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Abstract

Semiconductor quantum dots (QDs) have unique atom-like properties and are therefore often re-
ferred to as “man-made artificial atoms”. They have properties that make them useful for ultrafast
communication lasers but are also being explored for future quantum information technology. Firstly
we will solve numerically the three-dimensional Schrödinger equation for different QD systems re-
lated to the fabrication and modelling of quantum dots on a wetting-layer. The simulations are
performed using Comsol , where we calculate the eigenenergies and visualize the three-dimensional
wave functions. Secondly we consider the application of quantum dots as active medium in a laser.
In order to examine such a quantum dot laser, we derive and solve equations governing the dynamics
of lasers, and we will then extend these equations by incorporating properties of QDs along with
results from the numerical computations of QDs from Comsol . We will also attempt to optimize
quantum dot dimensions with respect to laser gain.
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Chapter 1

Introduction

Quantum dots have been extensively studied in recent years because of their potential for techno-
logical applications. Briefly stated a quantum dot (QD) is a portion of matter whose excitons are
confined in all three spatial dimensions. This means that an electron that is in the interior of a QD
will experience a potential barrier in all directions. The dimensions of QDs usually range from 1
nm to 20 nm. They can be fabricated from many different kinds of semiconductor materials and
in various geometrical shapes (cubes, spheres and cones for instance). All these opportunities can
be utilized to achieve certain desirable properties of the QD – for example, by varying the size
appropriately a QD can be produced with a very specific band gap making them ideal for optical
applications, where it may be required that a certain wavelength of light is generated. In fact for
laser applications QDs are so interesting that a whole field of research on quantum dot lasers have
emerged. These quantum dot lasers have been theoretically predicted to possess properties by far
superior to any other laser type since the early eighties [5] – the main advantages being that they
require a low threshold current to operate, have a high laser gain, are very resistant to external
temperature, and as mentioned can emit light at very well-defined wavelengths.

(a) (b)

Figure 1.1: (a) Schematically depiction of the four steps in the process of QDs formation in
Stranski–Krastanow regime. (b) 3-D STM (scanning Tunnel Microscope) image of InAs QDs on
GaAs [6].
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2 CHAPTER 1. INTRODUCTION

1.1 Fabrication

The fabrication of quantum dots has gone through various phases since its initial discovery in the
late 70’s and early 80’s, including lithographic processes that create two-dimensional structures that
could then be etched down to isolate the dot [10]. However a newer method that is usually the
one used for lasers is to grow self-assembling dots by growing a layer of semiconductor material
unto a wetting layer. The growth of quantum dots is based on a mismatch of lattice- and surface
energy parameters that causes strain in material, which then pulls together resulting in “islands”
of quantum dots. This is also known as Stranski-Krastanov growth, see figure 1.1(a). The main
limitations of growing quantum dots this way are the cost of fabrication and the lack of control over
positioning of individual dots, however significant efforts has been made to enable control of the dot
size [11] [12]. Self-assembled dots are typically between 5 and 50 nm in size. By carefully choosing
the semiconductor material, and if necessary dot it with other semiconductor materials, there is a
high degree of control over the band gap and therefore operational frequency of quantum dot laser.

1.2 Quantum dot lasers

A quantum dot laser is a semiconductor laser that uses quantum dots as the active laser medium in
its light emitting region.

Put shortly the quantum laser works by pumping electrons from the valence band of a QD to the
conduction band leaving an electron hole in the valence band. Light is emitted when an electron
in the conduction band recombines with an empty electron hole. When an electron and a hole
recombines the energy of the emitted light will be equivalent to a certain band gap plus the energies
of the valence band state and the conduction band state. When constructing QD lasers whole layers
of QDs are often stacked upon each other in order to increase volumetric QD density, see fig. 1.2.

Figure 1.2: Quantum dot laser featuring an active layer containing high-density arrays of quantum
dots.



Chapter 2

Quantum wells – one-dimensional analogue

In the following we will start off studying the simple case of an electron confined in a single di-
mension by means of potential barriers; a quantum well (QW). The knowledge attained from this
one-dimensional instance will later serve as a benchmark for our numerical computations.

2.1 Infinite quantum well

We will consider an electron confined in one dimension by infinite potential barriers separated by a
length L – in mathematical terms this can be put as

V (x) =

{
0, 0 < x < L,

∞, otherwise.
(2.1)

The absolute square of the wave function, ψ(x), for the electron at a given position is proportional
to the probability of finding the electron there. The wave function must therefore vanish everywhere
beyond the edges of the potential well, ψ(|x| > L) = 0.

The function ψ(x) = A sin(kx) satisfies these boundary conditions if k is such that kL = πn⇒ k =
πn/L, where n ∈ N.

Furthermore the normalization condition must apply, meaning that
∫∞
−∞ |ψ(x)|2 dx = 1. This yields

a requirement for the coefficient A that is found by evaluating the integral∫ ∞
−∞

A2 sin2
(πn
L
x
)
dx = 1⇔ 1

2
A2L = 1⇔ A =

√
2

L
. (2.2)

The trigonometrical identity sin2 θ = 1
2 (1− cos 2θ) has been used to evaluate the integral.

The wave function for the electron has now been fully determined and the energy levels E can be
found using the time-independent Schrödinger equation in one-dimension

− ~2

2m

∂2ψ(x)

dx2
+ V (x)ψ(x) = Eψ(x). (2.3)

Evaluating the expression on the left-hand side of (2.3) and rearranging, we find that

Einf =
~2π2n2

2miL2
, n ∈ N. (2.4)

2.2 Finite quantum well

We will now consider an electron confined in one dimension by finite potential barriers separated
by a length L, see fig. 2.1, which is analogous to an electron moving in a region consisting of two

3



4 CHAPTER 2. QUANTUM WELLS – ONE-DIMENSIONAL ANALOGUE

Figure 2.1: Illustration of a one-dimensional quantum well with the regions 1, 2 and 3.

different materials that are responsible for the electron experiencing two different potentials. We
might as well assume that the electron also has a different effective mass in each of these materials.

The time-independent Schrödinger equation in one-dimension is now slightly modified by introducing
the position-dependent effective mass me(x):

− ~2

2me(x)

∂2ψ(x)

dx2
+ V (x)ψ(x) = Eψ(x). (2.5)

Assuming that regions 1 and 3 are of the same material, we can regard the effective mass in these
regions as mGa, whereas the effective mass in region 2 can be regarded as mIn.

The wave function is now divided into three subfunctions for each of the regions shown in fig. 2.1

ψ =


ψ1, if x < −L/2
ψ2, if − L/2 < x < L/2

ψ3, if x > L/2

.

In the region −L/2 < x < L/2 we have V = 0 so (2.5) simplifies to

∂ψ2

∂x
= −2mIn

~2
Eψ2 = −α2x, (2.6)

where we have defined

α =

√
2mInE

~
. (2.7)

The general solution to this differential equation is

ψ2(x) = A sinαx+B cosαx. (2.8)

In region 1 and 3 we have V = Ve and (2.5) becomes

∂2ψ

∂x2
= (V − E)

2mGa

~2
ψ = κ2ψ(x), (2.9)

where we have defined

κ =

√
2mGa(Ve − E)

~
. (2.10)

The general solution to the differential equation (2.5) is

ψ1 = Ce−κx +Deκx , ψ3 = F e−κx +Geκx. (2.11)

It is clear that C = G = 0, since the terms containing these factors diverges far away from the
quantum well, which is not in agreement with the normalization condition

∫∞
−∞ |ψ(x)|2dx = 1.



2.2. FINITE QUANTUM WELL 5

The boundaries between regions are expected to be characterized by continuity and differentiability,
so we can apply the boundary conditions ψ1(−L/2) = ψ2(−L/2), ψ2(L/2) = ψ3(L/2), dψ1

dx (−L/2) =
dψ2

dx (−L/2) and dψ2

dx (L/2) = dψ3

dx (L/2).

By direct computation these conditions imply that there are two types of solutions; either A = 0
(symmetric modes) or B = 0 (antisymmetric modes). For the case A = 0 we also find that D = F
and for the case B = 0 we find D = −F . With these coefficient values the equations obtained from
the boundary conditions reduces to a set of two linear independent equations for each mode.

For the symmetric modes we have the two equations De−κL/2 = B cos(αL/2) and −κDe−κL/2 =
−αB sin(αL/2) and by dividing these we obtain the following relation

tan(αL/2) =
κ

α
⇔ tan

(√
2miE

L

2~

)
=

√
Ve − E
E

· mi

mu
(symmetric modes) . (2.12)

By similar insertion of the coefficients for the antisymmetric modes in the equations from the
boundary conditions, we obtain the two linear independent equations De−

κL
2 = B cos

(
αL
2

)
and

Dκe−
κL
2 = αB sin

(
αL
2

)
, which by division leads to the relation

− cot(αL/2) =
κ

α
⇔ − cot

(√
2miE

L

2~

)
=

√
Ve − E
E

· mi

mu
(antisymmetric modes) . (2.13)

The two nonlinear equations (2.12) and (2.13) can now be solved numerically in order to determine
the allowed energies E.



Chapter 3

The Schrödinger equation for conical
quantum dots

We will now consider the more advanced case of an electron confined to an azimuthal symmetric
quantum dot (for instance a cone) placed upon a wetting layer. In general we will tend to use
cylindrical coordinates, given by the axial coordinate z, the radial coordinate r, and the azimuthal
angle φ, unless otherwise specified.

3.1 The Schrödinger equation for systems with azimuthal symmetry

The one-band Schrödinger equation, with regard to an electron at position ~x, is generally stated as

−~2

2
∇ ·
(

1

me(~x)
∇ψ(~x)

)
+ Ve(~x)ψ(~x) = Eψ(~x), (3.1)

where ~, me(~x), Ve(~x), E, and ψ(~x) respectively designates the reduced Planck’s constant, the position-
dependent electron effective mass, the potential energy, the electron energy, and the wave equation
of the electron.

Let us now assume that the wave function is separable in terms of φ so that

ψ(~x) = χ(z, r)Φ(φ). (3.2)

Using this form along with the assumption of cylindrical symmetry (Ve(~x) = Ve(z, r) and me(~x) =
me(z, r)) equation (3.1) can be written

−~2

2
∇ ·
(

1

me(z, r)
∇χ(z, r)Φ(φ)

)
+ Ve(z, r)χ(z, r)Φ(φ) = Eχ(z, r)Φ(φ) (3.3)

At this point, for the sake of simplicity, we define χ ≡ χ(z, r), Φ ≡ Φ(φ), Ve ≡ Ve(z, r) and
me ≡ me(z, r). Working out the gradient and divergence1 of (3.3) we get

−~2

2
∇ ·
[

1

me

(
Φ
∂χ

∂r
r̂ +

1

r
χ
∂Φ

∂φ
φ̂ + Φ

∂χ

∂z
ẑ

)]
+VeχΦ = EχΦ (3.4)

⇔ − ~2

2

[
Φ

r

∂

∂r

(
r

me

∂χ

∂r

)
+

1

r2

χ

me

∂2Φ

∂φ2
+ Φ

∂

∂z

(
1

me

∂χ

∂z

)]
+ VeχΦ = EχΦ. (3.5)

1Divergence: ∇ · v = 1
r
∂
∂r

(rvr) +
1
r

∂vφ
∂φ

+ ∂vz
∂z

, gradient: ∇t = ∂t
∂r

r̂+ 1
r
∂t
∂φ

φ̂+ ∂t
∂z

ẑ.

6



3.2. SEPARATION OF VARIABLES 7

3.2 Separation of variables

We are now able to isolate the φ term by multiplying (3.5) with me·r2
Φχn

and rearranging

−~2

2

mer
2
[

1

r

∂

∂r

(
r

me

∂χn
∂r

)
+

∂

∂z

(
1

me

∂χn
∂z

)]
+mer

2 (Ve − E) =
~2

2

∂2Φ

∂φ2

1

Φ
≡ −~2

2
n2. (3.6)

Equation (3.6) has all terms depending on z and r and the term depending on φ separated. Con-
sequently, the expression on each side of equation (3.6) must correspond to a constant, since the

equation holds for all possible values of z, r and φ. Defining this constant as −~2

2 n
2, we can focus

on the two separate equations.

The general solution to the second order differential equation to the right of (3.6) is

Φ = A exp(inφ) +B exp(−inφ) = C cosnφ+D sinnφ. (3.7)

Since Φ is a single-valued function we have the boundary condition Φ(0) = Φ(2π), which can only be
satisfied if n is an integer as seen clearly from the last expression in (3.7). For simplicity we choose
the solution Φ(φ) = exp(inφ).

Physically, n can be seen analogous to the atomic angular momentum quantum number2 that is
responsible for the diversity of atomic orbitals [13]. Interestingly, as we’ll see later, n also gives rise
to orbital-looking wave functions.

Regarding the z and r dependent terms of (3.6) we have the equation

−~2

2

[
∂

∂z

(
1

me

∂χn
∂z

)
+

1

r

∂

∂r

(
r

me

∂χn
∂r

)]
+

~2

2

χn
me

n2

r2
+ Veχn = Eχn, (3.8)

where the subscript n in χn indicates that the electron envelope function now depends on n.

3.3 Wave function on coefficient PDE form

We now return to the separated version of the Schrödinger equation (3.8)

−~2

2

[
∂

∂z

(
1

me

∂χn
∂z

)
+

1

r

∂

∂r

(
r

me

∂χn
∂r

)]
+

(
~2

2

n2

mer2
+ Ve

)
χn = Eχn. (3.9)

In order to use this equation for numerical computation, we must bring it to a generalised form of
a coefficient PDE (partial differential equation)

∇ · (−c∇u− ~α+ ~γ) + au+ ~β · ∇u = daλu. (3.10)

For these to be identical the coefficients are identified as u = χn, α = γ = 0, c = ~2

2
1
me

, a =
~2

2
n2

mer2
+ Ve, βr = −~2

2
1

mer
, da = 1 and λ = E. It is important to note that ∇ is not the divergence

for cylindrical coordinates, but is a vector defined as ∂
∂r r̂ + ∂

∂z ẑ. To show that the equations are
equal, the coefficients can be inserted in (3.10), however it is directly clear that au corresponds to
the right term on the left-hand side (LHS) of (3.9), and that daλu corresponds to the right-hand

side (RHS) of (3.9), but it remains to be shown that ∇ · (−c∇) + ~β · ∇u is equal to the first term on
the LHS of (3.9). This is shown in app. 7.1.

2Often denoted l and represented by s, p, d and f for l = {0, 1, 2, 3}, respectively.



Chapter 4

Numerical computations on conical quantum
dots

Comsol Multiphysics is a finite element analysis, solver and simulation software package for various
physics and engineering applications, especially coupled phenomena, or multiphysics. Comsol Mul-
tiphysics also offers an extensive link to Matlab with toolboxes for a wide variety of programming,
pre-processing and post-processing possibilities. Given that Comsol offers a quick and easy plat-
form for setting up various configurations involving quantum dots, we will mostly be using this tool
to build our models and then subsequently transfer these models to Matlab in order to automate
calculations and post-process data.

In general we will restrict our study to systems of azimuthal symmetry; thus in defining the geometry
of a system, we will only have to consider a cross-section in the rz-plane so that the whole system
is produced by azimuthal rotation. In addition, systems of azimuthal symmetry only require a
two-dimensional numerical approach since ψ(r, z, φ) = χ(z, r) exp(inφ), as we learned in section 3.1.

We will begin this chapter with the study of a conical quantum dot. Firstly the numerical model
based on the FEM (finite element method) is described and utilized to obtain results. These results
will then be analyzed in terms of convergence behaviour and various visualisations. After this has
been carried out, we will draw a parallel to the theoretical work done in section 2.1 and 2.2 in order
to access how well the numerical model converge towards the expected analytical values in the case
of a quantum well system (the pure wetting layer).

4.1 Utilizing COMSOL as a finite element analysis tool

With the use of Comsol we will solve the separated form of the Schrödinger equation (3.8) for the
conical QD system. As we’ll see it is fairly easy to account for different potentials and effective
masses in separate domains of a system by virtue of FEM.

There are basically two domains that we will be considering; the QD/WL (wetting layer) domain and
the exterior. The wetting layer is the substrate upon which the quantum dots are grown. The layer
is made of the same material as the quantum dot, typically InAs, and the composition of the wetting
layer (WL) and QD is, as described in the introduction, embedded in another material, typically
GaAs. The fact that the WL and the QD are of the same material result in the electron having an
equal potential energy VIn, wherever it is in the composite QD/WL domain. The surrounding GaAs,
however, give rise to another potential VGa, which is higher than VIn. Consequently the electron
tends to reside in the QD/WL domain.

8



4.1. UTILIZING COMSOL AS A FINITE ELEMENT ANALYSIS TOOL 9

4.1.1 Model

Geometry

In terms of the numerical FEM model we have to define a system of finite size in order to simulate
the QD system. This means that we have to cut off the wave function at some point, which adds
additional uncertainty to the FEM model.

In order to proceed with Comsol we therefore settle for a sufficiently large size of the entire cross-
section area; this area is referred to as the computation domain (CD). Initially we will look upon a
50 nm × 100 nm sized CD containing a conical QD (of different dimensions) grown on a 2 nm WL,
see fig. 4.1(a).

(a)

7

(b)

Figure 4.1: Depictions of the underlying geometry in the numerical Comsol model. All length
units are in nm. (a) The type of QD system we will study. In general the wetting layer (WL)
will have a thickness of 2 nm, and the QD dimensions will be varied and so will the computation
domain (CD). (b) Numbering of the respective boundaries. Due to symmetry boundary 2 can be
set identical to boundary 4.

Boundary conditions

In order to obtain a stable and reliable numerical model it is necessary to determine which boundary
conditions apply to the system. For this purpose we will treat the boundaries shown in 4.1(b).

There are basically three types of boundary conditions we will apply: Dirichlet boundary conditions,
χ = 0; Neumann conditions, ∂

∂xχ = 0 (x denotes the direction normal to the boundary); and finally
we will also have to apply periodic boundary conditions to internal boundaries in order to ensure
continuity of the envelope wave function.

Firstly, the boundaries 2 and 4 must be identical due to azimuthal symmetry. Since we are only
interested in states confined to the QD, the wave equation will decay towards all of the boundaries 1,
2, 3 and 4, so in principle it shouldn’t matter whether Dirichlet or Neumann conditions are employed
provided that the computation domain is sufficiently large. However, for very small QDs the extent
of the wave function (along the wetting layer) can easily become unmanageable in terms of meeting
a CD of the required size (this is referred to as quasi-confinement). Wave functions that are vaguely
localized in this manner are for practical reasons undesirable, so in order to distinguish them from
the localized states, we will use Neumann conditions at boundary 2 and 4.

Quasi-confinement only occurs along the wetting layer so for boundary 3 and 4 we can choose either
Dirichlet or Neumann conditions – Dirichlet conditions are chosen.

At the internal boundaries 5 and 6 periodic boundary conditions are employed. This ensures conti-
nuity of χn(z, r), 1

me(z,r)
∂
∂zχn(z, r) and r

me(z,r)
∂χn
∂r at the material boundaries.



10 CHAPTER 4. NUMERICAL COMPUTATIONS ON CONICAL QUANTUM DOTS

Boundary 7 calls for a closer look at equation (3.8):

∂

∂z

(
1

me

∂χn
∂z

)
+

1

r

∂

∂r

(
r

me

∂χn
∂r

)
− χn
me

n2

r2
=

2

~2
(E − Ve)χn, (4.1)

where the second and third term diverge unless boundary conditions are employed. We recall that
the effective mass is a dependent variable: me(z, r). Assuming that the effective mass is invariable
infinitesimally close to boundary 7, the second and third term of (4.1) becomes

1

me

(
1

r

∂χn
∂r

+
∂2χn
∂r2

− χn
n2

r2

)
. (4.2)

When n = 0 the third term of (4.2) vanishes, so for the first term not to diverge a Neumann condition
must be implemented; ∂

∂rχn(z, r) = 0.

For n = 1 the third term becomes −χn 1
r2 , whereas the first term is given by 1

r
∂χn
∂r , which for r → 0

simplifies to 1
r
χn(z,r)−χn(z,0)

r |r→0. By imposing a Dirichlet condition at boundary 7, χn(z, 0) = 0,
it is seen that the first term of (4.2) cancels with the third term in the limit r → 0, and thus the
divergence of both terms is circumvented.

For the case n ≥ 2 the first and third term of (4.2) are not able to cancel, and hence both Dirichlet
and Neumann conditions are imposed at boundary 7 ensuring that both terms equal zero when
r → 0.

Coefficient Form PDE

Having set up the geometry of the system and knowing the boundary conditions, the different
domains can now be given their respective physical characterization. This is done by assigning
domain-dependent values to the coefficients in the general PDE equation (3.10):

∇ · (−c∇u− ~α+ ~γ) + au+ ~β · ∇u = daλu. (4.3)

As we learned in section 3.3 the coefficients c, a and βr are defined as c = ~2

2
1
me

, a = ~2

2
n2

mer2
+ Ve

and βr = −~2

2
1

mer
.

For the QD/WL domain, referred to as the indium domain (In), we specify the exact values of these
coefficients in Comsol – and likewise for the exterior domains (the upper and lower surroundings),
referred to as the gallium domain (Ga). The variable quantities in the above-mentioned coefficients
are the potential V and the mass m; thus, we introduce mIn, VIn,mGa and VGa. These parameters are
material-specific and according to [8] they can be set to VIn = 0, mIn = 0.027me, mGa = 0.0665me

and VIn = 0.697 eV.

Constructing an appropriate mesh

The final step of preparing the model for computation is building a mesh; the cornerstone of the
FEM method. The mesh is built upon the implemented geometry with a specific mesh fineness. The
fineness is essential for the resulting accuracy of the computations. However, the number of grids in
the mesh is proportional to the computation time, and thus it is crucial to obtain the most efficient
mesh. Additionally, choosing an appropriate computation domain (CD) is also of great importance,
since a bigger CD requires more grids for the fineness not to deteriorate.

In order to obtain an efficient mesh an important notice is that it is far superior to use the concept
of mesh refinements as opposed to increasing the mesh fineness equally in an entire geometry (same
grid density everywhere), since regions of geometrical complexity require more grids for accurate
computations. In addition to this it is also useful to allocate more mesh refinements to certain
domains. In Comsol we will therefore in general settle for a poor fineness (given that fineness
improves an entire geometry uniformly) and then apply mesh refinements. See figure 4.2 for a
deeper explanation of mesh refinements.
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(a) (b) (c)

Figure 4.2: Illustrations of different mesh refinements. A single refinement splits every existing
grid in the mesh into four equal triangles, so for each value the number of refinements increase the
total number of grids increases by a factor of 4 (this is only approximate though, since the function
of mesh refinement is more complicated at boundaries between different domains). Initially the
three meshes are build with an extremely coarse fineness (as defined by Comsol ) – from this
point mesh refinements are added. (a) No refinements, only the initial extremely coarse mesh with
172 grid elements in total. The grid density is somewhat higher in the QD/WL area (which is why
subsequent refinements are effective), however increasing the fineness further does not strengthen
this tendency (see app. 7.2 for an example of this). (b) All domains refined once, 1259 grids in
total. (c) Domain-specific refinement – an efficient technique for achieving high precision. QD/WL
refined twice, exterior refined once, 2719 grids in total.

4.1.2 Results

The computed data from Comsol includes eigenenergies (the E from eq. (3.8) ) and function values
of χ(z, r). A computation for a QD of 10 nm height and 20 nm width (base radius) has been done
and the resulting data is plotted in fig. 4.3. Note that there are multiple solutions associated with
each value of n; there is a ground state (with lowest eigenenergy) and up to several excited states.

From section 3.1 we know that the envelope wave function is produced by multiplying χ(z, r) with the
angular dependent expression Φ(φ) = exp(inφ). This is done in Matlab for a Cartesian coordinate
system, and the resulting wave function for two different values of the quantum number n is plotted
in fig. 4.4.

The script used to build up the wave function from χ(z, r) and Φ(φ) and convert from cylindrical to
Cartesian coordinates can be seen in app. 7.3 – note that interpolation is used to evaluate the value
of the wave function in arbitrary points.

In figure 4.4(a) we see a clear resemblance to atomic orbitals; more specifically the wave function
in 4.4(a) with n = 0 is very equivalent to atomic g-orbitals (l = 0), whereas the wave function in
4.4(b) with n = 4 clearly resembles atomic d-orbitals (l = 4) [13]. In atomic physics what differs
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Figure 4.3: Visualization of numerical solution of χ(z, r) from Comsol simulation. The colorbar
represents the value of χ(z, r). The black outline, representing the QD/WL, illustrates how the
solutions are confined to the QD. The simulated QD has a height of 10 nm and a width of 20 nm.
(a) Ground state belonging to n = 0, the eigenenergy is found to be E = 0.1223 eV. (b) Third
mode for n = 0, eigenenergy is E = 0.3516 eV.

the s, p, d, f and g (etc.) orbitals is the angular momentum quantum number often denoted l –
the orbitals correspond to l = {0, 1, 2, 3, 4}. Thus, for good reason the quantum number n can
be regarded as the exact analogue to l. Moreover, quantum dots can in general be thought of as
artificial atoms, given that they display the same physical behaviour . Mathematically speaking this
similarity is not shocking, since both atoms and QDs are governed by Schrödingers equation. In
this view the atomic orbitals and the computed QD wave function are only just solutions to the
same equation, but pertaining to different geometries. In any case it is remarkable that man-made
constructions like QDs (that are relatively big) exhibit atom-like appearances.

The envelope wave function may be used to calculate the spatial probability density function given
by |ψ(~x)|2. This quantity is used to normalize the wave function, since it is a requirement that∫
|ψ(~x)|2 dV = 1 (where we integrate over all space). Thus, we might have to scale χ(z, r)Φ(φ) with

a constant A for ψ(~x) to be normalized. . In cylindrical coordinates this yields∫
|ψ(~x)|2 dV =

∫ ∞
0

∫ ∞
−∞

∫ 2π

0

|Aχ(z, r)Φ(φ)|2 r dφ dz dr

= A2

∫ 2π

0

|Φ(φ)|2 dφ
∫ ∞

0

∫ ∞
−∞
|χ(z, r)|2 r dz dr

= 2πA2

∫ ∞
0

∫ ∞
−∞
|χ(z, r)|2 r dz dr = 1. (4.4)

The integral of |Φ(φ)|2 evaluates to 2π, since |Φ(φ)|2 = Φ(φ)Φ(φ) = exp(inφ) exp(−inφ) = 1. The
double integral of |χ(z, r)|2r can be approximated numerically by a Riemann sum and the scaling
factor A can then be found by means of (4.4). Normalizing the wave function will be necessary in
certain later calculations, especially in the overlap integral that we’ll address in a following section.
Furthermore, when the normalization has been carried out the probability density function can be
used to calculate the probability of finding the electron in a certain sub-volume Ω by doing the
volume integral

∫
Ω
|ψ(~x)|2 dV , where dV = r dφ dz dr for cylindrical coordinates. Since r is part of
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(a) (b)

Figure 4.4: Horizontal slices of the envelope wave function for n = 0 and n = 4. Due to the
angular dependency exp(inφ) the quantum number n gives rise to exactly n oscillations in a full
azimuthal rotation of 2π. (a) Ground state belonging to n = 0, the eigenenergy is found to be
E = 0.1223 eV. (b) Ground state for n = 4, eigenenergy is E = 0.3517 eV. Notice that precisely
4 oscillations are completed in a full azimuthal rotation.

this expression, the probability of finding an electron near the center of a QD is very low contrary to
what could have been thought initially by considering figure 4.4(a). The equivalent figures of 4.4(a)
and 4.4(b) for the probability integrand, |ψ(~x)|2 · r, can be seen in app. 7.4.

4.2 Convergence analysis

Having established a numerical model in Comsol and extracted solutions, we will have to make a
confirmation that the solutions are valid and subject to insignificant errors. Such confirmation is
ideally done by comparison with experimental data, and analytical values, and simply by comparing
accurate computations with ones that are less accurate.

In this section we will investigate whether the numerical results converge towards analytical values
under certain circumstances. Additionally we will test if the cut-off error (resulting from limiting
the CD [computation domain]) is of any significance – if so, the resolution is to simply increase the
CD.

4.2.1 Pure wetting layer

In this section we will consider the case of a pure wetting layer (WL), i.e. no quantum dots have
been grown.

An electron will experience a lower potential energy in the WL than in the surrounding material,
and given that the wetting layer is considered an infinitely large plane, the situation of a pure WL
corresponds precisely to that of a quantum well (QW) as studied in section 2.1 and 2.2.

In order to compare the numerical model with analytical QW solutions we will let the height and
width of the QD be zero and test if the computed eigenenergies converge towards the theoretical
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energies from sec. 2.2, when computation accuracy is improved. Besides we will also make a test
to see if this is also valid for the limit of VGa →∞, which corresponds to the infinite quantum well
of sec. 2.1. We will also let n = 0 in the numerical model, since the pure WL has two axes of
symmetry, whereas n was introduced for a system of only azimuthal symmetry. Setting n = 0 in
(4.2) and imposing the r and φ symmetry directly leads to the version of the Schrödinger equation
used in solving the QW.

Setting the QD height/width and n to zero and using the potentials VGa = 0.697 eV (as earlier)
and VGa = 1010 results in the plots of figure 4.5. The high value of VGa = 1010 is used to simulate
VGa →∞.
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Figure 4.5: Solutions for pure wetting layer (WL) – the model used to compute these solutions
is exactly the same as for the QD; the difference being that the height of the QD is set to zero,
other than that all parameters are the same, including the WL width. The dotted line indicates
the outline of the QD simulated earlier for comparison. (a) The potential outside the WL is set
to infinity; corresponding to the infinite quantum well (see sec. 2.1). The computed eigenenergy
is 3.482. (b) The potential outside the WL is set to VGa = 0.697 eV (same as for the simulated
QDs). The computed eigenenergy is 0.384 eV.

As expected the solutions are symmetric along the r-axis only varying across the WL just like
solutions to the QW only varies in one dimension. It is also evident that the infinite potential
outside the WL in fig. 4.5(a) makes the wave function reside exclusively inside the WL as opposed
to fig. 4.5(b), where the wave function falls off exponentially outside the WL. The computed ground
state eigenenergy for the infinite QW, 3.482 eV, is remarkably higher than the eigenenergy for the
finite QW, 0.384 eV. This is not surprising since squeezing the wave function inside the WL by
virtue of high exterior potential should intuitively give rise to higher energies.

4.2.2 Convergence in terms of mesh and scaling of computation domain

With the results of sec. 4.2.1 we can now proceed to the convergence study of computed eigenenergies
versus analytical eigenenergies. The analytical values are found to be 0.384199 eV and 3.481763 eV
for the infinite and finite QW, respectively. The relative deviations to these values for computed
eigenenergies resulting from computations of different mesh refinements are shown in fig. 4.6(a).

It is evident from fig. 4.6(a) that the numerical model approaches the analytical values, when the
mesh density is increased – given that the CD is sufficiently large (a CD of 25 × 25 nm2 has been
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Figure 4.6: Convergence tests for the numerical Comsol model. Both plots show deviation on
computations for the ground state energy for n = 0 relative to either an analytical value (left plot)
or a more precise value (right plot) on a logarithmic axis; the variable parameter being the number
of mesh refinements. For simplicity the mesh refinements are not domain specific, and thus apply
to the whole geometry of the computation domain (CD) – note that the grid density resulting
from refinements is independent on the size of the CD. (a) The blue graph shows the deviation
between eigenenergy values obtained from the numerical computation relative to the analytical
eigenenergy for the finite QW. For the numerical model to produce these eigenenergies the QD is
set to have a height and width of zero (a pure WL). The green graph is analogous, but tests the
convergence in the limit where the potential outside the WL (VGa) goes to infinity (corresponding
to the infinite QW). (b) This convergence test verifies that the error subject to cutting off the CD
at a given height and width is negligibly small. In order to examine this we have computed the
n = 0 ground state eigenenergy for a QD of 3.6 nm height and 12 nm width in an excessively big
CD of 150 % the size of a 25× 25 nm2 CD using 4 mesh refinements. However we see that a CD
100 % in size converges very closely towards the value found for a 150 % CD; thus the cut-off
error is negligible when using a 100 % CD.

used for consistency, although we could have just used a much smaller width since there is symmetry
in r).

The size of the CD necessary for accurate calculations for the pure WL is obviously much lower than
what is needed for calculations for a QD, because a QD extends to some height and width. For a
QD of the 3.6 nm height and 12 nm width, we have therefore examined if computed eigenenergies
are any different for a CD of 150 % the area 25 × 25 nm2 compared to CDs only 50 % and 100 %
of this area. The results from this examination are summarised in fig. 4.6(b). For the given QD we
conclude that the 100% CD is sufficiently large, since the 100 % CD results in virtually the same
n = 0 ground state energy, when the number of mesh refinements are equal.

Note that for bigger QDs than the one simulated larger CDs may be needed, but the same convergence
test can be carried out in such a case.

To sum up above findings we see clear indications that our numerical model yields valid solutions
and the errors subject to the finite number of grids and the limited CD can be made negligible.



16 CHAPTER 4. NUMERICAL COMPUTATIONS ON CONICAL QUANTUM DOTS

4.3 Examination of quantum confinement

Understanding the details of a quantum dots ability to confine an electron is important for being
able to utilize them in laser applications. In this section we will study what determines whether an
electron is confined or not. We will also introduce the concept of the electron hole, since the electron
hole helps to demonstrate what determines quantum confinement. Also the electron be a necessary
concept for simulating the QD laser later in this report.

4.3.1 Electron hole

The electron hole is the mathematical opposite of an electron. It does not have any physical ground,
but is useful for theoretical calculations. It is introduced when an electron is excited into a higher
state. When this excitation happens it will leave a hole in its old state. To account for the influence
that results from the electron not being in its previous state, the hole can be modelled as a particle
that is attributed an effective mass and charge (opposite the electron charge). The hole has its own
wave function, which can be used in calculating the effect of the hole. The effective mass of the hole
is in general much higher than the effective mass of the electron [3]. Later in this section we will
consider the confinement of the hole.
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Figure 4.7: Confinement dependence on eigenenergy. The tendency to delocalization towards the
WL progresses gradually as the wave function eigenenergy approaches the energy of the pure WL.
Computed eigenenergies above that of the pure WL represent free energy states – these eigenen-
ergies approach the pure WL eigenenergy asymptotically for increasing computation domain. (a)
Ground state belonging to n = 0, the computed eigenenergy is 0.3572 eV. (b) Ground state for
n = 0; for the given QD this is a free energy state residing in the WL, the computed eigenenegy
is 0.4092 eV.

4.3.2 Confinement for higher energy states

A first quantitatively examination regarding electron confinement concerns higher energy states. The
ground states that we have considered earlier have all been clearly confined to the simulated QD.
One remark to take away from this observation is that the lowest energy states of the electron reside
in the QD. An interpretation of this could be that the wave function is less squeezed in the volume
of the QD than it otherwise would have in the WL, which results in the lower energy. For this reason
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bigger QDs correspond to lower eigenenergies of the electron. Since the QD is associated with lower
eigenenergies for states that are confined, one could imagine states that simply have too high energy
to reside in the QD. This is exactly the case; increasing the quantum number n leads to less confined
states. A higher n corresponds to more oscillations around the azimuthal plane, which amounts to a
higher eigenenergy, so for higher n we expect to see less confinement. This is the essence of fig. 4.3.

Also since smaller QDs correspond to higher eigenenergies, it is not surprising that if the QD becomes
small enough it will no longer offer a lower eigenenergy than the WL, and hence the ground state
would preferably reside in the WL. This is also evident in fig. 4.7, since the confined state on fig.
4.7(a) has an eigenenergy of 0.357 eV, whereas the pure WL energy (the infinite QW) has an energy
of 0.384 eV. On the other hand the energy state on fig. 4.7(b) has an eigenenergy of 0.409 eV
surpassing the WL energy and as a consequence the state is not confined and therefore free.

We have now established that higher energies cause less confined states and ultimately free states.
However, we have not identified which specific parameters determine the degree of confinement. It
seems natural that the potential exterior to the QD (VGa) plays a decisive role for the confinement.
As we saw for the infinite QW, fig. 4.5(a), the wave function is squeezed into the WL because of the
high exterior potential. The same is valid for QDs; if VGa is somehow increased the wave function is
repelled additionally from the GaAs making it more likely that the wave function will reside in the
QD. In fact the free ground state for n = 6 on fig. 4.3(b) becomes confined if the VGa is increased
from the usual 0.697 eV to around 1.7 eV.
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Figure 4.8: Comparison of confinement for the electron versus hole in a QD of 15 nm height and
20 nm width. The red dots represent the first unconfined state for each respective n. The dotted
line represents the pure WL energy. (a) Confined electron states in the QD. The WL energy is
0.384 eV as earlier. Also notice the much higher eigenenergies. (b) Confined electron states in
the QD. The WL energy for the hole is found to be 0.107 eV. Notice the far higher number of
confined states.

Apart from the exterior potential another important parameter regarding the degree of confinement
is the effective mass that a particle experiences in the different materials. If the effective mass inside
the QD/QW domain is increased it might not be obvious what this will do for the confinement.
But for the simple case of a quantum well we know that the energy is inversely proportional to the
the mass, see eq. (2.4). From this we could expect that eigenenergies are lower for more massive
particles and hence more confined. Returning to electron holes and computing the eigenenergies for
different quantum numbers, we see that this relation to the effective mass is true. Using the effective



18 CHAPTER 4. NUMERICAL COMPUTATIONS ON CONICAL QUANTUM DOTS

masses m∗In = 0.34me and m∗Ga = 0.38me and the potential V ∗Ga = 0.368 eV for the hole and the
earlier stated electron parameters, we obtain the results of fig. 4.8, where it is very apparent that
the hole has lower eigenenergies and a lot more confined states. The figure also shows the dividing
line between confined and free states by the energy of the pure WL.



Chapter 5

Laser dynamics for quantum dot lasers

All types of lasers consists of three basic components [2] [9]:

Active laser medium Also called gain medium. Where stimulated emission of photons occurs.
The active medium has the property that passing photons will stimulate electrons to fall from
the conductive band to the valence band of the material atoms. The active medium is an
active component; external energy is transferred to the medium in the form of charge carriers
(electrons and electron-holes). In our case quantum dots are the active medium.

Pump source The energy source that somehow adds external energy to the lasing process. In our
case the pump mechanism is an electrical current causing electron collisions thereby creating
charge carriers in the conductive band of the quantum dots. Thus the quantum dots are primed
for stimulated coherent photon emission.

Optical resonator system The part of the laser that ensures that the stimulated light does not
escape the laser device immediately, but returns to stiumlate more photons. In most lasers
this is an optical cavity consisting of two mirrors, one fully reflective and the other slightly
partially reflective.

5.1 The rate equations

5.1.1 Deriving the rate equations

We will now derive the rate equations governing the time evolutions of the charge carrier volume
density N and photon volume density Np within the active medium [4]. When a current is applied
through the active medium several things will happen that will result in the gain of electrons and in
recombination of electrons and electron-holes within the active medium. Our reference point will be
the rate equation:

dN

dt
= Ggen −Rrec (5.1)

where Ggen is the rate of injected electrons per unit volume in the active region, Rrec is the total
loss of charge carriers, the rate of recombining per unit volume in the active region. We wish to
define a few terms relating to the active medium before we delve into the rate equations.

Internal quantum efficiency, ηi the fraction of terminal current that generates carriers in the
active region. [4]

Since there are ηiI/q electrons per sceond being injected into the active region, we have that

Ggen =
ηiI

qV
(5.2)

19
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The recombination process is a bit more complicated and the total effect can be split up into four
terms:

Rrec = Rsp +Rnr +Rl +Rst (5.3)

where Rsp is the spontaneous recombination rate, Rnr is decay by nonradiative process, Rl is loss
by charge carrier leak out of the active region and finally Rst is the net stimulated recombination
(including both stimulated absorption and emission) which requires the presence of photons.

The first three terms refer to natural or unstimulated carrier decay processes. In the absence of
photons or generation terms the carrier decay is a simple exponential decay with characteristic time

τ , so the first three terms can be combined as N/τ , with
1

τ
=

1

τsp
+

1

τnr
giving

Rrec = N

(
1

τsp
+

1

τnr

)
+Rst. (5.4)

Combining all of our expressions we have

dN

dt
=
ηiI

qV
−N

(
1

τsp
+

1

τnr

)
−Rst. (5.5)

This is the first of the two important rate equations.

We now wish to construct a rate equation for the photon density Np. Our reference point for
this will be

dNp
dt

= ΓRst + ΓβspRsp −
Np
τp

(5.6)

Where Rst and Rsp are the rates of recombination resulting in stimulated- and spontaneous emission

respectively. These will be substituted by other expressions in due time. The last
Np
τp

term is the

natural decay for photons including all mechanisms that could result in net loss of useful photons
(absorption, scattering, etc.). Γ ≡ V/Vp is the electron-photon overlap factor also called the confine-
ment factor, the active region volume occupied by electrons V divided by the, usually larger, volume

occupied by photons, Vp. Thus the stimulated photon-generation rate is not simply Rst but
V

Vp
Rst.

In the case of the useful spontaneous photon generation rate, we multiply by an additional factor of
βsp which is defiend as the ratio of useful vs. useless photons resulting from the random direction of
emission, where only those hitting the optical mirrors at a small angle to the normal are useful (βsp
is of the magnitude 10−4).

We also want to find a more suitable expression for Rst in terms of gain and photon volume density
Np. We define the gain for the active region

Gain, g the derivative of logarithm of photon density Np as it passes through the medium [1]

That is,

g =
d

dz
ln(Np) =

dNp/dz

Np
(5.7)

which can be solved as Np(z) = Np0 exp(gz) in which we can also recognize gain as the photon
density growth rate per unit length. Stated slightly different:

Np + ∆Np = Np exp(g∆z) (5.8)
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For sufficiently small ∆z, exp(g∆z) ≈ (1 + g∆z). Using that ∆z = vg∆t where vg is the group
velocity, we find that ∆Np = Npgvg∆t. We can now deduce the generation term for the stimulated
photon emission which is identical to the recombination rate of electrons resulting in net stimulated
emission (

dNp
dt

)
gen

= Rst =
∆Np
∆t

= vggNp (5.9)

Rewriting the carrier equation (5.5) we get

dN

dt
=
ηiI

qV
−N

(
1

τsp
+

1

τnr

)
− vggNp (5.10)

We note that the first term relates to the increase of charge carrier density as a direct result of
the applied current, the second term relates to the loss of charge carriers due to both spontaneous
emission and charge carrier leak to the sorrounding material and the third term is the loss or gain
due to the presence of photons. We see that negative gain will result in a positive third term visa
versa. This is intuitive; once lasing kicks in, which is at positive gain, the stimulated emission of
photons will result in a loss of charge carriers. On the other hand, just after the laser is turned on,
the stimulated emissions has not yet reached a critical level, most photons present due to stimulated
emission will likely be absorbed thereby creating charge carriers.

Finally envoking the substitution Rsp =
N

τsp
and using the expression for Rst found above in (5.9)

the photon rate equation (5.1) becomes:

dNp
dt

=

[
Γvgg −

1

τp

]
Np + Γβsp

N

τsp
(5.11)

We note that the first term relates to stimulated emission (high gain g during lasing) in the active
region, the second term relates to loss as a result of natural “decay” (absorption) of photons in the
active region and the third term relates to the increase of photons due to spontaneous emission of
photons from electrons spontaneously moving from the conductive band to the valence band of the
atoms in the active region.

We now have two coupled linear partial differential equations, (5.10) and (5.13), that can be solved
numerically for the charge carrier density and photon density, for a given set of parameters and
boundary conditions.

5.1.2 Simulating the rate equations for a simple laser

We will now numerically solve the rate equations, (5.10) and (5.13) with Matlab using the following
model for the gain:

g =
g0

1 + εNp
ln

N

Ntr
(5.12)

For equation (5.13) we define the contents of the square bracket as the stimulation factor:

Stimulation factor, ξ ≡ Γvgg −
1

τp
The coefficient to Np in Np’s rate equation (5.13). The com-

bined effect of the gain g and the natural photon decay
N

τp
. Indicates the amount of stimulated

emission at a specific time.
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Figure 5.1: N(t), Np(t), g(t) and ξ(t) on the same time-scale. Region I: Spontaneous emission
dominated until at the end Region II: Stimulated emission dominated, active region achieves
photon-oversaturation (g decreases, Np reaches maximum) Region III: Still stimulated emission
dominated, going towards steady-state.

With this definition equation (5.13) can be written:

dNp
dt

= ξNp + Γβsp
N

τsp
(5.13)

We’ve chosen a set of realistic parameters to showcase the dynamics of the simple laser model,
see 7.6. These parameters will be used for the rest of this subsection unless other is stated. We
have obtained a numeric solution for N(t) and Np(t): Let us explore figure 5.1 in detail going from
left to right on the time-axis. Region I: Current is turned on, N rises because of the first term
in (5.10). Np remains low because the gain, depending logarithmically on N , remains low. Note
that gain starts off negative, which cannot be seen in the chosen time interval, and changes sign at
N = Ntr, see (5.12). Spontaneous photon emission continues to increase due to the growth of N ,
and eventually gets so large that the ξ term takes over and kick-starts the stimulated emission. This
proces is similar to a nuclear chain reaction; Np undergoes faster-than-exponential growth. Region
I/II bounary: Because of gain’s 1/Np dependency the gain and ξ maxes out while Np continues
it’s exposive growth. Region II: The active media is oversaturated with photons and the current
cannot replace electrons fast enough, thus g and ξ decreases as Np reaches as maximum. The Np
maximum occurs more or less at the same time as ξ changes sign. This signifies that spontaneous
emission is insignificant to the photon density Np at this point. Region III: In the N - and Np-plot
we notice the same pattern of Np following the growth of N with a bit of delay resulting from the
exactly the same mechanisms described for region I and II. We also note that the stimulation factor

ξ oscillates between postive and negative, eventually settling on a value that results in
dNp
dt

= 0. N

and Np also converges, resulting in the laser reaching a steady state.

Now if the current is lowered, all other parameters being equal, we might not achieve lasing. This
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Figure 5.2: The lasing threshold; steady-state photon density is plotted for 150 different cur-
rents (chosen so there are more points around threshold). At approximately 4.3 mA lasing power
increases three orders of magnitude from a very small fractional increase of input current. At
currents lower than the threshold, the laser photon density is dominated spontaneous emission and
at current higher than the threshold, by stimulated emission.

is due to the fact that the spontaneous emission rate must become higher than a certain threshold
before the active medium gain reaches a value that results in a net gain of stimulated photons when
a photon passes once through the active medium. This laser threshold current is characterized by a
multiple orders-in-magnitude jump of photon density from much less than an order of magnitude of
increase of input current.

Figure 5.2 shows the threshold current for lasing and how dramatic the steady-state photon density
increases.

Another way to show this lasing vs. non-lasing and spontaneous vs. stimulated emission transi-
tion is to look at the actual time evolutions of photon densities of four different currents around
the threshold current as in figure 5.3. Here we note the transients of the black and green curves,
characteristic of lasing. However the green curve in 5.3 (a) shows us that lasing is not a truly dis-
continuous threshold phenomenon; there is current interval of sharp transition from non-lasing (blue
and red) to lasing (black), but in between, a carefully increased current will give a very sudden but
still continuous increase in laser power. We note in 5.3 (a) the blue photon density graph converges
well below the blue dotted line. The blue dotted line is where it would have converged to under pure
spontaneous emission, had photons not been lost to stimulated emission. In 5.3 (b) we see that the
gain at this current I = 1.00 mA never becomes positive, so the stimulated emission only takes away
from the laser power (which is too low to be useful anyway). This happens because the stimulated
emission has not reached a critical level to yield a net-gain of photons as they pass through the whole
active region, but only takes away photons and creates charge carriers by absorption (last term in
(5.10) is positive). As current is increased one of the indications that lasing is achieved is that
photon densities converges to a steady-state level many orders of magnitude above the theoretical
maximum from purely spontaneous emissions (the dotted lines), see the green and black curves. In
the end we note that the gain appears to converge towards the same level, around 105, once lasing
is achieved no matter the current, however early higher gain for higher currents will result in an
incraesed steady-state power.
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Figure 5.3: Photon density and gain for different currents just around the threshold current. The
plot legend applies to both figures. (a) The laser reaching various steady-state photon densities for
four different input currents around the threshold. The dotted colored lines indicates the respective
steady-state densities, had the gain been zero, a maximum if there had only been spontaneous
emission. These are obtained as the steady-state values for the rate equations with g0 = 0. (b)
The gain for the four different input currents

5.2 Implementation of quantum dot laser gain

At this point we have established a robust numerical model and we have carefully studied the rate
equations, thus we have the theory necessary to advance to the study of the quantum dot laser. The
main difference will be that a new gain model for quantum dot lasers have to be implemented.

For the new gain model we will look at a population of quantum dots, an ensemble, that are stacked
in layers, much like in the figure back in the introduction, fig. 1.2. The material gain from this
ensemble is given by a sum over all the individual QDs, where the important quantities of the sum
are the electron-hole overlap integral (we elaborate this quantity soon), the dot volume and the
ground state eigenenergy for the dots. Since a typical laser cavity can easily contain up to 106

QDs the sum is obviously problematic. However, the sum can be omitted by assuming that the QD
volume size is described by a Gaussian distribution with a particular relative standard deviation and
average volume that corresponds to an average ground state energy denoted E0. This assumption is
justified if the ensemble consists of a sufficiently large number of independent quantum dots by virtue
of the central limit theory [7] (any large population converges towards a Gaussian distribution). This
assumption leads to the energetic broadening function [5]

P (ε, σE) =
1

σE
√

2π
exp

(
− (ε− Eg − E0)2

2σ2
E

)
, (5.14)

where σE is the spectral width – the full width at half maximum. If we let ε = Eg+E0 = Eg+Ev+Ec
(bandgap energy, valence band ground state energy and conduction band ground state energy), we
obtain the simple relation P = 1

σE
√

2π
– this corresponds to letting the quantum dot laser operate at

the energy that equals the difference between the valence band ground state and conduction band
ground state plus the bandgap.

We will now further assume that electrons and holes injected into the QD active medium have the
same capture time (the time it takes for an electron/hole to become confined in a QD). Also it is
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assumed that carrier lifetime and carrier capture are independent of the ground state energy and
that the dots do not couple. Lastly we will only concern us about the ground state of all QDs, which
means that the total number of captured electrons distributed equally amongst all dots in the laser
will be given by N = 2fcND, where fc denotes the Fermi-Dirac distribution, which describes the
average number of fermions (electrons in this case) in a single-particle state (the ground state in this
case) [3]. The quantity ND is the total number of dots, and the factor 2 is due to the Pauli exclusion
principle that allows only two electrons (of different spin) to be occupied in the same state. With
all of the above-mentioned assumptions the material gain can be written [5]

g(~ω) =
N −ND
ND

CgP (~ω, σE), (5.15)

with the constant Cg given by

Cg =
2πe2

m2
eε0cnrω

M2

V0
, (5.16)

where M is the electron-hole overlap integral, ε0 is the vacuum permittivity, c is the speed of light,
nr is refractive index of the active medium, ω is the frequency of QD emitted light (corresponding to
the energy gap between the electron ground state energy and the hole ground state energy plus the
bandgap) and e is the elementary charge. It is seen from these expressions that the gain increases
linearly with the carrier density from the minimum value −CgP to the maximum value +CgP , when
all QDs ground states are filled with two electrons and two holes (N = 2ND, the limiting value
of N). Note that N and ND can either be regarded as absolute values or densities; this does not
change the gain. For compatibility with the previously derived rate equations we will regard ND
as a density. In this new gain model the value of the carrier density N = ND is equivalent to the
quantity Ntr (called the transparency carrier density) in the old gain model.

5.2.1 Envelope wave function overlap integral of electron and hole

The overlap integral contained in (5.20) is loosely speaking a measure of the degree of how much the
electron and hole wave functions overlap spatially. In defining the overlap integral we will distinguish
between the electron wave function ψe and the hole wave function ψh with the quantum numbers
ne and nh, respectively. The overlap integral can then be written

M =

∫
ψe(~x, ne)ψh(~x, nh)×

∫
ψh(~x, nh)ψh(~x, ne). (5.17)

It can be shown that this overlap integral will equal zero, whenever the angular quantum numbers
are unequal, that is ne 6= nh. When ne = nh we can factor out the angular dependent term exp(inφ)
(assuming azimuthal symmetry) in (5.17), which results in

M = 4π2

∫ ∞
0

∫ ∞
−∞

χe(z, r)χh(z, r) r dr dz ×
∫ ∞

0

∫ ∞
−∞

χh(z, r)χe(z, r) r dr dz. (5.18)

Eq. (5.18) can now be used to calculate the overlap between the electron and hole wave function.

5.2.2 Optimization of gain from quantum dots

Based on the overlap integral from previous section we will now try to find the optimal dimensions
of a QD for application in a QD laser. The QD gain is proportional to the constant Cg and therefore
we will try to optimize this constant. Looking at the expression of Cg, (5.16), we see that the only
variable parameters determining Cg are M , V0 and ω – the rest of the Cg expression consist only of

physical quantities. Thus an optimization of M2

ωV0
will lead us directly to the quantum dot resulting

in the highest possible gain.
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Figure 5.4: Data from optimization of QD laser gain. The slightly jagged profile on the light
blue boundary is due to the looping resolution being limited; we have computed the optimization
parameter for a total number of 60× 60 QDs (60 different heights and 60 different widths in the
interval). Notice that the sharp shift from the optimum area to the dark blue area is a result of the
electron wave function suddenly detaching and becoming unconfined for small heights and widths,
making the overlap integral become very small for these QDs.

Such an optimization has been carried out by looping over a high number of different QDs ranging
from 2 nm height/width to 15 nm height/width. The script for doing this extracts numerical solutions
of χe and χh, normalizes the wave functions, calculates the overlap integral by numerical integration,
and then finds the quantity M2/ωV0. The ω for a given QD is found by ε = ~ω, where ε is, as earlier,
set to Eg+Ev+Ec – the value of Ev and Ev are computed by the numerical model for the individual
QD and the bandgap is set to Eg = 0.359 eV. The data from running this script is plotted in fig.
5.4. The script can be found in app. 7.5.

From fig. 5.4 we see that there is an evident optimum. This optimum corresponds to a height of
4.56 nm and a width of 4.37 nm – the value of the overlap integral is found to be 0.624 for this
particular QD.

5.2.3 Rate equations for quantum dot laser

We are now ready to simulate the quantum dot laser based on the new gain model 5.20. At this
point however, we do not wish to make any assumptions about the quantum dot density ND. We
will therefore scale our gain- and rate equations by dividing with a factor ND, effectively making
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the QD-laser simulation independent of this ND:

Ñ =
N

ND
, Ĩ =

I

ND
, Ñp =

Np
ND

(5.19)

⇒ g =
N −ND
ND

CgP −→ g = (Ñ − 1)CgP (5.20)

⇒ dN

dt
=
ηiI

qV
−N

(
1

τsp
+

1

τnr

)
− vggNp −→ dÑ

dt
=
ηiĨ

qV
− Ñ

(
1

τsp
+

1

τnr

)
− vggÑp (5.21)

⇒ dNp
dt

=

[
Γvgg −

1

τp

]
Np + Γβsp

N

τsp
−→ dÑp

dt
=

[
Γvgg −

1

τp

]
Ñp + Γβsp

Ñ

τsp
(5.22)
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Ñ
p
(N

p
/N

D
)

0 0.005 0.01 0.015 0.02
−8

−6

−4

−2

0

2

4

6

8
x 10

11 Gain
g
[m

−
1
]

Time [ns]

Figure 5.5: Scaled electron and photon densities Ñ and Ñp for the quantum dot laser simulation.
Note how the timescale for steady-state is much smaller than in the first laser simulation. Also
note how Ñ saturates at 2 very early meaning that all the quantum dots are filled with electrons in
the ground state. After the lasing gets going around 0.002 ns Ñ drops as electrons are stimulated
to emmit photons. Steady-state is reached after about 0.2 ns. In our simple model the gain follows
the scaled electron density, see (5.20).

To simplify we assume only the ground state is available for the electrons in the quantum dots.
Because of the Pauli exclusion principle this means two possible quantum states; one spin up, one
spin down. Therefore we must impose a limit on N so that N ≤ 2ND or Ñ < 2. This is implemented
together with the new gain model into the Matlab simulation script. Note that the new rate
equations, (5.21) and (5.22), both have the exact same form as the old ones – we just need to remind
ourselves of the ND scaling factor when we want to know the physically significant values.
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Fortunately the laser simulation was successful with the new gain model with all other parameters
being equal except the current. That is to say at parameters both realistic and optimized, lasing
was achieved. See app. 7.7.:

The parameters using in the simulating of figure 5.5 makes it interesting because it uses the optimized
value for Cg as presented in (5.16). If we drop the gain by an order of magnitude by adjusting
Cg = 2.56× 108 to Cg = 107, we get non-lasing as seen in fig. 5.6.
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Ñ
(N

/N
D
)

Time [ns]
0 0.005 0.01 0.015 0.02 0.025 0.03

0

0.2

0.4

0.6

0.8

1
x 10

−8

Ñ
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Figure 5.6: Scaled electron and photon densities Ñ and Ñp for the quantum dot laser simulation
in a non-lasing situation.

Figure 5.6 shows us that no matter how much we saturate our quantum dots with electrons, the
gain must still be high enough to achieve lasing. Finally we show how sensitive the system is by
increasing Cg from Cg = 1 × 107 to Cg = 2 × 107 with a clear difference in photon density and
definitely achieving lasing.
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Figure 5.7: Scaled electron and photon densities Ñ and Ñp for the quantum dot laser simulation
in a another lasing situation. This figure together with 5.6 is interesting because it shows how
a very small difference in the Cg parameter and thereby gain, can mean the difference between
lasing and non-lasing.



Chapter 6

Conclusion

We have demonstrated numerical computations of eigenenergies and wave functions of a conical
quantum dot using Comsol finite element simulations. We have found that the numerical model
converge towards analytical solutions for the quantum well as the grid density in the mesh is im-
proved, and we have also found that the error subject to using a limited computation domain is
negligible. Based on the Cg factor in the expression for quantum dot laser gain, we have optimized
the quantum dot dimensions to achieve maximum gain in a quantum dot laser. Finally we have
shown that combining the gain expression from [5] and the laser rate equations using the optimized
Cg value actually makes a working laser with realistic parameters.
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Appendix

7.1 Derivation for coefficient PDE form

Inserting c, u and ~β in (3.10)

∇ ·
(
−~2

2

1

me

∂χn
∂r

r̂− ~2

2

1

me

∂χn
∂z

ẑ

)
− ~2

2

1

mer

∂χn
∂r

(7.1)

= −~2

2

[
∂

∂z

(
1

me

∂χn
∂z

)
+

∂

∂r

(
1

me

∂χn
∂r

)
+

1

mer

∂χn
∂r

]
(7.2)

The first term in the square brackets of (7.2) is also present in (3.9), so for the equality between
(3.9) and (3.10) the remaining parts of both must be equal:

− ~2
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(
1
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)
(7.3)

⇔ ∂

∂r

(
1

me

∂χn
∂r

)
+

1

mer

∂χn
∂r

=
1

r

∂

∂r

(
r

me

∂χn
∂r

)
(7.4)

Expanding both sides by the rule of differentiation of a product, this can be written

∂

∂r

(
1

me

)
∂χn
∂r

+
1

mer

∂χn
∂r

+
∂2χn
∂r2

1

me
=

1

r

(
∂

∂r

r

me

)
∂χn
∂r

+
∂2χn
∂r2

1

me
(7.5)

Removing the common term and differentiating the RHS again yields

∂

∂r
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∂r

+
1

mer

∂χn
∂r

=
1

r

(
∂

∂r

r

me

)
∂χn
∂r

(7.6)

⇔ ∂

∂r

(
1

me

)
∂χn
∂r

+
1

mer

∂χn
∂r

=

[
∂

∂r

(
1

me

)
+

1

mer

]
∂χn
∂r

. (7.7)

Since LHS and RHS are identical, the equation is true and we conclude that (3.9) and (3.10) are
identical as well. The coefficient PDE (3.10) can now be directly implemented in Comsol or other
numerical tools in order to solve the Schrödinger equation (3.9).

7.2 Ineffectiveness of high mesh fineness

7.3 Envelope wave function

Script for obtaining the complete wave function for a Cartesian coordinate system.

31
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Figure 7.1: The fineness applied to the geometry is extra fine. As seen this way of increasing the
number of grids does not adapt to the geometry.

1 for l=[0 4]
2 %% Params
3 h=10;
4 b=20;
5 % res=50;
6 QDRefin=3;
7 GaRefin=1;
8 meshLevel=5; %5 normal
9 dim=2;

10

11 %% model load
12

13 model=loadModel( dim,meshLevel,QDRefin,GaRefin );
14

15 model.param.set('V Ga',0.697);
16 model.param.set('c In','hbarˆ2/(2*0.027*m)');
17 model.param.set('c Ga','hbarˆ2/(2*0.0665*m)');
18

19 %Specifying dimensions for QD
20 model.geom('geom1').feature('pol1').set('y',[1;1;h]); %standard h −> 3.6
21 model.geom('geom1').feature('pol1').set('x',[0;b;0]); %standard b −> 12
22

23

24 % Loading geometry and running mesh
25 model.geom.run;
26 model.mesh('mesh1').run;
27

28

29 model.param.set('l',l);
30

31 model.sol.run;
32
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33

34 %Plotting
35 for mode=1
36 res=60;
37 [X,Y,Z]=meshgrid(linspace(−25,25,res),linspace(−25,25,res),linspace(−5,15,res));
38

39 % Danner matrix med r−koordinater
40 rCoords=reshape(sqrt(X.ˆ2+Y.ˆ2),1,[]);
41 %[ (x1,y1) , (x1,y2) , (x1,y3) , (x1,y4) , (x2,y1) ... ] −−− runs
42 %first all y in jumps of x, in jumps of z −− that is for(z:, for(x:, for(y:,)))
43 RZcoords=[rCoords; Z(:)'];
44 U=mphinterp(model,'u','coord',RZcoords);
45

46

47 %Data export ini
48 % % fid=fopen('C:\Users\Charles\AppData\Local\Programs\LLNL\VisIt ...

2.5.2\data\QDL3.3D','w');
49 % % fprintf(fid,['x',' y',' z',' value\n']);
50

51

52 %Indexing
53 XYZvalues=zeros(res,res,res);
54 count=1;
55 for k=1:res % Summer i z
56 for i=1:res % Summer i x
57 for j=1:res % Summer i y
58 if X(i,j)>0 && Y(i,j)>0, koeff=atan(Y(i,j)/X(i,j)); end
59 if X(i,j)<0 && Y(i,j)>0, koeff=pi+atan(Y(i,j)/X(i,j)); end
60 if X(i,j)<0 && Y(i,j)<0, koeff=3*pi/2−atan(X(i,j)/Y(i,j)); end
61 if X(i,j)>0 && Y(i,j)<0, koeff=2*pi+atan(Y(i,j)/X(i,j)); end
62 if X(i,j)==0 && Y(i,j)==0, koeff=0; end
63 if X(i,j)==0 && Y(i,j)>0, koeff=pi/2; end
64 if X(i,j)==0 && Y(i,j)<0, koeff=3*pi/2; end
65 if Y(i,j)==0 && X(i,j)>0, koeff=0; end
66 if Y(i,j)==0 && X(i,j)<0, koeff=pi; end
67 temp=cos(l*koeff)*U(mode,count);
68 XYZvalues(i,j,k)=temp;
69 %Skriver til export−fil
70 % fprintf(fid,'%f %f %f %f\n',X(i,j),Y(i,j),Z(1,1,k),temp);
71 count=count+1;
72 end
73 end
74 end
75

76 %Lukker export fil
77 % fclose(fid);
78

79 % L=[];
80 % for i=1:20*res+1,L=[L U(k,1+(i−1)*(20*res+1):i*(20*res+1))']; end
81 % figure(1)
82 % subplot(2,2,k)
83 % surf(x,y,L)
84 end
85

86 %% Slices
87

88 [x,y]=meshgrid(0:1/res:20,−10:1/res:10);
89

90

91 % figure(1)
92 % count=0;
93 % for i=linspace(1,res,4)
94 % count=count+1;
95 % subplot(2,2,count)
96 % surf(X(:,:,1),Y(:,:,1),XYZvalues(:,:,int8(i)),'LineStyle','none');
97 % end
98
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99 figure;
100 clf
101 set(gcf, 'Units', 'centimeters', 'Position', [2 2 17 19],'color','w');
102

103 axes;
104 grid off
105 set(gca,'fontsize',14)
106 slice(X,Y,Z,XYZvalues,[],[],[−3 −1 1.5 4 6.5]);
107 c=colorbar('fontsize',14);
108

109 ylabel(c,'Wave function','fontsize',15,'interpreter','latex')
110 % set(
111 set(gca,'view',[ −37.5000 16.0000])
112 shading interp
113 xlim([−40 40])
114 ylim([−40 40])
115 zlim([−5 6])
116

117

118 xlabel('$x$−position $\mathrm{ \,[n ...
m]}$','fontsize',15,'fontweight','bold','Interpreter','Latex')

119 ylabel('$y$−position $\mathrm{ \,[n ...
m]}$','fontsize',15,'fontweight','bold','Interpreter','Latex')

120 zlabel('$z$−position $\mathrm{ \,[n ...
m]}$','fontsize',15,'fontweight','bold','Interpreter','Latex')

121 title(sprintf('Envelope wave function ...
($n=%i$)',l),'fontsize',15,'fontweight','bold','Interpreter','Latex')

122

123 cdir=cd;
124 cd('C:\Users\Charles\Dropbox\1 Uni\34029 Fagprojekt\Rapport\fig\wavefunc');
125 export fig(sprintf('wavefunc n%i submode%i',l,mode),'−png','−r300')
126 cd(cdir);
127

128 % figure(3)
129 % set(gcf, 'Units', 'centimeters', 'Position', [30 2 17 14])
130 % q=slice(X,Y,Z,XYZvalues,[0],[0],[0]);set(q,'linestyle','none')
131 % shading interp
132

133

134 % % % Isosurface
135 % % figure(4)
136 % % isosurface(X,Y,Z,XYZvalues,2)
137 % % hold on
138 % % isosurface(X,Y,Z,XYZvalues,−2)
139 end
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7.4 Plots for probability density function

(a) (b)

Figure 7.2: Horisontal slices of the probability density function multiplied by r (also referred to
as the probability integrand |ψ(~x)|2 · r) for n = 0 and n = 4. Due to the angular dependency
exp(inφ) the quantum number n will give rise to exactly n oscillations in a full azimuthal rotation
of 2π. (a) Ground state belonging to n = 0, the eigenenergy is found to be E = 0.1223 eV. Notice
that the peak is no longer at r = 0. (b) Ground state for n = 4, eigenenergy is E = 0.3517 eV.
Notice that precisely 4 oscillations are completed in a full azimuthal rotation.

7.5 Script for optimization of quantum dot laser gain

1 % function [M,R,Rh,x,y,lambda,lambdah]=QDoverlapFunc(model,mode,h,b,res,dim)
2 % function [M,R,Rh,x,y,lambda,lambdah]=QDoverlapFunc medRogRh(model,mode,h,b,res,dim)
3 %% Initialization
4

5 tic
6 clear all
7 close all
8

9 %Smart save
10 load('globalcount');
11 globalcount=globalcount+1;
12 save('globalcount','globalcount');
13 savdir=sprintf('datafiler/%s','h b loop3 extended');
14 mkdir(sprintf('%s/%i',savdir,globalcount))
15

16 fprintf('savefolder is numbered %i\n',globalcount);
17

18 %Data export ini
19 fid=fopen(sprintf('%s/%i/%s',savdir,globalcount,'data.dat'),'w');
20 %Dataset with forced M=0
21 fidMod=fopen(sprintf('%s/%i/%s',savdir,globalcount,'dataMod.dat'),'w');
22

23
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24

25 % Loop params
26 % N=3;
27

28 % [h,b]=meshgrid(linspace(2,7,3*N),linspace(2,8,N));
29 hint=linspace(2,9,40);
30 bint=linspace(7,14,40);
31 % bint=[2 5 15];
32 % hint=[2 5 15];
33 % bint=7.18;
34 % hint=2;
35

36 % Parameters
37 meshLevel=4; % 5 er normal
38 QDRefin=3;
39 GaRefin=1;
40 mode=1;
41 res=250;
42 dim=2;
43

44 save(sprintf('%s/%i/%s',savdir,globalcount,'parameters'));
45

46 count1=0;
47 % count2=0;
48

49 % Loop
50 fig=figure('visible','off');
51 for b=bint %gennemlber b, bredden
52 model=loadModel( dim,meshLevel,QDRefin,GaRefin );
53 % count2=0;
54 mkdir(sprintf('%s/%i/b %0.2f',savdir,globalcount,b));
55 % h & b Loop
56 for h=hint %gennemlber h, hjden
57

58 [M,R,Rh,x,y,lambda,lambdah]=QDoverlapFunc medRogRh(model,mode,h,b,res,dim);
59

60 fprintf(fid,'%f\t',M);
61 % Forced m=0
62 [maxval, maxpos]=max(R(:));
63 [maxrow, maxcol]=ind2sub(size(R),maxpos);
64 Minterp=TriScatteredInterp(x(:),y(:),R(:));
65

66 if x(maxrow,maxcol)>b | | Minterp(x(end),0)>1/10*maxval
67 fprintf(fidMod,'%f\t',0);
68 else
69 fprintf(fidMod,'%f\t',M);
70 end
71

72 subplot 221
73 surf(x,y,R)
74 shading interp
75 title(sprintf('E. h: %0.3f, b: %0.3f, M: %0.5f',h,b,M));
76

77 subplot 223
78 surf(x,y,R)
79 title(sprintf('Lambda: %0.5f',lambda))
80 shading interp
81 view(2)
82

83 subplot 222
84 surf(x,y,Rh)
85 title('Eh')
86 shading interp
87

88 subplot 224
89 surf(x,y,Rh)
90 title(sprintf('Lambda: %0.5f',lambdah))
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91 shading interp
92 view(2)
93

94 export fig('fig',sprintf('%s/%i/b %0.2f/h %0.2f b %0.2f',savdir,globalcount,b,h,b),'−png','−m2.5');
95

96 % count2=count2+1;
97 % if mod(count2,2)==0, fprintf('%i\n',count2); end
98

99 end
100 % fprintf(fid,'%f\t', arrayfun( ...
101 % @(x)QDoverlapFunc medRogRh(model,mode,x,b(i),res,dim),h(1,:) ));
102 fprintf(fid,'\n');
103 fprintf(fidMod,'\n');
104

105 count1=count1+1;
106 fprintf('OUTER LOOP, compl. iter. # %i\n',count1);
107

108

109 end
110

111

112 fclose(fid);
113 fclose(fidMod);
114

115 %% Surf plot
116

117 matM=transpose(importdata(sprintf('%s/%i/%s',savdir,globalcount,'data.dat')));
118 figure(2)
119 [bmesh,hmesh]=meshgrid(bint,hint);
120 surf(bmesh,hmesh,matM);
121 hgsave(sprintf('%s/%i/%s',savdir,globalcount,'M surf'))
122 rotate3d on
123

124 winopen(sprintf('%s/%i',savdir,globalcount))
125

126 toc
127

128 function [M,R,Rh,x,y,lambda,lambdah]=QDoverlapFunc medRogRh(model,mode,h,b,res,dim)
129 % Note that 'mode' refers to the angular momentum quantum number
130 %% Initialisering
131

132 %%% Opstning af polygon, standardpol er [0,0,3.6]
133 model.geom('geom1').feature('pol1').set('y',[1;1;h]); %standard h −> 3.6
134 model.geom('geom1').feature('pol1').set('x',[0;b;0]); %standard b −> 12
135

136

137

138 % Indlser geometry og krer mesh
139 model.geom.run;
140 model.mesh('mesh1').run;
141

142 %Antal mesh
143 % meshdata = mphmeshstats(model,'mesh1');
144 % meshelem=meshdata.numelem(2);
145

146

147

148 %% Solver function call
149 %
150 % [R,x]=QDsolveFun2D(model,mode,submode,VGa,cIn,cGa,res,dim)
151 %
152

153 %Electron −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
154 [R,x,y,lambda]=QDsolveFun2D(model,mode,1,0.697,'hbarˆ2/(2*0.027*m)','hbarˆ2/(2*0.0665*m)',res,dim);
155

156

157 %Hole −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
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158 [Rh,¬,¬,lambdah]=QDsolveFun2D(model,mode,1,0.368,'hbarˆ2/(2*0.34*m)','hbarˆ2/(2*0.38*m)',res,dim);
159

160

161 %% Output overlap value
162

163 %Computes int(r*Fe(*)*Fh)
164 int1 = 0;
165 for k=1:res
166 for j=1:res
167 int1=int1+conj(R(j,k))*Rh(j,k)*x(j,k);
168 end
169 end
170 int1=int1*(25*dim*75*dim/(res*res));
171

172 %Computes int(r*Fe*Fh(*))
173 int2 = 0;
174 for k=1:res
175 for j=1:res
176 int2=int2+R(j,k)*conj(Rh(j,k))*x(j,k);
177 end
178 end
179 int2=int2*(25*dim*75*dim/(res*res));
180

181 %Final calculation
182 M=4*piˆ2*int1*int2;
183

184 end
185

186

187

188 function [R,x,y,lambda]=QDsolveFun2D(model,mode,submode,VGa,cIn,cGa,res,dim)
189

190 % Parameters −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
191

192 model.param.set('V Ga',VGa);
193 model.param.set('c In',cIn);
194 model.param.set('c Ga',cGa);
195

196

197

198 % Beregner lsning −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
199

200 model.param.set('l',mode);
201 % model.geom.run;
202 % model.result('pg1').run;
203 % model.result.dataset('dset1').run;
204 model.sol.run;
205 % model.sol('sol1').runAll;
206 % mphglobal(model,'lambda')
207

208 lambda=mphglobal(model,'lambda');
209 lambda=lambda(1);
210

211 %Opbygger 2d matrix −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
212

213 [x,y]=meshgrid(linspace(0,dim*25,res),linspace(−25*dim,50*dim,res));
214 U=mphinterp(model,'u','coord',[x(:)';y(:)']);
215 R=reshape(U(submode,:),res,res);
216

217 %Normalisering
218 total = 0;
219 for k=1:res
220 for j=1:res
221 total=total+R(j,k)ˆ2*x(j,k);
222 end
223 end
224 total=total*(25*dim*75*dim/(res*res))*2*pi;
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225 koeff=sqrt(1/total);
226

227 R=R*koeff;
228

229

230 end

7.6 Parameters for rate equations simulation

1 vg=1e8;
2 etai=0.8;
3 V=(300*0.016)*10ˆ(−18);
4 Gamma=0.032;
5 taup=2.77e−12;
6 tausp=0.5e−9;
7 taunr=1e−3;
8 tau=(1/tausp+1/taunr)ˆ(−1);
9 betasp=1e−4;

10 i=1e−2; % Standard I: i=10e−3
11 q=1.602e−19;
12 g0=5e5; % Standard g0=1.8e5;
13 epsilon=1.5e−23;
14 Ntr=1.8e24;
15 ts=0.25e−9
16 tf=0.7e−9;

7.7 Parameters and script for QD rate equations simulation

1

2 %% Real values
3 figure(1);
4 clf
5

6 global vg etai V Gamma taup tausp taunr tau betasp i q Cg P gMat tMat
7

8 % FRIE PARAMETRE
9 i=7*(300*0.016)*10ˆ(−18)*1.602e−19*5e11;

10 tf=2e−11;
11

12 %%Initialisering
13

14 Cg=2.56e8/3.37; %(refractive index included)
15

16 % TJEK
17 taunr=1e−3; %1e−12;
18 tausp=0.5e−9;
19 tau=(1/tausp+1/taunr)ˆ(−1); %+1/taunr
20 taup=2.77e−12;
21 etai=0.8;
22 V=(300*0.016)*10ˆ(−18);
23 q=1.602e−19;
24 P=7.25;
25 Gamma=1e−4;
26 betasp=1e−4;
27 vg=1e8;
28

29

30 % Solver
31

32 % options = odeset('RelTol',1e−9);%,'AbsTol',[1e2, 1e2]
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33 options = odeset('AbsTol',[1e−30, 1e−30]);
34 [t,y]=ode45(@rateEqGain,[0 tf],[1e−8 1e−8],options);
35 % [t,y]=ode45(@rateEq,[0 20],[1 0.1]);
36

37 % Plot af N og Np
38 clf
39 subplot 121
40

41 [AX,H1,H2] = plotyy(1e9*t,y(:,1),1e9*t,y(:,2));
42 title('Scaled electron and photon density','Interpreter','Latex','fontsize',18)
43 set(AX(1),'fontsize',14)
44 set(AX(2),'fontsize',14)
45 grid off
46 set(AX,'xlim',[0,1e9*tf]);
47 set(AX(1),'ylim',[0 3]);
48 set(AX(1),'YTick',[0 1 2 3]);
49 %set(AX(2),'ylim',[0 1e−3]);
50 set(AX(2),'YTick',1e−3*[0.2 0.4 0.6 0.8]);
51 set(AX(1),'ycolor','b')
52 set(AX(2),'ycolor','r')
53 ylabel(AX(1),'$\widetilde{N} \, \, ...

\left(N/N D\right)$','fontsize',20,'fontweight','bold','Interpreter','Latex')
54 ylabel(AX(2),'$\widetilde{N p} \, \, ...

\left(N p/N D\right)$','fontsize',20,'fontweight','bold','Interpreter','Latex')
55 xlabel('Time [ns]','fontsize',20,'Interpreter','Latex')
56

57 set(H1,'color','blue','LineWidth',2)
58 set(H2,'color','red','LineWidth',2)
59

60

61

62 %Plot af gain
63

64 gain=zeros(length(t),1);
65 for j=1:length(t)
66 if y(j,1)<2
67 gain(j)=(y(j,1)−1)*Cg;
68 else
69 gain(j)=gain(j−1);
70 end
71 end
72

73 subplot 122
74 plot(1e9*t,gain*vg*Gamma,'color',[0 0.6 0],'LineWidth',2);
75 title('Gain','Interpreter','Latex','fontsize',18)
76 set(gca,'XTick',[0 0.005 0.01 0.015 0.02])
77 set(gca,'FontSize',14)
78 ylabel('$g \, \, ...

[\mathrm{m}ˆ{−1}]$','fontsize',20,'fontweight','bold','Interpreter','Latex')
79 xlabel('Time [ns]','fontsize',20,'Interpreter','Latex')
80

81 sprintf('N: %0.5f , Np: %0.5f , g: %0.5f',max(y(:,1)),max(y(:,2)),max(gain(:)))
82

83

84 function eqns=rateEqGain(tt,y) %,vg,etai,V,Gamma,tau,taup,Rsp,i,q,g,betasp,tausp
85

86 global vg etai V Gamma taup tausp tau betasp i q g Cg Nd gMat tMat P
87

88 % Gain
89

90

91 g =(y(1)−1)*Cg*P;
92

93

94 % N og Np
95 eqns=zeros(2,1);
96 eqns(1)=etai*i/(q*V)−y(1)/tau−vg*g*y(2); % afledte af n
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97 eqns(2)=(Gamma*vg*g−1/taup)*y(2)+Gamma*betasp*y(1)/tausp; % afledte af np
98

99 if y(1) ≥ 2 && eqns(1)>0
100 eqns(1)=0;
101 end
102

103 end
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