillations (= 2g for ∆ = 0), and the Rabi-oscillations will
appear on the decay curves. In the weak coupling regime, the decoherence rate is much larger
than the coupling strength. The decay curves decreases monotonically and the spontaneous
emission of the photons is now an irreversible process. In the weak coupling regime, the presence
of a cavity enhances the rate of spontaneous emission, where the enhancement is determined by
the so-called Purcell factor, which will be described shortly.

When pure dephasing is included in the model, a lot of different definitions of regimes appear
[85, 86]. Because γ decreases the polarisation 〈σ12(t)〉 and 〈σ21(t)〉 describing the transition
between |1〉, |2〉, a new possibility appears, namely that a photon is emitted from the QD and
stays in the cavity mode for some time without being absorbed back into the QD if κ is small.
In the previous model the photon was re-absorbed in the strong coupling regime, and in the
weak coupling regime the cavity acts like a loss source only.

To define relevant regimes for the model where γ is included, we and consider first the case
where g is small compared to the decoherence rates and g < ∆. In this case the terms 〈σ12(t)〉
and 〈σ21(t)〉 describing the transition may be adiabatically eliminated, see Appendix D.1, giving
the two coupled equations,

∂t〈σ11(t)〉 = −(Γ +R)〈σ11(t)〉+R〈σ22(t)〉, (5.3)

∂t〈σ22(t)〉 = −(κ+R)〈σ22(t)〉+R〈σ11(t)〉. (5.4)

where

R = 2g2 γtot

γ2
tot + ∆2

, (5.5)

with the total dephasing rate being γtot = (Γ + κ)/2 + γ. In this way R appears as an effective
coupling rate between the QD and the cavity.

Following [85] we may define two new coupling regimes, the good cavity regime and the bad
cavity regime. The good cavity regime is achieved when R > κ, where the cavity damping time
is longer than the QD-cavity coupling time. In this regime, the phonon emitted from the QD
may stay in the cavity mode before it is re-absorbed in the QD or lost to the environment.
The good-cavity regime becomes more demanding that the strong-coupling regime if γ becomes
non-negligibel, see [85] for further details.

The bad cavity regime is characterized by κ > R, in which the cavity behaves like an extra
loss channel, where the photon exits the cavity as soon as it is emitted from the QD. In this
regime the QD-cavity transmission is incoherent, and R may be interpreted as an effective
spontaneous emission rate. An important point here is that a system in the good cavity regime
may turn into the bad cavity regime only by increasing the pure dephasing rate.

The Purcell regime described the dynamics of the system when R� κ, and in this case we
may calculate the relaxation rate of the QD from Eqs. (5.3) and (5.4), see Appendix D.1. The
rate is given by Γ + R, consisting with the fact that the cavity acts as an additional channel
through which the QD can decay with the rate R. In this way we may define a generalized
Purcell factor F ∗ = R/Γ, which described the enhancement of the spontaneous emission due
to the cavity. Details about this generalized Purcell factor and an a detailed analysis of the
different coupling regimes is provided in [85] and [86].
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5.2. Including phonon scattering

5.2 Including phonon scattering

We include the electron-phonon interaction by first assuming a memoryless phonon reservoir
and afterwards consider the full, non-Markovian phonon reservoir.

The matrix element describing the LA-phonon-electron interaction is given in Eq. (4.5) and
contains the wavefunction of an electron in the QD in the ground and excited state. We here
assume that the wavefunction appearing in the form factor is spherically shaped and is the
same for the excited and ground state (i.e. the electron and hole wavefunction are equal). This
approximation is very crude and will be intensively discussed in Chapter 7, but is useful for the
purpose of illustrating the behaviour of the system. The normalized wavefunction is

φν(r) =
1

π3/4L3/2
e−r

2/(2L2), (5.6)

where L is a parameter describing the width of the wavefunction. We will refer to this as the
crude wavefunction approximation.

5.2.1 Memoryless phonon reservoir

The interaction with the phonon bath is turned on at t = 0, but initially we assume that
the phonon bath has no memory, i.e. that the phonon bath correlation function in Eq. (4.52)
becomes proportional to a delta-function,

D≷(t) = 〈B2〉δ(t) =
∑
k

|Mk|2(2nk + 1)δ(t). (5.7)

In this case the three functions G≷(t), γ12(t), and γ13(t) from Eq. (4.40)-(4.42) become,

G≷(t) = i~−2U∗11(0)U21(0)〈B2〉 = 0, (5.8)

γ12(t) = ~−2
[
|U11(0)|2 − |U21(0)|2

]
〈B2〉 = ~−2〈B2〉, (5.9)

γ13(t) = ~−2|U11(0)|2〈B2〉 = ~−2〈B2〉, (5.10)

using that the time evolution operator U(t) given in Eq. (4.39) is equal to the identity operator
for t = 0. When the cavity-QD system interacts with a memoryless phonon reservoir, the
only contribution of the phonons is a pure dephasing rate of the polarisations concerning the
transition between |1〉 and |2〉 and also between |1〉 and |3〉, which is realized by considering the

expressions for m
(11)
LA and m

(22)
LA in Eqs. (4.46) and (4.47). In this case γ12 = γ13 are constant in

time, and both are real and positive, meaning that the electron-phonon coupling always enlarges
the decay rate, and they increase with increasing temperature.

In Figs. 5.3a and 5.3b the decay curves from a simulation including a memoryless phonon
reservoir is without, where only the loss mechanisms described by Γ, κ, and γ are present.
As expected from the discussion on the loss mechanisms, the fastest decay appears when the
detuning between the cavity and the QD is smallest, where the system is influenced by both the
loss in the QD and in the cavity. From Eq. (5.5) the system is in the strong coupling regime when
|∆| < γtot

√
2g2/(κγtot)− 1 = 0.1 meV using the described parameters. Thus the oscillations

seen for ∆ = 0 is due to coherent transfer of energy between the QD and the cavity. Oscillations
also appear for higher values of ∆ for small times, although the system is in the weak coupling
regime. This is due to non-Markovian behaviour of the QD-cavity coupling, which explains why
the amplitude if the oscillations becomes small for large detunings.
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(a) (b)

Figure 5.3: (a) Population of the excited QD state as a function of time for different detunings. The
solid lines describes a simulation including a memoryless phonon reservoir, and the dotted lines are
the results of a simulation without the reservoir where only loss mechanisms are enabled. Here we use
L = 5 nm, ~g = 150µeV, Γ = 1 ns, ~κ = 100µeV and ~γ = 0. The temperature is T = 0 K. (b) The
same as in Fig. 5.4a, but at T = 40 K.

In Figs. 5.3a and 5.3b we observe that at a temperature of T = 0 K, the decay rates are
increased slightly compared to the simulation where the phonon reservoir not is include. At
T = 40 K the difference in decay rates is larger, as expected from Eq. (5.9), because the phonon-
induced pure dephasing rate is increased. The black dash-dot line indicates the slowest decay
possible, which appears when the cavity and QD are strongly detuned such that no coupling to
the cavity is present, and the decay rate is given by Γ.

The effect of the phonon bath is largest at mid-range detunings, ∆ = 1− 2 meV, which is a
feature of Mk which we go into further details with later on.

5.2.2 A phonon reservoir with memory

Now we apply the full phonon model as described in Section 4.3, where the phonon bath is
assumed to have memory described by the phonon bath correlation function D≷(t) given in
Eq. (4.52). In this case G≷(t) 6= 0, and γ12(t) and γ13(t) are no longer constants.

The decay curves are plotted in Figs. 5.4a and 5.4b for T = 0 K and T = 40 K. A significant
effect appears here compared to the previously shown decay curves, namely that the decay curves
are no longer similar if the sign of the detuning is flipped. Mathematically γ12(t) and γ13(t)
remains symmetric in ∆, but the now non-zero G≷(t) is not symmetric in ∆ and thus introduces
an anharmonicity in the system.

Physically we may understand it in the way, that in a case with ∆ < 0 the transition energy
of the QD is smaller than the energy of the cavity photons, and for T = 0 K no excited phonons
are present meaning that no phonon-assisted coupling between the QD and cavity may occur.
For ∆ > 0 the QD may emit a phonon and couple to the cavity, giving a faster decay than the
case with negative detuning, which is also seen in Fig. 5.4a. When increasing the temperature as
in Fig. 5.4b, this asymmetry due to the phonons is less pronounced due to the thermal excitation
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(a) (b)

Figure 5.4: (a) Population of the excited QD state as a function vs. time, including loss and phonon
scattering. The solid (dashed) curve is for negative (positive) detuning with the parameters L = 5 nm,
~g = 150µeV, Γ = 1 ns, ~κ = 100µeV and ~γ = 0. The temperature is T = 0 K, and for clarity the two
purple lines describing ±3 meV are almost coinciding. (b) The same as in Fig. 5.4a, but at T = 40 K. In
this case the anharmony of the decay curves due to the phonons becomes smaller.

of phonons, making the probability of emitting a phonon almost the same as absorbing a phonon
(these probabilities are equal at T →∞). Due to the increased probabilities, the decays happen
faster than at T = 0 K.

An important aspect of this model is discussed in [1] and is worth mentioning here. If we
set g = 0 in U(t) only, the anharmonicity in the decay curves in Figs. 5.4a and 5.4b is lost,
and the decay is described by the solid curves, i.e. for ∆ < 0. Remembering that U(t) is
the operator which introduces a photon-dressed QD into the phonon scattering terms, setting
g = 0 may be interpreted as letting the phonon interact with the bare electron only and not
the electron-photon quasiparticle, called the polariton, which actually appears in the cavity-QD
system. In conclusion it is stressed out in [1], that it is important to take the nature of the
polaronic quasiparticle in strongly coupled cavity-QD systems into account when describing the
interaction with a non-Markovian phonon reservoir. Another effect of the phonon-induced pure
dephasing is, consistent with the good/bad coupling discussion in Section 5.1.2, that the limits
for strong and weak QD-cavity coupling is shifted, see [1] for further details.

As we see in Figs. 5.4a and 5.4b, the phonon anharmonicity is also largest for middle-valued
detunings. This is discussed in the following, where we to get a more detailed picture on the
electron-phonon scattering study the phonon bath correlation function in details.

5.2.3 The phonon reservoir correlation function

As we saw in the discussion above, all information about the phonons are contained in the
phonon correlation function D≷(t), so it is worth spending a little time considering this.

We recall from Section 4.3 the expression for the phonon bath correlation function,

D≷(t) =
∑
k

|Mk|2
[
nke±iωkt + (nk + 1)e∓iωkt

]
. (5.11)
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(a) (b)

Figure 5.5: (a) The phonon reservoir correlation function versus time for different temperatures. The
solid (dotted) lines are the real (imaginary) part of the correlation function. (b) The phonon correlation
function versus time for different value of L.

with Mk = Mk
ee−Mk

gg, where Mk
ee and Mk

gg are the electron-phonon interaction matrix elements
of an electron in the excited and ground state of QD, respectively. For bulk phonons with the
linear dispersion relation ωk = cl|k| = clk, the matrix elements are calculated from Eq. (4.5),

Mk
ee/gg = De/h

√
~k

2ρV cl

∫
dr |φe/h(r)|2eik·r. (5.12)

The sum over k in Eq. (5.11) may be transformed into an integral, assuming that the quantuza-
tion volume is large, ∑

k

=
V

(2π)3

∫
dk . (5.13)

The phonon correlation is plotted for different temperatures and values of L in Figs. 5.5a
and 5.5b. The correlation function is non-zero only for t < 5 ps, meaning that G≷(t), γ12(t)
and γ13(t) attains constant for after 5 ps. The amplitude of D≷(t) increases when increasing the
temperature due to thermal excitation of more phonons. A small width of the wavefunction also
increase D≷(t), and this may be explained from the interaction matrix element in Eq. (5.12)
which contains the Fourier transform of the electron wavefunction. A small wavefunction gives a
wider function in momentum space, allowing the electrons to interact with more phonon modes.

Rather than considering the correlation function in the time domain, it may be more in-
sightful to determine how the effect of the electron-phonon coupling appears in the frequency
domain2. The real part of the phonon correlation function, Eq. (5.11), in the frequency domain

2In some articles, the electron-phonon interaction is described by a spectral density J(ω) instead of a correlation
function, as we do here [87]. The spectral density is given by J(ω) =

∑
k |M

k|2δ(ω− ωk) and is related to D≷(t)

in the way that at T = 0 K, D≷(t) =
∫∞
0

dω J(ω) and thus J(ω) describe the phonon distribution in energy.
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is,

Re{D>(ω)} = π
∑
k

|Mk|2 [nkδ(ω + ωk) + [nk + 1]δ(ω − ωk)] , (5.14)

where the Fourier transform is defined as

f(ω) =

∫ ∞
0

dt ei(ω+i0+)tf(t), (5.15)

with 0+ being a positive infinitesimal number that is included to ensure convergence of the
integral. Here we use the well-known relation to evaluate integrals on the form

∫∞
−∞ dω 1

ω+i0+
f(ω)

for well-behaved function f(ω),

1

ω + i0+
= P 1

ω
− iπδ(ω), (5.16)

where P indicates the Cauchy principle part. As mentioned in [69], Eq. (5.14) contains infor-
mation about the electron-phonon interaction and may be considered as en effective phonon
density, which is described in units of meV2 ps.

A way to physically understand Re{D<(ω)} is discussed in [69]. In the limit g � ∆, the
involved polarizations may be adiabatically eliminated, and U(t) may be expanded in g/∆ to
low order, in which case the total decay rate including phonon scattering may be expressed as

Γtot ≈ Γ + 2g2 γtot

γ2
tot + ∆2

[
1 +

1

~2γtot
Re{D>(ω = ∆)}

]
, (5.17)

where the total dephasing rate is given as γtot = γ + (Γ + κ)/2. A proof of this expression is
however not given in [69], and therefore we present a thorough exposition of the derivation in
Appendix D.

The term ”1” in the brackets in Eq. (5.17) expresses the loss from the direct decay of the QD
through interaction with the cavity through the Purcell-effect as described in Section 5.1.2. This
term modifies the decay in the same way for positive as for negative detunings, giving symmetric
decay curves. The second term contains the electron-phonon interaction through Re{D>(ω)} if
it is non-zero when evaluated at ω = ∆.

With the crude wavefunction assumption in Eq. (5.6), the interaction matrix element be-
comes

Mk
νν =

√
~k

2dclV
Dνe−k

2L2/4, (5.18)

and Eq. (5.14) reduces to

Re{D>(ω)} =
~

4πdc5
l

· ω3

1− e−β~ω
· (De −Dg)

2e−ω
2L2/(2c2l ). (5.19)

where ω is the phonon frequency. The expression is written in this way to point out that
Re{D>(ω)} is a product of three terms: A constant term depending on the macroscopic prop-
erties of the material, a term depending entirely on the temperature, and at last a temperature
independent integral depending on the material constants and the properties of the QD.

By introducing a ”cut-off”-frequency ωc =
√

2cl/L, Eq. (5.19) for T = 0 K may be written
as

Re{D>(ω)} = α
ω3

ω3
c

e−ω
2/ω2

c , (5.20)
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Figure 5.6: The normalized efective phonon
spectrum vs. normalized frequency, T = 0 K.

where α = ~(De − Dg)
2/(
√

2π2ρc2
lL

3), which is
an amplitude parameter describing the electron-
phonon interaction strength. For the used param-
eters and L = 5 nm, we get α = 0.26, but what
is more important is that α ∝ L−3, which shows
a significant dependence on the width of the car-
rier wavefunction. L though appears in ωc, so the
rest of the expression in Eq. (5.20) increases when
L is increased. A plot of Eq. (5.20) is given in
Fig. 5.6, from which we see that the electron-phonon
interaction only is significant for ω . 3ωc. As
ωc ∝ L−1, we see that for the crude wavefunctions
the energy span, over which electron-phonon cou-
pling influences, decreases when the width of the
QD wavefunction increases, corresponding to inter-
action with fewer phonon modes.

Eq. (5.20) gives a basic understanding of the phonon influence, although it does not include
temperature dependence. Re{D>(0)} = 0 due to intrinsic properties of the interaction ma-
trix element because ω = 0 corresponds to the infinite-wavelength of the phonons, which is a

(a) (b)

Figure 5.7: (a) Effective phonon spectrum versus phonon frequency plotted for different temperatures
under the assumption of a crude wavefunction, plotted from Eq. (5.19). For T = 0 the spectrum is zero
for negative detuning as expected since no excited phonons are present for the QD to absorb. Simulation
parameters are described in Appendix A and L = 5 nm. (b) Top figure: Lifetimes of the excited QD
state plotted versus the detuning for different temperatures. The solid (dashed) curves is for negative
(positive) detunings. The black dotted line is the approximate solution from Eq. (5.17) for T = 10 K
and negative detuning. Bottom figure: The degree of asymmetry defined as the ratio of the lifetime for
opposite signs of the detuning. The black dotted lines indicates the values obtained with the approximate
expression for Γtot at the specific temperature in Eq. (5.17).
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(a) (b)

Figure 5.8: (a) Effective phonon spectrum versus phonon frequency plotted for different wavefunction
widths under the assumption of a crude wavefunction, plotted from Eq. (5.19). Simulation parameters
are described in Appendix A and T = 10 K. (b) Top figure: Lifetimes of the excited QD state plotted
versus the detuning for different wavefunction widths calculated for T = 0 K. The solid (dashed) curves
is for negative (positive) detunings. The curves for negative detunings are coinciding because at T = 0 K
no thermally excited phonons contribute exists, no matter the value of L. Bottom figure: The degree of
asymmetry defined as the ratio of the lifetime for opposite signs of the detuning. The black dotted lines
indicates the values obtained with the approximate expression for Γtot, Eq. (5.17).

translation of the whole crystal and thus not introduce any electron-phonon interaction.

Eq. (5.19) indicates how Re{D>(ω)} scales with temperature, and we plot it for different
temperatures, see Fig. 5.7a. Note that for T = 0 K, Re{D>(ω)} = 0 for ω < 0. Physically
this makes sense as discussed earlier, because when ∆ < 0 the QD must absorb a phonon to
match the cavity mode, but there are no excited phonons to absorb when T = 0 K. For high
temperatures, the possibility of emitting and absorbing a phonon is almost equal and we expect
a symmetric spectrum as also indicated by Fig. 5.7a. This figure illustrates, as pointed out in
Section 5.2, that the phonon interaction is largest for detunings around 1− 2 meV.

In an experiment, the effective phonon spectrum would be difficult to extract. What usually
is measured is decay curves of the excited QD state, and from these curves the lifetime of the
excited QD state can be determined. To make our model comparable with physical results we
extract the lifetime from our calculations by making a single-exponential fit to the calculated
decay curves as the one in Fig. 5.4a. The oscillating behaviour of the decay curve for small times
makes it difficult to extract precise lifetimes for small ∆, introducing a small uncertainty here.
The lifetime for varying detuning is shown in Fig. 5.7b for different temperatures. Agreeing with
the asymmetry discussion above, the asymmetry is largest when T is low with fewest thermally
excited phonons, and in the limit of infinite detuning, no coupling exists between the cavity and
the QD, giving a lifetime of the excited QD state of 1/Γ = 1 ns. Varying the temperature does
not change the detuning range, at which the asymmetry is seen, because the electron-phonon
matrix element, Mk, is temperature independent.

Furthermore we see, that the approximate expression for the total decay rate in Eq. (5.17)
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quite well describes the asymmetry for large detunings, but deviates for low detuning. Eq. (5.17)
was however derived in the limit ∆� g = 150µeV, so it is not valid for low detuning.

Another parameter that may be varied it the coupling strength, g. We do not make a
specific plot of the lifetimes but refer to a plot in [69], which shows that the lifetime decreases
as g increases, consistent with the Purcell effect. The asymmetry between lifetimes for positive
and negative detuning is increased when g is increased, which is expected since the QD decays
through the cavity by emission of a phonon. Thus when the QD-cavity coupling is increased, we
expect a faster decay and thereby shorter lifetime for ∆ > 0 but not for ∆ < 0.

Quantum dots may have many different sizes. Thus we vary the width of the QD wavefunc-
tion, L, to determine how the effective phonon spectrum changes, see Fig. 5.8a. As discussed
below Eq. (5.20), both the amplitude and the energy span of the electron-phonon interaction
increases when L decreases. This applies also to the lifetimes of the excited QD state, see
Fig. 5.8b, where the plot of the relative lifetimes ”adapts” the shape of the effective phonon
spectrum for ∆� g, such that a higher lifetime asymmetry is achieved for lower wavefunction
widths.

5.3 Relating the model to present research

Having realized some the physical properties of the considered model, it would be worth relating
the model to the recent developments in the research field.

A standard way of describing the impact of electron-phonon interaction on dephasing in a
QD-cavity system is by including the effect of phonons by a pure dephasing rate only [86, 88, 85].
This corresponds to a memoryless phonon reservoir, the so-called Markovian description, and
this model has been shown to be inadequate in describing the decoherence due to the electron-
phonon interaction [1].

Our model in this thesis goes beyond the Markovian dynamics by introducing a phonon
reservoir that do have memory, described by a correlation function. Several recent publications
consider decoherence of the polarisation in a bare QD due to electron-phonon interaction in
a QD excited by a classical laser pulse, and they demonstrate that the phonons have a big
influence on the coherent optical response [89, 76, 66]. Several ways are proposed to reduce the
decoherence, e.g. by controlling the excitation pulses [90].

Several articles discuss a non-Markovian phonon bath interacting with a QD inside an optical
cavity [1, 91, 92, 43, 93]. In these the asymmetry due to phonon-assisted cavity-feeding is
discussed, which is present for ∆ > 0 but not for ∆ < 0, and the possibility of phonon-assisted
electron-cavity coupling have also been addressed experimentally in a photonic crystal cavity
[94].
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5.4 Summary

In steps we have described the physics contained in our coupled QD-cavity model interacting
with a non-Markovian phonon reservoir. For a memoryless reservoir, the phonons only contribute
by a pure dephasing rate, but in the full non-Markovian description, the phonons induce an
asymmetry in the lifetime when changing the sign of the detuning. With a crude approximation
for the electron wavefunction, we observed that the influence of the electron-phonon interaction
becomes larger when 1) the temperature is increased due to more thermally excited phonons,
2) the QD-cavity coupling strength is increased, such that more energy is transferred between
the QD and the cavity, which thus to a higher degree is affected by pure dephasing, and 3) the
electron wavefunction width is decreased, due to interaction with more phonon modes.

We have demonstrated that the memoryless description of the phonon reservoir is insufficient
in describing the full effect of the phonons on the system dynamics, as also concluded in [1].
Only few approaches have been done in the literature in describing the QD-cavity interacting
with a non-Markovian reservoir

Until this point in this thesis, we have not demonstrated any new physical features with
this model, which are not seen in the literature. But we have provided a solid understanding
of the physics covered in the model, and in the rest of the thesis we will exploit it to gain new
insight of the physics in this model, which to our knowledge not have been demonstrated in the
literature.
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Chapter 6

Pure Dephasing and Indistinguishability

Recently we have been able to improve the calculation scheme for the system dynamics described
in Section 4.3, originally presented in [1, 69]. In Section 6.1 we present a way to determine an
analytic expression for the time evolution operator U(t), which may be used to find reduced
expressions for both γ12(t) and G≷(t), which are the terms describing the interaction between
the cavity-QD system and the phonon bath, relevant when considering an initially excited QD.
We exploit this to divide the phonon-induced pure dephasing rate into a long- and short-time
contribution. Furthermore an analytic expression for the long-time pure dephasing rate is de-
rived. In relation to these calculations and to the model in general, we discuss in Section 6.2
how to reduce the indistinguishability of the emitted photons by minimizing the pure dephasing
from phonons.

6.1 Analytic expression for the phonon scattering terms

We recall from Section 4.3 that for an initially excited QD at t = 0, the important terms for the
electron-phonon interaction are given by

G≷(t) = i~−2

∫ t

0
dt′ U∗11(t′)U21(t′)D≷(t′), (6.1)

γ12(t) = ~−2

∫ t

0
dt′
[
|U11(t′)|2D<(t′)− |U21(t′)|2D>(t′)

]
, (6.2)

where the time evolution operator for the QD-cavity system is

U(t) = e−iHSt/~, HS = ~

 ∆ g 0
g 0 0
0 0 0

 , (6.3)

and the phonon reservoir correlation function is

D≷(t) =
∑
k

|Mk|2
[
nke±iωkt + (nk + 1)e∓iωkt

]
. (6.4)
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6.1.1 Analytic expression for U(t)

To determine an analytic expression for U(t), without any operators as in Eq. (6.3), we use
Gram-Schmidt orthonormalisation to determine a basis, in which HS is diagonal. The coordinate
transformation matrix is denoted Q and the diagonal form of HS in the new basis is denoted
H̃S = QTHSQ, where QT is the transposed of Q. The diagonalisation goes as follows and is
described in standard textbooks on linear algebra [95]. In the case of g = 0, HS is already
diagonal, where U(t) easily is evaluated, so we only consider the case g 6= 0.

The eigensolutions of the eigenvalue equation HSvi = ~λivi, where vi is the eigenvector
corresponding to the eigenvector λi, are given by

λ± =
∆

2
± 1

2

√
∆2 + 4g2, v± =

 g/λ∓
1
0

 , λ0 = 0, v0 =

 0
0
1

 , (6.5)

where g 6= 0 ensures that λ− 6= 0. Each of the eigenvalues have the same algebraic and geometric
multiplicity, meaning that the eigenvectors v0, v+, and v− span a basis for the vector space in
which HS is diagonal.

The coordinate transformation matrix Q must consist of three normalized and ortogonal
basis vectors, i.e. vi ·vj = δij . The Gram-Schmidt normalisation algorithm provides these from
the set {v+,v−,v0} and gives

Q =


λ+√
g2+λ2+

− g√
g2+λ2+

0

g√
g2+λ2+

λ+√
g2+λ2+

0

0 0 1

 , H̃S = ~

 λ+ 0 0
0 λ− 0
0 0 0

 , (6.6)

where the eigenvalues appear in the diagonal of H̃S. The coordinate transformation is orthogonal,
meaning QTQ = QQT = I, where I is the identity operator. In this new basis, U(t) is given by

Ũ(t) = QTU(t)Q

= QT
[
I + (−it/~)HS + (−it/~)2H2

S + . . .
]
Q

= I + (−it/~)QTHSQ+ (−it/~)2QTHSQQ
THSQ+ . . .

= I + (−it/~)H̃S + (−it/~)2H̃2
S + . . .

=

 1 + (−it)λ+ + (−it)2λ2
+ + . . . 0 0

0 1 + (−it)λ− + (−it)2λ2
− + . . . 0

0 0 1


=

 e−itλ+ 0 0
0 e−itλ− 0
0 0 1

 . (6.7)

By transforming back to the original basis, we obtain a final expression for U(t),

U(t) = QŨ(t)QT =


λ2+e−itλ++g2e−itλ−

g2+λ2+

λ+g(e−itλ+−e−itλ−)
g2+λ2+

0

λ+g(e−itλ+−e−itλ−)
g2+λ2+

g2e−itλ++λ2+e−itλ−

g2+λ2+
0

0 0 1

 , (6.8)
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with λ± = ∆
2 ±

1
2

√
∆2 + 4g2. This expression fulfils the unitary requirement U(t)U †(t) = I.

For the calculations of γ12(t) and G≷(t) we need the three products between matrix elements
of U(t), where we use that λ+ − λ− =

√
∆2 + 4g2,

|U11(t)|2 =
1

(g2 + λ2
+)2

[
λ4 + g4 + λ2g2

(
e−it
√

∆2+4g2 + eit
√

∆2+4g2
)]

(6.9)

= 1−
2λ2

+g
2

(g2 + λ2
+)2

[
1− cos(t

√
∆2 + 4g2)

]
, (6.10)

and

|U21(t)|2 =
λ2

+g
2

(g2 + λ2
+)2

[
2− e−it

√
∆2+4g2 − eit

√
∆2+4g2

]
(6.11)

=
2λ2

+g
2

(g2 + λ2
+)2

[
1− cos(t

√
∆2 + 4g2)

]
, (6.12)

where we confirm that |U11(t)|2 + |U21(t)|2 = 1, caused by the unitarity of U(t). As the last
product, we calculate

U∗11(t)U21(t) =
λ+g

(g2 + λ2
+)2

(
λ2

+ − g2 − λ2
+eit
√

∆2+4g2 + g2e−it
√

∆2+4g2
)

(6.13)

=
λ+g

g2 + λ2
+

[
λ2

+ − g2

g2 + λ2
+

(
1− cos(t

√
∆2 − 4g2)

)
+ i sin(t

√
∆2 − 4g2)

]
, (6.14)

using that for any value of a variable x, a exp(ix) + b exp(−ix) = (a+ b) cos(x) + i(a− b) sin(x).

6.1.2 The scattering terms

The function γ12(t) in Eq. (6.2) may be calculated with Eqs. (6.10) and (6.12),

γ12(t) = ~−2

∫ t

0
dt′D<(t′)− ~−2 4λ2

+g
2

(g2 + λ2
+)2

∫ t

0
dt′
[
1− cos(t′

√
∆2 + 4g2)

]
Re{D<(t′)}, (6.15)

exploiting that [D>(t)]∗ = D<(t). The first term in Eq. (6.15) does not contain ∆ or g and is
solely described from the bare electron-phonon interaction. The second term is real and cavity-
dependent, and we see that γ12(t) attains the same value for ±∆, which is should according to
the discussion in Section 5.2. Thus we only discuss γ12 for ∆ > 0. We recall from Section 4.3
that Im{γ12(t)} was an energy shift introduced due to the electron-phonon quasiparticle. Thus
we should not expect it to be dependent on the presence of the cavity, which is also what we
see.

In Eq. (6.15) it is clearly pointed out, that the rate pure dephasing rate consists of a part
only due to the electron-phonon interaction, and a part which is zero for g = 0 and thus
describes interaction of the electron-phonon quasiparticle with the cavity mode. By inserting
the expression for D<(t) into Eq. (6.15) and evaluating the integrals, the contribution to the
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pure dephasing rate γ12(t) = γ12,e-ph(t) + γ12,cavity(t) becomes

Re{γ12,e-ph(t)} = ~−2
∑
k

|Mk|2(2nk + 1)
sin(ωkt)

ωk
(6.16)

Re{γ12,cavity(t)} = ~−2 4λ2
+g

2

(g2 + λ2
+)2

∑
k

|Mk|2(2nk + 1)

×

[
−sin(ωkt)

ωk
+

1

2

sin([ωk −
√

∆2 + 4g2]t)

ωk −
√

∆2 + 4g2
+

1

2

sin([ωk +
√

∆2 + 4g2]t)

ωk +
√

∆2 + 4g2

]
(6.17)

The imaginary part of γ12(t) may easily be calculated from Eq. (6.15).

The function G≷(t) may also be calculated by evaluating the integral in the same way, but
is the expression becomes longer,

G≷(t) = i~−2 λ+g

g2 + λ2
+

∫ t′

0
dt

[
λ2

+ − g2

g2 + λ2
+

(
1− cos(t′

√
∆2 + 4g2)

)
+ i sin(t′

√
∆2 + 4g2)

]
D≷(t′)

= i~−2 λ+g

g2 + λ2
+

∑
k

|Mk|2f(t) (6.18)

where the function f(t) is a long expression containing terms constant in time plus both imagi-
nary and real terms proportional to sin(at)/a and cos(at)/a where a ∈ {ωk, ωk ±

√
∆2 + 4g2}.

f(t) may easily be calculated, so we will not state the explicit expression here.

Summarizing, we have with an analytic expression of U(t) been able to carry out the t-
integration. In the numerical implementation of the model, only the k-sum has to be carried
out, giving a reduced calculation time when using Eq. (6.16), (6.17), and (6.18), compared to
calculating γ12(t) and G≷(t) all numerically.

The limit t→∞

As we saw in Section 5.2.3, the phonon bath correlation function, D≷(t), only varies in the first
∼ 5 ps, after which D≷(t) more or less is zero. Thus G≷(t) and γ12(t) attains an almost constant
value after ∼ 5 ps, which may be calculated as the limit t → ∞. This could be obtained by
taking the limit in Eqs. (6.17) and (6.18), but may more easily be calculated from the expressions
before the t-integration is carried out. We will only consider γ12(t → ∞), since we at present
not have obtained any new physical insight from the expression of G≷(t → ∞). By using the
definition of the Fourier transform given in Eq. (5.15) to transform Eqs. (6.9) and (6.11) in the
limit t → ∞, and by using the property of the D-function [D<(ω)]∗ = D>(−ω), we obtain by
simple algebraic manipulation

γ12(t→∞) = ~−2D<(ω = 0) + ~−2 4λ2
+g

2

(g2 + λ2
+)2

[
− Re{D>(ω = 0)}

+
1

2
Re{D(ω =

√
∆2 + 4g2)}+

1

2
Re{D(ω = −

√
∆2 + 4g2)}

]
, (6.19)

56



6.2. Indistinguishability

using the relation 2 Re{z} = z+ z∗ for a complex parameter z. Using that Re{D>(ω = 0)} = 0,
we divide γ12(t→∞) into a real and an imaginary part,

Re{γ12(t→∞)} = ~−2 4λ2
+g

2

(g2 + λ2
+)2
· 1

2

[
Re{D>(ω =

√
∆2 + 4g2)}

+Re{D>(ω = −
√

∆2 + 4g2)}
]
, (6.20)

Im{γ12(t→∞)} = ~−2Im{D<(ω = 0)}. (6.21)

In general we are not able to determine Im{D<(ω = 0)} and thus the imaginary part of
γ12(t). But the real part is everywhere non-negative and is described as the product of fac-
tor 4λ2

+g
2/(g2 + λ2

+)2 describing the coupling to the cavity and a factor only related to the
electron-phonon coupling by the effective phonon spectrum, Re{D>(ω)}. From this we are able
to draw important physical conclusions, which will be discussed in the following section.

6.2 Indistinguishability

As introduced in Chapter 1, indistinguishability of the emitted photons plays an important role
in the realization of a good single photon source. From Eq. (1.1) we may express the degree
of indistinguishability, defined as the coherence time divided by the lifetime of the excited QD
state, by rates, in a phenomenological way,

Degree of indistinguishability =
Γtot

Γtot + γtot + Re{γ12}
(6.22)

where Γtot is the total decay rate of the excited QD state, and γtot = (Γ + κ)/2 + γ is the total
dephasing rate without including the phonons.

In the limit g � ∆, we saw in Eq. (5.17) that Γtot was increased by electron-phonon scatter-
ing, which would increase the indistinguishability. But as stated in Eq. (6.15), the interaction
also contribute by a pure dephasing rate, which would decrease the indistinguishability. The
problem is now to determine the optimal balance between these two effects to achieve the highest
indistinguishability.

According to the matrix elements described in Section 4.3, both Im{G≷(t)} and Re{γ12(t)}
give phonon-contributions to dephasing, whereas only the latter is given by a pure dephasing rate.
Both of these have to be taken into account, when calculating a precise effect of the dephasing,
but it is difficult to tell exactly how G≷(t) influences, see [1] for an elaborating discussion of the
dynamics due to G≷(t). In this thesis we discuss how to reduce the phonon-induced decoherence
only by minimizing the pure dephasing without including the effect of G≷(t), which gives an
incomplete, but still gainful picture.

Pure dephasing for small times

A plot of γ12(t) is given in Fig. 6.1a where the dependence of the temperature and the wavefunc-
tion width is examined. Re{γ12(t)} increases initially and peaks around t = 1 ps, from which
it decreases and converges toward a non-zero value Re{γ12(∞)}. It is reasonable to believe
that the total effect of pure dephasing from electron-phonon interaction depends both on the
amplitude of the peak appearing at low times and of Re{γ12(∞)}. The peak appears due to
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(a) (b)

Figure 6.1: (a) The time evolution of the pure dephasing rate, Re{γ12(t)}, plotted for different tem-
peratures and widths of the carrier wavefunction. When nothing else is mentioned, T = 0 K, L = 5 nm,
~∆ = 1 meV, and ~g = 150µeV. (b) The pure dephasing rate Re{γ12(t)} plotted for different values
of the detuning and of the coupling strengths. When nothing else is mentioned, T = 0 K, L = 5 nm,
~∆ = 1 meV, and ~g = 150µeV.

the behaviour of D≷(t), which varies initially until ∼ 5 ps and then dies out. The D-function
depends on the electron and phonon properties only, so we expect that the appearance of the
peak is not affected by the cavity-related parameters.

It should though be noted from Fig. 6.1a, that an increase in either T or L enhances both
the peak amplitude and the long-time value. This agrees with Eqs. (6.16) and (6.17) and the
discussion in Chapter 5, where it was shown that an increase in either T or L enhances the
electron-phonon interaction.

The parameters concerning the cavity-coupling, ∆ and g, are varied in Fig. 6.1b for γ12(t).
The magnitude of the peak does not change when varying ∆ or g as we expected, since the peak
appears due to the bare electron-phonon interaction. In the case of ∆→∞ or g = 0, the cavity
no longer couples to the electron-phonon system, and γ12(∞) = 0, and thus the pure dephasing
of a bare electron-phonon system depends on the amplitude of the peak only.

Pure dephasing in the large time limit

With crude wavefunction assumption in Eq. (5.6), the pure dephasing in the large-time limit
may be obtained an all analytical expression. An insertion of Eq. (5.19) into Eq. (6.20), gives

Re{γ12(t→∞)} =
2λ2

+g
2

~2(g2 + λ2
+)2

~(De −Dg)
2

4πρc5
l

ω3
+e−ω

2
+L

2/(2c2l ) coth

(
β~ω+

2

)
, (6.23)

where λ+ = ∆
2 + 1

2

√
∆2 + 4g2, ω+ =

√
∆2 + 4g2, and coth(β~ω+/2) = (1+e−β~ω+)/(1−e−β~ω+).

In Fig. 6.2a we compare the value of Re{γ12(∞)} achieved from the simulation with the exact
solution, plotted for varying ∆. The deviations between the two results are due to numerical
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(a) (b)

Figure 6.2: (a) (Top) Re{γ12(∞)} vs. detuning for varying temperatures extracted from simula-
tions. The black dotted lines are the corresponding values obtained from the analytic expression in
Eq. (6.23), and the parameters values are similar to those in Fig. 6.1a when nothing else is mentioned.
(Bottom) The relative deviation between the analytic expression and the simulated values, calculated
as |Re{γ12,sim(∞)} − Re{γ12,ana(∞)}|/Re{γ12,ana(∞)} (b) The same as the top figure in Fig. 6.2a, but
varying g (top) and L (bottom), using T = 0 K.

inaccuracies and the deviations become significant only when Re{γ12(∞)} is almost zero, which
confirms that enough points are used in the simulation. An important thing to notice, is that
for low temperatures, the smallest highest value of Re{γ12(∞)} not necessarily is achieved for
∆ = 0. A way to understand this is obtained by considering Eq. (6.20), which states that
Re{γ12(∞)} is a cavity-dependent pre-factor times the sum of the values of the effective phonon
spectrum at ω = ±

√
∆2 + 4g2. The effective phonon spectrum was plotted in Fig. 5.7a and had

two peaks at around ω = ±1 meV, meaning that the value of Re{γ12(∞)} is largest when the
value

√
∆2 + 4g2 is around 1 meV. For a near-resonant system (small ∆) at low temperatures,

when the thermal effects not are significant, we may actually expect a smaller contribution to
the pure dephasing rate from the cavity-coupling for low coupling strengths than when g is
increased (until the peak is reached). To our knowledge this effect has not been demonstrated
in the litterature, but as seen in Fig. 6.2a this effect only appears for very low temperature, so
in practice this effect probably will be insignificant.

The pure dephasing rate for different g is also calculated, see Fig. 6.2b. It is clearly seen
that there exists a value of g, for which the largest dephasing is achieved, here demonstrated for
g = 400µeV. The experimentally achievable value of g is though typically below 200µeV, see
Appendix A. Furthermore the behaviour in the limits of strong g � ∆ and weak g � ∆ cavity
influence is illustrated clearly, and this should be compared to Eq. (6.20):

� For g � ∆, the cavity pre-factor in Eq. (6.20) is equal to 1, but the effective phonon
spectrum is small when evaluated at large frequencies, and in the limit g →∞, Re{γ12(∞)}
is zero for all ∆. A high g decouples the phonons from the polarition, such that no acoustic
phonons have high enough energy to assist in the QD-cavity coupling.
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� For g � ∆, the cavity pre-factor in Eq. (6.20) is zero and thus Re{γ12(∞)} = 0. Physically
the QD cannot decay through the cavity and the pure dephasing of the phonons is only
caused by the bare electron-phonon interaction.

To determine how the electronic confinement affect the dephasing, we plot Re{γ12(∞)} for
different values of L, see Fig. 6.2b. As L decreases, the pure dephasing rate increases due to
enhanced electron-phonon coupling as discussed in Chapter 5.

6.3 Summary and discussion

We have shown how to obtain reduced expressions for γ12(t) and G≷ by determining an analytic
expression of U(t). These expression may be used to improve the calculation in the numerical
implementation of the model1. We have shown that the derived expression for Re{γ12(t→∞)}
fits very well with the values obtained from the simulations. We divided the phonon contribution
to the pure dephasing rate, Re{γ12}, into two parts, the long- and the short-time effects:

� The long-time rate in Eq. (6.20) depends on the value of the effective phonon spectrum
in ω = ±

√
∆2 + 4g2. For the crude wavefunction approximation, the pure dephasing is

minimized when ∆ = 0 for small g, where the cavity-coupling strength is low and where
the value of the effective phonon spectrum, Re{D>(ω)} given in Fig. 5.7a, when evaluated
in ω = ±

√
∆2 + 4g2, is close to zero.

� The short-time effect depends solely on the electron-phonon coupling. In contrast to the
long-time limit rate which depends on the value of the effective phonon spectrum evaluated
at specific frequencies, the short time rate depends on a sampling over the whole effective
phonon spectrum. This is due to the incomplete Fourier transform in Eq. (6.15), because
the upper limit in the integral is t and not ∞. To minimize this contribution to the pure
dephasing rate, the amplitude of the whole effective phonon spectrum should be decreased.

According to the differential equation system in Section 4.3, the phonon-induced pure dephasing
rate is added to γtot = (Γ + κ)/2 + γ ≈ 50µeV to give the total decay rate of the polarisation
〈σ12(t)〉 in the equations of motion. For low temperatures, the long-time rate is negligible, and
the cavity-contribution to the pure dephasing rate may be neglected. At higher temperatures,
both the short- and long- time rates are comparable to γtot and should be included.

The phonon-assisted cavity feeding introduces higher shorter lifetimes of the QD, which
would improve the indistinguishability, but the phonons also induce dephasing, which decreases
the indistinguishability. The optimal indistinguishability is obtained when these effects are in
balance. We only considered the pure dephasing contribution from the phonons by γ12. In
a complete description, the dephasing effect in G≷ should also be included, but this is not
straight-forward so we only discuss indistinguishability in relation to γ12.

When considering the crude wavefunction approximation and bulk phonons, the optimal
design of a single-photon emitter with high indistinguishability would have ∆ = 0, where the
excited QD state has a low lifetime, and the long-time contribution to the pure dephasing is
almost zero (the effective phonon spectrum evaluated in ±g is small for realistic values of g for
the used parameters. In the next two chapters we will examine if a change in the electronic or
phononic confinement will make it viable to consider ∆ 6= 0.

1This was, however, realized late in the working process, so we did not have time to implement it in our
calculations. We used the full approach by determining U(t) numerically and carrying out the integration over t.
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Chapter 7

Engineering the Electronic Confinement

In some publications concerning electron-phonon interaction, the electronic confinement is de-
scribed by the crude wavefunction in Eq. (5.6) where the an electron in the ground and excited
state are assume to be described by the same, spherical wavefunction [44]. The effective mass of
an electron in the excited state (described by the conduction band) is though smaller than for
an electron in the ground state (described by the valence band), giving a larger wavefunction
width of the excited state than for the ground state. Some publications on electron-phonon
interaction uses this more physical wavefunction [76], and some even consider the possibility
of having an ellipsoidal wavefunction which take into account the confinement in the growth
direction of the QD [43, 90, 87]. Common to all of them is that a an extensive examination of
the influence of the wavefunction shape and width on the electron-phonon interaction never has
been carried out. To our knowledge, the closest approach is made in [42], where the electronic
confinement is changed by an applied field or a built-in field. Their analysis is restricted to only
described the effect of the acoustic phonons by a pure dephasing, and they model the quantum
dot structure by a potential well in the growth direction of the QD and by a two-dimensional
harmonic-oscillator potential perpendicular to the growth direction. The only conclusion about
the electronic confinement is that a small QD gives a large electron-acoustic interaction, which
we also previously have demonstrated. They focus more on the difference between GaAs and
GaN-quantum dots, as discussed in Section 2.3.

In this chapter we investigate in details of how the electronic confinement affects the dy-
namics in the system, when considering bulk LA-phonons obeying the linear dispersion relation
ωk = |k|cl. The is done by analytical considerations in Section 7.1, where we assume an el-
lipsoidal wavefunction. Realistic quantum dot structures may have different sizes and shapes,
see Figs. 7.1a and 7.1b. By calculating actual wavefunctions in QD structures using the finite
element method (FEM) in Section 7.2, we test how well the ellipsoidal approximation may be
used to describe the wavefunctions of the calculated structures. In both sections we discuss
how the electronic confinement affects the lifetime asymmetry introduced in Chapter 5 and the
indistinguishability treated in Chapter 6.
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(a) (b)

Figure 7.1: (a) InAs/InP QD grown at Danchip and characterized at CEN, both at DTU (courtesy of
K. Yvind, DTU). The white bar in the upper corner is 5 nm long. (b) TEM picture of a lens-shaped
InAs QD grown on GaAs [23] (courtesy of Dr. J. P. McCaffrey, IMS NRC Canada).

7.1 Analytic wavefunction

In the analytic part we assume an ellipsoidal wavefunction on the (normalized) form

φν(r) =
1

π3/4lν,xyl
1/2
ν,z

e−(x2+y2)/(2l2ν,xy)e−z
2/(2l2ν,z). (7.1)

Here we assume that the QD is grown in the z-direction, such that it has one width parameters
concerning the confinement in that direction, lν,z, and another width lν,xy describing the con-
finement in the plane perpendicular to the growth direction. The index ν ∈ {g, e} refers to the
wavefunction width of an electron in either the ground or the excited state.

From Eq. (4.5) we recall the expression for the interaction matrix element, which for bulk
phonons is

Mk
νν =

√
~k

2dclV
Dν

∫
dr |φν(r)|2eik·r, (7.2)

where the density in this chapter is denoted d instead of ρ, which in this chapter refers to
the radial component in a cylindrical coordinate system. For the ellipsoidal model we may
advantageous use cylindrical coordinate representation and split up the wavevector k into a
radial part, kρ, and an axial part, kz,∫

dr |φν(r)|2eik·r =
1

π3/2l2ν,xylν,z

∫
dρ e−ρ

2/l2ν,xy+ikρ·ρ ×
∫ ∞
−∞

dz e−z
2/l2ν,z+ikzz. (7.3)

The first integral is calculated in [96], and the second is easily evaluated, giving∫
dr |φν(r)|2eik·r =

1

π3/2l2ν,xylν,z
× πl2ν,xye−k

2
ρl

2
ν,xy/4 ×

√
πlν,ze

−k2ρl2ν,z/4

= e−k
2
ρl

2
ν,xy/4−k2z l2ν,z/4. (7.4)
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7.1. Analytic wavefunction

Using Eq. (5.13) to transform the k-sum into an integral, and remembering the definition Mk =
Mk
ee −Mk

gg, the phonon bath correlation function may be written as

D(t) =
∑
k

|Mk|2
[
nke±iωkt + (nk + 1)e∓iωkt

]
(7.5)

=
~

4π2dcl

∫ ∞
0

dkρ kρ

∫ ∞
0

dkz k

∣∣∣∣Dee
−k2ρl2e,xy/4−k2z l2e,z/4 −Dge

−k2ρl2g,xy/4−k2z l2g,z/4
∣∣∣∣2

×
[
nke±iωkt + (nk + 1)e∓iωkt

]
, (7.6)

with kρ = |kρ|, and where we exploit that the integrand is an even function in kz to change the
integration limits.

7.1.1 The effective phonon spectrum

As in Section 5.2.3, information about the phonons may be gained by considering the effective
phonon spectrum, Re{D>(ω)}, which may be obtained by applying the Fourier transform from
Eq. (5.15). In the derivations we changed the integration parameter in the kρ-integral to an

integral over frequency using the relations k =
√
k2
ρ + k2

z and ωk = cl|k|, giving

Re{D>(ω)} =
~

4πdc4
l

∫ ∞
0

dkz

∫ ∞
kzcl

dωk ω
2
k

∣∣∣∣Dee
−[(ωk/cl)

2−k2z ]l2e,xy/4−k2z l2e,z/4 (7.7)

−Dge
−[(ωk/cl)

2−k2z ]l2g,xy/4−k2z l2g,z/4
∣∣∣∣2 × [nkδ(ω + ωk) + (nk + 1)δ(ω − ωk)] . (7.8)

By mathematical considerations we have that for any even function g(ωk), with kz > 0,∫ ∞
kzcl

dωk g(ωk) [nkδ(ω + ωk) + (nk + 1)δ(ω − ωk)] = g(ω)nωk=−ω
−|ω|
ω

θ(|ω| − kzcl). (7.9)

using that nωk=−ω = −(nωk=ω + 1) from the definition of nk in Eq. (4.51). By applying this, we
obtain a reduced expression for the phonon spectrum,

Re{D>(ω)} =
~

4πdc4
l

ω|ω|
1− e−β~ω

∫ |ω|/cl
0

dkz

∣∣∣∣Dee
−[(ω/cl)

2−k2z ]l2e,xy/4−k2z l2e,z/4 (7.10)

−Dge
−[(ω/cl)

2−k2z ]l2g,xy/4−k2z l2g,z/4
∣∣∣∣2. (7.11)

By introducing the unit-less integration parameter, ω̃ = kzcs/|ω|,

Re{D>(ω)} =
~

4πdc5
l

ω3

1− e−β~ω

∫ 1

0
dω̃

∣∣∣∣Dee
−(1−ω̃2)ω2l2e,xy/(4c

2
l )−k

2
z l

2
e,z/4 (7.12)

−Dge
−(1−ω̃2)ω2l2g,xy/(4c

2
l )−k

2
z l

2
g,z/4

∣∣∣∣2. (7.13)

This expression is similar to the expression for the crude wavefucntion in Eq. (5.19) and only
differ in the last factor concerning the electronic dependence. The temperature dependence still
appears as a separate factor.
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Spherical wavefunction

To develop an understanding of Eq. (7.13), we start by considering the case of spherical wave
functions, where the difference in wavefunctions widths due to different effective masses of the
conduction and valence is taken into account, i.e. Le = le,xy = le,z and Lg = lg,xy = lg,z, in
which case Eq. (7.13) reduces to

Re{D>(ω)} =
~

4πdc5
l

ω3

1− e−β~ω

[
Dee

−ω2L2
e/(4c

2
l ) −Dge

−ω2L2
g/(4c

2
l )
]2
. (7.14)

This expression has zeros

ω = 0 ∨ ω2 =
4c2
l

L2
e − L2

g

ln

(
De

Dg

)
, (7.15)

while the maxima are more cumbersome to determine analytically.
To attain a physical explanation for the appearance of these holes, we must remember origin

of the deformation potential coupling as discussed in Section 2.2.1. In general a compression of
a crystal increases the band gap [97]. For a number of III-V semiconductors including GaAs it
has been demonstrated by first-principles calculations that the valence band and the conduction
band actually are shifted the same way [98], but is is generally agreed that the conduction band
is shifted faster with pressure, such that the bandgap is increased anyway [97]. This means that
the sign of De and Dg is the same, which as we see from Eq. (7.15) is a requirement for the
zeros to appear.

The wavefunction widths are related to the effective masses in the different bands. The
effective mass in the conduction band is lowest, giving less confinement, and thus Le > Lg. The
zeros appear when the energy shift of each band and the effective masses are balancing each
other. We use values of De and Dg which is widely used in the literature concerning electron-
phonon interaction [43, 66, 99], but in general the values deviates much in the literature, see
Appendix A for further information.

As we see from Eq. (7.14) and Fig. 7.2a, increasing the temperature does not change the
width or shift the zeros of the spectrum, but only leads to an increase of the amplitude of
the spectrum as discussed in Section 5.2.3. Thus when making plots of the effective phonon
spectrum from now on, we will primarily consider T = 0 K, keeping this temperature scaling in
mind.

In practice the wavefunction widths would depend on the material specific parameters and
the QD geometry. By neglecting this fact and imagining that Le and Lg may be varied freely,
we plot the spectrum for Lg = 4 nm and varying Le. The spectrum is clearly largest when the
lengths are the same, because the smallest QD dimensions gives the largest phonon interaction
– the zeros lie at infinity for Le = Lg, so they do not affect this statement. This case is, however,
unrealistic due to the different mass of the electron and the hole. In agreement with Eq. (7.15),
the position of the zeros moves toward ω = 0 when the difference between Le and Lg is increased.
In the other limit the zeros for Le = Lg, the zeros are at ω = ±∞.

We wish to determine how this observed hole in the effective phonon spectrum affects the
lifetime asymmetry as discussed in Chapter 5 and the indistinguishability from Chapter 6. The
lifetimes are shown in Fig. 7.3a for varying Le. The lifetime asymmetry follows the shape
of the effective phonon spectrum in Fig. 7.2b, such that detuning exists where no asymmetry
appears. At these detunings, properties of the electronic confinement described by Mk allows no
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7.1. Analytic wavefunction

(a) (b)

Figure 7.2: (a) Effective phonon spectrum plotted for different temperatures with Lg = 4 nm and
Le = 6 nm. (b) Effective phonon spectrum plotted for T = 0 K with Lg = 4 nm and different Le. In
practice due to the lower effective mass in the conduction band than in the valence band, Le > Lg.

interaction between the electrons and the phonons, such that a phonon-assisted cavity-coupling
is present.

The short-time effect of the pure dephasing on the indistinguishability is determined by the
initial dynamics of Re{γ12(t)}. As discussed in Chapter 6, this effect can only be minimized by
decreasing amplitude of the effective phonon spectrum. In Fig. 7.2b for the case with Le = 7 nm,
the hole appears where the function ”should have peaked”, giving a lower amplitude than for
both Le = 5 nm and Le = 12 nm. The time-evolution of Re{γ12(t)} is plotted in Fig. 7.3b for
different Le, and the case Le = 7 nm clearly gives the lowest contribution from the short-time
effect to the indistinguishability.

The long-time effect described by Re{γ12(∞)} in Fig. 7.3b follows the shape of the effective
phonon spectrum as for the lifetime asymmetry, where the holes appear because the electronic
confinement allows no transition to the cavity.

The full ellipsoidal model

Going back to the full ellipsoidal wavefuntion, assuming that le,xy > le,z and lg,xy > lg,z, we
show that Eq. (7.11) may be written as

Re{D>(ω)} =
~

4πdc5
l

ω3

1− e−β~ω

[
D2
ee
−ω2l2e,xy/(2c

2
l )g1(ω) +D2

ge
−ω2l2g,xy/(2c

2
l )g2(ω)

−2DeDge
−ω2(l2e,xy+l2g,xy)/(4c2l )g3(ω)

]
, (7.16)

with

gi(ω) =

∫ 1

0
dx e

ω2b2i
4c2
l

x2

, (7.17)
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(a) (b)

Figure 7.3: (a) (Top) Lifetimes of the excited QD state plotted versus the detuning for different values
of Le with Lg = 4 nm, where solid (dashed) curves is for negative (positive) detunings. The solid lines
are all coinciding, since the simulation is carried out at T = 0 K, where the effective phonon spectrum is
zero for negative frequencies. (Bottom) The degree of asymmetry defined as the ratio of the lifetime for
opposite signs of the detuning. (b) (Top) The pure dephasing rate plotted vs. time for different Le at
∆ = 1 meV with Lg = 4 nm. (Bottom) The long-time pure dephasing rate plotted for varying detunings.

where

b1 =
√

2
√
l2e,xy − l2e,z, b2 =

√
2
√
l2g,xy − l2g,z, (7.18)

b3 =
√
l2e,xy − l2e,z + l2g,xy − l2g,z =

√
b21 + b22√

2
. (7.19)

Comparing Eq. (7.16) and Eq. (7.14) for the spherical wavefunction, we see that the form of the
expression is the same as Eq. (7.14), where the only difference is the term in the square brackets.
In the spherical dot limit, le,xy → le,z and lg,xy → lg,z, then gi(ω)→ 1 and we obtain Eq. (7.14).

We now have four wavefunction widths to vary, so to get realistic values for these, we extract
them from FEM-calculations of the QD wavefunction. This is done in the following section,
where the effective phonon spectrum are also be plotted. As we shall see, the ellipsoidal wave-
function does not always lead to zeros as we saw in Fig. 7.2b, but a dip in the spectrum will
still appear due to the minus-sign in square brackets in Eq. (7.16).

7.2 Wavefunction calculation using FEM

In this section we describe how the new effects discussed above appears in realistic QD structures
where the wavefunction geometry is determined by the material parameters and by the QD
shape. We consider a QD and a wetting layer of InAs and a surrounding barrier material of
GaAs, see Appendix F for parameter values. We simulate the QD structure similar to the one in
Fig. 7.1a by a truncated conical dot model as sketched in Fig. 7.4. The theory for determining
the wavefunctions is treated in details in [100, 101, 102, 103].
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7.2. Wavefunction calculation using FEM

Figure 7.4: The model for the truncated conical QD on a wetting layer analyzed using COMSOL.
When nothing else is mentioned, we use the size parameters d = 0.2 nm, r1 = 10 nm, and
r2 = 5 nm which describes an experimentally realizable QD [37], where the wetting layer only
consists of a few atom layers. The material parameters used in the simulation are given in
Section A, and the calculation domain has the width R0 and height L0.

We describe the QD by a simple two-band model where only one conduction and valence band
is considered, neglecting the spin of the electron as usually done in the literature. Furthermore
we neglect effects of band mixing and strain in the material, except the fact that the QD was
form by strain induced by different lattice constants of InAs and GaAs. In the envelope function
approximation the full wavefunction is given by

Φ(r) = u(r)Ψ(r) (7.20)

where u(r) is a Bloch function describing the periodic ion lattice (which we do not need to know
in details), and Ψ(r) is the envelope function. In this approximation the envelope function obeys
the one-band Schrödinger equation,

−∇ ·
(

~2

2m∗(r)
∇Ψ(r)

)
+ V (r)Ψ(r) = EΨ(r) (7.21)

where m∗(r) is the position dependent effective mass of an electron moving in the confinement
potential V (r), which is created by band-bending effects due to the presence of a low-bandgap
material surrounded by a barrier of a high-bandgap material. A detailed description of this is
provided in Appendix F.

The wavefunction, Ψ(r), has to be continuous and everywhere differentiable. At a discon-
tinuity in m∗(r), i.e. at the interface between the WL/QD and the barrier material, this gives
two boundary conditions

� Ψ(r) is continuous.

�
1

m∗(r)n ·∇Ψ(r) is continuous,
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where n is a outer normal vector in the considered domain. Furthermore Ψ(r) must be finite at
all r to have a physical solution.

The QD has rotational symmetry around the z-direction, allowing us to use a cylindrical
coordinate system and separate the wavefunction as

Ψ(r) = χ(ρ, z)Φ(φ) (7.22)

By inserting this expression for Ψ(r) into Eq. (7.21), the equation separates one part concerning
χ(ρ, z) and one concerning Φ(φ). By requiring that Φ(φ) is single-valued, i.e. Φ(φ) = Φ(φ+2π),
we get

Ψ(r) = χ(ρ, z)einφ, (7.23)

where n is an integer. Using this, the equation for χ(ρ, z) becomes[
− ~

2ρ

∂

∂ρ

(
ρ

m∗
∂

∂ρ

)
− ~2

2

∂

∂z

(
1

m∗
∂

∂z

)
+

n2~2

2m∗ρ2
+ V (ρ, z)

]
χn(ρ, z) = Eχn(ρ, z), (7.24)

where m∗ = m∗(ρ, z). Different modes appear which we describe by an index on chi, indicating
the mode number, n. We also see from Eq. (7.24) that the eigenvalue E is degenerate in n due
to the rotational symmetry.

The boundary conditions for χn(ρ, z) may be obtained from Eq. (7.23): If n = 0 then Ψ does
not vary with φ, giving the requirement that the gradient of χ0(ρ, z) has to be the zero-vector
for χ0(ρ, z) to be differentiable, otherwise χ0(ρ, z) has a ,,sharp corner” at ρ = 0. If n 6= 0 the
requirement of continuity of Ψ at ρ = 0 implies χn(ρ = 0, z) = 0 due to the oscillating variations
in the radial direction.

The above mentioned boundary conditions arise from pure physical considerations. While
doing FEM-calculations, we are limited to a finite domain with boundaries z = ±L0/2 and
ρ = R0 as sketched in Fig. 7.4. These artificial boundaries are defined to be able to solve the
problem numerically, and we have to state boundary conditions for these too.

From basic quantum mechanics we know that a finite quantum well has sinusoidal solutions
inside the well and exponentially decaying solutions outside [104, sec. 4.6]. Thus it is reasonable
to assume that χn(ρ,±L0/2) = 0 if L0 is large enough. By applying a boundary condition in the
radial direction at R0, this implies that the continuum of modes in the wetting layer is quantized.
As R0 → ∞, the energy spacing of these discrete wetting layer modes become infinitely small,
converging towards the mode continuum. For bound modes, i.e. modes that are confined to the
dot, it is thus reasonable to used the boundary condition χn(ρ = R0, z) = 0 if we make sure to
check that the solution has converged when increasing R0.

Summarizing the boundary conditions, we have

� χn(ρ = 0, z) = 0 for n 6= 0.

� ∂ρχn(ρ, z)|ρ=0 = 0 for n = 0.

� χn(ρ,±L0/2) = χn(R0, z) = 0.

In our model we only consider a single conduction and valence band, corresponding to the fun-
damental state in each band described by n = 0, defined as the state with the lowest eigenenergy.
If the structure only contained the WL and the barrier, this corresponds to the finite quantum
well, which has an analytical solution. More complicated structures as the one including the QD
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7.3. Truncated conical dot wavefunction

(a) (b)

Figure 7.5: (a) Normalized wavefunctions in the QD described in Fig. 7.4 for h = 1.25 nm (left) and
h = 5.0 nm (right). The upper pictures are the FEM wavefunction for an electron in the conduction
band and the lower pictures are the fit to Eq. (7.25). (b) The absolute difference between the fit and the
FEM wavefunction, φfit − φFEM, illustrated for the QD with h = 1.25 nm in Fig. 7.5a.

must be solved numerically. We implement the model in the finite element package COMSOL1.
Eq. (7.24) has to be implemented in a normalized version, and a detailed description of the
normalization is provided in Appendix F. In Appendix F we furthermore compare a numerical
calculation of the energies of a finite quantum well with the analytical results to confirm, that
the implementation is correct. As the last thing we verify solutions of the QD-problem have
converged with respect to the used number of mesh points and R0.

7.3 Truncated conical dot wavefunction

To calculate the wavefunctions by FEM, we use the parameters in Appendix F for the effective
masses and bandgap energies. All plots are made for T = 0 K because we in Section 7.1 realized
that the temperature only scales the spectrum, though a little asymmetrically. The wavefunc-
tions are fitted using a two-dimensional fitting procedure to the ellipsoidal wavefunction,

φν(r) = a4e−a1ρ
2−a2(z−a3)2 , (7.25)

where a1−4 are fitting parameters2. From a1 and a2 we may extract the effective lengths, and
the center of the Gaussian we denote (ρ, z) = (0, z0), from which we see that z0 = a3.

An example of a wavefunction calculated with FEM is plotted in Fig. 7.5a where the wave-
function clearly is confined to the dot although part of the wavefunction lies outside the dot.

1For further details see www.comsol.com
2Requiring a normalized wavefunction fit, the parameter a4 is determined by a1 and a2 in a three-parameter fit.

We did however not have time to implement this succesfully in the fitting procedure, and instead we normalized
the wavefunction after doing the four-parameter fitting. But as we will see, our approach gives good fits anyway.
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(a) (b)

Figure 7.6: (a) The relative deviation δ between the COMSOL wavefunction and the ellipsoidal fit
versus the QD height, h. (b) Effective widths of the ground and excited states in the radial direction
(xy-direction) and in the z-direction versus h. The widths are extracted by an ellipsoidal fit to the
FEM-wavefunction. We use the parameters d = 0.2 nm, r1 = 10 nm, and r2 = 5 nm.

The wavefunction fit is given in the lower part of the figure and the absolute difference between
the fit and the COMSOL wavefunction is given in Fig. 7.5b.

As a measure of the deviation between the wavefunctions, we define the quantity

δ =

∫
dr |φfit(r)− φFEM(r)|2∫

dr |φFEM(r)|2
. (7.26)

We see that δ lies in the range 0 ≤ δ ≤ 1, where δ = 1 corresponds to a perfectly matching fit.
Both the FEM- and the fitted wavefunction are normalized making the denominator equal to 1.

Depending on how the dots is grown, the proportions of the QD may vary and thus change
the wave functions. We calculate δ for QDs with different heights, see Fig. 7.6a. For our
parameters there exists an optimal height at around 1.5 − 2 nm. When the height is too
small, the QD-wetting layer structure looks more like a finite quantum well. From general
quantum mechanics it is known that the wavefunction in a finite quantum well has a sinusoidal
shape inside the well and an exponential decay outside [104]. The large deviation between the
calculated wavefunction and the fit for small values of h is simply a statement of the mismatch
between this sinusoidal-exponential function and the Gaussian fit. In the large h-limit, the shape
of the FEM wavefunction follow the shape of the dot, as seen in Fig. 7.5a, an thus deviates more
from the symmetric, ellipsoidal model. But in general the fit is quite good and only deviates
with 1-5 %.
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7.3. Truncated conical dot wavefunction

From the fitting we may also extract the effective widths, see Fig. 7.6b. As expected, the
wave function of the ground state has smaller width than the excited state, consisten with the
higher confinement in the valence band due to the higher effective mass. As h → 0, the setup
becomes equal to the finite quantum well, where the electron is confined in the z-direction, but
totally free to move in the x and y-direction giving infinite confinement lengths3. In the large h
limit, the effective lengths scale with the shape parameters, i.e. lz scales with d + h (of course
depending on the relationship between r1 and r2 also) and lxy scales with a combination of r1

and r2, depending on their relative size. A rough estimate is to say that the effective length
lxy or lz is half the size of the QD in that given direction, with the length of the excited state
being a little larger than for the ground state. From Fig. 7.6b we have for a QD with h = 4 that
lz ≈ 1.5− 2 nm ≈ h/2 and lxy ≈ 4− 5 nm ≈ r1.

Figure 7.7: The form factor of the conduction band FEM wavefunction in k-space for h = 3 nm,
defined as the Fourier transform of |φ(r)|2, see Eq. (7.2). It is described in cylindrical coordinates
by an in-plane wavevector of length kρ and an axial wavevector kz. The value at kρ = kz = 0
is 1, showing that the FEM wavefunction is normalized, and furthermore we confirm that our
calculation domain in k-space is reasonably large.

The effective phonon spectrum

The calculated FEM wavefunctions are calculated in the two-dimensional (ρ, z)-plane, and with
these the interaction matrix elements may be calculated from Eq. (7.2). These contain the
Fourier transform of the wavefunction, see Fig. 7.7. When calculating interaction matrix ele-
ment from Eq. (7.2), we must integrate over the three-dimensional k-space where the angular
dependence is included. By carrying out the angular integration, we arrive at∫

dr |φν(r)|2eik·r = 2π

∫ ∞
−∞

dz

∫ ∞
0

dρ ρ|φν(ρ, z)|2J0(kρρ)eikzz. (7.27)

3When the heights of the dot becomes comparable with the thickness of the wetting layer and the modes
becomes unconfined, an error occurs due to the boundary condition at ρ = R0, requiring the wavefunction to be
zero. We operate with heights h� d, so this is not an issue
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(a) (b)

Figure 7.8: (a) The effective phonon spectrum plotted for different QD volumes for the FEM-
wavefunction and the ellipsoidal fit. The volume V corresponds to a QD of height h, and all sizes
in the QD are scaled equally. All size parameters are scaled with the same amount, having h = 1.25 nm
at the volume V . (b) Same as in (a), but where h is varied, keeping all other parameters constant.

From the Fourier transform of the phonon bath correlation function we obtain the effective
phonon spectrum. This we evaluate for varying volumes, corresponding to scaling all sides of
the QD equally, and we vary only the QD height, changing the shape of the QD, see Figs. 7.8a
and 7.8b. At first we notice that the well accounts for dynamics at small detunings 0−4 meV, but
gives deviations for larger detunings due to the deviations of the fit from the FEM wavefunction
as shown in Figs. 7.5b and 7.6a.

For h = 3 nm we observe several oscillations in the spectrum which is not apparent in the
ellipsoidal model. A possible explanation for the oscillations may be achieved by mathematical
considerations: If we assume a rectangular (in 3d a disk-shape), constant wavefunction on the
form φ(ρ, z) = Kθ(ρ0−|ρ|)θ(z0−|z|) with θ being the Heaviside step function and ρ0 and z0 dot
parameters, the resulting effective phonon spectrum may be shown to contain Bessel-functions in
ρ and z, giving decaying oscillations for large frequencies in the spectrum like the ones we see in
Fig. 7.8b. Even though the rectangular wavefunction is clearly unphysical, it may explain that
oscillations occur in the effective phonon spectrum when FEM wavefunction has sharp edges
and deviates from the ellipsoidal shape.

In Fig. 7.8a an increased volume increases the spatial extend of the wavefunction and de-
creases the electron-phonon interaction, as previously discussed. When varying h in Fig. 7.8b,
we also observe that for the large dot, the amplitude of the spectrum is lowest. But the QD
with h = 3 nm gives a higher spectrum amplitude than for h = 1.25 nm. The wavefunction for
h = 1.25 nm extends quite much into the barrier material as shown in Fig. 7.5a. We under-
stand the higher amplitude for h = 3 nm as the fact the when increasing the height a little from
h = 1.25 nm, the wavefunction actually becomes better confined because less of the wavefunction
is in the barrier material. Thus the phonon dynamics is only changed slight, even though the
QD height is varied significantly, from h = 1.25− 3 nm.

In general we observe that a dip (but no zero as for the spherical wavefunction) appears
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(a) (b)

Figure 7.9: (a) (Top) Lifetimes of the excited QD state plotted versus the detuning for different QD
volumes, where solid (dashed) curves is for negative (positive) detunings. The solid lines are all coinciding,
since the simulation is carried out at T = 0 K, where the effective phonon spectrum is zero for negative
frequencies. (Bottom) The degree of asymmetry defined as the ratio of the lifetime for opposite signs of
the detuning. (b) Same as in (a), but for different QD heights.

in the spectrum, as predicted by the theory from Section 7.1. The position of the hole is
though not changed much when varying the QD shape, due to the mutual dependence of the
wavefunction widths. The energy range of the effective phonon spectrum is larger than for the
preciously considered analytical cases. Here, the wavefunction widths were around 4−6 nm, but
the widths extracted from the FEM-calculations are much smaller, see Fig. 7.6b. As discussed
below Eq. (5.20), the width of effective phonon spectrum is approximately proportional to L−1

for the crude wavefunction. The low widths due to the confinement in the QD growth direction
∼ 1− 2 nm results in a wide energy span, containing a dip around 5 meV.

Lifetime asymmetry and indistinguishability

To determine the effect of realistic wavefunctions on the lifetime, we consider the lifetime asym-
metry for varying volume and h, see Figs. 7.9a and 7.9b. As expected, increasing the QD size
gives lower effect of the electron-phonon interaction. The dips in the effective phonon spec-
trum, however, appears at around 5 meV at too high energies to affect the asymmetry. Only at
h = 10 nm where lz is larger, the dip introduces a lower asymmetry. Due to the nearly similar
wavefunctions for h = 1.25 nm and h = 3 nm, the asymmetry is almost similar.

Compared to the crude wavefunction approach in Fig. 5.8b, the effect on the lifetime asym-
metry is the same; a larger dot gives lower asymmetry. A little effect of the dips are though seen
for h = 10 nm in Fig. 7.9b, where the detuning range is decreased. It is difficult compare these
cases quantitatively, since the width of the crude wavefunction, L, is an unphysical quantity and
thus is difficult to ascribe a reasonable value to.

For the indistinguishability we neither see any qualitatively different behaviour of the pure
dephasing rate in Figs. 7.10a and 7.10b compared to the crude wavefunction approach Figs. 6.1a
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(a) (b)

Figure 7.10: (a) (Top) The pure dephasing rate plotted vs. time for different QD volume at T = 0 K.
(Bottom) The long-time pure dephasing rate plotted for varying QD volumes. (b) Same as in (a), but
for different QD heights.

and 6.2b, because the dip appears at too high phonon energies. The pure dephasing rate almost
is the same in the case of h = 1.25 nm and h = 3 nm due to the almost similar wavefunctions.

7.4 Summary and discussion

In this chapter we have demonstrated how the electronic confinement in the QD may alter
the electron-phonon coupling properties. We expanded the crude wavefunction approach to an
ellipsoidal model, which takes into account the possibility of different wavefunction widths in
the growth and in-plane directions and includes different effective masses of the valence and
conduction band.

In the spherical limit of the ellipsoidal approach, we demonstrate that for materials with
the same sign of the deformation potential constants, De and Dg, zeros appears in the effective
phonon spectrum at non-zero phonon frequencies. These appear when De and Dg are bal-
ancing the asymmetry of the wavefunctions caused by the difference in effective masses in the
valence and conduction band. This has, to our knowledge, not have been observed before. We
demonstrated how these zeros could be used to minimize both the lifetime asymmetry and the
pure dephasing from the phonons. For the full ellipsoidal model, zeros are only achieved in the
spherical limit, but dips still appear in the effective phonon spectrum.

To test how well the ellipsoidal fit matches the wavefunction in a realistic QD structure,
we determine the wavefunction of a truncated conical quantum dot by FEM calculations and
compare this to an ellipsoidal wavefunction fit. The fit is best for shallow but not too shallow
quantum dots, and we are able to extract wavefunction widths. The resulting phonon spectra
are wider than for the crude wavefunction since the extracted wavefunction widths are smaller.

A quantitative comparison of the results from the crude and from the FEM wavefunction will
be misleading, since we do not have any physical reasonable value for L, because it describes
an unphysical wavefunction. Although we will try to qualitatively point out the similarities
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and differences between the crude wavefunction with L = 4 nm and the truncated conical dot
structure which is considered. Both of these resolve the large peak around a phonon energy of
0− 5 meV in the effective phonon spectrum, but the FEM-spectrum differ by having a non-zero
value up to ∼ 18 meV, where the spectrum for the crude model is zero.

Recalling from the expression for the total decay rate of the excited QD state derived in
Eq. (5.17) in the limit ∆ � g, the phonon contribution depends on the value of the effective
phonon spectrum evaluated in ω = ∆. The same applies for the long-time phonon-induced pure
dephasing rate in Eq. (6.20), which depend on the values at ±

√
∆2 + 4g2. The reason why no

qualitatively different behaviour in the lifetime asymmetry and in the long-time pure dephasing
rate is seen, is because the dip in the FEM-spectrum appears at so high detuning, compared to
the losses in the system, that no acoustic phonons with these energies exist to assist the coupling
to the cavity.

For the short-time pure dephasing rate, which depends on the magnitude of the whole ef-
fective phonon spectrum and not just specific values, we expect that the non-zero part of the
FEM-effective phonon spectrum at 5 − 20 meV introduce a higher rate than expected from
the crude wavefunction. This is though difficult to verify due to the inaccuracy in making a
quantitative comparison.

Both the crude and ellipsoidal wavefunction do not resolve the high-energy values of the
effective phonon spectrum properly, so when considering pure dephasing effects due to phonos,
these wavefunction approximations are not sufficient. If the losses in some way could be mini-
mized, the lifetime would decrease slower when ∆ is increased, and the cavity-coupling would
have more influence on the decay rate. In that case the dips in the effective phonon spectrum
would begin to have influence on both the lifetime asymmetry and the long-time dephasing at
those high detunings.

We experimented with a FEM-calculation of the wavefunction in the half-ellipsoidal QD
shown in Fig. 7.1b also, but we did not gain any new physical insight, so we did not include
it here, see Appendix G for details. Using other semiconductor materials for the QD would
result in different deformation potentials and effective masses (and thus different wavefunction
widths). By examining this in details, one might be able to find a combination, where the dip
appears at lower phonon energies, such that the dephasing effects from the phonons could be
minimized where the decay rate of the QD is still large, giving an optimal configuration for high
indistingusihability in a single-photon source. The configurations in this thesis do however not
propose any good solutions other than pumping at zero detuning, where the long-time detuning
is zero and the QD decay rate is large due to the large Purcell-factor, even though it is not
assisted by phonon-cavity feeding.
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Chapter 8

Engineering the Phononic Confinement
- Phonons in an Infinite Slab

The confinement of phonons in a quantum system is always finite due to the finite extend of
the experimental sample, and the approximations about bulk phonons may not be valid. For
a QD inside a photonic crystal cavity slab as in Fig. 1.2c, taken as an example, the phonons
are are confined in one direction by the slab and in the other two by the holey structure. The
finite confinement discretize the phonon modes and introduces new kind of phonons that behave
differently than the bulk phonons.

Designs of materials with a so-called phononic band gap, in which mechanical excitations
are forbidden in a range of frequencies, have been proposed and tested for different geometries
[105]. By introducing a defect in these structures, a mechanical cavity appears where only
vibrational modes with specific frequencies may exist. Demonstrations of materials with simul-
taneous photonic and phononic bandgaps have been shown recently [106, 107], and by designing
these structures properly, an optomechanical cavity appears, in which the coupling between the
vibrational mode and the light is enhanced [108, 109].

We consider the possibility of exploiting the structural confinement to minimize the effects of
phonons instead of trying to exploit the phonon modes. To understand the complicated phonon
mode structure in e.g. a photonic crystal cavity slab, it is important first to examine the case
where the phonons are confined in one direction, namely the infinite slab. To our knowledge,
this has not yet been dealt with in the literature in relation to coupling to an optical cavity.
Several articles consider two coupled QDs in a slab instead of a coupled QD-cavity system
[110, 111, 112, 113]. In these articles, the equivalence to the QD-cavity coupling parameter
g is the transition rate between excited states in the two QDs, which depends on the mutual
positions in the slab, but the Hamiltonians have similar structures. Physically the two systems
differ in a couple of ways: Due to the spatial separation of the electron wavefunctions in the
double-QD-system, the piezo-electric coupling may no longer be neglected. Furthermore the
Purcell effect appears in the QD-cavity system, and not directly in the double QD-system1. At
last, the coupling to acoustic phonons in the two systems is significantly different when coupling
to two dots compared to a single dot.

1The Purcell-effect may be imitated in the double QD structure by assigning the loss rate κ as an extra
non-radiative decay rate to one of the dots. The effect is though more easily addressed in a coupled QD-cavity
system.
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In Section 8.1 we describe the phonon modes that appear in a slab, based on discussions on
the fundamental properties of phonon modes in a slab is found in many textbooks and articles,
see e.g. [114, 115]. The deformation potential interaction between electrons in a bare QD
(without any optical cavity) and acoustical phonons in a slab is described in [116, 117, 118]. In
Section 8.2 we examine how the confinement of the phonons in a slab influence the dynamics of
a coupled QD-cavity system in the slab.

8.1 Phonon modes in a slab

We will briefly discuss the different phonons modes that exist in a slab of thickness d with plane
surfaces at z = ±d/2. In an isotropic elastic continuum the ion displacement at a position r at
a time t is described by u(r, t) which obeys the wave equation [117],

∂2u

∂t2
= c2

t∇2u + (c2
l − c2

t )∇(∇ · u), (8.1)

where ct and cl are the velocity of the transverse and longitudinal sound waves in bulk semi-
conductors, respectively. These are determined from the so-called Lamé constants and obey
cl > ct.

The boundary conditions to Eq. (8.1) stem from the assumption of a free-standing slab,
requiring that the normal components of the stress tensor vanish. The direction perpendicular
to the slab is the z-direction, meaning that the boundary conditions may be expressed as σx,z =
σy,z = σz,z = 0 at z = ±d/2, using the definition of the stress tensor as given in Eq. (2.54).
This gives three partial differential equations for the three spatial components of u, and these
equations constitute the boundary conditions.

A guess for a solution to Eq. (8.1) with the described boundary conditions is

u(r, t) =
∑
n

∫
un(k‖, z)e

ik‖·r‖−iωnt
dk‖

(2π)2
, (8.2)

where the phonons are described by a continuum of plane waves in the in-plane directions and
by discrete set of eigenmodes un(k‖, z) in the z-direction depending on the in-plane wavevector,
k‖.

By inserting Eq. (8.2) in Eq. (8.1) and applying the boundary conditions, the eigenmodes un
and phonon dispersion relation ωn may be calculated for all modes and a solution is determined.
In [117] it is shown that the guess Eq. (8.2) describes a complete set of modes, which may be
divided into three confined acoustic modes, characterized by their symmetry properties: Shear
waves, dilatational waves, and flexural waves [116]. In the following we describe the calculations
of [116], and without loss of generalisation, we align the x-axis parallel to k‖, k‖ = (kx, 0).

Shear waves

Shear waves have only one non-zero component perpendicular to the propagation direction of
the wave, where the eigenmodes are given by u(k‖, z) = (0, uy, 0) with

uy =

{
cos(kz,n) if n = 0, 2, 4, ...

sin(kz,n) if n = 1, 3, 5, ...
, (8.3)
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8.1. Phonon modes in a slab

with kz,n = (πn/d). The dispersion relation of the shear waves is

ωn = ct

√
k2
z,n + k2

x. (8.4)

The shear modes are behaving similarly to transverse modes in semiconductors and are quantified
such that an integer number of half-wavelengths fit into the slab.

Figure 8.1: Grid diagrams for the three lowest-order dilatational (symmetric) and flexural
(anti-symmetric) modes. After [119].

Dilatational waves

Dilatational waves are symmetric with respect to the center plane of the slab at z = 0, see
Fig. 8.1, and are characterized by two non-zero components, un(k‖, z) = (ux, 0, uz) with

ux = ikx
[
(k2
x − k2

t ) sin(ktd/2) cos(klz) + 2klkt sin(kld/2) cos(ktz)
]
, (8.5)

uz = kl
[
−(k2

x − k2
t ) sin(ktd/2) sin(klz) + 2k2

x sin(kld/2) sin(ktz)
]
. (8.6)

The parameters kt and kl has to be determined from the two coupled equations,

tan(ktd/2)

tan(kld/2)
= − 4k2

xklkt
(k2
x − k2

t )
2

and c2
l (k

2
x + k2

l ) = c2
t (k

2
x + k2

t ). (8.7)

To solve Eq. (8.7) a numerical approach has to be done2. For a certain value of kx, Eq. (8.7) has
multiple solutions, and we label kt and kl by an additional index, kt,n and kl,n. These parameters
describes different types of solutions depending on if they are real or purely imaginary. Three
possible combinations exists for Eq. (8.7) to have solutions: kl and kt are both real, kl and kt
are both purely imaginary, and kl is purely imaginary and kt is real. Thus Eqs. (8.5) and (8.6)
describes modes containing cos(|kl/t|z) and sin(|kl/t|z) that are extended through the width of
the slab and phonon modes containing cos(i|kl/t|z) = cosh(|kl/t|z) and sinh(|kl/t|z) that are
confined to the surface and decay exponentially into the slab.

From kl and kt the dispersion relation may be found as

ωn = ct

√
k2
x + k2

t,n = cl

√
k2
x + k2

l,n. (8.8)

2Numerically it may be an advantage first to determine the solutions of Eq. (8.7) for kx = 0, and then use this
result to determine the total solution. These may be determined straightforward by an analytical approach.
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(a) (b)

Figure 8.2: (a) The solution parameter kl normalized to the slab thickness, k̃l = kld, plotted as a
function of the in-plane wave vector for the first 14 modes. Values above the abscissa correspond to real
values of k̃l, values below to imaginary values of k̃l. (b) The normalized solution parameter k̃t plotted
as a function of the in-plane wave vector similar to (a).

As in [116], the index n defines the branch number, where a branch is defined as a continuous
single-connected curve of the solution functions kt,n(kx) and kl,n(kx). The ,,lowest” branch is
denoted by n = 1 and indicates the branch in the dispersion relation with the lowest energy.

Eq. (8.7) may advantageously be solved by introducing the normalized, unit-less parameters
k̃x = kxd, k̃l = kld, k̃t = ktd and ω̃n = ωnd/cl. A plot of the solutions to Eq. (8.7) is given
in Figs. 8.2a and 8.2b3 with cl = 5.11 km/s and ct = 3.02 km/s. Note that the solutions only
depend on the material parameters as the ratio cl/ct, whereas the dispersion relation Eq. (8.8)
depends on ct or cl specifically.

By comparing Eq. (8.8) to the bulk phonon dispersion relation ω = ceff|k|, we see that
because kt and kl may be purely imaginary, there exist effective phonon velocities, ceff, that
may be lower than both cl and ct. Considered the other way around, we may charaterize modes
with ceff < ct as modes, that have purely imaginary kl and kt and thus are confined to the
surface, whereas phonon modes with ceff > cl are modes extended through the slab. Modes with
ct < ceff < cl are a mix of the two.

The dispersion relation in Eq. (8.8) is plotted in Fig. 8.3a. For small kx the lowest dilatational
mode has a linear dispersion relation. From the dispersion relation, the phonon density of states
(DOS) may be calculated as

ρ(ω) =
∑
kx,n

δ(ω − ωn(kx)) (8.9)

∝
∑
n

∫ ∞
0

dkx kxδ(ω − ωn(kx)) (8.10)

=
∑
n

kx

(
dωn(kx)

dkx

)−1 ∣∣∣∣
ω=ωn(kx)

θ
(
ω − ωn(kx = 0)

)
, (8.11)

3These plots agree with the plots provided in [116] where slightly different values of cl and ct are used.

80



8.1. Phonon modes in a slab

(a) (b)

Figure 8.3: (a) Phonon dispersion relation for dilatational waves: Normalized frequency ω̃n plotted
versus the normalized in-plane wavevector k̃x = kxd. The black dotted line indicates the value of ω̃n =
ωd/cl = 2.98, where the second band has a minimum. (b) Phonon DOS plotted from Eq. (8.11) for a
slab with d = 130 nm. The arrow indicates the van-Hove singularity corresponding to frequency value of
the minimum value of the second band in the dispersion relation in (a). Plot is taken from [120].

where θ(ω) is the Heaviside step function. The phonon DOS is plotted in Fig. 8.3b4, where
higher order branches of the dispersion relation contributes as the frequency increases. The
second branch of the dispersion relation has a very noticeable behaviour because it is the only
branch with a minimum, marked with a black dotted line in Fig. 8.3a. Due to this minimum, the
DOS in Eq. (8.11) is infinite at ω̃n = ωd/cl = 2.98 (extracted from Fig. 8.3a), where a resonance
in the slab appears for the dilatational modes. Note that the value of ω̃ where the minimum
appears, only depend on the relation cl/ct, not on the thickness of the slab.

Flexural waves

Flexural waves are antisymmetric with respect to the center plane of the slab, see Fig. 8.1, and
are also characterized by two non-zero components, un(k‖, z) = (ux, 0, uz) with

ux = ikx
[
(k2
x − k2

t ) cos(ktd/2) sin(klz) + 2klkt cos(kld/2) sin(ktz)
]
, (8.12)

uz = kl
[
(k2
x − k2

t ) cos(ktd/2) cos(klz)− 2k2
x cos(kld/2) cos(ktz)

]
. (8.13)

where kt and kl are determined from

tan(kld/2)

tan(ktd/2)
= − 4k2

xklkt
(k2
x − k2

t )
2

and c2
l (k

2
x + k2

l ) = c2
t (k

2
x + k2

t ). (8.14)

The flexural waves obey the same dispersion relation as the dilatational waves, Eq. (8.8), re-
membering that the values of kt,n and kl,n are different. We will not describe the flexural modes
in details, see e.g. [116] for more information.

4We borrowed a plot from [120], since uncertainties from solving Eq. (8.7) numerically carried on and gave
difficulties in determining dωn/dkx, which we did not have time to solve and thus to make the plot ourselves. We
point out that this does not introduce errors in our calculation of the effective phonon spectrum, since it does not
depend on the evaluation of dωn/dkx.
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8.2 Electron-phonon interaction in the slab

As described in [118], the electron-phonon interaction matrix element for the deformation po-
tential interaction from Section 2.2.1 may in general be written as

Mn,νν = DνGnFn,ν , (8.15)

where Dν is the deformation potential of the electron/hole, and Gn contains the dispersion
relation of the phonon mode n, ωn. The last factor Fn,ν is equivalent to the form factor in
Eq. (2.60) and contains the electronic wavefunction and thus represents the confinement of the
electrons. For the bulk-phonon case, the expression for Fn,ν and Gn has a simple form as in
Eq. (2.61). In the slab case they becomes more complicated, as we will see, where the dynamics
is determined from the calculated functions k̃l,n(k̃x), k̃t,n(k̃x), and ω̃n(k̃x).

As described in Section 2.2.1, the interaction between electrons and acoustical phonons
through the deformation potential is governed by a Hamiltonian containing ∇ ·u where u is the
ion displacement given by Eq. (8.2). For the shear waves, ∇ ·u = 0, meaning that shear acoustic
modes do not interact with the electrons. This is due to the fact that shear phonons remind
of transverse phonons in bulk isotropic solids where they do not contribute to the deformation
potential interaction [120].

Both the dilatational and the flexural modes contribute to the interaction Hamiltonian. The
form factors of the two modes are

Fn,ν,dil =

∫
slab

dr |φν(r)|2eik‖·r‖ cos(kl,nz), (8.16)

Fn,ν,flex =

∫
slab

dr |φν(r)|2eik‖·r‖ sin(kl,nz). (8.17)

For simplicity we consider the carrier wavefunctions to be symmetric functions (like Gaussians
as we used earlier) having their centers at z = 0 in the middle of the slab. In this case, the
integral in Fn,ν,flex over the z-direction contains a symmetric electron wave function times an
anti-symmetric phonon wavefunction integrated over a symmetric interval [−d/2; d/2], which
due to symmetry reasons must equal zero.

The assumption of having a perfect symmetric wavefunction centered exactly in the center
of the slab is not realizable in a real structure. But the assumptions seems fair when trying to
give a qualitative explanation of the influence of the slab setup on the phonon properties. Thus
we will only consider the deformation potential interaction between electrons and dilatational
phonon modes in the following calculations5.

The other part of the interaction matrix element, Gn, is for the dilatational modes given by
[118]6,

Gn =
1

2π

√
~

2ρωn
Fdil(k

2
t − k2

x)(k2
l + k2

x) sin

(
dkt
2

)
, (8.18)

5The electron-acoustical phonon interaction was also possible through the piezoelectric interaction. According
to [116] the piezoelectric interaction in a slab only gives a small contribution compared to the deformation potential
interaction, and it is reasonable still to neglect the piezoelectric interaction.

6The assumption about infinitely closely modes in the k‖-space such that the sum over k‖ may be evaluated
as an integral, similar to Eq. (5.13), has already been applied, which is why Gn does not contain any phonon
confinement area.
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remembering that both kl, kt, and ωn are functions of the continuous variable kx and depending
on the mode number n. Here Fdil is the normalization constant, which is in the case of kl and
kt being both real or both purely imaginary is given by [118],

F−2
dil =

1

8klkt

[
2dk3

l k
5
t + 4dk3

l k
3
t k

2
x + 2dklk

5
t k

2
x + 10dk3

l ktk
4
x − 4dklk

3
t k

4
x + 2dklktk

6
x

−8dk3
l ktk

2
x(k2

t + k2
x) cos(dkl)− 2dklkt(k

2
t − k2

x)2(k2
l + k2

x) cos(dkt)

+2kt(−k2
t + k2

x)(k2
l k

2
t + 7k2

l k
2
x − k2

t k
2
x + k4

x) sin(dkl) + 8k3
l k

2
x(k2

t − k2
x) sin(dkt)

+(k2
l k

5
t + 4k3

l k
2
t k

2
x + 6k2

l k
3
t k

2
x − k5

t k
2
x − 4k3

l k
4
x − 7k2

l ktk
4
x + 2k3

t k
4
x

−ktk6
x) sin(d(kl − kt)) + (k2

l k
5
t − 4k3

l k
2
t k

2
x + 6k2

l k
3
t k

2
x − k5

t k
2
x + 4k3

l k
4
x − 7k2

l ktk
4
x

+2k3
t k

4
x − ktk6

x) sin(d(kl + kt))

]
, (8.19)

and when kl = iκ is purely imaginary and kt is real becomes

F−2
dil =

1

4κlkt

[
− dκ3

l k
5
t − 2dκ3

l k
3
t k

2
x + dκlk

5
t k

2
x − 5dκ3

l ktk
4
x − 2dκlk

3
t k

4
x + dκlktk

6
x +

4dκ3
l ktk

2
x(k2

t + k2
x) cosh(dκl) + dκlkt(κ

2
l − k2

x)(k2
t − k2

x)2 cos(dkt)

+(κ2
l k

5
t + 6κ2

l k
3
t k

2
x + k5

t k
2
x − 7κ2

l ktk
4
x − 2k3

t k
4
x + ktk

6
x) sinh(dκl)

+4κ3
l k

2
x(−k2

t + k2
x) sin(dkt)− 4κ3

l k
2
x(k2

x − k2
t ) cosh(dκl) sin(dkt) + (−κ2

l k
5
t

−6κ2
l k

3
t k

2
x − k5

t k
2
x + 7κ2

l ktk
4
x + 2k3

t k
4
x − ktk6

x) sinh(dκl) cos(dkt)

]
. (8.20)

The matrix element Mn,νν = DνGnFn,ν may now be calculated and describes the interaction of
the electrons with the nth phonon band of the dilatational modes. The numerical calculations are
most easily done in the frame of the normalized values. To implement the electronic confinement
in the simplest way, we use the crude wavefunction approximation in Eq. (5.6), where φe(r) =
φg(r) = 1/(π3/4L3/2) · exp[−r2/(2L2)], and we arrive at

Fn ≈ e−(k̃2l +k̃2x)L̃2/4, (8.21)

Gn =
1

d

1

2π

√
~

2ρclω̃n
F̃dil(k̃

2
t − k̃2

x)(k̃2
l + k̃2

x) sin(k̃t/2), (8.22)

where L̃ = L/d. When evaluating the spatial integral in Fn, Eq. (8.16), for a QD in the center
of the slab, we may when d/L is reasonably large, approximate the form factor by the bulk,
as done in Eq. (8.21). From calculations we show that this approximation only introduces an
insignificant error. The major influence of the phonon confinement is determined by Gn, which
contains the phonon dispersion relation.

From these normalized expression we also attain some physical insight. The form factor
describes the interaction of the confined electron with the surrounding material and not the
phonons specifically. Thus it only depends on L̃, which makes sense since Eq. (8.1) is scaling
invariant. The confinement of the phonons is contained in Gn, and it scales as d−1. As the
thickness of the slab is increased, more phonon modes have influence, and in the bulk limit d→
∞, Gn → 0. But since infinite slab thickness also means infinitely many discrete phonon modes,
a finite value of the total electron-phonon matrix element is still obtained when summarizing all
modes, equivalent to the bulk case.

83



Chapter 8. Engineering the Phononic Confinement - Phonons in an Infinite Slab

In principle Eq. (8.7) has infinitely many solutions for k̃t and k̃l, meaning that n goes to
∞. For computational purposes, a cut-off of the n-sum has to be introduced. We determine a
reasonable cut-off for k̃l at the value where the Fn has decreased to e−4 = 2%. We consider the
point k̃x = 0 in Fig. 8.2a from we get the requirement7

e−[k̃l(k̃x=0)]2L̃2/4 ≥ e−4 ⇒ k̃l,n(kx = 0) ≤ 4/L̃. (8.23)

From Fig. 8.2a we note that the number of modes that contribute to the interaction matrix
element goes approximately as L̃−1 = d/L. Physically this agrees with the bulk case, d → ∞,
where infinitely many modes has to be included.

With Mn(kx) = Mn,ee(kx) − Mn,gg(kx), we arrive at an expression for the phonon bath
correlation function similar to the bulk expression in Eq. (4.52), by summing over all the n
phonon bands and integrating over the in-plane wave vector,

D≷(t) =
∑
n

2π

∫ ∞
0

dkx kx |Mn(kx)|2
[
nωn(kx)e

±itωn(kx) + (nωn(kx) + 1)e∓itωn(kx)
]
, (8.24)

using
∫

dk‖ = 2π
∫∞

0 dkx kx, and where nωn(kx) is the thermal occupation factor from Eq. (4.51).

8.2.1 Simulation results

A plot of the real part of D>(t) is given in Figs. 8.4a and 8.4b, where a significant difference
from the bulk case appears, since D>(t) oscillates and dies out much slower than for the bulk
case (∼ 5 ps). We verify from Fig. 8.4b that D≷(t) looks similar for d = 70 nm as for the value
obtained using bulk phonons. From our analysis we found that d = 50 nm was a reasonable case
to describe the slab-system by bulk phonons, and already at 30 nm the deviation is small.

In the beginning the oscillations fluctuate, but for long times an oscillation at a single
frequency remains, although dying out slowly. Physically this is explained by the phonons
which are reflected and bounce between the surfaces. When a longitudinal phonon is reflected,
it creates both a longitudinal and a transverse phonon. The transverse phonon may be reflected
at the other surface, creating a new longitudinal and transverse phonon. In time the phonons will
carry the energy away from the QD in the infinite radial direction, and phonon bath correlation
function decays to zero.

The period of the oscillation for d = 10 nm is 4.1 ps. Assuming that this is the time a phonon
use to travel to the surface, be reflected, and travel back, the phonon velocity is 2.4 km/s. This
is lower than both cl and ct, which as previously discussed, is the property of a phonon mode
localized at the surface. This also explains why the amplitude of the oscillation decreases, when
the surface is moved further away from the QD by increasing d. The frequency of the oscillation
exactly matches ω = 2.98cl/d, which is the frequency where the DOS is infinite, and which
corresponds to a phonon energy of 1.0 meV. The same considerations applies to the oscillation
at d = 30 nm.

In reality, many other effects, such as anharmonic effects described in Section 2.1.1, determine
the lifetime of the phonons, which at T = 10 K is around 600 ps [121, 122, 123]. To include
these effects in the calculation, we multiply D≷(t) with a factor exp(−γphont), where γphon =
1/(600 ps).

7In each simulation we also verify by considering Fn(kx) and Gn(kx) that enough modes are included, and also
the enough points in the k̃x-array are used.
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(a) (b)

Figure 8.4: (a) The real part of the phonon bath correlation function plotted vs time, L = 5 nm and
T = 10 K. (b) The curve in (a) shown for low times.

(a) (b)

Figure 8.5: (a) Effective phonon spectrum versus phonon frequency plotted for different slab thickness
at T = 10 K, calculated as the Fourier transform of Eq. (8.24) (b) Effective phonon spectrum versus
phonon frequency plotted for different slab thickness, zoom on the low-energy part. Note that the values
of d is different from (a)
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As for the bulk case, we use the theory from Section 4.3 to calculate the effective phonon
spectrum seen in Fig. 8.5a, where the peaks corresponding to the resonant phonon mode are
present at a phonon energy of ω = 2.98cl/d. The amplitude of the peaks decreases because as
d increases, a larger percentage of the phonons are emitted into the infinite slab directions and
carries energy away that will not be reflected. A very interesting fact is though that at energies
slightly lower than the peaks, a small frequency range appears where the spectrum is very low,
corresponding to phonon modes that are suppressed due to the slab environment. If higher
values of γphon is used, we expect the resonance peaks to be wider with a smaller amplitude.

These behaviour of the effective phonon spectrum is also carried on to the lifetime plot in
Fig. 8.6, as we have seen earlier. Due to long computational times, the plot is made with a
large discretization in the ∆-array. Due to the rough sampling, we only observe the peak and
hole for d = 10 nm, but the peaks and dips should also appear for the other values of d, if the
sampling density of the ∆-array is increased. Thus for a QD-cavity system with a detuning,
∆ = 2.98 · cl/d, the QD may decay through a resonant phonon mode in the slab, increasing the
decay rate significantly. By decreasing the detuning slightly from this peak, the phonon-assisted
transmission rates are essentially zero.

The pure dephasing rate may no longer be divided into a short-time and long-time effect due
to the long oscillation time of D≷(t). It may though still be divided into cavity-dependent and a
cavity-independent part as seen in Eqs. (6.16) and (6.17), but the calculations get complicated,
and due to the limited period of time for this project, we did not have time to continue this
analysis and describe the effect on the indistinguishability more thoroughly.

Figure 8.6: (Top) Lifetimes of the excited QD state plotted versus the detuning for different
slab thickness at T = 10 K, where solid (dashed) curves is for negative (positive) detunings. The
plot is a little messy, so more focus should be given to the bottom plot. (Bottom) The degree
of asymmetry defined as the ratio of the lifetime for opposite signs of the detuning.
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8.3 Summary and discussion

We have in this chapter presented a sketch of the types of vibrational modes which in exist
an infinite slab. We assumed a symmetrical electron wavefunction, placed in the center of the
slab, and this will only interact with the dilatational (symmetric) slab modes. A resonant
vibrational mode appeared in the slab due to a local minimum in the phonon dispersion relation
at ω = 2.98cl/d. The effect of the slab compared to the bulk case for the QD-cavity dynamics is
largest for smallest d, where the system interacts significantly with only few vibrational modes.
The slab may though not be so small that it changes the electronic confinement. For slabs
thicker than ≈ 50 nm, behaviour similar to that of bulk appears.

By designing a QD-cavity system with a positive detuning matching this resonance frequency,
the phonon-enhanced cavity feeding is increased greatly, and we observe a large lifetime asym-
metry. By using a cavity with a slightly lower detuning, the phonon modes with a frequency
matching the detuning are suppressed, giving almost no lifetime asymmetry. This behaviour of
the phonon density with zeros and resonance peaks have to our knowledge not been considered
for QD-cavity in a slab, but only in coupling between two coupled QDs in a slab for different
spatial configurations [112, 113].

In general impurities at the surface may affect and give shorter lifetime to the resonant
phonons and thus decrease the amplutide of the peaks in the effective phonon spectrum. If we
take into account that the QD may be placed at an arbitrary position in the slab, the oscillations
in the phonon correlation function would be more complex since phonons reflected at different
surfaces will return to the dot at different times. This, or the fact that the QD wavefunction in
general not is symmetric, implies the necessity to also consider the flexural (anti-symmetrical)
vibrational modes in the slab. The flexural dispersion relation has a minimum in the third
band, which gives another resonant phonon mode at a larger frequency than for the dilatational
modes [116]. In general both resonance peaks will appear in the effective phonon spectrum, and
the amplitude of these will depend on how well the electronic wavefunction overlaps with the
dilational and flexural mode, respectively.

If phonon modes are suppressed for the dilatational mode, a contribution though comes
from the flexural modes, vice versa, but we still expect to see dips in the total effective phonon
density. Using detunings in the frequency range of the dips should give a lower phonon-induced
pure dephasing rate. But due to the long temporal extend of the phonon bath correlation
function, an analytical consideration of the pure dephasing rate becomes complicated, and we
did not have time to go into details with this.

Summarizing, this chapter clearly shows that the effects of the phonons is altered for the
dynamics of a QD-cavity system in a slab compared to the bulk case. Even when considering
this simple geometry, the expression for the interaction matrix element becomes a lot more
complicated compared to the bulk system.
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Chapter 9

Conclusion and Outlook

In this project we have examined the dynamics of a two-level quantum dot coupled to a single
optical mode interacting with a large non-Markovian phonon reservoir. Our main emphasis
has been to determine how the structural confinement of both the electrons and the phonons
affects the lifetime of the emitter and the indistinguishability of the emitted photons due to pure
dephasing.

The physical realization of quantum dots and optical cavities are demonstrated in Chapter 1,
and these show promising application for designing an efficient single-photon source. Due to the
small structure of these systems, it is of highly importance to include interaction with the
surroundings, which becomes a complicated problem demanding a many-body description. In
Chapter 2 the different kinds of interaction Hamiltonians are sketched, where loss mechanisms
are included according to the Lindblad-formalism. For this model, the only significant electron–
phonon interaction mechanism is coupling to LA-phonons through the deformation potential
interaction. We assume that the phonon dispersion relation does not depend on the properties
of the optical cavity.

Using a quantum master equation approach, the equations of motion are derived in Chap-
ter 3 for the reduced density operator where the phonon degrees of freedom are traced out. In
Chapter 4 we formulate the problem by a linear differential equation system with time-dependent
coefficients, which we solve numerically.

In Chapter 5 the model dynamics are investigated in details, assuming a simple electronic
confinement by a crude, non-physical spherical wavefunction with same effective mass in the
valence and conduction band, and we consider bulk phonons. For a Markovian (memoryless)
phonon reservoir, the effect of the phonons is described solely by an additional pure dephasing
rate. For a non-Markovian reservoir, that does have memory, a lifetime asymmetry is observed
for low temperatures when the sign of the detuning between the QD and the cavity is changed.
Physically this demonstrates the possibility for the QD to couple to the cavity through emission
of an acoustical phonon if the QD bandgap has a higher energy than the cavity mode, but the
inability if to couple if the QD bandgap is lower. This effect has been demonstrated in [1, 43],
where the electronic and phononic confinement though not is examined in details, as done in
this thesis.

By determining an analytical expression for the time-evolution operator of the QD-cavity
system in Chapter 6, we are able to divide the phonon-induced pure dephasing rate into two
parts: 1) A short-time contribution which depends strongly on the behaviour of the phonon
bath correlation function and is independent of the cavity. 2) A long-time part which is cavity-
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dependent and only dominates for large times. We demonstrate how the short-time rate depends
on the amplitude of the whole effective phonon spectrum, whereas the long-time rate depends
only on specific values of the effective phonon spectrum determined by the cavity detuning and
QD-cavity coupling strength.

We discuss indistinguishability from a phenomenological expression stating that a higher
indistinguishability is achieved by decreasing the emitter lifetime or increasing the decoherence
time. According to this, the short- and long-time phonon-induced pure dephasing rate both has
to be minimized to achieve a high indistinguishability.

In Chapter 7 the electronic confinement is examined in details analytically, assuming a
spherical electron wavefunction with different confinement lengths for the ground state and
excited state of an electron in the QD due to different effective masses in the energy bands. In
materials as GaAs where the sign of the deformation potential constant is the same for the valence
and the conduction band, the energy bands are shifted the same direction when the crystal is
compressed. We demonstrate that for these materials, zeros appear in the effective phonon
spectrum at certain phonon energies, which to our knowledge not have been demonstrated
before. When matching the QD-cavity detuning with the zeros, the long-time phonon-induced
pure dephasing rate becomes zero. By optimizing the QD geometry, the amplitude of the
effective phonon spectrum may be minimized, decreasing the short-time dephasing rate. This
surely demonstrate the possibility of achieving a high indistingusihability, even when having a
non-zero detuning.

In general the QD wavefunction is not spherical. From a FEM-calculation of the wavefunction
in a truncated conical dot structure, we see that valleys appear in the effective phonon spectrum,
although not zeros, which we expect still may be used to decrease the induced pure dephasing.
By fitting the FEM-wavefunction to an ellipsoidal wavefunction, we observe that the ellipsoidal
model resolves the shape of the FEM-calculated effective phonon spectrum for low phonon
energies, but does not catch the shape for higher energies. This should be taken into account
in the literature, where a spherical/an ellipsoidal wavefunction is used without taking further
notice.

In Chapter 8 we consider a coupled QD-cavity system in an infinite slab, and we demon-
strate that the confinement of phonons introduce resonant vibrational modes. By matching the
resonance energies with the cavity detnuning, a huge lifetime asymmetry is achieved where the
QD decays through the resonant mode of the slab. Suppressed phonon modes also appear in
the effective phonon spectrum, which could be exploited to reduce the pure dephasing rate. The
effects are though sensible to impurities at the surfaces, etc.. In slabs thicker than 50 nm, we
estimate the dynamics to be described approximately by the bulk case for a reasonably-sized
self-assembled quantum dot. A standard photonic crystal cavity slab my easily be thicker, and
our calculations indicate that the phonon modes in such structures may be considered as bulk
phonon modes, at any rate in the slab confinement direction.
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The model we use to describe the dynamics of a QD in an optical cavity may be expanded in
many ways to describe more realistic physical situations. We only discuss indistinguishability
in relation to the phonon-induced pure dephasing rate. But for the non-Markovian phonon
reservoir, the phonons influence more than just the pure dephasing rate. If a model describing
the total dephasing effect of the phonons could be provided, this would be a large achievement.

The reservoir-description of the phonons may be expanded into a description of the occupa-
tion of each single phonon mode, characterized by the phonon frequencies, which is currently
examined by Per Kær Nielsen, DTU Fotonik.

Regarding the electronic confinement, an interesting feature would be to examine how dif-
ferent material combinations in the QD structure would change the position of the dip in the
effective phonon spectrum, due to different deformation potential values and effective masses.

Concerning the phononic confinement, other more complicated structures could be consid-
ered where change in the phononic confinement due to the optical cavity is included. Experi-
mental results of the (former) Quantum Photonics group at DTU Fotonik demonstrate spectral
broadening effects in measurements on a QD in a photonic crystal cavity, where electron-phonon
interaction is indicated as a possible cause. No theoretical model has, however, been developed
for describing such systems, so this is surely an interesting feature for further work on this model.
Another example on a structure for confining phonons is considered by Anna Grodecka at the
Niels Bohr Institute. Here, small, circular free-standing membrane structures are considered
with the purpose of altering the electron-phonon interaction for a QD in the membrane.

Another totally different feature would be to consider two coupled QDs, which are promis-
ing candidates for quantum gates for quantum computation [124]. Beneficial effects might be
achieved by expanding the model in this way, although it will get a lot more complicated.

This thesis demonstrates many interesting aspects that surely should be considered if a
better way of examining the indistinguishability is developed in the future. This work proposes
that the properties of a single-photon emitter or other quantum devices could be improved by
engineering the phonon interaction by using clever electronic and phononic confinements.
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Chapter 10

Appendix

A Parameter overview

In this appendix we state the parameters used in the simulations and discuss some in details.

Table A.1: Simulation Parameters

Parameter Description Value Reference

d Density of GaAs 5.37 g/m3 [66]

cl Velocity of longitudinal acoustic waves in GaAs 5.11 km/s a)

ct Velocity of transverse acoustic wave in GaAs 3.02 km/s b)

De Deformation potential for a electron in GaAs −14.6 eV c)

Dh Deformation potential for a hole in GaAs −4.8 eV c)

~g Electron-photon coupling strength 150µeV d)

Γ Relaxation rate of excited state in QD 1 ns−1 [26]
~κ Cavity population relaxation rate 100µeV [33]
~γ Pure dephasing rate of QD 0µeV

a) cl: The longitudinal sound velocity in GaAs may vary from 4.784− 5.447 km/s depending
on the direction of propagation compared to the various crystal planes in the GaAs crystal,
T = 77 K [125]. We use the value cl = 5.11 km/s used in articles dealing with electron-phonon
interaction [43, 66], agreeing with the velocity obtained when averaging over all crystal directions
in [125]. Other similar articles use a velocity of 5.15 km/s [126, 127].

b) ct: The transverse sound velocity in GaAs varies from 2.479− 3.35 km/s depending on the
direction of propagation compared to the various crystal planes in the GaAs crystal, T = 77 K
[125]. We use the value cl = 3.02 km/s calculated as an average value of all the propagation
directions of the value in [125], it and corresponds to values used in [128]. Other articles dealing
with transverse sound waves use values from 2.80 km/s [126] to 3.35 km/s [116].

c) De, Dh: We adapt the values of the deformation potential from articles considering
electron-acoustic phonon interaction, [66, 43], although it seems there a big uncertainty in de-
termining agreeing values when measuring the deformation potentials in different experiments.
This is discussed in details in [97].

d) ~g: For QD in cavities coupling strengths for good cavities have been shown to be on the
order 100− 200µeV [34, 41]. Thus we pick g = 150µeV as a reasonable value.
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B Hamiltonian in a rotating frame

In quantum mechanics, it may sometimes be advantageous to transform the Hamiltonian H of
a considered (sub-)space to a rotating frame, as used in Section 4.2.

We assume that the time evolution of the state of the system, |ψ〉, is described by the
Schrödinger equation, where H time-independent and given in the Schrödinger picture,

i~
∂ |ψ〉
∂t

= H|ψ〉. (B.1)

Let T (t) be a unitary operator on the form

T (t) = e−i~−1At, (B.2)

where A is an arbitrary Hermitian operator. The Hermittivity is required for T (t) to be unitary.
The state vector is in the transformed frame using T (t) given by

|ψ̃〉 = T †(t)|ψ〉. (B.3)

To determine how the H transforms, we write the Schrödinger equation for |ψ̃〉,

i~
∂ |ψ̃〉
∂t

= i~T †(t)
∂ |ψ〉
∂t

+ i~
∂T †(t)

∂t
|ψ〉 (B.4)

= T †(t)H|ψ〉 −AT †(t)|ψ〉 (B.5)

=
[
T †(t)HT (t)−A

]
T †(t)|ψ〉 (B.6)

=
[
T †(t)HT (t)−A

]
|ψ̃〉. (B.7)

Comparing to Eq. (B.1), the transformed Hamiltonian has must have the form

H̃ = T †(t)HT (t)−A. (B.8)
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C Jaynes-Cummings model

The dynamics of a coupled QD-cavity system may be described by the Jaynes–Cummings model
when no losses or phonon scattering are included, see e.g. [39, sec. 4.5]. The Hamiltonian
describing the system is given by Eq. (4.17),

Hs = ~∆σ11 + ~g(σ12 + σ21). (C.1)

We write the state vector as

|ψ(t)〉 = C1(t)|1〉+ C2(t)|2〉, (C.2)

where |C1(t)|2 and |C2(t)|2 is the excited quantum dot state and cavity populations, respectively.
We use the initial conditions for an excited QD state, C1(0) = 1 and C2(0) = 0. By inserting
|ψ(t)〉 into the Schrödinger equation,

i~
∂ |ψ(t)〉
∂t

= Hs|ψ(t)〉, (C.3)

we get

i~∂tC1(t)|1〉+ i~∂tC2(t)|2〉 = ~∆C1(t)|1〉+ ~g (C1(t)|2〉+ C2(t)|1〉) . (C.4)

Projecting onto the state |1〉 and |2〉 respectively, gives

i∂tC1(t) = ∆C1(t) + gC2(t), (C.5)

i∂tC2(t) = gC1(t). (C.6)

By solving this linear differential system, we determine C1(t) and C2(t) and may calculate the
population of the excited QD state as

|C1(t)|2 = 1− g2

g2 + (∆/2)2
sin2

(√
g2 + (∆/2)2t

)
. (C.7)

The cavity population |C2(t)|2 may be determined through population conservation, |C1(t)|2 +
|C2(t)|2 = 1.
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D Lifetime in the adiabatic limit

In this appendix we derive in Section D.1 in details the effective decay rate in the adiabatic
approximation of the lossy Jaynes-Cummings model in the bad cavity regime, described in
Section 5.1.2. In Section D.2 the same principles are carried on to derive an expression for the
decay rate when also phonon scattering is included given in Eq. (5.17), which is shown to be

Γtot = Γ + 2g2 γtot

γ2
tot + ∆2

[
1 +

1

~2γtot
Re{D>(ω = ∆)}

]
. (D.1)

This expression has been stated in [69], but since the derivation is not included, we present a
detailed derivation here.

D.1 No phonon interaction

When no phonon reservoir is included in the model, only the coherent terms in Eq. (4.33) and
the Lindblad dissipative terms, Eq. (4.36), are included, giving the equations of motion

∂t〈σ11〉 = −Γ〈σ11〉 − ig〈σ12〉+ ig〈σ21〉, (D.2)

∂t〈σ11〉 = −κ〈σ22〉+ ig〈σ12〉 − ig〈σ21〉, (D.3)

∂t〈σ12〉 = (−γtot + i∆)〈σ12〉 − ig(〈σ11〉 − 〈σ22〉) = [∂t〈σ21〉]∗, (D.4)

where we omit writing the time-dependence on the σs, and where γtot = (Γ +κ)/2 +γ. We only
consider the off-resonant case in the adiabatic limit, ∆ � g, where ∂t〈σ12〉 ≈ 0 due to the fast
oscillation of the polarisation, giving

〈σ12〉 =
ig

−γtot + i∆
(〈σ11〉 − 〈σ22〉). (D.5)

By inserting this into Eq. (D.2) we get

∂t〈σ11〉 = −Γ〈σ11〉+ ig

(
−ig

−γtot − i∆
− ig

−γtot + i∆

)
(〈σ11〉 − 〈σ12〉) (D.6)

= −(Γ +R)〈σ11〉+R〈σ22〉, (D.7)

where

R = 2g2 γtot

γ2
tot + ∆2

. (D.8)

Similarly we find
∂t〈σ22〉 = −(κ+R)〈σ22〉+R〈σ11〉. (D.9)

We are able to determine a simple solution to the coupled equations Eqs. (D.7) and (D.9) in
the Purcell regime described by κ� R. The two coupled first-order differential equations with
the initial conditions 〈σ11(0)〉 = 1 and 〈σ22(0)〉 = 0 may be re-written into one ordinary second-
order differential equation by differentiating Eq. (D.7) with respect to t and inserting ∂t〈σ22〉
from Eq. (D.9), giving

∂2
t 〈σ11〉 = −(Γ +R+ κ+R)∂t〈σ11〉 − (κΓ + κR+RΓ)〈σ11〉, (D.10)
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with the initial conditions 〈σ11(0)〉 = 1 and ∂t〈σ11(t)〉|t=0 = −(Γ+R) where the latter is obtained
directly from Eq. (D.7).

The eigenvalues of the characteristic polynomium are

λ =
−Γ− κ− 2R±

√
(Γ + κ+ 2R)2 − 4(κΓ + κR+RΓ)

2
(D.11)

=
−Γ− κ− 2R± (Γ− κ)

√
1 + 4R2

(Γ−κ)2

2
. (D.12)

In the limit κ� R,

4R2

(Γ− κ)2
� 1 ⇒ λ = −(Γ +R) ∨ λ = −κ. (D.13)

The solution to Eq. (D.10) in this limit is

〈σ11(t)〉 = A1e−(Γ+R)t +A2e−κt. (D.14)

The constants A1 and A2 are determined from the initial conditions to be A1 = 1 and A2 = 0,
giving the final solution

〈σ11(t)〉 = e−(Γ+R)t. (D.15)

In this Purcell regime where κ� R, the decay of the QD thus is enhanced by an additional rate
given by R.

D.2 Including Phonon Interaction

The description of the dynamics of the full model where the phonon reservoir is included, is
determined by Eq. (4.33), (4.36) and (4.46). Omitting writing the time dependence of the σs,
G≷(t), and γ̃12(t) = γ12(t)− i∆pol, the dynamics are described by the set of coupled equations

∂t〈σ11〉 = −ig〈σ12〉+ ig〈σ21〉 − Γ〈σ11〉, (D.16)

∂t〈σ22〉 = ig〈σ12〉 − ig〈σ21〉 − κ〈σ22〉, (D.17)

∂t〈σ12〉 = −i
(
g + G>

)
〈σ11〉+ i

(
g + G<

)
〈σ22〉+ (i∆− γtot − γ̃12) 〈σ12〉, (D.18)

∂t〈σ21〉 = ∂t〈σ12〉∗. (D.19)

In the adiabatic approximation, ∂t〈σ12〉 ≈ 0 as discussed in the previous section, giving

∂t〈σ11〉 =

(
−ig

i(g + G>)

i∆− γtot − γ̃12
+ ig

−i(g + [G>]∗)

−i∆− γtot − γ̃∗12

)
〈σ11〉 − Γ〈σ11〉 (D.20)

=

(
g

(g + G>)(−i∆− γtot − γ̃12) + (g + [G>]∗)(i∆− γtot − γ̃∗12)

|i∆− γtot − γ̃12|2
− Γ

)
〈σ11〉 (D.21)

=

(
g
−2gγtot − 2gRe{γ̃12}+ 2∆Im{G>} − 2γtotRe{G>} − 2Re{G>γ̃∗12}

|i∆− γtot − γ̃12|2
− Γ

)
〈σ11〉, (D.22)

using the well-known relations for complex numbers z, 2Re{z} = z + z∗ and 2i Im{z} = z − z∗.
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D. Lifetime in the adiabatic limit

The next step is to express the terms in Eq. (D.22) containing G> and γ̃12 in terms of the
effective phonon spectrum. The time evolution operator U(t) is given by

U(t) = e−iHst/~ = I + (−it)HS + (−it)2H2
S + (−it)3H3

S + . . . , (D.23)

where I is the identity operator and

HS =

 ∆ g 0
g 0 0
0 0 0

 . (D.24)

In the limit g � ∆, the expression of U(t) reduces to

U(t) =

 1 0 0
0 1 0
0 0 1

+ (−it)

 ∆ g 0
g 0 0
0 0 0

+ (−it)2

 ∆2 ∆g 0
∆g g2 0
0 0 0

+ . . . (D.25)

=

 1 + (−it)∆ + (−it)2∆2 + . . . g
∆

[
(−it)∆ + (−it)2∆2 + . . .

]
0

g
∆

[
(−it)∆ + (−it)2∆2 + . . .

]
1 + g2

∆2

[
(−it)2∆2 + . . .

]
0

0 0 1

 (D.26)

=

 e−it∆ g
∆

[
e−it∆ − 1

]
0

g
∆

[
e−it∆ − 1

]
1 + g2

∆2

[
e−it∆ − 1− (−it)∆

]
0

0 0 1

 (D.27)

≈

 e−it∆ g
∆

[
e−it∆ − 1

]
0

g
∆

[
e−it∆ − 1

]
1 0

0 0 1

 . (D.28)

For notational simplicity we introduce the two functions

A≷(t) =

∫ t

0
dt′D≷(t′) and B≷(t) =

∫ t

0
dt′D≷(t′)eit′∆. (D.29)

With these and the approximate expression for U(t) in Eq. (D.28), we may re-write the expres-
sions for G≷(t) and γ12(t),

G≷(t) = i~−2

∫ t

0
dt′ U∗11(t′)U21(t′)D≷(t′) (D.30)

= i~−2

∫ t

0
dt′ eit′∆ g

∆
(e−it′∆ − 1)D≷(t′) (D.31)

= i~−2 g

∆

∫ t

0
dt′ (1− eit′∆)D≷(t′) (D.32)

= i~−2 g

∆

(
A≷(t)−B≷(t)

)
, (D.33)
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and

γ12(t) = ~−2

∫ t

0
dt′
[
|U11(t′)|2D<(t′)− |U21(t′)|2D>(t′)

]
(D.34)

= ~−2

∫ t

0
dt′
[
D<(t′)− g2

∆2
(e−it′∆ − 1)(eit′∆ − 1)D>(t′)

]
(D.35)

≈ ~−2

∫ t

0
dt′D<(t′) (D.36)

= ~−2A<(t) (D.37)

where it is used that γ2/∆2 � 1. Using these expressions we may simplify some of the terms in
Eq. (D.22):

− 2gRe{γ̃12}+ 2∆Im{G>} = −2g~−2
[
Re{A<(t)} − Re{A>(t)}+ Re{B>(t)}

]
(D.38)

Using that [D≷(t)]∗ = D≶(t), we have

Re{A<(t)} − Re{A>(t)} = Re

{∫ t

0
dt′
[
D<(t′)− [D<(t′)]∗

]}
(D.39)

= Re

{
2i

∫ t

0
dt′ Im{D<(t′)}

}
(D.40)

= 0, (D.41)

arriving at
− 2gRe{γ̃12}+ 2∆Im{G>} = −2g~−2Re{B>(t)}. (D.42)

Two of the other terms in Eq. (D.22) become

− 2γtotRe{G>} = 2~−2γtot
g

∆
Im{A>(t)−B>(t)}, (D.43)

and

− 2Re{G>γ̃12} = −2Re
{

i~−2 g

∆
[A>(t)−B>(t)] · ~−2[A<(t)− iIm{A<(∞)}]∗

}
(D.44)

= 2~−4 g

∆
Im
{

[A>(t)−B>(t)] · [A<(t)− iIm{A<(∞)}]∗
}
. (D.45)

Both Eqs. (D.43) and (D.45) scales with g/∆ and are in the limit g � ∆ small compared to
Eq. (D.42). Thus we may approximate Eq. (D.22) by

∂t〈σ11(t)〉 = −
[
Γ +

2g2γtot

|i∆− γtot − γ̃12(t)|2

(
1 +

~−2

γtot
Re{B>(t)}

)]
〈σ11〉. (D.46)

By only including terms to first-order in D≷(t), we arrive at Eq. (D.1).
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E Displacement of the electron and hole wavefunction

In general we may not be sure, that the wavefunctions of an electron and a hole in a quantum
dot are concentric, due to their different effective masses. In this appendix we demonstrate,
that for bulk phonons in the model, reasonable displacements only have insignificant effect on
the system dynamics. We do calculations similar to those in Section 7.1.

We assume that the carrier wavefunctions are spherical with different widths,

φν(r) = φν(ρ, z) =
1

π3/4L
3/2
ν

e−[ρ2+(z−z0,ν)2]/(2L2
ν), (E.1)

where the centres of the wavefunctions are in (ρ, z) = (0, z0,ν). The Fourier transform of the
wavefunctions is ∫

dr |φν(r)|2e−ik·r = e−(k2ρ+k2z)L2
ν/4e−ikzz0,ν , (E.2)

with k2
ρ + k2

z = k2. We assume that the carrier waevfunctions are separated by a distance z0

along the z-axis,

z0,ν =

{
0 if ν = e,

z0 if ν = g.
(E.3)

With this the difference in interaction matrix elements, Mk = Mk
ee −Mk

gg, becomes

Mk =

√
~k

2ρclV

(
Dee

−(k2ρ+k2z)L2
e/4 −Dge

−(k2ρ+k2z)L2
g/4−ikzz0

)
. (E.4)

By evaluating the effective phonon spectrum as in Section 7.1, we arrive at

Re{D>(ω)} =
~

4πρc5
l

ω3

1− exp(−β~ω)

[
D2
ee
−ω2L2

e/(2c
2
l ) +D2

ge
−ω2L2

g/(2c
2
l )

−2DeDg sinc

(
ωz0

cl

)
e−ω

2(L2
e+L

2
g)/(4c2l )

]
. (E.5)

In the limit z0 → 0, sinc
(
ωz0
cl

)
→ 1, and the effective phonon spectrum is identical to the one

derived in Eq. (7.14).
In a quantum dot of the type that we consider, the maximum heights are around 10 nm. In

these it would be reasonable to expect values of z0 of maximum 1 nm, which we from a plot of
Eq. (E.5) in Fig. A.1 see only gives a small change in the effective phonon spectrum.
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E. Displacement of the electron and hole wavefunction

Figure A.1: Effective phonon spectrum plotted for different displacements between the centres
of the excited and ground state wavefunction.
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F Numerical verification of FEM-calculations

In this appendix we discuss the FEM-implementation of the Schrödinger equation in Eq. (7.24)
in details, and the appendix is divided into three parts. In the first part we describe in details
how the differential equation for χ(ρ, z),[

− ~
2ρ

∂

∂ρ

(
ρ

m∗
∂

∂ρ

)
− ~2

2

∂

∂z

(
1

m∗
∂

∂z

)
+

n2~2

2m∗ρ2
+ V (ρ, z)

]
χn(ρ, z) = Eχn(ρ, z), (F.1)

with the boundary conditions

� χn(ρ = 0, z) = 0 for n 6= 0,

� ∂ρχn(ρ, z)|ρ=0 = 0 for n = 0,

� χn(ρ,±L0/2) = χn(R0, z) = 0.

from Section 7.2 is implemented in the FEM-solver COMSOL. This requires a normalization of
Eq. (F.1).

In the second the implementation is verified by comparing a calculation of the eigenenergies
in a finite quantum well with analytical results. The third part deal with a QD structure and
we verify that enough mesh points are used in our calculations.

The energy diagram of the QD is sketched in Fig. A.2, where I refers to the QD/wetting
layer region, and II refers to the surrounding barrier material. Thus

m∗ =

{
mI if (ρ, z) ∈ I

mII if (ρ, z) ∈ II
(F.2)

Figure A.2: A finite quantum well structure
where modes with discretized energy spectrum
exist in the well. The parameters are explained
in the main text.

Figure A.3: The wavefunction of the funda-
mental mode in a the finite quantum well as
described in Fig. A.2, plotted with arb. units.
The dashed lines indicate the slab surfaces.
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and by placing the zero point of the energy of the conduction (valence) band at the bottom
(top) of the potential well, see figreffiniteQW,

V (r, z) =

{
0 if (ρ, z) ∈ I

δEc/v if (ρ, z) ∈ II
(F.3)

depending on the band. Note that the direction of the energy scale is downwards on the figure
for the valence band.

F.1 Normalization

To simplify the normalization, we may express Eq. (F.1) in the two domains I and II,

−
[

1

ρ

∂

∂ρ

(
ρ
∂

∂ρ

)
+

∂2

∂z2
+
n2

ρ2

]
χn(ρ, z) =

2mI

~2
Eχn(ρ, z), (F.4)

and

−
[

1

ρ

∂

∂ρ

(
ρ
∂

∂ρ

)
+

∂2

∂z2
+
n2

ρ2
+

2mII

~2
V

]
χn(ρ, z) =

2mII

~2
Eχn(ρ, z), (F.5)

where V = ∆Ev/c, where v/c refers to if the valence or conduction band is considered. By
introducing a parameter describing the relative effective mass in the two domains, η = mI/mII,
Eq. (F.5) may be written as

− η
[

1

ρ

∂

∂ρ

(
ρ
∂

∂ρ

)
+

∂2

∂z2
+ η

n2

ρ2
+

2mI

~2
V

]
χn(ρ, z) =

2mI

~2
Eχn(ρ, z), (F.6)

We define the four unitless parameters ρ̃, z̃, Ẽ, and Ṽ determined by

ρ = Lρ̃, z = Lz̃, E =
~2

2mIL2
Ẽ, V =

~2

2mIL2
Ṽ , (F.7)

where L is a length parameter in units of length. With these, Eqs. (F.4) and (F.6) may be
written on a normalized form,

−
[

1

ρ̃

∂

∂ρ̃

(
ρ̃
∂

∂ρ̃

)
+

∂2

∂z2
+
n2

˜̃ρ2

]
χ(ρ̃, z) = Ẽχ(ρ̃, z), (F.8)

and

− η
[

1

ρ̃

∂

∂ρ̃

(
ρ̃
∂

∂ρ̃

)
+

∂2

∂z2
+ η

n2

˜̃ρ2
+ Ṽ

]
χ(ρ̃, z) = Ẽχ(ρ̃, z). (F.9)

F.2 Finite quantum well

To verify that the implemention of the equation, the boundary conditions, and the parameter
values are implemented correctly, we compare a FEM-calculation of the ground state energy of
a finite quantum well with the value obtained from an analytic solution. We only calculate the
two-dimensional wavefunction χ(r, z), due to the rotational symmetry.
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In a finite quantum well the electrons are only confined in one direction which we denote the
z-direction. In this case, the one-band Schrödinger equation simplifies to

− d2ψ

dz2
=

2mI

~2
Eψ(z) for z ∈ I, (F.10)

−d2ψ

dz2
+

2mII

~2
V ψ(x) =

2mII

~2
Eψ(z) for z ∈ II. (F.11)

By normalizing the parameters as before according to Eq. (F.7), these equations become

− d2ψ

dz̃2
= Ẽψ(z̃) for z ∈ I (F.12)

−ηd2ψ

dz̃2
= (Ẽ − Ṽ )ψ(z̃) for z ∈ II (F.13)

The potential landscape is symmetric with respect to z = 0, and thus we expect symmetric
(with even-parity) and anti-symmetric (with odd-parity) wavefunctions. By applying a standard
differential equation solution method [104], using the symmetry statement and the boundary
conditions

ψI(z = ±d/2) = ψII(z = ±d/2), and
dψI

dz

∣∣∣∣
z=±d/2

=
dψII

dz

∣∣∣∣
z=±d/2

, (F.14)

we may show that the even wavefunctions have eigenenergies described by the transcendental
equation

tan

(√
Ẽ
d̃

2

)
=
√
η

√
Ṽ

Ẽ
− 1, (F.15)

with d̃ = d/L. For the case of η = 1, this derivation is carried out in standard textbooks [104],
and in the limit η = 1 of Eq. (F.15), the expression agrees with the textbook result.

The parameter values used in the calculation are taken from [75] and are given in Table A.2,
where we consider a pure quantum dot/well of InAs surrounded by bulk GaAs. As in [36], the
conduction and valence band offsets are given by

∆Ec = 0.654× (Eg,GaAs − Eg,InAs), (F.16)

∆Ev = 0.346× (Eg,GaAs − Eg,InAs). (F.17)

Furthermore we consider the effective mass in the [001]-direction, the z-direction, and for the
effective masses in the valence band, we use the heavy hole values.

The fundamental mode is defined as the mode with the lowest energy, which is described by
an even wavefunction, see Fig. A.3. To verify the implementation of the normalized Schrödinger
equation in COMSOL we thus compare Ẽ obtained from the simulation with the analytical
result. Using the parameters described in Table A.2 and same mesh refinement as in the sim-
ulations, we obtain Ẽanalytic = 0.11657 and Ẽnumerical = 0.11662 giving a relative error of only
4× 10−4. This verifies our implementation of the cylindrical Schrödinger equation.
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Table A.2: Band parameters used in the FEM simulations - the same as used in [36], all taken
from [75].

Parameter Description Unit

Eg,I 0.359 eV
Eg,II 1.424 eV
∆Ec 0.697 eV
∆Ev 0.368 eV
m∗c,I 0.027 m0

m∗c,II 0.0665 m0

m∗v,I 0.34 m0

m∗v,II 0.38 m0

F.3 Testing the QD mesh

The last check we have to do is to ensure that the calculations with the QD structure give
solutions that do not change when increasing the size of the calculation domain or increasing
the number of mesh points. The mesh that we used in the calculations in Section 7.2 is shown
in Fig. A.4a, where we refined the mesh in the area [0; 2r1] × [−10d;h + 10d]. The normalized
eigenvalues are plotted for varying R0 in Fig. A.4b. For large R0, the eigenvalues vary only on
the fourth significant figure for both the valence and conduction band, and it seems fair to used
R0 = 50 nm as done in Section 7.2. The fluctuation may be explained by the fact, that when R0

is changed, the mesh construction in COMSOL also changes, giving slight changes in the energy.
We also tried varying lowering the number of mesh points, which we use in our calculation, but
this did not change the eigenenergies or the wavefunction significantly.

In conclusion we have demonstrated that our FEM-model implemented in COMSOL gives
correct results for the considered QD-sizes.

(a) (b)

Figure A.4: (a) The mesh used in the FEM calculations. The initial mesh was refined in the area
[0; 2r1]× [−10d;h+ 10d]. (b) The normalized eigenvalues of the ground wavefunction of the valence and
conduction band versus the width of the calculation domain.
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G Elliptic dot wavefunction

Figure A.5: Sketch of an elliptic dot as im-
plemented in the FEM-calculations.

This appendix should be seen as comment to Sec-
tion 7.2, where a truncated conical dot structure is
considered. Here we calculate the wavefunction of
another QD shape with an ellipsoidal surface, see
Fig. A.5. This shape is similar to the shape of the
QD in Fig. 7.1b.

The resulting wavefunction is given in Figs. A.6a
and A.6b where the FEM-wavefunction and the fit
are compared. As in for the truncated conical dot
in Section 7.2 we see that the wavefunction adapts
the shape of the QD, giving deviations to the ellip-
tical fit. The conclusions for the lifetime asymme-
try and dephasing wave achieved with this structure
was qualitatively the same as the one for the trun-
cated conical dot, because the wavefunctions in both
cases not are approximately ellipsoidal.

(a) (b)

Figure A.6: (a) Wavefunction of an electron in the valence band (upper picture) and the corresponding
ellipsoidal fit (lower picture). We use d = 1.25 nm, Rz = Rxy = 10 nm, and the material parameters
given in Section A. (b) Absolute difference φfit − φCOMSOL between the wavefunction in Fig. A.6a. The
maximum error is about ∼ 15%.
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