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Abstract

In recent years the interest in photonic crystal slabs have increased due to their possible
applications within integrated photonics. The research is especially driven by the pos-
sibility of performing high-speed signal processing with a low energy consumption. For
realizing this, photonic switches and modulators are needed, and for photonic switch-
ing Fano resonances has been reported particularly advantageous, due to its nonlinear
spectral response.
Investigating these Fano resonances are therefore essential for engineering high-speed

photonic switches. Fano resonances are realized in photonic crystals by placing a cavity
near a blocked waveguide and in the present thesis Fourier modal method implementing
both a scattering matrix formalism and a Bloch modal expansion is built from scratch
in order to perform simulations on such photonic crystal structures.
With the developed code it is shown that Fano resonances can have two different parities

(symmetries) and that coupled-mode theory both predicts and describes this phenomenon
very well. By computing the transmission spectra and fitting these to coupled-mode
theory it is found that the phase difference between the coupling coefficients in an out of
the cavity uniquely determines the parity.
From these transmission spectra it is shown that the parity changes periodically as

function of the distance between the cavity and the blocking element. Based on this
observation, it is investigated whether a relation between the position of the blocking
element in the photonic crystal waveguide field distribution and the parity exists, but no
unequivocal correlation between these is found.
New investigations are therefore suggested for determining the phase difference in a

different manner than computing transmission spectra and fitting these to coupled-mode
theory. The suggestions include implementing quasinormal modes for at better descrip-
tion of the cavity mode, and also a simplification of the investigations by including fewer
Bloch modes, when computing the transmission and reflection matrices for the cavity
section.
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Resumé

I de seneste år har interessen for fotoniske krystalplader (photonic crystal slabs) været
stigende, da disse muligvis kan bruges indenfor integreret fotonik. Forskningen drives især
af muligheden for at realisere højhastigheds-signalbehandling ved et lavt energiforbrug.
Til dette kræves fotoniske kontakter og modulatorer, og for fotoniske kontakter har det
vist sig, at Fano resonanser er særligt fordelagtige grundet deres ikke-lineære spektrale
respons.
Derfor er det essentielt at undersøge disse Fano-resonanser for at designe og udvikle

højhastigheds-fotoniske kontakter. I fotoniske krystaller fremkommer Fano-resonanser
ved at placere en kavitet i nærheden af en blokeret bølgeleder, og i dette speciale simuleres
sådanne strukturer ved brug af en fra-bunden-bygget Fourier tilstandsmetode (Fourier
modal method), hvori både en spredningsmatrice formalisme og en expansion på Bloch-
tilstande er inkorporeret.
Med den udviklede kode vises det, at Fano-resonanser kan have to forskellige pariteter

(symmetrier), og at teorien om koblede tilstande (couple-mode theory) både forudser og
beskriver dette fænomen. Ved at udregne transmissionspektre og fitte disse til teorien
om koblede tilstande, er det fundet, at forskellen i fase mellem koblingskoefficienterne
ind og ud af kaviteten alene bestemmer pariteten.
Udfra disse transmissionspektre vises det, at pariteten skifter periodisk som funktion

af afstanden mellem kaviteten og blokeringselementet i bølgelederen. Baseret på denne
observation undersøges det, om der findes en relation mellem positionen af blokeringse-
lementet i den fotoniske krystal-bølgeleders feltfordeling og pariteten, men ingen entydig
korrelation er fundet.
Derfor foreslås nye undersøgelser for at bestemme faseforskellen på en anden måde end

ved at udregne transmissionsspektre og fitte disse til teorien for koblede tilstande. Iblandt
forslagene er at implementere kvasinormale tilstande (quasinormal modes) for at opnå en
bedre beskrivelse af kavitetstilstanden samt en simplificering af undersøgelserne ved at
medtage færre Bloch-tilstande i udregningen af transmissions- og refleksionsmatricerne
for kavitetssektionen.
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Introduction

Photonic crystals

Since the end of the last century the interest in Photonic Crystals (PhCs) have increased.
The interest increased rapidly around 2000 during the dotcom boom, where a small
Danish company (Crystal Fibre A/S) specialised in designing photonic crystal fibres was
started. These photonic crystal fibres was among the first commercial applications of
photonic crystals and a lot of research is ongoing in order to develop other commercial
applications, such as in-plane PhC lasers [1] and integrated optics [2]. As opposed to the
crystal fibres these are realised in PhC slabs and in general a lot of fundamental research
on engineering the properties of these slabs is carried out.
Placing a waveguide close to a cavity in a PhC slab leads to transmission and reflection

phenomena that has potential applications within photonic switching [3] or PhC lasing
[1]. A photonic switch can be realised by the interaction between a waveguide mode
and a cavity mode, which will result in a dip in the transmission spectrum when the
resonance mode of the cavity is excited. The transmission spectrum will in this case be
Lorentzian and a result of a computation on such a system is seen in Figure 1.1. This
system is able to be operated as a photonic switch by changing the resonance frequency
and thereby changing the transmission at a certain frequency. Placing a blocking element
in the waveguide will change the interference between the cavity mode and the waveguide
mode such that it no longer produces a Lorentzian transmission spectrum - instead the
spectrum now follows the Fano line shape function and it has been reported that these
Fano structures are more promising as a photonic switch due to the asymmetric and
sharp spectral response of a Fano resonance [4]. Two different Fano resonance spectra
computed in this project are seen in Figures 1.2 and 1.3.
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2 1 Introduction

ωa/2πc

Figure 1.1: In the inset the PhC structure is seen. The structure consist of a waveguide and
a cavity and as seen this structure leads to a Lorentzian shaped transmission spectrum.

For enabling integrated photonic chips that can meet the increasing demand for infor-
mation capacity, ultra-compact structures performing signal processing such as modula-
tion and switching at high speed and with low energy consumption are essential [5]. A
promising candidate meeting these demands are the PhC slab [6], since this allows for in-
tegration of lasers [7], modulators [8], switches [9] and detectors [10]. All these operations
need to be processed with low energy consumption and for switching the transmission is
changed by altering the resonance frequency of the cavity by applying a control signal
changing the refractive index [6]. The less the resonance frequency needs to be changed
for switching on and off, the less energy is required in the control signal and therefore
the asymmetric behaviour of Fano resonances are superior to Lorentzian resonances in
terms of energy consumption. Therefore research in these Fano resonances is important
for realizing high speed photonic chips with low energy consumption.

In Figures 1.2 and 1.3 two transmission spectra with different Fano line shape symmetry
are seen. The transmission minimum in Figure 1.2 (1.3) is red (blue) shifted relative to
the maximum and these two symmetries are referred to as red and blue parity. From
coupled-mode theory this parity is found to be related to the coupling between the cavity
and the waveguide mode [11], [12], [13], but the only known method for determining the
parity is to do a computation of the transmission spectrum and by fitting this to coupled-
mode theory determine this coupling. For designing PhC switches it is important to
know the parity, and therefore increasing the understanding on how the parity of a PhC
Fano structure is determined is essential. Coupled-mode theory lays the mathematical
foundation for finding the parity but a more physically intuitive way is still not existing.

This project seeks this intuitive way on determining the parity by increasing the under-
standing on how the parity changes as function of the position of the blocking element
in the waveguide. This leads to the hypothesis motivating this thesis, that there exist
a correlation between the parity and the electromagnetic field distribution in a Fano
structure.
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The hypothesis is investigated by simulations, using the Fourier modal method for
computing the transmission and electromagnetic fields in the Fano structures. This
method is based on an eigenmode expansion, which is very suitable for computations on
periodic structures such as PhCs [14]. There exist different computational methods for
finding the electromagnetic field in optical geometries and a discussion on the choice of
method is given later on in section 3.4.

ωa/2πc

0.04a

Figure 1.2: In the inset the PhC structure
consisting of a blocked waveguide and a cav-
ity is seen. The blocking element is shifted
along the waveguide relative to the mid point
of the cavity and this leads to a Fano trans-
mission spectrum with red parity.

ωa/2πc

.

Figure 1.3: In the inset the PhC structure
consisting of a blocked waveguide and a cav-
ity is seen. The blocking element is shifted
further along the waveguide relative to the
mid point of the cavity than in Figure 1.2
and this leads to a Fano transmission spec-
trum with blue parity.

Outline of thesis

Chapter 2: The theoretical groundwork of the investigations is laid, by giving
a summary of basic electromagnetism starting from Maxwell’s equations and give
a short description on the most important properties of PhCs and the effects of
introducing defects. Coupled-mode theory will not be given in this chapter, instead
the simulation results will be compared with and explained by coupled-mode theory,
when presented.

Chapter 3: The Fourier modal method used for the simulations is gone through
and an overview of the implementation of the method is provided. The developed
code is benchmarked by comparing computational results with the equivalent from
literature. The chapter ends with a discussion on the choice of Fourier modal
method as the method for simulating PhC structures.

Chapter 4: The acquired computational results are presented. Firstly, central
results from the coupled-mode theory are presented and these are then used for
fitting and analysing the computed transmission spectra.

Chapter 5: Based on discussing the obtained results presented in Chapter 4, three
suggestions for future work are given.
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Chapter 6: The work presented in this thesis is concluded upon and based on the
suggestions for future work an outlook is provided.

Thereafter a number of appendices are found and these are referred to along the way in
the thesis. The appendices include derivations, evaluation of expressions and additional
results. Part of this work have been submitted for CLEO-Europe 2015 and the submission
abstract is found in Appendix F.
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Theoretical Concepts

This chapter lays the theoretical groundwork for doing computations on PhC structures.
This includes Maxwell’s equations, waveguide theory and properties of PhCs.

2.1 Maxwell’s Equations

Maxwell’s equations are the most fundamental equations in electromagnetism and there-
fore a natural starting point. On the basic differential form in the time-domain these are
[15, 16]:

∇×E(r, t) = −∂tB(r, t), (2.1.1)
∇×H(r, t) = ∂tD(r, t) + J(r, t), (2.1.2)
∇ ·D(r, t) = ρ(r, t), (2.1.3)
∇ ·B(r, t) = 0, (2.1.4)

where E, B, H and D are the electric field, the magnetic induction, the magnetic field
and the electric displacement respectively. ρ and J are free electric charges and current
densities.

The relation between the electric and magnetic field is found through the constitutive
material equations: [15, 16]

5
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D(r, t) = ε0E(r, t) + P(r, t), (2.1.5)
B(r, t) = µ0H(r, t) + M(r, t), (2.1.6)

where P and M are the polarization and magnetization of the material and ε0 and µ0
are the vacuum permittivity and permeability respectively.
In this work only nondispersives media have been simulated and in that case the con-
stitutive equations, (2.1.5) and (2.1.6), are reduced to [16]:

D(r, t) = ε0(1 + χe(r))E(r, t) = ε0ε(r)E(r, t), (2.1.7)
B(r, t) = µ0(1 + χm(r))H(r, t) = µ0µ(r)H(r, t), (2.1.8)

where ε(r) and µ(r) are the relative electric permittivity (dielectric function) and mag-
netic permeability for the material defined from the electric and magnetic susceptibilities,
χe(r) and χm(r). The refractive index for a material is then defined from these material
parameters as [15, 16]:

n = √µε. (2.1.9)

Maxwell’s equations are in equations (2.1.1)-(2.1.4) stated in the time-domain but by
Fourier transforming the fields these equations can be given in the frequency-domain as
well. This leads to [15, 16]:

∇×E(r, ω) = −iωB(r, ω) = −iωµ0µ(r, ω)H(r, ω), (2.1.10)
∇×H(r, ω) = iωD(r, ω) + Js(r) = iωε0ε(r, ω)E(r, ω) + Js(r). (2.1.11)

These are then Maxwell’s equations in the frequency domain, which are used to derive
second order wave equations. Note that ε is the effective dielectric constant. The deriva-
tion of these from Maxwell’s equations ((2.1.1)-(2.1.4)) are found in Appendix A.1.

2.2 Wave Equations

Equations (2.1.10) and (2.1.11) can now be used to derive second-order wave equations
only involving the electric or magnetic field and the source current density. Dividing
equation (2.1.11) with ε(r, ω) and taking the curl on both sides will lead to [16]:

∇× 1
ε(r, ω)∇×H(r, ω) = iωε0∇×E(r, ω) +∇×

(
Js(r, ω)
ε(r, ω)

)
. (2.2.1)

Using equation (2.1.10) and the relation between the speed of light in vacuum and the
vacuum permittivity and permeability, c0 = (ε0µ0)−1/2, a wave equation only involving
the magnetic field will appear [16]:
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∇× 1
ε(r, ω)∇×H(r, ω)−

(
ω

c0

)2
µ(r, ω)H(r, ω) = ∇×

(
Js(r, ω)
ε(r, ω)

)
. (2.2.2)

A similar approach will lead to the wave equation only involving the electric field:

∇× 1
µ(r, ω)∇×E(r, ω)−

(
ω

c0

)2
ε(r, ω)E(r, ω) = −iωµ0Js(r, ω). (2.2.3)

In this project only non-magnetic materials (µ = 1), without any current sources (Js =
0) has been simulated. This reduces equations (2.2.2) and (2.2.3) to [16]:

∇× 1
ε(r, ω)∇×H(r, ω) = k2

0H(r, ω), (2.2.4)

∇×∇×E(r, ω) = k2
0ε(r, ω)E(r, ω), (2.2.5)

where k0 = ω/c0 is the wave number in vacuum.
Using the vector identity ∇×∇×F = −∇2F +∇ (∇ · F) and Gauss’s law with no free

charges (ρ = 0 in equation (2.1.3), ∇· (εE) = 0), on equation (2.2.5) another form of the
wave equation for the electric field will appear [16]:

∇2E(r, ω) +∇ (E(r, ω) · ∇ ln ε(r, ω)) + ε(r, ω)k2
0E(r, ω) = 0 (2.2.6)

In the same manner another expression for the magnetic field wave equation can be
derived by taking the curl of equation (2.1.11), using equations (2.1.10) and (2.1.11),
exploit the vector identity, ∇ × ∇ × F = −∇2F + ∇ (∇ · F) and use that ∇ · H = 0
for non-magnetic materials (see equation (2.1.4) and (2.1.8)). And exploit the vector
relation ∇× (εE) = ε∇×E +∇ε×E. Doing this will lead to [16]:

∇2H(r, ω) +∇ ln (ε(r, ω))×∇×H(r, ω) + k2
0ε(r, ω)H(r, ω) = 0. (2.2.7)

See Appendix A.2 for the full derivations of equations (2.2.6) and (2.2.7).
Solving the eigenvalue problem given in the wave equations (2.2.6) and (2.2.7) will then

give the electric and magnetic field.

2.3 The 2D Eigenvalue Problem for Waveguides

The PhC geometries investigated in this thesis can be divided into layers with uniformity
along the z- and y-axis, thereby the dielectric function only depend on x in each layer.
In Figure 2.1 a waveguide uniform only in the z-direction and a waveguide uniform in
both the z- and y-direction is illustrated. Having uniformity in the z- and y-direction
means that the spatial dependence of the electric and magnetic field can be written as
[16]:
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y y

x x

zz

a) b)

Figure 2.1: Waveguides with a uniform dielectric function along a) the z-direction and b) both
the z- and y-direction - a so-called slab waveguide.

E(r) = e(r⊥) exp (iβz) , (2.3.1)
H(r) = h(r⊥) exp (iβz) , (2.3.2)

where z is the propagation direction.
The time dependent electric and magnetic field, will be considered in the general form:

E(r, t) = E(r) exp (−iωt) , H(r, t) = H(r) exp (−iωt) . (2.3.3)

Using the electric field given above and exploiting that the dielectric constant does not
have a z-dependence, the eigenvalue problems given in equations (2.2.6) and (2.2.7) can
be written as:

∇2
⊥e + (∇⊥ + iβẑ) (e · ∇ ln ε(r⊥)) + ε(r⊥)k2

0e = β2e, (2.3.4)
∇2h + k2

0ε(r⊥)h +∇ ln (ε(r⊥))×∇× h = β2h, (2.3.5)

where ∇⊥ denotes the transverse part of the ∇-operator. Equation 2.3.4 is a second
order eigenvalue problem, with β as the eigenvalue. By using that the equation can be
decoupled into a transverse and a z-part, a first order eigenvalue problem emerges for
the transverse part:

∇2
⊥e⊥ +∇⊥ (e⊥ · ∇ ln ε(r⊥)) + ε(r⊥)k2

0e⊥ = β2e⊥, (2.3.6)

and this is a standard eigenvalue problem of the form Ôe⊥ = λe⊥. This equation
is essentially what we need to solve in order to find the eigenmodes and eigenvalues
of a waveguide. But in order to get the full six component electromagnetic field just
solving equation (2.3.6) is not enough, since it only gives the transverse components of
the electric field. The ez component can be found using ∇ (εE) = 0 leading to [16]:
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ez = −∇⊥ · (εe⊥)
iβε

. (2.3.7)

This gives the full electric field and by using equation (2.1.10) (with µ = 1) the magnetic
field components are found as:

h⊥ = 1
µ0ω

ẑ×
[
βe⊥ −∇⊥

(
∇⊥ · (εe⊥)

βε

)]
(2.3.8)

hz = ẑ · ∇ × e⊥
iµ0ω

. (2.3.9)

Equations (2.3.7) through (2.3.9) also gives the relation between the components of
the forward and backward propagating electromagnetic waves. The forward propagating
mode profile is given as:

[
E+(r)
H+(r)

]
=
[
e+(r)
h+(r)

]
exp (iβz) =

[
e⊥(r⊥) + ez(r⊥)
h⊥(r⊥) + hz(r⊥)

]
exp (iβz) . (2.3.10)

The backward propagating mode profile is then found by interchanging β with −β in
equations (2.3.7) to (2.3.10) leading to [16]:

[
E−(r)
H−(r)

]
=
[
e+(r)
h+(r)

]
exp (−iβz) =

[
e⊥(r⊥)− ez(r⊥)
−h⊥(r⊥) + hz(r⊥)

]
exp (−iβz) . (2.3.11)

Thereby the relation between the transverse forward and backward propagating electric
and magnetic field components are:

e−⊥ = e+
⊥, e−z = −e+

z , (2.3.12)
h−⊥ = −h+

⊥, h−z = h+
z . (2.3.13)

By decoupling the transverse and lateral part of the magnetic components in equation
(2.3.5) the eigenvalue problem becomes:

∇2h⊥ + k2
0ε(r⊥)h⊥ +∇ ln (ε(r⊥))×∇× h⊥ = β2h⊥, (2.3.14)

and the hz component can simply be determined from ∇ ·H = 0 giving:

hz = i

β
∇⊥ · h⊥. (2.3.15)

More detailed derivations of all the field components are found in Appendix A.3. The
derivation of the electric field components for the case where only the transverse magnetic
field is known are also given in this appendix.
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Slab Waveguides

As stated in the top of the previous section the geometries considered in this report
only has an x-dependence on the dielectric constant as illustrated in Figure 2.1b). Such
geometries are called slab waveguides and the eigenvalue problems given in equations
(2.3.5) and (2.3.6) simplifies since ∂ye = 0 and ∂yh = 0, due to the independence on the
y-coordinate. Using this equation (2.3.6) decouples into two equations [16] (see Appendix
A.4 for a detailed derivation):

∂2
xex + ∂x(ex∂x ln ε(x)) + ε(x)k2

0ex = β2ex, (TM) (2.3.16)
∂2
xey + ε(x)k2

0ey = β2ey, (TE) (2.3.17)

and similarly equation (2.3.5) decouples into:

∂2
xhx + ε(x)k2

0hx = β2hx, (TE) (2.3.18)
∂2
xhy + ε(x)k2

0hy − (∂x ln ε(x))∂xhy = β2hy. (TM) (2.3.19)

The z-component of the electric and magnetic field is then computed using equations
(2.3.7) and (2.3.9) and this gives for (TE): ez = 0, since ∂ye = 0 and ex = 0 and for
(TM): hz = 0, since ∂yh = 0 and ey = 0. Thereby, solutions where the electric field is
polarized only along the y-direction is referred to as transverse electric (TE) modes. And
in the same way solutions where the magnetic field is polarized only in the y-direction is
referred to as transverse magnetic (TM) modes.
The method for solving equations (2.3.17) and (2.3.19) is described in Chapter 3.

2.4 Photonic Crystals

This section provides a very brief summary on the properties of photonic crystals and
introduce basic terms that are used throughout the report.
A crystal is by definition a material, which is periodic in all directions. A photonic
crystal (PhC) is thus a crystal that has photonic properties. These photonic properties
relates to how light propagates through the PhC. For some geometries band gaps appear
meaning that polarized light at certain wavelengths cannot propagate through the PhC
and these band gaps are actually the most interesting feature of PhCs, since they allow
the creation of waveguides by introducing a line defect in the PhC [17]. The band gaps
arises when no light modes are allowed inside the PhC for a range of frequencies. A PhC
band diagram for TM polarized light is shown in Figure 2.2 for a triangular lattice (see
Figure 2.4), where r/a = 0.30 and the refractive index of the background is nb = 3.1. A
band gap is clearly visible for frequencies between 0.235 (2πc/a) and 0.305 (2πc/a). In
Figure 2.3 a line defect (see Figure 2.6) is introduced and this results in waveguide modes
inside the band gap of the bulk PhC. A slow light and a fast light region is indicated,
and the terms ’slow’ and ’fast’ are related to the group velocity, which is given as the
slope of the dispersion curve [18]:
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Figure 2.2: A band diagram computed us-
ing the implementation of the Fourier modal
method for at triangular PhC as shown in
Figure 2.4.
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Figure 2.3: A zoom on the band gap, where
a line defect in the PhC has been introduced.
This line defect gives rise to waveguide modes
inside the band gap.

vg = dω

dk
. (2.4.1)

Furthermore two waveguide modes are identified in Figure 2.3 - an even and odd modes
band. The even modes band are the ’hockey stick’-shaped band upon which the fast and
slow light region is indicated. The hill-shaped band is the odd modes band. This thesis
only deals with even modes, due to their larger group velocity and thereby their larger
confinement in the waveguide region.

There are many types of 2D PhCs, but in this project only two crystal types have been
investigated - triangular and square crystal lattices. Such crystals are seen in Figures
2.4 and 2.5, where air holes in a dielectric medium and dielectric rods in air are the two
different ways the PhCs are illustrated. In a triangular PhC every hole/rod has 6 nearest
neighbours, where as in the square PhC every hole/rod only has 4 nearest neighbours.

Figure 2.4: Photonic crystal consisting of a
triangular lattice of air holes in a dielectric
medium.

Figure 2.5: Photonic crystal consisting of a
square lattice of dielectric rods in air.
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As mentioned PhCs are most interesting when the wavelength of the light lies inside a
band gap, due to the possibility of guiding the line by defects in the PhC. There are many
types of defects and three of these are: point, line and broken-line defects and these three
types of defects are illustrated in Figures 2.6 and 2.7. Point defects are defects where a
hole/rod is removed in the PhC. This leads to a micro cavity in the PhC where light can
be trapped. A line defect is where a column of holes/rods are removed and such a defect
can guide light at certain wave lengths inside a band gap of the PhC, thereby acting as
a waveguide. The broken-line defect is simply multiple neighbouring point defects in the
same column. This leads to larger cavities than just a single point defect.

Point

Line

Broken-
line

Figure 2.6: The different kinds of defects
shown in triangular PhC.

Point

Line

Broken-
line

Figure 2.7: Photonic crystal consisting of a
square lattice of dielectric rods in air.

The specific features of PhCs that appear when both waveguides and cavities are present
will be introduced and explained when the results are presented in the report.

2D versus 3D computations

There are no such thing as a 2D PhC in real life and therefore doing 2D computations
misses some physics that 3D computations takes into account. But implementing the
third dimension out of the plane in Figures 2.4-2.7 is time demanding and in some cases a
bit overkill. For the investigations in this project where a physical understanding on what
happens when having a waveguide and a cavity close to each other a 2D computation is
sufficient to do some qualitative investigations. For instance, if the Q-factor of the cavity
is to be computed, then a 3D computation is needed, since light will both leak out in the
plane but also out of the plane into the air modes.

The investigations performed are all in the fast light region of the band (see Figure
2.3) and fast light is more confined within the waveguide than slow light. This is seen in
Figures 2.8 and 2.9, where the magnetic field mode, Hy, distribution of fast and slow light
in a 2D PhC are plotted respectively. As seen in Figure 2.8 the fast light mode is very
confined within the waveguide making 2D computations a good approximation for the
3D PhC slab, whereas for slow light 2D computations are not a good approximation since
the mode profile extents further out both into the bulk, but also into the air. In a PhC
slab a large part of the slow light will thereby be in the air region and this demands either
a 3D computation or a 2D effective medium computation, where an effective refractive
index is used to account for the extension of the light into the air. So as long as the
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Figure 2.8: Distribution of fast light in a
PhC waveguide. As seen the mode is very
confined within the waveguide region. ω =
0.26 (2πc/a) in Figure 2.3.
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PhC waveguide. As seen the mode is ex-
tending out of the waveguide region. ω =
0.24 (2πc/a) in Figure 2.3.

computations are for fast light and only for qualitative purposes, 2D computations are
sufficient.
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Computational Method

This chapter goes through the computational method used for obtaining optical prop-
erties of PhC microcavities and waveguides. The method used is the Fourier Modal
method and the first section of this chapter goes through this method in detail with
some derivations left out in Appendix B. Then an overview of the implementation of the
method is provided followed by a validation of the implemented method, by reproduction
of results from the literature. The chapter ends with a discussion on why the Fourier
modal method is suitable for simulations on PhCs and the final section gives examples
of observed numerical errors in the computational results.

3.1 The Fourier Modal Method

In section 2.3 the 2D eigenvalue problem for slab waveguides was given and solving these
eigenvalue problems (equations (2.3.17) and (2.3.19)) in all layers in a structure is the
first step towards computing the full 2D electromagnetic field inside any PhC structure.

Solving the 2D eigenvalue problem

As mentioned there are two cases of interest when investigating electromagnetic waves
propagating through a waveguide - when the wave is TE polarized and when it is TM
polarized. In section 2.3 the eigenvalue problems for these cases were given and now it is
time to solve these equations ((2.3.17) and (2.3.19)) in each layer. In Figure 3.1 a single
layer geometry is illustrated, where there is no variation in the refractive index in the
propagation direction (z-direction).

15
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z

x

n1 n2 n1

n

x

n2

n1

Figure 3.1: Illustration of one layer, where there is no variation in the refractive index in the
z-direction. The refractive index profile for the layer is seen to the right.

TM Polarization The eigenvalue problem for TM polarization given in equation
(2.3.19) is rewritten:

∂2
xhy + ε(x)k2

0hy − (∂x ln ε(x))∂xhy = β2hy ⇒ (3.1.1)

ε(x)
(
∂x

1
ε(x)∂x + k2

0

)
hy = β2hy. (3.1.2)

The field mode profiles are expanded as plane waves:

hym(x) =
j=M∑
j=−M

vm,j exp (i(jK + α/Lx)x) , (3.1.3)

exm(x) =
j=M∑
j=−M

um,j exp (i(jK + α/Lx)x) , (3.1.4)

ezm(x) =
j=M∑
j=−M

w′m,j exp (i(jK + α/Lx)x) , (3.1.5)

and the dielectric constant and its inverse are expanded on plane wave as well:

ε(x) =
j=M∑
j=−M

εj exp (ijKx) , (3.1.6)

1
ε(x) =

j=M∑
j=−M

aj exp (ijKx) , (3.1.7)

(3.1.8)

where the elements εj and aj are given by the integrals:
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εj = 1
Lx

∫ Lx

0
ε(x) exp (−ijKx) dx, (3.1.9)

aj = 1
Lx

∫ Lx

0

1
ε(x) exp (−ijKx) dx, (3.1.10)

which for the simple dielectric profiles considered in this report can be evaluated analyti-
cally, since ε(x) is piecewise constant (a step function) in each layer of the PhC-structures.
See Appendix B.2 for the evaluation.
In order to put equation 3.1.2 into matrix form we need to employ Li’s Factoriza-

tion Rules (see Appendix B.1). Thereby the type of the products: (1/ε(x))∂xhy and
ε(x)

(
∂x(1/ε(x))∂x + k2

0
)
hy, need to be determined.

Physically it is required that all field components tangential to the variation in the
dielectric constant, ε, must be continuous. For TM polarization this means that hy and
ez is continuous. Maxwell’s equation in the frequency domain (equation (2.1.11) with
Js(r) = 0) then gives the following relation between hy and ez [16]:

ez = i

ωε0ε
∂xhy, (3.1.11)

and since ez is continuous, (1/ε)∂xhy also has to be continuous. Both 1/ε and ∂xhy
are discontinuous functions, so therefore their product is of type 2 (see Appendix B.1
for details) and the fastest convergence is given by equation (B.1.9). The total product,
ε
(
∂x(1/ε)∂x + k2

0
)
hy, thus consists of two discontinuous function: ε and the parenthesis

times hy, and since their product equals a continuous function, β2hy, the product is
of type 2. Thereby equation (3.1.2) is written in matrix form by applying the inverse
product rule twice [16]:

A
−1
(
KE

−1
K + k2

0I

)
v = β2v, (3.1.12)

where A is the Toeplitz matrix with elements aj given in equation (3.1.10), K is the
N ×N matrix with diagonal elements (iK[−M...M ] + iα/Lx), E is the Toeplitz matrix
with elements εj given in equation (3.1.9), k0 = 2π/λ and I is the identity matrix. The
definition of the Toeplitz matrix is given in equation (B.1.7) in Appendix B.1. The
elements of K comes from differentiating equation (3.1.3) with respect to x.
Using equation (2.1.11) the electric field component ex is found as:

ex = β

ωε0ε(x)hy. (3.1.13)

Now using the direct rule on equation (3.1.13) (since (1/ε(x))hy is discontinuous and
thus of type 1) and the inverse rule on equation (3.1.11) (since (1/ε)∂xhy is continuous
as discussed above) the electric field expansion vectors are found as [16]:
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um = βm
ωε0

Avm, (3.1.14)

w′m = i

ωε0
E
−1
Kvm. (3.1.15)

Thereby all three field components of the TM polarized electromagnetic field are found.

TE Polarization For TE polarization the eigenvalue equation is given in equation
(2.3.17) and for simplicity the equation is stated once more here:

∂2
xey + ε(x)k2

0ey = β2ey, (TE). (3.1.16)

As for the TM polarization the field modes are expanded as plane waves:

eym(x) =
j=M∑
j=−M

um,j exp (i(jK + α/Lx)x) , (3.1.17)

hxm(x) =
j=M∑
j=−M

vm,j exp (i(jK + α/Lx)x) , (3.1.18)

hzm(x) =
j=M∑
j=−M

wm,j exp (i(jK + α/Lx)x) , (3.1.19)

(3.1.20)

and the dielectric constant is still expanded as in equation (3.1.6). For TE polarization
ey and hz is continuous, since these fields are tangential to the variation in the refractive
index, n =

√
ε. From equation (2.1.10) the relation between ey and hz is found to be:

hz = −i
ωµ0

∂xey. (3.1.21)

In equation (3.1.16) the product ε(x)ey must be of type 1, since ε(x) is a discontinuous
function and ey is continuous and thus their product must be discontinuous. Thereby
the direct rule gives the fastest convergence according to Li’s Factorization rules (see
Appendix B.1). Equation (3.1.16) can thus be written in matrix form as [16]:(

K
2

+ k2
0E

)
u = β2u, (3.1.22)

where K, k0 and E are stated above.
hx is found from Maxwell’s equation (2.1.10) and this gives:

hx = − β

ωµ0
ey. (3.1.23)
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Using equations (3.1.21) and (3.1.23) the Four1ier series of the magnetic mode profiles
with mode number m are determined as:

vm = − βm
ωµ0

um (3.1.24)

wm = −1
iωµ0

Kum. (3.1.25)

Thereby the eigenmodes in each layer of the PhC is found by solving either equation
(3.1.12) or (3.1.22) depending on the wanted polarization and then using the relations
between the Fourier coefficients stated in either equations (3.1.14) and (3.1.15) for TM
polarization or equations (3.1.24) and (3.1.25) for TE polarization. In Matlab these
equations are solved by using the EIG command and this gives all the eigenvectors as
the columns in a matrix and all the eigenvalues in a diagonal matrix.
For layers of uniform refractive index, that is ε(x) = ε1, there is no reason to solve the

eigenvalue problem, since the solutions are already known. For such layers the eigenvec-
tors are the columns of a diagonal matrix with 1 in the diagonal and with eigenvalues
β2 = εk2

0 − (mK + α/Lx)2, where m = −M...M .
Having determined the eienmodes in each layer it is time for investigating what happens

at the layer interfaces.

Transmission and reflection at layer interfaces

For determining the transmission and reflection at a layer interface a simple two layer
geometry is considered as illustrated in Figure 3.2a.

1

2

n1

n2

n1

n2

x

z

z12

a) b)

a1'

a2

b1

t12

r12

Figure 3.2: a) A simple two-layer geometry used in the derivation of transmission and reflection
matrices between two interfaces. n1 and n2 are the refractive indices of the grey and white shaded
areas respectively. b) Reflection and transmission at an interface and the field amplitudes. Note
that ’ (read prime) means ’pointing toward interface’ and when there is no ’ it means ’pointing
away from interface’.

Consider the case where the bottom of the interface is illuminated with a single mode,
a1n = δmn. This field is travelling forward in layer 1 as illustrated in Figure 3.2b until it
reaches the interface, where it will be partly transmitted and partly reflected. By using
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equations (2.3.1) and (2.3.2) and sum over all eigenmodes of the layers the electric and
magnetic field in the two layers can be written as [16]:

E1(r) = a′1me+
1m(r⊥) exp (iβ1m(z − z12)) +

N∑
j=1

b1je−1j(r⊥) exp (−iβ1j(z − z12)) , (3.1.26)

E2(r) =
N∑
j=1

a2je+
2j(r⊥) exp (iβ2j(z − z12)) , (3.1.27)

H1(r) = a′1mh+
1m(r⊥) exp (iβ1m(z − z12)) +

N∑
j=1

b1jh−1j(r⊥) exp (−iβ1j(z − z12)) , (3.1.28)

H2(r) =
N∑
j=1

a2jh+
2j(r⊥) exp (iβ2j(z − z12)) , (3.1.29)

where the sum in all four fields are over all eigenmodes in each layer.

Now the transmission and reflection matrices are introduced as t12 and r12 where the
elements are defined by the relations [16]:

a2j = t12;jma
′
1m, (3.1.30)

b1j = r12;jma
′
1m. (3.1.31)

For simplicity a′1m = 1 in the following derivation without any loss of generality. The
coefficients in the transmission and reflection matrices are found by requiring continuity
of the tangential field components across the interface. That means setting z = z12
in equations (3.1.26) and (3.1.27) should give the same electric field and likewise for
the magnetic field in equations (3.1.28) and (3.1.29). Doing this, remembering that
h− = −h+ = −h and e− = e+ = e (as discussed in section 2.3) and using the definitions
of the transmission and reflection matrix elements, the requirement of continuity leads
to [16]:

e⊥1m(r⊥) +
N∑
j=1

e⊥1j(r⊥)r12;jm =
N∑
j=1

e⊥2j(r⊥)t12;jm, (3.1.32)

h⊥1m(r⊥)−
N∑
j=1

h⊥1j(r⊥)r12;jm =
N∑
j=1

h⊥2j(r⊥)t12;jm. (3.1.33)

There are now two procedures to get the transmission and reflection matrices. One
using the Fourier series u and v and one using the eigenmodes e⊥ and h⊥. [16] In this
project the ladder procedure has been used so this will be gone through in details.
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Before proceeding with working on equations (3.1.32) and (3.1.33) in order to determine
the transmission and reflection matrices a scalar product is introduced for normalizing
the mode profiles [16]:

〈em|hn〉 =
∫

(e⊥m × h⊥n) · ẑdr⊥ =
∫

(em × hn) · ẑdr, (3.1.34)

where the subindex ⊥ is skipped in the following for simplicity. An evaluation of this
integral is found in Appendix B.3 and the results for TM and TE polarization are simply
stated here:

〈em|hn〉 = Lx
∑
j

um,jvn,−j TM, (3.1.35)

〈em|hn〉 = −Lx
∑
j

um,jvn,−j TE. (3.1.36)

These two equations are thus the (m,n)-element in a scalar product matrix between
two layers. To compute all elements, it is exploited that Matlab gives the eigenvectors, u
and v, as columns in a matrix, u and v, when found by using the command EIG. Thereby
the scalar product is quickly computed using matrix products instead of sums. Using
equations (3.1.35) and (3.1.36) the scalar product matrices between layer m and n are
thus computed as:

〈em|hn〉 = Lxu
T
mvn,l TM, (3.1.37)

〈em|hn〉 = −Lxu
T
mvn,l TE, (3.1.38)

where T means transpose and l means that the matrix is flipped up-down - meaning
that the top rows are now at the bottom and the bottom rows are now at the top of the
matrix.
All eigenmodes have been normalised according to the normalization constant Cm =
〈em|hm〉, by performing the substitution: (em,hm) → (em,hm)/

√
Cm. The normaliza-

tion constant is computed using either equation (3.1.37) or (3.1.38) depending on the
polarization. After this normalization the scalar product of the field modes are orthonor-
mal to each other 〈eq,m|hq,n〉 = δmn.
For uniform layers the eigenvectors as mentioned in section 3.1 are given in a diagonal

matrix with 1 in the diagonal. This means that the normalization constant Cm = 0 as
illustrated below for TE polarization (the same is apparent for TM polarization) with
the eigenvectors u = (1, 0) and v = c · (1, 0), where c is a constant given by equation
(3.1.24).

〈em|hm〉 = Lx
∑
j

um,jvn,−j = Lxc(1 · 0 + 0 · 1) = 0. (3.1.39)

Therefore the linear combinations of the eigenmodes (1,-1) and (1,1) are preferable to
work with, since this assures that Cm 6= 0.
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Turning back to equations (3.1.32) and (3.1.33), these are written in a bra and a ket
version respectively:

〈e1m|+
N∑
j=1
〈e1j |r12;jm =

N∑
j=1
〈e2j |t12;jm, (3.1.40)

|h1m〉 −
N∑
j=1
|h1j〉r12;jm =

N∑
j=1
|h2j〉t12;jm, (3.1.41)

and multiplying these two equations with |h1n〉 and 〈e1n| respectively leads to:

δmn + r12;nm =
N∑
j=1
〈e2j |h1n〉t12;jm, (3.1.42)

δmn − r12;nm =
N∑
j=1
〈e1n|h2j〉t12;jm. (3.1.43)

Then adding and subtracting these equations gives:

2δmn =
N∑
j=1

(〈e2j |h1n〉+ 〈e1n|h2j〉)t12;jm, (3.1.44)

r12;nm = 1
2

N∑
j=1

(〈e2j |h1n〉 − 〈e1n|h2j)〉t12;jm, (3.1.45)

and these two equations can be written in matrix form. The details on how this has
been performed are seen in Appendix B.4. The resulting equations in matrix form are:

t12 = 2
(
〈e2|h1〉

T

+ 〈e1|h2〉
)−1

, (3.1.46)

r12 = 1
2

(
〈e2|h1〉

T

+ 〈e1|h2〉
)
t12. (3.1.47)

The PhCs simulated in this project of course consist of more than two layers, and finding
the transmission and reflection matrices between any layer is simply done by replacing 1
and 2 with q and q + 1, where q is the layer number. For finding the transmission and
reflection matrices when going from layer 2 to 1, then the subscripts 1 and 2 in equations
(3.1.46) and (3.1.47) are simply interchanged.
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Multiple interfaces - S Matrix theory

In a multiple layer geometry not only the direct transmission and reflection between
adjacent layers contribute to the total transmission and reflection properties, but also
the round trips that the light can complete within each layer. Scattering matrix theory
considers these round trips in the transmission and reflection matrices. Firstly, a three
layer structure will be considered in order to clarify the algorithm for determining all the
transmission and reflection matrices. A three-layer geometry is seen in Figure 3.3.
The structure is illuminated both from the top with mode n, b′3n and from the bottom

with mode m, a′1m. The magnetic field in each layer are then given as:

H1(r) =a′1mh+
1m(r⊥) exp (iβ1m(z − z12)) +

N∑
j=1

b1jh−1j(r⊥) exp (−iβ1j(z − z12)) , (3.1.48)

H2(r) =
N∑
j=1

a2jh+
2j(r⊥) exp (iβ2j(z − z12)) +

N∑
j=1

b2jh−2j(r⊥) exp (−iβ2j(z − z23)) , (3.1.49)

H3(r) =
N∑
j=1

a3jh+
3j(r⊥) exp (iβ3j(z − z23)) +

b′3nh−3n(r⊥) exp (−iβ3n(z − z23)) , (3.1.50)

and similar equations can be written for the electric field.
The propagation matrices in layer two are defined such that a′2j = p+

2ja2j and b′2j =
p−2jb2j . The propagation constants are given as p+

2j = p−2j = exp (iβ2jL2), where L2 =
z23 − z12 is the length of layer 2. Note that the forward and backward propagation
constant are equal, but distinguishing between these two are important when moving on
to Bloch modes, where they are no longer identical. Therefore the + and − signs are
kept in order for this section to be compatible with the implementation of Bloch modes.
With the above definition of the propagation constants the propagation matrices pq

± are
diagonal matrices with the propagation constants p±qj in the diagonal [16].

Now consider Figure 3.3. The reflection matrices r12, r21, r23 and r32 and the corre-
sponding transmission matrices are found from equations (3.1.47) and (3.1.46).
The reflection matrix r13 has several contributions. The first contribution is the direct

reflection between layer 1 and 2, r12. But not all light is reflected at this interface. The
transmitted light will propagate forward, then some of the light will be reflected at the
interface between layer 2 and 3 and then propagate backward and be partly transmitted
into layer 1. This journey can be described by the matrix t21p

−
2 r23p

+
2 t12. Only part of

the light is transmitted from layer 2 to layer 1 and the light that is not transmitted is
reflected once more and this round trip in layer 2 is described by the matrix r21p

−
2 r23p

+
2 .

The light can then complete multiple round trips in layer 2 and for each round trip some
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Figure 3.3: Illustration of the field coefficients and the transmission and reflection matrices of
layer 1, 2 and 3 in a three-layer geometry.

light will transmit into layer 1 contributing to the reflection matrix, r13, which is then
given by: [16]

r13 =r12 + t21p
−
2 r23p

+
2 t12 + t21p

−
2 r23p

+
2 (r21p

−
2 r23p

+
2 )t12

+ t21p
−
2 r23p

+
2 (r21p

−
2 r23p

+
2 )2t12 + t21p

−
2 r23p

+
2 (r21p

−
2 r23p

+
2 )3t12 + ..., (3.1.51)

where the sum goes to infinity, since infinite round trips need to be taken into account.
The geometric series I+M +M

2
+M

3
+ ... = (I−M)−1, where I is the identity matrix,

will now be applied. This relation holds when the absolute eigenvalues for the matrix M
are below 1. [16] Using this series equation 3.1.51 reduces to:

r13 = r12 + t21p
−
2 r23p

+
2

(
I − r21p

−
2 r23p

+
2

)−1
t12. (3.1.52)

For the transmission from layer 1 to 3, t13, there is likewise two contributions: the
direct contribution where the light is transmitted from layer 1 to 2 and then propagating
forward in layer 2 and finally is transmitted to layer 3, and the round trip contribution
where light completes the same round trip in layer 2 as described above. The result is:

t13 = t23p
+
2

(
I − r21p

−
2 r23p

+
2

)−1
t12. (3.1.53)

The reflection and transmission matrices from layer 3 to 1 are found with the same
considerations above. The same round trip matrix as before, r21p

−
2 r23p

+
2 , is used since

it might be numerically preferable only to calculate this inverse matrix once. [16] The
resulting matrices are:
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r31 = r32 + t23p
+
2

(
I − r21p

−
2 r23p

+
2

)−1
r21p

−
2 t32, (3.1.54)

t31 =t21p
−
2 t32 + t21p

−
2 r32p

+
2

(
I − r21p

−
2 r23p

+
2

)−1
r21p

−
2 t32. (3.1.55)

The field expansion vectors in layer 1 and 3 are thus easily computed as: a3 = t13a′1 +
r31b′3 and b1 = r13a′1 +t31b′3. The expansion vectors inside layer 2 both has the direct and
the round trip contributions from the illuminating fields, a′1 and b′3. For a2 the round
trip matrix is chosen as r21p

−
2 r23p

+
2 and using the same geometric series as above the a2

expansion vector become [16]:

a2 =
(
I − r21p

−
2 r23p

+
2

)−1(
t12a′1 + r21p

−
2 t32b′3

)
. (3.1.56)

The corresponding expression for the expansion vector for the backward propagating
wave in layer 2, b2, is [16]:

b2 =
(
I − r23p

+
2 r21p

−
2

)−1(
r23p

+
2 t12a′1 + t32b′3

)
. (3.1.57)

Layer 4

Layer 3

Layer 1

a1'

a3'

a3

a4

t13

t13

t34

p3
+
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-
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b4'

r41
r14

r34

t31

r43

r31
r13

Figure 3.4: Illustration of the field coefficients and the transmission and reflection matrices of
layer 1, 3 and 4 in a four-layer geometry.

Now that the reflection and transmission matrices for the three-layer geometry has been
determined, the next step is to consider an N -layer geometry as sketched in Figure 3.5.
The method for determining all the transmission and reflection matrices is simply to
conceptually reduce the N -layer geometry to a three-layer structure. The first step is of
course to determine all reflection and transmission matrices between neighbouring layers
by using equations (3.1.47) and (3.1.46). Then r13, t13,r31 and t31 can be determined
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using equations (3.1.52)-(3.1.55). The next step is thus to calculate r14, t14,r41 and t41
and this is done by using equations (3.1.52)-(3.1.55) one more time and exchanging all
3’s with 4’s and all 2’s with 3’s. This is illustrated in Figure 3.4. This iterative procedure
is repeated until layer N . The recursive relations for the scattering matrices concerning
layer 1 and q are thus [16]:

r1,q+1 = r1q + tq1p
−
q rq,q+1p

+
q

(
I − rq1p

−
q rq,q+1p

+
q

)−1
t1q, (3.1.58)

t1,q+1 = tq,q+1p
+
q

(
I − rq1p

−
q rq,q+1p

+
q

)−1
t1q, (3.1.59)

rq+1,1 = rq+1,q + tq+1,qp
+
q

(
I − rq1p

−
q rq,q+1p

+
q

)−1
rq1p

−
q tq+1,q, (3.1.60)

tq+1,1 = tq1p
−
q tq+1,q + tq1p

−
q rq+1,qp

+
q

(
I − rq1p

−
q rq,q+1p

+
q

)−1
rq1p

−
q tq+1,q, (3.1.61)

where q is the layer number and is iterated from layer 2 to N − 1.

To obtain the relations relating the N ’th layer with layer q − 1, the iteration is from
layer N − 1 to 2 instead of layer 2 to N − 1 as above. These relations are found with
similar considerations as for the relations above - that is conceptually reducing the N -
layer geometry to a three-layer structure and in that way iterate through all the layers.
The resulting relations are [16]:

rq−1,N = rq−1,q + tq,q−1p
−
q rq,Np

+
q

(
I − rq,q−1p

−
q rq,Np

+
q

)−1
tq−1,q, (3.1.62)

tq−1,N = tq,Np
+
q

(
I − rq,q−1p

−
q rq,Np

+
q

)−1
tq−1,q, (3.1.63)

rN,q−1 = rN,q + tq,Np
+
q

(
I − rq,q−1p

−
q rq,Np

+
q

)−1
rq,q−1p

−
q tN,q,

(3.1.64)

tN,q−1 = tq,q−1p
−
q tN,q + tq,q−1p

−
q rq,Np

+
q

(
I − rq,q−1p

−
q rq,Np

+
q

)−1
rq,q−1p

−
q tN,q.

(3.1.65)

All the equations (3.1.58)-(3.1.65) will from now on be referred to as the scattering
matrix formalism. How these equations have been implemented in the code is explained
in Appendix B.5.

The field expansion vectors, aq and bq, can now be computed in all layers using the
matrices found using the iterative matrix formalism. By again conceptually reduce the
N -layer geometry to a three-layer structure and use the same considerations of round
trips inside layer q, as when deriving equations (3.1.56) and (3.1.57), the field expansion
vectors inside layer q will come out as [16]:
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Figure 3.5: Illustration of the field coefficients and the transmission and reflection matrices of
layer 1, q and N in a multilayer geometry.

aq =
(
I − rq1p

−
q rqNp

+
q

)−1(
t1qa′1 + rq1p

−
q tNqb′N

)
, (3.1.66)

bq =
(
I − rqNp+

q rq1p
−
q

)−1(
rqNp

+
q t1qa′1 + tNqb′N

)
, (3.1.67)

and using these field expansion vectors both the electric and magnetic field in any layer
q are [16]:

Eq(r) =
N∑
j=1

aqje+
qj(r⊥) exp (iβqj(z − zq−1,q)) +

N∑
j=1

bqje−qj(r⊥) exp (−iβqj(z − zq,q+1)) , (3.1.68)

Hq(r) =
N∑
j=1

aqjh+
qj(r⊥) exp (iβqj(z − zq−1,q)) +

N∑
j=1

bqjh−qj(r⊥) exp (−iβqj(z − zq,q+1)) . (3.1.69)

Thereby both the magnetic and electric field are determined in all layers in any given
geometry. However, this is the brute force way of calculating the fields when the geome-
tries posses periodicity as is the case for PhCs. This periodicity can be exploited using
Bloch’s theorem which will be explained in the next section.



28 3 Computational Method

Uniform section

Uniform section

Supercell
Layer 1

Layer 2

Layer 1

Layer 2

Layer 1

Layer 2

Periodic section

Γ

z

Uniform section

Uniform section

Periodic section

x

z

x

Figure 3.6: Illustration of how a geometry consisting of many layers is reduced to a three
section geometry by exploiting the periodicity in the periodic section. Each periodic section
consists of a number of supercells and these supercells again consists of a number of layers.

Periodic structures - Bloch modes

Bloch’s theorem is applicable, whenever a potential is periodic. Therefore it is natural
to use Bloch’s theorem on PhCs since these are indeed periodic structures and thereby
possess periodic potentials. The periodicity in potential is realized with the periodicity
in the dielectric function, such that ε(z + Γ) = ε(z), where Γ is the period. Bloch’s
theorem then states, that the solutions to the wave equation in this periodic geometry
can be written as a product of a periodic function along z and a phase term [16]:

Ψwm(z + Γ) = Ψwm(z)Λwm, (3.1.70)

where Ψwm = (ΨE
wm,ΨH

wm) are referred to as the Bloch modes of the periodic section
w and Λwm are the phase term for the m’th Bloch mode in the w’th periodic section. As
mentioned earlier distinguishing between forward, Ψ+

m, and backward, Ψ−m, propagating
Bloch modes is needed. [16]. Using equation (3.1.70) the propagation of the forward
and backward travelling Bloch modes over p periods inside the w’th periodic section are
described by:

Ψ+
wm(z + pΓ) = ΛpwmΨ+

m, (3.1.71)
Ψ−wm(z − pΓ) = Λ−pwmΨ+

m. (3.1.72)

The electric and magnetic fields were expanded on eigenmodes inside layers with uniform
refractive index in z in equations (3.1.68) and (3.1.69). The fields will now be expanded
on Bloch modes instead of eigenmodes inside periodic sections instead of layers. The
advantage of expanding on Bloch modes instead of eigenmodes is that a complicated
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N -layer structure is reduced to a problem only involving a few periodic sections. This is
illustrated in Figure 3.6, where a geometry consisting of uniform sections in each end and
a periodic section with many layers in between are reduced to a three-section geometry,
where the periodic section is treated as one unit instead of treating all the layers within
individually. For uniform sections the fields are expanded on eigenmodes as in equations
(3.1.68) and (3.1.69) but in periodic sections consisting of p supercells the fields are
expanded on Bloch modes as [16]:

Ew(r) =
N∑
m=1

(
awmΨE+

wm(r) + bwmΨE−
wm(r)

)
, (3.1.73)

Hw(r) =
N∑
m=1

(
awmΨH+

wm(r) + bwmΨH−
wm(r)

)
. (3.1.74)

The advantage of this formalism is that, the computation time is independent of the
number of supercells, since once the Bloch modes in the first supercell is known Bloch’s
theorem gives the Bloch modes in all other supercells within the periodic section. This
reduces the computation time drastically compared to the formalism of expanding the
fields directly on eigenmodes.

The first step of this formalism is thus to find these Bloch modes in the supercells.
For doing this the Bloch modes of the electric and magnetic field is written as a linear
combination of forward and backward propagating eigenmodes relative to a position z′
inside the supercell as:

ΨE±
wm(r⊥, z) =

N∑
j=1

[
c±mje

+
qj(r⊥) exp (iβj(z − z′))

+ d±mje
−
qj(r⊥) exp (−iβj(z − z′))

]
, (3.1.75)

ΨH±
wm(r⊥, z) =

N∑
j=1

[
c±mjh

+
qj(r⊥) exp (iβj(z − z′))

+ d±mjh
−
qj(r⊥) exp (−iβj(z − z′))

]
, (3.1.76)

where c±m and d±m are the expansion vectors for them’th Bloch mode at z = z′. It should
be stressed that equations (3.1.75) and (3.1.76) are only valid in layer q in supercell w.
Therefore z′ is chosen as the position of the bottom layer interface and the eigenmodes are
then those belonging to the adjacent layer above this interface. Finding the Bloch modes
in all layers in all supercells in all periodic sections is only necessary when visualizing
the field, which is explained in Appendix B.9. First the Bloch mode expansion vectors
need to be determined.

In order to determine these a three-layer supercell is considered as sketched in Figure
3.7. Here z′ = z01 and the field are thus expanded on the eigenmodes of layer 1. In the
S matrix formalism the relation between c1, c4, d′1 and d′4 are:
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Figure 3.7: A three-layer supercell with transmission and reflection matrices and Bloch ex-
pansion vectors.

c4 = t14p
+
1 c1 + r41d′4, (3.1.77)

d′1 = p−1 r14p
+
1 c1 + p−1 t41d′3. (3.1.78)

These equations can be put into matrix form as:

[
c4
d′1

]
=
[
S11 S12

S12 S22

] [
c1
d′4

]
=
[
t14p

+
1 r41

p−1 r14p
+
1 p−1 t41

] [
c1
d′4

]
. (3.1.79)

Bloch’s theorem provides another relation between the expansion vectors in layer 1 and
4: [

c4
d′4

]
= Λ

[
c1
d′1

]
, (3.1.80)

and by insertion in equation (3.1.79) the outcome is:[
S11 0
S21 −I

] [
c1
d′1

]
= Λ

[
I −S12

0 −S22

] [
c1
d′1

]
, (3.1.81)

where I is the identity matrix and 0 is the empty matrix. All matrices are of size N×N .
Equation (3.1.81) is a generalized eigenvalue problem and the steps between equations
(3.1.79)-(3.1.80) and (3.1.81) are found in Appendix B.6.
Solving the generalized eigenvalue problem in equation (3.1.81) thus leads to the Bloch
expansion vectors c1 and d′1, and the phase term, Λ, for the supercell considered. It is
easy to generalize this to supercells consisting of n layers simply by replacing 4 with n+1
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Table 3.1: The three different classes of Bloch modes and their propagation direction.

Class Eigenvalue, Λm Direction
I |Λm| < 1 +
II |Λm| > 1 -
III |Λm| = 1 + or -

in equation (3.1.79) and thereby find the scattering matrices S11, S12, S21 and S22 for
any supercell.
In Matlab the EIG command is able to solve equation (3.1.81) and the first output is a

2N × 2N matrix with the N first rows being the c1 vectors and the N last rows being
the d′1 vectors, where N is the number of eigenmodes included in the calculation. The
second output is a 2N × 2N diagonal matrix with the eigenvalues Λm in the diagonal.
Thereby N eigenmodes leads to 2N Bloch modes where N of these are forward travelling

and N are backward travelling. There are in general three classes of Bloch modes and
these are given in Table 3.1.
Class I with |Λm| < 1 must be forward propagating since the field cannot increase in

amplitude in the propagation direction:

Ψ+
m(z + Γ) = ΛmΨ+

m(z), (3.1.82)

this ensures that |Ψ+
m(z+Γ)| < |Ψ+

m(z)|. With a similar argument class II Bloch modes
with |Λm| > 1 must be backward propagating such that:

Ψ−m(z) = ΛmΨ−m(z − Γ), (3.1.83)

in this way |Ψ−m(z − Γ)| < |Ψ−m(z)|, which ensures that the field does not blow up in
the propagation direction.
In order to find the propagation direction of class III Bloch modes, the direction of the

power flow, Pm, of each Bloch mode with |Λm| = 1 needs to be computed. The power
flow is found by integrating the z-component of its time-averaged Poynting vector as:
[16]

Pm = 1
2

∫
Re
(
ΨE
m ×ΨH∗

m

)
· ẑdr⊥, (3.1.84)

where Re and ∗ denotes the real part and complex conjugation respectively. This
integral can be evaluated, which is done step by step in Appendix B.7 and the results
for TM and TE polarization are stated here:

P = 1
2Re

(
c
T
W
(
c
∗ − d

∗)
+ d

T
W
(
c
∗ − d

∗))
TM, (3.1.85)

P = −1
2Re

(
c
T
W
(
c
∗ − d

∗)
+ d

T
W
(
c
∗ − d

∗))
TE, (3.1.86)
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Table 3.2: Scheme for determining the propagation direction of class III Bloch modes.

Power flow Direction
Pm > 0 +
Pm < 0 -

1

2

x

z

z12

a) b)

a1'

a2

b1

tb12

rb12

Periodic section

Periodic section

Figure 3.8: a) Illustration of two adjacent periodic section at an interface. b) The Bloch
transmission and reflection matrices and the Bloch mode amplitudes.

where c and d are matrices with those Bloch expansion vectors with |Λm| = 1 in the
columns. The power flows for the Bloch modes are then the diagonal elements of P , such
that Pm = P (m,m) = Pm,m. The matrix W is defined as:

W = u
T
v
∗ (3.1.87)

where u(v) is the matrix with expansion vectors in the columns of the electric (magnetic)
field perpendicular to the propagation direction.
The propagation direction of class III Bloch modes are then based on the sign of Pm as
shown in Table 3.2.
When all Bloch modes have been classified, N of these are forward propagating given
by (c+

m, d
+
m) and N of these should be backward propagating given by (c−m, d−m).

Interface between periodic sections

Having determined the Bloch modes in all periodic section of a given structure the next
step is to consider what happens at the section interfaces. The steps are very similar
to those leading to the transmission and reflection matrices in equations (3.1.46) and
(3.1.47). Figure 3.8 illustrates the Bloch mode amplitudes and the Bloch transmission
and reflection matrices at an interface.
In order to simplify the derivation of the Bloch transmission and reflection amplitudes,
only a single Bloch mode field are approaching the interface from the bottom. This
means that a′1n = δmn in Figure 3.8. Thereby the boundary conditions for the electric
and magnetic fields expanded on Bloch modes (equations (3.1.73) and (3.1.74)) becomes
[16]:
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ΨE+
⊥1m(r⊥) +

N∑
j

ΨE−
⊥1j(r⊥)rb,12;jm =

N∑
j

ΨE+
⊥2j(r⊥)tb,12;jm, (3.1.88)

ΨH+
⊥1m(r⊥) +

N∑
j

ΨH−
⊥1j(r⊥)rb,12;jm =

N∑
j

ΨH+
⊥2j(r⊥)tb,12;jm. (3.1.89)

Inserting the expressions for the Bloch modes (equations (3.1.75) and (3.1.76)) into
these equations and using that e+

⊥ = e−⊥ = e⊥ and h+
⊥ = −h−⊥ = h⊥, the equations

above will give:

N∑
l

e⊥1l(r⊥)
((
c+

1ml + d′+1ml
)

+
N∑
j

(
c−1jl + d′−jl

))
rb,12;jm

=
N∑
j,l

e⊥2l(r⊥)
(
c+

2jl + d′+2jl
)
tb,12;jm, (3.1.90)

N∑
l

h⊥1l(r⊥)
((
c+

1ml − d
′+
1ml
)

+
N∑
j

(
c−1jl − d

′−
jl

))
rb,12;jm

=
N∑
j,l

h⊥2l(r⊥)
(
c+

2jl − d
′+
2jl
)
tb,12;jm. (3.1.91)

By using the same technique of multiplying the bra version of equation (3.1.90) with
|h1n〉 and the ket version of equation (3.1.91) with 〈e1n| as in the derivation of the trans-
mission and reflection matrices between adjacent layers (equations (3.1.46) and (3.1.47)),
and then introducing matrix notation will lead to the following expressions for the trans-
mission and reflection matrices for adjacent periodic sections [16]:

tb,12 =
[(

c−1 + d′−1

)−1
〈e2|h1〉

T
(
c+

2 + d′+2

)
−
(
c−1 − d

′−
1

)−1
〈e1|h2〉

(
c+

2 − d
′+
2

)]−1

×
[(

c−1 + d′−1

)−1(
c+

1 + d′+1

)
−
(
c−1 − d

′−
1

)−1(
c+

1 + d′+1

)]
, (3.1.92)

rb,12 =
(
c−1 + d′−1

)−1
〈e2|h1〉

T
(
c+

2 + d′+2

)
tb,12 −

(
c−1 + d′−1

)−1(
c+

1 + d′+1

)
, (3.1.93)

and the corresponding expression for tb,21 and rb,21 are found by inverting all superscript
+ and - and by interchanging the indices 1 and 2. The full derivation from equations
(3.1.88) and (3.1.89) to (3.1.92) and (3.1.93) are found in Appendix B.8.
All transmission and reflection matrices between periodic sections are found by using

the scattering matrix formalism given in equations (3.1.58)-(3.1.65). The only thing to
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R

b

Figure 3.9: Illustration of how the holes/rods in the PhC is made. R is the wanted radius
and b is the distance from the center of the circle to the center of the grid points within the big
square. The green and white colours indicate that there is a difference in the refractive of the
grid points.

remember is that the propagations matrices in periodic section w, p+
w and p−w , are in

general no longer identical for forward and backward travelling waves. These are given
as the diagonal matrices with Λ+

m in the diagonal for forward propagation and with 1/Λ−m
in the diagonal for backward propagation.

When all transmission and reflection matrices between all layers in one supercell in each
periodic section and all the transmission and reflection matrices relating the periodic
sections have been found, the field profile in the whole geometry can be determined.
This is done in Appendix B.9.

3.2 Overview of method implementation

In the preceding section the Fourier Modal Method has been explained and derived. This
section will give a short overlook on how the method has been implemented in Matlab.

Constructing the PhC The first step is to construct the PhC with the defects of
interest. Creating perfect circles for the holes/rods in the PhC is impossible, therefore a
staircase approximation is needed. There are several ways to do this and the approxima-
tion used in this project is rather ad hoc and could/should be improved for future work.
The approximation used is illustrated in Figure 3.9. When the center of a hole/rod has
been found, a virtual circle is drawn with the wanted radius , R. Then for all grid points
(the small squares with a dot in the center) within the big square their center distance,
b, to the center of the circle is found. If b <= R, the grid point is a part of the hole/rod
of the PhC. In that way all the holes/rods and defects are made. The PhC is thus a
matrix with the refractive index of each grid point as elements.
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Layers, supercells and periodic sections of PhC After constructing the PhC and
the defects, the next step is to divide it into layers, supercells and periodic sections as
indicated in Figures 3.10 and 3.11.

z

x 1 layer

1 layer

13 layers

Figure 3.10: One rod with the layers indi-
cated. The white region is air and the green
region is a dielectric material.

z

x Periodic section

Supercell

Periodic section

Supercell

Periodic section

Supercell

Figure 3.11: PhC consisting of three pe-
riodic sections, where each periodic section
consists of three supercells. The black hori-
zontal lines indicate the interface between the
periodic sections and the red broken lines in-
dicate the supercell in each section.

Determine eigenvectors in all layers After all the geometric considerations the
eigenvalue problem for each layer is set up and solved for the polarization of interest.
This is performed by first computing the EE Toeplitz matrix and if the polarization is
TM also the AA Toeplitz matrix by using equations (3.1.9) and (3.1.10) respectively for
computing the elements. The evaluations of these integrals in Appendix B.2 are used in
practice.
Having computed these matrices either the eigenvalue problem in equation (3.1.22) or

(3.1.12) is solved for all layers in the PhC depending on the wanted polarization. Then the
corresponding eigenvectors are computed using either the relations in equations (3.1.24)
and (3.1.25) for TE polarization or the relations given in equations (3.1.14) and (3.1.15)
for TM polarization.

Transmission and reflection at interfaces The transmission and reflection matrices
between adjacent interfaces are computed using equations (3.1.46) and (3.1.47). As seen
the scalar product for the adjacent layers first needs to be computed. This is done by
using either equation (3.1.38) or (3.1.37), depending on the polarization.
It should be stated that the transmission and reflection matrices are only computed for

one supercell in each periodic section. The propagation matrices are also computed for
one supercell per periodic section.

Scattering matrix formalism The next step is computing the transmission and re-
flection matrices between all layers in the supercells. This is done by using the scattering
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matrix formalism (equations (3.1.58)- (3.1.65)) iteratively. The N ’th layer in these com-
putations are not the last layer of the supercell but actually the first layer of the next
supercell, such that the transmission matrix t1N gives the transmission from the first
layer of a supercell to the first layer of the next supercell.

Bloch modes The Bloch eigenvalue problem in equation (3.1.81) is set up and solved.
Then the Bloch eigenvectors are characterized as either forward or backward propagating
by using the schemes in Tables 3.1 and 3.2 together with either equation (3.1.86) or
(3.1.85) depending on polarization.

Transmission and reflection at periodic section interfaces Using equations (3.1.92)
and (3.1.93) the transmission and reflection matrices between adjacent periodic sections
are computed. As seen the scalar product needs to be computed and this is again done
by using either equation (3.1.38) or (3.1.37) - where the subindex 1 means the first layer
of the periodic section before the interface and the subindex 2 means the first layer of
the periodic section after the interface.
The forward and backward propagation matrices are constructed with the Bloch eigen-
values for forward and backward travelling Bloch modes in the diagonal.

Scattering matrix formalism - periodic sections The scattering matrix formalism
in equations (3.1.58)- (3.1.65) are used to find the transmission and reflection matrices
between all periodic sections.

Visualization of the field This part has only been done in a few cases, since it is
not always necessary to visualize the magnetic or electric field. First the eigenmodes in
all layers in the supercell for each periodic section is computed using either equations
(3.1.17) - (3.1.19) or (3.1.3) - (3.1.5). The mode profiles are then normalized using either
the scalar product in equation (3.1.38) or (3.1.37).
The Bloch modes are found in every supercell in all periodic sections using Bloch’s
theorem (equation (3.1.70)). The amplitude of the Bloch modes in each periodic section
is computed using equations (B.9.1) and (B.9.2). Then a†q and b†q are computed for the
first layer of all supercells using equations (B.9.11) and (B.9.12). Using the scattering
matrix formalism for the field amplitudes in equations (3.1.66) and (3.1.67) a†q and b†q
are computed for all layers in all supercells. In the end the fields are found by using
equations (B.9.15) and (B.9.16).

3.3 Validation of method implementation

Before proceeding to do computations on new PhC waveguide and cavity designs it
is important to validate that the scripts actually produce viable results. This section
therefore validates the results of the implementation by comparing them with results
from the literature. In [17] there are various results that can be used as benchmarks for
the scripts build in this project.
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Figure 3.12: Figure 6 in Appendix C from [17].
The dielectric constant of the PhC medium is ε =
11.4. Note that the convention in [17] regarding
polarization is opposite than the one used in this
thesis - such that TE is TM and vice versa.
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Figure 3.13: TM gap map of a trian-
gular lattice of air holes with ε = 11.4.
For r/a ≥ 0.44 the gap map does not
behave as in Figure 3.12. The outlying
point at r/a = 0.2 is due to numerical
instability.

Table 3.3: Simulation parameters used for computing the gap map in Figure 3.13.

Number of grid points
Number of plane waves, N in unit cell, Ng,unit Number of unit cells, Nunit

27 51 1

The first computations performed was so-called gap map computations, which essentially
is a map showing, at what frequencies and radius of holes/rods in a PhC there is a band
gap. In [17] results from such computations are given in the Appendix and in Figure 3.12
one of these figures has been reused for comparison purposes. In Figure 3.13 the result
from doing such a gap map computation with the scripts developed in this thesis is seen.
Comparing Figure 3.13 with the lower red band in Figure 3.12 it is observed that they are
quite similar for r/a < 0.44. For some reason the computations gives some fishy results
when r/a ≥ 0.44. It is still unknown why. Furthermore a single point in Figure 3.13 at
r/a = 0.2 lies outside the rest of the gap map. This is due to numerical instability when
using the scattering matrix formalism, where Matlab gives a warning about badly scaled
matrices. The warning stems from the matrix divisions in equations (3.1.58)-(3.1.65).
This warning concerning numerical instability have been observed various times and in
a few cases it has affected the results. Section 3.5 discusses this.
The gap map in Figure 3.13 has been performed by using the steps in section 3.2 from

the top to Bloch modes. If there is no Bloch eigenvalue whose absolute equals 1, |Λm| = 1,
then there is a band gap for the given radius of holes/rods and at the given frequency
of the light. Computing this only requires one unit cell and the unit cell used is seen in
Figure 3.14. Other parameters used in the computation are seen in Table 3.3.
More gap map computations are found in Appendix C.1.
In [17] a band diagram of a square rods PhC waveguide is also found and this is seen

in Figure 3.16. The result of a computation on the same structure is presented in Figure
3.17, where the PhC structure is seen in Figure 3.15. The two band diagrams are very
alike and only minor differences are present. These differences could be due to the
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Figure 3.14: The unit cell of the triangular PhC of air holes used for the gap map calculations
in Figure 3.13.
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Figure 3.15: PhC structure used for computing the band diagram in Figure 3.17.

Figure 3.16: Figure 19 in Chapter 5 from
[17]. The dielectric constant of the PhC rods
are ε = 8.9. The band diagram is for TE
modes.
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Figure 3.17: TE band diagram of a square
rods PhC with ε = 8.9. The structure is seen
above in Figure 3.15.

Table 3.4: Simulation parameters for the band diagram in Figure 3.17.

Number of grid points
Number of plane waves, N in unit cell, Ng,unit Nunit εrods

20 51 13 8.9

staircase approximation or to not having included enough plane waves in the expansion.
The simulation parameters for Figure 3.17 are given in Table 3.4.

The developed scripts thereby produce results, that are close to those of the literature
and therefore it is concluded, that the implementation of the Fourier modal method
is viable. Furthermore physical inspection of the results is always a good idea - for
example assuring that the fields are continuous over all interfaces is a fast and easy way
of validating the code.
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z

Spatial discretisation Eigenmode expansion

Figure 3.18: FDTD uses a discretisation of the structure, whereas the Fourier modal method
uses an expansion on eigenmodes.

3.4 Why use Fourier Modal method

The Fourier modal method is only one of many methods that is able to solve Maxwell’s
equations in order to obtain the electromagnetic field in complex structures. Other
methods include the finite-difference time-domain method (FDTD) and a semianalytical
approach. In [14] these three methods are compared when simulating a 2D PhC. First
of all the difference between FDTD and the Fourier modal method is that FDTD uses a
spatial discretisation of the field, whereas the Fourier modal method uses an eigenmode
expansion as illustrated in Figure 3.18. In a grid point expansion technique the number
of grid points introduces a large number of unknowns to solve for and therefore naturally
performs slower than an eigenmode expansion technique [19].
In [14] advantages and disadvantages of using semianalytical techniques, vectorial eigen-

mode expansion and FDTD are discussed and listed. The advantages of using vectorial
eigenmode expansion (which is what the Fourier modal method is using), that has been
used in this project are [14]:

1. The computation time is linear in the number of layers and do not depend on the
thickness of these layers, since the propagation through layers is handled analyti-
cally. This is not the case for FDTD.

2. The possibility of introducing a Bloch mode formalism drastically decreases the
computation time, when periodicity in the structure is present.

3. No reflections from the end facets of the computation domain of the PhC.

The disadvantages listed in [14] are:

1. Less advantageous if there is no repetition of layers.

2. For curved nonrectangular objects, many layers are needed.

3. The technique relies on an absorbing boundary condition.

4. If the structure is excited by waveguides running in different directions, considerable
performance is lost.
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The first disadvantage is not relevant for this project, since for the PhC structures
considered there are indeed a repetition of layers exploited by implementing a Bloch mode
expansion. The second disadvantage is present in this project, since the round holes in
the PhC is realised by a staircase approximation, that becomes more precise with the
number of layers used. The absorbing boundaries are not necessary in this project, due
to the band gaps of the bulk PhC. The band gap secures that no light reaches the walls
of the computational domain and therefore it would be overkill to implement absorbing
boundaries. The fourth disadvantage is not relevant for the simulations performed.
Thereby the only disadvantage listed in [14] that is present for the simulations in this
project is the second one, whereas the three advantages listed above are all relevant for the
simulations performed. All the advantages and disadvantages of using a semianalytical
technique or FDTD listed in [14] will not be restated here, but the biggest disadvantage
of using FDTD on PhCs is that the phase errors accumulate for larger structures and
this might lead to changes in the resonance frequencies, when a cavity is present [14].
The biggest disadvantage of using a semianalytical technique is the computation time.
Considering the advantages and disadvantages of an eigenmode expansion technique,
the Fourier modal method is very suited for computations on PhC structures.

3.5 Observed errors in method implementation

The implementation of the Fourier modal method gives a ’warning’ in Matlab that cannot
be completely neglected, since it in some cases affects the results. When computing the
scattering matrices using equations (3.1.58)-(3.1.65) the following warning has been ob-
served: "Warning: Matrix is close to singular or badly scaled. Results may be inaccurate.
RCOND = 8.798187e-17.". This warning is given when computing the matrix inverse in
equations (3.1.58)-(3.1.65). For equation (3.1.58) the matrix inverse is computed in the
following way in Matlab:

r1,q+1 = r1q + tq1p
−
q rq,q+1p

+
q

(
I − rq1p

−
q rq,q+1p

+
q

)−1
t1q (3.5.1)

= r1q + tq1 ∗ p−q ∗ rq,q+1 ∗ p+
q ∗

(
I − rq1 ∗ p−q ∗ rq,q+1 ∗ p+

q

)
\ t1q. (3.5.2)

By doing the matrix inverse with the \-operator in Matlab the number of RCOND-
warnings are greatly reduced, but has not completely disappeared. The matrices should
not be badly scaled although some elements are approaching zero, which is the source
of the warning. It should be emphasized that the warning only shows up a couple of
times when computing the scattering matrices of multiple layers and in many cases the
warning does not affect the results in an observable way.
In Figures 3.19 and 3.20 two computed transmission spectra for two different PhC cavity
and waveguide structures are seen. The transmission spectrum in Figure 3.19 has three
points that deviates from the rest but in Figure 3.20 no points deviates from the fitted
line. This shows that the warning message given by Matlab in some cases affects the
results such that a few points deviates from the overall trend and in some cases it does
not affect the results at all. However, the source of the warning message should be
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ωa/2πc

.

Figure 3.19: Transmission spectrum for a
PhC cavity and waveguide structure. As seen
three points deviates from the overall trend.

ωa/2πc

.

Figure 3.20: Transmission spectrum for a
PhC cavity and waveguide structure, where
no points deviates from the overall trend.

investigated, but since it has only affected the results in a negligible way this has not
been prioritized.
The transmission spectra shown in Figures 3.19 and 3.20 for PhC cavity and waveguide

structures will be investigated and explained more thoroughly in Chapter 4.
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Computations on PhC waveguides and
microcavities

In this chapter the developed code is used for investigating the transmission properties
of PhC waveguides when a microcavity is placed nearby. The results will be discussed
and explained by using the coupled-mode theory derived in [11], [12] and [6].

4.1 Cavity resonances

Fano resonances has been reported in many PhC structures ([11], [6], [4], [3]) and has
received a lot of attention due to the possible application as a photonic switch. The term
Fano resonance stems from the Fano lineshape function, which is a function that is a
result of an interaction between a Lorentzian field and a background field that does not
vary over the linewidth of the Lorentzian field [20]. In the simulations performed in this
project, this interaction is realised by a blocked waveguide next to a cavity such that,
the light has two distinguishable paths for reaching the end of the waveguide. This is
illustrated in Figure 4.1. In order to understand the origin of these Fano resonances a
summary of coupled-mode theory will be given. This will also serve as the theoretical
foundation for understanding and discussing the computational results presented later in
this chapter.

Coupled-mode theory

In Figure 4.1 a blocked waveguide next to a cavity is illustrated and as mentioned above
the Fano resonance is a result of an interaction between a continuous background field

43
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Figure 4.1: When the light travels through a waveguide which is blocked by a partly trans-
mitting element, PTE, and a cavity is positioned next to the waveguide, the light can travel
through two distinguishable paths - by a) transmission through the PTE or by b) coupling from
the waveguide mode to the cavity mode.

and a Lorentzian field. The path a in Figure 4.1 gives the background field and the path
b gives the Lorentzian field, i.e. a discrete resonance. γ1 and γ2 are the decay rates
from the cavity into the input and output port. The coupling of the waveguide to the
resonator (cavity) is described by temporal coupled-mode theory ([11], [12], [6], [4]) and
only the most central parts will be summarized here.
Referring to Figure 4.1 the temporal coupled-mode equations are [12], [6], [13]:

da

dt
= (−iω0 − γ1 − γ2 − γv) a+

(
d1 d2

)(s1+
s2+

)
, (4.1.1)(

s1−
s2−

)
= C

(
s1+
s2+

)
+
(
d1
d2

)
a, C =

(
rB −itB
−itB rB

)
, (4.1.2)

where |a|2 is the energy in the cavity, ω0 is the resonance frequency, γv is the intrinsic
cavity loss rate, γ1 and γ2 are decay rates from the cavity into the two ports, s1+ and
s2+ are the amplitudes of the incoming waves in the two ports, s1− and s2− are the
amplitudes of the outgoing waves in the two ports, and d1 and d2 are the complex
coupling coefficients between the ports and the resonance. C is the scattering matrix
representing the direct coupling between the incoming and outgoing waves, where rB and
tB are the real and positive amplitude reflection and transmission coefficients, satisfying
r2
B + t2B = 1. Due to time-reversal and energy conservation [11], d1 =

√
2γ1 exp (iθ1) and

d2 =
√

2γ2 exp (iθ2). The transmission of the system from input to output is derived
from the temporal coupled-mode equations and the result is [6]:

t(ω) = −itB −
2
(
rB
√
γ1γ2 exp (i (θ2 − θ1))− itbγ2

)
i (ω0 − ω) + γ1 + γ2 + γv

. (4.1.3)

The phase factors are determined by considering time-reversal symmetry and energy
conservation as performed in Appendix D.1. The result is:

exp (i (θ2 − θ1)) =
itB (γ2 − γ1)±

√
4γ1γ2 − t2B (γ1 + γ2)2

2
√

(1− t2B) γ1γ2
, (4.1.4)
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Inserting this equation into equation (4.1.3) leads to the following transmission function:

t(ω) =
tB (ω0 − ω)±

√
4γ1γ2 − t2B (γ1 + γ2)2 − itBγv

i (ω0 − ω) + γ1 + γ2 + γv
. (4.1.5)

The sign (parity) of this Fano line shape function is determined by the phase shift θ2−θ1
in equation (4.1.4). The positive (negative) sign is for blue (red) parity, where the parity
is defined by whether the transmission minimum is red or blue shifted relative to the
transmission maximum. Determining the phase shift between the coupling coefficients is
currently done by fitting transmission curves to coupled-mode theory.
For mirror symmetric systems the decay rates into the two ports are equal, γ1 = γ2 =
γin/2 and the transmission function becomes [3, 4, 6]:

t(ω) = t2B ± itBrB −
γin

i (ω0 − ω) + γin + γv
. (4.1.6)

In this equation the positive sign corresponds to a cavity mode that is odd (blue parity)
with respect to the mid plane and likewise the negative sign corresponds to a cavity mode
that is even (red parity) with respect to the mid plane.
If there is no PTE, tb = 1, and the system persists mirror symmetry, γ1 = γ2 = γin/2,

then the Fano line shape function in equation (4.1.6) reduces to a Lorentzian line shape
function:

t(ω) = 1− γin
i (ω0 − ω) + γin + γv

. (4.1.7)

Finding the resonance frequency

The Fano resonances has been realised in this project as sketched in Figure 4.1, where a
cavity is blocked by a partly transmitting element (PTE, blocking element) and situated
next to a cavity. The PTE has been moved back and forth with respect to the mirror
plane in order to investigate how the parity changes. This is illustrated in Figure 4.2.
However, before investigating Fano resonances the band diagram of the waveguide in

Figure 4.2 was computed. This band diagram is found in section 2.4 in Figure 2.3 and
has been reinserted here for convenience in Figure 4.3. As stated in section 2.4 the 2D
computations are closest to real life for fast light - therefore the frequencies chosen should
be in the fast light region. Furthermore it is noticed, that there are two bands for the
wave guide modes - an even modes band (the hockey stick shaped band) and an odd
modes band (the hill shaped band). The even modes band is the most interesting one,
since this allows for a single mode waveguide in the fast light region and furthermore the
even mode is more confined within the waveguide. Thereby the resonance frequency of
the cavity should be in a fast light region, where only even modes are allowed.
The determination of the resonance frequency of the cavity has been done by illumi-

nating the PhC-structure in Figure 4.2 from below by a range of frequencies and then
looking at the transmission spectrum of the propagating waveguide mode. The first two
simulations was performed without a PTE and the results of these two simulations are
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Figure 4.2: PhC with a blocked waveguide and a cavity. The arrows indicate that the PTE is
moved back and forth relative to the mid-plane of the cavity in the simulations.
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Figure 4.3: Band diagram for TM polarization of the PhC
with a waveguide depicted in Figure 4.4. The band diagram is
the one in Figure 2.3.

Figure 4.4: PhC with a line de-
fect acting as a waveguide.

seen in Figures 4.6 and 4.7. The transmission spectra are Lorentzian shaped as pre-
dicted by the coupled-mode theory in equation 4.1.7. Table 4.1 provides the simulation
parameters and the supercell for the waveguide region used in the computation are seen
in Figure 4.5. As observed in Figure 4.7 the resonance frequency is ω0 = 0.2559 (2πc/a),
which as seen on the band diagram in Figure 4.3 is in a fast light single mode region.

The transmission spectrum is found from the Bloch transmission matrix, tb,1N , describ-
ing the transmission of the Bloch modes from the first periodic section to the last. The
transmission of the fundamental mode is then described by the first matrix element in
the Bloch transmission matrix, tb,1N ;11, and it is the absolute of this matrix element,
|tb,1N ;11|, that has been plotted in Figures 4.6 and 4.7. This approach is justified, since
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Table 4.1: The simulation parameters used in the computation of the transmission spectra
seen in Figures 4.6 and 4.7.

nb nh r/a Ngunit Number of plane waves
3.1 1.0 0.30 81 101

r
a

Figure 4.5: Supercell for the geometry simulated in Figures 4.6 and 4.7. Ngunit in Table 4.1
refers to the number of grid points used in the vertical direction for constructing one supercell.
The definition of r and a is also illustrated.

ωa/2πc

Figure 4.6: The first transmission simulation
for finding the frequency range where the Fano
resonance is seen.

ωa/2πc

Figure 4.7: The second simulation, where
the frequency range is narrowed based on
the result from the first simulation.

only the fundamental mode is allowed to propagate in the waveguide - all higher order
modes that has been excited by the interaction with the cavity will eventually extinguish.
Therefore only the transmission of the fundamental mode is of interest.

4.2 Fano structures and parity

The Fano structures considered are as depicted in Figure 4.2, where the PTE (block-
ing element) has radius rblock = 0.80 r/a for the first set of simulations, such that the
blocking element is a bit smaller than the holes in the bulk lattice. The other simulation
parameters are as given in Table 4.1. The vertical distance between the center of the
cavity and the center of the blocking element is varied, in order to investigate how the
parity of the Fano lineshape function changes. The distance between the cavity and
blocking element is defined as: dblock,cav = zblock − zcav, which is illustrated in Figure
4.8.
The first Fano structure considered has mirror symmetry, i.e. dblock,cav = 0 and the

resulting transmission spectrum is seen in Figure 4.9. The spectrum has red parity,
meaning that the transmission minimum is red shifted relative to the transmission max-
imum. Likewise blue parity is when the transmission minimum is blue shifted relative
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Figure 4.8: Illustration defining the distance between the blocking element (PTE) and the
cavity.

to the transmission maximum. In the figure both the data obtained from the simula-
tion and a curve fitted to this data are seen. The simulated data are fitted to equation
(4.1.6), since the system has mirror symmetry, using Matlab’s built-in lsqcurvefit that
uses a least-squares method for determining the function parameters provided the data,
starting guesses and lower and upper bounds on the parameters. It was observed that
lsqcurvefit is highly sensitive to the starting guesses on the parameters and therefore
some trial and error was needed in order to get some good fits. The fitted parameters
for the transmission curve in Figure 4.9 are seen in Table 4.2.

Table 4.2: The fitted parameters for the simulation data presented in Figure 4.9.

tB ω0 γin γv
0.7009 0.25907 3.163× 10−5 5.268× 10−10

The blocking element was then moved back and forth relative to the cavity position in
steps of 0.02a, where a is the lattice constant of the bulk PhC structure. As will be shown
the resonance frequency of the cavity changes when the blocking element is moved. This
is due to the cavity not being confined within the circle drawn in the inset in Figure 4.9,
but instead the cavity does not have absolute borders. The cavity mode extends further
out and therefore the resonance frequency changes when the environment around it is
changed. Tools for determining the exact cavity mode has not been implemented in this
project (an approach is suggested in [21]), but a decent approximation for the cavity
mode is obtained when illuminating the waveguide with the resonance frequency of the
cavity and thereby exiting the cavity mode. This has been done in order to visualise the
cavity mode and the magnetic field of the TM polarized light is plotted in Figure 4.10.
As seen the cavity mode extends out of the cavity and couples to the waveguide - thereby
the resonance frequency of the cavity depends on the position of the blocking element.
Furthermore it is noticed that the field inside the cavity has even symmetry with respect
to the mid plane as expected when the transmission spectrum has red parity. Note that
the field plot in Figure 4.10 is the absolute value of the field and therefore the symmetry
is not directly visible. A field plot of the real value of the field is found in Appendix E
in Figure E.1.
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Figure 4.9: Transmission spectrum for symmetric Fano structure. The structure is seen in the
inset.
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Figure 4.10: The absolute of the magnetic field, Hy, for the PhC structure illuminated with
the cavity resonant mode. As seen the cavity mode is excited and extends out in the waveguide
and the nearby environment of the cavity. The PhC structure is visualized by the white ellipses.
The green ellipse indicate, that the blocking element has a different radius than the bulk holes.
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Figure 4.11: Transmission spectrum for
dblock,cav = −0.28a, meaning that the block-
ing element is positioned 0.28a before the cav-
ity. The structure is seen in the inset.
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Figure 4.12: Transmission spectrum for
dblock,cav = +0.60a, meaning that the block-
ing element is positioned 0.60a after the cav-
ity. The structure is seen in the inset.
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Figure 4.13: The decay rate ratio, γ2/γ1, plotted as function of the distance between the
blocking element and the cavity. The green and purple broken line presents the theoretical
upper and lower bound on the decay rate ratio. The color of the points indicates the parity of
the transmission spectrum.

Now moving the blocking element back and forth in the waveguide results in many
transmission spectra as the one in Figure 4.9 and they have all been fitted to equation
(4.1.5), in order to extract the parameters tB , ω0, γ1, γ2 and γv. The parity of each
transmission spectrum determines the sign in equation (4.1.5), where + is for blue parity
and - is for red parity. In Figures 4.11 and 4.12 two transmission spectra is seen for a
block-cavity distance of −0.28a and 0.60a respectively. More transmission spectra for
rblock = 0.80 r/a are found in Appendix E.2.

In [13] a natural bound on the decay rate ratio γ2/γ1 is derived. The upper and lower



4.2 Fano structures and parity 51

bounds are (1 + rB)/(1 − rB) and (1 − rB)/(1 + rB) respectively. The decay rate ratio
is plotted in Figure 4.13 as function of dblock,cav. It is noticed that the ratio fits nicely
between the upper and lower bounds and furthermore it is noticed that the parity seem
to change whenever the ratio hits the boundaries. This behaviour is a consequence of
equation (4.1.4), since the real part becomes zero whenever the decay rate ratio equals
either the upper or lower bound, indicating that the sign in equation (4.1.4) is changed.
This is derived below for the upper bound, where γ2/γ1 = (1 + rB)/(1− rB):

< [exp (i (θ2 − θ1))] = cos (θ2 − θ1) =

= ±

√
4γ2
γ1
− (1− r2

B)
(

1 + γ2
γ1

)2

2rB
√

γ2
γ1

= ±

√√√√√4 1+rB
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(4.2.1)

The derivation for the lower bound can be performed in a similar way. Thereby the
coupled-mode theory mathematically predicts whenever the parity changes. The change
in parity is likewise visualized in Figure 4.14 by plotting the real part of the phase
difference in equation (4.1.4) as function of dblock,cav, where the parameters from the fit
have been used for computing the phase difference. The parity indicated in the plot is
found directly from the transmission spectra and as seen it changes whenever the phase
difference crosses zero. Thereby the simulations support the prediction from coupled-
mode theory.
As stated earlier the resonance frequency of the cavity is expected to depend on the

relative position of the blocking element - at least when the blocking element is not
too far away from the cavity. This is observed in Figure 4.15, where it is seen that the
resonance frequency indeed depend on dblock,cav. Thereby the frequency range of interest
is different for every transmission spectrum (see Figures 4.9, 4.11 and 4.12. In order to
find the frequency range of interest the approximate resonance frequency is found by
doing a transmission computation with larger frequency steps and then by reading off
the approximate dip in the transmission spectrum the frequency range of interest is
found. This is done for the blocking element positions 0a to 1.0a with step sizes of 0.1a,
so in total 11 times and then the frequency ranges for the blocking element positions in
between could be estimated.
The exact same computations as presented above have been carried out for a smaller

blocking element with radius rblock = 0.30 r/a with the reasoning being that a smaller
blocking element will alter the field in the waveguide less and thereby analysing the field
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Figure 4.14: A plot of the real part of
the computed phase difference in equation
(4.1.4). The color indicates the parity.
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Figure 4.16: The decay rate ration plotted
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seen the parity changes whenever the ratio hits
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Figure 4.17: The phase difference plotted as
function of the distance between blocking el-
ement and cavity for rblock = 0.30r/a. The
parity changes when the sign of the phase dif-
ference changes.

distribution and parity might be simpler. The key results from these simulations are seen
in Figures 4.16 and 4.17, where the decay rate ratio and the phase difference is plotted
respectively. The plot for the resonance frequency and the direct transmission coefficient
is found in Appendix E.

By comparing Figure 4.16 with its counterpart for rblock = 0.80 r/a shown in Figure
4.13 it is noticed that the upper and lower boundaries are not as smooth as for the
bigger blocking element. This is probably due to the staircase approximation used for
constructing the PhCs. There have been used 81 grid points for each unit cell in the
propagation direction and since this number has been kept constant through all the
simulations this means that the staircase approximation uses less grid points for smaller
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Figure 4.18: PhC Fano structure. The dot-
ted line indicate the mid of the waveguide re-
gion, along which the field distribution is in-
vestigated.
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Figure 4.19: Blocked waveguide. The dotted
line indicate the mid of the waveguide region,
along which the field distribution is investi-
gated.

blocking elements, making the edge of the circle more rough. It should be stated that
whether this is the source of the less smooth boundaries in Figure 4.16 have not been
investigated - this could easily be done by increasing the number of grid points per unit
cell and see how this affects the smoothness of the boundaries. The roughness could also
be due to an increased uncertainty in the fitting parameters. As stated earlier the initial
guesses on the parameters have a large effect on the outcome of the least squares method
used by Matlab and it might be that these guesses need to be even better for smaller
blocking element.

4.3 Field distribution and parity

As seen in the previous section, coupled-mode theory well describes and predicts the
interference phenomena in PhC Fano structures. In this part the relation between field
distribution and parity is investigated. For the first investigations the entire field was
stored, but this took up 125 megabytes of space per field and this amount would quickly
fill up my dropbox space and furthermore it was difficult to get any useful information
out from the full field (full field computations are presented in Appendix E.1). There-
fore a simpler approach is used where only the field along the mid of the waveguide is
investigated as illustrated in Figure 4.18.
The idea of looking at the fields in the mid of the waveguide is to do qualitative obser-

vations of the field distribution along the waveguide and see whether there is a pattern,
that can be related to the Fano parity. The first approach was to look at the field distri-
bution at the resonance frequency in the full PhC Fano structure and compare this with
the field distribution of the same system with no cavity - i.e. a blocked waveguide struc-
ture. The two structures are seen in Figures 4.18 and 4.19 respectively. These structures
are illuminated with the resonance frequency of the Fano structure and for the mirror
symmetric Fano structure (dblock,cav = 0.0a) the resulting field distribution in the mid of
the waveguide is seen in Figure 4.20 for rblock = 0.80 r/a. As illustrated in Figure 4.2 the
blocking element has been moved back and forth in the waveguide with steps of 0.02a
and for each new position a field distribution plot has been made. Some of these are
found in Appendix E.5. Looking at all these field plots did not reveal any clear method
for determining the parity from the field distribution along the mid of the waveguide.
Essentially the parity is determined by the phase difference between the complex cou-

pling coefficients in and out of the cavity, d1 and d2, given in equation (4.1.4). These
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Figure 4.20: The absolute of Ex for both the Fano structure in Figure 4.18 and the blocked
waveguide structure in Figure 4.19. The vertical black lines indicate the position of the blocking
element and the vertical dashed line indicate the start of the periodic section after the blocking
element. rblock = 0.80r/a. Both the structures are illuminated with the resonance frequency of
the Fano structure.

coupling coefficients depend on the symmetry of the system and thereby on the distance
between cavity and blocking element. For the systems investigated in this project, it is
a bit difficult to separate the effects of the cavity and the blocking element, since the
blocking element is part of the cavity. As presented in the previous section simulations
with a smaller blocking element has been performed with the advantage being that a
smaller blocking element has a smaller effect on the cavity mode. The blocking element
is therefore reduced to rblock = 0.30 r/a, and similar plots as the one presented in Figure
4.20 and the figures in Appendix E.5 has been made. But again these plots, did not give
a clear correlation between field distribution and parity. Some of the plots are found in
Appendix E.5.

As seen in Figures 4.14 and 4.17 the parity varies periodically and this motivated in-
vestigating the correlation between parity and the position of the blocking element in
the waveguide field. In Figure 4.21 the Ex field distribution in the mid of a pure waveg-
uide illuminated with the resonance frequency of the mirror symmetric Fano structure
(see Figure 4.18) with rblock = 0.30 r/a. The color in the plot indicate what parity the
Fano structure has when the blocking element is put in that position in the waveguide.
There seem to be a change in parity around the extrema of the real and imaginary part
of the Ex field distribution. This finding is quite interesting, since this indicates that
there might be a simple correlation between the field distribution in a pure waveguide,
the position of the blocking element relative to the cavity and the parity of the Fano
resonance. Taking a closer look at Figure 4.21 reveals, that the parity does not change
at exactly the extrema but sometimes a bit before or after the extremum. This could be
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Figure 4.21: The real and imaginary part of the Ex field in the mid of the waveguide seen in
the inset. The waveguide is illuminated with the resonance frequency of the mirror symmetric
Fano structure seen in Figure 4.18, with rblock = 0.30r/a. The colors indicate the parity of the
Fano structure when the blocking element is moved along the waveguide.

due to the dependence of the resonance frequency on the position of the blocking element
- a different frequency of light in the waveguide will give a different distribution of the
field components.
The result in Figure 4.21 is quite promising and this motivated another simulation,

where the resonance frequency of the cavity was changed slightly by moving two of the
holes surrounding the cavity a little as illustrated in Figure 4.22. Moving the blocking
element with this new cavity resulted in new transmission spectra (some of which are
found in Appendix E.3) and thereby the parity as function of the position of the blocking
element.
Having determined the parity for different positions of the blocking element relative to

the cavity, the pure waveguide mode is plotted in Figure 4.23 and coloured for illustrating
the parity of the full PhC Fano structure at the different positions of the blocking element
as in Figure 4.21. In contrast to the finding in Figure 4.21 the parity no longer seems
to change at the extrema of the real and imaginary part of the Ex-field distribution.
Thereby it can be concluded that only looking at the waveguide field distribution at one
frequency for determining the parity is too simple.
To sum up the results presented in this chapter, it is concluded that the coupled-

mode theory well describes the Fano resonances observed in the transmission spectra of
different PhC cavity and waveguide configurations. Coupled-mode theory predicts the
exact change in parity from the phase difference between the coupling coefficients in and
out of the cavity as presented in Figures 4.14 and 4.17. It was found theoretically that
the parity changes whenever cos (θ2 − θ1) = 0, but relating this phase difference to the
field distribution has not been fully achieved. There is therefore still work to be done
and the next chapter will provide suggestions for future investigations.
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Figure 4.22: The resonance fre-
quency of the cavity was changed
by moving the two holes in the PhC
0.1a in the direction of the arrows.
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Figure 4.23: The real and imaginary part of the Ex

field in the mid of the waveguide seen in the inset. The
waveguide is illuminated with the resonance frequency of
the mirror symmetric Fano structure seen in Figure 4.22,
with rblock = 0.30 r/a. The colors indicate the parity of
the Fano structure when the blocking element is moved
along the waveguide.
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Discussion and Suggestions

This chapter will provide an overall discussion of the results presented in the previous
chapter and give suggestions on the next investigations for finding an easier and faster
way of determining the Fano parity of PhC cavity and waveguide structures.

5.1 Dependence of resonance frequency on position of blocking
element

This project sought a correlation between how the field distributed in the waveguide at
the resonance frequency of the cavity and the parity of the Fano resonance. As stated
in the previous chapter, no clear correlation have been found, but it is still too soon to
state that no correlation exists! The field distributions presented in Figures 4.21 and
4.23 are found by illuminating the waveguide with the resonance frequency of the mirror
symmetric PhC Fano structure, but as stated earlier the resonance frequency depend on
the position of the blocking element. This dependence is seen in Figures 4.15 and E.20
in section 4.2 and Appendix E.4. It would be interesting to investigate how the field
distribution changes with frequency in order to see whether this can explain the different
behaviours of Figures 4.21 and 4.23. It could be a coincident that the parity changes
around the extrema of the pure waveguide mode in Figure 4.21, but it could also be a
first step in finding a correlation between field distribution and parity.
Therefore a future investigation would be to determine how big an impact the depen-

dence of the resonance frequency has on the field distribution in the pure waveguide.
Another approach could be to reduce the impact of the position of the blocking ele-

ment on the resonance frequency of the cavity. This could be done by moving the cavity
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Figure 5.1: Increasing the cavity-waveguide distance should lower the dependence of the
resonance frequency on the position of the blocking element.

further into the bulk of the PhC and thereby increasing the distance to the waveguide
as illustrated in Figure 5.1. In [4] they have already investigated a similar system as
the one depicted in Figure 5.1 to the left and in that paper a dependence of the reso-
nance frequency on the size of the blocking element is reported but it is not investigated
how much the resonance frequency changes when moving the blocking element (blocking
element = PTE in [4]).
These investigations can be carried out with the already implemented code - all what’s
needed is time to do it.

5.2 Natural resonance frequency

There is no common widespread definition of what is meant by cavity modes even though
the terms are widely used [22]. In [22] they argue that the best existing method for
determining cavity mode volumes and resonance frequencies are by using quasinormal
modes (QNMs) as used in [21]. QNMs have not been implemented in this project, due to
lack of time and therefore an approximation of the cavity mode by illuminating the PhC
Fano structures with their resonance frequency have been used in order to determine the
mode profile of the cavity mode. As presented in the previous chapter no clear correlation
between the field distribution of the cavity mode and the parity have been found, but it
is discussable how good an approximation of the cavity mode it is to illuminate the Fano
structures with their resonance frequencies.
The cavity mode for the mirror symmetric Fano structures seen in Figures 4.18, 4.22
and 5.1 should as well be mirror symmetric. This is not the case as seen in Figure 4.20
indicating that this approximation of the cavity mode is not completely valid. Although
when illuminating the Fano structures at their resonance frequency almost all of the light
will take the path through the cavity instead of the direct path transmitting through the
blocking element, therefore the approximation is probably not too bad for the cavity
mode on the output side of the blocking element.
All in all it would be a good idea to get the actual cavity mode profiles and do similar
plots as presented in Figure 4.20 and in Figures E.21-E.28 in Appendix E.5 in order to
look for patterns that can be related to the Fano parity. Therefore implementing QNMs
would be another next step in this project.
The implementation will not be too difficult since the Fourier modal method with a
Bloch mode expansion still can be used as presented in [23]. The difference being that
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Figure 5.2: Illustration of the reflection and propagation matrices for the cavity section, wc,
of a structure consisting of W sections.

in addition the following eigenvalue problem for the cavity section needs to be solved
[21, 23]:

M
wc

(λ0)cwc = cwc , (5.2.1)

whereM
wc

= rb
bot
p
−
wc
rb

top
p

+
wc

and wc refers to the cavity section. rb
bot is the reflection

matrix between the cavity section and all the sections below it and correspondingly rb
top

is the reflection matrix between the cavity section and all sections above it. p±wc
is the

forward and backward propagation matrix inside the cavity section. Figure 5.2 illustrates
the geometrical meaning of the matrices.

From equation 5.2.1 it is noted that the eigenvalue ofM
wc

must be unity but this is not
possible for real wavelengths, λ0, since the elements of the reflection matrices, r, will be
less than unity and absolute of the elements of the propagation matrices, |p±wc

|, will at
maximum be unity. The leakage of the cavity can be taken into account by letting λ0 take
complex values, since for complex wavelengths |p±wc

| can take values larger than unity,
thereby making it possible for M

wc

to have an eigenvalue of unity [21, 23]. Thereby
solving equation (5.2.1) will lead to a complex wavelength of the cavity mode. The
complex part thus gives the leakage out of the cavity and the real part is the physical
resonance wavelength.

5.3 Simplifying the problem by considering fewer Bloch modes

Basically the parity is determined by the phase difference of the complex couplings coef-
ficients from the input port to the cavity and from the cavity to the output port. This
phase difference completely determines the parity of the Fano resonance. An approach
for getting a better understanding of these couplings coefficients could be to simplify the
Bloch reflection and transmission matrices by considering only a few Bloch modes when
constructing the reflection and transmission matrices between the periodic sections. So
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instead of considering all N forward and backward propagating Bloch modes, then tak-
ing only 3 forward and 3 backward propagating modes for instance will result in 3 × 3
transmission and reflection matrices - as can be seen from equations (3.1.92) and (3.1.93).
The chosen modes should be the 3 forward and 3 backward propagating modes, whose
absolute eigenvalue are closest to unity. The reasoning for doing this is that these few
Bloch modes might give a good description of the full Bloch mode, since all the higher
order modes are exponentially decaying.
By reducing the dimensionality of the transmission and reflection matrices all the higher
order Bloch modes are filtered out, when looking at the field distributions as in Figure
4.20. This approach is quite straightforward to do with the already developed code, since
all is needed is to pick out the wanted Bloch modes. The dimensions of the matrices
should not cause any problems as will be shown here. The Bloch mode matrices, c±1 , c±2 ,
d′±1 and d′±2 will be N × 3 matrices. These are used in equations (3.1.92) and (3.1.93)
for finding the reflection and transmission matrices between adjacent sections. In these
equations the scalar product matrices, 〈e2,1|h1,2〉 are N × N matrices and thereby the
following product will result in N × 3 matrices as well:

〈e2|h1〉
T
(
c+

2 + d′+2

)
= (N × 3)matrix. (5.3.1)

This product is then multiplied with
(
c−1 + d′−1

)−1
and inverting a non-square matrix

is possible by using pseuodoinverse [24]. Matlab uses this automatically, when using the

\-operator and thereby the product
(
c−1 + d′−1

)−1
〈e2|h1〉

T
(
c+

2 + d′+2

)
will give a 3× 3

matrix and the coupling between the cavity section and the in- and output port of the
waveguide will be simpler to investigate.
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Conclusion and Outlook

This final chapter of the thesis will summarize and conclude on the work presented in
the preceding chapters and provide an outlook for future work based on the suggestions
given in Chapter 5.

6.1 Review of thesis

In this project optical simulation tools based on Fourier modal method and a Bloch
modal formalism has been developed from scratch in Matlab and used for investigating
PhC structures.
Chapter 2 started from Maxwell’s equations and derived the 2D eigenvalue problems

for TE and TM polarization in layers with uniformity in the propagation direction.
Furthermore a brief crash course on the most basic optical properties of PhCs was given
in this chapter and in the end of the chapter it was discussed what 2D computations
of PhCs can be used for compared to 3D computations. As long as the simulations are
within the fast light region 2D computations can be used for qualitative purposes.
Chapter 3 went through the implementation of the Fourier modal method, starting by

solving the eigenvalue problems derived in Chapter 2 using a plane-wave expansion tech-
nique. Employing boundary conditions at the layer interfaces reflection and transmission
matrices between adjacent layers was computed and then using a scattering matrix for-
malism, the complete transmission and reflection properties of the PhC structures was
calculated. After this Bloch modes was introduced and the electromagnetic field was ex-
panded on these. The Bloch modes was found by solving an eigenvalue problem for each
periodic section, by using the scattering matrices computed from the eigenmodes. The
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Bloch modes was classified as either forward or backward propagating and by employing
boundary conditions at the periodic section interfaces, the transmission and reflection
matrices for the Bloch modes between adjacent periodic sections was computed. The
scattering matrix formalism was then used on these transmission and reflection matrices
in order to get the complete transmission and reflection properties for the whole structure.
How to visualize the fields in the periodic elements is described in details in Appendix
B.9. The chapter then gave an overview of the implementation of the method and vali-
dated the method by comparing results produced with the developed code with similar
results from the literature. Based on [14, 19] the chapter encompass a section with a
discussion on why Fourier modal method is advantageous, when performing simulations
on PhC structures. Especially the periodicity of PhCs are well exploited in the Fourier
modal method with the Bloch modal expansion. The chapter finished with examples of
observed numerical faults in the code, that origin from the scattering matrix algorithm
given in equations (3.1.58)-(3.1.65) and concluded that the numerical instability only
affects the results in a few cases, that are easily identified. Therefore the results are in
general reliable.

Chapter 4 presented the obtained simulation results using the developed code. The
first section introduced central results from the coupled-mode theory and gave the trans-
mission function for general Fano structures, mirror-symmetric Fano structures and
Lorentzian structures. The method for finding the resonance frequency of the Fano
structures was outlined and it was assured that the resonance frequencies are within
the fast light region of the band diagram, such that 2D computations are sufficient for
qualitative purposes. The next section presented computed transmission spectra, which
were fitted to the transmission functions derived from coupled-mode theory. The ex-
tracted parameters were then plotted and it was concluded that coupled-mode theory
well describes the obtained simulation results. The parity changes in Figures 4.14 and
4.17, when cos (θ2 − θ1) = 0 as predicted by coupled-mode theory and since the phase
difference completely determines the parity the next investigation of finding a correlation
between field distribution and parity was motivated. This brings us to the last section
of Chapter 4 that presented a plot of the field distribution of the cavity mode and block
mode, but concluded that no correlation between these field distributions in the mid of
the waveguide and the parity of the Fano resonances was found. It was found that the
parity changes at the extrema of the real and imaginary parts of the Ex field distribution
in the mid of a pure waveguide structure, but when the cavity of this Fano structure was
changed a little, this behaviour was not reproduced. These results are seen in Figures
4.21 and 4.23. The chapter concluded that no correlation have been found (yet!) between
field distribution and parity of Fano resonances.

Chapter 5 gave three suggestions for further investigations on determining a field-parity
correlation. The first was to further investigate, whether the different results presented in
Figures 4.21 and 4.23 can be explained by the dependence of the resonance frequency on
the position of the blocking element. The next suggestion was to implement quasi-normal
modes (QNMs) in order to visualize the cavity mode. In this project an approximation
of the cavity mode has been realised by illuminating the PhC Fano structures at the
resonance frequency. Therefore implementing QNMs might provide a better understand-
ing on the correlation between field distribution and parity. The final suggestion was to
simplify the transmission and reflection matrices by only considering a few Bloch modes.
This could provide a better understanding on the coupling between the waveguide re-
gions and the cavity region and thereby the phase differences that determines the parity
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as presented in Chapter 4.
All this leads to the following overall conclusions on the work presented in this thesis:

1. Through theoretical considerations and 2D simulations it is concluded that the
parity of PhC Fano structures are uniquely determined by the phase difference
between the coupling coefficients between the cavity and the in- and output port
of the waveguide.

2. There was not found a clear correlation between the field distribution in the mid
of the waveguide and the parity of the Fano resonances, when the PhC waveg-
uide and cavity structure was illuminated with their resonance frequency. Further
investigations are needed and suggested for finding this correlation.

This brings us to the outlook of this thesis.

6.2 Outlook

In Chapter 5 three suggestions for future work were given and the order in which they
should be carried out will be discussed here. The first suggestion (section 5.1) will take
the least amount of time to carry out and will thereby quickly give an indication on what
to do next. Therefore it is recommended that the next investigations should start with
determining the impact of the resonance frequency on the field distribution in a pure
waveguide. This will reveal whether the correlation between field extrema and change in
parity presented in Figure 4.21 is a coincidence or a physical phenomena that is observed
when the resonance frequency of the Fano structures have a minor effect on the pure
waveguide field distribution.
Whether investigating the QNMs of the Fano structures or simplifying the transmission

and reflection matrices are the best next step is hard to say. Considering fewer Bloch
modes should be quite straightforward to implement, since the Fourier modal method
is perfectly able to handle this. Therefore only minor changes in the code is needed for
this investigation. However, QNMs will provide a visualization of the cavity modes and
thereby might reveal a direct correlation between the distribution of the cavity mode and
the block mode, and the resulting parity of the Fano structure. Implementing QNMs
will probably take a bit more time but should not be too demanding. The experience
made in this project though, is that writing the code is not what takes time - it is the
debugging afterwards.
Simplifying the transmission and reflection matrices might make it possible for identi-

fying the phase differences associated with coupling in and out of the waveguide region.
As illustrated in Figure 6.1 the transmission and reflection matrices assures the conti-
nuity of the Bloch modes along the interface between the periodic sections. Considering
fewer Bloch modes and their spatial distribution at the interface might make it possi-
ble to extract the phases that the field obtains when coupling in and out of the cavity
region. How this should be realized is not fully developed or thought through but a
better understanding on these phases from coupled-mode theory might be obtained from
this approach. Thereby simplifying the transmission and reflection matrices is not the
challenge here - instead the challenge is to try and extract the phase terms from these
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Figure 6.1: The transmission and reflection matrices matches the Block modes in each peri-
odic section, such that they are continuous along the interface as indicated in the left figure.
Considering fewer Bloch modes might give the opportunity to find the coupling between the
Bloch mode in the waveguide region and the Bloch mode in the cavity region and the phase
term related to this coupling.

matrices. Therefore implementing QNMs might be a better next step since this will
probably give results before the other approach would.
The considerations on the next investigations are not hypothetical, since I have sub-
mitted for CLEO Europe 2015 in June and hopefully they will accept my submission
(see Appendix F for the submission abstract). I start on my PhD in mid of March and
will spend the first few months on (hopefully) finishing the research started in this the-
sis on a parity-field distribution correlation. This limits the amount of time for further
investigations and therefore time is an important consideration when choosing what to
do next.
The above gave the short term outlook. Expanding the outlook will motivate why re-
searching these Fano structures are important as done in the introduction. You could
ask the question, why bother being able to predict the parity of a given Fano struc-
ture when the parity is uniquely determined from computing the transmission spectrum?
Researching in this field are still on a fundamental level, so the purpose of further in-
vestigations are to increase the understanding on what determines the parity. Increasing
the understanding might provide new ideas for engineering the Fano structures, such
that the parity is a choice rather than a consequence. As stated in the introduction
Fano resonances can be used for optical switching [3] and in PhC lasers [1]. Thereby the
devices using Fano resonances are already in the pipeline and therefore increasing the
understanding on the parity of Fano structures are still an important research field.
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Appendix for theoretical concepts

A.1 Maxwell’s equations ins frequency domain

The Fourier transform of a field F used in the following derivation is [15, 16]:

F(r, t) = 1
2π

∫ ∞
−∞

F(r, ω) exp (iωt) dω; F(r, ω) =
∫ ∞
−∞

F(r, t) exp (−iωt) dt, (A.1.1)

where F can be replaced by either E or H. The Fourier transforms of the electric and
magnetic susceptibilities, χe,m are:

χe,m(r, ω) =
∫ ∞
−∞

χe,m(r, t) exp (−iωt) dt. (A.1.2)

From equations (A.1.1) and (A.1.2) and using the convolution theorem of Fourier theory
the electric displacement field, D, in the frequency-domain is given as [16]:

D(r, ω) = ε0ε(r, ω)E(r, ω). (A.1.3)

The current density in equation (2.1.2) can be split into two terms, a source term, Js,
and an induced current term, Jc. The induced current can be described as a linear
response expression in the time domain [16]:

Jc(r, t) =
∫ ∞

0
σ(r, τ)E(r, t− τ)dτ. (A.1.4)
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This is actually Ohm’s law, where σ is the conductivity of the material. By Fourier
transforming this expression the induced current in the frequency domain is obtained:

Jc(r, ω) = σ(r, ω)E(r, ω). (A.1.5)

Fourier transforming Maxwell’s Equation (2.1.2) and using equation (A.1.5) this equa-
tion in the frequency domain becomes:

∇×H(r, ω) = iωε0

(
D(r, ω)− iσ(r, ω)

ωε0
E(r, t)

)
+ Js(r) (A.1.6)

= iωε0

(
ε(r, ω)− iσ(r, ω)

ωε0

)
E(r, t) + Js(r), (A.1.7)

where the term in the parenthesis is referred to as the effective dielectric constant, εeff .
Note also that the current source only has a spatial dependence, since the time (and
thereby frequency) dependence is entirely in the induced current. Fourier transforming
the constitutive equation (2.1.8) gives the B-H relation in the frequency domain:

B(r, ω) = µ0µ(r, ω)H(r, ω). (A.1.8)

Now Maxwell’s equations (2.1.1) and (2.1.2) can be derived in the frequency domain
by inserting equation (A.1.1) for F = E and F = H and using the constitutive material
equations (A.1.3) and (A.1.8). This leads to [15, 16]:

∇×E(r, ω) = −iωB(r, ω) = −iωµ0µ(r, ω)H(r, ω), (A.1.9)
∇×H(r, ω) = iωD(r, ω) + Js(r) = iωε0ε(r, ω)E(r, ω) + Js(r). (A.1.10)

Thereby Maxwell’s equations in the frequency domain has been derived. Note that ε is
the effective dielectric constant.

A.2 Derivation of wave equations

The starting point for deriving the wave equations (2.2.6) and (2.2.7) are equations
(2.1.10) and (2.1.11) which are restated here for convenience:

∇×E(r, ω) = −iωB(r, ω) = −iωµ0µ(r, ω)H(r, ω), (A.2.1)
∇×H(r, ω) = iωD(r, ω) + Js(r) = iωε0ε(r, ω)E(r, ω) + Js(r). (A.2.2)

For now Js = 0 and µ = 1. Taking the curl on both sides of equations (A.2.1) and
(A.2.2) gives:

∇×∇×E(r, ω) = −iωµ0∇×H(r, ω), (A.2.3)
∇×∇×H(r, ω) = iωε0∇× (ε(r, ω)E(r, ω)) . (A.2.4)
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Then using equation (A.2.2) in equation (A.2.3) and the vector relation ∇ × (εE) =
ε∇×E +∇ε×E will lead to:

∇×∇×E(r, ω) =
(
ω

c0

)2
ε(r, ω)E(r, ω) = k2

0ε(r, ω)E(r, ω), (A.2.5)

∇×∇×H(r, ω) = iωε0 (ε∇×E(r, ω) +∇ε×E(r, ω)) , (A.2.6)

where c0 = (ε0µ0)−1/2 is the speed of light in vacuum. The vector identity ∇×∇×F =
−∇2F +∇ (∇ · F) is now used giving:

−∇2E(r, ω) +∇ (∇ ·E(r, ω)) = k2
0ε(r, ω)E(r, ω), (A.2.7)

−∇2H(r, ω) +∇ (∇ ·H(r, ω)) = iωε0 (ε(r, ω)∇×E(r, ω) +∇ε(r, ω)×E(r, ω)) .
(A.2.8)

Maxwells equation (2.1.3) states that ∇ · (ε(r, ω)E(r, ω)) = 0 and this statement leads
to:

∇ · (ε(r, ω)E(r, ω)) = 0 ⇒
E(r, ω)∇ε(r, ω) + ε(r, ω)∇ ·E(r, ω) = 0 ⇒

∇ ·E(r, ω) = −E(r, ω) 1
ε(r, ω)∇ε(r, ω) = −E(r, ω)∇ ln (ε(r, ω)) . (A.2.9)

Using this in equation (A.2.7) the wave equation (2.2.6) comes out:

∇2E(r, ω) +∇ (E(r, ω) · ∇ ln ε(r, ω)) + ε(r, ω)k2
0E(r, ω) = 0 (A.2.10)

Now turning back to equation (A.2.8). Using that µ(r, ω) = 1 for non-magnetic materi-
als and using equations (A.2.1) and (A.2.2) to get rid of the electric fields, the equation
now looks like:

−∇2H(r, ω) = iωε0

[
ε(r, ω) (−iωµ0H(r, ω)) +∇ε(r, ω)× 1

iωε0ε(r, ω)∇×H(r, ω)
]
⇒

−∇2H(r, ω) = ω2ε0ε(r, ω)µ0H(r, ω) +∇ε(r, ω)× 1
ε(r, ω)∇×H(r, ω) ⇒

−∇2H(r, ω) = ω2ε0ε(r, ω)µ0H(r, ω) + 1
ε(r, ω)∇ε(r, ω)×∇×H(r, ω) ⇒

∇2H(r, ω) + k2
0ε(r, ω)H(r, ω) +∇ ln (ε(r, ω))×∇×H(r, ω) = 0. (A.2.11)

In that way the wave equation (2.2.7) for the magnetic field has been derived.
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A.3 Derivation of field components

The transverse part of the electric field can be found solving equation (2.3.6). Then
using Maxwell’s equation (2.1.3), the constitutive relation (2.1.7) and that there is no
free charges, ρ = 0, the ez component is found:

∇·D(r, t) = ∇ · (ε0ε(r⊥)E(r, t)) = 0 ⇒
∇ · (ε(r⊥)e(r⊥) exp (iβz)) = 0 ⇒

ε(r⊥)∂z (ez exp (iβz)) +∇⊥ · (ε(r⊥)e⊥(r⊥) exp (iβz)) = 0 ⇒

ez = ∇⊥ · (ε(r⊥)e⊥(r⊥))
−iβε(r⊥) = ∇⊥ · (εe⊥)

−iβε
. (A.3.1)

Thereby all three electric field components are known. The magnetic field components
are found using equation (2.1.10), with µ = 1:

∇×E(r, ω) = −iωB(r, ω) = −iωµ0H(r, ω). (A.3.2)

This equation relates the transverse part of E with the z-part of H and vice versa. The
z-part is straightforward to determine:

ẑ · ∇ ×E⊥ = −iωµ0Hz ⇒ (A.3.3)

hz = ẑ · ∇ × e⊥
iµ0ω

. (A.3.4)

As for the transverse part it demands a bit more vector calculus. Again starting from
equation A.3.2 and do the cross product leads to:

∂yEz − ∂zEy∂zEx − ∂xEz
0

 = −iωµ0

Hx

Hy

0

 , (A.3.5)

where the z-part has been left out for convenience. The vector to the left can be written
in a shorter form:∂yEz − ∂zEy∂zEx − ∂xEz

0

 = ẑ×

∂zEx − ∂xEz∂zEy − ∂yEz
0

 = ẑ× (∂zE⊥ −∇⊥Ez) . (A.3.6)

Using the two above equations and equation (A.3.1) this will lead to:

ẑ× (∂z (() e⊥ exp (iβz))−∇⊥ez exp (iβz)) = −iωµ0h⊥ exp (iβz) ⇒ (A.3.7)

h⊥ = 1
µ0ω

ẑ×
(
βe⊥ −∇⊥

[
∇⊥ · (εe⊥)
−iβε

])
. (A.3.8)
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Thereby all the field components have been determined only from knowing the trans-
verse part of the electric field.
If only the transverse part of the magnetic field is known, then using a similar approach

as above the other four field components can be determined. The hz component is found
using Maxwell’s equation (2.1.4) with the constitutive equation (2.1.8) and setting µ = 1:

∇·B(r, t) = ∇ · (µ0H(r, t)) = 0 ⇒
∇ · (h(r⊥) exp (iβz)) = 0 ⇒

∂z (hz exp (iβz)) +∇⊥ · (h⊥(r⊥) exp (iβz)) = 0 ⇒

hz = i

β
∇⊥ · h⊥(r⊥) = i

β
∇⊥ · h⊥. (A.3.9)

Now all the magnetic field components are known, all the electric field components can
be determined using Maxwell’s equation (2.1.11). The approach is very similar for finding
the magnetic field components when the electric field is known, so the derivation will not
be given. The electric field components can be derived to be:

ez = i

ωε0εβ
ẑ · ∇ × h⊥, (A.3.10)

e⊥ = −1
ωε0ε

ẑ×
(
βh⊥ −∇⊥

[
∇⊥ · (εh⊥)

β

])
(A.3.11)

A.4 Decoupling of eigenvalue problems

For the electric field the eigenvalue problem is given in equation (2.3.6). Considering a
slab waveguide the dielectric function only has an x-dependence. This means that both
the electric and magnetic field only varies in x, meaning ∂ye = 0 and ∂yh = 0. This will
now be used in order to decouple equation (2.3.6):

∇2
⊥e⊥ +∇⊥ (e⊥ · ∇ ln ε(r⊥)) + ε(r⊥)k2

0e⊥ = β2e⊥ ⇒ (A.4.1)[
∂2
xex + ∂2

yex + ∂x (ex∂x ln ε(x)) + ε(x)k2
0ex

∂2
xey + ∂2

yey + ∂y (ey∂y ln ε(x)) + ε(x)k2
0ey

]
= β2

[
ex
ey

]
⇒{

∂2
xex + ∂x (ex∂x ln ε(x)) + ε(x)k2

0ex = β2ex
∂2
xey + ε(x)k2

0ey = β2ey
. (A.4.2)

And in the same way the eigenvalue problem in equation (2.3.14) is decoupled into two
equations. The decoupling is not as trivial as before due to the two cross products in the
eigenvalue problem:

∇2h⊥ + k2
0ε(r⊥)h⊥ +∇ ln (ε(r⊥))×∇× h⊥ = β2h⊥. (A.4.3)

Therefore the cross products are firstly evaluated:
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∇ ln (ε(r⊥))×∇× h⊥ =

∂x ln ε(x)
∂y ln ε(x)
∂z ln ε(x)

×
∂x∂y
∂z

×
hxhy

0


=

∂x ln ε(x)
∂y ln ε(x)
∂z ln ε(x)

×
 −∂zhy

∂zhx
∂xhy − ∂yhx


=

∂x ln ε(x)
0
0

×
 0

0
∂xhy

 =

 0
−∂x ln ε(x)∂xhy

0

 . (A.4.4)

Now it is straightforward decoupling the eigenvalue problem:

∇2h⊥ + k2
0ε(r⊥)h⊥ +∇ ln (ε(r⊥))×∇× h⊥ = β2h⊥ ⇒{
∂2
xhx + k2

0ε(x)hx = β2hx
∂2
xhy + k2

0hyε(x)− ∂x ln ε(x)∂xhy = β2hy
. (A.4.5)

In that way the eigenvalue problems have been decoupled into two equations each.
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Appendix for computational method

B.1 Li’s Factorization Rules

A plane wave expansion is used when solving the eigenvalue problems as shown in section
3.1. Such two periodic functions and their product will be considered here:

f(x) =
m=∞∑
m=−∞

fm exp (imKx) , (B.1.1)

g(x) =
n=∞∑
n=−∞

gn exp (inKx) , (B.1.2)

h(x) =f(x)g(x) =
m=∞∑
m=−∞

hm exp (imKx)⇒ (B.1.3)

h(x) =
m=∞∑
m=−∞

fm exp (imKx)
n=∞∑
n=−∞

gn exp (inKx)

=
m=∞∑
m=−∞

n=∞∑
n=−∞

fm−ngn exp (imKx) , (B.1.4)

where K = 2π/Lx. From this it is seen that:

hm =
n=∞∑
n=−∞

fm−ngn. (B.1.5)
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In order to vectorize equation (B.1.5) a truncation of the sum is needed. This is chosen
to be from −M to M , such that the function f is given by a vector f = [f−M , ..., fM ] of
length N = 2M + 1. Now the expansion vector, h, for h can be computed as: [16]

h = Fg, (B.1.6)

where F is the N ×N Toeplitz matrix with the coefficients of the Fourier series of f as
the elements:

F =


f0 f−1 f−2 ... f−N+1
f1 f0 f−1 ... f−N+2
f2 f1 f0 ... f−N+3
... ... ... ... ...

 . (B.1.7)

The matrix product in equation (B.1.6) is referred to as the direct rule for the product
h(x) = f(x)g(x). But their exist another way to calculate this product. First consider
the function f†(x) = 1/f(x) given by the series expansion: [16]

f†(x) =
m=∞∑
m=−∞

f†m exp (imKx) (B.1.8)

and the corresponding Toeplitz F †. Since h = (f†)−1g, the Fourier expansion coeffi-
cients of h can likewise be computed by:

h =
(
F †
)
g. (B.1.9)

The matrix product in equation (B.1.9) is referred to as the inverse rule.

Equations (B.1.6) and (B.1.9) give two ways of computing the same product. Which
one to choose depends on which product converges fastest for N → ∞. The rules for
choosing the right product are known as Li’s factorization rules [16]. The rules are based
on the discontinuities of the function f(x) and g(x).

In Figure B.1 there are shown two types of discontinuities in f(x) and g(x) - one where
they are not and one where they are removable. Li’s factorization rules are then given
as the following:

1. If the discontinuities are of type 1, then the fastest convergence is obtained by
choosing the product in equation (B.1.6) - the direct rule.

2. If the discontinuities are of type 2, then the fastest convergence is obtained by
choosing the product in equation (B.1.9) - the inverse rule.
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f(x) f(x)

g(x) g(x)

h(x) h(x)

Type 1 Type 2

x xa) b)

Figure B.1: a) The discontinuities in f(x) and g(x) are not complementary and therefore
h(x) = f(x)g(x) is also discontinuous. b) The discontinuities in f(x) and g(x) are complemen-
tary and thereby the discontinuities in h(x) = f(x)g(x) are removable.

B.2 Evaluation of εj and aj elements

The integrals in equations (3.1.9) and (3.1.10) is evaluated analytically for the PhC
structures investigated in this project, since ε(x) is a piecewise constant function as
illustrated in Figure B.2. For the dielectric function illustrated in Figure B.2 the integrals
are evaluated as:

εj = 1
Lx

∫ Lx

0
ε(x) exp (−ijKx) dx ⇒ (B.2.1)

εj = 1
Lx

[ε1 (exp (−ijKx1)− 1) + ε2 (exp (−ijKx2)− exp (−ijKx1))

+ ε1 (exp (−ijKx3)− exp (−ijKx2)) + ε2 (exp (−ijKx4)− exp (−ijKx3))
+ ε1 (exp (−ijKLx)− exp (−ijKx4))] (B.2.2)

aj = 1
Lx

∫ Lx

0

1
ε(x) exp (−ijKx) dx⇒ (B.2.3)

aj = 1
Lx

[
1
ε1

(exp (−ijKx1)− 1) + 1
ε2

(exp (−ijKx2)− exp (−ijKx1))

+ 1
ε1

(exp (−ijKx3)− exp (−ijKx2)) + 1
ε2

(exp (−ijKx4)− exp (−ijKx3))

+ 1
ε1

(exp (−ijKLx)− exp (−ijKx4))
]

(B.2.4)

B.3 Evaluation of scalar product integral

Equation (3.1.34) gives the formal definition of a scalar product used to normalise the
mode profiles. This appendix will evaluate this integral analytically. There are two cases
of interest: TM and TE polarization. Starting with TM polarization, the first step is to
insert the plane wave expansions for ex and hy given in equations (3.1.4) and (3.1.3) into
equation (3.1.34):
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ε(x)

x0 x1 x2 x3 x4

ε1

ε2

Lx

Figure B.2: Illustration of the dielectric function in a single layer of a PhC.

〈em|hn〉 =
∫

(exm × hyn) · ẑdr =
∫

(exm × hyn) · ẑdr

=
∫
Lx

0

[ j=M∑
j=−M

um,j exp (i(jK + α/Lx)x)

 x̂

×

 j′=M∑
j′=−M

vn,j′ exp (i(j′K + α/Lx)x)

 ŷ
]
· ẑdx. (B.3.1)

From now on α = 0, since this is the case for all simulations performed in this project.
Now evaluating the crossproduct and remembering that (x̂× ŷ) · ẑ = 1 the expression
becomes:

〈em|hn〉 =
∫
Lx

0

[ j=M∑
j=−M

um,j exp (i(jK + α/Lx)x)

 x̂

×

 j′=M∑
j′=−M

vn,j′ exp (i(j′K + α/Lx)x)

 ŷ
]
· ẑdx

=
∑
j

∑
j′

um,jvn,j′

∫ Lx

0
exp (iK(j + j′)x) dx, (B.3.2)

where it is noted that the integral is in fact a Kronecker delta, δj,−j′ . Using this the
scalar product reduces to:

〈em|hn〉 =
∑
j

∑
j′

um,jvn,j′Lxδj,−j′ = Lx
∑
j

um,jvn,−j , TM (B.3.3)

For the case of TE polarization the derivation is very similar. The only difference is
that the cross product is now (ŷ× x̂) · ẑ = −1, thereby changing the sign of equation
(B.3.3):

〈em|hn〉 = −
∑
j

∑
j′

um,jvn,j′Lxδj,−j′ = −Lx
∑
j

um,jvn,−j , TE (B.3.4)



B.4 Transmission and reflection matrices 75

B.4 Transmission and reflection matrices

First the equation (3.1.44) will be written in matrix form. For convenience the equation
is restated here:

2δmn =
N∑
j=1

(〈e2j |h1n〉+ 〈e1n|h2j〉)t12;jm. (B.4.1)

The subscripts jm in t12;jm means the element in the j’th row and the m’th column
and likewise 〈e2j |h1n〉 is the (j, n)-element of the scalar product matrix 〈e2|h1〉. Now
the sum can be replaced by a dot product as:

2δmn = 〈e2:|h1n〉
T
· t12;:m + 〈e1n|h2:〉 · t12;:m, (B.4.2)

where T denotes transposition and :, means all elements in the column or row depending
on whether : is the first or last subscript respectively. The transposition is needed for the
next step when going from vectors to matrices. Now 〈e2:|h1n〉

T
·t12;:m means the n’th row

of 〈e2|h1〉
T

dotted with the m’th column of t12 and this gives exactly the (n,m) element
of a matrix. So doing this for all rows and columns the result is matrix multiplication:

2I =
(
〈e2|h1〉

T

+ 〈e1|h2〉
)
t12, (B.4.3)

where the I is the identity matrix appearing from the Kronecker delta, δmn. Isolating
t12 gives the transmission matrix:

t12 = 2
(
〈e2|h1〉

T

+ 〈e1|h2〉
)−1

. (B.4.4)

With similar considerations equation (3.1.45) can be written in matrix form as:

r12 = 1
2

(
〈e2|h1〉

T

+ 〈e1|h2〉
)
t12. (B.4.5)

B.5 Implementation of scattering matrix formalism

Implementing the scattering matrix formalism (equations (3.1.58)-(3.1.65)) demands a
good and systematic bookkeeping system. The cell-type in Matlab have been really
useful for this, since this allows to store a lot of matrices in a single cell - and these
matrices do not even have to be the same size! Actually anything can be stored in a
Matlab cell - no matter what type it is.
In the equations (3.1.58)-(3.1.65) there is an matrix inversion. In Matlab performing

such an inversion by typing: M−1 is numerically unstable according to Matlab documen-
tation. Instead the \ operator should be used. This operator is defined as: A

−1
B = A\B.
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The first step in implementing the scattering matrix formalism is therefore to calculate
the matrices that need to be inverted:

InvM1 = I − rq1p
−
q rq,q+1p

+
q (B.5.1)

InvM2 = I − rq,q−1p
−
q rq,Np

+
q (B.5.2)

Then these matrices can be used in the equations (3.1.58)-(3.1.65) by using the \ oper-
ator in Matlab. Below the implementation in equation (3.1.58) and (3.1.65) are shown:

r1,q+1 = r1q + tq1p
−
q rq,q+1p

+
q InvM1\t1q, (B.5.3)

tN,q−1 = tq,q−1p
−
q tN,q + tq,q−1p

−
q rq,Np

+
q InvM2\

(
rq,q−1p

−
q tN,q

)
(B.5.4)

where the parenthesis in the second line are shown to clarify the factorial order of the
matrices. The matrices are then stored in a Matlab cell of size (1 × N − 1) as shown
below:

Cell(r1,q) =
{
r12, r13, ... r1N

}
(B.5.5)

Cell(tN,q) =
{
rN1, rN2, ... rN,N−1

}
(B.5.6)

B.6 Derivation of generalized eigenvalue problem for Bloch
modes

The starting point for deriving equation (3.1.81) are equations (3.1.79) and (3.1.80),
which are restated here for simplicity:

[
c4
d′1

]
=
[
S11 S12

S12 S22

] [
c1
d′4

]
, (B.6.1)[

c4
d′4

]
= Λ

[
c1
d′1

]
. (B.6.2)

Now equation (B.6.1) will be written into two equations and Bloch’s theorem is then
applied:
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[
c4
d′1

]
=
[
S11 S12

S12 S22

] [
c1
d′4

]
⇒ (B.6.3){

c4 = S11c1 + S12d′4
d′1 = S12c1 + S22d′4

}
⇒ (B.6.4){

Λc1 = S11c1 + ΛS12d′1
d′1 = S12c1 + ΛS22d′1

}
. (B.6.5)

Then the last equation above is rearranged such that the eigenvalue, Λ, is on the rhs
and such that the sign in front of c1 and d′4 are the same in both equations:

{
S11c1 = Λc1 − ΛS12d′1
S12c1 − d′1 = −ΛS22d′1

}
. (B.6.6)

This equation can then be written in matrix form leading to the generalized eigenvalue
problem:

S11c1 + 0d′1 = Λ
(
Ic1 − S12d′1

)
S12c1 − d′1 = Λ

(
0c1 − S22d′1

) ⇒ (B.6.7)

[
S11 0
S12 −I

] [
c1
d′1

]
= Λ

[
I −S12

0 −S22

] [
c1
d′1

]
(B.6.8)

Thereby the Bloch expansion vectors are found by solving the above generalized eigen-
value problem.

B.7 Evaluation of power flow integral

The power flow integral given in equation (3.1.84) is here evaluated. For convenience the
integral is restated here:

Pm = 1
2

∫
Re
(
ΨE
m ×ΨH∗

m

)
· ẑdr⊥. (B.7.1)

For evaluating this integral the definition of the Bloch modes, ΨE
m and ΨH

m, given
in equations (3.1.75) and (3.1.76) is used and they are also restated here without the
periodic section and layer subindices, w and q, for simplicity:
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ΨE±
m (r⊥, z) =

N∑
j=1

[
c±mje

+
j (r⊥) exp (iβj(z − z′)) + d±mje

−
j (r⊥) exp (−iβj(z − z′))

]
,

(B.7.2)

ΨH±
m (r⊥, z) =

N∑
j=1

[
c±mjh

+
j (r⊥) exp (iβj(z − z′)) + d±mjh

−
j (r⊥) exp (−iβj(z − z′))

]
,

(B.7.3)

The derivation will be done for TM polarized light. Inserting the expansion for the
eigenmodes given in equations (3.1.3) and (3.1.4) into equations (B.7.2) and (B.7.3) the
Bloch modes for TM polarized light becomes:

ΨE
m(x, z) =

N∑
j=1

[
cmj

∑
l

ulj exp (ilKx) + dmj
∑
l′

ul′j exp (il′Kx)
]
x̂, (B.7.4)

ΨH
m(x, z) =

N∑
j′=1

[
cmj′

∑
n

vnj′ exp (inKx)− dmj′

∑
n′

vn′j′ exp (in′Kx)
]
ŷ, (B.7.5)

where n is an index and NOT the refractive index. Equations (B.7.4) and (B.7.5) are
now inserted in equation (B.7.1) giving:

Pm = 1
2

∫
Re
(
ΨE
m ×ΨH∗

m

)
· ẑdr⊥ (B.7.6)

= 1
2

∫
Re
(

N∑
j=1

[
cmj

∑
l

ulj exp (ilKx) + dmj
∑
l′

ul′j exp (il′Kx)
]
x̂

×
N∑
j′=1

[
c∗mj′

∑
n

v∗nj′ exp (−inKx)− d∗mj′

∑
n′

v∗n′j′ exp (−in′Kx)
]
ŷ

)
· ẑdx

(B.7.7)

= 1
2Re

(∫ ∑
j,j′

∑
l,l′,n,n′

(cmjulj exp (ilKx) + dmjul′j exp (il′Kx))

·
(
c∗mj′u∗nj′ exp (−inKx)− d∗mj′u∗n′j′ exp (−in′Kx)

)
dx

)
(B.7.8)

= 1
2Re

(∫ ∑
j,j′

∑
l,l′,n,n′

[
cmjc

∗
mj′uljv

∗
nj′ exp (i(l − n)Kx)

− cmjd∗mj′uljv
∗
n′j′ exp (i(l − n′)Kx)

+ dmjc
∗
mj′ul′jv

∗
nj′ exp (i(l′ − n)Kx)

− dmjd∗mj′ul′jv
∗
n′j′ exp (i(l′ − n′)Kx)

]
dx

)
. (B.7.9)
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Evaluating the integral in the last equation above will lead to four Kronecker delta
functions, due to the complex exponentials:

Pm = 1
2Re

(∑
j,j′

∑
l,l′,n,n′

[
cmjc

∗
mj′uljv

∗
nj′δl,n − cmjd∗mj′uljv

∗
n′j′δl,n′

+ dmjc
∗
mj′ul′jv

∗
nj′δl′,n − dmjd∗mj′ul′jv

∗
n′j′δl′,n′

])
. (B.7.10)

The Kronecker delta functions then demand that l = n = n′ = l′ and this reduces the
above equation to:

Pm = 1
2Re

(∑
j,j′

∑
l

[
cmjc

∗
mj′uljv

∗
lj′ − cmjd∗mj′uljv

∗
lj′

+ dmjc
∗
mj′uljv

∗
lj′ − dmjd∗mj′uljv

∗
lj′

])
. (B.7.11)

Rearranging the terms leads to:

Pm = 1
2Re

(∑
j,j′

[
cmj

∑
l

uljv
∗
lj′

(
c∗mj′ − d∗mj′

)
+dmj

∑
l

uljv
∗
lj′

(
c∗mj′ − d∗mj′

)])
. (B.7.12)

The sum over l is now defined as the (j, j′) matrix element of a matrix, W :

Wj,j′ =
∑
l

uljv
∗
lj′ = uj

T · vj′
∗. (B.7.13)

This means that the matrix W is given by the matrix product:

W = u
T
v
∗
. (B.7.14)

Turning back to equation (B.7.12) and replacing the l sums with Wj,j′ gives:

Pm = 1
2Re

(∑
j,j′

[
cmjWj,j′

(
c∗mj′ − d∗mj′

)
+ dmjWj,j′

(
c∗mj′ − d∗mj′

)])
. (B.7.15)

This equation can now be written in matrix form. For simplicity lets take a look at∑
j,j′ cmjWj,j′c∗mj′ . The sum can be replaced by dot products as:∑

j,j′

cmjWj,j′c∗mj′ = cm
TWcm

∗, (B.7.16)

where the transposition is needed in order for getting a scalar instead of a vector. Doing
the same vectorization on all the terms in equation (B.7.15) the power flow for the m’th
Bloch mode can be computed as:
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Pm = 1
2Re

(
cm

TW
(
cm
∗ − dm

∗)+ dm
T
W
(
cm
∗ − dm

∗))
. (B.7.17)

When computing the eigenvalues, Λm, for the Bloch modes and then finding all Bloch
modes with |Λm = 1| the power flow for all these Bloch modes can be found at once.
This is done by letting the Bloch expansion vectors with |Λm = 1|, cm and dm, be the
columns in the matrices c and d respectively. In this way the power flow for all the Bloch
modes can be found at once:

P = 1
2Re

(
c
T
W
(
c
∗ − d

∗)
+ d

T
W
(
c
∗ − d

∗))
, (B.7.18)

where the power flows are given in the diagonal of P , such that the power flow for the
m’th Bloch mode is given by:

Pm = P (m,m) = Pm,m. (B.7.19)

B.8 Derivation of transmission and reflection matrices between
periodic sections

The derivation of the transmission and reflection matrices for adjacent periodic sections
starts with equations (3.1.88) and (3.1.89). They are repeated here for convenience:

ΨE+
⊥1m(r⊥) +

N∑
j

ΨE−
⊥1j(r⊥)rb,12;jm =

N∑
j

ΨE+
⊥2j(r⊥)tb,12;jm, (B.8.1)

ΨH+
⊥1m(r⊥) +

N∑
j

ΨH−
⊥1j(r⊥)rb,12;jm =

N∑
j

ΨH+
⊥2j(r⊥)tb,12;jm. (B.8.2)

Inserting the expansions of the Bloch modes given in equations (3.1.75) and (3.1.76),
setting z = z′ and change every d to d′ (since the expressions above are valid only at an
interface) gives:
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N∑
l

[
c+

1mle
+
⊥1l(r⊥) + d′+1mle

−
⊥1l(r⊥)

]
+

N∑
j

N∑
l

[
c−1jle

+
⊥1l(r⊥) + d′−jl e−⊥1l(r⊥)

]
rb,12;jm

=
N∑
j

N∑
l

[
c+

2jle
+
⊥2l(r⊥) + d′+2jle

−
⊥2l(r⊥)

]
tb,12;jm,

(B.8.3)
N∑
l

[
c+

1mlh
+
⊥1l(r⊥) + d′+1mlh

−
⊥1l(r⊥)

]
+

N∑
j

N∑
l

[
c−1jlh

+
⊥1l(r⊥) + d′−jl h−⊥1l(r⊥)

]
rb,12;jm

=
N∑
j

N∑
l

[
c+

2jlh
+
⊥2l(r⊥) + d′+2jlh

−
⊥2l(r⊥)

]
tb,12;jm.

(B.8.4)

Using that e−⊥ = e+
⊥ = e⊥ and h−⊥ = −h+

⊥ = −h⊥ the above expressions becomes:

N∑
l

[
c+

1mle⊥1l(r⊥) + d′+1mle⊥1l(r⊥)
]

+
N∑
j

N∑
l

[
c−1jle⊥1l(r⊥) + d′−jl e⊥1l(r⊥)

]
rb,12;jm

=
N∑
j

N∑
l

[
c+

2jle⊥2l(r⊥) + d′+2jle⊥2l(r⊥)
]
tb,12;jm,

(B.8.5)
N∑
l

[
c+

1mlh⊥1l(r⊥)− d′+1mlh⊥1l(r⊥)
]

+
N∑
j

N∑
l

[
c−1jlh⊥1l(r⊥)− d′−jl h⊥1l(r⊥)

]
rb,12;jm

=
N∑
j

N∑
l

[
c+

2jlh⊥2l(r⊥)− d′+2jlh⊥2l(r⊥)
]
tb,12;jm,

(B.8.6)

and these expressions are now ready to be rearranged into equations (3.1.90) and
(3.1.91). This is done by collecting the sums and setting all e⊥s and h⊥s outside paren-
thesis:
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N∑
l

e⊥1l(r⊥)
((
c+

1ml + d′+1ml
)

+
N∑
j

(
c−1jl + d′−jl

)
rb,12;jm

)

=
N∑
j,l

e⊥2l(r⊥)
(
c+

2jl + d′+2jl
)
tb,12;jm, (B.8.7)

N∑
l

h⊥1l(r⊥)
((
c+

1ml − d
′+
1ml
)

+
N∑
j

(
c−1jl − d

′−
jl

)
rb,12;jm

)

=
N∑
j,l

h⊥2l(r⊥)
(
c+

2jl − d
′+
2jl
)
tb,12;jm (B.8.8)

These equations should now be put into matrix form. First step is to multiply the bra
version of equation (B.8.7) with |h1n〉 and the ket version of equation (B.8.8) with 〈e1n|.
Doing this leads to:

N∑
l

〈e1l|h1n〉
((
c+

1ml + d′+1ml
)

+
N∑
j

(
c−1jl + d′−jl

)
rb,12;jm

)

=
N∑
j,l

〈e2l|h1n〉
(
c+

2jl + d′+2jl
)
tb,12;jm, (B.8.9)

N∑
l

〈e1n|h1l〉
((
c+

1ml − d
′+
1ml
)

+
N∑
j

(
c−1jl − d

′−
jl

)
rb,12;jm

)

=
N∑
j,l

〈e1n|h2l〉
(
c+

2jl − d
′+
2jl
)
tb,12;jm, (B.8.10)

where ⊥ has been dropped for simplicity. Due to that the field modes are orthonormal
to each other the above expression are reduced further, using 〈e1l|h1n〉 = δln:

1 ·
(
c+

1mn + d′+1mn
)

+ 1 ·
N∑
j

(
c−1jn + d′−1jn

)
rb,12;jm =

N∑
j,l

〈e2l|h1n〉
(
c+

2jn + d′+2jn
)
tb,12;jm,

(B.8.11)

1 ·
(
c+

1mn − d
′+
1mn

)
+ 1 ·

N∑
j

(
c−1jn − d

′−
1jn
)
rb,12;jm =

N∑
j,l

〈e1n|h2l〉
(
c+

2jn − d
′+
2jn
)
tb,12;jm.

(B.8.12)

Now the equations are ready to be put into matrix form. The scalar product 〈e2|h1〉
needs to be transposed in order for the elements to be summed correctly. Otherwise it
is straightforward and the equations in matrix form are:
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(
c+

1 + d′+1

)
+
(
c−1 + d′−1

)
rb,12 = 〈e2|h1〉

T
(
c+

2 + d′+2

)
tb,12, (B.8.13)(

c+
1 − d

′+
1

)
+
(
c−1 − d

′−
1

)
rb,12 = 〈e1|h2〉

(
c+

2 − d
′+
2

)
tb,12. (B.8.14)

Isolating rb,12 in the top equation gives:

rb,12 =
(
c−1 + d′−1

)−1
〈e2|h1〉

T
(
c+

2 + d′+2

)
tb,12−

(
c−1 + d′−1

)−1(
c+

1 + d′+1

)
, (B.8.15)

and inserting this in equation (B.8.14) leads to:

(
c−1 − d

′−
1

)−1(
c+

1 − d
′+
1

)
+
(
c−1 + d′−1

)−1
〈e2|h1〉

T
(
c+

2 + d′+2

)
tb,12

−
(
c−1 + d′−1

)−1(
c+

1 + d′+1

)
=
(
c−1 − d

′−
1

)−1
〈e1|h2〉

(
c+

2 − d
′+
2

)
tb,12 ⇒

(B.8.16)

tb,12 =
[(

c+
1 + d′+1

)−1
〈e2|h1〉

T
(
c+

2 + d′+2

)
−
(
c−1 − d

′−
1

)−1
〈e1|h2〉

(
c+

2 − d
′+
2

)]−1

×

[(
c−1 + d′−1

)−1(
c+

1 + d′+1

)
−
(
c−1 − d

′−
1

)−1(
c+

1 − d
′+
1

)]
. (B.8.17)

Thereby equations (3.1.92) and (3.1.93) have been derived.

B.9 Visualization of field profile in all supercells

The first step in visualizing the full field profile is to use Bloch’s theorem (equation
(3.1.70)) in all periodic sections in order to find the Bloch modes in every supercell in all
periodic sections. The electric and magnetic fields are expanded on these Bloch modes
as in equations (3.1.73) and (3.1.74) and the next step is thus to find the amplitude of
these Bloch modes in each periodic section. Consider the three section geometry in the
middle of Figure B.3. The structure is illuminated with the Bloch field amplitudes as1
and bs3. Then the structure is reduced to a three section geometry as illustrated in the
left part of Figure B.3 where the Bloch mode amplitudes are illustrated. These Bloch
mode amplitudes are found using the scattering reflection and transmission matrices
for the periodic sections in equations (3.1.66) and (3.1.67). Doing this the Bloch mode
amplitudes in the w’th periodic section is given as:

aw =
(
I − rb,w1p

−
wrb,wnp

+
w

)−1(
tb,1wa′1 + rb,w1p

−
wtb,nwb′n

)
, (B.9.1)

bw =
(
I − rb,wnp+

wrb,w1p
−
w

)−1(
rb,wnp

+
wtb,1wa′1 + tb,nwb′n

)
, (B.9.2)
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Supercell 1 s1

Per. sec. s1

Γ

Supercell 1 s2

Per. sec. s2

Supercell 1 s3

Per. sec. s3

as1

bs3

Γ

Γ

0

1

2

3

a1

b3'

Step 1 Step 2

as1

as2

as3

bs1'

bs2'

bs3'

bs3

z23

z01

z

x

Figure B.3: Illustration of how the fields are computed in a multi section geometry. The
central figure is the full structure, with three sections, supercells and layers. The figure to the
left is three section geometry of the full structure with the Bloch mode amplitudes defined. The
right figure is a zoom of a super cell used to compute the fields inside the supercells.

where n is the total number of sections.

Having determined the Bloch modes in all supercells and the Bloch mode amplitudes in
all periodic sections the electric and magnetic field at any supercell interface are given by
inserting equations (3.1.75) and (3.1.76) into equations (3.1.73) and (3.1.74) respectively
with z = z′. For the supercell in the right part of Figure B.3 the electric and magnetic
fields at the two supercell interfaces are given as:

E(z01) =
N∑
j

(
a†1je

+
j + b′†1je

−
j

)
, (B.9.3)

E(z23) =
N∑
j

(
a†3je

+
j + b′†3je

−
j

)
, (B.9.4)

H(z01) =
N∑
j

(
a†1jh

+
j + b′†1jh

−
j

)
, (B.9.5)

H(z23) =
N∑
j

(
a†3jh

+
j + b′†3jh

−
j

)
, (B.9.6)

where a†1j , a
†
3j , b

′†
1j and b

′†
3j are given as:



B.9 Visualization of field profile in all supercells 85

a†1j =
N∑
m

(
a1mc

+
1,2;mj + b1mc

−
1,2;mj

)
, (B.9.7)

b′†1j =
N∑
m

(
a1md

+
1,2;mj + b1md

−
1,2;mj

)
, (B.9.8)

a†3j =
N∑
m

(
a1mc

+
1,3;mj + b1mc

−
1,3;mj

)
, (B.9.9)

b′†3j =
N∑
m

(
a1md

+
1,3;mj + b1md

−
1,3;mj

)
, (B.9.10)

and here you need to pay attention to the indexing since it can be quite confusing.
The first index of a†1j , a

†
3j , b

′†
1j and b′†3j is referring to the layer number in the supercell

in Figure B.3 right. The amplitudes of the Bloch modes are kept constant within each
periodic section so the first index of a1m and b1m means that we are within the first
periodic section. The first index on the c’s and d’s specify the periodic section and
the second index specify the supercell within the periodic section. Equations (B.9.7) -
(B.9.10) can be written in matrix form as:

a†1 = c+
1,2a1 + c−1,2b1 (B.9.11)

b†1 = d+
1,2a1 + d−1,2b1 (B.9.12)

a†3 = c+
1,3a3 + c−1,3b3 (B.9.13)

b†3 = d+
1,3a3 + d−1,3b3 (B.9.14)

Thereby the electric and magnetic field can be found at all supercell interfaces. The final
step for computing the fields within the whole geometry is thus to find the fields within all
layers in all supercells. This is done by considering the right figure in Figure B.3. a†1 and
b′†3 are now used as sources for the supercell geometry. Then using the standard scattering
matrix formalism a†q and b′†q can be found for all layers in the supercell (equations (3.1.66)
and (3.1.67)). Note that the scattering between layer 0 and 1 should not be included in
the field profile calculation. However, since the fields are expanded on the eigenmodes
of layer 1 and 3, the transmission and reflection at the interface between layer 2 and 3
must be taken into account. This is illustrated in the right part of Figure B.3, by making
layer 0 identical to layer 1 even though it is identical to layer 2 in the full structure. [16]

The electric and magnetic field in layer q within supercell o in periodic section w is then
given as:
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Eqow =
N∑
j

[
a†qow,jeqow exp (iβj(z − z′)) + b†qow,jeqow exp (−iβj(z − z′))

]
, (B.9.15)

Hqow =
N∑
j

[
a†qow,jhqow exp (iβj(z − z′))− b†qow,jhqow exp (−iβj(z − z′))

]
. (B.9.16)

These equations are then used for all layers in the PhC, giving the field in the whole
geometry.
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Appendix for validation of method
implementation

C.1 Gap map computations

Various gap map computations have been carried out and compared with the gap maps
in Appendix C in [17]. This Appendix will show the computed gap maps and compare
them with the ones found in [17].
In Figure C.1 the gap map from [17] of a PhC consisting of dielectric rods in a triangular

lattice is seen and next to it in Figure C.2 the corresponding gap map computed using
the developed scripts is seen for TE polarized light. As in Figure 3.13 the computations
are not reliable for r/a ≥ 0.44 and furthermore the lowest gap band in Figure C.2 has a
line of points underneath which either should not be there or should be a part of the gap
band, so the points in between are missing. The simulation parameters used are seen in
Table C.1 and the unit cell is identical to one shown in Figure 3.14 except that the holes
are now rods and the PhC medium is air.

Table C.1: Simulation parameters used for computing the gap map in Figure C.2.

Number of grid points
Number of plane waves, N in unit cell, Ng,unit Number of unit cells, Nunit

27 51 1

Gap map computations on square lattices have also been carried out and such a com-
putation are seen in Figure C.4 for TE polarization. The corresponding gap map from
[17] is seen next to it in Figure C.3.

87
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Figure C.1: Figure 6 in Appendix C from [17].
The dielectric constant of the rods is ε = 11.4. Note
that the convention in [17] regarding polarization
is opposite than the one used in this thesis - such
that TE is TM and vice versa.
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Figure C.2: TE gap map of a tri-
angular lattice of dielectric rods with
ε = 11.4. For r/a ≥ 0.44 the gap map
does not behave as in Figure 3.12. The
outlying point at r/a = 0.2 is due to
numerical instability.

Figure C.3: Figure 4 in Appendix C from [17].
The dielectric constant of the rods is ε = 11.4. Note
that the convention in [17] regarding polarization
is opposite than the one used in this thesis - such
that TE is TM and vice versa.
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Figure C.4: TE gap map of a square
lattice of dielectric rods with ε = 11.4.
As seen the bands in Figure C.3 are
reproduced but other bands have been
found as well. Why this is the case have
not been investigated further.



DCh
ap

te
r

Appendix for computations on PhC
waveguides and microcavities

D.1 Derivation of phase factors in coupled-mode theory

In order to derive equation (4.1.5) the phase term exp (i (θ2 − θ1)) in equation (4.1.3)
needs to be determined. This is done by considering the requirements of energy conser-
vation and time-reversal symmetry [6]. These requirements are derived in [12] and they
are simply stated here:

d1 =
√

2γ1 exp (iθ1) , d2 =
√

2γ2 exp (iθ2) , (D.1.1)

C

(
d1
d2

)∗
= −C

(
d1
d2

)
, C =

(
rB −itB
−itB rB

)
. (D.1.2)

Combining these equations leads to two equations:

rB
√

2γ1 exp (−iθ1)− itB
√

2γ2 exp (−iθ2) = −
√

2γ1 exp (iθ1) , (D.1.3)
−itB

√
2γ1 exp (−iθ1) + irB

√
2γ2 exp (−iθ2) = −

√
2γ2 exp (iθ2) . (D.1.4)

Multiplying through with exp (iθ2) in the top equation and with exp (iθ1) in the bottom
gives:
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rB
√
γ1 exp (i (θ2 − θ1))− itB

√
γ2 = −√γ1 exp (i (θ2 + θ1)) , (D.1.5)

−itB
√
γ1 + irB

√
γ2 exp (−i (θ2 − θ1)) = −√γ2 exp (i (θ2 + θ1)) . (D.1.6)

Isolating exp (i (θ2 + θ1)) in one of these equations and inserting it into the other will
yield a quadratic equation for exp (i (θ2 − θ1)):

rB
√
γ1γ2x

2 + itB (γ1 − γ2)x− rB
√
γ1γ2 = 0, (D.1.7)

where x = exp (i (θ2 − θ1)). Solving this equation gives the following expression for the
phase difference:

exp (i (θ2 − θ1)) =
itB (γ2 − γ1)±

√
4γ1γ2 − t2B (γ1 + γ2)2

2
√

(1− t2B) γ1γ2
, (D.1.8)

where the relation r2
B + t2B = 1 have been used.
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Miscellaneous plots

This appendix contains plots supporting the results presented in Chapter 4.

E.1 Full field distributions

In Figure E.1 the real part of the magnetic field plotted in Figure 4.10 is seen.
Full field distributions are presented in this appendix supporting the choice of only

looking at the field distribution in the mid of the waveguide region as done in section 4.3.
All the structures in Figures E.2-E.7 are illuminated at the bottom with their respective
resonance frequency found from fitting their transmission spectra to coupled-mode theory
and the resulting field distribution of Ex is plotted. There are small differences between
the fields, but it is difficult to see a pattern in these plots between parity and field
distribution.
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Figure E.1: The real part of the magnetic field plotted in Figure 4.10.
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Figure E.2: Full field distribution of Ex.
The distance between blocking element is
dblock,cav = 0.0a and the radius of the block-
ing element is rblock = 0.8r/a. This structure
has red parity.
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Figure E.3: Full field distribution of Ex.
The distance between blocking element is
dblock,cav = 0.40a and the radius of the block-
ing element is rblock = 0.8r/a. This structure
has blue parity.
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Figure E.4: Full field distribution of Ex.
The distance between blocking element is
dblock,cav = 0.80a and the radius of the block-
ing element is rblock = 0.8r/a. This structure
has blue parity.
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Figure E.5: Full field distribution of Ex.
The distance between blocking element is
dblock,cav = 0.20a and the radius of the block-
ing element is rblock = 0.8r/a. This structure
has blue parity.
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Figure E.6: Full field distribution of Ex.
The distance between blocking element is
dblock,cav = 0.60a and the radius of the block-
ing element is rblock = 0.8r/a. This structure
has red parity.
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Figure E.7: Full field distribution of Ex.
The distance between blocking element is
dblock,cav = 1.00a and the radius of the block-
ing element is rblock = 0.8r/a. This structure
has blue parity.
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E.2 Transmission spectra, rblock = 0.80 r/a

Transmission spectra for PhC fano structures with rblock = 0.80 r/a are shown in Figures
E.8-E.15.

-

Figure E.8: Transmission spectrum fitted to
coupled-mode theory for a PhC Fano structure
with rblock = 0.80r/a and dblock,cav = −0.96a.

ωa/2πc

-

Figure E.9: Transmission spectrum fitted to
coupled-mode theory for a PhC Fano structure
with rblock = 0.80r/a and dblock,cav = −0.40a.
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-

Figure E.10: Transmission spectrum fitted
to coupled-mode theory for a PhC Fano struc-
ture with rblock = 0.80r/a and dblock,cav =
−0.70a.

ωa/2πc

-

Figure E.11: Transmission spectrum fitted
to coupled-mode theory for a PhC Fano struc-
ture with rblock = 0.80r/a and dblock,cav =
−0.14a.
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Figure E.12: Transmission spectrum fitted
to coupled-mode theory for a PhC Fano struc-
ture with rblock = 0.80r/a and dblock,cav =
0.08a.
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Figure E.13: Transmission spectrum fitted
to coupled-mode theory for a PhC Fano struc-
ture with rblock = 0.80r/a and dblock,cav =
0.62a.

ωa/2πc

Figure E.14: Transmission spectrum fitted
to coupled-mode theory for a PhC Fano struc-
ture with rblock = 0.80r/a and dblock,cav =
0.42a.
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Figure E.15: Transmission spectrum fitted
to coupled-mode theory for a PhC Fano struc-
ture with rblock = 0.80r/a and dblock,cav =
0.88a.
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E.3 Transmission spectra rblock = 0.30 r/a

Transmission spectra for the Fano structures are found in this appendix. In Figures E.16
- E.19 the transmission spectra are seen for the Fano structure with the slightly changed
cavity illustrated in Figure 4.22. In Figure E.16 a single point deviates from the Fano
line function and this is due to a numerical error as discussed in section 3.5.
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Figure E.16: Transmission spectrum fitted
to coupled-mode theory for a PhC Fano struc-
ture with rblock = 0.30r/a and dblock,cav =
1.24a. This spectrum has blue parity and as
seen a single point deviates from the fitted
Fano line function.
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Figure E.17: Transmission spectrum fitted
to coupled-mode theory for a PhC Fano struc-
ture with rblock = 0.30r/a and dblock,cav =
2.58a. This spectrum has blue parity.
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Figure E.18: Transmission spectrum fitted
to coupled-mode theory for a PhC Fano struc-
ture with rblock = 0.30r/a and dblock,cav =
1.48a. This spectrum has red parity.
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Figure E.19: Transmission spectrum fitted
to coupled-mode theory for a PhC Fano struc-
ture with rblock = 0.30r/a and dblock,cav =
2.92a. This spectrum has red parity.
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E.4 Resonance frequency and direct transmission coefficient

In Figure E.20 the direct transmission coefficient and the resonance frequency plotted as
function of the distance between blocking element and cavity for rblock = 0.30r/a. As
seen the points do not lie on a smooth line as in Figure 4.15 and this is probably due
to the stair case approximation of the small blocking element not having enough steps
- thereby making the blocking element not as circular as it should be. This is further
discussed in the end of section 4.2.
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Figure E.20: The direct transmission coefficient and the resonance frequency as function of
distance between blocking element and cavity. The size of the blocking element is rblock =
0.30r/a.
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E.5 Field distribution in mid of waveguide

In Figures E.21-E.24 the field distribution in the mid of the waveguide for different
Fano and blocked waveguide structures are plotted. The vertical black lines indicate the
position of the blocking element and the vertical dashed line indicate the start of the
final periodic section. All of the structures are illuminated with the resonance frequency
of the corresponding Fano structure. Similar plots are seen in Figures E.25 - E.28, where
the size of the blocking element has been reduced to rblock = 0.30r/a.
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Figure E.21: Field distribution of Ex in
the mid of the waveguide region for the Fano
structure (cav mode) and the blocked waveg-
uide structure (block). The distance between
blocking element and cavity is dblock,cav =
0.10a and the radius of the blocking element
is rblock = 0.80r/a. The Fano structure has
red parity.
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Figure E.22: Field distribution of Ex in
the mid of the waveguide region for the Fano
structure (cav mode) and the blocked waveg-
uide structure (block). The distance between
blocking element and cavity is dblock,cav =
0.54a and the radius of the blocking element
is rblock = 0.80r/a. The Fano structure has
red parity.
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Figure E.23: Field distribution of Ex in
the mid of the waveguide region for the Fano
structure (cav mode) and the blocked waveg-
uide structure (block). The distance between
blocking element and cavity is dblock,cav =
0.32a and the radius of the blocking element
is rblock = 0.80r/a. The Fano structure has
blue parity.
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Figure E.24: Field distribution of Ex in
the mid of the waveguide region for the Fano
structure (cav mode) and the blocked waveg-
uide structure (block). The distance between
blocking element and cavity is dblock,cav =
0.84a and the radius of the blocking element
is rblock = 0.80r/a. The Fano structure has
blue parity.
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Figure E.25: Field distribution of Ex in
the mid of the waveguide region for the Fano
structure (cav mode), the blocked waveguide
structure (block) and the pure wavguide (wg).
The distance between blocking element and
cavity is dblock,cav = 0.10a and the radius of
the blocking element is rblock = 0.30r/a. The
Fano structure has red parity.
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Figure E.26: Field distribution of Ex in
the mid of the waveguide region for the Fano
structure (cav mode), the blocked waveg-
uide structure (block) and the pure waveguide
(wg). The distance between blocking element
and cavity is dblock,cav = 0.54a and the radius
of the blocking element is rblock = 0.30r/a.
The Fano structure has red parity.
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Figure E.27: Field distribution of Ex in
the mid of the waveguide region for the Fano
structure (cav mode), the blocked waveg-
uide structure (block) and the pure waveguide
(wg). The distance between blocking element
and cavity is dblock,cav = 0.32a and the radius
of the blocking element is rblock = 0.30r/a.
The Fano structure has blue parity.
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Figure E.28: Field distribution of Ex in
the mid of the waveguide region for the Fano
structure (cav mode), the blocked waveg-
uide structure (block) and the pure waveguide
(wg). The distance between blocking element
and cavity is dblock,cav = 0.84a and the radius
of the blocking element is rblock = 0.30r/a.
The Fano structure has blue parity.
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CLEO-Europe 2015 submission

In this appendix our submission abstract for CLEO-Europe 2015 is found. The submis-
sion deadline was 19th January 2015 and the abstract was written with the at that time
obtained results.
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Determining the Parity of Fano Resonance from Field Distribution in a
Photonic Crystal Waveguide-Cavity Structure

Andreas D. Østerkryger*, Jakob R. de Lasson, Yi Yu, Jesper Mørk and Niels Gregersen
DTU Fotonik, Department of Photonics Engineering, Technical University of Denmark, Ørsteds Plads, Building 343, DK-2800 Kongens

Lyngby
*corresponding author, E-mail: adyhlosterkryger@gmail.com

Fano resonances, as a universal phenomenon, may in photonic structures result from the interference beween
a discrete resonance and a continuum of modes. They can be realized by placing a partially transmitting element
(PTE) in a waveguide that is positioned next to a cavity as in [1] where a Fano structure has been realized in a
photonic crystal. The appearance of Fano resonances is well predicted by coupled-mode theory [2]. It has been
shown experimentally that the parity of the transmission spectrum changes when the PTE is moved along the
waveguide and that Fano structures are suitable for photonic switching due to its unique nonlinear transfer funtion
[1]. In Figure 1a, computed transmission spectra of two PhC Fano structures (see the inset) are plotted with the
only difference being the position of the PTE relative to the cavity.
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Figure 1: (a) A PhC Fano structure is seen in the inset, where the arrow indicates the direction of transmission and the two
dotted lines indicate the positions of the cavity and the PTE. dPTE,cav is equal to the distance between these two lines.
Two different simulations with different PTE-cavity distances are shown - one with red parity (asterisk symbol) and one with
blue (dot symbol). Red (blue) parity means that the minimum is red (blue) shifted relative to the maximum. (b) The real and
imaginary part of the Ex-field in the middle of the waveguide plotted for a bare waveguide PhC structure. The parity is found
from simulations of PhC Fano structures. As seen the parity changes when the PTE is moved across an extrema of either the
real or imaginary part of Ex illustrated by the vertical dashed lines.

Coupled-mode theory predicts that the phase difference between a field taking the direct path in the waveguide
through the PTE and a field taking a longer way through the cavity directly determines the parity of the Fano
resonance. The phase difference can be determined by fitting the full transmission spectrum to coupled-mode
theory, but we propose here a simpler and faster method for determining the parity of a Fano resonance.

In Figure 1b, the Ex field distribution of the Bloch mode of a bare PhC waveguide is plotted. The colors
indicate the Fano parity, and it is observed that the parity changes whenever the PTE is moved across an extremum
of either the real or imaginary part of the field. The waveguide is illuminated with the fundamental mode at the
resonance frequency of the mirror symmetric PhC Fano structure, i.e. the structure where dPTE,cav = 0. The
resonance frequency depends slightly on the position of the PTE relative to the cavity and therefore there is a small
deviation between the extrema of Ex and where the parity changes. Understanding how to control the Fano parity
allows the realization of various switching configurations, as will be discussed at the conference.
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