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Abstract

This thesis has been written in part of the DarkSILD project. Aim of the project (and
the thesis) is to explore possibilites for superresolution imaging of weakly scattering
objects in bioimaging applications, for example. The thesis contains results of theo-
retical analysis and numerical simulations, carried out by the finite-element package
COMSOL Multiphysics.

The first half of the thesis gives a comprehensive overview of hyperbolic metama-
terials: how to describe wave propagation in such structures, how the metamaterial
parameters affect wave propagation and behavior, and how to design hyperbolic
metamaterials using metal-dielectric multilayers. I also explore how such properties
come into play when designing hyperlenses for superresolution imaging.

The second part of the thesis covers results of the PhD project. I start by presenting
the dark-field hyperlens, using the theory developed in the first part of the thesis to
discuss design challenges of the dark-field design. The design is based on a metal-
dielectric multilayer with realistic material parameters, although as I will discuss the
dark-field operation creates several new challenges.

Thesis continues with more theoretical work, covering magnetic dark-field hy-
perlenses. Here I show that by also incorporating negative permeability hyperbolic
metamaterials we can avoid some of the challenges, that seriously hampered per-
formance of the earlier design.

Finally, I move from hyperbolic metamaterials to anisotropic interfaces, which
support hyperbolic surface waves. This allows applying the magnetic hyperlens de-
sign in a more realistic setting, as surface waves can be engineered to offers similar
propagation properties as magnetic metamaterials, without actually requiring mag-
netic material properties.
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Resumé

Denne afhandling er udarbejdet som en del af DarkSILD projektet. Målet for projek-
tet (samt denne afhandling) er at undersøge muligheder for afbildning med supero-
pløsning af objekter med svag spredning indenfor for eksempel biologiskafbildning.
Afhandlingen indeholder resultater fra teoretiske analyser samt fra numeriske simu-
leringer udført med det endelige-element program COMSOL Multiphysics.

Den første halvdel af afhandlingen giver et omfattende overblik over hyperbolske
metamaterialer: hvordan bølgeudbredelse i disse strukturer beskrives, hvordan meta-
materialeparametrene påvirker bølgeudbredelsen og bølgeopførslen, og hvordan hy-
perbolske materialer designes ved brug af flere metal-dielektrikum lag. Jeg under-
søger også, hvordan disse egenskaber kommer i spil, når hyperlinser for superopløs-
ningsafbildning designes.

Afhandlingens anden del omhandler resultaterne af dette PhD-projekt. Jeg starter
med at præsentere mørkfeltshyperlinsen ved brug af den i første halvdel udviklede
teori for at diskutere udfordringerne ved et mørkfeltsdesign. Designet er baseret på
multiple metal-dielektrikum lag med realistiske materiale parametre, selvom mørk-
feltsbetjening kreerer flere nye udfordringer, hvilket jeg ligeledes diskuterer.

Afhandlingen fortsætter med mere teoretisk arbejde omhandlende magnetiske
mørkfeltslinser. Her viser jeg, at ved at inkorporere negative permeabilitets-hyper-
bolske-metamaterialer kan vi undgå nogle af udfordringerne, som hæmmede ydeev-
nen af det tidligere design i alvorlig grad.

Til sidst bevæger jeg mig fra hyperbolske metamaterialer til anisotropiske grænse-
flader, som understøtter hyperbolske overfladebølger. Dette tillader anvendelsen af
magnetiske hyperlinsedesigns i et mere realistisk format, da overfladebølger kan
manipuleres til at give udbredelsesegenskaber lig magnetiske metamaterialers uden
at skulle bruge magnetiske materialeegenskaber.
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1. Introduction

Metamaterials The term metamaterials emerged at the beginning of this century
in electromagnetics research [1], although it should be noted that there are plenty
of earlier works that now would be called metamaterials as well. The metamaterials
concept has by now reached in many other research fields apart from electromag-
netics (e.g. acoustics [2], mechanics [3]).

Just as naturally occurring materials are made of atoms, metamaterials consist of
“meta-atoms”. By building a large-scale structure made of small structures, the inner
details of the meta-atoms can be abstracted away. Instead we describe response of
the whole structure with effective averaged parameters linked to the response of the
individual meta-atoms.

In electromagnetics the metamaterials research now covers spectral range from
gigahertz to visible wavelengths in optics [4]. Although the name is same, the
nature of the game is not. For microwave applications metals behave as perfect
conductors and with wavelength in range of centimeters the constituent unit cells of
the metamaterial structures can be as small as λ/100. On the other hand, in optics
the metals are not perfect conductors, allowing electromagnetic fields to penetrate
metallic structures, giving rise to plasmonic effects [5–8]. Here however one has
to deal with ohmic losses in the metal, potentially reducing the range of practical
applications.

Focus for electromagnetic (optical?) metamaterials was at first on negative-index
metamaterials (also known as double negative medium, indicating that both dielec-
tric permittivity ε and permeability µ are negative). The idea of negative index
medium itself is not that recent: it was first proposed by Veselago in 1968 [9], but
although experimental demonstrations appeared only at turn of the century [10–
12].

Hyperbolic metamaterials (HMMs) is another well-known class of metamateri-
als [13, 14]. HMMs are uniaxial aniostropic structures, which offer extremely strong
anisotropy by behaving like a dielectric in one axis while exhibiting metallic behav-
ior in the other. Quite soon after first theoretical works [15, 16], experimental
demonstrations of HMMs followed [17–19].
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1. Introduction

Subwavelength imaging Optical microscopy is an important in a wide range of
fields. However, already in 1873 Abbe discovered the diffraction limit: wave na-
ture of light limits resolution of optical microscopes to ∼ λ/2 [20–22]. Perhaps
most straightforward way around this is to use electron microscopy, as electron
wavelength is orders of magnitude smaller than wavelength of visible light. For
many applications however we are keen to work with optical wavelengths. Various
techniques has been developed to circumvent the diffraction limit, such as scan-
ning optical microscopy (SNOM) [23, 24] and stimulated depletion emission mi-
croscopy (STED) [25, 26]. Metamaterials research has also yielded possible ways to
achieve subwavelength resolution (superlens [27], hyperlens [16, 18, 28–32], dark-
field hyperlens [33–36]), but unlike SNOM and STED these approaches are yet to
reach practical use. Interestingly, the metamaterials have also been used to design
superresolution devices in acoustics as well [37–41].

Motivation and aim for the PhD project The thesis focuses on theoretical studies
of hyperlens: a design to use hyperbolic metamaterials for subwavelength imaging.
In particular we will focus on dark-field hyperlens, where by suitable tuning wave
propagation in the hyperbolic medium we can separate scattered fields from the
incident radiation, thus enabling dark-field imaging.

We use theoretical calculations and finite-element full-wave simulations to study
wave propagation in HMMs and to explore the idea of dark-field hyperlens. Mostly
we are focused on underlying properties of the HMMs and important design con-
siderations there. We briefly also cover theory for a more practical design (metal-
dielectric multilayer), but we note that the dark-field hyperlens has inherent draw-
backs in design requirements, so practical realizations of the idea are unlikely to
manifest.

Structure of the thesis The thesis is divided into two major parts. The first part
covers necessary background knowledge needed for rest of the thesis. In chapter 2
we start from basic Maxwell’s equations and then cover basic principles of hyperbolic
metamaterials and mathematical tools we use for understanding such structures
(chapter 3). We then introduce mathematical formulation of the diffraction limit
and give short overview of techniques for superresolution imaging techniques in
chapter 4.

In the second part we cover the results of this PhD project. In chapters 5 to 7
we present work published in two journal articles [34, 42] and in one in-progress
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manuscript. In chapter 5 we introduce the idea of type-II hyperbolic metamaterial
(HMM) based dark-field hyperlens, implemented with a metal-dielectric multilayer
structure. We will analyze the basic idea and following design challenges for the
dark-field hyperlens. Then, in chapter 6, we move further into theoretical discus-
sions as we also consider magnetic properties of the hyperlens. This allows to over-
come several design challenges of the original design. Finally we discuss hyperbolic
surface waves and see how anisotropic interfaces can “emulate” behavior of mag-
netic HMMs, without actually needing magnetic properties (chapter 7).
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Part I.

Background
This part introduces the necessary theory and gives a brief overview of hyperbolic
metamaterials, subwavelength imaging and also of the hyperlens concept itself. We
touch upon important results and literature, relevant from the hyperlens perspec-
tive.
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2. Basic theory

2.1. Electromagnetic wave equation

Maxwell’s equations are the starting point for all work in optical materials. In
this work we are working exclusively with time-harmonic fields, so we start from
Maxwell’s equations in the frequency domain:1

∇ ·D = 0 (2.1)

∇ ·B = 0 , (2.2)

∇×E = iωB , (2.3)

∇×H = −iωD . (2.4)

These equations are obtained by assuming time-harmonic form for the electric and
magnetic fields [F̃ (r, t) = F (r) exp (−iωt)] and neglecting free currents and charges
in the time-domain Maxwell’s equations[23, 43]. Relations between D, B and E,
H fields are given by the constitutive relations (this is for the isotropic case — we
will cover the anisotropic case at the end of the chapter)

D = ε0εE , (2.5)

B = µ0µH . (2.6)

However, for our purposes Maxwell’s equations (a set of coupled equations) is not
the most convenient form. For a homogeneous medium we can insert eq. (2.3) into
eq. (2.4) and with help of eqs. (2.1), (2.5) and (2.6) we arrive at

∇2E + k20εµE = 0 , (2.7)

1The fields are functions of space coordinates r as well, but for notational convenience we do not
explicitly write them out.
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2. Basic theory

where k0 = ω/c is the free-space wavenumber. Equation (2.7) is also known as the
electromagnetic wave equation.

As we noted, eq. (2.7) was derived for a homogeneous medium. In practice we
mostly deal with piecewise homogeneous media, where we have two or more dif-
ferent media, separated by interfaces. To link the solutions in different media we
need to apply electromagnetic interface conditions. Equations (2.3) and (2.4) (in
integral form) give conditions for the tangential field components

n× (E1 −E2) = 0 , (2.8)

n× (H1 −H2) = 0 , (2.9)

where n is normal vector of the interface. Similarly, from eqs. (2.1) and (2.2) follow
the conditions for the normal field components

n · (D1 −D2) = 0 , (2.10)

n · (B1 −B2) = 0 . (2.11)

2.2. Propagation of plane waves

The simplest nontrivial solutions for eq. (2.7) are plane waves, given by amplitude
E0 and wavevector k = kxx̂ + kyŷ + kzẑ:

E = E0 exp (ik · r) . (2.12)

The simplicity of plane waves means that in many cases it is the easiest to decompose
the fields in terms of plane waves and solve the problem in terms of plane wave
components of the fields. We start from looking at the propagation of a single plane
wave and later extend the discussion to arbitrary fields (e.g. fields originating from
a point source or a fields scattering away from an object).

We insert the plane wave solution [eq. (2.12)] into the wave equation [eq. (2.7)]
to get

−
(
k2x + k2y + k2z

)
exp (ik · r) + k20εµ exp (ik · r) = 0 ,

from which we identify a condition that must be fulfilled for the plane wave to be

20



2.3. Angular spectrum representation

solution to the wave equation,

k2x + k2y + k2z = k20εµ . (2.13)

In other words, this equation — the dispersion equation — describes a set of plane
waves (identified by the wavevector components kx, ky and kz) that are allowed to
propagate in the medium.

Having reached the dispersion relation, we can now describe behavior of waves
in the medium in terms of plane waves. Firstly, to illuminate the meaning of the
equation, we assume kx = 0, ky = 0 in order to look at a plane wave with wavevector
pointing in z-direction. Writing out eq. (2.12) for this case gives

E = E0 exp (ikzz) .

We note that if kz is real then it is a propagating wave. However, the kz could also be
imaginary (e.g. when ε < 0). In such case the wave will be exponentially decaying,
also known as an evanescent wave. Such waves are not propagating and are only
present near surfaces or interfaces (as they decay to zero further away).

In the context of this thesis we are interested in solving propagation problems.
Namely, we suppose we are given initial fields at z = 0 and we are interested in
fields obtained after some distance d. For our purposes the z is the propagation
coordinate and x, y are transverse coordinates.

As we assume that fields on the x-y plane (at z = 0) are known, we take the kx,ky
components of the wavevector to be given us by the problem description. Therefore
we consider these to be independent variables of our problem. The kz component
we take to be the dependent variable, obtained by solving the dispersion relation
eq. (2.13). Given the wavevector component along the propagation axis kz (the
propagation constant) we can calculate the propagated fields from initial fields using

E (kx, ky; z) = E (kx, kz; z = 0) exp (ikzz) . (2.14)

2.3. Angular spectrum representation

In the previous section we obtained a description for the propagation of a single
plane wave. Now we use plane waves as a basis, expressing an arbitrary field as a
combination of plane waves. Knowing the inital fields at z = 0 [E (x, y; z = 0)] we
can take the Fourier transform of the fields, expressing the fields in terms of plane
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2. Basic theory

waves (with given kx, ky):

Ẽ (kx, ky; z = 0) =
1

4π2

ˆ
E0 (x, y, z = 0) exp (−ikxx− ikyy) dx dy . (2.15)

The advantage of this representation (angular spectrum representation[23]) is that
we have a solution for the propagation problem of a plane wave. We already
noted that after propagating through distance z the plane wave acquires a phase
exp (ikzz). This means that the expression for propagated fields (in the angular
spectrum representation is given by eq. (2.14)

Ẽ (kx, ky; z) = Ẽ (kx, ky; z = 0) exp (ikzz) ,

noting that kz is a function of kx and ky. As we know the plane wave coefficients
after the propagation we can obtain the real space image by taking the inverse
Fourier transform

E (x, y; z) =

ˆ
Ẽ (kx, ky; z) exp (ikxx+ ikyy) dkx dky . (2.16)

Equation (2.14) is the fundamental equation that we use throughout this thesis,
along with eqs. (2.15) and (2.16). We shall refer to the kz (kx, ky) component of the
wavevector as the propagation constant,2 as it describes propagation of the plane
wave component (given by kx, ky) along the propagation axis (z axis).

2.4. Wave propagation in anisotropic media

2.4.1. Dispersion relation in anisotropic media

So far we have assumed an isotropic medium, described by (relative) dielectric per-
mittivity ε and magnetic permeability µ. Now we extend these results for anisotropic
media and see that the angular spectrum representation works equally well here.
Indeed, in eqs. (2.15) to (2.16) we only assumed that we can express the fields in
terms of plane waves and we can get the propagation constant kz from the dispersion
relation [eq. (2.13)]. These assumptions always hold in a homogeneous medium,
so we just need to derive the dispersion relation for an anisotropic medium.

2This is a somewhat unfortunate name, as in the angular spectrum representation kz is quite clearly
not a constant: it depends on kx and ky. However, the term is already widely used in similar
contexts, for example when discussing propagation of guided modes in waveguides.
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2.5. Summary

We are interested in uniaxial anisotropic dielectric media, so while relative permit-
tivity is now given by a dielectric tensor ε̂ = diag (εe, εo, εo) we still assume isotropic
magnetic permeability.3 Equation (2.5) now reads [20]

D = ε0ε̂E . (2.17)

Assuming plane wave [eq. (2.12)] can write the wave equation [eq. (2.7)] as

k × (k ×E) + k20 ε̂µE = 0 . (2.18)

Seeking nontrivial solutions to the equation above we get

(
k2x + k2y + k2z − k20εo

) ((
−k20εe + k2y + k2z

)
εo + k2xεe

)
k20 = 0 . (2.19)

From the first term we can identify the isotropic dispersion relation for the ordinary
wave,

k2x + k2y + k2z = µk20εo , (2.20)

while the second term gives the anisotropic dispersion relation, which we can write
in the usual form as

k2x + k2y
εe

+
k2z
εo

= µk20 . (2.21)

Given rotational symmetry in x-y plane we assume ky = 0, without loss of generality,
to the yield following expression for the propagation constant:

kz = ±
√
µεok20 − k2xεo/εe . (2.22)

2.5. Summary

In this chapter we started from Maxwell’s equations and derived equations describ-
ing plane wave propagation both in isotropic [eq. (2.13)] and anisotropic media
[eq. (2.21)]. We also introduced angular spectrum representation, which allows us
to decompose arbitrary fields in term of plane wave components and then calculate
propagation of the fields.

3For a procedure to derive a dispersion relation under general conditions (i.e. no assumptions on
form of permittivity and permeability tensors) we refer to ref. 44.
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3. Hyperbolic metamaterials

3.1. Introduction

If we were limited by natural materials, then the discussion would be limited to cases
where ordinary and extraordinary permittivites (in case of an uniaxial medium)
are relatively close. However, by using metamaterials we can have media, where
the two permittivites are of opposite signs. Roughly speaking this kind of medium
would be “metallic” in some directions (characterized by negative permittivity) and
“dielectric” in others (exhibiting positive permittivity). Only media with positive
permittivity allows propagation of optical waves. Therefore we have medium where
waves can propagate in some directions, but not in others.

In this chapter we will explore the properties of hyperbolic metamaterials (HMMs)
along with ways to realize such structures experimentally. It turns out that although
they exhibit relatively exotic properties, the implementations of such media are well
within the realm of real experiments. The focus of this chapter is on optical hy-
perbolic metamaterials, so in laying out the theoretical background I describe the
HMMs in terms of optical properties (dielectric permittivity). However, at the end
of the chapter I will describe the acoustic HMMs as well and compare to the optical
case.

The dispersion relation [eq. (2.21)] gives the set of allowed plane waves that are
able to propagate in the medium. In isotropic case the equation describes a sphere in
k-space, reflecting the fact that the wave propagation is isotropic. That is, the length
of the wavevector (wavenumber) does not depend on the propagation direction.
However, not only are hyperbolic metamaterials anisotropic, the two components
of the permittivity tensor have opposing signs. In this case the dispersion relation
eq. (2.21) describes a hyperboloid (thus the name hyperbolic metamaterials), illus-
trated in fig. 3.1.

One particularly noteworthy property of such media is the unbounded shape of
the isofrequency contour. This means that for a given frequency the wavenumber of
a plane wave mode is unbounded, i.e. there exists waves with very short effective
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3. Hyperbolic metamaterials

Figure 3.1.: Isofrequency contours for an isotropic medium (a), type-I HMM (b) and type-II
HMM (c). Type-I HMM is obtained when the extraordinary permittivity tensor
component is negative (i.e. εe < 0), while for type-II hyperbolic dispersion the
ordinary component must be negative (i.e. εo < 0).

wavelengths.1 We can also see from the expression for the propagation constant kz
[eq. (2.22)] to see that in case of hyperbolic media the propagation constant kz will
stay real for all kx, given that term under the square root will always be positive.

There are two configurations to obtain hyperbolic dispersion: we can either have
εe < 0 < εo or εo < 0 < εe. These are classified as type-I [fig. 3.1(b)] or type-II
HMMs [fig. 3.1(c)], respectively [14, 45]. From the expression for the propagation
constant [eq. (2.22)] we note that the asymptotic behavior for kx →∞ of both cases
results in2

kz ∝ kx
√
|εo| / |εe| , (3.1)

indicating that for so-called high-k waves the behavior is the same: the propagation
constant kz stays real for arbitarily large kx, meaning that high-k are propagating
waves (not evanescent as in traditional media).

However, for low-k waves the two types of HMMs show drastically different be-
haviour. For kx = 0 we have

kz =
√
εok0 , (3.2)

from which we see that for type-II HMMs the expression under the root will be

1Of course, this is true only in theory. In practice there indeed is a bound on the effective wave-
length, stemming from finite size of unit cells of metamaterials. This will be shortly discussed in
section 3.3.3.

2The dispersion relation is rotationally symmetric, so for this discussion we can freely set ky = 0 and
only consider kx and kz.
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Figure 3.2.: (a) Magnetic fields from a point source in a homogeneous hyperolic medium
(with parameters in the text). Due to numerical considerations a loss factor
γ = 10−5 was used, which accounts for the small decay of the fields. (b) Fourier
transform of the fields, indicating hyperbolic structure. As attenuation of waves
scales with wavevector k, there is noticeable attenuation of high-k waves de-
spite the low loss factor used. White dashed line shows propagation constant
per the dispersion relation, given by eq. (2.22).

negative, leading to imaginary propagation constant. This means that in a type-II
HMM these low-k waves will be evanescent waves (not propagating). We will in
chapter 5 use this property to discuss a possible dark-field subwavelength imaging
device (dark-field hyperlens).

3.2. Wave propagation in HMMs

3.2.1. Homogeneous HMM

Having covered the mathematical groundwork of HMMs it is helpful to see these
properties in action. In this section we will explore some basic configurations and
show numerical simulation results of simple model problems. This allows to develop
some insight, which will be useful in later sections, where we explore more practical
systems. By observing the key properties of HMMs in idealized system it will be
easier to reason about results seen from more complicated systems.

First we look at a fields originating from a point source in a homogeneous type-I

27



3. Hyperbolic metamaterials

hyperbolic medium

εo = 1 + γi , (3.3)

εe = −1 + γi . (3.4)

We have included the loss term γ, but for most of the discussion we assume loss-
less case (γ = 0). However, for numerical simulations we include small losses to
improve numerical behavior of the simulation. Figure 3.2(a) shows the field pat-
tern of a point source in a HMM, which is quite different from usual wave behavior
in isotropic media: we see that energy is mostly contained in for narrow beams
propagating away from the source.

To understand the reasons for such propagation we can think of waves in a hy-
perbolic medium as propagating waves in one direction and non-propagating waves
in the other(s):3 when waves propagate towards z-direction they only feel the or-
dinary component of permittivity tensor (εo). However, a wave propagating in the
x-direction only interacts with the εe component of the permittivity tensor. In the
case of waves with wavevector in z-direction the waves feel the positive component
of the permittivity tensor, thus being propagating waves. On similar ground the
waves in x-direction are evanescent. Now, when looking at wave propagating in
direction that lies between the two axes it feels an “effective” permittivity composed
of both the positive and negative component of the permittivity tensor. Thus, de-
pending on the angle the effective permittivity can be either positive or negative —
corresponding to either propagating or evanescent nature of the fields. In fig. 3.2(a)
we notice four “characteristic lines” originating from the point source. These lines
correspond to propagation direction where the effective permittivity for the wave
changes sign.

Mathematically the propagation is governed by the dispersion relation [eq. (2.21)].
Earlier we discussed the dispersion relation of a hyperbolic medium (fig. 3.1). To
see which plane wave components are present in fig. 3.2(a) we can use Fourier
transform to arrive at k-space plot of the fields [fig. 3.2(b)]. As expected, the figure
matches with theoretical results using the dispersion relation, as only components
allowed by the dispersion relation can exist in the system. The k-space plot also in-

3This is a rough description, with some details neglected for now. For example, in anisotropic media
direction of propagation and wavevector generally do not coincide, so here we talk about direction
of propagation very loosely. Furthermore, using the term propagation direction for evanescent
waves is somewhat questionable as well. Nevertheless, this way of thinking about the hyperbolic
dispersion can still be useful forming basic understanding of the wave behavior. We also return to
this simple model when introducing hyperbolic surface waves in chapter 7.
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Figure 3.3.: (a) Isofrequency contours for a type-I and type-II HMM discussed in the text.
Markers indicate selected points for field plots. (b-e) Reflection and transmis-
sion of plane wave from air into a type-I HMM (b,c) or a type-II HMM (d,e).
Both low-k (kx = 0.5k0; b,d) and high-k (kx = 1.25k0; c,e) cases are shown.
Green arrows indicate direction of Poynting vector for the incoming plane wave
in air and the refracted wave in the HMM.

dicates the reason why energy is mostly contained in the four "characteristic lines".
Propagation direction of the constituent modes is given by normal of the the isofre-
quency contour [15, 46]. Now, looking at modes present [fig. 3.2(b)] we note that
there exists a large amount of modes on the flat part of the dispersion relation. All
these waves travel along the characteristic line, leading to concentration of energy
there.

3.2.2. HMM-dielectric interface

We now continue with exploring how an interface between a HMM and a dielectric
behaves. Before looking at fields from a point source we shall first consider a simple
case of a plane wave. We consider (and compare) a type-I HMM (εo = 1, εe =

−1) and a type-II HMM (εo = −1, εe = 1). By plotting the dispersion relation
[fig. 3.3(a)] we see that while the type-I medium allows propagation of waves with
all kx, in the type-II HMM waves with kx below cut-off (so-called low-k waves) are
nonpropagating. This is further demonstrated by the field pattern of an incoming
plane wave [fig. 3.3(b,d)]. For a low-k wave (kx = 0.5) we see that in the type-II
HMM the wave is reflected from the interface, as the propagation is disallowed in
the low-k regime. For the type-I HMM the wave propagates freely in the hyperbolic
medium. In fig. 3.3(c,e) we see that for high-k waves both kinds of hyperbolic
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Figure 3.4.: Intensity of fields due to a point source on an interface between air and a type-I
HMM (a) or type-II HMM (b). Corresponding field plots are shown in (c,d).

media allow propagation of the wave. However, here we note due to the high kx the
incoming wave is evanescent in the dielectric medium (air).

Another difference between the two HMM kinds is energy propagation direction
of the waves. As highlighted in fig. 3.3 the waves in type-I HMM exhibit negative
refraction.

We now consider a point source on the interface between a HMM and air. In
fig. 3.4 we see the behavior of both type-I [fig. 3.4(a)] and type-II [fig. 3.4(b)]
HMMs. We see that the general behavior for this case matches the results of a point
source in a homogeneous medium (fig. 3.2), as could be expected.

More interesting results emerge when we place the point source in air some dis-
tance away from the interface. Then two processes occur while waves propagate
from the point source towards the interface: (1) evanescent waves decay with going
further from the source, with waves with higher k decaying faster and (2) propagat-
ing waves will acquire phase during the propagation. First we shall look at type-II
medium: in fig. 3.5 we show point source at three different distances. By moving
the source a small distance d = λ/20 [fig. 3.5(b)] the field pattern stays more or less
similar, although we can notice reduction of high-k beam intensity. This is due to
attenuation of (evanescent) high-k waves in the air, even after this short distance.
By moving the source even further d = λ/2 [fig. 3.5(c)] the evanescent decay of
high-k waves means that only a small part of evanescent fields is still present at the
interface. Note that the cut-off of HMM (kc = k0) is also cut-off of evanescent waves
(for which kx > k0). Therefore we see almost no propagating fields in the HMM.

Now we will consider similar case, but for type-I HMMs. In fig. 3.6 we show fields
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Figure 3.7.: Field intensity due to a point source on the interface (a,b) or λ/2 away from the
interface (c,d) between air and type-I HMM. In (a,c) a PEC pinhole is used to
limit the amount of waves refracting into the HMM.

from point source at different distances from the HMM interface. In contrast with
type-II HMM there is no cutoff for low-k waves so we see propagating fields even
when the source is further away from the HMM. However, as was the case for type-I
HMM we note that as the source is moved further from the interface the intensity of
the high-k peak drops: while it is clearly visible in fig. 3.6(a), it disappears for larger
separations. This again is due to evanescent decay of the high-k modes that would
form the high-k beams.

Also we point out that here one can also see the negative refraction of type-I HMM
(already discussed in fig. 3.3). This is mostly evident in fig. 3.6(c) where the fields
from the point source undergo a focusing effect in HMM.

Negative refraction & interference pattern in type-I HMM In simulations of type-
I HMM [fig. 3.6] an interference pattern appears, which does not appear in type-II
HMM [fig. 3.5]. This interference is caused by negative refraction of type-I HMM.
The part of the field that propagates along the interface (oblique incidence) neg-
atively refracts into the HMM and then shows up as this interference pattern. To
clarify the role of negative refraction and interference we show additional simula-
tions in fig. 3.7, where we place a perfect electric conductor (PEC) pinhole on the
interface. This way we can prevent these oblique waves from refracting into the
HMM.
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Figure 3.8.: Field (a) and intensity (b) plots of a point source in interface between air and a
type-II HMM. Compared to fig. 3.4(b) permittivity of HMM is altered (εe = 3)
to allow for surface mode to exist.

Surface mode between a type-II HMM and a dielectric It should be noted that
in some cases HMM-dielectric interface can support surface waves. A surface wave
is characterized by evanescent decay on both sides of the interface [5, 47]. This
immediately rules out type-I HMM,4 however a type-II HMM can support a surface
wave. We shall not go into details at this point (we will cover surface waves in depth
in chapter 7), but we note that in an isotropic dielectric medium the evanescent
waves occur when kx >

√
εk0. For type-II HMM the evanescent mode exists in low-k

cutoff regime, given by kx <
√
εek0 [as we will show in eq. (5.1)]. From here it

follows that a surface mode can exist on the interface if ε < εe is fulfilled.

For example, in fig. 3.4(b) we see no surface mode, as permittivity of the dielectric
(ε = 1) equals extraordinary component of permittivity tensor of the HMM (εe = 1).
However by increasing εe (or decreasing permittivity of the dielectric) we reach con-
ditions for evanescent modes in both media. In fig. 3.8 these conditins are fulfilled,
enabling the surface mode. We see that there is localization of energy on the inter-
face, indicating existence of a surface mode. We also see interference between the
surface modes and propagating modes in the HMM.

Structure of waves propagating in a HMM In fig. 3.9 we illustrate the structure
of wave propagation in the hyperbolic medium. Recalling the isofrequency contour
we note that waves just above cut-off kc will propagate along the interface and with

4As kz is real for all kx, the waves in type-I HMM are always propagating. Thus the condition for
surface mode can not be satisfied.
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Figure 3.9.: Composition of fields from a point source on a HMM-dielectric interface. Prop-
agation direction of plane wave components is indicated on the figure, showing
that most of the components propagate along the two narrow beams. Inset
show isofrequency contour for the HMM, where propagation directions are also
shown with small arrows.

increasing kx the propagation angle also increases. As the dispersion flattens out the
wave with larger kx values all propagate in the same direction, forming the narrow
beam visible in the figures.

3.2.3. Canalization ratio & propagation direction

So far we have been looking at a simplified case of εo,e = ±1. Let us now explore
the effect that different permittivites can have. From eq. (3.1) (giving asymptotic
dispersion relation for large kx)

kz ∝ kx
√
−εo/εe (3.1)

we note that an important role is played by the ratio εo/εe. Here we define the
“canalization ratio”5

ξ2 = −εe/εo , (3.5)

which (as we will show) is the key parameter describing wave propagation in (type-
I) hyperbolic media. In fig. 3.10(a) we show isofrequency contours of HMMs with
varying canalization ratio. We see that increasing canalization ratio makes the dis-
persion relation “flatter”. Recalling the relationship between dispersion relation and

5We will come back to the term “canalization” in section 4.3.2, where the origin of the term becomes
clear.
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Figure 3.10.: (a) Isofrequeny contours with type-I HMM with varying canalization ratio.
Permittivities for the HMMs are given by εo = ξ−1, εe = −ξ (b-e) Simulations
showing fields from a point source in a HMM with ξ = 0.5 (b), ξ = 1 (c), ξ = 2
(d) and ξ = 4 (e).

energy propagation direction we note that the propagation angle of the beams de-
creases with increasing canalization ratio [fig. 3.10(b-e)], meaning that fields prop-
agate in a narrower cone.

3.2.4. Losses and hyperbolic media

The discussion so far was focused on lossless materials (i.e. real ε). However, for
any practical experiment we need to consider the role of losses as well. Firstly, we
note that equations we have relied on still hold, even in case where ε are complex
— during the derivations we did not assume lossless media at any point. However,
the nature of the propagation will be altered. Unlike purely real and imaginary
propagation constants for high-k and low-k waves (respectively) the propagation
constant is now a complex number. For low-k waves it is predominantly imaginary
as the low-k waves are still evanescent in nature. However, high-k waves have now
a imaginary component as well, due to material losses. In lossless HMM (or very
small losses) the system can support wave with very high k [as seen in fig. 3.2(b),
for example]. As we see from the propagation constant [eq. (2.22)] the losses scale
with kx so waves with higher k are more strongly affected by the losses.

As the losses primarily affect the high-k waves that are crucial in forming the
narrow propagating beam, we expect that increasing losses will result in a deterio-
ration (e.g. broadening) of the beam. Also the attenuation brought on by losses will
mean that thicker HMM slabs become less practical, since the energy is dissipated
into ohmic losses as propagating fields decay away. We illustrate these processes
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Figure 3.11.: Propagating fields due to a point source in a HMM with varying losses (a).
Field slices at three different distances are shown in (b). Different loss factors
are indicated by colors.

in fig. 3.11. Looking at propagation from a point source in a homogeneous HMM
we see in fig. 3.11(a) that the “characteristic lines” of the hyperbolic medium get
weaker with increasing losses. Also we note that the total intensity drops and as
explained above, limits the maximum useful thickness of HMM.

Looking at the propagated fields after different propagation distances [fig. 3.11(b)]
we see that in case of short propagation distance (z ∼ 0.5λ) we have a well-formed
narrow beam even with relatively high losses. However, as we go further the beam
is strongly attenuated and broadened, reducing its usefulness. As we see, even for
quite low losses the attenuation of high-k waves is strong enough to affect the prop-
agating waves after some distance.

3.3. Multilayer structures as HMMs

3.3.1. E�ective medium approximation

Although the properties of hyperbolic metamaterials are indeed somewhat exotic, it
turns out that they can be realized in practice, with a suprisingly simple approach.
Namely multilayer structures (or equally well, trench structures) can be effectively
characterized as hyperbolic media, given that the structure period is well below
wavelength.

Lets consider a periodic multilayer structure composed of ε1 and ε2, with respec-
tive thicknesses d1,d2. When looking at a single period of the structure and assum-
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Figure 3.12.: (a) Effective medium parameters as function of filling fraction f of the metal
(ε2). Dashed lines indicate imaginary parts and the dotted line indicates canal-
ization ratio ξ. (b) Isofrequency contours of the resulting effective medium as
function of filling fraction f. For selected filling fractions (indicated by black
lines) we show isofrequency contours also in (c).

ing that d1 + d2 � λ, we can use the electromagnetic interface conditions to reason
about the average fields in the structure. Given our assumption of constant fields
within the layers we can write the electric fields in first and second layer as

E(i) = E(i)
x x̂ + E(i)

y ŷ + E(i)
z ẑ . (3.6)

From the electromagnetic interface conditions we have

E(1)
x = E(2)

x , (3.7)

E(1)
y = E(2)

y , (3.8)

ε1E
(1)
z = ε2E

(2)
z . (3.9)

Now we look at the effective permittivity tensor, given by

〈D〉 = ε0ε̂ 〈E〉 , (3.10)

where 〈x〉 = (d1x1 + d2x2) / (d1 + d2) is used to indicate spatial average over the
multilayer structure. From eq. (3.10) we can write

εij = 〈Di〉 /ε0 〈Ej〉 . (3.11)
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3. Hyperbolic metamaterials

Applying the interface conditions we reach a result that in effective medium ap-
proximation [48] this multilayer is represented by uniaxial anisotropic permittivity
tensor ε̂ = diag (εo, εo, εe), with components given by

εo = fε1 + (1− f) ε2 , (3.12)

ε−1e = f/ε1 + (1− f) /ε2 , (3.13)

where f = d1/ (d1 + d2) is the volume filling fraction of the first medium (ε1).

As an example let us consider multilayer structure, with material parameters

ε1 = −0.41 + 0.05i ,

ε2 = 2.41 ,

for a metallic and a dielectric medium, respectively. The parameters above are cho-
sen such that at filling fraction f = 0.5 the effective medium approximation yields
familiar εo = 1, εe = −1. Of course this choice is completely arbitrary — later in
this section we will discuss implications of limiting choices to realistic parameter
ranges, but before that we aim to form a basic intuition about the effects of different
parameters.

Plotting the effective permittivities from effective medium theory [eqs. (3.12)
and (3.13)] in fig. 3.12(a) we notice that the two permittivity components can be
of opposite sign (under suitable conditions), fulfilling the requirements for a HMM.
As expected, losses in the metal mean that the effective medium approximation will
also result in a lossy medium. We see that for our chosen parameters (with rela-
tively low losses) the imaginary parts of effective medium parameters are relatively
low, signifying that in general the losses will not necessarily destroy the hyperbolic
behavior. Here the only regime where losses have an adverse effect is near f ≈ 0.15,
where (due to near-pole condition of ε-1

e ≈ 0) both real and imaginary part of εe
reach high values. Of course, when dealing with metal with more high losses, the
hyperbolic behavior can be more strongly affected.

The effective permittivity parameters themselves are not so straightforward to
reason about. Instead, in fig. 3.12(b) we plot the isofrequency contours for varying
filling fraction. At f = 0 we have the isotropic dielectric medium, which at first
becomes a conventional (positive) anisotropic medium and from f ≈ 0.15 onwards
we see the hyperbolic dispersion. At the other end (f = 1.0) we have purely metallic
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Figure 3.13.: (a) Effective medium parameters as function of filling fraction f of the metal.
Dashed lines indicate imaginary parts and the dotted line indicates canaliza-
tion ratio ξ. (b) Isofrequency contours of the resulting effective medium as
function of filling fraction f. For selected filling fractions (indicated by black
lines) we show isofrequency contours also in (c)

behavior, so there is no corresponding isofrequency contour as the medium does not
support propagating waves in that configuration.

We see that tuning the filling fraction gives some control over the propagation
properties in the HMM. In section 3.2.3 we discussed the importance of the canaliza-
tion ratio ξ2 = εe/εo, particularly for a type-I HMM, determining the "flatness" of the
dispersion relation. From fig. 3.12(a) we see that the ratio is minimal when f = 0.5.
This can also be seen from the shape of the isofrequency contours [fig. 3.12(b)],
which are widest for the same filling fraction. By changing relative thicknesses of
constituent layers we can thus tune the propagation direction in the HMM, without
need to vary the constituent materials of the multilayer.

To clearly show changes in the dispersion relations we have plotted the isofre-
quency contours for chosen filling fraction in fig. 3.12(c) The figure outlines the
transistion from dielectric into hyperbolic medium and shows the varying shape of
hyperbolic dispersion.

Crucially we see that given the material parameters we can only achieve type-I
HMM. It is easy to demonstrate that for given material parameters only type-I or
type-II HMM could be achieved. More precisely, to be able to obtain type-I HMM
ε1 > −ε2 is required, and conversely ε1 < −ε2 will allow for type-II HMM.

To show the effect of filling fraction on type-II HMMs we similarly choose material
parameters so that at f = 1/2 we reach effective medium with εo = −1, εe = 1:
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3. Hyperbolic metamaterials

ε1 = −2.41 + 0.05i ,

ε2 = 0.41 .

Of course, the materials here are chosen purely on mathematical grounds, with
somewhat unrealistic dielectric medium with permittivity of less than unity.

In fig. 3.13(a) we again plot the effective medium parameters for the structure.
The results are remarkably similar, although in the hyperbolic regime signs of εo,
εe have been flipped compared to the previous case: now we have εo < 0 < εe,
signifying type-II HMM. The change in dispersion relation is better visualized in
fig. 3.13(b), where we once again show the dispersion relation for various filling
fractions.

As in case of type-I HMM the canalization ratio is minimal for f = 0.5 and tun-
ing filling fraction allows one to increase the canalization ratio. However, here
unlike type-I HMM we have another important parameter to consider: the cut-off
wavevector kc, separating propagating high-k and evanescent low-k waves. As we
see already from fig. 3.13(b,c) this parameter is also linked to the filling fraction.
The cut-off kc is given6

k2c = εe .

In general we are interested in keeping the cut-off as low as possible since it allows
capturing large amount of fields in the HMM. Secondly we note that high-k waves
are by their nature much more sensitive to the material losses and as such will atten-
uate faster. With too high kc so that only waves with high k are propagating in the
system we end up being very sensitive to ohmic losses, which are especially relevant
when we are planning to design structures with realistic material parameters.

3.3.2. Realistic material parameters

Now we turn to realistically achievable material properties. Here we shall consider
two classic plasmonic metals: gold and silver in optical frequencies. In fig. 3.14(a)
we classify the effective medium parameters obtained using silver and dielectric
multilayer as a function of filling fraction and wavelength. To illustrate role of the
dielectric we consider three different dielectrics, with n = 1.5, n = 2.0 and n = 2.5.
We see that for a large part of the visible spectrum we can obtain type-II HMM, while

6This will be shown in chapter 5 in with eq. (5.1).

40



3.3. Multilayer structures as HMMs

0.0 0.5 1.0
Filling fraction

400

500

600

700

800
W

av
el

en
gt

h 
(n

m
) (a)

0.0 0.5 1.0
Filling fraction

(b)

400 600 800
Wavelength (nm)

0
5

10
15
20
25

(c) Ag
Au

n=1.5 (type-I)
n=2 (type-I)
n=2.5 (type-I)

n=1.5 (type-II)
n=2 (type-II)
n=2.5 (type-II)

Figure 3.14.: Conditions for obtaining hyperbolic effective medium parameters for Ag (a)
and Au (b). Shaded regions indicate areas where wavelength and filling frac-
tion result in hyperbolic dispersion. Three different dielectrics are considered,
as indicated in the figure. (c) Real part of permittivity for Au and Ag in optical
range.

type-I hyperbolic dispersion is limited to short wavelengths. To achieve type-I HMM
with multilayer structures small dielectric permittivity is required. From fig. 3.14(c)
we see that for gold and silver this means using short wavelengths.

In fig. 3.14(b) we show a range of effective HMM parameters available for gold
structures. However, strong losses due to the interband transistions in gold make
it unsuitable for short wavelengths. This means that the regime where epsilon of
the metal is small is somewhat impractical, as the losses strongly affect the effective
medium approximation. This means that we can consider gold mostly for achieving
type-II HMMs, where we can operate away from the very lossy regime.

In fig. 3.15 we further explore HMM properties available with metal-dielectric
multilayers. Like we already saw in fig. 3.14(a), a high-index dielectric is required in
order to push type-I regime into visible spectrum. Conversely a low-index dielectric
is preferable in realizing type-II HMM, as it facilitates reaching lower canalization
ratio ξ and lower low-k cut-off kc.7

3.3.3. Limitations of the e�ective medium approach

It is important to stress that the long wavelength approximation has to hold for ef-
fective medium approach to work. In case of hyperbolic media this is even more im-
portant, as the high-k waves exhibit small effective wavelengths. Although in prin-

7We will cover reasons for aiming for low ξ and kc in more detail in chapter 5.
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Figure 3.15.: Plots of canalization ratio ξ (indiciated with color and gray lines) and low-
k cutoff kc (indicated with black lines) for silver-dielectric multilayer, with
dielectric n = 2 (a) and n = 1.45 (b).

ciple a hyperbolic medium would support waves with arbitrarily small wavelengths,
this does not hold for the effective medium theory. As the effective wavelength
approaches periodicity of the structure the averaging procedure that underpins the
effective medium theory is no longer valid. Therefore in reality the dispersion rela-
tion is not completely hyperbolic, as the high-k waves are not unbounded and the
isofrequency surface is actually a closed surface [48].

It is also noteworthy that it not only the high-k waves that one needs to be careful
of. For example, as evanescent waves decay quickly, they interact the structure closer
to the interface more strongly. This means that in case of a multilayer structure the
first layer has a stronger effect than subsequent layers, in some cases invalidating
the effective medium approach [49].

3.4. HMMs with magnetic properties

Usually the discussion regarding HMMs neglects magnetic properties (i.e. the rela-
tive permeability µ is taken to be unity). In previous pages we followed that practice.
Given the difficulty of achieving magnetic properties in the optical regime this ap-
proach is usually justified. However, we now will include magnetic properties in the
discussion to allow for more flexibility in our theoretical analysis. Though here we
are motivated by theory, it should be noted that there have been reports of practical
HMMs structures exhibiting magnetic properties in some form.
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3.5. Hyperbolic metamaterials in acoustics

In deriving the dispersion equation

k2x/εe + k2y/εe + k2z/εo = µk20 , (2.21)

in the last chapter we already allowed for the possibility of magnetic properties
(µ 6= 1). So far we have just assumed µ = 1 and ignored implications of magnetic
properties on the dispersion relation.

Lets now consider two hyperbolic media, first with µ(1) = 1 and a second one
where µ(2) = −1. Supposing that we fix parameters of the two media with

ε(2)o = −ε(1)o ,

ε(2)e = −ε(1) ,e

then the expressions for the propagation constant kz seem equivalent for these two
media:

k2z = ε(2)o µ(2)k20 − k2xε(2)o /ε(2)e

= ε(1)o µ(1)k20 − k2xε(1)o /ε(1)e . (3.14)

However, we do need to carefully consider the signs for these expressions. For
our purposes we are looking to deal with waves propagating towards positive z

direction. For that we can take the corresponding component of the Poynting vector

Sz =
|Hy|2

2ω
Re

(
kz
ε0εx

)
(3.15)

and choose the sign of kz such that Sz > 0. From here we see that the propagation
constants for the two media have opposing signs, indicating reversed phase propa-
gation direction with respect to each other. We will consider implications of this in
chapter 6.

3.5. Hyperbolic metamaterials in acoustics

Acoustic wave equation Earlier we showed that from Maxwell’s equations we
can easily get to the (electromagnetic) wave equation eq. (2.7). Here we will follow
ref. 50 in showing how to reach wave equation for acoustic waves. Instead of electric
and magnetic fields the important physical quantities here are particle velocity ṽ,
pressure p̃ and medium density ρ̃. We separate these into disturbance caused by the
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3. Hyperbolic metamaterials

wave (v, p,ρ) and the rest values (v0, p0,ρ0):

ṽ = v0 + v , (3.16)

p̃ = p0 + p , (3.17)

ρ̃ = ρ0 + ρ . (3.18)

These quantities obey Euler and continuity equations

˙̃v + ṽ · ∇ṽ = −ρ̃−1∇p̃ , (3.19)

˙̃ρ+∇ (ρ̃ṽ) = 0 . (3.20)

We then obtain set of linear equations by inserting eqs. (3.16) to (3.18) into
eqs. (3.19) and (3.20) and keeping only the first-order terms. As in chapter 2 we
consider case of a homogeneous medium. Furthermore we assume that the medium
itself does not move (v0 = 0), i.e. only source of particle velocity is disturbance v

due to the acoustic wave. With that we get

p̈− c2∇2p = 0 , (3.21)

where speed of sound c is given via density ρ and bulk modulus κ as [51]

c2 =
κ

ρ
.

To consider time-harmonic waves we insert p (t) = p exp (−iωt) into eq. (3.21),
giving (isotropic) wave equation for acoustic waves

∇2p+ ω2/c2p = 0 . (3.22)

Hyperbolic metamaterials As eq. (3.22) is derived for isotropic case, it is not
sufficient to discuss acoustic HMMs. By assuming anisotropic response of the acous-
tic medium it is possible to derive the anisotropic dispersion relation for acoustic
waves [38, 52]

k2x
ρx

+
k2y
ρy

= κ−1ω2 , (3.23)

which is the acoustic version of the dispersion relation we derived earlier [eq. (2.21)].
Here the effective mass density (ρx and ρy) is the analogue to dielectric permittivity
and the effective bulk modulus κ mirrors permeability.
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Figure 3.16.: (a) Resonator used to implement negative dynamic mass density. Radii of the
lead, rubber and epoxy layers are 1.5 mm, 2.0 mm and 3.0 mm, respectively.
(b) Calculated effective relative mass density of periodic arrangement of res-
onators placed in regular grid with 1 cm spacing.

The challenge in acoustics is that there are no natural materials where either mass
density or bulk modulus is negative [37, 38]. While the static mass density must in-
deed always be positive, with resonant structures it is possible to achieve effective
negative dynamic mass density for particular frequencies [53]. Chiang et al. [38]
proposed an acoustic hyperbolic metamaterial, consisting of small cylindrical res-
onators [fig. 3.16(a)], arranged periodically (similar in idea to metal-dielectric mul-
tilayers in optics). Near the resonance frequency the vibrations of the cylindrical
structures are out of phase with incident wave, leading to negative mass density re-
sponse [fig. 3.16(b)]. A regular arrangement of such resonators produces an acous-
tic metamaterial, with an negative effective mass density. By having different grid
spacing in x and y directions it is possible to tune the anisotropic effective mass
density [38].

We will shortly return to this topic at the end of chapter 5, where we will present
simulations of acoustic hyperlens.

3.6. Summary

In this chapter we introduced hyperbolic metamaterials and discussed how wave
propagation in hyperbolic media differs from conventional media, where waves
from point source radiate away in relatively uniform way. In HMMs the propagation
is significantly different: waves propagate in narrow lines, corresponding to the di-
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3. Hyperbolic metamaterials

rection were waves in HMM change in nature from propagating to non-propagating
waves.

We also discussed interface between an dielectric and hyperbolic media. We
showed that type-I HMMs exhibit negative refraction. We also discussed that type-II
HMM interface can support a propagating surface wave.

We examined wave propagation in HMMs, introduced the canalization ratio ξ and
showed how this relates to wave propagation properties of the HMM.

A practical design of HMMs (periodic metal-dielectric multilayer) was also dis-
cussed: we showed how hyperbolic dispersion could be achieved with both gold
and silver multilayers and how choice of wavelength affects the resulting HMM dis-
persion.
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4. Di�raction limit and subwavelength
imaging

4.1. Di�raction limit

The angular spectrum representation introduced in section 2.3 gives a convenient
theoretical framework for understanding the diffraction limit. We start by analyzing
the propagation of fields from a point source. For simplicity we neglect the details
of the vectorial nature of the electromagnetic fields for a moment. The point source
is represented by a Dirac delta function1

E(x) = δ (x) . (4.1)

According to our convention we are imaging in x-y plane, with light propagating in
the z-direction. Following eq. (2.15) we take Fourier transform of our point source,
reaching a result that the image contains all spatial frequencies Ẽ (kx) = 1. Looking
at the dispersion relation of isotropic medium

k2x + k2z = εk20 , (4.2)

we notice that only waves with k2x ≤ εk20 have a real propagation constant kz. For
the rest of the waves the propagation constant is imaginary, indicating that these
components decay exponentially away from the source. In the far field we have
only propagating components left

Ẽ′ (kx) =

1 k2x < εk20

0 otherwise
. (4.3)

Taking the inverse Fourier transform [eq. (2.16)] gives an expression for fields in
real space. However, with evanescent waves cut out during the propagation the
image has effectively been through a low-pass filter. The resulting real-space image

1Here we for simplicity assume fields to be constant in y direction.
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now as a form of

E′ (x) =
2 sin (

√
εk0x)

x
, (4.4)

which unlike the original point source has a finite width, related to the refractive
index of the medium.

4.2. Devices for subwavelength imaging

4.2.1. Introduction

There are several routes to avoid the diffraction limit, as indicated by the popularity
of several subwavelength imaging techniques. However, no method can escape the
underlying diffraction limit, but there are ways around it. The simplest approach
is to reduce the wavelength, thus improving the resolution. High-NA immersion
microscopes also offer improvement in resolution, by increasing the refractive in-
dex and thus pushing the resolution a little bit further. More advanced techniques
however rely on external factors to the diffraction limit. The scanning near-field
optical microscope (SNOM) achieves high resolution by working in close proximity
to the imaged object. In this way the exponential decay of high-k waves is can be
overcome. The small tip of SNOM is used to convert the evanescent waves into
propagating waves (either scattering in the free space or coupled into the fiber via
the tip).

However, it is not necessary to work in the near field to achieve superresolution.
Stimulated emission depletion microscopy (STED) [25, 26] microscopy works in the
far field, but this time the diffraction limit is circumvented by having extra informa-
tion about the imaged object. In STED microscopy a tightly focused laser beam is
used to excite the emitters. Also an additional donut-shaped beam is used to su-
press emitters in close vicinity of the focus. Due to this suppression we know that
all the emitters imaged are located in a narrow region, below traditional diffraction
limit. The high resolution here is achieved using selectively exciting the emitters,
which due to depletion mechanics allow to achieve tigher focusing than traditional
diffraction limit.

4.2.2. Superlens

Advances in metamaterials theory have opened up another avenue in subwave-
length imaging. By substituting the traditional isotropic medium with a metama-
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terial medium, we can avoid the the dispersion limit altogether.2 Perhaps the first
well-known idea came from Pendry, when he proposed the superlens [27]. He pro-
posed to use a slab of negative-index metamaterial as a device to reconstruct the
evanescent fields of the initial subwavelength source. I will not discuss the super-
lens idea in much detail, because the underlying details are quite different with
HMM-based approach. However, some of the key points merit a mention.

Firstly it is important to stress that the high-k waves stay evanescent in the negative-
index medium. Indeed by looking at the dispresion relation and the resulting isofre-
quency contour we note that it resembles the dispersion relation of a regular isotropic
positive-index medium, albeit with reversed phase propagation direction. However,
due to the boundary conditions of the interfaces of negative-index medium, the
evanescent waves are restored in that medium. This means that the fields after the
negative-index slab contain all the information they had before the slab (assuming,
perhaps a bit too optimistically, there are no losses in the metamaterial). Although
the superlens design does not offer any magnification and as such is not a suitable
for subwavelength imaging by itself, it has been a interesting and motivating exam-
ple of how metamaterials force a new look on underlying physics in optics.

4.3. Hyperlens

4.3.1. Introduction

The hyperlens is an application of HMMs to the subwavelength imaging problem [16,
18, 28, 29]. As we discussed in chapter 3 there are no evanescent waves in type-I
HMM, all waves being allowed to propagate — thus no filtering of high-k waves
and no diffraction limit in the medium. This means that a HMM slab can be used
to function as a superlens, i.e. perfectly carrying the fields without attenuating the
high-k waves (containing information about subwavelength details).

The hyperlens design however goes further: by use of cylindrical (or spherical)
geometry the fields propagating through the HMM can be magnified, effectively
transforming the high-k waves into low-k waves. This means that after propagating
through the system the fields can be imaged using conventional far-field optics as
now the image is above the diffraction limit of the far-field system.

As the first approximation3 we can write the dispersion relation of a cylindrical

2At least in the theory. In practice there are of course a range of issues to consider, ranging from
losses to unit cell size of metamaterial limiting the effective medium approximation

3We will discuss the cylindrical case more rigorously in this thesis, but it should be noted that this
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HMM as
k2θ/εr + k2r/εθ = k20 , (4.5)

where the components of the wavevector and permittivity tensor are in cylindrical
coordinates instead of Cartesian coordinates. An important consequence of a cylin-
drical system is that the quantity kθr is conserved. It follows that the wavevectors
are compressed as the fields propagate in the cylindrical system

kθ (r) = kθ (r0)
r0
r
, (4.6)

corresponding to magnification of the image in the real space. This delivers the key
feature of the hyperlens: magnification of the image from below diffraction limit so
that the fields can be imaged using far-field optics.

4.3.2. Canalization regime

An important design goal of the hyperlens is to make sure that the fields from the
inner to interface propagate to the outer interface with minimal distortions. In
the lossless case this means that the phase acquired through propagation in the
hyperlens should be same for all the plane wave components. This is achieved in
the so called canalization regime. The name originates from an early proposal of
a hyperlens based on a metamaterial consisting of a wire medium [54], where the
modes propagating along individual wires carried the pixels of image through the
hyperlens. Effectively the image is “canalized” from the inner to the outer interface.
This effect is not limited to wire media, as similar behavior of (near) perfect image
transmission is achievable in several of proposed hyperlens designs [28, 29, 55].

We shall now consider mathematical details of this canalization regime. For easier
analysis we examine a planar HMM slab, avoiding additional complications arising
from cylindrical geometry. In the end of the chapter we will justify the results in the
context of cylindrical geometry.

Mathematically the idea of a canalization regime is to “flatten out” the dispersion
relation. In this case the propagation constant is slowly varying for different trans-
verse wavevectors, to the limit of being constant. With kz becoming independent of
kx, ky we can pull out the propagation term from eqs. (2.14) and (2.16) and we see

approximation holds very well, especially for type-I HMM.
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Figure 4.1.: Field propagation from Gaussian source in type-I HMM with various canaliza-
tion ratios: ξ = 1 (a), ξ = 3 (b), ξ = 9 (c). Inset show isofrequency contour of
the corresponding HMMs.

that the propagation equation reduces to

E (x, y; z) = exp (ikzz)

ˆ
Ẽ (kx, ky; z = 0) exp (ikxx+ ikyy) dx dy (4.7)

= exp (ikzz)E0 (x, y, z = 0) . (4.8)

We see that the fields only acquire a constant phase term but are otherwise unaf-
fected. Looking at the expression for propagation constant in HMM [eq. (2.22)] we
see that there are two ways to make kz independent of kx, ky: either let εo → 0 (in
which case kz → 0) or let εe →∞, in which case kz →

√
εok0.

For reference, we shall review some of the proposed hyperlens designs to high-
light the role of the canalization regime. We recall the canalization ratio from sec-
tion 3.2.3

ξ2 = −εe
εo
, (3.5)

which describes the degree of canalization: as ξ approaches infinity the system is
more and more canalized. In fig. 4.1 we show that for practical purposes rela-
tively small values of the canalization factor already yield sufficient flattening of the
dispersion relation. As a practical point we note that the canalization factors for
hyperlenses demonstrated in the literature are around 5–10 [18, 29–31].
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4.4. Magnification in cylindrical hyperlens

4.4.1. Wave expansion in cylindrical system

Although appropriating the dispersion relation of a flat Cartesian system with eq. (4.5)
is appealing and a quite good approximation, we shall also cover a rigorous ap-
proach to cylindrical hyperbolic media. For a proper analysis we shall leave the
original equations (meant for Cartesian coordinates) behind and derive the disper-
sion equation straight for the cylindrical case, starting from the electromagnetic
wave equation

∇×
(
ε̂−1∇×H

)
= k20µH . (4.9)

Given cylindrical geometry we assume (TM) fields H (r, θ) = F (r) exp (imθ) ẑ,
which after being inserted into eq. (4.9) yields a solution

Hz (r, θ) = exp (imθ)
[
aH(1)

ν (krr) + bH(2)
ν (krr)

]
, (4.10)

where ν = m
√
εθ/εr and kr = k0

√
εθ. For a more straightforward comparison

with plane waves we move from the angular momentum mode number m to the
tangential wave number kθ. We recall that a wave number represents the number
of wavelengths per unit length, while the angular mode number m gives number of
wavelengths per full rotation (2π). From here we see that m = kθr. As m is fixed
for a given wave component we get from kθr = k′θr0 that

kθ = k′θ
r0
r
, (4.11)

which shows that as waves propagate through the cylindrical systems the wave vec-
tors are compressed (corresponding to magnification of the image in real space).

4.4.2. Phase propagation in cylindrical system

A major convenience of plane waves is that the phase propagation can be straight-
forwardly expressed by

E2 = E1 exp [ikz (x2 − x1)] ,

where the phase acquired during propagation is just

Re (kz) (x2 − x1) . (4.12)
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Figure 4.2.: Comparison of the of phase acquired during propagating assuming plane waves
(blue line), cylindrical waves using Hankel functions(orange line) and scaled
plane wave approach (dashed blue line). Figure reproduced from ref. 42

On the other hand, in cylindrical bases we need to extract the phase propagation
from Hankel functions, i.e. we are interested in d

drargH
(1,2)
ν (krr). However, there

is no analytical expression available.

Instead we seek to approximate the problem with modified plane waves, hoping
to capture the relevant effects due to cylindrical geometry while still allowing to
reach analytical expressions for phase propagation. We start by writing eq. (4.12) in
more general form, allowing kz to vary with propagation. This gives an expression
for the acquired phase as ˆ

Re kr (r) dr . (4.13)

From eq. (4.5) we get the propagation constant where using eq. (4.11) gives

k2r = k20εθ − k
′2
θ

r20
r2
εθ
εr

(4.14)

This equation can now be numerically integrated, allowing us to calculate phase
propagation in a cylindrical system (i.e. accounting for magnification). In fig. 4.2
we show that although approximate, this approach gives a practical approximation
to actual phase propagation when calculated using Hankel functions.

4.5. Summary

In this chapter we introduced mathematical formulation of diffraction limit in terms
of low-pass filtering of plane wave components. We then shortly discussed different
approaches on bypassing the limit. Most importantly, we introduced basic idea of the
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hyperlens concept and introduced canalization regime, which is crucial for hyperlens
operation.

Finally we covered mathematical details of wave propagation in cylindrical ge-
ometry, showing that due to the cylindrical geometry waves are magnified as the
propagate through the cylindrical geometry. We also discussed phase propagation
in cylindrical geometry, which will become important in chapter 6.
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Part II.

Results
Here we present the main results achieved during the PhD project. The chapters
here are based on two published papers, with one more manuscript in preparation.
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5. Dark-field hyperlens

This chapter is mostly based
on ref. 34 (J1), with
contributions from ref. 56
(C1).

5.1. Introduction

One problem with the approaches for the hyperlens has been lack of intensity con-
trast, i.e. capacity to image weak scatterers. For practical purposes the objects for
superresolution imaging would be biological samples (with sizes ranging from a few
hundreds of nanometers), which due to their dielectric properties and small sizes
are relatively weakly scattering. But the experiments with hyperlenses so far have
used bright (high-contrast) sources, such as slits in an opaque metal film. Both the
incident and scattered fields are carried in the usual hyperlens design and thus the
image reaching far field has very low contrast, as the scattered fields are weaker
than the incident radiation.

To avoid problems with low contrast, my PhD project has been focused on de-
veloping the theory of the dark-field hyperlens concept. This idea was proposed by
Benisty and Houdail in 2012.[33] However, that work requires two separate hyper-
lenses: one to convert the incoming plane wave to specially shaped illumination to
the scatterer and the second hyperlens to collect scattered light from the sample.
The two hyperlenses are designed in such way that the illuminating light itself does
not couple into the imaging hyperlens.

We have proposed and studied a design based on a single hyperlens, where we
exploit the type-II HMM to filter out incident radiation thus allowing only scattered
waves to propagate through the system. Recalling from chapter 3, the type-II HMM
can behave in two ways: the high-k waves propagate unimpeded, as is typical for
an hyperbolic medium. However, here the low-k waves are evanescent and thus do
not propagate through the medium. This behaviour (low-k filtering) can be used
to filter out an incoming plane wave (having naturally small transverse wavevector,
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5. Dark-field hyperlens

due to originating from the far field) from the scattered fields (where the near fields
have significant contribution in high-k components).

In this chapter we present our earlier results (refs. 34 and 56). In these publi-
cations we studied a multilayer based implementation of the dark-field hyperlens
concept. We first show that type-II HMM is indeed suitable for filtering incident
radiation while also capturing scattered high-k waves. Crucially we note that the
key building block for a (bright-field) hyperlens — canalization regime — is not
available for dark-field designs. In this chapter we will discuss implications of this
limitation and explore possibilities for finding a good compromise between imaging
contrast and imaging quality.

Although there have been different proposed implementations and experimental
realizations of hyperlenses, the most promising ones are based on metal-dielectric
multilayers.[16, 18, 31] Therefore in the start of our project we specifically studied
implementing a dark-field hyperlens using thin multilayer structures. We limited
our studies to designs achievable with realistic material parameters for the visible
spectrum. In this constrained approach we still show that a reasonable trade-off
between the conflicting requirements can be made. Although the final design is
still challenging in terms of fabrication and experiment, it is based on realistically
obtainable properties.

We first discuss a planar HMM slab and study scattering via type-II HMM in this
flat geometry. This allows first to study filtering and propagation properties of type-
II medium without the complications of cylindrical geometry. Later in the chapter
we extend the results to a proper cylindrical hyperlens geometry and demonstrate
(1) filtering of background fields and (2) subwavelength resolution of the hyperlens
design.

5.2. Scattering via type-II HMM slab

5.2.1. Type-II HMM for filtering background fields

To see how type-II HMM leads to high-contrast imaging, we first look at the propa-
gation constant for a HMM (from section 2.4)

kz = ±
√
εok20 − k2xεo/εe , (2.22)
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from where we see that there is a cross-over point

kc =
√
εek20 , (5.1)

which separates the low-k and high-k behaviour of a type-II HMM. Below kc the
propagation constant kz is imaginary, indicating evanescent nature of the waves.
For these attenuated low-k waves we can write the propagation constant as

kz = ±iξ−1
√
εek20 − k2x , (5.2)

where we use canalization ratio ξ2 = −εe/εo [eq. (3.5)].

As we know for bright-field hyperlens, the crucial part of operation is the canaliza-
tion regime, which allows the fields to propagate through the hyperlens with little
change. However, eq. (5.2) shows that we cannot maximize filtering of low-k waves
and strength of canalization at the same time. Increasing canalization ratio by de-
creasing εo or increasing εe unavoidably reduces Im kz (and thus the evanescent
decay of low-waves). Furthermore, increasing εe also moves the transition point
kc further, so that more and more waves would fall into attenuated low-k regime,
reducing the amount of scattered fields that are able to propagate through the hy-
perlens.

5.2.2. Scattering via type-I HMM slab

Before looking at a type-II HMM slab, we briefly turn to a characteristic type-I HMM
consisting of a dielectric εd = 3.22 and a metal εm = −2.5 + 0.5i. These parameters
are comparable to those used in literature both in experimental and also theoretical
discussions of bright-field hyperlenses [18, 29–31]. Effective parameters for this
system can be retrieved using eqs. (3.12) and (3.13):

εo = 0.36 + 0.24i

εe = −13.3 + 13.4i ,

We note that the canalization ratio is ξ ≈ 6 and thus we can expect a strongly
canalizing behavior from such HMM slab (recalling results about canalization in
section 3.2.3).

We shall now see how scattered near fields propagate through a type-I HMM slab.
So we simulate a small metallic scatterer (details are specified in fig. 5.1) close to
a HMM slab. An incoming plane plane wave illuminates the HMM slab and the
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Figure 5.1.: Scattering from a metallic scatterer (diameter 70 nm, n = 0.01 + 1.5i) due to
incoming plane wave (λ = 715nm) through a type-I HMM (a) or a type-II HMM
(b). Both structures are multilayer stacks containing 50 periods of 10 nm metal
and 10 nm dielectric layers. An artificial high-index medium is placed after
the HMM to allow out-coupling of high-k waves from the HMM. Insets show
isofrequency contours for the HMMs.

scatterer, with the HMM slab then capturing and propagating the scattered fields.
Figure 5.1(a) shows simulation results of such a structure. Given the canalizing
nature of the system, we see the expected behavior of scattered fields traveling in a
straight narrow beam through the multilayer structure (see also fig. 3.10 and related
discussion in section 3.2.3).

However, we can also notice the inherent drawback of type-I based (bright-field)
hyperlens: both the incoming plane wave and scattered fields propagate through
the system and the incident radiation overwhelms the scattered signal. Because this
low contrast of the scattered fields, imaging of these objects is difficult. Here we
have considered a metallic scatterer, exhibiting a relatively large scattering cross
section. Had we instead used a dielectric scatterer the object would have been
mostly invisible in the output.

5.2.3. Scattering via type-II HMM slab

We now show that with a type-II HMM slab we can use the hyperbolic dispersion to
filter out incident radiation. We seek to achieve type-II hyperbolic dispersion using
a silver-dielectric multilayer structure (recall discussions in section 3.3.2). For sim-
plicity here we assume 50% volume filling fraction for the silver (i.e. the dielectric
and metal layer have equal thickness). Here we assume dielectric with n = 1.45 and

60



5.2. Scattering via type-II HMM slab

wavelength of 440 nm, which gives εm = −5.11 + 0.61i.[57] With this we end up
with effective parameters1

εo = −1.50 + 0.31i (5.3)

εe = 7.03 + 0.57i . (5.4)

We immediately note the lower canalization ratio ξ ≈ 2.2 of this design. This means
that the waves entering the HMM slab will no longer travel in single narrow beam,
but instead two beams will now be formed. This is the key compromise of a dark-
field design: we sacrifice canalization ratio to gain in enhanced contrast of output
fields. We will motivate this choice of material parameters in the next section, where
we will consider type-II HMM in cylindrical geometry.

In fig. 5.1(b) we see the operation of this type-II HMM slab. As discussed, we see
the two output beams, due to reduced canalization [e.g. relative to fig. 5.1(a)]. At
the same time we see that the illuminating plane wave does not propagate through
the slab. With only scattered fields present in the output we avoid issues with visi-
bility of weak scatterers. Here we used a metallic scatterer [as we did in fig. 5.1(a)],
but thanks to the dark-field properties of the system we could equally well have used
a dielectric scatterer (with much lower scattering cross section).

The fields in fig. 5.1(b) exhibit relatively complex behavior. In order to better
understand them, we can turn back to figs. 3.4 and 3.8 and corresponding discussion
on wave propagation in hyperbolic media (section 3.2). From that discussion we
recall that in a type-II hyperbolic medium we can have three different kind of fields
interacting:

1. the incident plane wave, decaying exponentially in the HMM;

2. the two propagating beams excited from high-k scattered waves; and

3. a surface wave propagating along the air-HMM interface.

Existence of these fields complicates the field picture near the input interface. How-
ever, during the propagating both the incident plane wave and the surface mode
decay, so in the output we are only left with the beam formed by high-k waves.

Here we have used realistic material parameters, which means we are accounting
for the losses in the metal. Recalling our earlier discussion on the effect of losses
(section 3.2.4) we note that we are using a relatively thin HMM slab (on the order

1We will explain the choice of material parameters in more detail after we introduce cylindrical
geometry and the design constraints arising there.
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Figure 5.2.: Scattered fields from a perfectly conducting cylinder with diameter 80 nm (a),
with k-space compositions of near fields for three different cylinder diameters
(b). Low-k cut-off kc = 2.65k0 for the type-II HMM used in fig. 5.1 is also
indicated.

of the wavelength of light). This is necessary to avoid broadening and attenuation
of the beams, which would destroy the subwavelength imaging properties of the
structure. Here we see that the subwavelength imaging is still feasible, as the two
beams themselves are subwavelength in size.

We see that the type-II HMM system performs relatively well. We shall shortly
consider why it does perform — or more precisely, in which cases it will not per-
form. With our choice of material parameters the cut-off point for low-k waves kc is
relatively high, meaning there exists a range of plane wave components that will not
propagate through the slab2. This means we need to consider the structure of the
scattered fields to see when they are able to propagate through the HMM. In partic-
ular we see that in case of fig. 5.1(b) it is not detrimental to the imaging process:
we have clearly formed fields in the output. We illustrate this in fig. 5.2 by showing
k-space spectra for scattered fields as a function of scatterer size. We see that in
the case of small particles the scattered fields contain plenty of high-k components.
However, as the particle size increases the spectrum is shifted towards low-k regime.
Of course, there is some filtering of the plane wave components and we will discuss
that in more detail later (section 6.2.3).

2This holds in the strict sense only for very thick HMM slabs. In practice we often assume slabs with
thickness in the order of a few free space wavelengths. In such cases the evanescent tails of the
low-k waves are not completely attenuated, depending on the dispersion properties of the HMM.
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5.3. Cylindrical geometry: dark-field hyperlens

Figure 5.3.: Simulation geometry for the dark-field hyperlens: a scatterer near the inner
interface of the hyperlens is illuminated by an incoming Gaussian beam, pro-
ducing two scatted beams in the hyperlens.

5.3. Cylindrical geometry: dark-field hyperlens

We have now covered the basic ingredients for high-contrast subwavelength imaging
(dark-field hyperlens): (1) filtering of incident radiation and (2) propagating scat-
tered fields and reconstructing the fields in the output. Now we will discuss the final
component: magnification of a subwavelength image to above the diffraction limit
(to be imaged with conventional far-field optics). To achieve that we need cylin-
drical HMM geometry. Having already covered the principles behind magnification
with cylindrical HMMs (section 4.3), we will focus here on complexities brought on
by working with type-II HMM in a cylindrical geometry.

The general setup of the system we are considering is shown in fig. 5.3: a small
cylindrical scatterer (with a diameter of 70 nm) is placed close to the inner interface
of the hyperlens (10 nm from the surface). Again, like we did for the slab geometry,
we use a metallic scatterer (ε = −2.25 + 0.03i) for a larger scattering cross section.
A Gaussian beam is incident upon the cylinder, from which waves will scatter into
the hyperlens and propagate to the outer interface. Due to dark-field properties of
the type-II HMM, only scattered high-k waves propagate through the HMM, while
the incident radiation is reflected back. Note that the low-k cutoff kc = 2.65k0 of
the HMM [given by eqs. (5.3) and (5.4)] is relatively high so the dielectric medium
outside must have a high refractive index, to allow waves from the hyperlens to be
coupled out.3

3Outcoupling of the waves is limited both by (1) low-k cut-off in the HMM (as waves below cut-off
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Figure 5.4.: Fields propagating from a point source on the inner interface of a semi-infinite
hyperlens, using type-II HMM. Canalization ratio of the HMM is 0.6 (a) or 6.3
(b). Inner radius of the hyperlens is 1.4λ(white solid line). White dashed line
indicates a radius of 3.5λ, corresponding to an outer interface of a hyperlens
with 2.5× magnification. Here the hyperlens is semi-infinite to avoid reflections
from the outer interface.

The primary concern with the type-II hyperlens is (lack of) canalization. As al-
ready discussed, in conventional (type-I based) hyperlens the canalization regime
ensures that fields propagate through the hyperlens in a narrow beam, facilitating
straightforward imaging process. In the previous section we alluded to the fact that
for type-II HMM we have to work away from the canalization regime in order to
preserve filtering of low-k waves. Instead of trying to work as close to the canal-
ization regime as possible we aim to go further away from the canalization regime.
With this we increase separation between the two propagating beams, so that we
direct the two beams from the object into two spatially separated regions, avoiding
problems with overlapping beams.

In fig. 5.4 we explore the effects of a varying canalization factor in cylindrical
geometry. We see that for a very small canalization ratio [fig. 5.4(a)] two beams
propagate with a large propagation angle and thus the waves will not escape the
hyperlens structure (or at least will not propagate towards the far-field optics). Even
for the canalization factor ξ = 6.3 used here the waves originating from the point
source spread enough to rule out straightforward imaging process. At the same time
canalization is already strong enough so that filtering of low-k waves is too weak for
proper dark-field operation.

are evanescent within the HMM and (2) refractive index of the outside medium, as waves with
kx > nk0 are evanescent outside the HMM.
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5.3. Cylindrical geometry: dark-field hyperlens

Simulations of our proposed design are shown in fig. 5.5(a), where we study
scattered fields from a weak dielectric scatterer. The two beams form two image
points corresponding to the same source, but due to spatial separation we only need
to consider one of the images.

We use the same parameters for the HMM as in previous section [eqs. (5.3)
and (5.4)]. As already mentioned, here we (for simplicity) assume equal thick-
ness for dielectric and metal (Ag) layers in the HMM structure. To reach a suitable
HMM we have to choose a dielectric medium4 and a wavelength (from which fol-
lows the permittivity of the Au layer). On one hand we seek to achieve relatively
low canalization, so that the two beams are spatially separated and low-k filtering
is strong enough to filter out the incident radiation. At the same time the canaliza-
tion cannot be two low, otherwise the two beams will not reach the far field optics
[as shown in fig. 5.4(a)]. Previously we discussed designing multilayer HMM struc-
tures (in section 3.3.2). There we showed (fig. 3.15) that the canalization ratio of
such structures is generally rather low. So to achieve a good hyperlens operation we
reached a design with dielectric n = 1.45 and silver at a wavelength of around 440
nm (giving εm = −5.11 + 0.61i), giving us the HMM with effective parameters as
given earlier by eqs. (5.3) and (5.4).

In order to better understand and visualize the behavior of the design we also
performed simulations with a simplified, more idealistic system. Instead of consid-
ering the proper multilayer structure, we use an effective medium structure, where
we can easily adjust the relevant propagation parameters (εo, εe).5 We also reduced
the losses by a factor of 20, so that the propagating beam of high-k waves would be
clearly visible. Furthermore, we used a point source instead of an incoming wave
and a scatterer in order to simplify the field structure. Simulation of this “idealized”
system is shown in fig. 5.5(b), where the narrow beams of high-k waves propagat-
ing through the hyperlens are more clearly visible. We also see that part of the
high-k waves reflect from the outer interface: this is total internal reflection due
to relatively low refractive index of the outer medium.6 In fig. 5.5(c) we show a
semi-infinite hyperlens so comparing fig. 5.5(b,c) allows us to further illustrate the

4Here we are satisfied by just choosing refractive index and not actually choosing a material.
5For a multilayer structure we enter material parameters and the filling fraction to the simulation.

These parameters make sense from a fabrication/experiment point of view, but as the behaviour
of the hyperlens depends of the effective parameters we are more interested in directly adjusting
those.

6Of course, the refractive index used here (n = 3) low for the optical regime. However, as the HMM
structure carries high-k waves, there are plenty of wave components that have too high k to enter
the dielectric medium. This is particularly visible in the lossless case, where the high-k waves are
not as attenuated.
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Figure 5.5.: (a) Scattering from a metallic particle, imaged through a dark-field hyperlens.
The hyperlens consists of 50 periods of metal-dielectric multilayer (with thick-
ness 10+10 nm). (b,c) Fields due to a single point source placed on a inner
interface of a hyperlens, with anisotropic permittivty tensor as per effective
medium approximation of the multilayer used for (a). Losses have been de-
creased by 20× to highlight high-k structure of the hyperbolic propagation in
the medium. In (b) the total hyperlens thickness is same as in the multilayer
structure of (a), whereas in (c) the hyperlens is semi-infinite, avoiding reflection
from the outer interface.

effect of the reflected beam in the hyperbolic medium.

Having reached this cylindrical design we now examine subwavelength imaging
properties of the hyperlens. We start from a range of simulations with two scatterers
with varying distance between them. Figure 5.6(a-c) show a range of simulations of
two small scatterers with varying distance between them. As seen from the figure
it is possible to distinguish the two particles with a separation below the diffraction
limit (∼360 nm). A more thorough analysis is shown in fig. 5.6(d) where we plot
outcoming fields for a range of particle separations (from 100 to 600 nm). We see
two peaks (corresponding to the two scatterers), separated by a large distance (due
to magnification in the hyperlens). However, as we have already noted, the losses
cause significant broadening of the propagating beam. This leads to interference be-
tween waves from the two objects (for small separations). In this case the resolution
of the device is limited by the broadening, not magnification of the hyperlens.
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Figure 5.6.: Fields scattered from a pair of scatterers (with same parameters as fig. 5.5)
separated by 400 nm (a), 300 nm (b) and 200 nm (c). Fields outside the hy-
perlens have been scaled 10× so that fields both inside hyperlens and outside
the hyperlens are visible, despite attenuation in the hyperlens. The red circles
indicate scatterers and the dashed white lines indicate the beams corresponding
the scatterers. (d) Output fields of the hyperlens, measured along arc 500 nm
away from the outer interface (shown in field plots with dotted line).

5.4. Hybrid design: avoiding low-k cuto�

5.4.1. Challenges due to low-k cuto�

An important practical obstacle for a dark-field hyperlens is the out-coupling: low-
k cutoff places a lower limit on the range of waves that can be coupled out. At
the same, time refractive index of the outside medium places an upper bound for
out-coupling. To achieve a working design we had to use a high-index medium
(n = 3) outside of the hyperlens, so that the nk0 of the dielectic was higher than the
low-k cutoff (kc ≈ 2.7k0) in the HMM. However, using such a high refractive index
is not easy to achieve in practice, so we seek to improve the design to avoid this
out-coupling challenge.

Type-II hyperbolic dispersion also limits the magnification available: as the waves
propagate through the hyperlens the image is magnified, which in k-space corre-
sponds to scaling down of the transverse wavevector. In case of a canalized type-
I based hyperlens this is not an issue as the propagation properties of the waves
change very little.7 However, in case of a type-II HMM along the magnification

7This actually improves canalization, as the waves are moved towards the center of the dispersion
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Figure 5.7.: High-k Gaussian beam (see text for details) propagating through a type-I (a)
and type-II (b) hyperlens. k-space spectra of the initial fields and fields after
propagating to r − r0 ≈ 2λ and r − r0 ≈ 5λ are shown in (c,d). Type-II HMM
is based on the previous section, but losses are reduced 30× to highlight high-k
behavior. Type-I is obtained by flipping signs of permittivity tensor components.
In (d) low-k cutoff kc is also shown, with red dotted line.

waves slowly transform from propagating high-k regime to non-propagating low-k
regime, thus placing an upper limit on magnification. To further study this issue
we compare propagation of scattered fields in bright- and dark-field hyperlens. We
excite a beam of waves containing a limited k-space spectrum of waves (centered
around 5k0), so we can see the transformation of waves in the k-space. First, in
fig. 5.7(a) we see that in type-I cylindrical hyperlens the propagating waves are ex-
panded according to the cylindrical geometry. In fig. 5.7(c) we show k-space com-
positions of propagating waves after different propagation distances. As the waves
propagate and are magnified, the k-space spectrum is correspondingly compressed.
For a type-I HMM this is not an issue, as low-k components themselves are also al-
lowed to propagate in the medium, so not much changes in terms of propagation.
Even though we reduced the losses in the system, we still see some attenuation of
the waves. In a type-I HMM this is purely due to the material losses.

In contrast we see that in type-II medium the waves start to be reflected back
after propagating for distance 1.4r0 [fig. 5.7(b), dashed line indicates 1.4r0]. The
reflection is due to waves transitioning into the low-k regime, where these compo-
nents are not able to propagate further and are thus reflected. However, some of
the components of the propagating beam are still above the low-k cut-off so these

relation, so the magnification actually helps to reduce phase mismatch between different plane
wave components.
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Figure 5.8.: Hybrid design compromising of inner type-II HMM core (shown in green) and a
outer region with elliptic dispersion (blue). Insets show dispersion relations of
the two media. Reproduced from ref. 56.

components propagate further (where they also will be reflected at some point).
This behavior is explored by looking again at the evolution of the k-space spectrum
[fig. 5.7(d)]. At first all components of the propagating waves are above cut-off, so
propagation behaves similarly to the type-I case. However, as the propagation (and
magnification) continues, more and more of the k-space spectrum enters into cut-off
and is reflected. This dramatic cut-off at kc ≈ 2.7k0 is clearly visible in the k-space
plots of larger propagation distances in fig. 5.7(d). Strong attenuation seen in the
k-space plots here is mainly due to evanescent decay of low-k waves, with material
losses playing a minor role.

5.4.2. Hybrid design for avoiding low-k cuto�

We proposed [56] a hybrid design combining regions with hyperbolic and elliptic
dispersions (fig. 5.8). This way the inner HMM core of the hybrid structure provides
dark-field superresolution imaging: capturing (and magnifying) the scattered high-k
waves and filtering the incident low-k illumination. The outer structure is designed
to have elliptic dispersion, where the waves will propagate (and magnify) further.
We can expect magnification properties in the second layer as well, as the elliptic
dispersion is flat enough for waves with small k, so that the similar arguments hold
as with hyperbolic medium.

For the type-II HMM we use the same material parameters as before, but we have
slightly tuned layer thicknesses: thickness of the metal layer is 12 nm, while the
dielectric layers are 18 nm thick (giving metal volume filling fraction 40%). As we
still have 50 periods, this increases thickness of the HMM part to 1500 nm, compared
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Figure 5.9.: (a) Fields from a point source on the inner interface of the hyperlens. The
dashed line indicates change from hyperbolic to elliptic dispersion. (b) Fields
along outer interface of the hyperlens as function of point source separation.

to the previous design. With this we reduce low-k cut-off from kc = 2.65k0 to 2.20k0,
allowing more of scattered fields to propagate in the hyperlens.

Ideally the second layer would be a type-I HMM, allowing propagation of all
waves. However, for the metal we are using this is difficult to achieve, as it would
require dielectric layers with refractive index over 2.6.8 Instead, we aim for the
second layer to have elliptic dispersion, which allows the magnified waves to prop-
agate, but reflecting rest of the high-k waves. Assuming that the HMM layer has
magnified the image enough, this will not be an issue. Compared to the dielectric in
the HMM part we use a high index dielectric (nd2 = 2.0) and a significantly reduced
filling metal fraction (20%), achieved by changing the thickness of dielectric layers
to 48 nm (while keeping the metal layers at 12 nm). The second part of the hybrid
hyperlens consists of total 60 periods, giving a total thickness of 3600 nm.

5.4.3. Results

In fig. 5.9(a) we show the operation of this hybrid design. From the figure we see
a similar results as we showed before [fig. 5.5], however here we have avoided
the need for very high-index outer medium, making the experimental design more
feasible. To study superresolution properties of this design we calculated output
fields from two point sources with varying separation, shown in fig. 5.9(b). As
expected, the behavior of the hyperlens is similar to the previously shown design

8This follows from eq. (3.12), where we can solve for εo = 0 as function of εd, with f = 0.5.
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5.5. Summary

(fig. 5.5): from 300 nm and above we can (more-or-less) reliably distinguish the two
sources, whereas below 200nm the sources appear as one (due to the broadening).

We emphasize that the main improvement of this hybrid design is more reasonable
requirements for the outside medium: in this case we assumed a dielectric medium
with n = 2, which is a more realistic choice than n = 3 required for a design based
on a pure type-II HMM structure. Another improvement of this design is reduced
losses: as insets in fig. 5.8 shows, the imaginary part of kz is reduced in the elliptic
layer, leading to smaller attenuation of propagating waves.

5.5. Summary

In this chapter we proposed a dark-field hyperlens design based on a type-II HMM
structure. First we showed how low-k cut-off of a type-II HMM can be used to filter
incident radiation, while still capturing fields scattered from a subwavelength object.

We discussed design considerations of cylindrical dark-field hyperlens, with the
important point of lack of canalization regime for type-II HMM based design.

Having covered the basic design considerations we showed simulations of our
initial design[34], based on realistic metal-dielectric multilayer design. We showed
that despite the strong losses in metal layers, the subwavelength imaging process
still works, although with reduced performance when compared to an “ideal” system
with very low losses.

Finally, we raised the issue of magnification and corresponding compression of k-
space spectrum. To combat the resulting challenges with out-coupling we discussed
our proposition for improved hybrid hyperlens design [56].

Acoustic dark-field hyperlens

We have by now covered the necessary theory of hyperlenses, so we can now briefly
discuss the acoustic version of the design. Previously, in section 3.5, we outlined
the theory of acoustic HMMs and showed that it mirrors the optical case. We use a
resonant acoustic HMM, which we already introduced in section 3.5. By changing
the operation frequency of the structures we can move from type-I to type-II HMM,
realizing acoustic dark-field hyperlens.

Figure 5.10(a) shows calculated dynamic mass density, following the procedure
of ref. 53. In fig. 5.10(b) we reproduce results from Chiang et al. [38], showing
bright-field operation of the acoustic hyperlens operating at 6065 Hz. By changing
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Figure 5.10.: (a) Calculated effective mass density of the cylindrical resonators, markers in-
dicate frequencies for bright- and dark-field hyperlens. (b,c) Hyperlens struc-
ture consisting of such resonators, operating as a bright-field hyperlens at 6065
Hz (b) and as a dark-field hyperlens at 6040 Hz (c). Insets show hyperbolic
dispersions of effective medium approximation.

the operating frequency to 6040 Hz the same structure now behaves as dark-field
hyperlens [fig. 5.10(c)], where we can see a lack of canalization (two output points
appearing from a single source) and a surface mode appearing on the inner interface
(as we also observed in our optical dark-field hyperlens).
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6. Magnetic dark-field hyperlens

This chapter is based on
ref. 42 (J2).

6.1. Motivation: “pseudocanalization” via phase
compensation

We now move away from practical multilayer designs of the previous chapter. We
recall that in section 3.4 we pointed out that with negative permeability we can
reach a kind of “complementary” medium — where the dispersion relation is iden-
tical compared to the µ-positive case, but the sign of the propagation constant kz
is flipped. As the propagation constant describes phase accumulation during prop-
agation this “complementary” medium exhibits reversed phase propagation, when
compared to respective nonmagnetic HMM. This leads to a question of what hap-
pens if we combine a “normal” and a “complementary” HMMs in a way that phase
propagation is canceled in the output.

Implications of canceling the phase propagation become clearer when looked from
the perspective of the canalization regime (section 4.3.2), where we by suitably
choosing the permittivity tensor components (i.e. maximizing the canalization ratio
ξ) the propagation constant kz is suppressed and thus the waves propagate without
acquiring any phase. However, as a downside we have less degrees of freedom to
engineer hyperbolic dispersion, as we need to impose a large canalization ratio ξ for
the canalization regime. In contrast, the idea of neutralizing the phase propagation
using µ-negative media enables us to achieve a similar effect as canalization regime,
without constraints on the HMM parameters. This leaves us are free to choose
parameters for the first HMM region, as long as we choose suitable parameters for
the second region, reaching a “complementary” dispersion.

This idea of phase compensation is illustrated in fig. 6.1. In fig. 6.1(a) we show
a HMM operating in canalization regime: the initial fields propagate with very little
change.1 The idea presented in this chapter is to use two complementary media, as

1Canalization ratios that are usually achieved are not too high, so there is some phase acquired
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Figure 6.1.: A narrow Gaussian beam propagating through a canalizing (a) and pseudo-
canalizing (b) system. Fields after the propagations are shown in (c). Canal-
ization is achieved by reducing phase propagation term (with canalization ratio
ξ = 20) whereas pseudocanalization relies on combination of two complemen-
tary media, so that in the end phase propagation is cancelled.

shown in fig. 6.1(b): although in the two layers of the system phase propagation
is not suppressed, the phase propagation is reversed in the second medium, after
propagating through both layers initial fields are reconstructed. Final fields are
compared in fig. 6.1(c), showing that in the output the original narrow Gaussian
shape is mostly preseved.2

In this chapter we explore achieving canalization using reversal of phase propa-
gation (“pseudocanalization”). This is in general achieved using µ-negative HMMs,
but we also shortly discuss limited pseudocanalization achievable using nonmag-
netic HMMs. We start from planar slab geometry and cover important consideration
in case of type-I and type-II HMMs. After we extend the discussion to cylindri-
cal geometry and show how this pseudocanalization offers an improved design for
dark-field hyperlens.

throughout propagation. This accounts for small broadening and phase advancement seen in the
figure.

2Given a canalization ratio ξ = 20 the Gaussian beam is slightly broadened in the canalizing system.

74
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6.2. Phase compensation in planar structures

6.2.1. Introduction

For the first layer we assume a simple hyperbolic medium with

ε(1)o = ∓1 + γi , (6.1)

ε(1)e = ±1 + γi , (6.2)

µ(1) = 1 , (6.3)

where depending on the signs we have either type-I (εe < 0 < εo) or type-II hyper-
bolic medium (εo < 0 < εe). We allow for a lossy medium, represented by loss term
γ.

For analysis we adopt a relatively simple approach: we prescribe the fields at
z = 0 and look into propagation in the positive z direction. As per eq. (2.14) (see
section 2.4 on wave propagation), the plane wave components of the fields after
distance d in a homogeneous medium are given by

E (kx, d) = E (kx, 0) exp [ikz (kx) d] . (6.4)

The effect of the propagation constant kz can be split into real (k′z) and imaginary
(k′′z ) parts: the real part results in a phase factor exp (ik′zd) for the propagated field,
while the imaginary part gives an attenuation factor exp (−k′′zd).

The pseudocanalizing system consists of two layers, with thicknesses d1 and d2

and optical parameters ε(1)o , ε
(1)
e , µ(1) and ε

(2)
o , ε

(2)
e , µ(2). For a rigorous analysis we

would need to consider reflections from the interfaces at z = d1 and z = d1 + d2

and also reflections due to imposed fields at z = 0. However, in the basic analysis
we neglect these effects. For the interface between the two HMMs we have perfect
impedance matching in the lossless case.3 As any practical applications are limited
to the low-loss regime, we will assume impedance matching also for lossy calcula-
tions. Neglecting reflections from z = d1 + d2 is arguably not physically correct, but
nevertheless we assume this for simplicity.4 With these assumptions there is subse-

3It is easy to see that impedances for oblique incidence γ = kz/εxk0 are always matched in the
lossless case.

4In effect, we are assuming that the second layer is semi-infinite, or at very least the medium after
the second layer is impedance matched. In practice we are interested in systems where the pseudo-
canalizing system is in a conventional dielectric (e.g. air). In such case there is strong impedance
mismatching for high-k waves, as these wave will be totally internally reflected. However, intro-
ducing these reflections would only complicate the theory and would not give any extra insight
into the physics of pseudocanalization.
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6. Magnetic dark-field hyperlens

quently no need to consider reflections from the z = 0 boundary either. Later we
validate these assumptions with full-wave simulations.

Given these simplifications we can straightforwardly apply the propagation equa-
tion [eq. (6.4)] to get an expression for propagated fields (in k-space)

E (kx, z) =

E (kx, 0) exp
(

ik
(1)
z z
)

z ≤ d1 ,

E (kx, 0) exp
(

ik
(1)
z d1

)
exp

[
ik

(2)
z (z − d1)

]
z > d1 ,

(6.5)

where k(1)z and k(2)z are propagation constants for the first and second layer, given by
eq. (2.22) using respective permittivities and permeabilities. This equation allows
us to easily calculate propagation of (plane wave components of) fields through our
two-layer system. For real-space fields we need to Fourier transform the resulting
fields E (kx, x).

Looking at fields after propagation through our two-part system, we get from
eq. (6.5) and (looking at fields at z = d1 + d2) the expression for propagated fields

E (kx, d1 + d2) = E (kx, 0) exp
[
i
(
d1k

(1)
z + d2k

(2)
z

)]
. (6.6)

Pseudocanalizing behavior is reached when we reduce the exponential term to unity
(thus reproducing the initial fields), which gives the condition for pseudocanaliza-
tion

d1k
(1)
z + d2k

(2)
z = 0 . (6.7)

To reach conditions for material parameters between two slabs we assume for
now that both media are lossless and furthermore that the relative permeability
of the first medium is unity (µ(1) = 1). For the second layer we assume negative
permeability, so µ(2) < 0. We shall look at the two limiting cases: kx = 0 and
kx =∞. Writing out eq. (6.7) for these two cases we get two equations

d1sgn
(
ε(1)y

)√
ε
(1)
x = −d2sgn

(
ε(2)y

)√
µ(2)ε

(2)
x , (6.8)

d1

√
−ε(1)x ε

(1)
y kx/ε

(1)
y = −d2

√
−ε(2)x ε

(2)
y kx/ε

(2)
y . (6.9)

Solving these two equations gives the conditions for the material properties of the
two slabs:
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6.2. Phase compensation in planar structures

µ(2)ε(2)x = ε(1)x d21/d
2
2 , (6.10)

µ(2)ε(2)y = ε(1)y . (6.11)

Although we derived these relations based on two limiting cases, it is easy to verify
that the condition in eq. (6.7) is fulfilled for all kx.

In case of lossy media the phase compensation can still be achieved. In this case
we would enforce real parts of eq. (6.7).5 In principle we do not need to place any
constraints on the losses, at least from the phase compensation viewpoint.6 How-
ever, here we assume d1Im k

(1)
y = d2Im k

(2)
y as this allows us to reach the following

analytical conditions for complex permittivities:

µ(2)ε(2)x = ε(1)∗x d21/d
2
2 , (6.12)

µ(2)ε(2)y = ε(1)∗y . (6.13)

6.2.2. Phase compensation with type-I HMM

We shall now demonstrate the results obtained in the previous section by showing
phase compensation in the case of type-I HMM. We assume the first medium given
is by eqs. (6.1) to (6.3) (with signs such that εe < 0 < εo, i.e. type-I HMM) and then
get the parameters for the complementary medium from eqs. (6.12) to (6.13) as:

ε(2)o = 1 + γi ,

ε(2)e = −1 + γi ,

µ(2) = −1 .

Note that we have assumed equal thickness of the first and second layers (d1 = d2).

We assume fields with Gaussian profile exp
(
−x2/∆2

)
on the interface z = 0,

5Here we recall an earlier discussion on the effects of real (k′z) and imaginary (k′′z ) part of propagation
constant kz. For lossless type-I media we neglected k′′z term and only focused on effects of the
real part (the phase term) of the propagation constant. However, in the case of a non-negligible
attenuation term parts of propagating waves are attenuated and thus perfect reconstruction is not
possible. There is no way to restore those attenuation components without gain (i.e. k′′z > 0) and
we thus focus our attention on the real part of the kz.

6Of course, in practice attenuation of plane wave components is an important consideration in re-
constructing the initial fields.
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Figure 6.2.: Pseudocanalizing operation based on a type-I HMM (a) and type-II HMM (b).
At z = 0 a Gaussian profile Hz = exp

(
−x2/∆2

)
of fields is imposed, with

∆ = 0.1λ. Losses are taken to be γ = 0.01.

which after Fourier transform yields expression in k-space

Hz (kx, z = 0) =
√
π∆ exp

(
−1

4
∆2kx2

)
. (6.14)

Now, using eq. (6.5) we can study wave propagation through the two-layer system.
Results of the calculation are shown in fig. 6.2(a), where we see that after fields
propagate through both layers the initial fields are restored. In the calculation we
have assumed second layer to be semi-infinite.

6.2.3. Phase compensation for type-II HMM

The same procedure can be applied to type-II HMM as well. Using eqs. (6.12)
and (6.13) we get parameters for the second layer (this time having type-II HMM as
the first layer, i.e. ε(1)o < 0 < ε

(1)
e ):

ε(2)o = −1 + γi

ε(2)e = 1 + γi

µ = −1 .

In fig. 6.2(b) we show propagation through this type-II HMM based pseudocanal-
izing system. Comparing results against type-I system [fig. 6.2(a)] we see a very
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Figure 6.3.: (a) Initial fields (blue) and fields after propagation through pseudocanalizing
(oragen) type-II HMM system [fig. 6.2(b)]. (b) Fields after propagation through
the pseudocanalizing system, with various low-k cutoffs kc. White dashed lines
indicate zeros of sin (kcx) /x.

similar picture: in the second layer phase propagation is reversed and using that the
initial fields are reconstructed at z = d1 + d2. However, we see that the reconstruc-
tion is not perfect as there is interference between the two beams. This is due to
low-k filtering, as we shall now explain.

Low-k filtering We show effect of low-k filtering in detail in fig. 6.3(a), where we
plot electric field slices from fig. 6.2(b) for z = 0 and z = d1 + d2. We see that in
effect the point source is more narrow, but due to filtering of low-k waves sidelobes
have now appeared.

There is an important difference between pseudocanalization in type-I and type-II
HMMs: while in type-I HMM we could assume that only real part k′z of the propa-
gation constant kz has a significant contribution, this is not case for type-II HMM.
Wave components below the low-k cutoff kc are not allowed to propagate in a type-
II HMM, and thus the propagation constant kz is now dominated by the imaginary
component k′′z for low-k waves, resulting in attenuation of these components. This
means that the propagated fields [given by eq. (6.6)] can not perfectly reconstruct
the original fields at z = 0, as the low-k components are now missing.

Imaginary part of the propagation constant (k′′z ) ends up in eq. (6.6) as an atten-
uation term [exp (−k′′zz)], which we can consider as a high-pass filter with cutoff at
kc. Looking then waves from a point source propagating through a pseudocanalizing
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Figure 6.4.: Propagation of incident plane wave and “scattered” fields through a pseudo-
canalizing system based on a type-I HMM (a) and type-II HMM (b). Parameters
for calculation match fig. 6.2, except additional term for normally incident plane
wave.

system we reach the following approximation for the propagated fields:

E (x, y) ≈ E0
2

x
sin (kcx) , (6.15)

where we used the Fourier transform of a rectangular function to approximate the
propagated image. In fig. 6.3(b) we show fields propagating through a pseudocanal-
izing system with varying kc. We see that due to the high-pass filtering the image
now has additional zeros at nπ/kc, with n = ±1,±2, . . .. In case of low kc the addi-
tional zeros have relatively minor effect on reconstructed fields, but as as the kc gets
higher the zeros appear closer and thus the sidelobes become more pronounced.

We will return to the issue of the sidelobes with cylindrical geometry, when we
will be discussing the resolution of a pseudocanalizing dark-field hyperlens.

Dark-field operation An important upside of pseudocanalization is that we can
combine this with the dark-field properties of type-II HMM. As we discussed earlier
(section 5.3) the canalization ratio and filtering of low-k waves are inversely related,
so increasing canalization makes dark-field operation impossible. As pseudocanal-
ization is independent of dispersion properties we can achieve perfect reconstruction
of fields with dark-field operation.

To show that we consider a case similar to a weak scatterer under plane wave
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Figure 6.5.: Phase compensation using magnetic (a,c) and non-magnetic pseudocanaliza-
tion (b,d). Fields at z = λ (e) show compensated fields, with dashed lines
indicating magnetic and solid line nonmagnetic pseudocanalization. (f,g) show
corresponding isofrequency contours for the two layers of non-magnetic system
for kc = k0 (f) and kc = 0.7k0 (g).

illumination:

Hz (kx, z = 0) =

”scattered”︷ ︸︸ ︷
Hs

√
π∆ exp

(
−1

4
∆2kx2

)
+

”incident”︷ ︸︸ ︷
Hiδ (kx) , (6.16)

where we now have a narrow Gaussian beam (playing the part of scattered fields)
and a normally incident plane wave. As before, we use eq. (6.5) to calculate propa-
gated fields.

We show results for both type-I and type-II system in fig. 6.4, from where we now
see an important difference between the two systems. Type-I system [fig. 6.4(a)]
carries both scattered and incident fields, whereas fig. 6.4(b) shows that the type-II
HMM filters out the incident plane wave. For both cases (and as in fig. 6.2) the
phase propagation is cancelled and thus initial fields are restored (apart from the
effects of low-k filtering).

6.2.4. Phase compensation without magnetic properties

It is possible to achieve (limited) phase compensation even with non-magnetic HMMs
(i.e. µ = 1). To show this we start again from eqs. (6.8) and (6.9)
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d1sgn
(
ε(1)y

)√
ε
(1)
x = −d2sgn

(
ε(2)y

)√
µ(2)ε

(2)
x , (6.8)

d1

√
−ε(1)x ε

(1)
y kx/ε

(1)
y = −d2

√
−ε(2)x ε

(2)
y kx/ε

(2)
y . (6.9)

We notice that eq. (6.9) (corresponding to limit of kx = ∞) does not contain mag-
netic permeability µ. This implies that in large kx limit we can achieve phase com-
pensation [eq. (6.7)] without the need for magnetic properties. Of course, this phase
compensation is limited to high-k regime, as for waves near the cut-off kc the phase
propagation is not canceled.

Solving eq. (6.9) (i.e. looking at high-k limit) yields conditions for limited (non-
magnetic) pseudocanalization:

sgn
(
ε(1)y

)
= −sgn

(
ε(2)y

)
, (6.17)

ε(1)x /ε(2)y =
(
ε(2)x d21

)
/
(
ε(2)y d22

)
. (6.18)

The equations show that this limited pseudocanalization is achieved by combining
type-I and type-II HMM. This means that this approach is affected by low-k filtering
and subsequent limitations to reconstructing the initial fields. Of course, lack of
phase compensation for waves near kc makes things worse.

To see how well this limited pseudocanalization works we study again the propa-
gation of a narrow Gaussian beam (as in fig. 6.2). Comparing magnetic [fig. 6.5(a)]
and nonmagnetic pseudocanalization [fig. 6.5(b)] schemes we observe partial re-
construction of initial fields in the nonmagnetic system as well. Looking more
carefully at the reconstructed fields [fig. 6.5(e); solid lines] we see that with non-
magnetic phase compensation the sidelobes are more pronounced and thus this ap-
proach is not very promising for hyperlens applications.

As nonmagnetic phase canalization only works with high-k waves we can expect
improvement as we decrease the low-k cutoff kc. We show that in fig. 6.5(c-d) and in
more detail by dashed lines in fig. 6.5(e), where a reduction in sidelobes is observed.
As we discussed in the previous section, lowering kc also improves magnetic phase
compensation (due to a reduction of sidelobes originating from low-k filtering).

Looking at dispersion relations for nonmagnetic pseudocanalization in fig. 6.5(f,g)
illuminates the issue of non-perfect phase compensation. As expected, for large kx
the dispersions overlap (albeit being of opposite sign, as required for phase compen-
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Figure 6.6.: Comparison of full wave simulation (a) and approximate solution via eq. (6.5)
(b). In both cases Gaussian input beam is prescribed at z = −1.25λ, given by
Hz = exp

[
−x2/ (λ/15)

2
]
.

sation). However, in low-k regime (and near kc) there is significant divergence in the
dispersion, as expected. Comparing cases for kc = k0 [fig. 6.5(f)] and kc = 0.7k : 0

[fig. 6.5(g)] it is evident that overlap between the two dispersions is improved.

6.2.5. Verifying semi-numerical approach

We can verify the semi-numerical approach [eq. (6.5)] using full-wave simulations.
In fig. 6.6 we compare results from the simulations along with the semi-numerical
approach.7 Looking at fields at the output (z = 1.25λ) we note a good correspon-
dence between the two approaches, with visible interference pattern due to low-k
filtering (as discussed above). However, the full-wave simulations reveal that the
interface between the two media supports a surface mode [see fig. 6.6(a)], that is
neglected in our semi-analytical approach. However we note that from the perspec-
tive of pseudocanalization this surface mode does not play an important role.

It should be noted that the surface mode can only appear for a type-II HMM
based system. The surface mode has to have imaginary kz in both media, so that
it is evanescently tied to the interface. The low-k filtering means that in type-II
hyperbolic media waves below the cutoff kc are evanescent and thus can support
surface modes (as we briefly covered in section 3.2.2).

7In order to have comparable results we prescribe input fields at z = −1.25λ for both approaches. A
more physically correct approach would be to use a point source for the FEM simulation, but this
would make comparing the two solutions more difficult. As discussed above, enforcing the fields
at the boundary can introduce additional reflections to the system, but here this turns out not to
be important.
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6. Magnetic dark-field hyperlens

6.2.6. Summary

We outlined the idea of using two complementary slabs to cancel out the phase
propagation. We showed that this can be used to perfectly reconstruct initial fields
(in case of type-I HMM). In the case of type-II HMM reconstruction of fields is limited
by the attenuation of low-k waves. Crucially, we outlined the conditions [eqs. (6.12)
and (6.13)] necessary for the second slab to provide phase cancellation for fields
propagated through the first layer.

6.3. Cylindrical geometry: pseudocanalizing hyperlens

6.3.1. Introduction

In order to apply these results to a hyperlens we need to extend these results from
planar to cylindrical geometry. To achieve this we rely on our discussion on wave
propagation in cylindrical HMMs (section 4.4).

A hyperlens, due to cylindrical geometry, has a magnification M = r2/r1, where
r1 is the radius of the inner interface and r2 is the radius of outer surface of the
hyperlens. After the waves propagate from the inner to the outer interface the wave
vectors of the wave components are scaled by [following from eq. (4.11)]

kθ = k′θ/M , (6.19)

where k′θ is the initial wave number. When implementing pseudocanalization in
cylindrical geometry, the question arises which properties should the second (com-
pensation) layer have. The conditions that held in the planar case [eqs. (6.12)
and (6.13)] are no longer valid, as they neglect effects of magnification.

The aim of the pseudocanalization approach is to cancel out phase propagation.
In planar geometry this is straightforward, as the phase propagation is given by the
real part of the propagation constant kz. However, in cylindrical geometry this is
not as easy. In planar geometry we worked with plane waves, which allow for the
calculation of phase accumulated during propagation. In cylindrical geometry we
instead need to work with Bessel functions, which offer no analytical expression for
phase. In section 4.4 we described an approximate approach using (scaled) plane
waves to describe wave propagation in cylindrical geometry. In this approach we as-
sume a plane wave, but allow the propagation constant kr to vary with propagation,
in order to incorporate effects of magnification.

As the magnification in real space corresponds to a scaling of kθ [as per eq. (4.11)],
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6.3. Cylindrical geometry: pseudocanalizing hyperlens

we expect that this effect could be compensated by scaling the dispersion relation of
the second medium (scaling in direction of kθ). This is achieved by scaling εr. We
now assume that a simple scaling of the second medium is sufficient to compensate
for effects of magnification. In others words we seek

ε′(2)r = ε(2)r /σ2 , (6.20)

such that the final phase is zero for all kθ [calculated using eq. (4.13)]

Re

r1+d1ˆ

r1

k(1)r dr = −Re

r2ˆ

r1+d1

k(2)r dr .

Inserting eqs. (4.14) and (6.20) into the above equation and carrying out integration
results an equation that can be solved for the scaling factor

σ = ln
[
(M + 1)2 /4

]
/ ln

[
(M + 1)2 /4M2

]
.

Furthermore we can assume small magnification (M ∼ 2 . . . 3) in which case the
above expression can be simplified to

σ = −
√
M . (6.21)

From the results above we see that in order to counteract the effects of mag-
nification, the parameters of the second medium should be scaled relative to the
parameters given by eqs. (6.12) and (6.13):

ε(2)r = ε′(2)r /M . (6.22)

6.3.2. Type-I hyperlens

We start with exploring type-I HMM, here we can show that pseudocanalization
indeed gives the same results as canalization via scaling the permittivity tensor.
Crucially, we see that the full-wave numerical results indicate that pseudocanalizing
behavior is well achieved, despite the approximations we made to reach conditions
for pseudocanalization in a cylindrical system

For the pseudocanalizing type-I HMM we make a relatively straightforward choice
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Figure 6.7.: (a,b) Point source on a inner surface of a canalizing bright-field hyperlens (a)
and a pseudocanalizing bright-field hyperlens (b). (c) Fields on outer interface
of hyperlens due to two closely placed (separated by λ/4) point sources on the
inner interface.

to have material parameters of form

ε(1)o = 1 + γi ,

ε(1)e = −1 + γi ,

from which we can get the parameters of the compensation layer using eqs. (6.12)
and (6.13) [along with correction for magnification, per eq. (6.22)]. For this chapter
we fix the losses to γ = 0.05. On one hand this value is high enough so that the
losses already play a role in the results and we thus can reason about behaviour of
(a more) realistic case. At the same time the losses are still low enough, not to too
much obscure the imaging process. Recalling discussion in section 3.2.4 we note
that increased losses result in broadening of the beams in the HMM.

For comparison we compare this pseudocanalizing hyperlens to a (conventional)
canalizing hyperlens. In general we look for material parameters in form of

εo = ξ−1 + γoi ,

εe = −ξ + γei .

Here we choose canalization factor ξ = 5. The loss parameters γo, γe were then
chosen to result in comparable attenuation to the pseudocanalizing system, giving
γo = 0.02, γe = 2.20.
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Figure 6.8.: (a) Fields after scattering from a dielectric scatterer and propagating trough a
pseudocanalizing dark-field hyperlens. (b) Same excitation and hyperlens as in
(a), but no scatterer. (c) Imaging of two point sources (separated by λ/4) by a
pseudocanalizing type-I and type-II hyperlens.

In fig. 6.7(a) we show behavior of a pseudocanalizing hyperlens. We see that
waves from the point source travel in a relatively narrow beam towards the output
interface. We can compare the canalizing hyperlens to the pseudocanalizing system
in fig. 6.7(b). Here we see the same behavior as in case of slab geometry: waves
initially propagate in diverging beams, but due to reversed phase accumulation in
the second layer the original fields are restored in the output. As expected, the
both approaches give comparable results. The slight difference in outputted waves
is due to non-perfect phase compensation in the canalizing system, along with small
differences in attenuation of different k-space components.

By simulating two point sources we can show superresolution capacity of these
hyperlenses. In fig. 6.7(c) we show fields on outer interface (coming from the two
point sources on inner interface). We see that for sources separated by λ/4 we can
still distinguish the two peaks in the output.

6.3.3. Type-II hyperlens

Having demonstrated using type-I HMM that the pseudocanalization works well
in cylindrical geometry, we now consider a type-II HMM based pseudocanalizing
hyperlens. As we have already covered, filtering of low-k waves in such system
gives rise to additional aspects that we need to consider.

In chapter 5 we discussed issues related to the dark-field hyperlens, with one
important one being the problem of outcoupling. To properly outcouple fields from
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Figure 6.9.: Imaging of two point sources, as a function of source separation d (a). Cuts at
separation d = 0.25λ and d = 0.36λ are shown in (b), highlighting the best and
worst-case performance, respectively.

the hyperlens, a high-index medium is needed. We showed how to alleviate this
issue with a hybrid design (section 5.4.2), but here we will for simplicity again
return to the original design. A high-index medium (n = 5) is used outside the
hyperlens, so that waves can easily be outcoupled.

We show operation of type-II based hyperlens in fig. 6.8(a). Here, we image a
small scatterer (nscat = 1.5, diameter λ/10) near the inner surface of the hyperlens.
To excite the scatterer we have a point source at the origin of the system, providing a
background mode with an angular momentum mode m = 0 (kθ = 0). In the output
fields we see the characteristic sidelobes, result of the low-k filtering (as disccused
in section 6.2.3). For comparison, in fig. 6.8(b) we have the same simulation, but
without the scatterer. Here we see that the incident radiation is strongly filtered and
thus not present in the output, again showing that dark-field operation is unaffected
by pseudocanalization. We note that the surface mode between the two HMM layers
is visible in fig. 6.8(a), although it has no influence on the imaging properties of the
hyperlens.

We also need to explore the subwavelength imaging properties. In the case of
type-I hyperlens interpreting the image is more straighforward, and consequently
estimation of hyperlens resolution is also easier. Here, due to the presence of side-
lobes, the situation is more complex: the width of the fields from a point source (PSF,
point spread function) is now wider, due to the sidelobes — however the sidelobes
also mean that the central beam is narrower, possibly helping to distinguish differ-
ent peaks. In fig. 6.8(c) we compare identical cases of two point sources separated
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by λ/4, imaged through either a bright- or a dark-field pseudocanalizing hyperlens.
In this particular case we note that the high-pass filtering of the dark-field hyper-
lens results in an edge enhancement behavior: the two peaks are particularly well
resolved.

However, this edge enhancement does not work universally well for all source
separations. In fig. 6.9(a) we show fields on output of the dark-field hyperlens
as function of separation between point sources. Indeed we see that for example
in case d = 0.25λ the two point sources are clearly distinguished. However, due to
constructive interference between the sidelobes we see that the contrast between the
main peaks and the sidelobes can be quite low. Here the worst case is for d = 0.36λ,
where the contrast between the main peak and the central sidelobe is just 15.6%.8

For hyperlenses discussed here (figs. 6.7 and 6.8) we can claim similar superreso-
lution performance, where both hyperlenses shown reached a resolution of around
λ/4. The dark-field hyperlens showed similar performance, albeit with slightly dif-
ferent character. Here, depending on material properties, the sidelobes due to low-k
filtering can significantly alter imaging properties of the device.

6.4. Summary

In this chapter we introduced the pseudocanalization idea, where by the use of two
complementary slabs the phase propagation is cancelled. In an ideal case this means
waves on the input and output interface are identical. To cancel the output phase
the second slab has to have reversed phase propagation (compared to the first slab),
which can be achieved by using µ-negative HMMs.

We began by exploring pseudocanalization with planar slab structures, showing
simulations of the effect in case of both type-I and type-II HMM structures. In par-
ticular we showed that in pseudocanalizing system the dark-field operation of the
HMM is preserved, unlike in conventional canalizing HMM. We discussed additional
complications arising from the low-k cutoff present in type-II hyperbolic media. We
also showed that in limited cases pseudocanalization can be achieved with nonmag-
netic media as well, albeit only for high-k waves.

We also covered the use of pseudocanalization in cylindrical geometry, where
effects of the magnification have to be accounted for. We showed that pseudocanal-
ization offers comparable performance with type-I hyperlens. For type-II hyperlens

8This is comparable to perfomance seen for the type-I pseudocanalizing hyperlens, as we showed in
fig. 6.7.
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it offers significant improvement, in effect allowing to combine canalizing behaviour
with dark-field imaging.
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7. Surface waves

This chapter is based on
in-progress manuscript (J3).

7.1. Motivation

In the previous chapter we introduced the pseudocanalization effect in magnetic
hyperlens and discussed how this allows to overcome crucial drawbacks of non-
magnetic dark-field hyperlens. Although the pseudocanalization idea is elegant in
theory, it lacks real-world applicability: achieving magnetic material properties in
optical metamaterials is difficult. Magnetic effects in optics are usually achieved
with resonant structures, and so any material losses will have a strong detrimental
effect and thus making practical applications unlikely.

Here we turn our attention to another platform for hyperbolic waves: surface
waves on anisotropic interfaces. By anisotropic interfaces we mainly mean interface
between an anisotropic and isotropic media, but we will also need to consider three-
layer systems, where one or more layers are anisotropic. For simplicity of notation
we will refer to those systems also as anisotropic interfaces, although technically we
are discussing waveguide modes, not a surface wave on an interface.

In this chapter we will start from the single interface between an anisotropic and
an isotropic medium and discuss conditions and properties of hyperbolic waves in
such media. Later we continue to show how to implement reversed phase propaga-
tion using three-layer systems.

7.2. Surface waves on a single interface

7.2.1. Isotropic interface

We start by considering an interface between two semi-infinite layers, described
by isotropic permittivites ε1 and ε2. The geometry is shown in fig. 7.1(a): we have
metal-dielectric interface at y = 0, with metal extending to y < 0 while the dielectric
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Figure 7.1.: (a) Geometry of the metal-dielectric interface considered in this chapter. (b)
Propagation of a surface mode of a metal-dielectric interface, described by εm
and εd = 2.

layer occupies y > 0. We then assume a plane wave solution, propagating towards
z-direction (with propagation constant β):

E(i) = E
(i)
0

(
−kz ŷ + k(i)y ẑ

)
exp

(
iβz + ik(i)y y

)
, (7.1)

where propagation constants in the layers (k(i)y ) are calculated from the dispersion
relation of an isotropic medium [eq. (2.13)]. Note that we have chosen E(i) such
that

H(i) = −E(i)
0 ε0εiωexp

(
iβz + ik(i)y y

)
x̂ , (7.2)

as can easily be verified using eq. (2.4). Inserting eq. (7.1) into Maxwell’s equa-
tions and enforcing interface conditions at y = 0 and then solving for propagation
constant β yields

β =

√
ε1ε2
ε1 + ε2

. (7.3)

From solution we see that surface mode can only exists when condition

ε1 < −ε2 (7.4)

is satisfied. We point out analogy with bulk waves, where we have condition ε > 0

for a medium to support propagating waves. In fig. 7.1(b) we plot surface mode
propagation constant [eq. (7.3)] as function of ε1, highlighting the fact that as sur-
face mode approaches the critical limit (ε1 = −ε2) the propagation constant tends
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7.2. Surface waves on a single interface

to infinity.

Phase propagation direction We shall also make a note of phase propagation di-
rection (in regards to energy propagation direction). In a isotropic dielectric the
phase and energy propagation directions coincide, as expected. However due to in-
terface conditions between the metal and the dielectric the Poynting vector is flipped
in the metal layer.1 We look at solution where β > 0 and calculate energy propa-
gation direction of that solution. To consider energy propagation direction for the
whole system we need to average energy flux over the metal and dielectric regions.
Writing out the z component of the time-averaged Poytning vector S = 1

2E ×H∗

we get

Sz = −1

2
EyH

∗
x ,

where we used Ex = 0. From the chosen plane wave solution [eq. (7.1)] we can
insert Ey and Hx into the equation above to yield

S(i)
z = −1

2
ωε0ε

(i)kz

∣∣∣E(i)
0

∣∣∣2 exp
[
−2Im

(
k(i)y

)
y
]
. (7.5)

We are interested in ratio of energy propagating backwards (in the metal layer)
to energy propagating forward (in the dielectric layer)

p =

´∞
0 S

(1)
y dy

−
´ −∞
0 S

(2)
y dy

. (7.6)

We insert eq. (7.5) into the above equation and use
´∞
0 exp (−αx) dx = α−1 to reach

p =
ε1Im k

(2)
y

ε2Im k
(1)
y

∣∣∣E(1)
0

∣∣∣2∣∣∣E(2)
0

∣∣∣2 . (7.7)

Here we recall interface conditions, which dictate ε1E
(1)
y = ε2E

(2)
y (from continuity

of Ey) and E(1)
0 k

(1)
y = E

(2)
0 k

(2)
y (from continuity of Ez). This can be used to reach

p =
ε22
ε21
. (7.8)

1Here the important term is εiEy, which is conserved across the interface. Due to opposing signs of
ε1, ε2 Ey flips sign across the interface. Looking at the component of Poynting vector along the
propagation direction (towards z) Pz = 1

2
EyH

∗
x we see that energy propagation direction in the

metal and dielectric layers are opposite.
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Note that from eq. (7.4) it follows that p > 1 and thus energy and phase propagation
directions coincide for all surface waves on an isotropic interface.

To summarize, we have now shown that an interface between two isotropic me-
dia can support propagating surface mode [given that eq. (7.4) is fulfilled], where
energy and phase propagation directions coincide.

7.2.2. Anisotropic interface

We now seek to reach description of an anisotropic interface, which would sup-
port modes analogous to waves in bulk HMMs. To achieve that we need to design
an anisotropic interface such that it support propagating waves in one direction
but not the other, thus mimicking behavior of bulk HMMs. For discussion here
we assume an interface between an anisotropic medium [with permittivity tensor
ε̂ = diag (εe, εo, εo)] and an isotropic dielectric, with permittivity εd.

First we note that in HMMs the two permittivity tensor components are symmetric
(as we have considered 2D case), meaning that we can flip εo, εe and this flips
the dispersion relation (switching kx, ky). This is not the case with anisotropic
interface, as in here the two components do not appear in a “symmetric” fashion in
the equations.

Compared to the isotropic case we need to consider all the modes in the system
(while before we were just looking at the TM mode). In an isotropic dielectric layer
we consider TM and TE modes, given by

HTM = ETM
0 (−kzx̂ + kxẑ) exp

(
ik(d)r

)
, (7.9)

ETE = ETE
0 (−kzx̂ + kxẑ) exp

(
ik(d)r

)
, (7.10)

where corresponding ETM and HTE can be reached using Maxwell’s curl equations
[eqs. (2.3) and (2.4)]. Wavevector in the dielectric layer is given by

k(d) = kxx̂ + k(d)y ŷ + kzẑ , (7.11)

where kx, kz describe propagation of the surface wave (and are conserved across
the layers due to the interface conditions), while k(d)y describes evanescent decay of
the surface mode in the dielectric medium.

For the anisotropic layers we take the dispersion relations of the ordinary and the
extraordinary wave [eqs. (2.20) and (2.21)], which after solving yield the expres-

94



7.2. Surface waves on a single interface

sions for isotropic and anisotropic propagation constants k(o)z , k(e)z , respectively:

k(o)z =
√
µεok20 − k2x − k2y , (7.12)

k(e)z =
√
µεok20 −

(
k2x + k2y

)
εo/εe , (7.13)

which we can insert back into the wave equation [eq. (2.18)] to reach expressions
for field components for ordinary and extraordinary mode

Eo = Eo0

(
−kzŷ + k(o)y ẑ

)
exp

(
ik(o)r

)
, (7.14)

Ee = Ee0

[
−
(
k20εo − k2x

)
x̂ + k(e)y kxŷ + kzkxẑ

]
exp

(
ik(e)r

)
. (7.15)

Here the wavevectors are

k(o) = kxx̂ + k(o)y ŷ + kzẑ, (7.16)

k(e) = kxx̂ + k(e)y ŷ + kzẑ , (7.17)

with k(o,e)y given by eqs. (7.12) and (7.13).

Propagation along the z-axis (i.e. perpendicular to the optical axis, x-axis) has a
simple solution: as electric field has only y and z components the fields interacts just
with εo component of the anisotropic permittivity. Thus the conditions for isotropic
propagation are recovered, as given by eqs. (7.3) and (7.4).

However, for propagation along x-axis, both εo and εe terms will be present, due to
y and x components of the electric field, respectively. That means we need to derive
another propagation constant and corresponding propagation conditions, mirroring
eqs. (7.3) and (7.4). To find the propagation constant for extraordinary mode we
take kz = 0, write out the equations for enforcing continuity of Ex, Dy and Ez

and then solve for kx (here βe, to signify it as the propagation constant for the
extraordinary mode) to get

βe =

√
εeεd − ε2d
εe − ε2d/εo

(7.18)

as the propagation constant. From this we identify

εe <
ε2d
εo

(7.19)

as the condition for the interface to support a propagating mode along the z direc-
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Figure 7.2.: (a) Energy propagation direction of the surface mode of the anisotropic inter-
face given by εo, εe (εd = 2 is assumed). The dashed line indicates condition
given by eq. (7.4) and dot-dashed line eq. (7.19). As discussed in the text these
conditions separate HSWs into type-1 and type-2 mode. (b) Numerically calcu-
lated dispersions of type-1 and type-2 HSWs (parameters in the text). Dashed
lines indicate dispersions of corresponding HMMs, as per eqs. (7.4) and (7.19).

tion.

Hyperbolic surface waves Now we can introduce the concept of hyperbolic sur-
face waves (HSWs). We first note that hyperbolic dispersion of HMMs arises from
the fact that the HMM supports propagating waves in one direction, but not the
other. This means that the system exchibits a transistion, where depending on direc-
tion in the medium the waves enter from the propagating regime to the nonpropa-
gating regime (see introduction to HMMs in chapter 3). Having derived equations
for propagation perpendicular to the optical axis [“ordinary propagation”, eqs. (7.3)
and (7.4)] and along the optical axis [“extraordinary propagation”, eqs. (7.18)
and (7.19)] we can implement an analogous idea: by choosing the material param-
eters such that one of the propagation conditions is fulfilled and the other is not,
we produce a system that also exhibits this transistion between propagating and
nonpropagating regimes. We then classify hyperbolic surface waves (HSWs) into
two types, similar to division of HMMs to type-I and type-II. For interfaces where
eq. (7.4) is fulfilled [and eq. (7.19) is thus not fulfilled], i.e. we have

εo < −εd , (7.20)

εe >
ε2d
εo
, (7.21)
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we designate the surface waves there as type-1 surface waves.2 The opposite case,
when eq. (7.19) is fulfilled, we classify as type-2 HSWs. In fig. 7.2(a) we plot these
conditions to indicate parameters for the two kinds of HSWs. The figure also shows
that the two types of HSWs have opposite phase propagation directions. We will
return to this question in more details in end of this section on page 99.

There is no explicit form analytical solution for an dispersion of the HSWs, al-
though it is possible to reach a dispersion relation in implicit form [58, 59]. How-
ever, here we will be content with solving the dispersion relation numerically.3 We
use the same convention as we used for HMM discussions: we shall be looking at
propagation in the z direction. So we numerically solve the equations for the surface
mode to yield the propagation constant kz as function of kx. In fig. 7.2(b) we show
dispersion of a type-1 (εo = −3, εe = −1) and a type-2 HSW (εo = −1, εe = −7).

Although we abstained from deriving a generic equations for dispersion relation
of HSWs, we can reach an asymptotic solution for large k limit. As we let kx, kz →∞
and enforce the interface conditions, we note that the ordinary mode and TE mode
disappear in the high-k limit and thus we easily get an expression for slope of the
hyperbolic dispersion τ ≡ kz/kx:

τ = ±

√
−
ε2d − εoεe
ε2d − ε2o

. (7.22)

E�ective HMM parameters for an anisotropic interface Given our motivation of
exploring HSWs as an alternative for HMMs we shall now establish a relation be-
tween an anisotropic interface and parameters for a corresponding HMM.

We start from HMM dispersion and note that instead of using the HMM param-
eters ε′o, ε

′
e we can equivalently describe the HMM using limiting wavenumber4 kc

[kz (kx = 0) for type-I; kz (kx = 0) for type-II HMM] and slope of the hyperboloid
[τ = limkx→∞ kz (kx) /kx]. Here we use prime to distinguish between parameters of
the anistropic medium of the surface mode (εo, εe) from parameters of correspond-
ing HMM (ε′o, ε

′
e). Considering a type-I HMM we find the expressions for k′c and τ ′

2We use here type-1 and type-2 to make it clear that we are talking about HSW dispersions, reserving
type-I and type-II for HMMs.

3The choice of not pursuing the mathematical solution further is also motivated by anticipation of
trouble for three-layer system, which we will cover in the coming pages. We will anyway will be
forced to resort to numerically solving the HSW dispersion, so we here avoid the additional trouble
of obtaining rigorous mathematical solutions for cases where numerical solutions are satisfactory.

4By the term “limiting wavenumber” I mean lower bound for kz in type-I HMM and the cut-off
wavenumber in type-II HMMs. When plotting the isofrequency contours the limiting wavenumber
kc corresponds to the length of the shortest wavevector allowed by the dispersion relation.
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from eq. (2.21):

τ ′ =

√
−εo

′

ε′e
. (7.23)

k′c =
√
ε′ek0 , (7.24)

For type-II HMM expression for limiting wavenumber is instead given by

k′c =
√
ε′ok0 . (7.25)

Similarly we can use τ and kc to describe dispersion of HSWs. We have already
derived an expression for τ [eq. (7.22)]. The limiting wavenumber kc is given either
by eq. (7.3) for type-1 or by eq. (7.18) for type-2 HSWs.

Having calculated τ and kc corresponding to a HSW dispersion we can then use
eqs. (7.23) and (7.24) to calculate “effective HMM” parameters

ε′o =
k2c
k20
, (7.26)

ε′e = − k2c
k20τ

2
. (7.27)

For type-2 HSWs we instead have (from eqs. (7.23) and (7.24))

ε′o = −k
2
c

k20
τ2 , (7.28)

ε′e =
k2c
k20
. (7.29)

We use these expressions to calculate corresponding effective HMM dispersions
in fig. 7.2(b), indicating a good (but not perfect) correspondence between HSWs
and HMMs. We further explore this analogy in fig. 7.3, where using full-wave sim-
ulations calculate fields plots of both an anisotropic interface [fig. 7.3(a)] and a
corresponding HMM [fig. 7.3(b)].

Numerical simulations of HSWs It should be noted that numerical simulations of
HSWs are computationally considerably expensive, as 3D simulations are needed.
These simulations are carried out using the finite-element method (using COMSOL
Multiphysics), which is particularly sensitive to the mesh size, especially in 3D. Usu-
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Figure 7.3.: Fields on an anisotropic interface (a), fields in a corresponding HMM (b) and
fields on the interface calculated semianalytically (c).

ally the finite-difference time domain (FDTD) method can be used when FEM mem-
ory requirements become a significant barrier, however in this case FDTD is not of
much help: FEM allows to use higher-order elements, i.e. in simulations shown
here cubic basis functions were used. This allows to achieve suitable resolution with
larger mesh elements. FDTD mesh corresponds to linear basis functions in FEM
terms, requiring finer mesh to properly resolve the field details.

As we can numerically calculate the HSW dispersion, we can also calculate propa-
gating fields. We use the same approach we took in chapter 6, where we calculated
the fields using the propagation equation eqs. (6.4) and (6.5). In case of single in-
terface, where we have no reflections in the system, this approach should produce
exactly same result as a proper full-wave simulation. Semianalytically calculated
fields are shown in fig. 7.3(c), where we see that the fields correspond relatively to
full-wave simulations [fig. 7.3(a)].

Phase propagation direction Finally we return to the question of phase propaga-
tion direction. For isotropic case we derived eq. (7.8), which followed straightfor-
wardly from the interface conditions. A particular annoyance in case of anisotropic
interfaces is that the HSWs are mixtures of modes (TE and TM in the dielectric
medium and ordinary and extraordinary modes in the anisotropic medium) — this
leads to multiple terms in evaluating Poynting vector, making it difficult to reach a
simple expression. To reach an analytic (and instructive) solution we need to take
a series of approximations and assumptions. We are somewhat aided by the fact
the we primarily care whether p < 1 or p > 1: i.e. whether majority of the energy
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propagates in the metal or in the dielectric. As we are interested in large kx regime,
we simplify the dispersion relations [eqs. (2.20) and (2.21)] by dropping k0 terms.
We again start from z component of time-averaged Poynting vector

Sz =
1

2

(
ExH

∗
y − EyH∗x

)
.

Here we neglect ExH∗y term to reach an approximate expression for eq. (7.6).

p ≈ −
i
∣∣∣E(2)

0

∣∣∣2 (τ2 + 1
)√

εo

kxεd
√
τ2εo + εeE

(1,e)
0 E

(1,o)∗
0

(7.30)

To fix the scaling constants E(i)
0 we again employ interface conditions. Continuity of

Ex fields gives us

E
(2)
0

E
(1,e)
0

=
εd√
−τ2 − 1

(7.31)

and from continuity of Hx field we get

E
(1,o)
0 ≈ τE

(2)
0

kx
+O

(
E

(2,TE)
0

)
, (7.32)

here we made approximation by assuming that effect of the TE mode is negligible.
Inserting eqs. (7.22), (7.31) and (7.32) into eq. (7.30) yields a simple approximate
solution for the ratio of energy fluxes

p ≈ −εo
εd
. (7.33)

Although we made a series of aggressive approximations the resulting expression is
quite useful. Most importantly, in fig. 7.2(a) we numerically show that the expres-
sion correctly predicts whether energy propagates mostly in the anisotropic layer
(p < 1) or the dielectric (p > 1), indicating direction of energy propagation.

Equation (7.33) tells us that phase propagation is opposite between type-1 and
type-2 HSWs.5 This is an important result, especially in light of isotropic surface
waves, where phase propagation always coincides with energy propagation.

5This can be expected also from analogy with waves in HMMs: as we discussed (chapter 3), the
type-I HMMs exhibit negative refraction, indicating reversed phase propagation.
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Figure 7.4.: (a) Propagation constant of modes in three-layer system for various spacer layer

thicknesses. Blue lines indicate even modes, while green (red) lines indicate
odd modes with normal (reversed) phase propagation direction. (b) Problem
geometry for isotropic three-layer system. A dielectric layer with thickness h is
sandwiched between two metal layers.

7.3. Surface waves in a three-layer system

7.3.1. Introduction

Motivation for use of a three-layer system comes from Shin and Fan [60] where they
discussed negative refraction of surface waves using a three-layer system. Our aim
of pseudocanaliation is in a way similar idea, but appied to anisotropic media.

Again, we will follow a similar approach as in the previous section: we will first
analyze the isotropic case, discussing the modes existing in three-layer system. Cru-
cially (from the viewpoint of pseudocanalization) we again will consider the phase
propagation direction. Here we will see that even in an isotropic case the system can
exchibit negative phase propagation, i.e. case where energy and phase propagate in
the opposite directions.

7.3.2. Isotropic system

We first look into symmetric three layer system [fig. 7.4(b)], consisting of two semi-
infinite metallic layers (ε1 < 0), separated by a dielectric layer (ε2 > 0) with thick-
ness h. Analysis of this system is somewhat complicated by the fact that there is no
analytic explicit formula for modes in this three-layer system [5, 61, 62]. However,
at least for this case we can derive an implicit equation for the guided modes.

As this is an isotropic system we can once more limit the analysis to TM modes,
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as TE modes do not support surface modes [5]. We again assume a plane wave
solution [eq. (7.1)] and use the interface conditions to reach dispersion relation (in
implicit form)

± exp
(

ik(2)y h
)

=
ε1k

(2)
y + ε2k

(1)
y

ε2k
(1)
y − ε1k(2)y

, (7.34)

where k(1,2)y are given by the dispersion relations of corresponding media (assuming
propagation constant β)

k(i)y =
√
k20εi − β2 .

The system can support two modes, depending on the sign chosen in eq. (7.34). We
shall refer to these modes as odd (−) and even (+) modes, indicating parity of the
Ey fields. Note that in case of h =∞ we recover solution for the single interface.

We numerically solve eq. (7.34) and plot the solutions for various spacer thick-
nesses h in fig. 7.4(a). First we note, that as h is increased both even and odd
solutions converge towards solution of the single interface [eq. (7.3)], as expected.
Second thing to consider is that the even mode is always above the single interface
solution, whereas the odd mode is below. As larger β implies larger ky, this means
that the fields on the two interfaces are more strongly coupled for the odd mode.
This means that especially for small h the odd solution is significantly altered by
coupling of the fields on the two interfaces.

Phase propagation direction Integrating power flux [eq. (7.5)] in the bottom
layer yields a straightforward expression

∞̂

h/2

P (1)
z dy =

iβ3 |E1|2

2k
(1)
y

. (7.35)

In the dielectric spacer we have now two modes, one propagating towards +z, the
other towards −z. From symmetry of the system we get can fix the the amplitudes
of the modes and then we get the following result for the integration

h/2ˆ

0

P (2)
z dy = ∓

β3
(
−i exp

(
−ik

(2)
y h

)
± 2hk

(2)
y + i exp

(
ik

(2)
y h

))
ε2k

(2)
y

, (7.36)
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7.3. Surface waves in a three-layer system

where the signs indicate even and odd modes. Calculating ratio of energy fluxes
now yields

p = − iε1k
(1)
y

2ε2k
(2)
y

t , (7.37)

where

t =


k
(2)
y h−sin

(
k
(2)
y h

)
sin2(kyh/2)

(odd)

k
(2)
y h+sin

(
k
(2)
y h

)
cos2(kyh/2)

(even)

. (7.38)

However, we note that to reach p < 1 we need t to be small. As t scales with k(2)y h

we take Taylor expansion to as we only care for the regime with a small argument.
With this we have

t ≈

2
3k

(2)
y h (odd)

2k
(2)
y h (even)

,

which suggests that only the odd mode can offer negative phase propagation direc-
tion. This is validated by numerically calculated results shown in fig. 7.4(a).

7.3.3. Anisotropic system

Our aim now is to implement he pseudocanalization concept with surface waves. For
that we need to match dispersion of a three layer system with a two-layer system,
while keeping energy propagation directions opposite. In this section we consider
the anisotropic three-layer system and compare the surface mode to the one dis-
cussed in the two layer case.

We consider a symmetric system consisting of a dielectric layer (εd) with thick-
ness h, which is sandwiched between two semi-infinite anisotropic layers [ε̂ =

diag (εe, εo, εo)], instead of isotropic metallic layer as in fig. 7.4(b). Following from
results for the isotropic case we expect even and odd modes existing in the system.
Due to amount of field modes in the layers6 we do not expect to reach a useful dis-
persion relation for the general case of anisotropic three layer system. Therefore we

6We use the term “field modes” here to distinguish the individual modes [eqs. (7.9), (7.10), (7.14)
and (7.15)] in the layers from the solution for the whole set of equations, giving the hyperbolic
mode propagating along the interfaces. Here we have in total six field modes entering the equa-
tions: forward- and backwards propagating TE and TM modes in the dielectric, along with the
ordinary and extraordinary modes in the anisotropic layers.
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Figure 7.5.: Even (green) and odd modes (blue lines) in symmetric three layer system, for
various spacer thicknesses. Both type-1 εo = −2.37, εe = −1 (a) and type-2
εo = −1, εe = −7 (b) systems are shown. The black dotted line shows solution
from corresponding two-layer system.

will resort to numerical solutions to the equations.

However, there are some useful asymptotic cases that can be noted. Most impor-
tantly we note that coupling between the two interfaces scales with exp

(
ik

(2)
y h

)
. In

a limit where we let kx, kz to infinity this coupling term goes to zero (as kx, kz →∞
implies also k(2)y →∞). It follows that the asymptotic behavior is identical to single
interface solution, as presented in section 7.2.2. However, in the opposite case of
small kx, kz we instead are looking at the “strong coupling” limit, dispersion devi-
ates significantly from the one of a single interface. This is especially true for the
odd mode, which due its field profile experiences stronger coupling than the even
mode.

As we did for HSWs on a single interface, we can in same way classify HSWs in
three layer system into type-1 and type-2 HSWs. For a large spacer thickness the
three-layer system behaves similarly to a single interface, but for small thicknesses
the behavior diverges. We show this in fig. 7.5, where we plot HSW dispersions for
a type-1 and a type-2 system for various thicknesses. As discussion of an isotropic
case already hinted the even mode is less affected by coupling of fields on the two
interfaces. So the even mode behaves similarly the corresponding single interface
solution.

However, the odd mode is significantly influenced by coupling, especially with
decreasing spacer thickness h. Importantly we note that with the strong coupling
we can effectively tune the type-1 HSW look like type-2 mode (and vice versa).
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7.3. Surface waves in a three-layer system

Type-2 HSW, for example, exhibits a low-k cutoff for kx < 2.5k0 [as shown by the
dashed black line in fig. 7.5(a)]. We see in fig. 7.5(a) that by decreasing the spacer
layer we can tune odd mode of type-1 also exhibit low-k cutoff, in principle behaving
close to a type-2 HSW.

Phase propagation direction In section 7.2.2 we derived an expression for the
energy flux [eq. (7.33)], assuming the large-k limit. As a three-layer system reduces
to a single interface in this limit the results hold here as well, in the large-k limit.
However, in context of current discussion more important question is in the strong
coupling regime, where coupling between the interfaces strongly alters HSW disper-
sion. As we noted in before, in this regime the phase propagation can be flipped
even in the isotropic case, unlike the single interface. However, reaching simple
expressions is increasingly more complicated. In case of an anisotropic system we
need to consider 6 fields modes in total, complicating the expressions for the Poynt-
ing vectors. Here we will argue about behavior of the modes in relatively general
terms, in order to avoid falling into overly complex derivations.

As we showed for isotropic three-layer system, the even mode was identified by
larger propagation constant kz, and thus weaker coupling between the two inter-
faces. Due to the weaker coupling we assume that the even mode always follows
behavior of the single interface solution. This means that on the type-1 interface it
will exhibit coinciding energy and phase propagation and on the type-2 interface it
phase and energy propagation directions will be antiparallel.

The odd mode on the other hand exhibits stronger coupling between the two
interfaces. Indeed, this is the reason why phase propagation can be reversed in
the isotropic case. Thus we can expect that the phase propagation direction might
not follow from the single interface solution. However, for cases considered here
we used numerical calculations to verify that the propagation direction matches the
expectation from the single interface solution.

Field profiles In figs. 7.6 and 7.7 we now look at field profiles of the odd and even
mode of the type-2 structure [fig. 7.5(b), with spacer thickness h = 0.1λ]. We show
both full-wave FEM simulations and semi-analytical calculations (using numerically
calculated propagation constant kz and eqs. (6.4) and (6.5)). To ensure convergence
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Figure 7.6.: (a) Real and imaginary parts of the propagation constant kz for the odd mode
in the three layer system (details in the text) for losses γ = 0.01 (blue) and
γ = 0.1 (orange). Black line indicates corresponding HMM dispersion. (b,c)
Semi-analytically calculated field profiles for losses γ = 0.01 (b) and γ = 0.1
(c). (d) Full-wave simulations of the field profile for losses γ = 0.1. Insets show
Fourier transformed fields, showing dispersion of the propagating waves.

in numerical simulations we allow for lossy materials in the calculations:

εo = −1.68 + iγ . (7.39)

εe = −3.07 + iγ . (7.40)

Comparing dispersions for odd and even HSW modes (fig. 7.6(a) and fig. 7.7(a),
respectively) shows that the even mode is closer in behavior to solution of the sin-
gle interface — and thus also a better approximated by an HMM dispersion. In
the figure we also plotted dispersion of corresponding HMM, calculated using lim-
iting wavevector kc (numericaly calculated) and τ [eq. (7.22)]. Due to strong cou-
pling the odd mode diverges more from ideal hyperbolic dispersion, which is seen
both in the calculated propagation constant [fig. 7.6(a)] and also in the field plots
[fig. 7.6(b-d)].

7.3.4. Asymmetric anisotropic system

In the previous section we showed that a symmetric anisotropic three layer sys-
tem supports two HSW modes. We presented a system that produced a negative
phase velocity (in comparison to a “reference” two layer system) for the odd mode.
However the system also supports a even mode, which does not produce a desired
dispersion for the surface mode. In order to suppress the unwanted even mode we

106



7.3. Surface waves in a three-layer system

15 0 15
kx/k0

0

15

k z
/k

0

(a)

1 0 1
x/

1.5

0.0

1.5

y/

(b)

kx

k z

1 0 1
x/

(c)

kx

k z

1

1

Ey

Figure 7.7.: (a) Real and imaginary parts of the propagation constant kz for the even mode
in the three layer system (details in the text) for losses γ = 0.01 (blue) and
γ = 0.1 (orange). The black line shows corresponding HMM dispersion. (b)
Semi-analytically calculated field profiles for losses γ = 0.01. (c) Full-wave sim-
ulations of the field profile for losses γ = 0.1. Insets show Fourier transformed
fields, showing dispersion of the propagating waves.

now consider a asymmetric three layer system. The dielectric layer (with thickness
h = 0.1λ) is now sandwiched between the anisotropic medium [given by eqs. (7.39)
and (7.40)] and an isotropic metallic medium, given by εm. In order to avoid any
new modes we limit εm to −εd < εm < 0. This means that interface between
εd–εm does not support surface mode on its own [recall eq. (7.4)]. As before, in the
high-k limit a single interface HSW is restored for the anisotropic interface, as the
two interfaces are decoupled. For the low-k regime (i.e. strong coupling between
the interfaces) we assume that despite the altered dispersion the phase propagation
direction is not changed (in comparison to the symmetric system).

In fig. 7.8(a) we explore effect of εm on dispersion of the HSW mode. We see
that the asymmetric system has significantly altered dispersion in the low-k regime,
by flattening out the HSW dispersion in the low-k regime. Looking at propagation
of waves [fig. 7.8(b,c)] this manifests as additional beam: we see the usual narrow
high-k beams, but also a wider beam propagating straight ahead (corresponding to
the flat low-k regime). Of course, this behavior is suboptimal as now this struc-
ture can not achieve perfect pseudocanalization for the single anisotropic interface:
phase of these low-k waves will not be properly compensated.
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Figure 7.8.: (a) Propagation constant for the symmetric three layer system (blue line) and
for asymmetric system, plotted for various different εm. Orange line indicates
εm = −1.89 chosen for the simulations. (b) Semi-analytically calculated fields
for low-loss (γ = 0.01 ) system. (c) Simulated fields as per FEM simulations
with γ = 0.1.

7.4. Pseudocanalization with surface waves

We have covered basics of HSWs in two- and three-layer systems and shown that
we can engineer the dispersion and phase propagation properties. Now we apply
the results to demonstrate pseudocanalization concept with surface waves. As dis-
cussed, here we avoid the need for magnetic media, making it (in theory) more
viable for an experimental realization. However, we noted that while the disper-
sion of HSWs on a single interface corresponds relatively well to HMM dispersion,
the modes in a three layer system are less closely matched with a single interface
HSW dispersion (and subsequently HMM dispersion). Therefore we can not achieve
perfect pseudocanalization, as was the case with magnetic HMMs.

As before we combine two media with “complementary” dispersions (see fig. 7.9).
One part of the system is an anisotropic interface supporting type-1 HSWs, with
εo = −2.48 + 0.1i and εe = −0.75 + 0.1i [indicated with (2) in fig. 7.9]. The phase-
compensating part, with opposite phase propagation, is either realized by symmetric
three layer system (fig. 7.6) or asymmetric system (fig. 7.8).

The symmetric system offers better phase compensation, as there the surface
waves resemble closely the HSWs on a single anisotropic interface. However, this ap-
proach is less practical we artificially suppress the unwanted even mode. As shown
in fig. 7.9(a) we excite the waves using two dipoles to ensure that mainly the odd
mode is excited.
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7.4. Pseudocanalization with surface waves

Figure 7.9.: Geometry for the two pseudocanalizing systems, with symmetric (a) and non-
symmetric (b) three layer system, with anisotropic media indicated by (1) and
(2) and the metal for asymmetric system shown with (c). Insets indicate place-
ment of dipole sources to excite the waves. In (a) the sources are aligned such
to only excite the odd mode.

Another approach is to use asymmetric three-layer design, where only the odd-like
mode exists. This comes at the cost of distorted HSW dispersion, leading to worse
pseudocanalization. However, for this structure we can use a more realistic single
point source to excite the waves, without worrying about exciting any unwanted
modes.

We show results of full-wave simulations of the structures in fig. 7.10. For com-
parison we have included semi-analytically calculated fields as well. This approach
neglects reflections from the interfaces and here we can no longer make this as-
sumption and thus these calculations are only included for a rough reference. For
these proof-of-concept simulations we have not explored the issue of reflections of
the surface modes, although from full-wave simulations we see that it is an impor-
tant aspect. For example, in ref. 60, which discusses negative phase propagation
for isotropic surface waves, the authors introduced an optimized system to improve
mode overlap to reduce reflections from the three-layer system.

We see that the symmetric system can offer relatively good performance in the
low-loss case [fig. 7.10(b)] and in case of higher losses (γ = 0.1) the performance
is expectedly reduced but nevertheless full-wave simulations [fig. 7.10(a)] match
relatively well with the simplified calculations [fig. 7.10(c)]. However, for more
practical case of asymmetrical design the pseudocanalization performance is de-
graded even for the simplified calculations [fig. 7.10(e)], while the full-wave sim-
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Figure 7.10.: Comparison of surface wave implementations of a pseudocanalizing system.
Full-wave simulation results of a symmetric system are shown in (a), with cor-
responding semi-analytical calculations with reduced losses (b) and full losses
(c). Similarly (d) shows FEM results of an asymmetric system, with corre-
sponding semi-analytically calculated fields in (e,f).

ulations [fig. 7.10(d)] show differences with with the semi-analytical calculations
[fig. 7.10(f)]. This is likely due to reflections from the boundary between the parts
of the system, which could be reduced by optimizing overlap between the modes in
the two parts.

7.5. Summary

In this chapter we introduced hyperbolic surface waves on both single interfaces and
in three-layer systems. Inspired from results with mu-negative HMMs we looked
into phase propagation direction these waves. We showed that we can mimic effect
of µ-negative media with three-layer system, where coupling between the two in-
terfaces allows to achieve reversed phase propagation without requiring magnetic
properties.

Then we showed proof-of-concept simulations showing that the pseudocanaliza-
tion can be realized with combining two- and three-layer anisotropic systems. By
engineering the dispersion properties the two regions can be tuned to have support
similar HSWs, but with reversed phase propagation.

However, these results offer only a preliminary look into engineering phase prop-
agation with surface modes. Plenty of questions are still left to be explored.
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The project started out with the idea of taking the well-known hyperlens concept and
substituting the type-I HMM with a type-II. As the type-II HMM reflects low-k waves,
the idea had potential as a built-in mechanism for dark-field imaging. Throughout
the project we discovered, however, that all the features that were useful (and even
necessary) for the bright-field hyperlens turned out to cause difficulties with the
type-II based design. The canalization regime, which is crucial in type-I HMM based
hyperlens to facilitate straightforward imaging of the object is at odds with dark-
field filtering of type-II hyperlens: achieving canalization and dark-field imaging
at the same time is not possible. In a similar way the magnification process itself
causes the propagating waves in the HMM to turn into evanescent waves during the
propagation and reflect back, making it necessary to have very high refractive index
outside the hyperlens to allow the waves to couple out of the device.

We studied multilayer based scheme and showed that given some compromises it
is in principle possible to design a system, that demonstrates both superresolution
and filtering of the incident radiation. We also discussed a hybrid design, combining
a type-II HMM with an anisotropic medium with elliptic dispersion, to resolve the is-
sue of outcoupling caused by magnified waves meeting the low-k cutoff. Practically,
however, such designs are limited by losses in the metal layers, further hampered
by the fact that a part of the incoming fields falls below the low-k cutoff of the
hyperlens and is thus reflected even before reaching the device.

As the practical multilayer design was out of reach, we studied the fundamental
limits of the dark-field design, ignoring any additional issues due to realistic mate-
rial parameters or limitations in available fabrication technologies. From this line
of research we ended up with the magnetic hyperlens design and the concept of
pseudocanalization. Here, instead of tuning the HMM dispersion to achieve a canal-
ization regime (and thus a straightforward correspondence between the input and
output fields) we explored using µ-negative HMMs instead. Introducing negative
permeability allows one to flip phase propagation of the plane waves in the HMM,
while having the same dispersion relation as a corresponding nonmagnetic HMM.
By combining corresponding HMMs we can achieve perfect phase cancellation at the
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output, which provides the same effect as the ideal canalization. However, as this
effect is independent of the HMM parameters (as long as two HMMs are matched to
each other) this mechanism allows to achieve dark-field imaging and canalization
of output fields at the same time, avoiding the key problem with the nonmagnetic
design.

The results with magnetic hyperlens motivated us to look into a more practical
platform: hyperbolic surface waves. People have already demonstrated that sur-
face waves on anisotropic structures can behave similarly to waves in HMMs. The
key idea of magnetic HMMs is to reverse the phase propagation of the propagat-
ing waves. Inspired by work of Shin et al. [60], where reversed phase propagation
was proposed for isotropic surface waves (in a metal-dielectric-metal structure), we
started looking into hyperbolic waves on two and three layer systems. Indeed, we
show that such structures support modes with hyperbolic dispersion and by engi-
neering the three layer structure it is possible to obtain reversed phase propagation.
We carried out proof-of-concept simulations, showing that pseudocanalization idea
with hyperbolic surface waves is feasible. However, more research in this direction
is required, such as optimizing the system to minimize reflections and achieving
required effective medium parameters.
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