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Abstract (English)

In this thesis, the optical properties of the free-electron gas in metals and semi-
conductors are analysed theoretically using various nonlocal models. Nonlo-
cal response is a phenomena which is not accounted for in the classical theory
of the electron gas, and it is a property that will become increasingly more sig-
nificant as the structures approach the nanometer scale. In particular, the col-
lective excitations of the electrons, known as plasmons, will depend on these
size-dependent, nonlocal effects.

Of particular focus in this thesis is the hydrodynamic Drude model (HDM),
which may be considered the lowest-order nonlocal correction to the classical
theory. We use this model to analyse the optical response of spherical metal
particles, in which it predicts a size-dependent resonance shift of the local-
ized surface plasmon (LSP) that is not found in the classical theory. We also
analyse the implications of nonlocal effects for an ensemble of particles with
different sizes. The combination of the size-dependent resonance shift and a
distribution of particle sizes will result in an effective broadening of the res-
onance peak. We quantify the broadening with the HDM through numerical
simulations and analytical methods.

Following the analysis of metals, the nonlocal properties of semiconductor
particles are investigated. Semiconductors may for example contain a free-
electron gas from doping or from the thermal distribution of electrons in in-
trinsic semiconductors, and we adapt the HDM to these two scenarios. We
find that the relative size-dependent resonance shift of the LSP is much larger
in semiconductors than in metals, which opens up for new experimental in-
vestigations in nonlocal effects. Semiconductors are furthermore promising
as plasmonic materials because they offer a tunability of the optical properties
that is not possible in metals. Using the HDM, we investigate the tuning of
the LSP with either doping or temperature.

Finally, an extended version of the HDM is developed to properly describe
semiconductors with several different kinds of charge carriers, like electrons
and holes or heavy and light holes. We consider materials with two different
plasmas and show how this gives rise to two longitudinal waves of acoustic
and optical type, respectively. This is different from the single-fluid HDM
which only predicts an optical mode. An extended version of the Mie theory
is developed to account for the two longitudinal waves, and we use this to find
the optical properties of semiconductor particles with two different kinds of
charge carriers. We find that the two-fluid model predicts plasmon resonances
that are completely absent in the single-fluid HDM.
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Resumé (Danish)

I denne afhandling er de optiske egenskaber for fri-elektrongassen i metaller
og halvledere analyseret teoretisk med forskellige ikke-lokale modeller. Ikke-
lokal respons er et fænomen, som den klassiske teori for elektrongassen ikke
tager højde for, og det er en egenskab der bliver mere signifikant, når struk-
turerne nærmer sig nanometer-størrelsesordenen. Især vil de kollektive exci-
tationer af elektronerne, bedre kendt som plasmoner, afhænge af disse størrel-
ses-afhængige, ikke-lokale effekter.

I denne afhandling er der særligt fokus på den hydrodynamiske Drude mo-
del (HDM), der kan betragtes som den ikke-lokale korrektion af laveste orden
til den klassiske teori. Vi anvender modellen til at analysere den optiske re-
spons af sfæriske metalpartikler, hvor den forudsiger en størrelses-afhængig
forskydning af resonansen for den lokaliserede overflade plasmon (LSP), der
ikke er til stede i den klassiske teori. Vi undersøger desuden konsekvenserne
af ikke-lokale effekter i et ensemble af partikler med forskellige størrelser.
Kombinationen af den størrelses-afhængige forskydning af resonansen og for-
delingen af partikelstørrelser giver anledning til en effektiv forbredning af
resonansen. Vi analyserer denne forbredning med den HDM via numeriske
simuleringer og analytiske metoder.

Efter analysen af metaller undersøger vi de ikke-lokale egenskaber for halv-
ledere. Halvledere kan for eksempel have en fri-elektrongas fra dotering eller
fra den termiske fordeling af elektroner i intrinsiske halvledere, og vi tilpasser
den HDM til disse to scenarier. Vi finder en relativ størrelses-afhængig for-
skydning af LSP resonansen, som er meget større i halvledere end i metaller,
hvilket åbner op for nye eksperimentelle undersøgelser af ikke-lokal respons.
Halvledere er desuden lovende som nye plasmoniske materialer, da de har en
tunabilitet af de optiske egenskaber, der ikke er mulig i metaller. Vi under-
søger tunabiliteten for LSP-resonansen ved dotering og temperatur.

Til sidst udleder vi en udvidet version af den HDM for at kunne beskrive
halvledere med flere forskellige typer ladningsbærere, så som elektroner og
huller eller tunge og lette huller. Vi analyserer materialer med to forskellige
plasmaer og viser hvordan dette giver anledning til to longitudinale bølger af
hhv. akustisk og optisk type. Dette adskiller sig fra den enkelt-fluide HDM,
som kun forudsiger en optisk bølge. En udvidet version af Mie-teorien ud-
vikles med henblik på at inkludere de to longitudinale bølger, og vi anvender
denne model til at finde de optiske egenskaber for halvlederpartikler med to
slags ladningsbærere. Vi finder at to-fluid modellen forudsiger plasmoner, der
ikke eksisterer i den enkelt-fluide HDM.
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1 Introduction

Plasmonics is the study of collective excitations of charged particles, and these
excitations, or plasmons, are typically found in materials with a free-electron
gas such as metals. In classical physics the name “plasmon” refers to the res-
onance, but adopting the quantum mechanical picture, plasmons can also be
understood as particles in the same way photons are particles of the electro-
magnetic radiation.

Plasmonics has been the subject of fundamental studies for decades with the
classical description by Tonks and Langmuir being one of the first contribu-
tions [1], and Pines and Bohm providing one of the earliest quantum mechan-
ical descriptions [2]. Since then the interest has only increased with studies of
the classical and quantum mechanical properties [3–6], investigations in no-
ble metals [7–12] and other metals [13, 14], different geometries [15–19] and
dimensions [20–22]. The research in plasmonics has also been fueled by the
many promising technological applications including sensors [23–26], cancer
treatment [27], nano-electronics [28, 29], field-enhancement [30–33], catalysis
[34], photovoltaics [35], colour printing [36] and quantum technology [37, 38].

Given the maturity of the field, it is surprising that new discoveries continue
to be made in this area. While one explanation for this is the richness of the
field, as indicated above, there is also another very practical reason for it: As
the tools for fabrication and measurement continue to improve, the limits for
how small and precise the structures can be created are pushed all the time
[39, 40], and this in turn leads to new research opportunities. At the same
time the theoretical understanding of the physics is challenged by the new
measurements and the desire to make more accurate models. Specifically, the
purely classical theory for plasmons is not able to explain the properties of
nanoscale structures, and more advanced theories must be applied instead.

The boundaries are also being pushed in terms of the materials used in plas-
monics. While metals, and in particular noble metals, are the most widely
used materials when it comes to sustaining plasmons, new possibilities are
also being considered. Semiconductors constitute a group of materials that
is interesting for the plasmonic community, especially because of their flex-
ibility compared to metals [41, 42], which can be used in, for example, tun-
able plasmonic sensors [43]. Semiconductors are also particularly suitable for
biological and medical applications due to the plasmonic resonances being
located in the infrared spectrum rather than the visible spectrum as for met-
als [44]. Another material capable of sustaining plasmons is graphene, the
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two-dimensional allotrope of carbon, which is interesting both in terms of ap-
plication and fundamental research [20, 45]. In the group of exotic substitutes
for metals are also single molecules [46] and molecular chains known as J-
aggregates [47, 48], which challenge the definition of a plasmon.

In this thesis, two current research directions of the field of plasmonics are
considered. One is the development of improved theoretical models that are
able to properly describe the experiments as well as provide new physical in-
sight. The other is the exploration of semiconductors as new plasmonic mate-
rials and their advantages compared to the conventional materials. Particular
focus will be on the nonlocal optical response of the electron plasma, where
‘nonlocal’ refers to the dependence of the material response to the external
electric field. While not capturing all quantum mechanical phenomena, a non-
local model seeks to improve upon the classical, local description of the optical
properties, especially when it comes to modeling of nanostructures.

1.1 Outline
Chapter 2 will provide the theoretical framework that goes into understand-
ing plasmons, including the fundamentals of electromagnetic theory and the
concept of optical response. The chapter will introduce the family of different
plasmonic resonances, and give examples of experimental methods used to
probe plasmons.
Chapter 3 will introduce some of the nonlocal models used to study the op-
tical response of metals with particular focus on the hydrodynamic Drude
model (HDM). The electromagnetic solution for spherical geometry will be
presented, and based on this, the consequences of nonlocal response in spher-
ical metal nanoparticles will be analysed.
Chapter 4 then considers the possibility of using semiconductors as plasmonic
materials. Different types of semiconductors will be investigated, and particu-
lar focus will be on the nonlocal properties as predicted by the HDM. We will
also analyse the tunability of semiconductors, which is one of the advantages
they have compared to metals.
Chapter 5 will consider an extended version of the HDM for semiconductors
where several different kinds of free charge carriers are present. Semiconduc-
tors may, for example, contain both an electron and a hole plasma, and this
gives rise to nonlocal effects that are absent in the traditional HDM for a sin-
gle type of charge carrier.
Chapter 6 will then provide a conclusion of the results together with an out-
look on the future of plasmonics in metals and semiconductors.
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2 Fundamental theory of plasmonics

In this chapter, the basic theory going into understanding the concept of plas-
mons will be presented. Although most of the content here is considered clas-
sical electrodynamics, it is the same framework that will be used when we an-
alyze the nonlocal and semi-classical models in the following chapters. Many
of the equations presented here will be used later on, and the chapter will also
serve as an introduction for readers unfamiliar with the topic of plasmonics.

We will open the chapter with a brief discussion of Maxwell’s Equations and
the accompanying constitutive relations. Then we will introduce the Drude
model which is the simplest theory for the free-electron plasma of metals.
Based on this model, the different types of plasmons will then be presented
including the bulk plasmon, the surface plasmon polariton and the localized
surface plasmon. In the last section we will discuss the different ways plas-
mons can be excited and probed.

2.1 Maxwell’s Equations
At the foundation of classical plasmonics we find Maxwell’s Equations. These
include Gauss’s law for the electric field E and the magnetic field B, Faraday’s
Law and Ampère’s Law, and they are given by [49, 50]

∇ ·E =
ρ

ε0
, (2.1a)

∇ ·B = 0, (2.1b)

∇×E = −∂B
∂t
, (2.1c)

∇×B = µ0J + ε0µ0
∂E

∂t
. (2.1d)

Here ε0 ≈ 8.854 · 10−12 F/m and µ0 = 4π · 10−7 H/m are, respectively, the
permittivity and permeability of free space. The charge density ρ is related to
the current density J through the continuity relation

∂ρ

∂t
= −∇ · J. (2.2)

This is seen by applying the divergence to Eq. (2.1d), whereby we note that
∇ · ∇ ×B = 0, and combining it with Eq. (2.1a).

Often J and ρ are split into external parts Jext and ρext and induced parts
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Jind and ρind. While Jext and ρext are assumed to be controllable (or at least
known beforehand), the induced parts Jind and ρind depend on the material
and are responses to the applied fields. Alongside this division, it will be an
advantage to introduce the displacement field D and the H-field which are
defined as [49, 50]

D = ε0E + P, (2.3a)

H =
1

µ0
B−M, (2.3b)

where P is the polarization and M is the magnetization. These are related
to the material’s electric and magnetic response, respectively, and they are
coupled to the induced current density by [49, 50]

Jind = ∇×M +
∂P

∂t
. (2.4)

In this work we will only consider non-magnetic materials which means that
M = 0 and H = B/µ0. With the definitions in Eqs. (2.3), we can rewrite
Eqs. (2.1a) and (2.1d) in terms of the external charges

∇ ·D = ρext, (2.5)

∇×H = Jext +
∂D

∂t
, (2.6)

while Eqs. (2.1b) and (2.1c) are unchanged by these definitions.
From Maxwell’s Equations it is possible to derive an important equation,

namely the wave equation for the electric field. Applying the curl to Eq. (2.1c),
differentiation with time to Eq. (2.6) and combining those results give us

∇×∇×E + µ0
∂2D

∂t2
= −µ0

∂Jext

∂t
. (2.7)

From this point, it is not possible to progress further without assuming a rela-
tion between E and D. The simplest possible relation is a direct proportional-
ity

D = ε0εE, (2.8)

where ε is known as the dielectric function. Equation (2.8) may be too simple,
however, as we will see in next section.
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2.2 Constitutive relations
A more general constitutive relation that connects the displacement field to
the electric field is

D(r, t) = ε0

∫∫
ε(r, r′, t, t′)E(r′, t′)dt′dr′, (2.9)

where the D now depends nonlocally on E, i.e. the displacement field at one
point in space and time potentially depends on the electrical field in all space
and at all times (causality, however, ensures that ε = 0 for t′ > t). Notice
that in Eq. (2.9), D is parallel to E, which only is true in isotropic media, and
depends linearly on E. These are reasonable assumptions for the situations
that we will consider.

Another very reasonable assumption is that time is homogeneous, which
means that ε only depends on the time difference t − t′ rather than on t and
t′ explicitly. The same assumption can be made for the spatial dependence if
space is also homogeneous. Obviously, this is only true for complete vacuum,
and even the simplest material will be inhomogeneous on the level of atoms.
However, this jellium model is a reasonable approximation for many materi-
als and one that greatly simplifies the analysis. With these assumptions, the
displacement field is given by

D(r, t) = ε0

∫∫
ε(r− r′, t− t′)E(r′, t′)dt′dr′. (2.10)

The advantage of this expression compared to Eq. (2.9) is that the integral
constitutes a convolution in time and space. This means that the Fourier trans-
form in time and space will be the simple product

D(k, ω) = ε0ε(k, ω)E(k, ω), (2.11)

where ω is the (angular) frequency, and k is the wave vector. Since the homo-
geneity assumption about time always is true, and we are mainly interested
in steady-state situations, we will only use the frequency-domain versions of
the equations. As for the r- or k-dependence, we will use whichever is most
suitable in the given situation.

The simple relationship between D and E in Eq. (2.8) can be obtained from
Eq. (2.9) if the dielectric function is given by delta functions, i.e. ε(r − r′, t −
t′) = εδ(r− r′)δ(t− t′). We now see that this is in fact a slightly artificial case
since the delta function in time corresponds to an instantaneous response to
the electric field, and we would expect this assumption to be valid only when
the frequency of the field is much smaller than the characteristic frequencies
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of the system. The delta function dependence in space in known as the local
response approximation (LRA), and in the reciprocal space it is equivalent to
neglecting the k-dependence of the dielectric function. Much of this thesis
is dedicated to analysing the implications of including or neglecting spatial
nonlocality (also known as spatial dispersion).

Analogous to Eq. (2.9), the induced current density may also be found with
a nonlocal relation to the electric field

Jind(r, t) =

∫∫
σ(r− r′, t− t′)E(r′, t′)dt′dr′, (2.12)

where σ is the conductivity. Again the homogeneity of time and space are
assumed, which allows us to find the Fourier transform

Jind(k, ω) = σ(k, ω)E(k, ω). (2.13)

The connection between ε and σ is found by using the relation between the
current density and the polarization in Eq. (2.4) with M = 0, which in the
temporal Fourier transform (whereby ∂/∂t→ −iω) becomes

Jind = −iωP. (2.14)

Using this expression together with Eqs. (2.13) and (2.11) and the definition of
D then gives us

ε(k, ω) = 1 +
iσ(k, ω)

ωε0
. (2.15)

It is useful to split the induced current density according to Jind = Jf + Jb
where Jf and Jb are the current densities of the free and bound charges, re-
spectively1. Although this division is somewhat arbitrary, is does seem natu-
ral in materials like metals where Jf can be associated with the (almost) free
electrons of the conduction band, while Jb is caused by the electrons that are
more tightly bound. With this division, we also introduce the conductivities
σf and σb for the free and bound charges, respectively, and this allows us to
rewrite Eq. (2.15) according to

ε(k, ω) = 1 +
iσb(k, ω)

ωε0
+
iσf (k, ω)

ωε0
= εb(k, ω) +

iσf (k, ω)

ωε0
, (2.16)

where εb includes the response from the bound charges. We will consider
various nonlocal relations between E and Jf , but in most cases we will as-
sume that εb is local. This assumption allows us to rewrite the wave equation

1Note that this is different from the more conventional naming in Ref. [49] where Jf is what
we here call Jext.



2.3. The Drude model 7

[Eq. (2.7)] in the frequency domain as

∇×∇×E− ω2

c2
εb(ω)E = iµ0ω(Jf + Jext), (2.17)

where it has been used that the speed of light in vacuum is c = 1/
√
µ0ε0.

2.3 The Drude model
A simple, local expression can be obtained for ε(ω) by assuming the electrons
to be classical, non-interacting particles. If they are subjected to an electric
field E, they will experience a force as found with the Lorentz Force Law F =
−eE (where magnetic forces are ignored), and their movement is described by
the differential equation

m
∂2r

∂t2
+mγ

∂r

∂t
= −eE. (2.18)

Here m is the mass of an electron, and γ is a damping constant. This damping
includes scattering between the electrons and the ions of the lattice, and the
damping constant is related to the mean propagation time τ by γ = 1/τ . If the
electric field has a harmonic time dependence, i.e. E(t) = E0 exp(−iωt), the
solution to the equation is of the form r(t) = r0 exp(−iωt) and we obtain

− ω2mr0 − iωmγr0 = −eE0. (2.19)

If we further use that the current density is given by Eq. (2.13) as well as by
Jf = −neu = ineωr where n is the density of electrons and u is the velocity,
we obtain the following equation for the conductivity

σf (ω) =
iωne2

m(ω2 + iγω)
. (2.20)

From this we can get an expression for ε(ω) by using Eq. (2.16)

ε(ω) = εb(ω)− ω2
p

ω2 + iγω
, (2.21)

where we have introduced the plasma frequency

ω2
p =

ne2

ε0m
. (2.22)
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Eq. (2.21) is known as the Drude dielectric function, and it is one of the most
widely used models for metals. The model permits us straight away to an-
alyze excitations in an infinite bulk of matter, which constitutes the simplest
possible geometry. Consider Eq. (2.5) where the displacement field is related
to ρext. Because the Drude model is a local model, the equation can be written
as

ε0ε(ω)∇ ·E = ρext. (2.23)

The equation clearly predicts the existence of an electric field when an exter-
nal charge carrier density is present, but even in the case where ρext = 0, the
equation allows for a non-zero electric field provided that ε(ω) = 0. Physi-
cally this means that a self-sustained electric field is present in the material,
something that is possible because of the collective oscillation of the electrons.
This resonance of the electron plasma coupled to the electric field is known as
a plasmon.

We can find the resonance frequency of this plasmon in the Drude model
by solving ε(ω) = 0. If for simplicity we assume that εb = 1 and γ = 0,
the resonance occurs according to Eq. (2.21) at ω = ωp, and it is now clear
why ωp is called the plasma frequency. At this frequency, the electron plasma
resonates synchronously everywhere in the bulk, and for this reason, the res-
onance is known as a bulk plasmon. Naturally, no resonance can sustain itself
indefinitely, and in a more realistic scenario where the loss constant γ is differ-
ent from 0, the solution to the plasmon condition ε(ω) = 0 will be a complex
frequency, which in turn corresponds to a decaying oscillation.

2.4 Transverse and longitudinal fields
It can be shown that the electric field can be separated into a transverse and
a longitudinal part [51]. The transverse part ET is characterized by being
divergence-free, i.e. ∇ · ET = 0, and the polarization for transverse plane
waves will be orthogonal to the direction of propagation. On the other hand,
a longitudinal field EL is characterized by being rotation-free, i.e. ∇ × EL =
0, and the polarization for longitudinal plane waves will be parallel to the
direction of propagation. From this definition it is also clear that all magnetic
fields are transverse since∇ ·B = 0 according to Eq. (2.1b).

In reciprocal space, the division into ET and EL can be understood through
projection operators T and L [52]. The longitudinal projection operator is
given by L = k̂ ⊗ k̂ where k̂ = k/k, and the longitudinal part is then found
by EL = LE. The transverse projection operator is defined by T = I − L with
I being the identity operator which ensures that E = ET + EL.

One of the reasons why it makes sense to separate the field into transverse
and longitudinal parts is that these fields often interact differently with the
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material. This also means that we need to consider two different dielectric
functions, εT and εL, for transverse and longitudinal fields, respectively, which
further implies that the total dielectric function has to be a tensor. The situa-
tion is simplified, however, by choosing the orthogonal basis {k̂, ê1(k), ê2(k)},
where k̂ is the direction of propagation, and ê1(k) and ê2(k) are in the re-
maining two transverse directions. Choosing this basis set makes the tensor
dielectric function ε(k, ω) diagonal [52]

ε(k, ω) = TεT(k, ω) + LεL(k, ω) =



εL(k, ω) 0 0

0 εT(k, ω) 0
0 0 εT(k, ω)


 . (2.24)

Including a tensor dielectric function in the constitutive relation for D gives
us

D(k, ω) = ε0ε(k, ω) ·E(k, ω)

= ε0

[
εT(k, ω)ET(k, ω) + εL(k, ω)EL(k, ω)

]
, (2.25)

where we clearly see the separation into transverse and longitudinal response.
Note that although the dielectric function now is a tensor, the material is still
assumed to be isotropic.

Let us now consider the impact of separation into transverse and longitudi-
nal fields on the definition of plasmons. To this end, we will look at the spatial
Fourier transform (whereby∇ → ik) of Eq. (2.5)

ik ·D(k, ω) = ikε0εL(k, ω)EL(k, ω) = ρext(k, ω), (2.26)

where we have used that k · ET = 0 and k · EL = kEL. As noted in previous
section, this shows that a self-sustained oscillation of the electric field may ex-
ist if the dielectric function is zero. But now we see that this condition applies
specifically to the longitudinal field and the longitudinal dielectric function,
and we therefore arrive at the condition for longitudinal plasmons

εL(k, ω) = 0. (2.27)

A similar analysis can be carried out for the wave equation [Eq. (2.7)], which
in reciprocal space becomes

k× k×E(k, ω) + ω2µ0D(k, ω) = −iωµ0Jext(k, ω). (2.28)

This equation can be separated into transverse and longitudinal parts by using
the continuity equation [Eq. (2.2)] for the external charges. In reciprocal space
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this becomes
− ik · Jext = −iωρext = ωk ·D, (2.29)

and by using the fact that only longitudinal fields are parallel to k, the equa-
tion can be rewritten as

− ik · JL
ext = −iωρext = ωk ·DL. (2.30)

This shows that the longitudinal parts in Eq. (2.28) cancel. The equation with
the remaining transverse parts is

− k2ET(k, ω) +
ω2

c2
εT(k, ω)ET(k, ω) = −iωµ0J

T
ext(k, ω). (2.31)

We now have an expression that relates the transverse electric field to an exter-
nal, transverse current density. But the equation also allows for the existence
of an electric field even if JT

ext = 0, and we see that the condition for transverse
electric fields is

ω2

c2
εT(k, ω) = k2. (2.32)

This equation reveals something fundamental about transverse fields: Even
if εT is local, i.e. has no dependence on k, we can still obtain a finite value
of k from Eq. (2.32) which means that the material can sustain propagating,
transverse electric fields. Even in vacuum where εT = 1, such traveling waves
can exist. The reason is, of course, that the electric field couples to the magnetic
field (and vice versa), and this electromagnetic radiation can in principle be
found in any medium.1

The situation is different for the self-sustained longitudinal fields which can-
not couple to the magnetic field (since the latter is purely transverse). Instead
they have to couple to the electron plasma as we saw it for the Drude model
in previous section. However, the dielectric function in this simple model is
local, and accordingly does not allow for propagating, longitudinal waves. To
have propagating waves we need a wave equation similar to Eq. (2.7) which
contains EL as well as its spatial derivative to second order, and this is not
possible in a local model [where we have the simple relationship in Eq. (2.23)].
In chapter 3 we will analyse a nonlocal model, and there we indeed obtain a
wave equation for longitudinal fields.

We will end this section by noting that in the limit k = 0 we always have
εT = εL for isotropic media [51]. We will not prove it here, but it can be un-
derstood intuitively by noting that the wavelength in this limit goes to infinity.

1Although rarely considered, equation (2.32) also allows for the existence of what could be
called transverse plasmons. Since the transverse electric field always is coupled to the magnetic
field, such plasmons would inevitably be closely coupled to the electromagnetic radiation.
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Figure 2.1: The incoming wave with electric field Ei, magnetic field
Bi and wave vector ki is reflected and transmitted at the interface be-
tween materials with ε1 and ε2. Notice that the magnetic field is point-
ing out of the paper for incident, reflected and transmitted waves.

The electric field will be in phase everywhere in space and therefore has lost
its “sense” of direction. An example of this is the Drude model, where the
local dielectric function is used for both transverse and longitudinal fields.

2.5 Surface plasmon polaritons
In this section we will explore a type of plasmons occurring at the interface be-
tween two different media, and we will see that these excitations share prop-
erties with both longitudinal and transverse fields. Consider the scenario in
Fig 2.1 where an electromagnetic plane wave is incident on a interface be-
tween medium 1 and 2 located at z = 0. The two media are characterized by
local dielectric functions ε1 and ε2, and the geometry is infinite in the x- and
y-directions. We will here consider a wave that is propagating in the xz-plane
with the magnetic field polarized in the y-direction, something that is known
as the transverse magnetic (TM) mode. At the interface the incident (i) wave
will be partially reflected (r) and transmitted (t), and the fields are all given
by Ej(ω, r) = Ej0 exp(ikj · r − iωt) where j = i, r, t and kj = [kjx, 0, kjz]
and kjx = kj sin θj . This problem contains several unknowns which can be
found by applying the appropriate boundary conditions (BCs). Two such BCs
can be obtained directly from Maxwell’s Equations by assuming nonmagnetic
materials and zero external surface current [49], and they relate the parallel
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components of the fields in the two media at the interface

E
‖
1 −E

‖
2 = 0, (2.33a)

B
‖
1 −B

‖
2 = 0. (2.33b)

Here the B field can be found from Eq. (2.1c). These equations put restraints
on both the amplitudes and the phases of the waves, and from either of them
we find that kix = krx = ktx = kx, kiz = −krz = k1z and ktz = k2z . The wave
numbers are according to Eq. (2.32) given by k2

n = εnω
2/c2 where n = 1, 2,

and they must additionally fulfill the simple relation

kn = (k2
x + k2

nz)
1/2. (2.34)

From these relations we find that the reflected field is related to the incoming
field by the expression Er0 = rTMEi0, where

rTM =
ε2k1z − ε1k2z

ε2k1z + ε1k2z
, (2.35)

is known as the Fresnel reflection coefficient for the TM mode.
Analogous to the definition of bulk plasmons used in previous section, we

notice that even if Ei0 = 0, the outgoing field Er0 can be different from zero
if simultaneously rTM has a pole. This occurs when ε1k2z + ε2k1z = 0, and
if k1z and k2z are positive, this condition can only be fulfilled when ε1 and
ε2 have opposite signs. This can for example be accomplished if medium 1
is characterized by a positive dielectric constant ε1 (as is true for a simple
dielectric), while medium 2 is a metal with a dielectric function ε2(ω) as the
one in the Drude model with ω < ωp/

√
εb [see Eq. (2.21)]. With these material

choices, we find

kx(ω) =
ω

c

√
ε1ε2(ω)

ε1 + ε2(ω)
. (2.36)

We now see that if kx is real-valued and knz imaginary-valued, the field is a
wave propagating in the x-direction while being confined in the z-direction.
This mode is known as a surface plasmon polariton (SPP), and it is obtained
if kx > k1 and ε1 + ε2(ω) < 0.

In Fig. 2.2a, the dispersion relation in Eq. (2.36) is plotted with ε2(ω) given
by Eq. (2.21), ε1 and εb set to 1 and no damping (γ = 0). Here we see a
branch of the solution at low frequencies where kx is real-valued (shown with
a solid line). This is the SPP mode, and it has different characteristics for low
and high values of kx. For low wavenumbers, the mode coincides almost
exactly with the dispersion relation for electromagnetic radiation k =

√
ε1ω/c,
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Figure 2.2: Dispersion relations for a SPP when (a) γ = 0 and (b)
γ = 0.1ωp. The consequence of loss in the metal is a back-bending of
the SPP mode.

which is shown with the dash-dotted line, and in this region the SPP is mainly
transverse. For higher values of kx, the mode becomes more longitudinal in
nature, and for kx →∞we get ω = ωSP = ωp/

√
ε2 + εb = ωp/

√
2.

For frequencies above ωSP, the wave number kx becomes imaginary-valued
as indicated with the dashed line in Fig 2.2a, and this corresponds to an at-
tenuated (non-propagating) mode. Above ωp we have again a mode with real
values of kx which is sometimes called the Brewster mode. This is not a surface
plasmon, however, since both ε1 and ε2 are positive in this region, and it turns
out that this mode actually is due to a zero of rTM rather than a pole.

Figure 2.2b shows the effect of adding loss to the system by choosing γ =
0.1ωp (which is comparable to damping constants in real metals). Now the
SPP mode no longer continues to infinity as we approach ωSP, and instead it
is “bent back” and connected to the Brewster mode. We also see that the loss
represented by Im(kx) in general is nonzero for all frequencies, but finds its
maximum value close to ωSP. This loss results in a finite propagation length,
defined as 1/Im(kx), which in metals is on the order of 10−5 m [53].

One of the characteristic features of surface plasmons is the ability to confine
electric fields well below the diffraction limit. This can be understood directly
from knz which, because they are complex, result in an exponential decay of
the field away from the interface. Unfortunately, the confinement, which may
be of technological interest, is largest at ωSP where the loss also reaches its
maximum.

In this section we started out by assuming a TM-polarized field. The argu-
ment for this is that the transverse electric (TE) mode (with the E field polar-
ized parallel to the interface) does not support SPPs [54].
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2.6 Localized surface plasmons
The geometry considered in the previous section was infinite in the xy-plane,
but surface plasmons may also exist in finite structures. Due to the confine-
ment in space, surface plasmons in finite structures are standing waves, rather
than traveling ones, and are known as localized surface plasmons (LSPs). Any
shape may support LSP modes, but geometries where Maxwell’s Equations
can be solved analytically are essentially limited to spheres [55], spheroids [56]
and infinite cylinders [57] (which are only finite in two directions). Beyond
these shapes, numerical tools such as finite element solvers have to be used
instead (see for instance [58]). Alternatively, one can choose to solve the prob-
lem in the quasi-static approximation. By assuming that the fields are static,
the electric field becomes rotation-free [see Eq. (2.1c)], which means that it is
given by E = −∇φ where the scalar φ is the electric potential. The problem is
now reduced to solving∇2φ = −ρ/ε0 which is much simpler, and solutions to
the electric potential exist for several geometries, like e.g. a wedge [59]. In the
quasi-static approximation, the solution to the full time-dependent problem is
simply assumed to be equal to the static solution modulated with e−iωt. This
is equivalent to assuming that the speed of light is infinite, and the approxi-
mation is also known as the nonretarded solution.

In this thesis the focus will be on spherical particles, which is one of the few
geometries where the solution to Maxwell’s Equations is known. However,
we will content ourselves with the quasi-static approximation in this chapter
and return to the full retarded solution in chapter 3.

Consider a spherical metal particle of radiusRwith dielectric function ε2(ω)
surrounded by a material with dielectric constant ε1 (see Fig. 2.4a on page 17).
If this particle is excited by a plane wave with a much larger wavelength than
the radius, the incident field can be assumed to be homogeneous, i.e. constant
in space. For an exciting field with amplitude E0 and polarization in the z
direction, the field outside E1 and inside E2 the particle are given by [53]

E1 = E0(cos θr̂− sin θθ̂) + E0
ε2(ω)− ε1

ε2(ω) + 2ε1

R3

r3
(2 cos θr̂ + sin θθ̂), (2.37)

E2 = E0
3ε1

ε2(ω) + 2ε1
(cos θr̂− sin θθ̂). (2.38)

The fields are here represented in spherical coordinates r, θ and φ, and the
“hats” indicate unit vectors. Notice that the second term of E1 goes to zero for
r →∞ leaving us with E1 = E0(cos θr̂− sin θθ̂) = E0ẑ as expected.

Following the same argument as for SPPs and bulk plasmons, we see that
E1 can be different from 0 even if E0 = 0. This corresponds to the excitation



2.7. Excitation of plasmons 15

of a dipole LSP, and it occurs when

ε2(ω) + 2ε1 = 0, (2.39)

which is known as the Fröhlich condition. If we assume that the metal is de-
scribed by the Drude dielectric function [Eq. (2.21)] and that εb is independent
of ω, we find the resonance frequency to be

ωLSP =
ωp√

εb + 2ε1
, (2.40)

which becomes ωLSP = ωp/
√

3 if εb = ε1 = 1. We notice that the frequency is
independent of the size of the particle, and this is a consequence of using the
local, quasi-static approximation. In chapter 3 we will present the full solution
to Maxwell’s Equations which reveals a size dependence of the resonance as
well as the existence of LSPs of higher order than the dipole.

2.7 Excitation of plasmons
The ability to excite and measure plasmons is crucial to experimental investi-
gations, and there are several ways to accomplish this, depending on the type
of plasmon and what property we are interested in.

Excitation of SPPs
Let us first consider the excitation of surface plasmon polaritons at the inter-
face between a metal and a dielectric. The SPPs were introduced in section 2.5
as the poles of the reflection coefficient rTM for planar electromagnetic waves.
But because k1z has to be imaginary-valued (otherwise it would not be a sur-
face plasmon), the exciting field cannot simply be a traveling wave in medium
1. This can also be understood from Fig. 2.2 where the light-line (which is the
dispersion of a traveling wave) never crosses the SPP dispersion: the traveling
wave will not have sufficiently high kx to couple to the SPP.

One remedy is to let the wave propagate towards the interface and then,
very close to the metal surface, switch to a medium of a different dielectric
constant, such that the z-component of the wave vector becomes imaginary.
This setup is shown in Fig. 2.3a where a prism of dielectric constant εp is po-
sitioned above the interface with a small gap of medium 1 in between. If
εp > ε1, the incoming wave will experience total internal reflection at the
prism-dielectric interface for angles above θc = arcsin(

√
ε1/εp). An evanes-

cent wave will then reach the metal-dielectric interface and excite the SPP.
The excitation method shown in Fig. 2.3a is known as the Otto configuration

[60]. An alternative setup is the Kretschmann configuration [61] shown in
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Figure 2.3: Various methods for exciting SPPs. (a) Otto configuration,
(b) Kretschmann configuration and (c) grating coupling.

Fig. 2.3b, where the SPP on one side of a metal film is excited by an incident
wave on the other side. In Fig. 2.3c a third configuration is shown where a
grating is used to excite the SPP. By modulating the surface with a pattern of
periodicity d, a multiple of the wavenumber Λ = 2π/d is added to kx of the
incoming wave which makes coupling to the SPP possible.

Excitation of LSPs
The excitation of LSPs on finite structures is in a way simpler than than excit-
ing SPPs on the semi-infinite interface. The reason is that the finite structures
“add” the necessary k component to make it possible for light to couple with
the surface plasmons (similar to the grating in Fig. 2.3c). In section 2.6 we
considered a spherical particle that was excited by a plane wave with a wave-
length λ much larger than R, resulting in a field outside the particle given by
Eq. (2.38). Comparing this expression with the field from an ideal dipole with
dipole moment p = pẑ [53]

E =
p

4πε0ε1r3

(
2 cos θr̂ + sin θθ̂

)
, (2.41)

we see that the field from the sphere is equal to that from a dipole if p = ε2αE0

where

α = 4πε0
ε2(ω)− ε1

ε2(ω) + 2ε1
R3. (2.42)

This quantity is known as the polarizability of the sphere, and it quantifies
the particle’s tendency to be polarized by the field. Introducing α has the
advantage that it allows us to calculate the energy absorption rate with Pabs =
(ωε2E

2
0/2)Im(α) [62]. If we furthermore divide this value with the incident
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Figure 2.4: (a) A spherical particle with radius R and dielectric func-
tion ε2 surrounded by a medium with ε1. (b) Absorption cross sec-
tions (dashed lines) and scattering cross sections (solid lines) as found
with Eqs. (2.43) and (2.44) for three different scenarios: Rωp/c = 1 and
ε1 = 1 (red lines),Rωp/c = 1.5 and ε1 = 1 (blue lines), andRωp/c = 1
and ε1 = 2.25 (green lines). The Drude model with γ = 0.1ωp and
εb = 1 is used for the particle.

energy flow Iinc = E2
0

√
ε0ε1/µ0/2, then we find the absorption cross section

σabs =
k1

ε0
Im(α), (2.43)

where k1 =
√
ε1ω/c. The polarizability also allows us to find the scattering

cross section [62]

σsca =
k4

1

6πε2
0

|α|2, (2.44)

which is the scattered fraction of the energy. Notice how the absorption cross
section depends on R3, while the scattering cross section depends on R6. This
means that absorption dominates for small particles, while scattering is im-
portant for larger particles.

The absorption and scattering cross sections are shown in Fig. 2.4b for a
metal particle in different scenarios. The dielectric function of the metal is
given by Eq. (2.21) with εb = 1 and γ = 0.1ωp, and the cross sections were
found with Eqs. (2.43) and (2.44). We notice that all the curves have a single
peak which is the dipole LSP resonance also found with Eq. (2.40). The red
and blue lines show the spectra for two different particle sizes, and we see
how the absorption cross section (dashed lines) is larger than the scattering
cross section (solid lines) for the small particle, while the situation is reversed
for the large particle. The spectral position of the LSP, however, is the same for
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Figure 2.5: Various near-field measurements: (a) SNOM using a ta-
pered fiber, (b) EELS using an electron beam and (c) LDOS affecting
the decay rate of an emitter such as a molecule.

the two particle sizes, which reflects the fact that the local, quasi-static model
does not predict any size-dependence of the LSP peak. Also shown in the
figure with green lines are the cross sections for ε1 = 2.25, and we see how
changing the surrounding medium can move the LSP peak in agreement with
Eq. (2.40).

In this thesis we will also use the extinction cross section, which is defined as
σext = σabs + σsca and describes the total energy extracted from the incoming
wave. In the quasi-static approximation, however, the extinction is identical
to the absorption for a point dipole because radiation effects are not included.
A remedy may be to define a radiation-corrected polarizability [63], but the
full solution to Maxwell’s Equations used in next chapter does not have this
problem.

Near-field measurements
The methods mentioned so far in this section are all far-field measurements
i.e. the exciting field is a plane wave. A different type of probing methods
used in plasmonics is near-field measurements including scanning near-field
optical microscopy (SNOM), electron energy loss spectroscopy (EELS) and the
coupling of emitters to the local density of states (LDOS). These methods have
two advantages over far-field measurements: they can probe plasmons that
do not couple to plane waves, and they allow for very high spatial resolution.
Although near-field measurements will not be used in this thesis, a very brief
overview of the methods is given in this section.

In a SNOM experiment (see Fig. 2.5a) a tapered fiber tip is used to excite
plasmons as well as to pick up the response [64–66]. The thin tip provides a
high spatial resolution as well as the extra k-value needed to couple to SPPs.
Typically the optical measurement is combined with vibrations of the tip to
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provide information of the topology akin to the atomic force microscopy.
EELS can be considered the by-product of transmission electron microscopy

(TEM) where electrons are sent through a sample to obtain Ångstrom resolu-
tion (see Fig. 2.5b). By simultaneously recording the energy lost to excitations
in the sample, it is possible to construct a detailed picture of plasmons and
other resonances [67, 68]. By using EELS it is possible to obtain more detailed
information about higher-order modes and bulk plasmons than far-field mea-
surements allow [69].

In the third example of a near-field measurement, an emitter is positioned
close to the metal surface (see Fig. 2.5c). The presence of the surface and
especially the surface plasmon will alter the LDOS or ρ(ω, r), which in turn
changes the decay rate Γ of the emitter according to Γ ∝ ρ(ω, r) [53, 70]. Ex-
amples of such emitters are atoms, molecules and quantum dots.
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3 Nonlocal effects in metals

The Drude model introduced in previous chapter is widely used and has, de-
spite its simplicity, proven its accuracy many times over. But as the sizes of
the structures diminish, the Drude model looses its predictive power. It there-
fore becomes necessary to seek out a different or an augmented model when
studying the optical response of nanoscale structures.

For very small geometries, the idea of continuous states no longer holds,
and the electronic structure is rather described by discrete energy levels than
bands. It is clear that the assumption of a free electron plasma looses it va-
lidity for such systems, and instead more microscopic models such as cluster
theories or density functional theory should be applied [71–73]. The splitting
of continuous bands into discrete levels is loosely known as quantum size ef-
fects, and for metals it typically sets in for structures smaller than 1 nm [71].
We will not consider this regime here, and instead we will limit ourselves to
slightly larger geometries where the assumption of continuous bands is ex-
pected to be valid. For semiconductors, which are considered in next chapter,
this lower size limit may need readjustment.

Even if we stay out of the regime of quantum size effects, the Drude model
may still fail to describe some of the properties that are important for small
structures. In particular, the Drude model is derived in the local response ap-
proximation (LRA) where the polarization at one point only depends on the
electric field at exactly that point. This is a reasonable assumption for macro-
scopic structures, but when the geometries become comparable to the internal
length scale of the electron gas, a nonlocal description has to be adopted in-
stead.

In this chapter, we will briefly consider the Lindhard model, which implic-
itly includes nonlocality through its quantum mechanical derivation. We will
then switch our attention to the semi-classical hydrodynamic Drude model
(HDM), where a nonlocal relation between J and E is derived from the Boltz-
mann Equation. We will see how the Lindhard model and the HDM are sim-
ilar on some points and different on others. The HDM will be used to obtain
the optical properties of metal nanoparticles, and we will see how the predic-
tions of the model differ from those in the LRA. While the simple description
in section 2.6 predicted a LSP resonance that was independent of the parti-
cle size, we will now see how application of the HDM leads to a blueshifted
resonance for smaller particles. Additionally, the full solution of Maxwell’s
Equations used here also gives rise to a size-dependence that was not present
in the quasi-static model considered in previous chapter.
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The situation may be further complicated by the presence of an ensemble of
particles of different sizes. In any experiment, the sample will be described by
a distribution of particles sizes, and together with the size-dependent LSP fre-
quency, the actual measured spectrum will have a different appearance than
a simple one-size model would predict. This will be the subject of the last
section, which is also directly related to Publication A.

While the HDM captures important nonlocal effects such as the blueshift,
its semi-classical origin means that it omits phenomena related to the single-
particle properties. Especially single-particle excitations, which are known
to cause size-dependent loss and therefore are important to structures on the
nanoscale, are absent in the HDM. A remedy for this is the generalized nonlo-
cal optical response (GNOR) model which also will be presented in this chap-
ter. Being a free-electron model, the HDM also fails to include interband tran-
sitions, which are inevitable in real metals. The next section therefore presents
a simple approach to account for these resonances.

3.1 Dielectric functions of metals
The Drude model only includes the response of the free electron gas, and es-
pecially for higher frequencies, the interband transitions have to be accounted
for as well. Interband transitions include excitations of electrons from lower-
lying bands to the conduction band or higher bands, and this can be modeled
as bound particles in a harmonic oscillator. In this simple description, known
as the Lorentz model, each interband transition is associated with a natural
frequency ωj , an oscillator strength fj and a damping constant γj , and the
dielectric function is given by [49]

ε(ω) = 1 +

N∑

j=1

fjω̃
2
p

ω2
j − ω2 − iγjω

, (3.1)

where ω̃p has an expression similar to the plasma frequency in the Drude
model. In Fig. 3.1 the real and imaginary parts of a dielectric function in the
Lorentz model with N = 3 are shown. We here see that the imaginary part
ε′′(ω) has a peak for every resonance corresponding to increased loss in the
proximity of ωj . The real part ε′(ω), on the other hand, displays a staircase-
like pattern where the level following a resonance is lower than before. For
very high frequencies, ε′(ω) will always go to 1, as the material is unable to
respond to such fast changes in the field and therefore will behave as vacuum.

To describe real metals, the Lorentz model can be combined with the Drude
model from the previous chapter such that the dielectric function will con-
tain a term from the free-electron response plus a term from the interband
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Figure 3.1: The Lorentz model [Eq. (3.1)] for the dielectric function
with three oscillators. The blue line is the imaginary part ε′′(ω), and
the red line is the real part ε′(ω).

transitions. And now we see that the background dielectric function εb(ω) in
Eq. (2.21) actually contains the interband transitions (together with the ever-
present “1”). Sometimes the background dielectric function is given the sym-
bol ε∞, where ‘∞’ only indicates that the frequency is high enough to ignore
the free-electron response (and not that the frequency actually approaches in-
finity).

In some cases, the background dielectric function due to interband transi-
tions may be assumed to be constant. We see from Fig. 3.1 that this is the case
for frequencies well below the first interband transition where ε′′(ω) ≈ 0, and
ε′(ω) settles on a constant value. To test this hypothesis, let us consider the
experimental values for the dielectric functions of gold and silver shown in
Fig. 3.2. Also shown in the figures with black lines are the dielectric functions
as found with the Drude model [Eq. (2.21)], where εb for gold and silver is
set to 10 and 3.3, respectively. We see that the Drude model captures the free-
electron response of the low-frequency region quite well, as expected, while
the predictions for higher frequencies are less accurate. The interband transi-
tions will give rise to absorption in the high-frequency region, and this also
explains the yellow colour of gold.

To properly model the dielectric function in both the low- and high-frequen-
cy regions, one can choose to combine the Drude model (or another free-
electron model) with the Lorentz model for interband transitions, but in this
chapter we will use a different procedure. Because the main interest is the re-
sponse of the free electrons, the interband transitions will simply be modeled
by using the experimental values for the dielectric function εexp(ω). With this
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Figure 3.2: Dielectric functions for gold (left) and silver (right) where
the real parts are shown with red dots, and the imaginary parts are
shown with blue dots. The data is from Johnson and Christy [74]. The
Drude dielectric function is shown with a black line. The parameters
in the Drude model are ~ωp = 9.02 eV, ~γ = 0.071 eV and εb = 10 for
the gold and ~ωp = 8.99 eV, ~γ = 0.025 eV and εb = 3.3 for silver.

method, which was also used in Ref. [75], εb(ω) is given by

εb(ω) = εexp(ω) +
ω2
p

ω2 + iγω
, (3.2)

which assumes that εb is left when the free-electron contribution is removed
from εexp. It seems like nothing is accomplished by this, since the full dielec-
tric function as found with the Drude model will be identical to εexp. How-
ever, for the nonlocal models presented in the next sections, the free-electron
response will be different from what is predicted by the Drude model. The
interband part of the dielectric function for metals will thus be extracted from
experimental values like those in Fig. 3.2. This also means that only the free-
electron response will be treated nonlocally, while the interband transitions
will be modeled with a local dielectric function.

3.2 Lindhard dielectric function
We will now consider a quantum mechanical model for the dielectric function
of an electron gas known as the random phase approximation (RPA) or the
Lindhard model [76]. The starting point is the Hamiltonian for the electron
gas, but with the significant simplification that electron-electron interactions
are neglected, whereby the system can be described by a sum of single-particle
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Hamiltonians of the form

H0 = − ~2

2m
∇2 + V (r). (3.3)

The solutions to the eigenvalue problem H0ψα = Eαψα are the single-particle
wavefunctions ψα with the corresponding energies Eα. We will not consider
any spin interaction here, and the spin degeneracy can be included simply by
multiplying by 2 whenever we are counting states.

Let us now look at the situation where the electrons are influenced by an
external electric field E(r, t). If the field is longitudinal, it can be related to an
electric potential by E = −∇φ, which in turn gives us the potential energy by
U = −eφ. Without loss of generality, we can assume that the dependence in
time and space is harmonic (since we can always combine the fields linearly),
whereby the potential energy can be written as

U(r, t) = U0e
ik·r−iωt + c.c. (3.4)

Here ‘c.c.’ indicates the complex conjugate, and U0 = −ieE0/k (the amplitude
of the electric fieldE0 should not be confused with the energy). Given the per-
turbation U(r, t) to the system H0, one can calculate the transition probability
between two states ψα and ψβ using Fermi’s Golden Rule and the assumption
of linear response. And as shown in Appendix A, this can be used to find the
longitudinal dielectric function

εL(k, ω) = 1 +
2e2

ε0k2

1

V

∑

αβ

|〈ψβ |eik·r|ψα〉|2
Eβ − Eα − ~ω − iη [f(Eα)− f(Eβ)], (3.5)

where V is the volume, and η is a positive infinitesimal quantity. The function
f is the distribution function, or occupancy probability, and for electrons this
will be equal to the Fermi-Dirac distribution. Apart from the assumptions
of the non-interacting electrons and the linear dependence of the response,
this is a quite general expression, and no restrains have been put on the form
of the wavefunctions. We will now make the assumption that the electrons
are free particles, whereby the wavefunctions become plane waves given by
ψk′(r) = 1/

√
V exp(ik′ · r). The consequence is that the matrix element in εL

will be equal to unity when the excitation occurs from k′ to k′ + k and zero
otherwise, and we arrive at the Lindhard dielectric function

εL(k, ω) = εb(ω) +
2e2

ε0k2

1

V

∑

k′

[f(k′)− f(k′ + k)]

E(k′ + k)− E(k′)− ~ω − iη . (3.6)

Notice that we have allowed for the inclusion of interband transitions through
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Figure 3.3: The Lindhard model predicts two regions in the kω-
diagram where ε′′L = 0 separated by a region where ε′′L 6= 0. The
dispersion of the bulk plasmon is shown with a dashed line, and we
see that the line crosses into the region of Landau damping.

εb(ω), which is set to 1 in the typical derivation of the Lindhard dielectric
function.

It is possible to evaluate an approximate expression for εL under the as-
sumption that E(k′+k)−E(k′)� ~ω+ iη, which is fulfilled for small values
of k. Additionally, we will approximate the distribution function f by a step
function, which is equivalent to assuming zero temperature in the Fermi-Dirac
distribution. In the Supporting Information to publication B, it is shown how
these assumption allow us to derive an expression for εL by using a geometric
series expansion. And although publication B is not in focus in this chapter,
the derivation is quite general. The result is

εL(k, ω) = εb(ω)− ω2
p

ω2 + iγω
− ω2

p

(ω2 + iγω)2

3

5
v2
F k

2

− ω2
p

(ω2 + iγω)2

~2

4m2
k4 − ω2

p

(ω2 + iγω)3

3

7
v4
F k

4 − · · · , (3.7)

where ωp is the plasma frequency defined in Eq. (2.22), and vF is the Fermi
velocity defined by

vF =
~kF
m

, (3.8)

with the electron mass m and the Fermi wavenumber kF . Now we see that in
the limit k → 0, the expression for εL reduces to the dielectric function in the
Drude model [Eq. (2.21)]. But in general, the Lindhard dielectric function is
a function of the wavenumber, and this in turn means that the bulk plasmon
frequency found with the condition εL(k, ω)=0 will depend on k.
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Although the series expansion in Eq. (3.7) will be of greatest interest here,
it is possible to derive an exact, analytical expression for εL. Assuming zero
temperature and taking the limit η → 0, the evaluation of the sum in Eq. (3.6)
results in [76, 77]

ε′L(k, ω) = 1 +
k2

TF

2k2
+
k2

TFkF
4k3

[
(1− x2

1) ln

∣∣∣∣
x1 + 1

x1 − 1

∣∣∣∣+ (1− x2
2) ln

∣∣∣∣
x2 + 1

x2 − 1

∣∣∣∣
]
,

(3.9a)

ε′′L(k, ω) =
k2

TFkFπ

4k3

[(
1− x2

1

)
Θ
(
1− x2

1

)
−
(
1− x2

2

)
Θ
(
1− x2

2

)]
, (3.9b)

where εL is split into real and imaginary parts and it has been assumed that
εb(ω) = 1. Here Θ is the step function, and we have used the definitions

k2
TF =

me2kF
ε0π2~2

, x1 =
k

2kF
− mω

~kkF
, x2 =

k

2kF
+

mω

~kkF
,

where kTF is the Thomas-Fermi screening wavenumber. In Eqs. (3.9) we have
taken the limit η → 0, and yet we obtain an imaginary part that is different
from zero. The loss represented by ε′′L is known as Landau damping, and it is
caused by dissipation of energy into single-particle excitations. Clearly this is
only possible when both k and ω are such that particles in the parabolic band
can be excited from below the Fermi level to the unoccupied states above the
Fermi level. This also explains the step functions in the expression for ε′′L, and
we see that we must have

~2

2m

(
k2 − 2kkF

)
< ~ω <

~2

2m

(
k2 + 2kkF

)
(3.10)

for single-particle excitations to occur. This is shown in the dispersion dia-
gram for the dielectric function in Fig. 3.3, where two solid lines mark the
boundaries for single-particle excitations and, thereby, Landau damping. Also
shown in the figure, with a dashed line, is the dispersion relation for the bulk
plasmon as found by solving ε′L(k, ω) = 0. The line has been cut off at the
boundary to the ε′′L 6= 0 region to indicate that the plasmon will be strongly
suppressed by Landau damping there.

The Lindhard model is very simple in the sense that the electrons are as-
sumed to be free particles modeled as plane waves, but it captures two impor-
tant nonlocal, i.e. k-dependent, features that are absent in the Drude dielectric
function: dispersion of the bulk plasmon resonance and nonlocal damping
in the form of Landau damping. These nonlocal effects will be analysed fur-
ther in the next sections. It should be mentioned that the dielectric function in
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Eq. (3.7) includes classical, ohmic loss through ω → ω+iγ, which does not ful-
fill particle conservation. Although we will not consider it here, this defect can
be repaired by including the Mermin correction to the dielectric function [78].

3.3 The hydrodynamic model
The Lindhard model is (within the given assumptions) exact, but it is only
valid for the infinite medium. We are therefore interested in a more practi-
cal model that allows us to find the optical response of finite structures like,
for instance, spherical particles. The hydrodynamic Drude model (HDM), or
simply the hydrodynamic model, is an example of such a model, and it can be
thought of as either an extension of the classical Drude model or a simplifica-
tion of the Lindhard model. In this section, we will consider the derivation of
the HDM from the Boltzmann Equation which is the most common procedure.

The HDM from the Boltzmann Equation
Consider an ensemble of electrons described by the one-particle distribution
function f(r,p, t) where r is the position and p is the momentum. The evolu-
tion of this function in time t is given by the Boltzmann Equation [79, 80]

∂f

∂t
+∇rf · v +∇pf · F = Icoll [f ] , (3.11)

where ∇r and ∇p are the gradients in the r and p spaces, respectively. The
particle velocity is given by v, and for parabolic bands, we have the relation
p = mv where m is the mass of the electron. The influence of the electric field
on the electrons is given by F = −eE where F is the force. On the right-hand
side of Eq. (3.11) we have the collision operator Icoll describing the scatter-
ing of the electrons per unit of time. Often this operator is very complex and
poses a serious challenge when seeking solutions to the equation. The diffi-
culty of this operator can, however, be eliminated by invoking particle and
momentum conservation.

In Appendix B it is shown how the hydrodynamic equations can be derived
from Eq. (3.11) by using the following assumptions:

1. Particle and momentum are, as mentioned, conserved. While the par-
ticle conservation is trivial, the momentum conservation requires para-
bolic bands.

2. Magnetic forces are ignored, which is why the Lorentz force equation re-
duces to F = −eE. This is a reasonable approximation for our purposes
where magnetic forces are much weaker than the electric ones.
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3. The pressure tensor of the electron plasma is diagonal and given by

P = I · ~
2(3π)2/3

5m
n5/3, (3.12)

where n is the electron density. More details are given Appendix B.

4. The electron density is given by n = n0 + n1 where the induced density
n1 is small compared to the equilibrium density n0. This means that the
current density can be approximated by Jf = −enu ≈ −en0u where
u is the microscopically averaged value of v. This average velocity is
also assumed to be small such that second-order terms like u⊗ u can be
ignored. These assumptions result in linearized versions of the hydro-
dynamic equations which are significantly easier to work with. For the
sake of notational simplicity, we will also leave out the f indicating that
we are considering free particles whereby Jf → J and ρf → ρ.

Under these assumptions, the linearized hydrodynamic equations are found
to be

∂ρ

∂t
= −∇ · J, (3.13a)

∂2J

∂t2
= β2∇(∇ · J) +

∂E

∂t
ω2
pε0, (3.13b)

where ∇ ≡ ∇r. Here we immediately recognize Eq. (3.13a) as the continuity
equation, which was also derived in section 2.1 directly from Maxwell’s Equa-
tions. Equation (3.13b) is sometimes called the equation of motion, and we see
that besides the plasma frequency, it also contains the parameter β which in
Appendix B is found to be

β2 =
1

3
v2
F . (3.14)

Since we will mostly be working with in the frequency domain, let us apply
the temporal Fourier transform to the Eqs. (3.13) to obtain

iωρ = ∇ · J, (3.15a)

β2

ω2 + iγω
∇(∇ · J) + J =

iωω2
pε0

ω2 + iγω
E, (3.15b)

where the phenomenological damping constant γ also has been introduced.
We have also rearranged Eq. (3.15b) a little, and now it is clear that if β = 0,
the equation reduces to the simple relationship J = σDrudeE found in the local
Drude model [see Eq. (2.20)]. As we will see later, the degree of nonlocality is
determined by β, and for this reason we will call it the nonlocal parameter.
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Transverse and longitudinal fields in the HDM
Equation (3.15b) provides a relation between E and J, but these quantities
must additionally obey the wave equation derived from Maxwell’s Equations.
The wave equation in Eq. (2.17) in the absence of an external current density
(Jext = 0) is

∇×∇×E− ω2

c2
εb(ω)E = iµ0ωJ, (3.16)

where it has been assumed that εb is local. Equations (3.15b) and (3.16) can in
their present state be used to find solutions for E and J, but in some cases it is
an advantage to rewrite them a bit. Referring to section 2.4, the electric field
can be separated into a transverse part ET and a longitudinal part EL which
are divergence- and rotation-free, respectively. For the transverse electric field
and current density, equations (3.15b) and (3.16) take the forms

JT =
iωω2

pε0

ω2 + iγω
ET, (3.17a)

∇×∇×ET − ω2

c2
εb(ω)ET = iµ0ωJ

T, (3.17b)

where it has been used that∇·JT = 0. Combining these equations to eliminate
JT and using the general relation∇×∇× = ∇(∇·)−∇2 gives us

∇2ET + k2
TE

T = 0, (3.18)

where kT is the transverse wavenumber given by

k2
T =

ω2

c2

(
εb(ω)− ω2

p

ω2 + iγω

)
. (3.19)

Equation (3.18) is the vector wave equation for ET in the HDM, and it de-
scribes the propagation of transverse electric fields with wavenumber kT. The
equation for kT is recognized as the dispersion relation for transverse fields
from Eq. (2.32) with εT being equal to the Drude dielectric function. In other
words, the HDM predicts the same propagation of transverse fields as the lo-
cal Drude model would.

Considering longitudinal fields, equations (3.15b) and (3.16) become

β2

ω2 + iγω
∇(∇ · JL) + JL =

iωω2
pε0

ω2 + iγω
EL, (3.20a)

−ω
2

c2
εb(ω)EL = iµ0ωJ

L, (3.20b)
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where it is used that∇×EL = 0. Combining these gives us

∇2EL + k2
LE

L = 0, (3.21)

where kL is the longitudinal wavenumber given by

k2
L =

1

β2

(
ω2 + iγω − ω2

p

εb(ω)

)
. (3.22)

Equation (3.21) describes the propagation of longitudinal fields in the HDM
with wavenumber kL. This is very different from the LRA which does not
predict any propagating longitudinal waves. In the HDM it is the interaction
between the electric field and the inhomogeneity of the charge carrier density
that results in propagating longitudinal waves. In the “language” of the Boltz-
mann Equation, the inhomogeneity of ρ is caused by the pressure tensor of the
electron gas given in Eq. (3.12).

Additional boundary condition
To find the electric field, equations (3.18) and (3.21) must be supplied with
the appropriate boundary conditions (BCs). As already mentioned in section
2.5, Maxwell’s Equations require that the parallel components of E and B are
continuous across a boundary, and this is still true for the HDM. But now
propagating longitudinal waves are also present, and therefore the HDM re-
quires an additional boundary condition (ABC). Based on earlier discussions
on the form of this extra condition [81–84], we will use the generally accepted
ABC for a metal-dielectric interface

J⊥ = 0. (3.23)

That is, the component of the current density normal to the interface is zero,
which implies that the charge cannot escape the surface of the metal. With this
ABC, the equilibrium electron density n0 is assumed be a step function at the
interface, which also means that spill-out of electrons is ignored. While this
is considered a good approximation for noble metals, the correct modeling of
other metals may require the inclusion of this effect [85, 86].

Dielectric functions in the HDM
The dielectric functions in the HDM can be found by transforming Eq. (3.15b)
to the reciprocal space which gives us

− β2

ω2 + iγω
k(k · J) + J =

iωω2
pε0

ω2 + iγω
E. (3.24)
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Now we can find relations between ET and JT and between EL and JL which
gives us expressions for σT(k, ω) and σL(k, ω), respectively. These can be in-
serted into Eq. (2.16), and we find the dielectric functions for transverse and
longitudinal fields to be

εT(ω) = εb(ω)− ω2
p

ω2 + iγω
, (3.25)

εL(k, ω) = εb(ω)− ω2
p

ω2 + iγω − β2k2
. (3.26)

We here notice that the longitudinal dielectric function is nonlocal, i.e. de-
pends on k, while the transverse dielectric function is local.

Comparison to the Lindhard model
The two models for the free electrons presented in this chapter, the Lindhard
model and the HDM, both resulted in nonlocal longitudinal dielectric func-
tions, and it therefore seems reasonable to compare them one to one. This can
be done if we assume that ω2 + iγω � β2k2 whereby εL in Eq. (3.26) can be
expanded as a geometric series

εL(k, ω) = εb(ω)− ω2
p

ω2 + iγω
− ω2

p

(ω2 + iγω)2
β2k2 − ω2

p

(ω2 + iγω)3
β4k4 − . . . .

(3.27)
If this equation is compared with Eq. (3.7), we see that the two expressions
agree up to the third term, provided the nonlocal parameter β is given by

β2 =
3

5
v2
F . (3.28)

This value is different from one in Eq. (3.14) which was derived from the ex-
pression for the pressure tensor in Eq. (3.12). It turns out that Eq. (3.14) is
valid for low frequencies when ω � γ, while Eq. (3.28) is valid for ω � γ [87].
Halevi has furthermore derived an expression for β which is valid over a
broader range of frequencies [88]

β2(ω) =
3
5ω + 1

3 iγ

ω + iγ
v2
F , (3.29)

where β is now complex-valued. For plasmonics, however, it is mainly the
ω � γ region that is of interest, and we will therefore only use the high-
frequency limit for β given in Eq. (3.28).
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3.4 Nonlocal damping
The comparison of Eqs. (3.27) and (3.7) shows that the HDM can be thought
of as the lowest-order approximation to the Lindhard model that still includes
nonlocality. However, the HDM fails to capture nonlocal damping in the form
of Landau damping, which was “lost” when the expansion in Eq. (3.7) was
performed. To introduce nonlocal damping into the HDM, a model has been
developed which allows for a complex β. The model has been coined the gen-
eralized nonlocal optical response (GNOR) model, and it considers the incor-
poration of diffusion into the continuity equation [89]. The equation obtained
is the (linearized) convection-diffusion equation

− ∂ρ

∂t
= D∇2ρ+∇ · (en0u) = −∇ · J, (3.30)

where D is the diffusion constant. Using this expression, the hydrodynamic
equation of motion becomes [89]

(
β2

ω2 + iγω
+
D

iω

)
∇(∇ · J) + J =

iωω2
pε0

ω2 + iγω
E, (3.31)

and we see that it has exactly the same form as Eq. (3.15b), provided the non-
local parameter β is replaced by

η2 = β2 +D(γ − iω). (3.32)

Because the GNOR model only differs from the HDM in the value of the
nonlocal parameter, it is a simple matter to include nonlocal damping in the
calculations if the HDM is already implemented. However, the problem of
finding a value forD still remains. In this thesis where the focus is on spherical
particles, we will deduce the value by comparing the GNOR model with data
from experiments, where it has been found that the damping depends on the
size of the particle [90–92]. To include this effect for spherical particles, it was
proposed by Kreibig and co-workers that a size-dependent term should be
added to the damping constant [93]

γ′ = γ +A
vF
R
, (3.33)

where vF is the Fermi velocity, and R is the radius. The model, which is called
the Kreibig model or the size-dependent damping (SDD) model, relates the
damping to scattering of electrons on the surface of the particle, and the pa-
rameter A is a measure of the degree of this scattering. Such a size-dependent
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Figure 3.4: The dielectric function in the Lindhard model as found
with Eqs. (3.9a) and (3.9b). The values ~ωp = 9 eV and εb = 1 where
used. The thick black lines mark the boundaries to the region with
Landau damping and are given by Eq. (3.10).

damping is also predicted by the GNOR model, where it emerges as a non-
local effect: the “smallness” of the particle gives the additional k-component,
and because of the complex parameter η, this shows up as damping. By com-
paring the two models, the following relation is found between D and A [94]

D =
6√
10

v2
F

ωp
A. (3.34)

Even though it seems like the difficulty of obtainingD only has been shifted to
another parameter, the advantage of Eq. (3.34) is that information on the value
of A has already been made available through experimental measurements
and theoretical calculations [90,95,96]. In general these studies predict a value
in the order of unity, and for simplicity we will therefore use A = 1 in the
rest of the chapter. Apart from providing more physical insight, the GNOR
model also has the advantage that it can be applied to any geometry, while the
Kreibig model is limited to spherical particles. Moreover, the GNOR model
includes k-dependent dispersion of the bulk plasmon which is absent in the
local Kreibig model.

The nonlocal damping in the form of diffusion in the GNOR model is con-
ceptually different from the Landau damping predicted by the Lindhard model.
Yet the two models may give the same predictions for certain situations. As
an example, let us consider the simple case of an infinite bulk material, which
is a geometry where both models are applicable. Starting with the Lindhard
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Figure 3.5: The dielectric function in the GNOR model as found
with Eqs. (3.26), (3.28), (3.32) and (3.34). The values ~ωp = 9 eV,
γ = 0.001ωp, εb = 1 and A = 1 where used.

model, we will use Eqs. (3.9a) and (3.9b) to plot the real and imaginary part, re-
spectively, of the dielectric function as contours in the momentum-frequency
space. These contours are shown in Fig. 3.4, where we used ~ωp = 9 eV,
εb = 1 and k3

F = 3π2n. Here we see in the left figure that the real part ε′L is
zero (indicated with black) exactly at the plasmon dispersion which is consis-
tent with the εL = 0 definition of longitudinal excitations (the dispersion was
also shown in Fig. 3.3). Upon entering the region with Landau damping, the
plasmon dispersion is cut off, and this corresponds well with the imaginary
part ε′′L (in the right figure) being different from zero in this very region.

Consider now the same contour plots for the GNOR model shown in Fig. 3.5.
Here the real and imaginary parts were found with Eq. (3.26) where β was re-
placed by η from Eq. (3.32), and the values γ = 0.001ωp and A = 1 were used
together with Eqs.(3.34) and (3.28). We here see roughly the same tendencies:
the dispersion of the plasmon is cut off upon entering the region with damp-
ing, and ε′′L is different from zero in only a restricted region of the momentum-
frequency space. The primary difference from the Lindhard model is that the
contours in the GNOR model are more “smeared out”, which is expected as
the model does not directly include the single-particle excitations. As men-
tioned, the loss mechanisms in the two models are fundamentally different,
but Figs. 3.4 and 3.5 indicate that the models predict losses of approximately
same magnitude. The GNOR model, furthermore, has the advantage of being
applicable for finite geometries such as the spherical particles considered in
the next sections.
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3.5 Mie theory
One of the few finite structures that Maxwell’s Equations can be solved for
analytically is a spherical particle. This was originally done by Mie [55], and
the formalism used here is similar to the one in Ref. [97]. The goal is to find
solutions to the vector wave equations in Eqs. (3.18) and (3.21), which both
have the form

∇2E + k2E = 0, (3.35)

where k is the wavenumber. First step is to solve the simpler scalar wave
equation

∇2ψ + k2ψ = 0, (3.36)

which can be solved in spherical coordinates by the method of separation of
variables.1 The solution is [50, 97]

ψe
oml

(r, t) = cos
sin(mφ)Pml (cos θ)zl(kr)e

−iωt, (3.37)

where r, θ and φ are coordinates in spherical geometry, ‘e’ and ‘o’ are short-
hand notation for even and odd, and l and m are integers which fulfill l ≥ m.
The function Pml is the associated Legendre polynomial, and zl is the spherical
Bessel function. A harmonic time dependence has been included in Eq. (3.37),
but it is clear that this will cancel out when inserted into Eq. (3.36).

It can now be shown that the solutions to Eq. (3.35) are given by [97]

L = ∇ψ, M = ∇× (rψ), N =
1

k
∇×M, (3.38)

which are known as vector wave functions. The function L is purely longi-
tudinal (since it is a gradient of a scalar function), while M and N are purely
transverse. This also means that the solutions to the longitudinal wave func-
tion [Eq. (3.21)] will only include functions of the form L, and the solutions to
the transverse wave function [Eq. (3.18)] only contain M and N functions.

In the following we will use the notation L = le−iωt (and the same for M
and N) where the lowercase versions are the wave functions without time
dependence. The le

oml
, me

oml
and ne

oml
functions constitute a complete basis,

which means that any field can be written as a superposition of these [97]. Let
us consider the case of a plane wave that is traveling in a dielectric medium
without spatial dispersion whereby the field will be purely transverse. If the
wave is propagating in the z-direction with the electric field polarized in the

1Note that the operator∇2 has two different meanings in the scalar and vector wave equation.
In the scalar equation it is the usual Laplacian defined as the divergence of the gradient. In the
vector equation it is rather defined as∇2 = ∇(∇·)−∇×∇×. For Cartesian coordinates, however,
the vector Laplacian is simply the scalar Laplacian multiplied with the identity matrix.
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x-direction, then it can be expanded in spherical vector wave functions ac-
cording to [97]

Ei(r, t) = E0e
ikDz−iωtx̂

= E0e
−iωt∑

l=1

il
2l + 1

l(l + 1)

(
m

(1)
o1l(kD, r)− in(1)

e1l(kD, r)
)
, (3.39)

where kD =
√
εDω/c is the wavenumber of the dielectric medium. Notice

that the expansion only contains functions of the form mo1l and ne1l, which
is a result of the symmetry of the problem. The superscript ‘(1)’ indicates
that contained spherical Bessel functions are of the first kind jl. Note that the
magnetic field can easily be found by using Ampere’s Law [Eq. (2.1c)].

The scenario which is of primary interest in this thesis is the one where the
incident wave Ei is scattered by a spherical particle located at r = 0 resulting
in a reflected field Er and a transmitted field Et (i.e. transmitted into the
particle). The reflected field will have the same overall form as Ei

Er(r, t) = E0e
−iωt∑

l=1

il
2l + 1

l(l + 1)

(
arlm

(3)
o1l(kD, r)− ibrln(3)

e1l(kD, r)
)
, (3.40)

where arl and brl are reflection coefficients, and the superscript ‘(3)’ indicates
that the contained spherical Bessel functions are Hankel functions of the first
kind h

(1)
l . Now, if the material of the particle had been without spatial dis-

persion, then the transmitted field would be given by an expression similar
to Eq. (3.39). This was originally considered by Mie [55], and later Ruppin
added the longitudinal component needed to describe a spatially dispersive
material [98, 99]. Including the longitudinal field in the expansion, the trans-
mitted field becomes

Et(r, t) = E0e
−iωt∑

l=1

il
2l + 1

l(l + 1)

(
atlm

(1)
o1l(kT, r)

−ibtln(1)
e1l(kT, r) + ctl l

(1)
e1l(kL, r)

)
, (3.41)

where atl , b
t
l and ctl are the transmission coefficients. The wavenumbers kT and

kL are in the HDM given by Eqs. (3.19) and (3.22), respectively.
The task is now to determine the expansion coefficients, which is done by

matching the fields at the radius R of the particle according to the boundary
conditions (BCs). Apart from the standard BCs in Eqs. (2.33), we also need
an additional boundary condition (ABC), which is particularly obvious from
Eq. (3.41): because the longitudinal fields add an extra set of unknowns ctl ,
we also need an extra BC. Based on the discussion in section 3.3, we will use
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the condition J⊥ = 0 (which is different from the ABC used by Ruppin [99]).
By application of the BCs we obtain the system of equations in Appendix C
from which the coefficients are easily found. Of primary interest are arl and brl
known as the Mie coefficients, and they are given by

arl =
−jl(xD)[xTjl(xT)]′ + jl(xT)[xDjl(xD)]′

h
(1)
l (xD)[xTjl(xT)]′ − jl(xT)[xDh

(1)
l (xD)]′

, (3.42a)

brl =
−εDjl(xD) (∆l + [xTjl(xT)]′) + εTjl(xT)[xDjl(xD)]′

εDh
(1)
l (xD) (∆l + [xTjl(xT)]′)− εTjl(xT)[xDh

(1)
l (xD)]′

, (3.42b)

where xD = RkD and xT = RkT. The differentiation (denoted with the prime)
is with respect to the argument. The arl coefficients are related to oscillations
of the magnetic type, while the brl coefficients are related to oscillations of the
electric type. The parameter ∆l is given by

∆l =
jl(xT)jl(xL)l(l + 1)

xLj′l(xL)

(
εT

ε∞
− 1

)
, (3.43)

and this contains the nonlocal response. In particular, if ∆l = 0 then equation
(3.42b) for the brl coefficients reduces to the expression found in the classical
Mie solution without spatial dispersion [97]. Meanwhile, the arl coefficients
are given by the classical solution regardless of ∆l, which reflects the fact that
oscillations of the magnetic type do not couple to longitudinal waves.

The Mie-coefficients are of practical significance because they can be used
to find the absorption, scattering and extinction cross sections directly. The
scattering and extinction cross sections are given by [97]

σsca =
2π

k2
D

∑

l=1

(2l + 1)(|arl |2 + |brl |2), (3.44a)

σext = − 2π

k2
D

∑

l=1

(2l + 1)Re(arl + brl ), (3.44b)

and the absorption cross section can be found with σabs = σext − σsca. Often
the cross sections will be normalized with the geometric cross section σgeom =
πR2 to obtain a dimensionless quantity.

3.6 Nonlocal effects in spherical nanoparticles
When the Mie-coefficients have been determined, we can find σabs, σext, and
σsca from Eqs. (3.44). In this section, we will consider some of the charac-
teristic features in the spectra of nanoparticles, and we will see the impact
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Figure 3.6: Extinction spectra for a spherical nanoparticle as found
with the LRA model (red line) and the HDM (blue line). The radius of
the particle is (a) 30 nm and (b) 2 nm.

of including nonlocality in the model. It should be mentioned that the spec-
tra for spherical particles as found with the HDM already have been anal-
ysed in several papers using Mie theory [69, 100] or the simpler quasi-static
model [101, 102]. However, the spectra demonstrate some important optical
features of the HDM which will be analysed further in section 3.7 where the
results of Publication A are presented. The spectra will also serve as precur-
sors to the results of the next chapters.

Ideal metal particles
Let us consider a material with the parameters ~ωp = 9 eV, γ = 0.01ωp,
vF = 1.39×106 m/s and εb = 1. If we now have a spherical particle of this ma-
terial with R = 30 nm surrounded by vacuum (εD = 1), we can find the Mie-
coefficients with Eqs. (3.42) and (3.43) and the extinction cross section with
Eq. (3.44b). The result is shown in Fig. 3.6a, where σext has been normalized
with σgeom. Here the blue line is the spectrum predicted by the HDM, while
the red line is the result in the LRA (the Drude model) obtained by setting
∆l = 0 in Eq. (3.42b). The two models predict almost exactly the same result:
a large, wide peak to the left followed by two narrower and smaller ones. The
large peak is the dipole LSP resonance, which is also predicted by the quasi-
static model [see Fig. 2.4b]. The next two peaks are the quadrupole and the
octupole LSP resonances, respectively, and they are not present in the simple
quasi-static model where the external field is completely homogeneous (they
are, however, present in an extended multipolar quasi-static model [103]). Al-
though we only see the quadrupole and octupole modes in Fig. 3.6a, an in-
finite series of higher-order modes exists as given by the sum in Eq. (3.44b)
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Figure 3.7: The spectral position of the dipole LSP resonance as a
function of particle radius. The red line is the Drude model, and the
blue line is the HDM. The dashed black line is the position predicted
by the local, quasi-static model where there is no size-dependence of
the resonance.

(the calculation here includes orders up to l = 16). These higher-order modes
become more visible by considering larger particles or, alternatively, by using
a near-field measurement as described in Ref. [69].

In Fig. 3.6b are the extinction spectra shown for a particle of the same mate-
rial, but with R = 2 nm. One of the most apparent differences here compared
to Fig. 3.6a is the absence of any visible higher-order modes, which is a con-
sequence of the particle being much smaller than the wavelength of the field.
Another striking difference is the shift of the dipole peak in the HDM com-
pared to the LRA. This blueshift is a characteristic nonlocal effect, and it has
been analysed in several papers [69, 75, 100, 101] and measured experimen-
tally [4, 102, 104, 105]. It is caused by the surface plasmon penetrating into
the bulk of particle, which will have larger relative impact as the size is re-
duced. Although we will not study it here, nonlocal response will also affect
the optical properties of nanometer gaps between plasmonic structures such
as dimers [19, 106, 107].

Apart from the nonlocal blueshift of the dipole peak in the HDM, the peaks
for both models in Fig. 3.6b are located at higher frequencies compared to
Fig. 3.6a. This is known as a retardation effect, whereby the finite speed of
light causes a delay in the electromagnetic interaction between different parts
of the particle. As the size of the particle is increased, this effect becomes more
important, resulting in a redshift as a function of particle size. To analyse the
combined effect of retardation and nonlocal blueshift, the spectral position of
the dipole LSP is plotted as a function of radius in Fig. 3.7. Here we see that
the HDM predicts a strongly blueshifted peak position as the particle size is
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Figure 3.8: Extinction spectrum for a particle with R = 2 nm in a
semi-logarithmic coordinate system. The red line is the LRA, and the
blue line is the HDM.

reduced. The LRA, on the other hand, predicts a peak position that converges
towards the local, quasi-static limit ωp/

√
3 (shown in the figure with a dashed,

black line). For large particles, we see how the retardation effect results in a
redshift for both the LRA and HDM.

Another characteristic nonlocal feature in the HDM is seen in Fig. 3.8 where
the extinction spectrum for the 2 nm particle is plotted with logarithmic y-
axis. Here additional peaks have appeared above ωp which are absent in the
LRA. These are confined bulk plasmons, and they are a result of the fact that
the HDM allows for the existence of propagating longitudinal waves which
become standing waves in a confined structure. The confined bulk plasmons
have been analysed theoretically [69,101,108] as well as measured experimen-
tally [7, 13, 109–111].

Realistic metal particles
Bulk plasmons are an interesting nonlocal phenomenon and certainly one that
deserves more experimental investigation. However, the model from which
the spectrum in Fig. 3.8 is derived includes neither the interband transitions
described in section 3.1 nor the nonlocal damping described in section 3.4.
Both of these effects are expected to be present in real metals, and they will
result a significant damping of the bulk plasmons and the LSP.

To investigate this, let us first consider the inclusion of interband transitions
with the aid of experimentally measured dielectric functions, as described in
section 3.1. We will consider a gold particle of radiusR = 2 nm with the mate-
rial parameters ~ωp = 9.02 eV, ~γ = 0.071 eV and vF = 1.39×106 m/s and the
experimental dielectric function εexp from Ref. [74]. From these parameters
we obtain the extinction spectra in Fig. 3.9a, and we here see the huge impact
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Figure 3.9: Extinction spectra for a spherical nanoparticle with R =
2 nm as found with the Drude model (red line) and the HDM (blue
line) for (a) gold and (b) silver.

that interband transitions have on the optical response. The high-frequency
region of the spectrum is completely dominated by interband effects, and the
dipole LSP peak has experienced strong damping. From the spectrum it is
also clear that bulk plasmon resonances are unlikely to be measured in gold
nanoparticles. The situation looks slightly better for the spectrum of a silver
nanoparticle (~ωp = 8.99 eV, ~γ = 0.025 eV and vF = 1.39 × 106 m/s) shown
in Fig. 3.9b, where the interband transitions are less interfering.

Let us now look at the effect of nonlocal damping on plasmon resonances
(while leaving interband transitions out for clarity). In Fig. 3.10, the extinc-
tion spectrum is shown for a particle with the same parameters as in Fig. 3.6b.
Together with the LRA and HDM are also the spectra predicted by the SDD
and GNOR models, where A = 1 is used, and D is found by Eq. (3.34). Here
it is clear how the size-dependent damping results in broader peaks of less
amplitude. The SDD model predicts a broadening of the peak, but because it
is a local model, the spectral position is (almost) the same as in the LRA. The
GNOR model, on the other hand, includes both the size-dependent broaden-
ing as well as the nonlocal blueshift from the HDM. The figure focuses on
the region around the dipole LSP, but it is clear that the nonlocal damping
will significantly weaken the bulk plasmons (if there is anything left from the
interband loss).

The combined effect of nonlocal blueshift and damping, owing to real and
imaginary parts of the nonlocal parameter, has been investigated for the di-
pole LSP in Ref. [89]. The authors found that the complex solution ω′ + iω′′ to
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and GNOR model. The parameters are ~ωp = 9 eV, γ = 0.01ωp, vF =
1.39× 106 m/s, εb = 1, A = 1 and R = 2 nm.

the Fröhlich condition (see section 2.6) to first order in 1/R is given by

ω′ =
ωp√

3
+

β√
2R

, (3.45a)

ω′′ = −γ
2
− Dωp

4
√

6βR
, (3.45b)

where it has been assumed that εD = εb = 1. From the real part we see how the
blueshift to first order in 1/R is proportional to β, while the imaginary part,
which is related to the linewidth, has a size-dependent term proportional to
D. Notice also that for the HDM where D = 0, the damping is independent of
size as expected.

3.7 Inhomogeneous broadening
The ohmic loss included phenomenologically in the Drude model with γ and
the size-dependent damping described by the Kreibig and GNOR model are
both homogeneous broadening mechanisms, i.e. they depend on intrinsic prop-
erties of the materials. In this section we will investigate an inhomogeneous
broadening mechanism which is the result of a distribution of particle sizes
in an ensemble together with a size-dependent resonance frequency. The dif-
ferent spectral positions of the resonance peaks will effectively show up as a
broadening of the peak when measuring on the ensemble. Inhomogeneous
broadening will obviously be relevant for experimentalists since the spectrum
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Figure 3.11: Averaged extinction spectra for the LRA (red), HDM
(blue), SDD model (black) and GNOR model (green). The spectra
where found with a delta-function distribution as well as Gaussian
distributions with standard deviations of 0.1 nm, 0.2 nm and 0.3 nm
(see distributions in inset). The average particle radius is in all cases
〈R〉 = 2 nm.

from a distribution of particles sizes may look very different from what they
would expect from a model with only a single particle size.

To investigate the effect of inhomogeneous broadening, let us consider an
ensemble of metal nanoparticles with the same parameters as in Fig. 3.10. The
particles will have different radii, and we will assume that the distribution is
described by a Gaussian distribution

f(R) =
1√

2πσ2
exp

(
− (R− 〈R〉)2

2σ2

)
, (3.46)

where 〈R〉 is the average radius, and σ is the standard deviation (not to be
confused with the cross section).1 We will use an average radius of 〈R〉 =
2 nm and consider three different standard deviations of 0.1 nm, 0.2 nm and
0.3 nm. The extinction spectra for the different radii in the distribution are then
weighted with the function f(R) and added together to obtain an averaged
spectrum. The spectra will normalized with π〈R〉2 instead of the individual
radii to avoid distortions of the averaged spectrum.

1Note that the normalization factor 1/
√
2πσ2 is derived for a distribution extending from

−∞ to ∞. Obviously, we will not consider particles with negative radii which means that the
actual distribution is truncated at R = 0. If the distribution is sufficiently narrow, however, the
normalization in Eq. (3.46) will be a good approximation



3.7. Inhomogeneous broadening 45

In Fig. 3.11, the averaged spectra for the LRA, HDM, SDD model and GNOR
model are shown for the three standard deviations (the distributions are also
shown in the inset). The homogeneous case (corresponding to a delta-function
distribution) is also shown with open circles. Here we see the effect of inho-
mogeneous broadening most clearly for the HDM where the peak becomes
broader and looses amplitude as the distribution becomes wider. We also see
a small redshift of the peak which is caused by the fact that the biggest par-
ticles in the distribution at the same time have a less blueshifted resonance
and a larger extinction cross section. For the LRA there is almost no inhomo-
geneous broadening, although this potentially could exist as a result of the
included retardation effects (see also Refs. [112, 113]). In fact we see that the
peak is increasing very slightly as the distribution becomes wider. This is a
result of including bigger particles with a larger σext while still normalizing
with the average radius.

The HDM spectra in Fig. 3.11 suggest that inhomogeneous effects will be
important for ensembles of metal particles. The redshift of the peak will also
be relevant for a very specific type of experiment: if one wishes to investi-
gate the nonlocal blueshift of nanoparticles, the redshift of the resonance peak
would give rise to an incorrect interpretation of the results if inhomogeneous
broadening is not accounted for.

The situation looks quite different, however, when size-dependent damping
is included in the model. This is seen from the SDD and GNOR models in
Fig. 3.11, where the homogeneous broadening completely overshadows any
effect of the ensemble average. Since size-dependent damping and inhomoge-
neous broadening are expected to be relevant for the same group of particles,
i.e. small particles, the conclusion is that for the parameters considered here,
inhomogeneous broadening can be ignored when analysing spectra from an
ensemble of particles.

In addition to size-dependent damping, real metals will also contain inter-
band transitions which will further reduce the significance of inhomogeneous
broadening. This is analysed in Fig. 3 in Publication A, where the average
extinction spectra for the LRA, HDM and GNOR model are shown for sil-
ver nanoparticles. The dielectric function was derived in the same way as in
Fig. 3.9b in the previous section and using same data from Ref. [74]. From
this we see that homogeneous broadening completely dominates the optical
response for all three models, and the spectra for the distribution of particles
are indistinguishable from the homogeneous ones (shown with open circles).
Note that Fig. 3 in Publication A uses an average radius of 2.15 nm deduced
from an actual experimental particle distribution (shown in the inset).

Although inhomogeneous broadening has been shown to have negligible
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impact on the far-field response, it can still be of interest to look at the prob-
lem analytically. In particularly we will be interested in finding an expression
for the part of the width caused by inhomogeneous broadening, ∆ωinhom. To
make the derivation simple, we will neglect homogeneous broadening, which
is the same as assuming that the spectrum is a delta function

F (ω,R) = δ(ω − ωLSP(R)), (3.47)

where ωLSP(R) is the size-dependent peak position. Given the discussions in
this section, this is clearly a crude approximation, but the result can still be
useful for situations where inhomogeneous, and not homogeneous, broaden-
ing dominates.

Define now the inhomogeneous broadening as ∆ωinhom =
√
〈ω2〉 − 〈ω〉2,

where the moments are given by

〈ωn〉 =

∫
dωωn〈F (ω)〉 =

∫
dωωn

∫
dRF (ω,R)P (R)

=

∫
dR(ω − ωLSP(R))nP (R), (3.48)

where P (R) is the distribution function. As an approximate expression for
ωLSP(R), we can use the one given in Eq. (3.45a). In publication A and the
accompanying Supplementary Information, it is shown how this results in

∆ωinhom = β
√
〈R−2〉 − 〈R−1〉2. (3.49)

As examples, let us consider the Gaussian distribution given by Eq. (3.46) as
well as a triangular and a uniform distribution (see Fig. 3.12). Using Eq. (3.49)
we find the following approximate results for ∆ωinhom (see Supplementary
Information for Publication A)

Gaussian: ∆ωinhom ≈
βσ

R2
0

, (3.50a)

Triangular: ∆ωinhom ≈
βδR√
24R2

0

, (3.50b)

Uniform: ∆ωinhom ≈
βδR√
12R2

0

, (3.50c)

where R0 = 〈R〉 is the center of the distribution, and δR is the width of the
triangular and uniform distributions.

To test these expressions, the averaged extinction spectrum is simulated for
the three distributions for various values of σ and δR using the HDM (which
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Figure 3.12: Sketches of the triangular and uniform distributions.

was the only model that predicted any significant inhomogeneous broaden-
ing). The full width at half maximum (FWHM) is then calculated and plotted
against ∆ωinhom as found with Eqs. (3.50). This is shown in Fig. 5 in Publica-
tion A, and for all three distributions there is a nearly linear relation between
∆ωinhom and the FWHM. This shows the usefulness of Eq. (3.49) despite the
approximations leading to the expression.

The conclusion for this section is that the nonlocal blueshift together with
a distribution of particle sizes indeed result in inhomogeneous broadening of
the LSP peak in the averaged spectrum. For the materials considered here,
however, this broadening is completely insignificant when nonlocal damping
and interband transitions are included in the model. The experimentalist can,
in other words, safely analyse the extinction spectrum based on the average
particle size alone. For a different material with less loss and another value
for β, the impact of inhomogeneous broadening may have to be reconsidered.
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4 Nonlocal effects in semiconductors

In previous chapter, we analyzed the optical response of metal particles. And
due to their large density of free electrons, metals are by far the most common
plasmonic materials. But other kinds of materials may also contain a free-
electron plasma capable of sustaining collective excitations, and in this chapter
we will analyse the plasmonic properties of semiconductors.

The free-electron plasma in semiconductors may originate from doping or
from excitation of valence band electrons to the conduction band. Doping is
the process by which impurities are added to the semiconductor creating ei-
ther a partially filled conduction band or a partially filled valence band, and
doped semiconductors can obtain densities of free charges up to 1021 cm−3

[114]. Intrinsic semiconductors without doping will also have a naturally oc-
curring density of charge carriers originating from the thermal excitation of
electrons from the valence band to the conduction band. This density will
typically be very small, except for semiconductors with very narrow band
gaps, where we may see densities in the order of 1016 cm−3. Alternatively,
external sources such as laser pulses can be used to excite electrons from the
valence band to the conduction band, which is a process that can be applied
to semiconductors with wide gaps as well.

In any case, the density of free charge carriers is expected to be smaller than
in metals where typical values are in the order of 1022 cm−3. As a consequence
of this, the plasma frequency will also be smaller, since ωp ∝ n1/2, and this will
in turn shift all the spectral features from the visible to the infrared (IR) spec-
trum. Plasmonic resonances in the IR may have technological advantages on
its own [41, 44, 115], but it may also be a path to new experiments in nonlocal
phenomena [116]: as the characteristic wavelength of the system increases, so
does the size of the structures, which will make fabrication easier.

Another advantage of using semiconductors in plasmonics instead of metals
is the tunability. While metals have a fixed electron density, semiconductors
can be doped to a very wide range of electron and hole densities [41, 114].
Furthermore, semiconductors allow for dynamic tuning of the optical prop-
erties through temperature control [117, 118], external bias [119–121] or laser
excitation [122].

In this chapter we will analyse the plasmonic properties of semiconductor
particles, and in particular we will be interested in the nonlocal effects. Since
the models presented in previous chapter were developed for a general free-
electron plasma, we would expect them to be applicable to semiconductors
with a few modifications. We will consider various semiconductor materials
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Figure 4.1: A simplified model of the band structure in semiconduc-
tors.

as well as different methods for obtaining the necessary density of free charge
carriers, and we will see how this affects the optical response and the nonlo-
cal effects. The discussions in this chapter are related to Publication B, with
sections 4.4-4.6 presenting the results of the paper.

One of the primary complications of semiconductors compared to metals is
the possible existence of several different kinds of charge carriers. While the
only free charge carriers in metals are electrons, semiconductors may contain
electrons and holes or light and heavy holes. We will in this chapter assume
that effectively only one type of charge carrier is present and return to the dif-
ficulty of including multiple plasmas in next chapter. In this chapter, we will
also leave out interband transitions and excitons (a special type of excitation
characteristic for semiconductors) and focus on the optical response of the free
charge carriers. The legitimacy of these omissions will be given in section 4.2,
while the next section will present the fundamental concepts of semiconduc-
tors.

4.1 Concepts of semiconductors
Semiconductor physics is a broad and comprehensive field, which cannot be
covered here (see instead Refs. [123–125] for some excellent guides in the
field). However, a brief overview of the concepts of semiconductors seems
in place, and this will also allow us to introduce some of the parameters used
in this chapter.

The band structure
The difference between metals and semiconductors is found in the band struc-
ture which is sketched in Fig. 4.1. In this simplified picture, we have only two
bands of allowed states, the valence band and conduction band, which are
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separated by the band gap Eg of forbidden energies. The bands are assumed
to be perfectly parabolic and isotropic, and this allow us to write the disper-
sions as

Conduction band: E(k) = Ec +
~2k2

2m∗e
, (4.1a)

Valence band: E(k) = Ev −
~2k2

2m∗h
, (4.1b)

where Ec is the conduction band minimum, and Ev is valence band maxi-
mum. The effective masses of electrons and holes are given by m∗e and m∗h,
respectively, and they are related to the curvature of the band through m∗ =
~2(∂2E/∂k2)−1.

The Fermi energy EF , which marks the highest occupied level at 0 K, is
located inside conduction band for metals, and this results in a free electron
plasma even at low temperature. For semiconductors, EF is situated inside
the band gap resulting in an empty conduction band and a fully occupied
valence band at 0 K, and this is the cause of the poor electrical conductivity of
pure semiconductors.

The assumption of perfectly parabolic and isotropic bands described by a
scalar m∗ is of course artificial, and in real semiconductors the situation is
more complex. This is clear from the band structures for gallium arsenide
(GaAs) and indium antimonide (InSb) shown in Fig. 4.2. For both materials,
the conduction band minimum and the valence band maximum are located
at the Γ point (see the Brillouin zone Fig. 4.2), and we see that the bands only
are truly parabolic at the extrema. We also see that they are anisotropic, i.e.
the curvature and the effective mass depend on the direction in the reciprocal
space.

To model the anisotropy, the scalar effective mass can be replaced by a ten-
sor, but we will use a simpler approach where an average effective mass is
derived. The average effective mass, however, is different for calculations of
the density of states and calculations of the transport properties. The density-
of-states effective mass and conductivity effective mass are given by [123]

m∗dens ≡ m∗ = (m∗1m
∗
2m
∗
3)

1
3 , (4.2a)

m∗cond = 3

(
1

m∗1
+

1

m∗2
+

1

m∗3

)−1

, (4.2b)

where m∗1, m∗2 and m∗3 are the effective masses along the principle axes of the
geometry.

In the band structures in Fig. 4.2, we see that the valence band actually is
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Figure 4.2: The band structures for GaAs and InSb with data from
Ref. [126]. Also shown is the Brillouin zone for the face-centered cubic
lattice, which is the geometry for GaAs and InSb.

comprised of two bands corresponding to heavy and light holes, where the
light hole band has a sharper curvature (the bands are very close together).
We also see the split-off band located about 0.3 eV further below, but we will
not consider this band here. The light and heavy hole bands are degenerate
at Γ , but can have very different curvatures or, equivalently, different masses
m∗lh and m∗hh. Similar to what is done in the case of anisotropy, we can calcu-
late average effective masses for the valence band. The density-of-states and
conductivity effective masses for holes are given by [123, 127]

m∗h =
(
m∗lh

3
2 +m∗hh

3
2

) 2
3

, (4.3a)

m∗h,cond =
m∗lh

3
2 +m∗hh

3
2

m∗lh
1
2 +m∗hh

1
2

. (4.3b)

Note that the simple equations for the dispersions in Eqs. (4.1) use the density-
of-states effective masses.

The non-parabolic shape of the bands will give rise to an effective mass that
depends on doping and temperature. And although there are models that
account for non-parabolic bands [128], other effects will have impact on the
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Figure 4.3: The Fermi-Dirac distribution (solid line) coincides with
the Boltzmann distribution (dashed line) for energies above Ec. Also
shown in the figure is the Fermi energy (dotted line) and sketches of
the density of states for the valence and conduction band (grey areas).

effective masses such as temperature dilation of the lattice and increased im-
purity scattering. We will not try to model all of these complications, and
instead we will simply use the best and most suitable experimental or numer-
ical data for m∗ and m∗cond, if necessary calculated with Eqs. (4.2) and (4.3).

Intrinsic semiconductors
For intrinsic semiconductors, the density of free charge carriers originates
from thermal excitation of electrons across the band gap. The distribution
of the electrons in the bands is given by the Fermi-Dirac function

f(E) =
1

e
E−EF
kBT + 1

, (4.4)

where kB is the Boltzmann constant, and T is the temperature. The distri-
bution is shown in Fig. 4.3. To find the density of electrons in the conduc-
tion band ne, the occupation probability f(E) is combined with the density of
states of the conduction band [123]

gc(E) =
(2m∗e)

3
2

2π2~3

√
E − Ec, (4.5)

where m∗e is the density-of-states effective mass. The expression is derived
from the parabolic band structure given in Eq. (4.1a) together with the fact that
the volume in reciprocal space taken up by a single state is (2π)3/V , where V
is total volume in real space. The density ne can then be found with

ne =

∫ ∞

Ec

gc(E)f(E)dE. (4.6)
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Although choosing infinity as the upper bound is artificial, the distribution
f(E) will in practice cut off the integration at low energies. In the simple band
structure in Fig. 4.1, the situation is completely symmetric for the conduction
and valence bands. This means that the density of holes in the valence band
can be found with a similar equation, except that now the distribution [1 −
f(E)] is used instead of f(E).

If we are in the conduction band (E > Ec), and the temperature is suffi-
ciently low, we can assume that E − EF � kBT . In this case, the Fermi-Dirac
distribution in Eq. (4.4) can be approximated by the Boltzmann distribution

f(E) ≈ e−
E−EF
kBT , (4.7)

which is also sketched in Fig. 4.3. A similar argument can be made for the va-
lence band. With this approximation it is possible to evaluate the integrals for
ne and nh, and by invoking charge neutrality, ne = nh, one finds the following
expression for the charge carrier densities [123]

ne = nh = 2

(
2πkBT

h2

) 3
2

m∗e
3
4m∗h

3
4 exp

( −Eg
2kBT

)
. (4.8)

Doped semiconductors
while the electron and hole densities in intrinsic semiconductors typically will
be relatively low, doped semiconductors allow for controllable high densities.
By adding donor or acceptor atoms to the host semiconductor, discrete energy
levels develop inside the band gap. For n-doping, the donor energy level is
located close to the conduction band, and thermal energy allows electrons to
be excited to the conduction band to form a density of free electrons ne (see
Fig. 4.4). In a similar way, p-doping gives rise to a density of holes nh in the
valence band.

The position of the donor and acceptor levels in the band gap depends in
a complex manner on the impurity atoms and the host semiconductor [129].
For room temperature, however, it often a reasonable to assume that the ac-
ceptor and donor atoms have been completely ionized. We will assume that
this is the case for our calculations, which means that the majority carrier den-
sities are given by ne = Nd for donor concentrations Nd and nh = Na for
acceptor concentrations Na. For both n- and p-doped materials, the minor-
ity carrier concentration in thermal equilibrium can be found by the simple
relation n2

int = nenh, where nint is the charge carrier density for the intrinsic
material [123]

While doping allows us to reach electron and hole concentrations that are
much larger than in intrinsic semiconductors, the densities are still limited by
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Figure 4.4: For n-doped semiconductors, donor atoms will give rise
to a density of electrons in the conduction band. The Fermi level is
located inside the conduction band for n-doped materials.

several factors. One mechanism is doping compensation whereby impurity
atoms start behaving as both p-type and n-type dopants, and further doping
will effectively result in a lower charge carrier density [130]. For very high
doping concentrations, the solid solubility of the dopants will also be an upper
limit [131].

Transport properties
When an electric field is applied to the semiconductor, the electrons will ex-
perience a force equal to −eE. The electrons will not increase their speed in-
definitely, but will eventually collide with the atoms whereby they loose their
energy. If the average time between collisions is τ , one can find the average
drift velocity of the electrons to be

ue = − 1

m∗e,cond

τeE = −µeE, (4.9)

wherem∗e,cond is the conductivity effective mass, and µe is known as the mobil-
ity of the electrons. The drift velocity for holes is given by a similar equation.

The mean propagation time τ is primarily affected by two different scatter-
ing mechanisms. Lattice scattering is caused by thermal vibration of the lat-
tice atoms, and this will lead to reduction of τ in any semiconductor above
absolute zero. The effect obviously becomes more significant as the tempera-
ture is increased, and it has been found that the dependence of the mobility
on temperature roughly is T−3/2 [123]. Impurity scattering is the result of the
ionized dopant atoms affecting the electrons and holes through the Coulomb
force, and this process becomes more prominent as the doping concentration
is increased. On the other hand is the effect reduced for higher temperatures,
where the thermal energy of the charge carriers allows them to escape the
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Coulomb attraction of the impurity atoms.
Because the damping constant is related to the propagation time by γ = 1/τ ,

equation (4.9) allows us to write [132]

γi =
e

µim∗i,cond

, (4.10)

where i = e, h. The advantage of this equation is that γi can be used directly
in the Drude model or the HDM from previous chapters, while µi usually
can be found in semiconductor data tables. As a result of lattice and impurity
scattering, we naturally expect µi to depend on temperature and doping [133].
But often will m∗i,cond also depend on doping, which is partially explained the
non-parabolic bands giving a different curvature as the Fermi level changes
[134,135]. The effective mass may also depend on temperature due to dilation
of the lattice [136].

4.2 Interband transitions, excitons, phonons
and quantum size effects

While interband transitions can have a serious impact on the plasmonic res-
onances in metal particles (as we saw in previous chapter), the situation is
expected to be different for semiconductors. The shift of the spectral features
to lower frequencies also moves the plasmonic resonances away from inter-
band transitions. This means that as long as the energies considered are less
than Eg , it is safe to assume that interband transitions can be captured by a
frequency independent εb. This constant can typically be found in data tables.

Another type of excitation which is characteristic of semiconductors is ex-
citons, which are caused by electron-hole pairs bound to each other by the
Coulomb force. Because they are more tightly bound than free electrons and
holes in the conduction and valence bands, respectively, the energy level of
the exciton is lower than Ec by the binding energy Ebind. Excitons can be de-
scribed by a hydrogen model where the hole plays the role of the nucleus, and
this model is able to predict the discrete levels inside the band gap [137]. In
the model, one has to account for the electric screening of the hole and elec-
tron caused by the dielectric background which weakens the binding energy.
Especially semiconductors with narrow band gaps have larger screening, and
excitons can therefore be ignored for these materials. Also doped semicon-
ductors will have a significant screening effect due to the high density of free
charge carriers. Since the focus in this chapter will be on these two groups of
semiconductors, it is reasonable to ignore excitons for our purposes.

Semiconductors may also support phonons, and especially non-elemental
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materials may contain optical phonons that can interact with the electromag-
netic radiation. The phonon resonances are typically located in the infrared
spectrum [138], and because of this, they may interact with the plasmons
[139–142]. For simplicity we will not include phonons in the calculations here,
but they can be included in the dielectric function with a Lorentz oscillator
model as is done in, for example, reference 140.

When considering the optical response of nanoscale semiconductor parti-
cles, quantum size effects (QSE) such as those that are found in quantum dots
are expected to be relevant. The degree of discretization can be estimated
from a particle-in-a-box model where the distance between the energy levels
can be found as the inverse of the average density of states without spin [71]:
∆E = 2~2π2/(m∗V )/(3π2n)1/3. QSE become significant when ∆E is compa-
rable to the thermal energy kBT , which for a metal particle at room temper-
ature with V = 4πR3/3 happens for R ≈ 1 nm. For semiconductors, where
n and m∗ typically are smaller than for metals, these effects start to occur at
R ≈ 10 nm (and at cryogenic temperature, for even larger particles [143]). To
stay out of the QSE regime, semiconductors are therefore more restrictive than
metals.

Since we intend to use a plasma model for the semiconductors (the LRA or
HDM), we also have to ensure that the particle contains sufficient free charge
carriers to be considered a plasma. Although there is no clear boundary, it
seems obvious that a semiconductor particle containing less than 1 electron
on average is poorly modeled with a plasma model. We will therefore choose
a lower limit for our model of 50 free charge carriers per particle.

4.3 Materials and fabrication
Due to its application in microchips and electrical circuits, silicon (Si) is one the
most widely used semiconductors. It can be n-doped with group V elements
like phosphorous and arsenic and p-doped with group III elements such as
boron and gallium. It allows for doping concentrations as high as 1021 cm−3

before it is limited by the solid solubility [149], and plasmonics in Si has been
shown for both n- and p-doping [150–154]. Plasmonic devices based on Si also
have the advantage of being compatible with existing CMOS technology [155].
However, the mobility of Si is relatively low (see Table 4.1), and this will result
in higher loss and smearing out of spectral features.

Based on the mobility, GaAs seems to be a better choice for plasmonics.
GaAs can be n-doped with Si to concentrations of 1019 cm−3 where doping
compensation starts being a limitation [156]. It can also be p-doped with car-
bon (C) or beryllium (Be) to concentrations of 1021 cm−3 [157]. Bulk plasmons
have been observed in both n-doped [158–160] and p-doped [161, 162] GaAs
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Table 4.1: The material parameters for various semiconductors. The
mass m∗e for Si is from Ref. [144]. The masses m∗e and m∗hh for InSb
are taken from Refs. [136] and [145], respectively. For GaAs, m∗e and
m∗e,cond (which depends on the doping level Nd) are from Ref. [135],
and m∗lh and m∗hh are from Ref. [146]. Eg for InSb is taken from
Ref. [147], and µe and µh for GaAs are from Ref. [133]. The rest of
the data are taken from Ref. [148]. Note that for InSb and ZnO, the
value of m∗e,cond is assumed to be identical to m∗e . All values are for
300 K except the last column and values marked with *.

Si GaAs ZnO InSb (300 K) InSb (400 K)

ε∞ 11.97 10.86 3.72 15.68 15.68
Eg (eV) 1.124 1.424 3.44* 0.174 0.146

µe (cm2 V−1 s−1) 1450
7000a

20d 77000 48000
2900c

µh (cm2 V−1 s−1) 370
400a

− 850 480
190c

m∗e/m0 1.18 0.0636 0.275b* 0.0115 0.0100

m∗e,cond/m0 0.43
0.0636a

0.275b* 0.0115 0.0100
0.0695c

m∗lh/m0 0.153* 0.093 − 0.016* 0.016*

m∗hh/m0 0.59* 0.50 0.59* 0.37 0.40
a Nd = 0 cm−3 c Nd = 1018 cm−3 * T ≈ 4 K
b Nd = 1017 cm−3 d Nd = 5 · 1019 cm−3

using EELS. Plasmon resonances have also been observed in other III-V semi-
conductors [163–165].

Another group of semiconductors suitable for plasmonics is transparent con-
ducting oxides (TCOs). This group includes indium tin oxide (ITO), alumi-
num-doped zinc oxide (AZO) and indium-doped cadmium oxide (In:CdO),
and one of the advantages of these materials is the possibility to obtain very
high doping levels [41, 166]. Plasmons have been observed in ITO [120, 121,
167–170], AZO [171–173] and In:CdO [122, 174] as well as other TCOs [175–
180].

Plasmonics has also been studied for transition metal chalcogenides such as
copper sulfide (Cu2-xS) [181,182]. These materials are not doped by adding im-
purities, but instead obtain intrinsic doping through the stoichiometric com-
position. Other semiconductors in this group like Cu2-xSe and Cu2-xTe have
also been shown to support plasmons [42, 183, 184].

While doped semiconductors are the most obvious choice for plasmonic ma-
terials, intrinsic semiconductors may also contain a relatively large density of
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thermally excited charge carriers if the band gap is narrow enough. An ex-
ample of such a material is InSb which has a band gap of Eg ≈ 0.17 eV (the
band structure is shown in Fig. 4.2). Plasmonic resonances have already been
observed in intrinsic InSb [116, 118, 185–187].

The fabrication methods for doped and intrinsic semiconductors, either thin
film or particles, are diverse and numerous. Doped semiconductors can, for
instance, be fabricated by diffusion [188], ion-implantation [152,189] or molec-
ular beam epitaxy [165, 190]. TCO films are typically grown by laser abla-
tion, sputtering or chemical vapor deposition [41, 191], while nanoparticles
can be synthesized by e.g. flame spray pyrolysis [192]. Various liquid phase
chemical methods can be used to synthesize copper chalcogenide nanoparti-
cles [181, 183, 184, 193] and InSb nanoparticles [194]. Nanoparticles of various
semiconductor materials can also be fabricated by laser ablation [195, 196].

4.4 The nonlocal parameter
The models presented in chapter 2 and 3 are valid for a general free-particle
plasma. This means that once values for the parameters ωp, γ and β have been
determined, the expressions derived for the Mie-coefficients and the extinc-
tion cross section can be applied directly to semiconductors. In this section
we will therefore present expressions for these parameters. The results in this
section and the next two are directly related to Publication B.

The damping constant γ is given by Eq. (4.10), where µ and m∗cond are found
in data tables. The plasma frequency is given by exactly the same equation
as for metals, except that the free electron mass is replaced by the density-of-
states effective mass to account for the curvature of the band

ω2
p =

e2n

ε0m∗
. (4.11)

The charge carrier density n is assumed to be identical to Nd or Na for doped
semiconductors, while it is given by Eq. (4.8) for intrinsic semiconductors. For
intrinsic semiconductors there will always be a density of holes identical to
the electron density (due to charge conservation), but in this chapter we will
only include the electron density in the calculation of the optical response of
intrinsic semiconductors. The argument is that m∗h typically is larger than
m∗e , which results in a smaller plasma frequency for the holes compared to
the electrons. The consequence of this is that electrons dominate the optical
properties, and the holes, as a reasonable approximation, can be neglected.
In the next chapter, we will analyse the effect of including both electrons and
holes in the optical response.



60 Chapter 4. Nonlocal effects in semiconductors

The expression for β in doped semiconductors will, apart from the effective
mass, be identical to the one for metals

β2 =
3

5

~2k2
F

m∗2
, (Doped) (4.12)

where k3
F = 3π2n (see e.g. Eq. (S7) in the Supporting Information to Pub-

lication B). This expression assumes, similar to the case of metals, that the
distribution function of the electrons is a step function.

For intrinsic semiconductors with thermally excited electrons, the equation
for β is different. It is possible to derive a simple expression if the temperature
is low enough for the Boltzmann distribution to be used instead of the Fermi-
Dirac distribution, and in the Supporting Information to Publication B, the
expression is found to be

β2 =
3kBT

m∗
. (Intrinsic) (4.13)

For temperatures where the Boltzmann distribution is a poor approximation,
the value of β can still be found numerically.

4.5 Blueshift of the LSP resonance
With the parameters at hand we are ready to calculate the optical properties of
semiconductors. We will choose to focus on spherical particles which allows
us to use Eqs. (3.42) and (3.43) for the Mie-coefficients and Eq. (3.44b) for the
extinction cross section from previous chapter.

The first material we will consider is GaAs doped with a donor concentra-
tion of Nd = 1018 cm−3. Using the material parameters given in Table 4.1 to-
gether with Eqs. (4.10)-(4.12) we find ωp = 2.24× 1014 s−1, β = 4.36× 105 m/s
and γ = 8.72 × 1012 s−1. From the plasma frequency we already see that the
plasmon resonances will be found in the infrared (λp = 8.41 µm), which is
different from metal particles studied in previous chapter where the LSP res-
onance occurred in the visible spectrum.

If the radius of the GaAs particle is R = 40 nm, and it is surrounded by
vacuum (εD = 1), we get the extinction spectra in Fig. 4.5a. The figure shows
the spectra for both the LRA and the HDM, where the local result (dashed,
red line) is obtained by setting ∆l = 0 in Eq. (3.42b). As we saw for metals,
the dipole LSP resonance is blueshifted in the HDM compared to the LRA.
But if we compare with, for example, the extinction spectra for a 2 nm silver
particle in Fig. 3.9b, we see that the relative blueshift is larger for the GaAs
particle. This is a surprising result given the much larger radius of the GaAs
particle and the inverse relationship between the nonlocal blueshift andR [see
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Figure 4.5: (a) The extinction spectra for an n-doped GaAs particle
with Nd = 1018 cm−3, R = 40 nm and εD = 1. (b) The extinction
spectra for an intrinsic InSb particle at 300 K with R = 200 nm and
εD = 1. The large peaks are the dipole LSP (for both the LRA and the
HDM), and the small peaks are confined bulk plasmons (only for the
HDM).

Eq. (3.45a)]. Also the confined bulk plasmon resonances above the LSP peak
are clearly visible in Fig. 4.5a, while a semi-logarithmic plot had to be used to
reveal them in metals [see Fig. 3.8].

The primary explanation for the larger nonlocal blueshift in GaAs is the
lower charge carrier density. According to Eq. (3.45a), the blueshift in the
HDM is proportional to β which in turn depends on n1/3 [see Eq. (4.12)]. At
the same time, the plasma frequency is according to Eq. (4.11) proportional
to n1/2. This means that although the absolute blueshift ∆ω will depend on
n1/3, the relative blueshift defined as ∆ω/ωp will be proportional to n−1/6.
Another reason for the increased blueshift in GaAs is the effective mass. From
Eqs. (4.11) and (4.12) one finds that ∆ω/ωp is proportional to m∗−1/2. The
smaller electron effective mass typically found in semiconductors therefore
also contributes to the relative blueshift.

The strong nonlocal effects are also found in other types of semiconductors.
In Fig. 4.5b are the extinction spectra shown for an intrinsic InSb particle with
thermally excited charge carriers. As mentioned before, only the electrons
are included in the calculation. The temperature is set to 300 K, and despite
a radius of 200 nm, the blueshift of the LSP peak is even more pronounced
than for the GaAs particle. This is caused by a smaller effective mass in InSb
(see Table 4.1) as well as a different expression for β [see Eq. (4.13)]. The bulk
plasmon peaks are also clearer which is a result of a higher mobility of the
electrons in InSb compared to GaAs.
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Figure 4.6: The relative blueshift of the LSP resonance for n-doped
GaAs, intrinsic InSb and silver. The x’s at the end of the lines mark the
size where the total number of free charge carriers in the particle is 50
(which was the chosen lower limit). This point occurs for silver at a
radius smaller than 1 nm.

To investigate the blueshift in semiconductors further, the relative value
∆ω/ωp is plotted as a function of radius in Fig. 4.6 for different materials. The
blue lines show the blueshift for GaAs particles with two different doping
concentrations. The relative blueshift increases for smaller particles, which is
expected from the 1/R dependence in Eq. (3.45a). We also see that for par-
ticles of equal size, the blueshift is larger for lower doping. The largest rel-
ative blueshifts in the figure are obtained by the intrinsic InSb particles, and
especially by the particles at 200 K. However, if one wishes to measure the
blueshift experimentally, the amplitude also play a role. And while lower
temperature in intrinsic semiconductors and lower dopant concentration in
doped semiconductors give stronger blueshift, the amplitude will also be re-
duced.

Also shown in the figure with a black line is the blueshift in silver parti-
cles. This calculation uses the same parameters as Fig. 3.9b in previous chap-
ter. Here we clearly see how the relative blueshift is much smaller for silver
and occurs for very small particles. Keep in mind, though, that the absolute
blueshift is still larger in silver particles.

The discovery that nonlocal blueshifts occur in larger particles for semicon-
ductors than for metals can be used specifically in experimental investigations
of nonlocal effects. Larger particles will simplify the fabrication process, and
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Figure 4.7: The spectral position for the dipole LSP resonance in n-
doped ZnO nanoparticles as a function of radius. The experimen-
tal data is from Schimpf et al. [178]. The solid lines use the electron
density n = 1.4 × 1020 cm−3 from [178], while the dashed lines use
n = 0.85× 1020 cm−3.

a more pronounced blueshift will give clearer measurements.
The large amount of experimental data available from the literature allows

us to compare the predictions of the HDM with actual measurements of semi-
conductor nanoparticles. One set of data relavant for our discussions here was
published by Schimpf et al. [178] who measured the absorbance of doped zinc
oxide (ZnO) particles with radii in the range 1.75 to 6 nm. The ZnO particles
was photodoped, a process whereby UV radiation creates charge carriers in
an otherwise intrinsic semiconductor.

In Fig. 4.7 is the measured peak position of the dipole LSP shown as a func-
tion of radius, and we see a clear blueshift for smaller particles. Also shown
in the figure is the peak position as found with the LRA and the HDM (solid
red and blue line, respectively). These curves where found using the data for
ZnO in Table 4.1 together with an electron density of n = 1.4× 1020 cm−3 that
Schimpf et al. obtained experimentally. From Eqs. (4.10)-(4.12) we then obtain
ωp = 1.26 × 1015 s−1, β = 5.15 × 105 m/s and γ = 3.20 × 1014 s−1, and with
εD = 2.25 for toluene, we find the absorption cross section with Eq. (3.44).
We see in the figure that the HDM follows the same trend as the experimen-
tal results, while the LRA does not show any size-dependence (as expected).
We also see that the experimental results indicate that the electron density
actually is lower than the measured value, since the LSP resonance should
approach the LRA value for large radii. Therefore it is also worth while to
calculate the peak position for a lower value of n. If we choose the value
n = 0.85 × 1020 cm−3, we instead obtain the dashed curves in the figure, and
we now see that the HDM not only follow the same trend, but also agrees
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Figure 4.8: (a) The peak position as a function of doping for an GaAs
particle with R = 40 nm and εD = 1. (b) The peak position as a
function of temperature for an intrinsic InSb particle withR = 200 nm
and εD = 1.

quantitatively with the experimental results.
Schimpf et al. explain the blueshift as a quantum size effect and model

the discrete levels with Lorentz oscillators. The quantum confinement gives
rise to higher energy of the levels, and this produces a blueshift of the LSP
which matches the experimental values qualitatively. In this section it has
been shown that the blueshift also can be explained as a nonlocal effect of the
free electron plasma, a mechanism that is expected to be present. It should be
mentioned, however, that the number of free charge carriers in the smallest
particles is less than 10, which makes the application of a plasma model ques-
tionable. The nature for the blueshift observed by Schimpf et al. is therefore
still open for explanations.

4.6 Tunable plasmonics
One the biggest advantages of using semiconductors in plasmonics instead of
metals is the possibility of tuning the optical response, either statically through
doping or dynamically through temperature or external energy sources. In
this section we will consider the tunability of plasmons in semiconductors
when nonlocal effects are accounted for.

The most obvious mean for altering the density of charge carriers is doping.
Tuning of the plasmonic properties through doping has already been inves-
tigated by countless articles (see section 4.3 for a few references) and allows
for charge carrier densities between 1016 and 1021 cm−3 [114]. Analysing the
effect of doping is straight forward as the impurity concentration can be used
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Figure 4.9: Extinction spectra for a 200 nm particle of intrinsic InSb
at different temperatures. The solid lines are for the HDM, and the
dashed lines are for the LRA.

to find ωp and β directly from Eqs. (4.11) and (4.12). This is done for a 40 nm n-
doped GaAs particle in Fig. 4.8a, where the LSP peak is shown as a function of
doping level for the LRA and the HDM. We see that the resonance frequency
goes up with doping, as expected, and this is the case for both models.

Another method for tuning the LSP resonance is by controlling the temper-
ature of intrinsic semiconductors. Especially a narrow band gap material like
InSb with a high charge carrier density is suitable for temperature controlled
plasmonics as already shown in experiments [117, 118]. The charge carrier
densities depend on temperature as given by Eq. (4.8), but if high tempera-
tures are considered, the Boltzmann distribution may not accurately describe
the electron distribution, and ne has to be found numerically. The temperature
will also affect β through Eq. (4.13) and as well as other material parameters
(see Table 4.1). Taking this into account, the temperature dependence of the
LSP frequency in an InSb particle with R = 200 nm is shown in Fig. 4.8b. We
here see that the resonance frequency is increasing with temperature as a re-
sult of an larger electron density. In Fig. 4.9 are the extinction cross sections for
the same InSb particle shown for four selected temperatures. Here we see that
both the peak position and amplitude depend on temperature. The amplitude
will naturally be of importance if the plasmon is to measured experimentally.

It is clear that the ability to control the plasmonic properties in semiconduc-
tors is a feature with many possibilities. But as seen in Figs. 4.6 and 4.8b,
nonlocal effects are expected to play a large role for semiconductor particles,
even for sizes well above 100 nm. This means that an accurate prediction of
the plasmonic properties of semiconductors requires inclusion of nonlocal re-
sponse, for example with the HDM as was done in this chapter.
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5 Two-fluid hydrodynamic model

In previous chapter we analysed the properties of free charge carriers in semi-
conductors with the HDM. Because the model was developed for a general
plasma of charged particles, it was possible to transfer many of the results
from metals directly to semiconductors. In doing so, however, we also ne-
glected the possibility that several different kinds charge carriers may be pres-
ent in semiconductors, such as electrons and heavy and light holes. In this
chapter, we will present an extended version of the HDM that includes two
plasmas of free charge carriers, and we will see that new nonlocal phenom-
ena appear that are absent in the traditional HDM. We will call the model the
two-fluid model to distinguish it from the typical single-fluid HDM.

There are several cases where the inclusion of only one kind of charge car-
rier is expected to be a good approximation. For n-doped semiconductors,
the density of holes will typically be much smaller than the electron density,
as is seen from the general relation nh = n2

int/ne where nint is the charge
carrier density in the intrinsic semiconductor. For example, if we have ne =
1018 cm−3, which can be obtained with modest doping, and nint = 1015 cm−3,
we get nh = 1012 cm−3, and the semiconductor will effectively only contain
electrons as free charge carriers.

Even if the densities of electrons and holes are the same (as in intrinsic semi-
conductors), the smaller effective mass of electrons compared to holes means
that electrons will dominate the optical properties, and this justifies the appli-
cation of the HDM to intrinsic InSb in previous chapter. However, it is pos-
sible that this treatment has left out interesting details, and therefore we will
consider InSb again in this chapter, now including both electrons and holes.

Other intrinsic materials than InSb may also be interesting two-fluid sys-
tems. Although the intrinsic charge carrier densities will be small for semi-
conductors with large band gaps, external energy sources can be used to excite
electrons to the conduction band creating levels of ne and nh that are signifi-
cant. The external source may be a laser pulse as investigated experimentally
in Ref. [197], and we will also consider this scenario here.

Another type of material that may host different kinds of charge carriers is
p-doped semiconductors with light and heavy holes, and we will also anal-
yse this situation with the two-fluid model. Although we will not consider it
here, yet another kind of material with two different types of charge carriers
is transition metals with s and d electrons of different effective masses [198].

In the first part of this chapter, the theoretical foundation of the two-fluid
model will be presented. We will see how the model predicts the existence
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of two longitudinal waves which can be identified as optical and acoustic, re-
spectively. This is different from the single-fluid HDM which only predicts
an optical longitudinal wave. To analyse the two-fluid model for spherical
semiconductor particles, an extended version of the Mie theory is developed.
From this we will be able to find the extinction spectra for two-fluid systems,
and we will see how these contain new plasmonic resonances. The results
presented in this chapter are related to Publication C.

Apart from the addition of an extra hydrodynamic fluid, the modeling of
semiconductors is the same here as in previous chapter. This mean that we
will neglect interband transitions, excitons and phonons (see section 4.2). We
will also limit ourselves to particles large enough to neglect quantum size
effects and only consider charge carrier numbers high enough for a plasma
model to be valid (as in last chapter we will choose the lower limit of 50 free
charge carriers per semiconductor particle).

5.1 The hydrodynamic model for two plasmas
The hydrodynamic equations
At the heart of the two-fluid model is the idea that each charge carrier is de-
scribed by a hydrodynamic equation of motion similar to the one in Eq. (3.15b).
Additionally, the wave equation from Maxwell’s Equations must also have an
extra current density added. If we name the two charge carriers a and b, the
equations of the two-fluid model will be

β2
a

ω2 + iγaω
∇ (∇ · Ja) + Ja =

iωε0ω
2
a

ω2 + iγaω
E, (5.1a)

β2
b

ω2 + iγbω
∇ (∇ · Jb) + Jb =

iωε0ω
2
b

ω2 + iγbω
E, (5.1b)

−∇×∇×E +
ω2

c2
ε∞E = −iµ0ω (Ja + Jb) , (5.1c)

where ε∞ is the background dielectric function (using the notation εb would
be confusing in equations with charge carrier b). Here we see that both charge
carriers have a plasma frequency ωi, a damping constant γi and a nonlocal pa-
rameter βi. Although we only consider two different kinds of charge carriers
here, we see that the model potentially could be extended to n types of charge
carriers.

Similar to what was done in chapter 3 for the HDM, we can obtain expres-
sions for the transverse and longitudinal dielectric functions by considering
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the equations in the reciprocal space. Performing the spatial Fourier trans-
form on Eqs. (5.1) gives us

− β2
a

ω2 + iγaω
k (k · Ja) + Ja =

iωε0ω
2
a

ω2 + iγaω
E, (5.2a)

− β2
b

ω2 + iγbω
k (k · Jb) + Jb =

iωε0ω
2
b

ω2 + iγbω
E, (5.2b)

k× k×E +
ω2

c2
ε∞E = −iµ0ω (Ja + Jb) , (5.2c)

where we have used ∇ → ik as before. Using the definitions of transverse
and longitudinal fields in section 2.4, we can obtain relations between JT and
ET and between JL and EL. These relations corresponds to expressions for
the conductivities σT and σL, and using Eq. (2.16) we obtain the dielectric
functions

εT(ω) = ε∞ −
ω2
a

ω2 + iγaω
− ω2

b

ω2 + iγbω
, (5.3)

εL(k, ω) = ε∞ −
ω2
a

ω2 + iγaω − β2
ak

2
− ω2

b

ω2 + iγbω − β2
bk

2
. (5.4)

We here see that the transverse dielectric function in Eq. (5.3) is local, i.e. with-
out k-dependence, which also is the case for εT in the HDM. Conversely, the
longitudinal dielectric function depends on k, which is also similar to the
HDM. Further resemblance to the HDM is seen if we consider the scenario
where βa = βb and γa = γb. Then the two last terms in Eqs. (5.3) and (5.4)
can be combined to one if we also introduce an effective plasma frequency
ω2

eff = ω2
a + ω2

b . With this, equations (5.3) and (5.4) become identical to the
expressions for εT and εL in the HDM given by Eqs. (3.25) and (3.26), respec-
tively. In other words, the two-fluid model reduces to the single-fluid HDM
when both the β’s and γ’s are identical.

Parameters in the two-fluid model
Besides being intuitive, the idea of extending the HDM to two plasmas can
also be supported by a two-band Lindhard model similar to what was done
in section 3.2. In Appendix A of Publication C it is shown how the assump-
tion of non-interacting particles in two perfectly parabolic and isotropic bands
will lead us to an expression for εL that can be compared to Eq. (5.4). In this
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derivation, the plasma frequencies and damping constants are found to be

ω2
i =

e2ni
ε0m∗i

, (5.5)

γi =
e

m∗i,condµi
, (5.6)

where i = a, b. The nonlocal parameter will depend on the nature of the free
charge carriers. For intrinsic semiconductors we will consider electrons ex-
cited across the band gap with thermal energy or an external energy source
like a laser pulse. The third scenario we will consider is p-doped materials
with light and heavy holes. In Appendix A of Publication C, the nonlocal
parameters in these three cases are found to be

β2
i =

3kBT

m∗i
, (Thermally excited) (5.7)

β2
i =

3

5

~2k2
Fi

m∗i
2 . (Laser excited or p-doped) (5.8)

Equation (5.7) assumes that the Boltzmann distribution can be used as an ap-
proximation to the Fermi-Dirac distribution, which is reasonable at low tem-
peratures. To obtain the carrier densities for intrinsic semiconductors, the ex-
pression in Eq. (4.8) from previous chapter can be used.

Equation (5.8) for laser excited charge carriers assumes that quasi-equilibria
are formed in the two bands such that the step function can be used as particle
distribution. The Fermi wavenumbers kFi therefore refer to the Fermi levels
formed in each band. The particle densities can be found from the energy
density in the laser pulse upulse together with Eq. (B6) in Appendix B of Pub-
lication C or simply by ne = nh ≈ upulse/Eg . For both thermally excited and
laser excited charge carriers, the holes are treated as a single plasma, although
they actually are composed of heavy and light holes. To do this, we will use
the equations for the density-of-states and conductivity effective masses of
holes in Eqs. (4.3) from previous chapter.

For p-doped semiconductors we will assume complete ionization, which
means that the hole density is equal to the acceptor concentration, i.e. Na =
nlh + nhh. This allows us to find kFlh and kFhh with Eq. (B2) in Appendix B
of Publication C, which in turn gives us the charge carrier densities through
k3
Fi = 3π2ni.
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5.2 Transverse and longitudinal waves
To obtain results for the two-fluid model in finite systems, it will be an ad-
vantage to put Eqs. (5.1) in the form of vector wave equations for the trans-
verse and longitudinal fields, respectively. This was also done for the HDM
in section 3.3, and the motivation is that general solutions to the vector wave
equations are known for several geometries, including the spherical.

Vector wave equations
The transverse vector wave equation can be obtained directly from Eqs. (5.1)
by using the fact that∇ ·ET = 0,∇ · JT

i = 0 and∇×∇×ET = −∇2ET. This
gives us

∇2ET + k2
TE

T = 0, (5.9)

where the transverse wavenumber is given by

k2
T =

ω2

c2

(
ε∞ −

ω2
a

ω2 + iγaω
− ω2

b

ω2 + iγbω

)
. (5.10)

This shows that the two-fluid model predicts propagating transverse waves
with wavenumber kT =

√
εTω/c where εT is given by Eq. (5.3).

The wave equation for the longitudinal component is less straightforward
to find because of the presence of the divergence of the current densities in
Eqs. (5.1a) and (5.1b). We will here use a procedure for obtaining the longi-
tudinal wave equation that relies on finding homogeneous equations for the
current densities. The first step is to introduce J1 and J2 which are hybridized
versions of the current densities Ja and Jb. They are connected with the fol-
lowing linear relations

Jza = az1J
z
1 + az2J

z
2, (5.11a)

Jzb = bz1J
z
1 + bz2J

z
2, (5.11b)

where z = L,T. Inserting these expressions into the hydrodynamic equations
(5.1) does not change anything on its own, but if we furthermore require that
J1 and J2 are independent, we obtain homogeneous equations for both the
transverse and longitudinal current densities. This is shown in Publication C
where it is found that (

∇2 + k2
L,j

)
∇ · JL

j = 0, (5.12)

where j = 1, 2. The wavenumbers kL,j are found to be

k2
L,12

=
1

2

(
k2
a + k2

b ±
√

(k2
a − k2

b )
2

+
4ω2

aω
2
b

β2
aβ

2
b ε

2∞

)
, (5.13)
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where

k2
i =

(
ω(ω + iγi)−

ω2
i

ε∞

)
1

β2
i

i = a, b. (5.14)

To obtain the final state of the longitudinal vector wave equation, we will
apply the divergence to Eq. (5.1c) which gives us

ω2

c2
ε∞∇ ·EL = −iµ0ω∇ ·

[(
aL

1 + bL1
)
JL

1 +
(
aL

2 + bL2
)
JL

2

]
, (5.15)

where the linear relations for JL
a and JL

b have been inserted. Lets us now di-
vide the E-field into E1 and E2 which will depend on J1 and J2, respectively.
This will give us

ω2

c2
ε∞∇ ·EL

j = −iµ0ω
(
aL
j + bLj

)
∇ · JL

j , (5.16)

which shows that ∇ · EL
j can take the place of ∇ · JL

j in Eq. (5.12). If we
additionally make the following observation

(
∇2 + k2

L,j

)
∇ ·EL

j = ∇ ·
(
∇2EL

j + k2
L,jE

L
j

)
= 0, (5.17)

we see that because the divergence of a longitudinal field in general is non-
zero, the equation is fulfilled only if

∇2EL
j + k2

L,jE
L
j = 0. (5.18)

This is the longitudinal vector wave equation, and it shows that the model
predicts propagating longitudinal waves in the same way the HDM did. But
differently from the HDM, the two-fluid model predicts the existence of two
longitudinal waves with wave numbers kL,1 and kL,2, respectively.

Dispersion relations
To analyse the two different longitudinal waves further, the dispersion rela-
tions in Eq. (5.13) are plotted in Fig. 5.1a. The relative parameters chosen for
this figure are ωb/ωa = 2, βb/βa = 4, ε∞ = 1 and γa = γb = 0.01ωa, and
we see that the two solutions for kL,j have very different appearances. The
dispersion for kL,1 follows nearly a straight line, while kL,2 primarily is real
above the dashed, black line given by ωeff/(ωa

√
ε∞) and imaginary below. Be-

cause the frequency is non-zero for kL,2 ≈ 0, this mode will be able to couple
to electromagnetic radiation where the momentum is close to zero, and we
will therefore call it the optical mode. Analogously we will call kL,1 the acous-
tic mode, and light cannot couple to this unless some method of momentum
matching is used. The dispersion relations are also shown in Fig. 5.1b with
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Figure 5.1: The dispersion relations of the optical mode (blue lines)
and the acoustic mode (red lines). The full and dashed lines show the
real and imaginary components, respectively, of kL,j . The parameters
are ωb/ωa = 2, βb/βa = 4, and ε∞ = 1. The damping constants are
(a) γa = γb = 0.01ωa and (b) γa = γb = 0.5ωa. The horizontal dashed,
black line is ωeff/(ωa

√
ε∞).

γa = γb = 0.5ωa, and although the extra loss alters the curves a bit, the overall
shapes remain the same.

The formation of an optical and an acoustic branch can be understood as the
result of the hybridization of the two plasmas. This has been analysed before
with various microscopic models [198–204], and in Ref. [202] a two-fluid hy-
drodynamic model was also briefly considered. The authors also arrived at
the dispersion relation in Eq. (5.13), but they restricted themselves to the in-
finite medium. In the next sections, we will consider the two-fluid model of
finite structures as well.

It should be mentioned that the single-fluid HDM only predicts an optical
mode given by Eq. (3.22). From this equation we see that kL primarily will
be imaginary for ω < ωp/

√
ε∞ corresponding to an attenuated wave, and

because of this, the HDM does not allow bulk plasmons to exist in this low-
frequency region [108]. Similarly, the optical mode in the two-fluid model
will have imaginary wave number in the region ω < ωeff/

√
ε∞, which can

be seen from Eq. (5.13). The acoustic mode, however, will be real also in the
low-frequency region and therefore allow bulk plasmons to exist there.

5.3 Two-fluid model and spherical particles
In this section, we will present the solutions to the vector wave equation in
spherical geometry for the two-fluid model. Although the problem is different
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from the one encountered in chapters 3 and 4 due the presence of two kinds
of charge carriers, we will still be able to reuse many of the previous results.

In section 3.5 we presented the solutions to the wave equation in spherical
geometry, the L, M and N functions, and they will also be the solutions for
Eqs. (5.9) and (5.18). In fact, for the region outside the particle, which we
assume to be without spatial dispersion, the expressions for the fields will be
identical to the ones in section 3.5. As in that section, we will here consider
an incoming plane wave Ei moving in the z-direction and polarized in the
x-direction. The field will scatter on a spherical particle at the center of the
coordinate system resulting in a reflected field Er. As in section 3.5, these
fields have the expressions

Ei(r, t) = E0e
−iωt∑

l=1

il
2l + 1

l(l + 1)

(
m

(1)
o1l(kD, r)− in(1)

e1l(kD, r)
)
, (5.19)

Er(r, t) = E0e
−iωt∑

l=1

il
2l + 1

l(l + 1)

(
arlm

(3)
o1l(kD, r)− ibrln(3)

e1l(kD, r)
)
, (5.20)

where kD =
√
εDω/c as before. The novelty compared to the HDM is found

inside the particle where two longitudinal waves are present instead of one.
The field transmitted into the particle is therefore given by

Et(r, t) = E0e
−iωt∑

l=1

il
2l + 1

l(l + 1)

(
atlm

(1)
o1l(kT, r) (5.21)

−ibtln(1)
e1l(kT, r) + ct1ll

(1)
e1l(kL,1, r) + ct2ll

(1)
e1l(kL,2, r)

)
,

where kT is given by Eq. (5.10), and kL,j are given by Eq. (5.13).
In section 3.5 we saw how the HDM required an additional boundary con-

dition (ABC) because of the presence of a longitudinal field. Now we have
two longitudinal waves with different wavenumber, and we therefore need
two ABCs to fully determine the fields. As for the HDM, it seems reasonable
to require that charge cannot escape the surface of the material (this also im-
plies that spill-out is ignored). The ABC ensuring this is J⊥a + J⊥b = 0 where
the total current density perpendicular to the surface is zero. The choice for
the other ABC is less straightforward, but for the calculations here we will
use J⊥a − J⊥b = 0, which together with the first ABC results in J⊥a = 0 and
J⊥b = 0. This choice also means that the charge carriers cannot recombine at
the interface (as might be expected by electrons and holes), and that particles
of one kind cannot scatter into the other kind (as could be expected by light
and heavy holes). In a model that includes these surface effects, the choice of
boundary conditions will be different.
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Applying the chosen ABCs together with the traditional boundary condi-
tions ∆E‖ = 0 and ∆B‖ = 0 to the fields in Eqs. (5.19)-(5.21) at the r = R
boundary results in a system of linear equations which are given in Appendix
D of Publication C. From this, the following Mie coefficients can be derived

arl =
−jl(xD)[xTjl(xT)]′ + jl(xT)[xDjl(xD)]′

h
(1)
l (xD)[xTjl(xT)]′ − jl(xT)[xDh

(1)
l (xD)]′

, (5.22a)

brl =
−εDjl(xD) (∆l + [xTjl(xT)]′) + εTjl(xT)[xDjl(xD)]′

εDh
(1)
l (xD) (∆l + [xTjl(xT)]′)− εTjl(xT)[xDh

(1)
l (xD)]′

, (5.22b)

where xD = RkD and xT = RkT. The differentiation (denoted with the prime)
is with respect to the argument. The expressions for arl and brl are identical to
the ones found in the HDM in section 3.5, but the parameter ∆l is now given
by

∆l =
jl(xT)l(l + 1)

A

(
jl(x1)C2

x1j′l(x1)
− jl(x2)C1

x2j′l(x2)

)
, (5.22c)

where xj = RkL,j , and

Cj =
ω2
aε∞k

2
L,j

β2
a

(
1 + 1

αL
j

) −
ω2
bε∞k

2
L,j

β2
b

(
1 + αL

j

) , (5.22d)

A =

(
ω2 + iγaω

) (
ω2 + iγbω

)
(αL

1 − αL
2 )ε2
∞

β2
aβ

2
b (1 + αL

1 )(1 + αL
2 )

, (5.22e)

αL
j =

bLj
aL
j

=
β2
aε∞
ω2
a

(
k2
a − k2

L,j

)
, (5.22f)

with ka and kb defined in Eq. (5.14). Note that the expansion coefficients aL
j

and bLj should not be confused with the Mie coefficients.
As for the HDM, we see that the arl coefficients are identical to the classical,

local solution, while the brl coefficients differ from the local solution by the
inclusion of ∆l. Like before, the local result can be obtained by setting ∆l = 0.

5.4 Extinction spectra for two-fluid systems
In this section, the extinction spectra of spherical semiconductor particles with
two kinds of charge carriers will be presented. With the Mie coefficients found
in previous section, we can straight away find σext with Eq. (3.44b) from chap-
ter 3. We will first consider an idealized material that will help us understand
the features of the two-fluid model, and thereafter the spectra of more realistic
semiconductors will be analysed.
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Figure 5.2: (a) The extinction spectra of a 10 nm particle of semicon-
ductor A (see parameters in main text) in vacuum (εD = 1) as found
with the two-fluid model (solid line) and the LRA (dashed line). The
spectra have been normalized with σgeom = πR2, and the frequency
has been normalized with ω2

eff = ω2
a + ω2

b . (b) The charge distribution
in the xz-plane at selected frequencies. The damping constants have
been set to γa = γb = 1.0× 1011 s−1 to make the features more clear.

Ideal two-fluid system
We will here study an ideal material, which we will call ‘semiconductor A’,
with the parameters ωa = 3.6 × 1014 s−1, ωb = 1.8 × 1014 s−1, γa = γb =
1.0 × 1012 s−1, βa = 4.3 × 105 m/s, βb = 1.4 × 105 m/s and ε∞ = 5. We
will consider a spherical particle with radius R = 10 nm and a surrounding
medium with εD = 1. Using Eqs. (3.42) and Eq. (3.44b) we find the extinction
spectrum shown with the solid line in Fig. 5.2a. The spectrum is shown in a
semi-logarithmic plot, and we see that a large number of peaks are present.
The highest peak (marked with a ‘Y’) is the dipole LSP resonance which is
also present in the LRA (shown with a dashed line). The solution in the LRA
was found by setting ∆l = 0 in Eq. (5.22b). We notice that the nonlocal two-
fluid model predicts a blueshifted LSP peak similar to what we saw for the
single-fluid HDM in chapters 3 and 4.

The other peaks, however, are absent in the LRA and require further inves-
tigation. The nature of them can be understood by finding poles of the brl Mie
coefficients in Eq. (5.22b), and these occur whenever the denominator of ∆l is
zero. In Publication C it is shown how these poles can be found by using the
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fact that k2
a, k

2
b � 2ωaωb/βaβbε∞ at high frequencies, which gives the approx-

imate location of the resonances

ω2 =

{
π2n2β2

a

R2 +
ω2

a

ε∞
(j = 1)

π2n2β2
b

R2 +
ω2

b

ε∞
(j = 2)

, (5.23)

where n = 1, 2, 3, . . .. We here see that the peak positions are determined by
properties of either charge carrier a or b. This shows that although the acoustic
and optical branches are hybridizations of the two plasmas, the charge carriers
will at high frequencies decouple again and behave as independent plasmas.
In Fig. 5.2a are the peaks labeled with the numbers [j, n], and we see that the
large peaks (j = 1) above the LSP resonance are associated with charge carrier
a, while the small peaks (j = 2) are associated with charge carrier b.

To gain further understanding of the peaks, the charge distributions for se-
lected peaks are plotted in Fig. 5.2b. The contours show the total charge den-
sity in the xz-plane when the wave is propagating in the z-direction, and the
electric field is polarized in the x-direction. We here see that the first peak of
the spectrum (the one marked with ‘X’ in Fig. 5.2a) has the characteristic of
a surface plasmon with a high density of charge near the surface. The next
peak in the spectrum (labeled [2, 2]) is instead a confined bulk plasmon with
the charge density closer to the center. The charge distribution is also shown
for the [1, 2] resonance, and we see that it is almost identical to the distribution
of the [2, 2] mode. The [1, 2] and [2, 2] modes have the same order, and they
are according to Eq. (5.23) related to charge carriers a and b, respectively . The
contours are also shown for the peaks labeled [2, 5] and [1, 3], which have the
patterns of higher order modes.

Finally, the charge distribution is also shown for the dipole LSP (labeled
with ‘Y’), and even though it has a high density of charge near the surface,
as expected, it also displays the pattern of a confined bulk plasmon. The ex-
planation is that the LSP hybridize with the confined bulk plasmon labeled
[2, 4], resulting in a resonance with features from both types of plasmons. This
will not occur in the single-fluid HDM, where the bulk plasmons are clearly
separated from the LSP peak (see e.g. Fig. 3.8).

In Fig. 5.2a we also see another phenomena that would not occur in the
HDM, namely plasmon resonances in the frequency region below the dipole
LSP resonance. For the single-fluid HDM, the optical branch will in this region
be imaginary and therefore attenuated. The two-fluid model, on the other
hand, also has an acoustic branch, and this permits peaks to exist in the low-
frequency region.

To convince ourselves that the peaks below the LSP indeed are caused by
the acoustic branch kL,1, we can plot the extinction spectrum where only one
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Figure 5.3: (a) The extinction spectrum for semiconductor A as found
with the two-fluid model (solid, black line). Also shown are the spec-
tra when only the acoustic longitudinal waves are included (dashed,
magenta line) and when only the optical longitudinal waves are in-
cluded (dash-dotted, green line). (b) The extinction spectra of semi-
conductor A in the two-fluid model (solid, black line), in the HDM
with only charge carrier a (dashed, magenta line) and in the HDM
with only charge carrier b (dash-dotted, green line).

of the longitudinal waves is included. Although this is a bit artificial when
the Mie coefficients were derived by assuming that both longitudinal waves
were present, it does give some understanding of the spectrum. In practice
it is done by setting either C1 or C2 equal to zero in Eq. (5.22d). In Fig. 5.3a
the extinction spectra are shown for C1 = 0 where only the acoustic branch is
included (dashed, magenta line) and for C2 = 0 where only the optical branch
is included (dash-dotted, green line). Here we see that the acoustic branch
indeed accounts for the resonances below the LSP peak, and we will therefore
call these peaks for acoustic peaks. We also see that the LSP resonance (largest
peak) is present in both spectra, which reflects the fact that this resonance is
not associated with poles of ∆l, but rather poles of the entire brl coefficient.

Of particular interest is the first acoustic peak (labeled with ‘X’). Being a sur-
face plasmon, this is different from the other acoustic peaks in the spectrum,
and we will analyse this peak further in section 5.5.

Comparison to the HDM
The two-fluid model is related to the single-fluid HDM, and we will here anal-
yse the connection between the models. The HDM can be used to find the
extinction spectrum of semiconductor A if only one of the charge carriers is
included. This is done by setting ωp = ωi, β = βi and γ = γi, and then using
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Figure 5.4: The extinction spectrum for semiconductor A in the two-
fluid model with different values of βb: βb = 0.33βa, βb = 0.9βa and
βb = 0.9999βa. The spectrum in the HDM with β = βa, ω2

p = ω2
a + ω2

b

and γ = γa = γb is shown with a dashed, green line.

Eqs. (3.42) from chapter 3 to find the Mie coefficients.
Figure 5.3b shows the extinction spectrum found with the two-fluid model

together with the spectra found with the HDM where either the a-fluid or the
b-fluid is included. The dashed, magenta line shows spectra when the a-fluid
is included, and we see that the bulk peaks predicted by the HDM correspond
well with the bulk plasmons in two-fluid model that are related to charge
carrier a (j = 1). This is explained by the decoupling of the charge carriers
at high frequencies described by Eq. (5.23), which means that the single-fluid
HDM is able to predict the resonances in the high-frequency region. Similarly,
if we include the b-fluid in the HDM (dash-dotted, green line), we find that
the bulk plasmon peaks matches well with the bulk plasmons in the two-fluid
model related to charge carrier b.

In Fig. 5.3b the dipole LSP resonance in the two-fluid model is also repro-
duced reasonably well by the HDM with the a-fluid. But the first acoustic
peak is not reproduced by any of the single-fluid spectra, and this emphasizes
the uniqueness of this resonance.

It was mentioned in section 5.1 that the two-fluid model reduces to the HDM
when both the β’s and the γ’s are the same. This is shown in Fig. 5.4 where the
extinction spectrum in the two-fluid model is plotted for increasingly similar
β’s. Also shown in the figure with a dashed, green line is the spectrum in
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Figure 5.5: (a) Spectra for an InSb particle at 300 K with R = 100 nm
(red line) and at 400 K with R = 60 nm (blue line). (b) Spectra for a
GaAs particle with upulse = 105 Jm−3 and R = 40 nm (red line) and
upulse = 106 Jm−3 and R = 15 nm (blue line).

HDM with the parameters β = βa, ω2
p = ω2

a + ω2
b and γ = γa = γb, and we

see that this line coincides almost completely with the βb = 0.9999βa case. It
should be mentioned that the LRA where βa = βb = 0 is a special case of
identical β’s, and this shows that none of the features of the two-fluid model
will be present in the local approximation.

Another situation where the two-fluid system can be described by the single-
fluid HDM is when one of the plasma frequencies is significantly smaller than
the other. This also justifies the use of the HDM for intrinsic semiconduc-
tors in previous chapter, as the plasma frequency for electrons typically will
be larger than that for holes. In Publication C, this argument is supported
by Fig. 6, where it is shown how the spectrum in the single-fluid model with
ωp = ωa is almost identical to the one predicted by the two-fluid model when
ωa � ωb.

Realistic semiconductors
The parameters for semiconductor A were chosen to obtain clear features in
the extinction spectra. Now we will consider more realistic semiconductors
with ωi, βi and γi given by Eqs.(5.5)-(5.8) and the charge carriers originating
from either thermal excitation, laser excitation or doping. While the material
parameters used here are for realistic semiconductors, we will still neglect ex-
citations not captured by the free-electron model such as interband transitions,
excitons and phonons.

The first material we will consider is intrinsic InSb with electrons excited to
the conduction band by thermal energy. The material parameters for InSb at
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300 K are given in Table 4.1 in chapter 4, and using Eqs. (5.5)-(5.7) we obtain
the values ωe = 6.33×1013 s−1, ωh = 1.11×1013 s−1, γe = 1.99×1012 s−1, γh =
6.67 × 1012 s−1, βe = 1.09 × 106 m/s and βh = 1.92 × 105 m/s. As mentioned
in the introduction of this chapter, the validity of a plasma model depends on
the number of electrons Ne and holes Nh in the particle (we chose 50 charge
carriers as the lower limit). We will therefore consider an InSb particle with
radius R = 100 nm, which gives us Ne = Nh = 60. The spectrum for this
particle in vacuum (εD = 1) is shown in Fig. 5.5a with a red line, and we here
recognize largest peak as the dipole LSP resonance, while the following peaks
are confined bulk plasmons of the electron fluid. The bulk plasmon peaks for
the hole fluid are not visible due to the low mobility of holes, but the first
acoustic resonance can be seen as a small peak in the left side of the spectrum.
Also shown in the figure with a blue line is the spectrum for an InSb particle
at 400 K with R = 60 nm, and we see how the increased density of charge
carriers and smaller radius move the peaks to the right.

The next material we will analyse is intrinsic GaAs with electrons excited
to the conduction band by a pulse of laser. If the energy density of the pulse
is upulse = 105 J m−3 and ne = nh ≈ upulse/Eg , we can use Eqs. (5.5), (5.6)
and (5.8) together with data from Table 4.1 to find ωe = 1.48 × 1014 s−1, ωh =
5.13× 1013 s−1, γe = 3.95× 1012 s−1, γh = 1.16× 1013 s−1, βe = 3.31× 105 m/s
and βh = 3.98 × 104 m/s. Considering a particle with R = 40 nm gives us
Ne = Nh = 117 and the spectrum shown in Fig. 5.5b with the red line. We
here see the dipole LSP followed by electron bulk plasmons, while there are
no visible hole bulk plasmons or acoustic peaks. Considering a GaAs particle
with upulse = 106 J m−3 and R = 15 nm, however, reveals the acoustic peaks
as shown with the blue line in Fig. 5.5b.

In Fig. 7 of Publication C is also shown the spectrum of a p-doped GaAs
particle, where light and heavy holes constitute the charge carriers. However,
the low mobility of the holes results in an almost featureless spectrum, and
here we will not consider this particular scenario further.

5.5 The acoustic peak
The real novelty of the two-fluid model compared to the HDM is the presence
of acoustic peaks below the LSP, and especially the first acoustic peak (labeled
‘X’ in Fig. 5.2a) is unique because of its surface plasmon quality. Experimental
observation of this resonance could also be used for verification of the two-
fluid model, and we will therefore use this section to analyse the properties of
the first acoustic peak.

In Fig. 5.6(a) is the spectral position of the first acoustic peak in a GaAs par-
ticle shown as a function of radius. The charge carrier densities were created
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Figure 5.6: (a) The spectral positions of the first acoustic peak and
the dipole LSP peak as functions of radius for a GaAs particle. The
electrons were excited to the conduction band by a laser pulse with
upulse = 106 Jm−3. The vertical dashed line is for R = 15 nm, which
was used for the blue line in Fig. 5.5b. (b) The amplitude of the first
acoustic peak as a function of radius. The number of electrons in the
particle is shown for three particle sizes.

with a laser pulse of upulse = 106 J m−3. We here see that the first acous-
tic peak (red line) blueshifts as the particle size is reduced, a trend that is
also followed by the LSP peak shown in the figure with a blue line. This
size-dependent blueshift of the LSP resonance was also analysed in chapters
3 and 4 using the HDM. Also shown in the figure with dashed, black lines
is the position of LSP peak in the local response approximation as given by
ωLSP,a+b = (ω2

a + ω2
b )1/2/(ε∞ + 2εD)1/2 (including both kinds of charge carri-

ers) and ωLSP,i = ωi/(ε∞ + 2εD)1/2 (including charger carrier a or b).
If the acoustic plasmon is to be measured in experiments, the amplitude

of the peak will play an important role. The amplitude is therefore plotted
in Fig. 5.6(b) as a function of radius, and quite interestingly we see that the
peak reaches a maximum at a finite particle size. To remind ourselves that we
should stay in the regime of a plasma model, the number of electronsNe is also
shown in the figure for three different sizes. The maximum of the amplitude,
however, occurs above the mark for 50 electrons, which was our chosen lower
limit for the model.

When estimating the amplitude of the acoustic peak, it has to be taken into
account that Landau damping will result in attenuation of the resonance (see
section 3.4). In fact, it is expected that Landau damping will be more severe for
the acoustic peak than for the regular LSP, because the almost linear dispersion
of the acoustic branch places it inside the region of single particle excitations
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Figure 5.7: The extinction spectrum of a GaAs particle with upulse =
106 Jm−3 and R = 15 nm, where nonlocal damping has been in-
cluded (red line) or left out (black line).

for the infinite medium [199, 205].
The two-fluid model does not account for Landau damping in its current

state, but as indicated in section 3.4, the GNOR model is able to provide a
reasonable estimate for the Landau damping in certain situations. The GNOR
model is easily implemented for single-fluid systems, where the nonlocal pa-
rameter β simply is replaced by a complex version called η. This suggests that
also the two-fluid model can be modified to account for nonlocal damping by
a similar replacement. Inspired by section 3.4, it is therefore proposed that the
complex nonlocal parameters in the two-fluid model are given by

η2
i = β2

i +Di(γi − iω), (5.24)

where i = a, b, and Di may be found with

Di =
6√
10

v2
Fi

ωi
Ai. (5.25)

As in the case for metals, this leaves us with the difficulty of determining
Ai. We will here make the simple assumption that Aa = Ab = 1, which will
allow us to calculate ηa and ηb straight away. Let us consider the impact of
nonlocal damping on the extinction spectrum for a GaAs particle with charge
carriers excited by a laser pulse with upulse = 106 J m−3 and a radius of R =
15 nm (same setup as for the blue line in Fig. 5.5b). This is shown in Fig. 5.7
where the red and black lines are the spectra predicted by the two-fluid model
with and without nonlocal damping, respectively. We here that the nonlocal
damping results in smearing out of all the electron bulk plasmons. The first
acoustic peak still remains, however, which makes experimental verification
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of this peak look realistic. There is furthermore a chance that the nonlocal
damping has been overestimated here, since new experiments indicate that
size-dependent damping is smaller in semiconductors than in metals [174].

The first acoustic peak analysed in this section can be used to test the validity
of the two-fluid model since it is a resonance that is absent in the HDM (and
the LRA as well). The application of the two-fluid model to InSb and GaAs
particles furthermore indicates that the acoustic peak also will be observable
in realistic semiconductors, even if nonlocal damping is taken into account.
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6 Conclusion and outlook

The classical local response approximation (LRA), where the response of the
free-electron gas only depends on the electric field at the same location, is not
expected to be accurate for structures on the nanometer scale. For these sizes,
a different or augmented theoretical model has to be applied instead, and in
this thesis, the hydrodynamic Drude model (HDM) and its extensions were
investigated for metals and semiconductors.

We have first considered the optical response of metals, where the HDM
provides a nonlocal relation between the electric field and the current density.
We have shown how the model can be related to the quantum mechanical
Lindhard model, and how this can be used to derive the nonlocal parameter
β. The HDM predicts propagating longitudinal waves, and by adding those
to the solution of Maxwell’s Equations in spherical geometry, we obtained the
nonlocal optical response of metal nanoparticles. We saw that the HDM pre-
dicted two phenomena absent in the LRA: A size-dependence of the localized
surface plasmon (LSP) resonance, and the existence of confined bulk plasmons
above the plasma frequency.

For an ensemble of nanoparticles, another secondary mechanism will start
to show: The size-dependence of the LSP resonance combined with a distri-
bution of particle sizes results in an effective broadening of the plasmon peak
in the extinction spectrum. This effect will be necessary to account for when
interpreting experimental spectra. However, it was found that this inhomoge-
neous broadening becomes negligible when other broadening mechanisms are
taken into account. In particular, nonlocal damping as modeled by the gen-
eralized nonlocal optical response (GNOR) model was found to completely
dominate the broadening of the LSP peak.

We also analysed the nonlocal response of semiconductor particles by taking
advantage of the fact that the HDM is derived for a general electron gas. We
considered semiconductors with an intrinsic density of charge carriers as well
as doped materials, and in both cases was an expression for the nonlocal pa-
rameter β derived. From the HDM, we were able to find the extinction spectra
of various semiconductor materials, and in general we found that the relative
size-dependent blueshift of the LSP is much larger than in metals. This prop-
erty can be used directly in experimental research of nonlocal effects since a
larger resonance shift will be easier to detect.

We also derived an extended version of the HDM to account for the fact
that semiconductors may contain several different kinds of charge carriers.
The model included two different hydrodynamic plasmas, and we found that
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these two plasmas would hybridize to form an acoustic and an optical mode.
This is different from the traditional HDM, which only predicts an optical
mode. By accounting for the two longitudinal waves, solutions to Maxwell’s
Equations in spherical symmetry were found, and using those, we were able
to find the extinction spectra of semiconductor particles with two different
plasmas. Here we saw the appearance of new resonances that are absent in
the HDM. These resonance peaks were traced back to the acoustic mode, and
because the peaks are absent in the single-fluid description, they can be used
to experimentally verify the two-fluid model.

The pursuit of new plasmonic materials has led researchers to semiconduc-
tors, which are much more flexible than the traditional metals. Proper de-
scription of these materials on the nanoscale requires improved theoretical
models such as the HDM presented in this thesis, but several problems and
research opportunities still remain. For example, this thesis focused on spher-
ical particles, but other geometries of semiconductors will also be interesting
to analyse in a nonlocal model. In particular, it may advantageous to con-
sider planar systems, because these will be better suited for fabrication for cer-
tain semiconductors. The connection to experiments is important because it is
measurements that eventually will verify the theoretical predictions. The ex-
perimental observation of the various nonlocal phenomena discussed in this
thesis will not only add confidence to the theoretical models but also give us
new knowledge of nonlocal response.

As the sizes of the semiconductor structures are further reduced, new phe-
nomena besides the nonlocal response will start to appear. Especially quan-
tum size effects are expected to play a role for semiconductors on the nanome-
ter scale, as indeed is the case for quantum dots and wells. How this affects
the plasmonic properties and which modeling tools to choose are questions
that require more investigation.

Finally, the idea of collective excitations in the electron gas is not limited
to bulk materials like metals and semiconductors. For example, the molecular
chains known as J-aggregates can also support excitations similar to plasmons,
and the role of nonlocal response for these materials is not yet determined.
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A Longitudinal dielectric function

In this Appendix, we will present a derivation of the longitudinal dielectric
function from Fermi’s Golden rule. A more detailed derivation is found in
[77]. The starting point is the Hamiltonian

H0 = − ~2

2m
∇2 + V (r), (A.1)

which is subject to the perturbation

U(r, t) = U0e
ik·r−iωt + c.c., (A.2)

where ‘c.c.’ indicates the complex conjugate, and U0 = −ieE0/k withE0 being
the amplitude of the electric field. Given the perturbation U(r, t) to the system
H0, the probability that a particle will be excited from a state ψα to a state ψβ
is to linear order given by Fermi’s Golden Rule [206]

Pα→β =
2π

~
|〈ψβ |U0e

ik·r|ψα〉|2δ(Eβ − Eα − ~ω), (A.3)

where the delta function ensures energy conservation. A similar probability
exists for the transition the other way. Combining this with the occupation
number f , which for electrons is the Fermi-Dirac distribution, we can find the
total transition rate between all states

W (k, ω) =
2π

~
2
∑

αβ

|〈ψβ |U0e
ik·r|ψα〉|2δ(Eβ −Eα − ~ω)[f(Eα)− f(Eβ)]. (A.4)

The double sum is over all initial states ψα and final states ψβ . From the tran-
sition rate it is a simple matter to calculate the power dissipation from the
expression P(k, ω) = ~ωW (k, ω). But this can also be found classically with
the integration [49]

P(k, ω) =

∫
E · Jdr = 2σ′(k, ω)

k2|U0|2V
e2

, (A.5)

where V is the integration volume. The current density J is given by Eq. (2.12),
and σ′ is the real part of the conductivity. Furthermore, equation (2.15) pro-
vides the relation between the dielectric function and the conductivity, and we
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find the imaginary part of the dielectric function to be

ε′′L(k, ω) =
2e2π

ε0k2

1

V

∑

αβ

|〈ψβ |eik·r|ψα〉|2δ(Eβ−Eα−~ω)[f(Eα)−f(Eβ)]. (A.6)

Due to the causality of the dielectric function, the real part will be connected
to the imaginary part by the Kramers-Kronig relation, and we find ε′L to be

ε′L(k, ω) = 1 +
2e2

ε0k2

1

V

∑

αβ

|〈ψβ |eik·r|ψα〉|2
Eβ − Eα − ~ω

[f(Eα)− f(Eβ)]. (A.7)

The total dielectric function can be put together using the Dirac-identity

lim
η→0+

1

x− iη = p.v.
1

x
+ iπδ(x), (A.8)

where ‘p.v.’ stands for principle value, and we finally arrive at

εL(k, ω) = 1 +
2e2

ε0k2

1

V

∑

αβ

|〈ψβ |eik·r|ψα〉|2
Eβ − Eα − ~ω − iη [f(Eα)− f(Eβ)], (A.9)

where the limit η → 0+ is assumed.
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B The hydrodynamic equations

In this Appendix, the linearized hydrodynamic equations are derived from
the Boltzmann Equation. Consider an ensemble of free electrons described
by the one-particle distribution function f(r,p, t) which is governed by the
Boltzmann Equation [79]

∂f

∂t
+∇rf · v +∇pf · F = Icoll [f ] . (B.1)

The particle velocity v fulfills the relation p = mv where m is the mass of
the electron, and the force F is in our case caused by an electric field E and
is given by F = −eE (we ignore magnetic forces). The collision operator Icoll

may be very complex, but because we have particle conservation, we obtain a
very simple result when integrating over momentum space

∫
Icoll [f ] dp = 0. (B.2)

Similarly, we will assume that
∫

pIcoll [f ] dp = 0, (B.3)

which is a consequence of momentum conservation in the collisions.
We will derive the hydrodynamic equations through the moments of the dis-

tribution function given by

〈M〉 =

∫
Mfdp, (B.4)

where M is a weight function which may be set to 1, p, p2 etc. depending on
the order of the moment.

If we start with M = 1, which is the zeroth moment, we find

〈1〉 =

∫
fdp ≡ n(r, t), (B.5)

where n(r, t) is the particle density (notice that if we also integrated over r
space, we would obtain the total particle number N ). By taking the time
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derivative of this equation, we can couple it to the Boltzmann Equation

∂n

∂t
=

∫
∂f

∂t
dp =

∫
(Icoll [f ]−∇rf · v −∇pf · F) dp. (B.6)

The first term on the right-hand side disappears according to Eq. (B.2). The
second term can be rewritten as

∇rf · v = ∇r · (fv)− f(∇r · v), (B.7)

where we also have that

∇r · v =
∂2x

∂x∂t
+

∂2y

∂y∂t
+

∂2z

∂z∂t
=

∂

∂t
(1 + 1 + 1) = 0. (B.8)

The third term in Eq. (B.6) describes a flow in p space, and due to particle
conservation, this term will be zero when integrated over momentum space.
The zeroth moment therefore becomes

∂n

∂t
= −

∫
∇r · (fv)dp = −∇r ·

∫
(fv)dp = −∇r · (nu), (B.9)

where u is the average velocity of the particles. We immediately recognize
this as the continuity equation, which relates the change in particle density to
the flow into the region.

Continuing with the first moment where M = p, we find

〈p〉 =

∫
pfdp ≡ mn(r, t)u(r, t), (B.10)

and we see that we implicitly already have used this moment in the derivation
of Eq. (B.9). Taking the time derivative, inserting the Boltzmann Equation and
using Eq. (B.3), we find

m
∂(nu)

∂t
=

∫
p (−∇rf · v −∇pf · F) dp. (B.11)

The first term on the right-hand side is found to be

∫
p(∇rf · v)dp = ∇r ·

∫ 

vxvx vxvy vxvz
vyvx vyvy vyvz
vzvx vzvy vzvz


mfdp = ∇r ·

∫
v ⊗ vmfdp,

(B.12)
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where ∇r· operates row-wise on v ⊗ v. We will now introduce the pressure
tensor P

P =

∫
(v − u)⊗ (v − u)mfdp

=

∫
(v ⊗ v)mfdp−

∫
(v ⊗ u)mfdp

−
∫

(u⊗ v)mfdp +

∫
(u⊗ u)mfdp

=

∫
(v ⊗ v)mfdp− u⊗ unm (B.13)

whereby Eq. (B.12) can be written as
∫

p(∇rf · v)dp = ∇r · P +∇r · (u⊗ unm). (B.14)

The pressure tensor is in fact a second order moment, and it describes the
pressure exerted on the electrons by the electrons themselves through thermal
fluctuations and degeneracy pressure. The second term on the right-hand side
of Eq. (B.11) is found to be

∫
p (∇pf · F) dp =

∫
p (∇p · (fF)) dp = −

∫
fFdp, (B.15)

where ∇p · F = 0 has been used in the first step. Integration by parts was
used in the second step together with the fact that f(pj = ±∞) = 0 for j =
x, y, z. Furthermore, if we neglect magnetic forces, F will be independent of p
and can be taken outside integral which, in turn, simply becomes the zeroth
moment. With this, the first moment becomes

m
∂(nu)

∂t
= −∇r · P−∇r · (u⊗ unm) + F

n

m
. (B.16)

We see from Eq. (B.9) how the zeroth moment n is coupled to the first mo-
ment u. Similarly, the first moment is coupled to the second moment P in
Eq. (B.16), and if we continued to evaluate the second moment, we would see
that it would be connected to the third moment, and so on. We would there-
fore never arrive at a set of self-contained equations, something that is known
as the closure problem. A work-around for this is typically to phenomenologi-
cally choose a value for the highest (and undetermined) moment in the equa-
tions which, in our case, is the pressure tensor P. To make things simple, we
will assume that it is diagonal which is reasonable for nearly homogeneous
gasses. Furthermore, we only include the degeneracy pressure, which has a



92 Appendix B. The hydrodynamic equations

well-known result for a Fermi gas (see e.g. chapter 5 of Ref. [207]). The pres-
sure tensor hereby becomes

P = I · ~
2(3π)2/3

5m
n5/3, (B.17)

where I is the identity matrix. With this choice for the pressure tensor, equa-
tion (B.16) has effectively been decoupled from higher order moments and
together with Eq. (B.9) it fully describes n and u.

Although we have obtained what we set out to find, we will add a final
approximation to the equations. We see that Eq. (B.16) contains a nonlinear
term u⊗u, which complicates the situation slightly. We will therefore consider
the situation where the electric field only perturbs the electron density a small
amount n1 from the equilibrium density n0. At the same time, we will assume
that the average velocity u itself is a small perturbation of the equilibrium
situation. In this approximation we get n ≈ n0 and nu ≈ n0u, while the term
u⊗ u in Eq. (B.16) simply is neglected. For the pressure we find

∇r · P =
~2(3π)2/3

5m
∇r(n0 + n1)5/3

≈ 1

3

~2(3π)2/3

m
n

2/3
0 ∇rn1

=
1

3
v2
Fm∇rn1, (B.18)

where we have used that k3
F = 3π2n for a parabolic band, and vF = ~kF /m is

the Fermi velocity. Equation (B.16) therefore becomes

∂(n0u)

∂t
= −1

3
v2
F∇rn1 + F

n0

m
, (B.19)

which is linear as required.
The continuity equation in the linear approximation becomes

∂n1

∂t
= −∇r · (n0u), (B.20)

and this equation together with Eq. (B.19) constitutes the linearized hydrody-
namic equations. The equations can with some advantage be combined by
taking the time derivative of Eq. (B.19) and inserting Eq. (B.20)

∂2(n0u)

∂t2
=

1

3
v2
F∇r(∇r · (n0u)) +

∂F

∂t

n0

m
. (B.21)
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Finally, we will make the replacements Jf = −enu ≈ −en0u and ρf = −en1

and use that the force is given by F = −eE, whereby we obtain

∂ρf
∂t

= −∇r · Jf , (B.22a)

∂2Jf
∂t2

=
1

3
v2
F∇r(∇r · Jf ) +

∂E

∂t

e2n0

m
. (B.22b)

This is the form of the hydrodynamic equations that are used in the main text.
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C System of linear equations for the Mie
coefficients

When applying the boundary conditions ∆E‖ = 0, ∆B‖ = 0 and J⊥ = 0 to
the electric fields in Eqs. (3.39), (3.40) and (3.41), the following system of linear
equations is obtained

−arl h(1)
l (xD) + atljl(xT) = jl(xD), (C.1a)

−arl [xDh(1)
l (xD)]′ + atl [xTjl(xT)]′ = [xDjl(xD)]′, (C.1b)

−brl
[xDh

(1)
l (xD)]′

kD
+ btl

[xTjl(xT)]′

kT
+ ictljl(xL) =

[xDjl(xD)]′

kD
, (C.1c)

−brl xDh(1)
l (xD) + btlxTjl(xT) = xDjl(xD), (C.1d)

−ibtl
l(l + 1)

xT
jl(xT) + ctlj

′
l(xL)kLεb

ω2 + iγω

ω2
p

= 0, (C.1e)

where xj = kjR and kD =
√
εDω/c. The wavenumbers kT and kL are given

by Eqs. (3.19) and (3.22), respectively.
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Robustness of the far-field response 
of nonlocal plasmonic ensembles
Christos Tserkezis1, Johan R. Maack1, Zhaowei Liu2, Martijn Wubs1,3 & N. Asger Mortensen1,3

Contrary to classical predictions, the optical response of few-nm plasmonic particles depends on 
particle size due to effects such as nonlocality and electron spill-out. Ensembles of such nanoparticles 
are therefore expected to exhibit a nonclassical inhomogeneous spectral broadening due to size 
distribution. For a normal distribution of free-electron nanoparticles, and within the simple nonlocal 
hydrodynamic Drude model, both the nonlocal blueshift and the plasmon linewidth are shown to 
be considerably affected by ensemble averaging. Size-variance effects tend however to conceal 
nonlocality to a lesser extent when the homogeneous size-dependent broadening of individual 
nanoparticles is taken into account, either through a local size-dependent damping model or through 
the Generalized Nonlocal Optical Response theory. The role of ensemble averaging is further explored 
in realistic distributions of isolated or weakly-interacting noble-metal nanoparticles, as encountered in 
experiments, while an analytical expression to evaluate the importance of inhomogeneous broadening 
through measurable quantities is developed. Our findings are independent of the specific nonclassical 
theory used, thus providing important insight into a large range of experiments on nanoscale and 
quantum plasmonics.

Plasmonics lies among the most prominent research fields in modern nanotechnology1–3, promising exciting 
applications and unravelling new phenomena as the length scale reduces4–6. Traditionally, noble metals con-
stitute the material basis for novel plasmonic devices operating in the visible7, although many recent efforts are 
devoted to extensions towards the ultraviolet, infrared and THz parts of the spectrum8. A key issue in noble-metal 
plasmonics is its association with pronounced homogeneous broadening due to Ohmic losses in the metal9 and 
enhanced Landau damping near the surface10,11. Within classical electrodynamics, and in the quasistatic regime, 
radiation losses are small and the limited quality factor of plasmon resonances reflects material losses12. In other 
words, homogeneous broadening is important. Furthermore, the commonly employed local-response approxi-
mation (LRA) of classical electrodynamics predicts size-independent resonances for the nowadays experimen-
tally accessible small nanoparticles (NPs) in the quasistatic regime13. As a consequence, despite the increasing 
impact of plasmonics and the promotion of single-particle spectroscopy14, little, if any, emphasis has been placed 
on the role of inhomogeneous broadening due to size distribution — even in experiments on NP ensembles with 
a noticeable size variation.

The observation of size-dependent resonance shifts not anticipated from classical electrodynamics has 
recently renewed interest in plasmons in the sub-10-nm regime15–17. State-of-the-art experiments range from 
single-particle spectroscopy with the aid of tightly focused electron beams15–18, to optical far-field measurements 
sampling the response of NP ensembles19–23. In the latter case, nonlocal effects17,24 and the concomitant inhomo-
geneous broadening can prove important for the interpretation of ensemble measurements. Ensemble averaging 
effects have been theoretically explored for exciton systems25, and for large-NP plasmonic collections dominated 
by retardation-driven redshifts26, but related studies in nonlocal plasmonics are still missing. The unambigu-
ous observation of size-dependent resonance shifts in single-particle spectroscopy15,17,27 encourages therefore to 
explore broadening phenomena related to size distribution: What is the robustness of plasmonic nonlocal effects 
when subject to ensemble averaging?

The influence of ensemble spectral averaging on the far-field response of nonlocal plasmonic NP collections 
is studied here theoretically, starting with the ideal case of a normal distribution of free-electron, Drude-like 
nanospheres. Complexity is subsequently increased by considering more realistic distributions, resembling exper-
imental histograms28, of noble-metal NPs, for which additional loss mechanisms like interband transitions and 
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electron quantum confinement are important (the latter affects Drude NPs as well). Through detailed simulations 
within the framework of Mie theory and its appropriate extensions13,24,29,30, we show that ensemble averaging 
can have significant implications in more ideal cases, but becomes practically negligible when all mechanisms 
related to homogeneous broadening are taken into account in noble-metal plasmonics, a behaviour preserved 
even when weak interparticle interactions are taken into account. Our findings are therefore expected to provide 
additional flexibility to the design and analysis of experiments on the nanoscale: On the one hand, analysing the 
far-field response of a NP collection on the basis of the ensemble mean size is proven sufficient for the purposes 
of most experimental studies. On the other hand, nonlocal effects are not concealed by single-NP losses in large 
ensembles, thus allowing to connect with single-particle electron-energy-loss studies15,17.

Results and Discussion
Nonlocality-induced plasmon blueshifts. We first revisit the optical response of a small metallic nano-
sphere, embedded in air for simplicity. Our study is based on Mie theory13 and its appropriate extension for 
nonlocal effects (see the Methods section for more details)31–33. The metal is described as a free-electron plasma 
with transverse (εt) and longitudinal (ε1) dielectric function components given by the frequency- (ω) and wave 
vector- (k) dependent Drude13 and hydrodynamic34,35 models, respectively

ε ω ε
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ε ω ε

ω
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+
= −
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where ωp is the plasma frequency of the metal, ε∞ is the background contribution of bound electrons and ions, γ 
is the damping rate, β the hydrodynamic parameter, and kl the longitudinal wave number35. We take ε∞ =  1 and 
γ =  0.01 ωp to focus on the role of free electrons and ensure low loss (associated with homogeneous broadening). 
We further assume β = v3/5 F as obtained within the Thomas–Fermi theory35, where vF (taken equal to 
1.39 ×  106 m s−1 in the rest of the paper) is the Fermi velocity of the metal.

The size dependence of the frequency of the first (dipolar) plasmonic mode sustained by such a metallic nano-
sphere of radius R is plotted in Fig. 1a as obtained within LRA (ωLRA, red line) and the hydrodynamic Drude 
model (HDM) (ωHDM, blue line). To make our results scalable for different materials, ω and R are normalised to 
the plasma frequency and wavelength, ωp and λp =  2πc/ωp respectively. For a better illustration of the sizes and 
energies usually encountered, the corresponding plasmon energy (NP radius) is provided at the top (right) axis, 
assuming a typical value ħωp =  9 eV35. For very small NP sizes, LRA reproduces the quasistatic result, 
ω ω= / 3LRA p  (vertical dashed line in Fig. 1a). For larger sizes, retardation causes the modes to drastically red-
shift and become wider, as also observed in the normalised extinction cross section (σext) spectra of Fig. 1b (red 
lines corresponding to different NP sizes within LRA). Higher-order modes will not concern us here, and the 
quadrupolar plasmon peak of the largest sphere in Fig. 1b is only shown by thin dotted lines. The small-size 
modal frequency saturation predicted by LRA gives place to a continuous blueshift when the metal nonlocal 
response is taken into account. Comparison between LRA and HDM (blue lines in Fig. 1b) immediately shows 
that the frequency shifts become larger as the NP size decreases, but no additional resonance broadening due to 
nonlocality is observed.

Figure 1. (a) Normalised frequency (ω/ωp) position of the dipolar plasmonic peak of a spherical NP described 
by the Drude model of equation (1), in air, as a function of its normalised radius R/λp, obtained within the LRA 
(red line) and HDM (blue line) models. The black dashed line displays the prediction of the quasistatic 
approximation, ω / 3p . The corresponding energy in eV and radius in nm are given at the top and right axis 
respectively, assuming a plasmon energy ħωp =  9 eV. (b) Extinction cross section (σext) spectra (normalised to 
the geometrical cross section πR2) for the NP of (a), for three radii, R/λp =  0.145, R/λp =  0.051, and R/λp =  0.007 
(from left to right) within the LRA (red lines) and HDM (blue lines) models. For ħωp =  9 eV these radii 
correspond to 20, 7, and 1 nm, respectively. The quadrupolar mode of the largest NP is depicted by thin dotted 
lines.
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A significantly different behaviour is expected in a statistical ensemble of small particles, where the strongly 
blueshifting modes of single NPs will overlap in a sequential manner, leading to important line broadening pos-
sibly even for narrow size distributions, in analogy to the effect of retardation on large NPs26. At this point we 
should also note that for the type of Drude metal described here, more detailed theories based on atomistic 
ab initio calculations predict frequency redshifts, instead of blueshifts, of similar magnitude, due to electron 
spill-out10,36–38. Indeed redshifts are measured for simple metals such as sodium38. Yet in noble metals such as 
silver and gold, the spill-out is less extended and the measured size-dependent blueshifts are well reproduced by 
HDM. An exact description of a specific material is beyond the scope of this paper, and simple nonlocal models 
should suffice for the study of ensemble averaging, regardless of the direction and origin of modal shifts.

Inhomogeneous broadening in Drude-metal ensembles. Ensemble spectral averaging is at a first step 
investigated by considering a collection of N =  1000 of the NPs described above, with a mean diameter  
2〈 R〉 /λp =  0.031 (corresponding to 4.3 nm for ħωp =  9 eV). The NP size follows normal distributions around this 
mean value as shown in the inset of Fig. 2, with standard deviations ranging from 0.2 (narrowest distribution, 
solid line) to 0.4 (dashed line) and 0.6 (widest distribution, dotted line). The extreme case of a δ-function distri-
bution, i.e., all NP diameters corresponding precisely to the mean value, is depicted by open dots. This kind of 
δ-function distribution is exactly what one assumes in practice when disregarding ensemble averaging. We also 
note that, while the distributions of Fig. 2 are continuous functions, discrete size steps are taken in the simula-
tions, small enough to achieve convergence of the averaged spectra. Apart from the LRA and HDM models, we 
also discuss calculations based on the commonly employed local size-dependent damping (SDD) model39 and the 
Generalized Nonlocal Optical Response (GNOR) theory24. Within SDD, the damping parameter γ becomes size 
dependent, γ →  γ +  AvF/R, to effectively take into account the experimentally observed single-NP damping30. The 
constant A, usually taken equal to 1 (as we do here) although a large range of values can be found in literature, is 
introduced to phenomenologically describe the reduction of the free-electron path length and to account to some 
extent for quantum-size corrections in very small NPs19,39–42. On the other hand, GNOR reproduces 
size-dependent damping in a more physical way, by incorporating electron diffusion as a measure of a variety of 
electron-scattering effects, including Landau damping due to generation of electron-hole pairs43. In practice, one 
needs merely to replace β2 in equation (1) with β2 +  D(γ −  iω), where D is the diffusion constant of the metal. A 
thorough discussion on the determination of D can be found in a recent review by Raza et al.35; in general, it has 
to be chosen so as to reproduce the experimentally observed, and successfully reproduced by SDD models, plas-
mon damping. For the Drude-like NPs studied in this section, we find that the simple relation γD v /F

2 24 pro-
vides an excellent correspondence between the two models. However, it has been shown that more strict 
calculations are required in the case of noble metals44. While, in this respect, GNOR remains a phenomenological 
model, its strength is that, for arbitrarily shaped plasmonic NPs, it reproduces both the size-dependent blueshifts 
and the damping of plasmon modes by a simple correction in the dynamics of the free-electron fluid of HDM, 
whereas SDD models only capture the damping effects.

With these models at hand, we study in Fig. 2 how spectral averaging compares to single-NP response. Clearly, 
for the local models (LRA and SDD, red and black lines respectively), averaging does not practically affect the 
spectra. For all size distributions, the average extinction 〈 σext〉 , normalised to the geometrical cross section of the 
mean-size NP, π〈 R〉 2 (which is known in experiments), reproduces almost perfectly the spectrum of the individ-
ual mean-size NP, without frequency shifts or line broadening. Comparison with Fig. 1 shows that, in the size 
range of interest, local theories have already reached the quasistatic limit and the plasmon frequencies do not shift 

Figure 2. Averaged normalised extinction (〈σext〉) spectra calculated for N = 1000 NPs described by the 
dielectric function of equation (1) within the LRA (red lines), HDM (blue lines), GNOR (green lines)  
and SDD (black lines) models, for the size distributions shown in the inset. The average NP diameter 
is 2〈 R〉 /λp =  0.031, which for ħωp =  9 eV corresponds to 4.3 nm, and the standard deviation of the normal 
distribution function is 0.2 (solid lines), 0.4 (dashed lines), and 0.6 (dotted lines). Open circles denote the 
corresponding spectra for the single mean-size NP, corresponding to the δ-function distribution (open 
circles) of the inset.
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further, thus explaining the behaviour of the calculated spectra. The case becomes much different however when 
the spectra are size-dependent because of nonlocality, as is particularly pronounced by the HDM results. The 
incomplete spectral overlap for NPs of different sizes leads to an obvious broadening of the plasmon peaks, larger 
as the size distribution becomes wider. In addition, since larger NPs are characterised by larger extinction values, 
the overlap between large and small particles leads to a decrease of 〈 σext〉 , and to a gradual redshift of the ensem-
ble resonance comparing with the single nonlocal mean-size NP. One may therefore conclude that statistical 
averaging can lead to significant deviations in experimental far-field measurements on ensembles of plasmonic 
NPs with wide size distributions. Nevertheless, since HDM disregards size-dependent damping mechanisms, it is 
crucial to take such effects into account. In view of the previous discussion, this is straightforward within GNOR 
(green spectra in Fig. 2). The differences between single-NP and ensemble response are now smoothed, leading 
to smaller additional modal shifts and almost negligible line broadening due to size inhomogeneity: the spectral 
width is mainly due to single-particle nonlocal broadening.

Inhomogeneous broadening in noble-metal ensembles. The important result of negligible effect of 
spectral averaging when single-NP size-dependent damping is taken into account may be appealing, but its valid-
ity was displayed only for ideal Drude metals and for normal size distributions. In order to connect with more 
practical, experimentally feasible situations, it is therefore important to carry out similar statistical studies for 
more realistic distributions in noble metals. We consider a collection of N =  1000 silver NPs, described by the 
experimental dielectric function (εexp) of Johnson and Christy45, following the size distribution shown by the 
histogram of the inset of Fig. 3. In order to apply the HDM, SDD and GNOR models, we obtain ε∞ in equation (1) 
from the experimental values by subtracting the Drude part: ε ε ω ω ω γ= + +∞ /[ ( i )]exp p

2 , taking ħωp =  8.99 eV 
and ħγ =  0.025 eV, values which describe bulk silver excellently. For SDD and GNOR we further assume A =  1 and 

ω=D Av3 10 /(5 )F
2

p , respectively35. The calculated spectra of Fig. 3 display now an almost negligible difference 
between single-NP and averaged spectra, even for the more pronounced in Fig. 2 HDM case. Homogeneous line 
broadening dominates the ensemble optical response, especially when single-NP size-dependent damping is 
taken into account within the more complete GNOR theory. This observation further strengthens our conclusion 
that inhomogeneous line broadening is not pronounced in most realistic NP ensembles (despite the 
non-negligible nonlocal response). Far-field optical experiments on small-NP ensembles can indeed be con-
ducted for the observation of nonlocal frequency shifts, and their interpretation can be performed on the basis of 
the properties of the mean-size NP in the collection.

In addition to the study of isolated NPs, and the displayed robustness of their far-field optical response, an 
aspect that we have so far disregarded is the interaction between NPs in the ensemble. It is widely known that once 
plasmonic NPs are brought close to each other their interaction leads to significant modal redshifts, increasing as 
the interparticle gap is reduced46. A modified optical response is therefore expected for an ensemble of interacting 
small NPs, where two competing mechanisms, those of size-dependent blueshifts and interaction-induced red-
shifts are simultaneously present. The importance of this interplay is explored here, assuming that the average NP 
distance does not become smaller than R, thus preventing the particles from entering the nearly-touching regime, 
where purely quantum effects such as tunnelling become relevant47,48. Such distance control can be achieved 
nowadays with unprecedented precision, in dilute solutions with DNA- or ligand-functionalised NPs20,49–51. We 
assume Ng =  1000 dimers of identical, 4.3-nm silver NPs, separated by a gap of width d, as shown schematically in 
the inset of Fig. 4. The interparticle gap width follows a normal distribution around its mean value, 〈 d〉  =  3.2 nm, 
ranging from 4.3 nm (a full NP width separating the two spheres) to 2.1 nm, as shown by the histogram of the 
inset. Comparison between Figs 3 and 4 shows that NP interaction can lead to a small plasmon redshift, of about 
3–4 nm, both for the local case (only LRA is shown in Fig. 4 as the effect of SDD is well reproduced by its nonlocal 

Figure 3. Averaged normalised extinction spectra calculated for N = 1000 silver NPs described by the 
experimental dielectric function of Johnson and Christy45 within the LRA (red line), HDM (blue line), 
GNOR (green line), and SDD (black line) models, for the size distribution shown by the histogram of the 
inset. The mean NP diameter is 2〈 R〉  =  4.3 nm. Open circles denote the corresponding spectra for the single 
mean-size NP.
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counterpart, GNOR) and the nonlocal models. These relatively weak interactions owe their reduced strength to 
the small NP size and become important, according to our simulations, only for interparticle distances smaller 
than the NP radius. More importantly, the additional line broadening caused by such interactions is practically 
negligible, as it is immediately clear through comparison between Figs 3 and 4, and in any case it does not origi-
nate from the nonlocal optical response. It is therefore adequate, in most cases of practical interest, to disregard 
interactions and assume isolated NPs instead. Nevertheless, for a more strict description, it is still sufficient to take 
interactions into account through the average NP distance in the ensemble, as can be verified by the open dots in 
Fig. 4, which reproduce almost perfectly the gap-averaged spectra.

Analytical evaluation of the importance of inhomogeneous broadening. Having considered situa-
tions where inhomogeneous broadening can be either strong or negligible, a simple way to decide on its importance 
without resorting to detailed simulations is desirable. To this end, we develop an analytical model which describes 
inhomogeneous broadening in terms of just the first two negative-order (or, with some further approximations, 
positive-order) moments of any NP-size distribution function. In practice, with a simple experimental size histo-
gram at hand, one should be immediately able to tell whether the spectra are affected by inhomogeneous broaden-
ing. We begin by considering the dipole resonance in a single metallic NP, neglecting homogeneous broadening for 
the moment. Such a resonance can then be described by a spectral function ω δ ω ω η− −F R R( , ) ( / )LRA , where 
η (∝ β in our case) gives the strength of the leading-order 1/R correction associated with nonlocal response33. In an 
ensemble of non-interacting particles characterised by a size distribution P(R), the ensemble-averaged spectral 
function will be ∫ω ω=F dR F R P R( ) ( , ) ( ). Our aim is to express the ensemble-averaged optical properties, such 
as the resonance frequency 〈 ω〉 , with the aid of the nth-order statistical moments of the particle ensemble, i.e. 

∫=
∞R dR R P R( )n n

0
. The homogeneous delta-function line shape allows to express the nth-order spectral 

moment ∫ω ωω ω= d F ( )n n  directly in terms of moments of the particle-size distribution,

∫ω ω η ω η= + = + .dR R P R R( / ) ( ) ( / ) (2)
n n n

LRA LRA

It is then straightforward to derive expressions for 〈 ω〉  and the inhomogeneous broadening width, 
ω ω ω∆ = −inhom

2 2 , through the statistical moments of the particle-size distribution. As a key result, which 
allows to estimate the inhomogeneous broadening only in terms of the first two statistical moments of P(R) and 
the nonlocal blueshift δωLRA→NL =  〈 ω〉  −  ωLRA =  η〈 R−1〉  ( η R/  in a more crude approximation), it is shown that 
(see the related Discussion in the Supplementary Information)
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The first equality relates to the first and second negative-order moments of P(R), which are quite unusual 
ways of characterising a particle-size distribution – in most other contexts the positive-order moments (such as 
the mean value and variance) are the ones of interest. In the Discussion of the Supplementary Information we 
demonstrate the link between negative- and positive-order moments to obtain the second approximate iden-
tity in equation (3), which links directly to the relative particle-size fluctuation Δ R/〈 R〉 . This result holds for 
any description beyond classical electrodynamics that gives a 1/R leading-order blueshift of the LRA resonance 

Figure 4. Averaged normalised extinction (〈σext〉/2πR2 here, since the geometrical cross section 
corresponds to the area occupied by two NPs) spectra calculated for Ng = 1000 silver NP dimers (both 
NPs have a diameter of 4.3 nm), separated by a gap of width d, as shown schematically in the inset, 
within the LRA (red line), HDM (blue line), and GNOR (green line) models. The gap width follows the 
normal distribution of the histogram of the inset, with a mean value 〈 d〉  =  3.2 nm. Open circles denote the 
corresponding spectra for the single mean-gap dimer.
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frequency. Most importantly, it does not change if we replace η with − η to describe a corresponding 1/R redshift, 
so that our findings can be easily generalised to include other nonclassical effects, as anticipated above.

To test the validity of equation (3), we use it to evaluate Δ ωinhom for certain distribution shapes and widths, 
assuming for simplicity η =  β. The result is then compared to the full-width-half-maximum (FWHM) of the (aver-
aged) plasmon peak calculated in each case by simulations performed for an ideal free-electron metal within 
HDM, with β = v3/5 F and γ =  0.01 ωp. As long as equation (3) holds, for different widths of the distribution,  
Δ ωinhom is expected to follow a linear relation with FWHM. In Fig. 5 this is done for the three distributions shown 
in the inset: uniform, triangular and (truncated) normal. These examples are rather extreme situations, but in all 
cases an almost linear relation between Δ ωinhom and FWHM, following the line FWHM =  Δ ωinhom +  FWHM0 
(black line in Fig. 5), where FWHM0 is the FWHM of the single mean-size NP, is indeed observed. For most distri-
bution widths, all three examples give results that lie close to this line, indicating that the simple formula of equa-
tion (3) not only gives a good estimate of inhomogeneous broadening, regardless of the shape of the distribution, 
but can also be used to estimate the FWHM. It is worth noting that, for the uniform distribution, which is one of 
the most extreme situations to encounter in practice, larger deviations from the predictions of equation (3) are 
calculated as the distribution width becomes wider. This is due to the fact that, for wider distributions, a significant 
number of larger NPs is present in the ensemble. The extinction cross section of these NPs, which scales with R3, 
dominates the optical response, leading to a shifting of the averaged far-field response towards longer wavelengths. 
This effect is efficiently masked in more realistic situations, like the triangular and normal distributions of Fig. 5, for 
which larger NPs form just the tail of the distribution function, but cannot be neglected in a wide uniform distri-
bution. Finally, it should also be stressed that, while the average NP size considered in Fig. 5 corresponds to 4.3 nm, 
the small-NP tails of the distribution functions are allowed to enter the sub-nm region, where classical or nonlocal 
electrodynamics are expected to fail, and approaches based either on quantum-corrected models15,52 or fully 
quantum-mechanical calculations36,37,53 should be employed. Nevertheless, such NP sizes, for which plasmonic 
effects are negligible and cluster fluorescence dominates instead54, concern only the tails of the widest distribution 
functions in Fig. 5, for which small deviations already start to appear. Consequently, calculating the corresponding 
spectra within HDM or GNOR will not practically affect our conclusions.

Conclusion
In summary, the effect of inhomogeneous broadening of plasmon resonances due to nonlocal response in 
ensembles of small plasmonic NPs was explored through detailed simulations and analytical modelling. While 
inhomogeneous broadening is negligible in the LRA, it can be an important issue for Drude-like metals, espe-
cially within the standard HDM approach which neglects size-dependent damping in individual NPs. Crucially, 
however, ensemble averaging is shown to produce almost negligible deviations in most situations of practical 
interest, as illustrated for realistic size distributions of noble-metal NPs, and within the more accurate GNOR 
model. Nanoscale experiments involving large numbers of NPs can thus be designed and analysed in terms of the 
response of the mean-size NP in the ensemble, while far-field spectra of large NP collections are still expected 
to display the fingerprints of nonlocality, as in single-particle spectroscopies. We derived a simple equation to 
directly identify whether inhomogeneous broadening becomes important, simply through knowledge of the size 
distribution function in an ensemble. Our work provides therefore a valuable, general tool for the analysis of 
far-field optical spectra in modern experiments on plasmonics.

Figure 5. Parametric plot (open symbols) of Δωinhom calculated from equation (3) versus FWHM obtained 
from simulations for a Drude-like NP within HDM (β = v3 5/ F, γ = 0.01ωp in equation (1), for the size 
distributions shown in the inset. The average NP diameter is fixed at 2〈 R〉 /λp =  0.0312 (corresponding to 
4.3 nm when ħωp =  9 eV). Three different size distributions are plotted: uniform (blue line), triangular (green 
line) and (truncated) normal (red line). For the uniform (blue squares) and triangular (green triangles) cases, 
the distribution width increases from 0.13 · 10−2 to 2.80 · 10−2 (0.18 nm to 3.86 nm), while the standard deviation 
of the normal distribution (red circles) increases from 0.32 · 10−3 to 7.00 · 10−3 (0.044 nm to 0.965 nm). 
Increasing point size schematically depicts increasing distribution width. The black line denotes FWHM =   
Δ ωinhom +  FWHM0.
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Methods
Nonlocal Mie theory. Here we summarise the fully-retarded Mie theory for a spherical plasmonic particle 
treated within HDM (and GNOR through a simple substitution of the hydrodynamic β parameter). The multipo-
lar response of a sphere including nonlocal effects was determined by Ruppin29,31 by extending Mie theory13 to 
take into account the excitation of longitudinal waves. In the framework of Mie theory, the extinction cross sec-
tion of a sphere of radius R embedded in a homogeneous host medium is given by13

∑σ π
= − + +

=

+∞




 k
t t2 (2 1) Re( ),

(4)
TE TM

ext
h
2

1

where  denotes the angular momentum and kh is the wave number in the host medium, which is described by a 
dielectric function εh. Assuming that the magnetic permeabilities, both in the sphere and in the host medium are 
equal to 1, the nonlocal Mie scattering coefficients are29,31–33
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h x( ) are the spherical Bessel and first-type Hankel functions, respectively, while xh =  khR and 
xt =  ktR. Here kt is the (transverse) wave number inside a sphere described by a transverse dielectric function εt. 
The nonlocal correction ∆
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where x1 =  k1R and k1 is the longitudinal wave number in the sphere, associated with the longitudinal dielectric 
function ε1, which is frequency- and wave vector-dependent. The dispersion of longitudinal waves is given by 
ε1(ω, k) =  0. In the limiting case where ∆ =



0 we retrieve the local result of standard Mie theory. All numerical 
results for isolated NPs have been obtained from numerical evaluations of equation (4). The corresponding results 
for NP dimers were obtained by use of a commercial finite-element method solver (COMSOL Multiphysics 5.0, 
RF module), using the appropriate extension to include nonlocal effects55,56.
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Supplementary Discussion 

Derivation of equation (3) of the main text 

In the main text we have defined the inhomogeneous broadening width as 

Δ𝜔inhom = �〈𝜔2〉 − 〈𝜔〉2                                                                                                                                         (S1) 

From equation (2) of the main text, the first- and second-order moments of 𝜔 are 

〈𝜔〉 = 〈(𝜔LRA + 𝜂 𝑅⁄ )〉                                                                                                                                              (S2) 

and 

〈𝜔2〉 = 〈(𝜔LRA + 𝜂 𝑅⁄ )2〉,                                                                                                                                         (S3) 

respectively. Then 
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In the above we have taken into account that (naturally) 〈𝜔LRA〉 = 𝜔LRA and 〈𝜂〉 = 𝜂. Using 𝛿𝜔LRA→NL = 𝜂〈𝑅−1〉, it 
is then straightforward to derive equation (3) of the main text. 

 

Statistical moments: relating negative to positive moments 

For a narrow distribution function 𝑃(𝑅), without significant small- and large-particle tails, the negative-order 
moments appearing in the first equality of equation (3) of the main text can be expressed in terms of the more 
common positive-order moments, to give the approximate result on the right-hand side of equation (3) of the main 
text. This challenge is illustrated in Supplementary Fig. 1. 

For the first negative-order moment, 𝑅−1 can be expressed as a Taylor series expanded around the average of the 
distribution, 𝑅0 = 〈𝑅〉,  
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and then the moment 〈𝑅−1〉 can be calculated with 

〈𝑅−1〉 = ∫ 𝑅−1𝑃(𝑅)𝑑𝑅+∞
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In this expression, 𝑅−1 and the Taylor expansion go to infinity when 𝑅 = 0, which may cause the integral to 
diverge. It must be therefore required that 𝑃(𝑅) = 0 for 𝑅 ≤ 0, which occurs of course for any realistic function 
𝑃(𝑅). Furthermore, the summation is performed over infinite terms, and there is no immediate reason to truncate it. 
In fact, if 𝑅 > 2𝑅0 each subsequent 𝑛 + 1 term in the sum will be larger in absolute value than the previous, 𝑛, and 
of opposite sign. To be able to truncate this series, we must ensure that each  𝑛 + 1 term is smaller than the previous 
one, and this is done by requiring that 𝑃(𝑅) = 0 for 𝑅 ≥ 2𝑅0. 

 

Supplementary Figure 1: Taylor series approximation of negative-order moments for a narrow distribution 
function. The dashed lines illustrate Taylor series approximations to the first and second negative-order moments, 
see equations (S7) and (S10). 

We can now derive an approximate result for 〈𝑅−1〉. By including the first three terms of the series we get 
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and consequently (neglecting high-order terms) 
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Likewise, for the second negative-order moment we Taylor expand 1 𝑅2⁄  around 𝑅0 to get 
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Then, for the size fluctuations we have 
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Uniform distribution 

As a particular example that can be treated analytically, we consider a uniform distribution function 

𝑃(𝑅) = 1
𝛿𝑅
𝜃(𝑅 − 𝑅0 + 𝛿𝑅 2⁄ )𝜃(−𝑅 + 𝑅0 + 𝛿𝑅 2⁄ ),                                                                                             (S14) 

where 𝜃(𝑥) is the Heaviside function. By construction, 𝑃(𝑅) is normalised and with a mean value of 〈𝑅〉 = 𝑅0, 
while 〈(𝑅 − 𝑅0)2〉 = 1

12
(𝛿𝑅)2. The requirement that all radii in the distribution are positive gives a bound on its 

parameters, namely that 𝑅0 ≥ 𝛿𝑅 2⁄ . For the first negative-order moment we get 
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Similarly, for the second negative-order moment we get 
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In this way we can directly calculate 
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Returning to Supplementary equation (S13) we indeed find the same result. In a similar way, for the case of the 
triangular and normal distribution that concern us in the main text, the result is 
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where 𝜎 is the standard deviation of the normal distribution. Note that the normal distribution is truncated, limited in 
the region 𝑅 = 0 − 2𝑅0. 
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PACS 73.20.Mf – Collective excitations (including excitons, polarons, plasmons and other

charge-density excitations)
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Abstract – Localized surface plasmons (LSP) in semiconductor particles are expected to exhibit
spatial nonlocal response effects as the geometry enters the nanometer scale. To investigate these
nonlocal effects, we apply the hydrodynamic model to nanospheres of two different semiconductor
materials: intrinsic InSb and n-doped GaAs. Our results show that the semiconductors indeed
display nonlocal effects, and that these effects are even more pronounced than in metals. In a
150 nm InSb particle at 300 K, the LSP frequency is blueshifted 35%, which is orders of magnitude
larger than the blueshift in a metal particle of the same size. This property, together with their
tunability, makes semiconductors a promising platform for experiments in nonlocal effects.

Copyright c© EPLA, 2017

Introduction. – It has been known for a while that the
Drude model for metals is only applicable when the geom-
etry is sufficiently large compared to intrinsic length scales
of the electron gas. When analyzing nanoscale structures,
the model becomes less accurate and a different or aug-
mented model becomes necessary. A model which has
successfully described metal structures on the nanoscale
is the hydrodynamic Drude model (HDM) [1–5], where
wave vector dependence is added to the Drude dielectric
function. Due to this, the model has been able to explain
observable nonlocal effects, such as longitudinal waves in-
side the metal and a size-dependent shift of the resonance
frequency of localized surface plasmons (LSP) [6].

However, the HDM is not necessarily restricted to met-
als, but could be relevant for other nanoscale structures
with a free-electron–like plasma as well. In this paper, we
consider the application of the HDM to semiconductors,
where the charge carriers are electrons and/or holes. This
leads to new predictions, different from the well-known in-
sights obtained by application of the usual Drude model
to semiconductors [7]. Among the most notable differ-
ences between metals and semiconductors are the densities

and the effective masses of the charge carriers. Metals
have large free-carrier concentrations and effective masses
roughly equal to that of the free electron. Semiconductors
on the other hand mostly have lower charge carrier den-
sities, and these furthermore depend strongly on doping
level and temperature. The effective masses will vary from
material to material, and usually the effective masses of
holes and electrons are different.

As briefly mentioned by Hanham et al. [8], these charac-
teristics can be exploited to investigate nonlocal effects in
ways that are not immediately possible in metals. By us-
ing semiconductors, the frequency of operation shifts from
the optical spectrum to the infrared or THz bands because
the plasma frequency, which depends on the charge carrier
density, is lower than in metals. As we predict here, the
size-dependent nonlocal effects will simultaneously mani-
fest themselves in larger structures than in metals, which
is good news for both fabrication and observation.

The optical properties of semiconductors have already
been described by many semiclassical and quantum-
mechanical models (see for example [9]). In partic-
ular, semiconductors are known to exhibit quantum
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confinement when the size of the structure is on the
nanometer scale, such as in quantum wells and dots [10].
But in some cases, the plasma description is more suitable.
An example is InSb which is characterized by an extremely
small band gap (Eg ∼ 0.17 eV) and a high charge carrier
density at room temperature. This material was used by
Hanham et al., as well as in earlier papers on plasmon-
ics [11–13], and in all cases the charge carriers were treated
as a plasma. Another example is doped semiconductors
where additional charge carriers have been supplied by the
donors or acceptors. Plasmonics in doped semiconductors
has additional advantages such as tunability [14], and plas-
monic experiments with both n- and p-doping have been
conducted [15–21].

In the region between semiconductors described by a
plasma model (such as the Drude model) and quantum
dots is a transition zone, where neither macroscopic nor
microscopic theories are ideal. This region, which is de-
fined by the size of the structures as well as the number of
charge carriers, has been the subject of both experimen-
tal [22–27] and theoretical [28–32] studies. In this paper
we will investigate semiconductor particles that are large
enough to contain sufficient charge carriers to be described
by a plasma model, yet small enough to display nonlocal
effects (implying that the Drude model becomes inaccu-
rate). We will focus on spherical particles of intrinsic InSb
and n-doped GaAs and use the HDM to calculate the op-
tical properties. To set a lower limit of our model, we use
the results from Zhang et al. [29] who estimated the onset
of quantum confinement effects in semiconductors using
first-principles calculations. Although they find no hard
transition, their results show that for a nanoparticle with a
radius of 2.5 nm and only a few charge carriers, the plasma
model is able to reproduce the DFT calculations reason-
ably well. But to make sure we are in the plasma regime,
we will only consider particles containing more than 50
charge carriers (and, as seen in the results section, radii
much larger than 2.5 nm).

We will mainly look at intraband transitions, as these
affect the properties of the plasma directly, while inter-
band transitions for simplicity are ignored. This is a rea-
sonable assumption as long as the energies considered are
smaller than the band gap. Another kind of excitations
characteristic of semiconductors is excitons, which give
rise to energy levels inside the band gap and modifications
to the conduction band edge. However, for materials with
a very narrow band gap, like InSb, the excitons are bound
so weakly that they usually can be neglected [9]. Similarly
for doped semiconductors, the screening effect of the high
charge carrier density weakens the excitonic bond. For the
materials that we study here, it is therefore a reasonable
approximation to ignore exciton effects.

Given the assumptions above, the hydrodynamic equa-
tions of motion can be rederived for charge carriers in
semiconductors, and in the next section, the key ex-
pressions in the model will be presented. These expres-
sions will then be applied to spherical nanoparticles, and

finally the results of the numerical simulations will be
discussed.

The model. –

Dielectric functions. The hydrodynamic Drude model
is characterized by a nonlocal longitudinal dielectric func-
tion [33,34]

εL(k, ω) = ε∞ − ω2
p

ω2 + iγω − β2k2
, (1)

where ωp is the plasma frequency, γ is the damping rate,
ε∞ is the background dielectric constant, and β is a pa-
rameter that describes the strength of nonlocality. In this
paper, ε∞ is chosen to be constant in ω, which is a good
approximation for energies smaller than the band gap.

For the degenerate electron gas in metals, β is directly
related to the Fermi velocity vF (see refs. [5,6]), but for
semiconductors, the parameter depends on several condi-
tions. The most obvious complication in semiconductors
compared to metals is the presence of more than one kind
of moving charge carrier, including electrons and heavy
and light holes. The electrons, however, have a much
smaller effective mass than the holes for a typical semi-
conductor, and therefore they will determine the optical
properties almost entirely. This means that the holes can
be ignored as a first approximation whenever electrons are
present as majority charge carriers, as they are in this pa-
per. Semiconductors also differ from metals in the sense
that changes in charge carrier densities can be created by
different means. If the electrons are thermally excited to
the conduction band, and the bands are assumed to be
parabolic, one can derive the expression for the dielectric
function using a simple quantum-mechanical model simi-
lar to the Lindhard model (see the Supporting Informa-
tion Supplementarymaterial.pdf). In this derivation,
β is given by

β2 =
3kBT

m∗
e

, (2)

where m∗
e is the effective mass of the electron, T is the

temperature, and kB is the Boltzmann constant. This
expression is only valid for low temperatures where the
Fermi-Dirac distribution can be approximated with the
Boltzmann distribution. If this is not the case, the value
of β can be found with numerical methods.

If the semiconductor instead is n-doped (and we neglect
electrons thermally excited from the valence band to the
conduction band), then β is given by

β2 =
3

5
v2

F =
3

5

�2

m∗
e
2

(
3π2n

) 2
3 , (3)

where n is the electron density. Equation (3) can also
be used if the charge carriers are created by an external
energy source, e.g. a laser pulse that can excite carriers
across the band gap. This situation would of course be
complicated by the relaxation of the charge carriers over
time, and assumptions about a quasi-equilibrium would

17003-p2



Size-dependent nonlocal effects in plasmonic semiconductor particles

have to be made (and we will not consider this here). Note,
that the two expressions for β also can be found in [12].

The equations for the plasma frequency ωp and the
damping rate γ, however, are independent of the excita-
tion method and in all cases are given by

ω2
p =

ne2

ε0m∗
e

, (4)

γ =
e

m∗
e,condμe

, (5)

where μe is the mobility of the electron. Here m∗
e,cond is

the conductivity effective mass of the electron, and this is
in general different from m∗

e (which is called the density-
of-states effective mass). Only for isotropic and perfectly
parabolic bands are they identical [35].

For doped semiconductors, n is equal to the doping con-
centration Nd if the donors are completely ionized (which
is a good approximation at room temperature). For ther-
mally excited electrons in intrinsic semiconductors, n is
given by [35]

n = 2

(
2πkBT

h2

) 3
2

m
∗ 3

4
e m

∗ 3
4

h exp

(
− Eg

2kBT

)
, (6)

where m∗
h is the density-of-states effective mass of the

holes. The equations is valid when the Boltzmann dis-
tribution is accurate, but numerical methods can be used
to find n if this is not the case.

While the longitudinal dielectric function in eq. (1) is
nonlocal in the HDM, the transversal dielectric function
is local [33,34], i.e.

εT (ω) = ε∞ −
ω2

p

ω2 + iγω
. (7)

The hydrodynamic equations. The two dielectric func-
tions together with Maxwell’s equations produce the fol-
lowing equations in real space [6,36,37]:

−∇ × ∇ × E +
ω2

c2
ε∞E = −iμ0ωJ, (8a)

β2

ω2 + iγω
∇ (∇ · J) + J =

iωε0ω
2
p

ω2 + iγω
E, (8b)

where the first is the classical wave equation, and the
second is the linearized nonlocal hydrodynamic equation.
These equations provide a relation between the electrical
field E and the induced current density J. In a local ap-
proximation (β ≈ 0), eq. (8b) would reduce to Ohm’s law,
i.e. J ∝ E with the constant of proportionality given by
the usual Drude conductivity σD = iωε0ω

2
p/(ω2 + iγω).

The relation between these equation and εL(k, ω) and
εT (ω) is easily seen for an infinite medium by using a
Fourier transform [6,33].

Equations (8a) and (8b) can be solved for various ge-
ometries when provided with the necessary boundary con-
ditions, using either analytical approaches or numerical

methods [5,34,37–40]. The continuities of E‖ and B‖
across the boundary are the natural first two boundary
conditions. However, an additional third boundary condi-
tion is needed in the case of the HDM. Under the assump-
tion of an infinite work function, the boundary condition
is J⊥ = 0, i.e. the charge carriers cannot escape the ma-
terial (see [6] for a discussion). This choice implies that
the spill-out of electrons at the interface is ignored [4].

The Mie coefficients. Given the boundary conditions,
the solutions for E and J are found for spherical sym-
metry. This was originally done by Mie for transversal
waves [41], and then later Ruppin added the longitudinal
component which is present for the HDM [42]. The final
result is contained in two transversal coefficients denoted
by aj

n and bj
n and one longitudinal coefficient denoted by

cj
n. Here n is an integer, and j indicates whether the field

is reflected from the sphere (j = r) or transmitted into the
sphere (j = t). The coefficient cr

n is zero as the surround-
ing medium is assumed to be a dielectric and unable to
support longitudinal waves.

However, because our additional boundary condition is
different from Ruppin’s, we will instead of his results use
the solution from David et al. [38] where the reflection
coefficients are given by

ar
n =

−jn(xD)[xT jn(xT )]′ + jn(xT )[xDjn(xD)]′

h
(1)
n (xD)[xT jn(xT )]′ − jn(xT )[xDh

(1)
n (xD)]′

, (9a)

br
n =

−εDjn(xD) (Δn+[xT jn(xT )]′)+εT jn(xT )[xDjn(xD)]′

εDh
(1)
n (xD) (Δn+[xT jn(xT )]′)−εT jn(xT )[xDh

(1)
n (xD)]′

.

(9b)

Here, xD = RkD =
√

εDRω/c and xT = RkT =√
εT Rω/c. The parameter εD is the dielectric constant

of the surrounding dielectric and εT is given by eq. (7).
The function jn is the spherical Bessel function of the first

kind, and h
(1)
n is the spherical Hankel function of the first

kind. The differentiation (denoted with the prime) is with
respect to the argument. The nonlocal parameter Δn is
given by [38]

Δn =
jn(xT )jn(xL)n(n + 1)

xLj′
n(xL)

(
εT

ε∞
− 1

)
, (10)

where xL = RkL and the longitudinal wave vector is [38]

kL =
1

β

√
ω2 + iγω − ω2

p

ε∞
. (11)

The coefficients an and bn are related to oscillations of the
magnetic and electric type, respectively. Note that the
expression for an is identical to the classical local solution,
while the expression for bn is not [43]. Setting Δn = 0,
however, reduces the bn coefficients to their classical local-
response counterparts as well.
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Table 1: Properties of GaAs and InSb. The intrinsic charge
carrier density is denoted by ni. The masses m∗

e and m∗
h for

InSb are taken from [44] and [45], respectively. For GaAs,
m∗

e and m∗
e,cond (which depends on the doping level Nd) are

from [46], and m∗
h is from [47]. Eg for InSb is taken from [48],

and μe and μh for GaAs are from [49]. The rest of the data are
taken from [50]. Note that for InSb, the conductivity effective
mass is assumed to be identical to the density-of-states effective
mass.

GaAs InSb InSb
(300 K) (300 K) (200 K)

ε∞ 10.9 15.7 15.7
Eg (eV) 1.42 0.17 0.20
ni ( cm−3) 2.1 × 106 1.9 × 1016 8.6 × 1014

μe ( cm2V−1s−1) 77000 151000
2900a

1100b

μh ( cm2V−1s−1) 850 1910
190a

80b

m∗
e/m0 0.0636 0.0118 0.0126

m∗
h/m0 0.53 0.48 0.44

m∗
e,cond/m0 0.0118 0.0126

0.0695a

0.101b

a
Nd = 1018 cm−3.

b
Nd = 1019 cm−3.

Once the ar
n and br

n coefficients are known, the extinc-
tion cross-section for single particles can be found with [43]

σext = − 2π

k2
D

∑

n=1

(2n + 1)Re(ar
n + br

n). (12)

Results. – Using eq. (12), the extinction spectra for
spherical semiconductor nanoparticles will now be deter-
mined. To begin with, we will look at intrinsic InSb with
thermally excited charge carriers. The data for InSb at
T = 300 K is given in table 1, and using eqs. (2), (4)
and (5) we find β = 1.07 × 106 m/s, ωp = 6.94 × 1013 s−1

and γ = 1.94 × 1012 s−1. From the plasma frequency it
is immediately seen that excitation of the plasmon must
take place in the infrared domain.

In fig. 1(a), the extinction cross section for an InSb
nanoparticle at T = 300 K in vacuum with R = 150 nm
is plotted. The dashed line is the local-response approxi-
mation obtained by setting Δn equal to zero in eq. (9b).
This curve only has a single visible peak which can be
recognized as the classical dipole plasmon peak with a fre-
quency close to ωdipole = ωp/(ε∞ + 2εD)1/2. Peaks from
higher-order poles also exist, but are too faint to see here.
The full line in the figure is the hydrodynamic solution,
and it differs from the classical local-response result in
several ways. The first thing we notice is that the dipole
peak is shifted towards higher frequencies, and secondly
we see that new peaks above the plasma frequency have
appeared. The new peaks and the blueshift are clear sig-
natures of nonlocality, and are well known phenomena in
metals [5,6,36,51,52]. There, the peaks are known to be
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Fig. 1: (Colour online) (a) Extinction spectrum for an InSb
nanoparticle in vacuum with R = 150 nm. Charge carriers
are thermally excited, and the temperature is 300 K. (b) Ex-
tinction spectrum for a GaAs nanoparticle in vacuum with
R = 50nm. The doping level is Nd = 1018 cm−3. The dashed
line is the local Drude model, and the full line is the HDM.
Material parameters can be found in table 1.

associated with confined bulk plasmons, and the blueshift
of the dipole peak is found to increase as the particle
gets smaller [5]. The existence of such nonlocal effects
in semiconductors has, to our knowledge, not been pre-
dicted before. Furthermore, the blueshift in fig. 1(a) is
significant, thus facilitating the experimental verification
by, for instance, systematically measuring the peak posi-
tion as a function of particle size.

By using doping, wide-gap semiconductors can also be
used as plasmonic materials. To investigate the predictions
of the HDM for doped semiconductors, we will consider
n-doped GaAs with a donor (e.g. silicon [15]) concentra-
tion of Nd = 1018 cm−3. The data for GaAs is shown in
table 1, and using eqs. (3), (4) and (5) we find β = 4.36×
105 m/s, ωp = 2.24 × 1014 s−1 and γ = 8.72 × 1012 s−1.
In fig. 1(b) the extinction spectrum for a doped GaAs
nanoparticle with R = 50 nm is plotted. Once again we
see oscillations above the plasma frequency and a clear
blueshift.

Although the results in fig. 1(a) and 1(b) appear promis-
ing, it should be noted that the amplitudes of the signals
are about a hundred times weaker than the signal from, for
example, a silver particle of the same size. Experimental
sensitivity is improving, however, and at least one group
has already measured signals of the same magnitude as
the ones predicted here [53].

For particles of intrinsic InSb, the temperature will have
a significant impact on the optical properties as it af-
fects the charge carrier density and thereby the resonance
frequency (as shown experimentally for a planar system
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Fig. 2: (Colour online) (a) Dipole resonance frequency as a
function of temperature for an InSb nanoparticle in vacuum
with R = 150 nm. (b) Dipole resonance frequency as a function
of doping level in a GaAs nanoparticle in vacuum with R =
50 nm. The dashed line is the local Drude model, and the full
line is the HDM. Material parameters can be found in table 1.

in [54]). To illustrate this, the temperature dependence of
the dipole resonance in an InSb nanoparticle is shown in
fig. 2(a). This time, to ensure that the results are accurate
at the higher temperatures, the Fermi-Dirac distribution is
used in the calculations instead of the Boltzmann distribu-
tion. As expected, the resonance frequency increases with
the temperature for both the local and nonlocal solutions.
This effect can be used in new plasmonic experiments
where the resonance frequency is controlled within a wide
range by varying the temperature.

Such a tunability also exists in doped semiconductors
where the resonance frequency instead is controlled by the
doping level (as shown experimentally in [23]). In fig. 2(b),
the dipole peak position in a GaAs nanoparticle is plot-
ted as a function of the donor concentration, and we see
how the resonance frequency goes up as the doping level
increases.

The appearance of nonlocal effects in semiconductors
is in a sense no surprise, as the model used is identical
to the one used for metals (except the expression for β).
What is really noteworthy is the magnitude of the relative
blueshift. For metals, this shift is typically in the order of
5–15% for particles of a few nm [55–58], while the blueshift
seen in fig. 1(a) is as large as 35% despite a radius of
150 nm. The strong blueshift is primarily explained by
the small effective electron mass in InSb, which according
to eq. (2) serves to increase β. Interestingly, the relative
blueshift is directly related to the non-classical fraction of
the energy [59].

To make further comparison with metal nanoparticles,
the blueshift relative to the plasma frequency is in fig. 3

R [nm]
Δ
ω
/ω
p

0001001011

0.1

0.2

0.3

0.4
InSb, T=200 K
InSb, T=300 K
GaAs, Nd=1018 cm-3

GaAs, Nd=1019 cm-3

Ag

Δω

Fig. 3: (Colour online) The nonlocal blueshift Δω relative to
the plasma frequency ωp, as a function of the nanosphere radius
R. Material parameters can be found in table 1. The lines are
cut off with a “×” at the left side where the particles contain
fewer than 50 electrons (being a metal, silver is cut off below
1nm).

shown as a function of particle radius for various materials.
The curves were calculated by subtracting the dipole fre-
quency in the local model from the dipole frequency in the
HDM and dividing the result by ωp. The red and orange
lines show the relative blueshift for InSb at T = 200 K
and 300 K, respectively (see the material parameters in
table 1). We see that the blueshift increases as the semi-
conductor particle becomes smaller, quite analogous to
what happens for noble metals [5]. But unlike for met-
als, the curves in fig. 3 also show that a lower temperature
gives larger blueshifts for all semiconductor particle sizes.
It has to be remembered, though, that the amplitude of
the signal also decreases when the temperature is lowered,
making detection harder. The “×” at the end of each line
indicates the radius where the particle contains 50 free
electrons (this was the chosen lower limit of the model).

The possibility of observing nonlocal effects in semicon-
ductors was mentioned by Hanham et al. in [8] where they
studied the optical response of InSb disks with diameters
of 20 μm. However, for the simulation of their results they
only used the local Drude model. From fig. 3, we now
see that this was justified for individual InSb particles at
300 K, as the nonlocal blueshift is negligible for radii larger
than 1 μm.

The blue and pale blue lines in fig. 3 show the blueshifts
for GaAs particles with doping levels of 1018 cm−3 and
1019 cm−3, respectively. Although the blueshifts are
smaller than for InSb, the tendency is the same.

Finally, the black line in fig. 3 shows the blueshift for
silver particles with the parameters β = 1.08 × 106 m/s,
ωp = 1.36 × 1016 s−1 and γ = 3.80 × 1013 s−1 [6], and
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where ε∞(ω) is found using the method from [38] and data
from [60]. We here see that the relative blueshift is smaller
than for the semiconductors and occurs for much smaller
particles.

The hydrodynamic model is simple both conceptually
and computationally, and yet it has showcased an extraor-
dinary predictive power for the optical properties of met-
als. Semiconductors, however, represent a new group of
materials were the HDM has not yet been tested, and the
situation might be more complicated. As mentioned in
the introduction, semiconductors may support excitons,
an effect we have ignored here. Another phenomenon rel-
evant for especially binary and ternary semiconductors is
optical phonons which may couple to the plasmon if the
resonance frequency is in the same region. This has been
investigated for InSb [61,62] and GaAs [18,63], and the
mechanism could be included in the dielectric function as
an extra term (as is done in [12]).

For InSb there is yet another effect that may have to be
taken into account, namely the presence of a space charge
layer. This charge carrier depleted layer stretching a few
hundred angstrom into the material has been discussed in
earlier papers [12,64–66]. Such a layer would be significant
for the optical properties of the InSb particle, and the
question of how it would affect the nonlocal effects is still
to be answered.

The size-dependent nonlocal effects which have been in-
vestigated here would be relevant when making experi-
mental predictions for semiconductor nanostructures in
general. But semiconductors could also be used specifically
for research in nonlocal effects, as the required particle
sizes are much larger in semiconductors than in metals.
This will be an advantage in experimental studies where
the extremely small sizes of metal nanoparticles has been
a challenge. Another material that also permits observa-
tion of nonlocality in larger structures than with metals
is graphene. Indeed, blueshifts in arm-chair–terminated
graphene nanoflakes could be identified as hydrodynamic
nonlocal blueshifts [67]. Very recently, tunable nonlo-
cal response of graphene has been observed in near-field
imaging experiments [68]. Both graphene and semicon-
ductors are therefore suited for research in nonlocality, as
they allow the experimentalists to explore larger structures
and still be able to see deviations from the local response
model.

Conclusions. – We have shown that size-dependent
nonlocal effects are present in semiconductor particles that
contain enough charge carriers to be described by the hy-
drodynamic Drude model. These particles are too big to
behave as quantum dots, yet too small for bulk theory
to apply. Moreover, we find that the blueshift relative to
the plasma frequency is much larger than what is seen in
metals and that it occurs in larger particles. This find-
ing makes semiconductors interesting and suitable can-
didates for further experimental explorations of nonlocal
electrodynamic effects: if the required structures can be

upscaled, then the fabrication is correspondingly simpli-
fied, and investigations of new, more complex geometries
become realistic.

In addition, semiconductors provide the possibility of
tuning the optical response by changing the charge carrier
density, for instance by temperature control and doping
as investigated here. If nanoscale semiconductor struc-
tures in the future will be used in new plasmonic ex-
periments and devices, proper modeling of the materials
becomes crucial. Based on our results from the hydrody-
namic model, we have clarified when nonlocality is not
important and the Drude model provides sufficient de-
scription, but also when nonlocal effects should be taken
into account.
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Longitudinal dielectric function

We present a simple derivation of the longitudinal dielectric function for a semiconductor using the
Lindhard approximation. The method is inspired by the one in ref. [1].

The starting point is Fermi’s golden rule, from which the following general expression for the longi-
tudinal dielectric function can be found:

ε(q, ω) = 1 +
2e2

ε0q2
1

V

∑

αβ

|〈ψα|eiq·r|ψβ〉|2
Eβ − Eα − ~ω − iη

[f(Eα)− f(Eβ)], (S1)

where q is the wavevector, ω is the frequency, V is the volume, e is the elementary charge and E is
the energy. The functions ψα and ψβ are the wave functions of the states α and β between which the
excitation takes place. Furthermore, f is the Fermi-Dirac distribution function and η is a small real
number originating from the Kramers-Kronig transformation, and for now it has no physical significance.
However, later it will become clear that η is closely related to the phenomenological damping function in
the hydrodynamic dielectric function.

Applying the Lindhard approximation, according to which only a single parabolic band is considered
and the wavefunctions are assumed to be plane waves, the dielectric function becomes

ε(q, ω) = 1 +
2e2

ε0q2
1

V

∑

k

f(k)− f(k + q)

E(k + q)− E(k)− ~ω − iη
, (S2)

since the matrix element equals 1. It has also been used that the excitation takes place from wavevector
k to wavevector k + q. This equation can be rewritten as

ε(q, ω) = 1 +
4e2

ε0q2
1

V

∑

k

f(k)
E(k + q)− E(k)

(E(k + q)− E(k))2 − (~ω + iη)2
. (S3)

Without loss of generality it is now assumed that q is oriented in the z-direction, and we find that

E(k + q)− E(k) =
~2

2m∗e

(
2k · q + q2

)
=

~2

2m∗e

(
2kzq + q2

)
, (S4)

where m∗e is the (density-of-states) effective mass of the electron. To proceed, we next make the assump-
tion that q is small compared to ω, which is reasonable when considering electromagnetic radiation. This
also means that E(k+ q)−E(k)� ~ω+ iη and the denominator can be expanded as a geometric series

ε(q, ω) = 1− 4e2

ε0q2
1

V

∑

k

f(k)
E(k + q)− E(k)

(~ω + iη)2


 1

1− (E(k+q)−E(k))2

(~ω+iη)2




= 1− 4e2

ε0q2
1

V

∑

k

f(k)
E(k + q)− E(k)

(~ω + iη)2

(
1 +

(E(k + q)− E(k))2

(~ω + iη)2
+

(E(k + q)− E(k))4

(~ω + iη)4
+ · · ·

)
.

(S5)

1



Now the expression in eq. (S4) is used, and it is taken into account that terms containing odd powers of
kz cancel out:

ε(q, ω) = 1− 4e2

ε0q2

(
1

(~ω + iη)2
~2q2

2m∗e

1

V

∑

k

f(k) +
1

(~ω + iη)4
3~6q4

2m∗e
3

1

V

∑

k

f(k)k2z + · · ·
)
. (S6)

To continue from here, we have to decide upon the nature of the charge carriers, as this will determine
how

∑
k is evaluated. In the article, we consider both n-doped semiconductors and thermally excited

electrons in intrinsic semiconductors, and we will therefore focus on these two cases. Starting with the
case of doped semiconductors, we will make the assumption that the distribution f(k) is a step-function
with the step occurring at the Fermi wavevector kF . This is the same as setting the temperature equal
zero, and can be justified when the doping is high enough to ignore the temperature spread. The sum in
the first term can then be solved by replacing it with an integral

1

V

∑

k

f(k) =
1

V Vk

∫
dkf(k) =

4π

V Vk

∫ kF

0

dkk2 =
4π

V Vk

k3F
3

=
n

2
, (S7)

where Vk is the volume of a single state in k-space, and n is the charge carrier density. On the right side
we divide by 2 to account for the spin degeneracy. The sum in the second term can be derived with a
similar method

1

V

∑

k

f(k)k2z =
1

V Vk

∫ kF

0

dkk4
∫ π

0

dθ sin θ cos2 θ

∫ 2π

0

dφ =
4π

3V Vk

k5F
5

=
k2F
5

n

2
, (S8)

and now the dielectric function becomes

ε(q, ω) = 1− 4e2

ε0q2

(
1

(~ω + iη)2
~2q2

2m∗e

n

2
+

1

(~ω + iη)4
3~6q4

2m∗e
3

k2F
5

n

2
+ · · ·

)
. (S9)

Assuming that (~ω + iη)2 ≈ ~2ω2 + 2i~ωη and introducing the damping coefficient γ = 2η/~ we get

ε(q, ω) = 1− ω2
p

ω2 + iγω
− ω2

p

(ω2 + iγω)2
3~2k2F
5m∗e

2 q
2 − · · · , (S10)

where

ω2
p =

e2n

ε0m∗e
(S11)

is the plasma frequency. We will now define the nonlocal parameter for doped semiconductors to be

β2 =
3~2k2F
5m2

=
3

5
v2F , (S12)

where vF is the Fermi velocity. Note, that this definition is identical to the one for metals[2]. With this
definition, the dielectric function becomes

ε(q, ω) = 1− ω2
p

ω2 + iγω
− ω2

p

(ω2 + iγω)2
β2q2 − · · · . (S13)

The final step is to show that the hydrodynamic dielectric function

ε(q, ω) = ε∞ −
ω2
p

ω2 + iγω − β2q2
, (S14)

presented in eq. (1) in the article is in fact a good approximation to eq. (S13). To do this eq. (S14) is
expanded in a geometric series

ε(q, ω) = ε∞ −
ω2
p

ω2 + iγω
· 1

1− β2q2

ω2+iγω

= ε∞ −
ω2
p

ω2 + iγω

(
1 +

β2q2

ω2 + iγω
+

β4q4

(ω2 + iγω)2
+ · · ·

)

= ε∞ −
ω2
p

ω2 + iγω
− ω2

p

(ω2 + iγω)2
β2q2 − ω2

p

(ω2 + iγω)3
β4q4 − · · · , (S15)
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and we see that this is nearly identical to eq. (S13). Among the differences is ε∞ which is absent from
eq. (S13). This parameter represents the interband transitions, which are ignored in the derivation, and
we simply add it by hand. In the simulation, a constant value found in a data handbook is used for ε∞.
Secondly, it should be noted that the hydrodynamic dielectric function only matches up with eq. (S13)
to second order in q and therefore includes nonlocality to the lowest order (whereas the Drude model
doesn’t include nonlocality at all).

Turning to the thermally excited intrinsic semiconductor, we need to evaluate the
∑

k sums. For the
function f(k), the correct choice would be the Fermi-Dirac distribution, but since this would prevent us
from finding a simple analytic expression, we will approximate f(k) by the Boltzmann distribution. This
is a good choice as long Ec−EF � kBT , where Ec is the conduction band edge, EF is the Fermi energy,
kB is the Boltzmann constant and T is the temperature. With this approximation, the first sum becomes

1

V

∑

k

f(k) =
4π

V Vk

∫ ∞

0

dkk2f(k) ≈ 4π

V Vk

(
2m∗e
~2

) 3
2
∫ ∞

Ec

dE
√
E − Ec exp

(
−E − EF

kBT

)
, (S16)

where it has been used that

E = Ec +
~2k2

2m∗e
, (S17)

and

f(E) =
1

exp
(
E−EF

kBT

)
+ 1
≈ exp

(
−E − EF

kBT

)
. (S18)

We now introduce the variable

ρ =
E − EF
kBT

, (S19)

which results in the following expression

1

V

∑

k

f(k) ≈ 4π

V Vk

(
2m∗ekBT

~2

) 3
2

exp

(
EF − Ec
kBT

)∫ ∞

0

dρρ
1
2 e−ρ . (S20)

The integral is found to be ∫ ∞

0

dρρ
1
2 e−ρ = Γ

(
3

2

)
=

√
π

2
, (S21)

where Γ is the gamma function. If the Boltzmann distribution does not apply, the integral cannot be
reduced to such a simple expression and instead has to be evaluated by numerical methods. The sum
therefore becomes

1

V

∑

k

f(k) ≈ 4π

V Vk

(
2m∗ekBT

~2

) 3
2

exp

(
EF − Ec
kBT

) √
π

2
=
n

2
. (S22)

Here n is the density of the electrons alone as the holes are ignored. Using a similar method, the sum in
the second term of eq. (S6) is found to be

1

V

∑

k

f(k)k2z ≈
4π

V Vk

(
2m∗ekBT

~2

) 5
2

exp

(
EF − Ec
kBT

)
1

3
Γ

(
5

2

)
=
m∗ekBT

~2
n

2
. (S23)

Inserting these expressions for the sums back into eq. (S6) results in a dielectric function similar to eq.
(S13), but where β now is given by

β2 =
3kBT

m∗e
, (S24)

while the plasma frequency is again given by eq. (S11). This concludes the derivation of the longitu-
dinal dielectric function for doped semiconductors and intrinsic semiconductors with thermally excited
electrons.
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The hydrodynamic Drude model (HDM) has been successful in describing the optical properties of metallic
nanostructures, but for semiconductors where several different kinds of charge carriers are present an extended
theory is required. We present a two-fluid hydrodynamic model for semiconductors containing electrons and holes
(from thermal or external excitation) or light and heavy holes (in p-doped materials). The two-fluid model predicts
the existence of two longitudinal modes, an acoustic and an optical, whereas only an optical mode is present in
the HDM. By extending nonlocal Mie theory to two plasmas, we are able to simulate the optical properties of
two-fluid nanospheres and predict that the acoustic mode gives rise to peaks in the extinction spectra that are
absent in the HDM.

DOI: 10.1103/PhysRevB.97.115415

I. INTRODUCTION

Plasmonics, the study of collective excitations of elec-
trons, takes place on ever smaller scales as fabrication and
characterization techniques continue to improve. While this
allows for the design of entirely new devices and materials
with promising properties, it also requires improved theoretical
tools to properly model the systems.

Metals, by far the most widely used plasmonic materials,
are often described very accurately by the Drude model. But
when the sizes approach the nanoscale, the model is no longer
able to explain experimentally observable phenomena like,
for example, the blueshift of the resonance frequency of the
localized surface plasmon (LSP) in metallic nanospheres [1].
An improved model that has been successful in describing
the optical properties of metals on the nanoscale is the
hydrodynamic Drude model (HDM) [2–12]. In this model,
the polarization depends nonlocally on the electrical field,
and the aforementioned blueshift appears as a size-dependent
nonlocal effect [7,13,14]. Furthermore, the HDM also predicts
the existence of confined bulk plasmons in nanoparticles [5,7],
something that also has been found experimentally [15].

While metals are the most commonly used plasmonic
materials because of their large density of free electrons,
semiconductors are also interesting due to the tunability of
the electron density, either statically by doping or dynamically
by applying a bias. Furthermore, intrinsic semiconductors
may contain plasmas created either thermally or by external
excitations (e.g., from a laser), and here the electron density
can be controlled dynamically with the temperature or the
excitation energy, respectively. Plasmonics has already been
shown in several papers for doped semiconductors [16–28],
biased semiconductors [29–32], laser excited semiconductors
[33], and thermally excited intrinsic semiconductors [34–37].

Among these studies, Refs. [24–30] investigated plas-
mons in nanostructures of semiconductors, but except for
Refs. [27,29] they all used the Drude model to describe their

results. And just as for metals one would expect that the Drude
model only is accurate for semiconductor structures down
to a certain size. Now, it is well known that semiconductor
particles of only a few nanometers behave as quantum dots, but
in the intermediate size regime between structures described
by the Drude model and quantum dots a different theoretical
framework is needed (see, e.g., Refs. [38–40]).

Recently we made a case for applying the HDM to semi-
conductor structures in the mentioned intermediate size regime
[41]. In that paper, we adapted the HDM to nanospheres made
of doped semiconductors and intrinsic semiconductors with
thermally excited charge carriers. In both cases we found
that the nonlocal blueshift was even more pronounced than
in metals and occurred in larger particles. In essence, this can
be attributed to the increased Fermi wavelength and smaller
effective mass in semiconductors, as compared to that in
metals. Based on the HDM we also predicted the existence
of standing bulk plasmons above the plasma frequency in
semiconductors, and very recently these resonances were mea-
sured by de Ceglia et al. [42] in doped semiconductors. These
interesting new developments are no doubt only the beginning
of a series of investigations of hydrodynamic behavior in
various semiconductor structures.

In the present paper, we propose an extension of the
HDM for semiconductors. In Ref. [41] we assumed that only
electrons were present as charge carriers (and so did de Ceglia
et al. [42]), and due to the generally smaller effective mass
of the electrons compared to the holes this is a reasonable
approximation whenever electrons are present as majority
charge carriers. In general, however, semiconductors may
contain several different kinds of charge carriers such as
electrons, heavy holes, and light holes, and ideally all should
be taken into account. Therefore, the aim of this paper is to
develop a hydrodynamic model for materials containing more
than one kind of charge carrier. We will restrict ourselves
to include only two different types of charge carriers, e.g.,
electrons and holes or heavy and light holes, and call the model

2469-9950/2018/97(11)/115415(16) 115415-1 ©2018 American Physical Society
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the hydrodynamic two-fluid model (as opposed to the HDM
which contains only one hydrodynamic fluid). Other models
that include multiple charge carriers already exist in the form
of transport equations [43,44], and quantum-mechanical and
semiclassical theories [45–50]. And while Ref. [47] briefly
considers the hydrodynamic model for a two-fluid system,
we will here present a more detailed analysis of the optical
properties as well as consider finite systems. Our extension
of a single fluid (appropriate for majority-carrier systems)
to a two-fluid description shows interesting phenomena be-
yond the independent-fluids approximation that constitute an
integral part of the local-response electrodynamics of doped
semiconductors, i.e., the mere addition of electron and hole
conductivities [44].

In the next section, we will present the theoretical foun-
dation for the two-fluid model, which will then be supported
by a microscopic derivation in Sec. III. In Sec. IV we will
discuss some of the general properties of the model, while in
Sec. V we will focus on systems of spherical geometry and
derive extended versions of the Mie coefficients that take two
hydrodynamic fluids into account. These coefficients will be
used in Sec. VI, where the optical properties of semiconductor
nanoparticles will be calculated.

II. THE MODEL

In the traditional HDM, the electrical field and the current
density are determined by a wave equation and a hydrodynamic
equation of motion [9]. A natural extension to the HDM is
therefore to include multiple hydrodynamic plasmas, each
described with a hydrodynamic equation of motion. In the
model presented here, we will consider two different kinds of
charge carriers (or fluids), such as electrons and holes or light
and heavy holes. The governing equations for the two-fluid
model are therefore

β2
a

ω2 + iγaω
∇(∇ · Ja) + Ja = iωε0ω

2
a

ω2 + iγaω
E, (1a)

β2
b

ω2 + iγbω
∇(∇ · Jb) + Jb = iωε0ω

2
b

ω2 + iγbω
E, (1b)

−∇ × ∇ × E + ω2

c2
ε∞E = −iμ0ω(Ja + Jb), (1c)

where Eqs. (1a) and (1b) are the linearized hydrodynamic
equations of motion related to the charge carriers a and b,
respectively, and Eq. (1c) is the wave equation originating from
Maxwell’s equations. Here ωa and ωb are the plasma frequen-
cies for the two fluids, γa and γb are the damping constants,
and βa and βb are the nonlocal parameters. Note that if one of
the current densities is set to zero (whereby the corresponding
hydrodynamic equation can be removed) the equations reduce
to the original equations of the HDM [see Eqs. (15) in Ref. [9]].
Although not considered here, it is also clear that the model
easily could be extended to more than two types of charge
carriers.

The real-space equations will be the starting point for most
practical problems, but it can also be instructive to look in
the reciprocal space as well. If the material is assumed to be

infinite, the spacial Fourier transforms of Eqs. (1) are [51]

− β2
i

ω2 + iγiω
q(q · Ji) + Ji = iωε0ω

2
i

ω2 + iγiω
E, (2)

q × q × E + ω2

c2
ε∞E = −iμ0ω(Ja + Jb), (3)

where q is the wave vector and i = a,b. Let us now consider
the transversal and the longitudinal parts of the field separately.
Starting with the transversal, or divergence-free, part of the
field, this has the property q · ET = 0 (and similarly for JT

a and
JT

b ). This also means that q × q × ET = −q2ET , and Eqs. (3)
and (2) can be combined to

q2 =
(

ε∞ − ω2
a

ω2 + iγaω
− ω2

b

ω2 + iγbω

)
ω2

c2
. (4)

From the relation εT ω2/c2 = q2 we now see that the transver-
sal dielectric function is given by

εT (ω) = ε∞ − ω2
a

ω2 + iγaω
− ω2

b

ω2 + iγbω
. (5)

The longitudinal, or rotation-free, part of the field has the
property q × EL = 0 (and similarly for JL

a and JL
b ). This means

that q(q · JL
i ) = q2JL

i , and Eqs. (3) and (2) give us

0 = ε∞ − ω2
a

ω2 + iγaω − β2
aq

2
− ω2

b

ω2 + iγbω − β2
bq

2
. (6)

From the relation εL = 0 we now see that the longitudinal
dielectric function is given by

εL(q,ω) = ε∞ − ω2
a

ω2 + iγaω − β2
aq

2
− ω2

b

ω2 + iγbω − β2
bq

2
.

(7)

We here see that εL is nonlocal (i.e., depends on the wave
number q), while εT is local. This can be compared with the
dielectric functions of the single-fluid HDM [51]:

εT (ω) = ε∞ − ω2
p

ω2 + iγ ω
, (8a)

εL(q,ω) = ε∞ − ω2
p

ω2 + iγ ω − β2q2
, (8b)

where εT and εL also are local and nonlocal, respectively.
For the two-fluid model, we notice that if the fluids have the

same γ ’s and β’s then the plasma frequencies in the nominators
of Eqs. (5) and (7) could be combined into a single effective
parameter given by

ω2
eff = ω2

a + ω2
b, (9)

whereby the expressions for εT and εL become equal to
Eqs. (8a) and (8b), respectively. In other words, a two-fluid
system can effectively be described by the single-fluid HDM
whenever both γa = γb and βa = βb.

III. MICROSCOPICAL FOUNDATION

In this section, we will show that the expression for εL

in the two-fluid model in fact can be derived from quantum
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mechanics by using a slightly modified version of the Lind-
hard approximation. We will consider a system of fermions
described by the Hamiltonian H0 subject to a perturbation of
the form

H1 = U0e
i(q·r−ωt) + U ∗

0 e−i(q·r−ωt), (10)

where U0 is the amplitude of the perturbation. According to
Fermi’s “golden rule,” this results in the following expression
for the longitudinal dielectric function [52]:

εL(q,ω) = 1 + 2e2

ε0q2

1

V

∑
αβ

|〈ψβ |eiq·r|ψα〉|2
Eβ − Eα − h̄ω − iη

× [f (Eα) − f (Eβ)], (11)

where V is the volume, e is the elementary charge, and E is the
energy (the electrical field is not used in this section so there
is no risk of confusion). The excitation takes place between
the states |ψα〉 and |ψβ〉, the function f is the Fermi-Dirac
distribution, and η is a small real number originating from the
Dirac identity [52].

We will now apply the Lindhard approximation in which
the bands are assumed to be isotropic and perfectly parabolic
and the wave functions are plane waves. This means that
the matrix element in εL(q,ω) equals 1 when the excitation
is from k to k + q and zero otherwise. But different from
the typical Lindhard approximation in which only a single
band is taken into account, we will here include two bands
in the derivation. Excitations between these two bands are
neglected, however, which is a reasonable approximation when
considering energies smaller than the band gap. The result is

εL(q,ω) = 1 + χa(q,ω) + χb(q,ω), (12)

where the susceptibilities for bands a and b are given by

χi(q,ω) = 2e2

ε0q2

1

V

∑
k

fi(k) − fi(k + q)

Ei(k + q) − Ei(k) − h̄ω − iη
.

(13)

In Appendix A we show that in the q → 0 limit Eq. (13)
can be rewritten as

χi(q,ω) = − ω2
i

ω2 + iγ ω
− ω2

i

(ω2 + iγ ω)2
β2

i q
2 − . . . , (14)

where γ is the damping constant and the plasma frequencies
are given by

ω2
i = e2ni

ε0m
∗
i

. (15)

Here ni and m∗
i are the charge-carrier density and the effective

mass, respectively, of band i. The nonlocal parameter βi

depends on the nature of the charge carriers. In this paper we
will consider them to be electrons and holes in an intrinsic
semiconductor originating either from thermal excitation or
laser excitation across the band gap, or heavy and light holes
in a p-doped semiconductor. As shown in Appendix A, the
nonlocal parameter is in these cases given by

Thermally excited
charge carriers β2

i = 3kBT

m∗
i

, (16)

Laser excited charge carriers
Heavy and light holes β2

i = 3k2
Fi h̄

2

5m∗2
i

= 3

5
v2

Fi,

(17)

where T is the temperature, kB is Boltzmann’s constant,
and kFi and vFi are the Fermi wave number and the Fermi
velocity, respectively, of band i. For thermally excited charge
carriers, it has been assumed that the temperature is low enough
for the Fermi-Dirac distribution to be approximated by the
Boltzmann distribution (see Appendix A). For laser-excited
charge carriers and heavy and light holes, the distribution has
been approximated with a step function. This also means that a
quasiequilibrium is assumed to form in the laser-excited semi-
conductor. Expressions for ni and kFi are found in Appendix B.

If we assume that β2
i q

2 � ω2 + iγ ω, then the expression
in Eq. (14) can be rewritten by using the fact that it resembles a
geometric series to first order. Together with Eq. (12), we then
find that the longitudinal dielectric function is given by

εL(q,ω) = 1 − ω2
a

ω2 + iγ ω − β2
aq

2
− ω2

b

ω2 + iγ ω − β2
bq

2
,

(18)

which is almost identical to Eq. (7) from previous section.
The main difference is the presence of ε∞ in Eq. (7) which
contains the interband transitions. This parameter is simply
added “by hand,” and the value can often be found as a constant
in data books. The second discrepancy is the damping constant
γ which in Eq. (7) is different for the two charge carriers. Since
the charge carriers are expected to have different mobilities μa

and μb, and the damping constants are related to the mobilities
by [53]

γi = e

m∗
i,condμi

, (19)

we will allow γi to assume different values for the two charge
carriers. Note that the effective mass entering Eq. (19) is the
conductivity effective mass, while m∗

i used in Eqs. (15)–(17) is
the density-of-states effective mass.

The parameters ωi , βi , and γi will in general be different
for the two fluids, but there are situations where they coincide.
An intrinsic semiconductor with identical effective masses and
mobilities of electrons and holes would according to Eqs. (15)
and (16) have the same plasma frequency, β and γ for the two
fluids. A more typical semiconductor where m∗

e < m∗
h could

also be modulated to obtain βe = βh by combining p doping
and laser excitation. A larger density of holes would then be
used to compensate for the fact that they are heavier than
electrons, and obtaining m∗

h/m∗
e = kFh/kFe would according

to Eq. (17) result in identical β’s [note that k3
Fi = 3π2ni

according to Eq. (A6)].

IV. BULK AND GENERAL PROPERTIES

In this section, we will analyze some of the general proper-
ties of the two-fluid model as well as properties related to the
infinite medium. The vector wave equations derived here will
also be used in Sec. V.
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A. Normal modes

For the single-fluid HDM, it has been found useful to
derive a set of homogeneous equations for the transversal
and longitudinal components of the current density [54] as
originally introduced by Boardman and Paranjape [55]. We
will accordingly derive a set of Boardman equations for the
two-fluid model. The first step is to apply either the curl or the
divergence to Eqs. (1) whereby a set of equations is obtained
for either the transversal or the longitudinal fields, respectively.
This is shown in Appendix C using a compact matrix notation.
Secondly, we introduce the following linear relations for both
transversal (T ) and longitudinal (L) current densities:

Jz
a = az

1Jz
1 + az

2Jz
2, (20a)

Jz
b = bz

1Jz
1 + bz

2Jz
2, (20b)

where z = T ,L. Notice that all current densities share the prop-
erties ∇ × J = ∇ × JT and ∇ · J = ∇ · JL. We now require
that J1 is independent of J2, which results in eight equations
in total: For both curl and divergence we get two for both J1

and J2. The four equations for the longitudinal fields

[
β2

a∇2 + ω(ω + iγa) − ω2
a

ε∞

(
1 + bL

j

aL
j

)]
∇ · Jj = 0,

(21a)[
β2

b∇2 + ω(ω + iγb) − ω2
b

ε∞

(
1 + aL

j

bL
j

)]
∇ · Jj = 0

(21b)

with j = 1,2 are the Boardman equations for the divergence.
The four equations for the transversal fields

[
c2∇2 + ω2ε∞ − ω2ω2

a

ω(ω + iγa)

(
1 + bT

j

aT
j

)]
∇ × Jj = 0,

(22a)[
c2∇2 + ω2ε∞ − ω2ω2

b

ω(ω + iγb)

(
1 + aT

j

bT
j

)]
∇ × Jj = 0

(22b)

are the Boardman equations for the curl. The Boardman
equations are useful tools when finding the current densities
and the electrical fields, and below we use the Boardman
equations for the divergence to find the dispersion relations
for the longitudinal fields.

B. Vector wave equation

When solving Maxwell’s equations for any geometry, such
as the spherically symmetric systems considered in Sec. V, a
suitable starting point is the vector wave equation. Therefore
we will now derive the vector wave equation for both the
transversal and the longitudinal electrical fields and simulta-
neously find the dispersion relations.

Considering purely transversal fields, Eqs. (1) become

JT
i = iωε0ω

2
i

ω2 + iγiω
ET i = a,b, (23)

∇2ET + ω2

c2
ε∞ET = −iμ0ω

(
JT

a + JT
b

)
, (24)

which can be combined directly into the vector wave equation
for the transversal field

∇2ET + k2
T ET = 0, (25)

where the transversal wave number is given by

k2
T = ω2

c2

(
ε∞ − ω2

a

ω2 + iγaω
− ω2

b

ω2 + iγbω

)
. (26)

Notice that this is consistent with the expression for εT in
Sec. II, but differs from that by being valid for any geometry
(and not just for the infinite case).

Deriving the vector wave equation for the longitudinal
field requires a slightly different procedure. Turning to the
Boardman equations (21a) and (21b) with j = 1, we notice
that they both have the form

(∇2 + k2)∇ · J1 = 0. (27)

This also means that the variable k must be the same in both
cases

k2 = ω(ω + iγa)

β2
a

− ω2
a

β2
a ε∞

(
1 + bL

1

aL
1

)

= ω(ω + iγb)

β2
b

− ω2
b

β2
b ε∞

(
1 + aL

1

bL
1

)
. (28)

From this we find an expression for the ratio bL
1 /aL

1 which we
will call αL

1 :

bL
1

aL
1

= αL
1 = β2

a ε∞
ω2

a

1

2

(
k2
a − k2

b

∓
√(

k2
a − k2

b

)2 + 4ω2
aω

2
b

β2
aβ

2
b ε

2∞

)
,

k2
i =

(
ω(ω + iγi) − ω2

i

ε∞

)
1

β2
i

i = a,b. (29)

Now, the same procedure can be carried out for Eqs. (21a)
and (21b) with j = 2, and this gives us instead αL

2 = bL
2 /aL

2 .
However, the expression for αL

2 is exactly the same as the one
for αL

1 because the Boardman equations for the divergence of
J1 and J2 are the same. Although this seems strange, it is in fact
exactly what we would expect: since we have put no restraints
on ∇ · J1 and ∇ · J2 (or equivalently JL

1 and JL
2 ), they each

have to contain both solutions [“+” and “−” in Eq. (29)]. We
can therefore chose αL

1 as the “−” solution and αL
2 as the “+”

solution (and this will be done henceforth).
We can also obtain an expression for k2 by inserting either

αL
1 or αL

2 back into Eq. (28). The result is two different wave
numbers belonging to JL

1 and JL
2 , respectively:

k2

L,
1
2

= 1

2

(
k2
a + k2

b ±
√(

k2
a − k2

b

)2 + 4ω2
aω

2
b

β2
aβ

2
b ε

2∞

)
. (30)
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FIG. 1. The dispersion relations of the optical mode (blue lines)
and the acoustic mode (red lines). The full and dashed lines show the
real and imaginary components, respectively, of kL,j . The parameters
are ωb/ωa = 2, βb/βa = 4, γa = γb = 0.01ωa , and ε∞ = 1. Notice
that the optical mode has a finite imaginary component (i.e., is
damped) below ωeff/ε

1/2
∞ . Due to the small damping constants, the

red dashed line lies almost exactly on top of the y axis.

Here k has been given the subscript “L,” because it turns out
that this is in fact the longitudinal wave number. This can be
seen by taking the divergence of Ampere’s law and defining
the longitudinal fields EL

1 and EL
2 where EL

j ∝ JL
j . Introducing

this into Eq. (27) we find

∇2EL
j + k2

L,j EL
j = 0 j = 1,2, (31)

which is the sought vector wave equation for the longitudinal
fields.

C. Dispersion for an infinite medium

With Eq. (30) we are now in a position to plot the dispersion
relations for the longitudinal modes kL,j (ω) for an infinite
medium. In Fig. 1 we show kL,j (ω)βa/ωa as a function of
ω/ωa , and we notice that the two modes (j = 1,2) have very
different appearances. The mode kL,1(ω) follows almost a
straight line, while kL,2(ω) is real-valued above a line given
by ωeff/ε

1/2
∞ with ω2

eff = ω2
a + ω2

b and imaginary (damped)
below it. Because the j = 2 mode has nonzero ω for kL,2 ≈ 0,
it can be excited by electromagnetic radiation, and for that
reason it is denoted the optical mode. The j = 1 mode is
denoted the acoustic mode, and unless methods for momentum
matching are applied it cannot be excited by electromagnetic
radiation. The appearance of an optical and an acoustic branch
in systems with two different kinds of charge carriers has been
observed before in random-phase-approximation models for
infinite media [45,48,49]. Here we have found the formation
of an optical and an acoustic mode in a two-fluid hydrodynamic
model for an infinite medium, something that was briefly
touched upon by Schaefer and von Baltz [47]. In Sec. VI we
will analyze both modes in finite systems.

The graphical presentation in Fig. 1 can be supported by
making approximations to Eq. (30). By isolating the frequency

such that we obtain ωj (k), and taking the limit k → 0, we get
the following expressions (ignoring loss):

ω2
1(k) ≈ ω2

bβ
2
a + ω2

aβ
2
b

ω2
eff

k2, (32a)

ω2
2(k) ≈ ω2

eff

ε∞
+ ω2

aβ
2
a + ω2

bβ
2
b

ω2
eff

k2. (32b)

Here it is clear that the acoustic mode (ω1) has a linear
dependence on k, while the optical mode (ω2) mainly is
imaginary below the line ωeff/ε

1/2
∞ .

In Fig. 1 we also see that Im(kL,2) is cut off at
Im(kL,2)βa/ωa ≈ 1.1 for ω = 0. More generally the cutoff
value is Im(kL,2) = (ω2

a/β
2
a + ω2

b/β
2
b )1/2/ε

1/2
∞ as follows from

Eq. (30). This is no unique property of the two-fluid model,
and the single-fluid HDM has a similar cutoff at ωp/(βε

1/2
∞ )

[see the expression for kL below Eq. (37) in Sec. V].
That the model contains two longitudinal modes follows

directly from the fact that it includes two different kinds of
charge carriers. It can be compared with the single-fluid HDM
that only has one longitudinal mode. This is an optical mode,
i.e., damped below a certain frequency, and for this reason
no longitudinal excitations are expected in this low-frequency
region [54]. The two-fluid model, on the other hand, also
has an acoustic mode which in principle could give rise to
excitations below ωeff/ε

1/2
∞ . In Sec. VI we will consider the

optical properties of spherical particles. There we will see that
peaks indeed emerge in the spectrum below the dipole LSP as
a direct consequence of the acoustic mode. In that section we
will also show that at higher frequencies the two fluids will
decouple, and the optical response then will resemble that of
two independent charge-carrier species.

V. EXTENDED MIE THEORY

We wish to analyze the two-fluid model for finite systems,
and in this paper we will focus on spherically symmetric
systems. Maxwell’s equations were originally solved for
transversal waves in spherical geometry by Mie [56], and
Ruppin later found a solution including longitudinal waves
[57] which has been used together with the HDM for spherical
metal particles [5,7,58]. The addition of a second longitudinal
wave, however, results in a different system of equations, and
here we will derive the Mie coefficients for the two-fluid model.

In spherical geometry, the general solutions to the transver-
sal wave equation [Eq. (25)] are me

oml and ne
oml , and the

solutions to the longitudinal wave equation [Eq. (31)] are le
oml

[59]. Here “e” and “o” are short-hand notation for even and
odd, and m and l are integers for which m � l holds. We
now consider a typical experimental scenario where a plane
wave Ei is incident on a spherical particle which results in
a wave scattered (or reflected) from the particle Er and a
wave transmitted into the particle Et . Because the functions
me

oml(kT ,r), ne
oml(kT ,r), and le

oml(kL,j ,r) form a complete basis,
any wave can be written as a linear combination of these. For
an x-polarized plane wave propagating in the z direction, it can
be shown that the linear combination only uses functions of the
forms mo1l , ne1l , and le1l [59]. Furthermore, we will assume
that the exterior medium is purely dielectric, which means that
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the incident and reflected fields can be written in terms of mo1l

and ne1l alone. This means that

Ei(r,t)

= E0e
−iωt

∑
l=1

il
2l + 1

l(l + 1)

(
m(1)

o1l(kD,r) − in(1)
e1l(kD,r)

)
,

(33)

Er (r,t)

= E0e
−iωt

∑
l=1

il
2l + 1

l(l + 1)

(
ar

l m(3)
o1l(kD,r) − ibr

l n(3)
e1l(kD,r)

)
,

(34)

where kD = ε
1/2
D ω/c and εD is the permittivity of the sur-

rounding dielectric. The superscripts 1 and 3 indicate that
the contained spherical Bessel functions are Bessel functions
of the first kind (jl) and Hankel functions of the first kind
(h(1)

l ), respectively. The expansion coefficients ar
l and br

l in
the reflected field are known as the Mie coefficients, and the
primary goal in this section is to obtain expressions for these.

The transmitted field (i.e., inside the sphere) contains, in
addition to the transversal fields, two different longitudinal
fields:

Et (r,t)

= E0e
−iωt

∑
l=1

il
2l + 1

l(l + 1)

(
at

l m
(1)
o1l(kT ,r) − ibt

l n
(1)
e1l(kT ,r)

+ ct
1l l

(1)
e1l(kL,1,r) + ct

2l l
(1)
e1l(kL,2,r)

)
, (35)

where kT and kL,j are given by Eqs. (26) and (30), respectively.
To find the Mie coefficients, a set of suitable boundary

conditions (BCs) must be provided. By requiring that the fields
satisfy Maxwell’s equations and are finite at boundaries, it is
found that the parallel components of the electrical and the
magnetic fields are continuous, i.e., �E‖ = 0 and �B‖ = 0.
While these Maxwell BCs are sufficient in the local-response
solution, additional BCs are needed in the two-fluid model.
A similar problem was encountered in the HDM where it
was found that one additional BC was needed. A physically
meaningful BC that is widely used in the HDM is J⊥ = 0,
which implies that the charge carriers cannot leave the surface
[9]. The two-fluid model requires two additional BCs, and
here we will use the conditions Jb,⊥ = 0 and Ja,⊥ = 0. (or
equivalently J1,⊥ = 0 and J2,⊥ = 0).

Given these BCs, we obtain the system of linear equations
presented in Appendix D from which a

r,t
l , b

r,t
l , and ct

j l can be
found. The ar

l and br
l coefficients, which are of primary interest,

are given by

ar
l = −jl(xD)[xT jl(xT )]′ + jl(xT )[xDjl(xD)]′

h
(1)
l (xD)[xT jl(xT )]′ − jl(xT )

[
xDh

(1)
l (xD)

]′ , (36a)

br
l = −εDjl(xD)(�l+[xT jl(xT )]′)+εT jl(xT )[xDjl(xD)]′

εDh
(1)
l (xD)(�l+[xT jl(xT )]′)−εT jl(xT )

[
xDh

(1)
l (xD)

]′ ,
(36b)

where xD = RkD and xT = RkT . The differentiation (denoted
with the prime) is with respect to the argument. The parameter

�l is given by

�l = jl(xT )l(l + 1)

A

(
jl(x1)C2

x1j
′
l (x1)

− jl(x2)C1

x2j
′
l (x2)

)
, (36c)

where xj = RkL,j and

Cj = ω2
aε∞k2

L,j

β2
a

(
1 + 1

αL
j

) − ω2
bε∞k2

L,j

β2
b

(
1 + αL

j

) , (36d)

A = (ω2 + iγaω)(ω2 + iγbω)
(
αL

1 − αL
2

)
β2

aβ
2
b

(
1 + αL

1

)(
1 + αL

2

) , (36e)

and αj is defined in Eq. (29). The coefficients ar
l are related to

oscillations of the magnetic type, and the expression is identical
to the one found in the classical local derivation [59]. The
coefficients br

l are related to oscillations of the electrical type,
and the expression is different from the local result unless
the nonlocal parameter �l is set to zero. It should also be
mentioned that the formula for br

l is identical to the one found
for the single-fluid HDM [57,58], except that there �l is given
by [58]

�l = jl(xT )jl(xL)l(l + 1)

xLj ′
l (xL)

(
εT

ε∞
− 1

)
, (37)

where xT = Rε
1/2
T ω/c and εT is given by Eq. (8a). Also defined

is the dimensionless parameter xL = RkL where kL = (ω2 +
iγ ω − ω2

p/ε∞)1/2/β.
When the expressions for ar

l and br
l have been found, the

extinction cross section is easily calculated with [59]

σext = −2π

k2
D

∑
l=1

(2l + 1)Re(ar
l + br

l ). (38)

In the next section, Eq. (38) will be used to find the extinction
spectra of nanospheres in the two-fluid model.

VI. NUMERICAL RESULTS

In this section, we will present some numerical simulations
of the optical properties of both realistic and artificial materials
containing two-fluid systems.

A. Features in the extinction spectrum

First we will analyze the artificial material “semiconduc-
tor A” with the parameters ωa = 3.6 × 1014 s−1, ωb = 1.8 ×
1014 s−1, γa = γb = 1.0 × 1012 s−1, βa = 4.3 × 105 m s−1,
βb = 1.4 × 105 m s−1, and ε∞ = 5. As we will see later, these
parameters are comparable to those of a realistic semiconduc-
tor with the exception of the damping constants which have
been set low to make the characteristic features of the spectrum
clear. We will now consider a spherical particle of this material
with R = 10 nm surrounded by vacuum (εD = 1). Equation
(38) then gives us the extinction cross section which is shown
with the solid line in Fig. 2(a) as a function of the relative
frequency ω/ωeff where ω2

eff = ω2
a + ω2

b. The spectrum has
been normalized with σgeom = πR2.

The large peak situated around ω/ωeff = 0.4 can be recog-
nized as the dipole LSP resonance, ωLSP, which is also present
in the classical local result. However, the peak is shifted to
higher frequencies in the two-fluid model as can be seen in the
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FIG. 2. (a) The extinction spectrum for semiconductor A (see
parameters in the main text) with R = 10 nm and εD = 1. The
spectrum has been normalized with σgeom = πR2. The dashed line
is the local Drude model, and the full line is the two-fluid model.
(b) The same spectrum plotted with the logarithmic y axis. The bulk
plasmon peaks are labeled with [j,n], while the first acoustic peak
and the LSP peak are indicated with “X” and “Y,” respectively.

figure by comparing with the local Drude model shown with
a dashed line. The local result was found by setting �l = 0 in
Eq. (36b). This blueshift is a well-known nonlocal effect that
is also observed in the single-fluid HDM for both metals [7,13]
and semiconductors [41]. There it is found that the blueshift
increases as the particle radius is reduced.

In Fig. 2(a) we also see small peaks that appear to be present
only in the nonlocal model. To investigate this further, the
extinction spectrum is shown again in Fig. 2(b) in a semiloga-
rithmic plot. Now the peaks have become more visible, and
several even smaller peaks have appeared. Apart from the
LSP resonance, none of these peaks are present in the local
solution and, as we will show later, several are not present in
the single-fluid HDM either.

To understand the nature of these resonances, we will
consider wavelengths much larger than the particle whereby
all the Mie coefficients in Eq. (36b) except br

1 are reduced
to zero (see Ref. [59]). Now, when looking for frequencies
where the expression diverges, we notice that this occurs
whenever j ′

1(x1)j ′
1(x2) in the denominator of �1 vanishes.

If we consider the high-frequency region, we can introduce
the following large-argument approximation for the spherical
Bessel functions [59]:

jl(xj ) ≈ 1

xj

cos

(
xj − l + 1

2
π

)
, (39)

and we find that the condition j ′
1(x1)j ′

1(x2) = 0 is approx-
imately fulfilled whenever xj = πn with j = 1,2 and n =
1,2, . . .. The expression for kL,j in Eq. (30) can also be
simplified at high frequency when ka,kb � 2ωaωb/βaβbε∞

(here ignoring loss):

k2
L,j ≈ 1

2

[(
ω2 − ω2

a

ε∞

)
1

β2
a

+
(

ω2 − ω2
b

ε∞

)
1

β2
b

±
(

ω2 − ω2
a

ε∞

)
1

β2
a

−
(

ω2 − ω2
b

ε∞

)
1

β2
b

]
. (40)

Combining this with the condition for xj , we get the following
expressions for the resonances:

ω2 =
{

π2n2β2
a

R2 − ω2
a

ε∞
(j = 1)

π2n2β2
b

R2 − ω2
b

ε∞
(j = 2)

. (41)

Here we see that the positions of the peaks are given by two
arrays that depend on the properties of either the a fluid or
the b fluid. In other words, the charge carriers behave as two
independent fluids for high frequencies. In Fig. 2(b), the large
peaks above ωLSP can be identified as resonances of the a fluid
and are found with the j = 1 expression, while the small peaks
are resonances of the b fluid found with the j = 2 expression
(notice that the distances between the peaks are determined by
βa and βb). The peaks have been labeled with [j,n], and we
notice that n does not start at 1 as is natural to expect. It turns
out that the n = 1 peak simply does not exist and is an artifact
of the approximations leading to Eq. (41).

What is particularly noteworthy in the spectrum is that
resonances are found in the region below the LSP peak which is
“forbidden” in the HDM. The reason is that the a and b fluids
hybridize and form both an optical and an acoustic branch,
where the acoustic branch is characterized by a primarily real
wave number at frequencies below the LSP peak. This gives
rise to the peaks below ωLSP for what reason we will call them
acoustic peaks. The single-fluid HDM, on the other hand, only
contains an optical longitudinal branch, which means that no
bulk plasmon peaks can exist below the LSP peak [54].

Among the acoustic peaks in Fig. 2, we find two bulk
plasmon peaks labeled with [2,2] and [2,3]. However, as a
result of the hybridization, these resonances are not purely
related to the b fluid, and their positions are therefore only
poorly predicted by Eq. (41). Also found below ωLSP is a
resonance marked with “X,” and it turns out that this is quite
different from the bulk plasmons. To see this, the charge
distribution inside the sphere is shown in Fig. 3 for different
frequencies. The contour plots show the distribution in the xz

plane when the incoming wave is moving in the z direction,
and the electrical field is polarized in the x direction. We here
see that the first acoustic peak, marked with “X,” is in fact a
surface plasmon characterized by a high charge density near
the surface. We will discuss this resonance in detail below.
The resonance marked with [2,2], on the other hand, is a bulk
plasmon with a high charge density near the center, and its
distribution is nearly identical to the one marked with [1,2]
which is the bulk plasmon of the a fluid of the same order. The
peaks marked with [2,5] and [1,3] are bulk plasmons of higher
orders for the b fluid and the a fluid, respectively. The charge
distribution for the LSP peak is also shown (marked with “Y”),
and we see from the contour plot that although it is indeed a
surface plasmon it also displays the pattern of a confined bulk
plasmon. The reason is that the LSP resonance hybridizes with
the b-fluid bulk plasmon marked by [2,4], resulting in a charge
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FIG. 3. The charge distribution in the xz plane for semiconductor
A at different frequencies. The damping constants have been set
to γa = γb = 1.0 × 1011 s−1 to make the patterns more clear. The
incoming wave is directed in the z direction with the electrical field
polarized in the x direction.

distribution with features from both surface and bulk plasmons.
Such a hybridization would never take place in the HDM where
the surface plasmons always are clearly separated in frequency
from the bulk plasmons.

Notice that all the charge distributions are dipole modes, i.e.,
symmetric along the direction of the E field, and the same is true
for all the visible peaks in Fig. 2(b). A family of higher-order
modes in fact does exist for each peak, but they are too faint
to be seen in this spectrum (see Ref. [7] for an analysis of
multipoles in the HDM).

B. Comparison to the HDM

It has already been indicated that the two-fluid model is
similar to the traditional single-fluid HDM on some points and
different on others. To analyze the differences, the extinction
spectra for semiconductor A as calculated by the two different
models are shown in Fig. 4 for R = 10 nm and εD = 1. The
extinction cross section has been calculated for the single-fluid
HDM by only including one kind of charge carrier and ignoring
the other (this was also done in Ref. [41]). In this case, the
single-fluid parameters are given by ωp = ωi , β = βi , and γ =
γi , and the nonlocal parameter �l is found with Eq. (37) rather
than Eq. (36c).

When the a fluid is included in the single-fluid HDM, the
spectrum with the dashed magenta line is obtained, and we
see that it reproduces the j = 1 bulk plasmon peaks found
in the two-fluid model very well. This is related to the fact
that the bulk plasmon peaks in the two-fluid model mainly are
determined by the properties of the charge carriers separately,
as was indicated in Eq. (41). Additionally, the LSP peak in the
single-fluid model is almost at the same position as the one in
the two-fluid model.

The dash-dotted green line in the figure shows the extinction
cross section for the single-fluid HDM when only the b fluid is
included, and we see that it matches well with the j = 2 bulk
plasmon peaks in the two-fluid model. It also reproduces two

FIG. 4. The spectrum of semiconductor A (parameters given in
the main text) as found by the two-fluid model is shown with the solid
black line. The dashed magenta line and the dash-dotted green line
show the spectra found with the single-fluid HDM when including
the a fluid and b fluid, respectively.

of the acoustic peaks reasonably well, but is completely off
when it comes to the first acoustic peak [marked with “X” in
Fig. 2(b)]. This first peak is therefore a feature of the two-fluid
model that cannot be reproduced by two independent single-
fluid models.

It was mentioned in Sec. II that the two-fluid model reduces
to the single-fluid model if βa = βb and γa = γb. This is shown
in Fig. 5 where the extinction spectrum for semiconductor A in
the two-fluid model is plotted for increasingly similar β values.
The green dashed line in the figure shows the single-fluid HDM
with ω2

p = ω2
a + ω2

b and β = βa , and we see that it is exactly
on top of the line showing the βb = 0.9999βa case. Confirming
that the two-fluid model reduces to the single-fluid HDM
for βa = βb is also a corroboration of the numerical results.
Finally, it is worth mentioning that the local approximation,

FIG. 5. The spectrum of semiconductor A (parameters given in
the main text) as found by the two-fluid model for different values of
βb: 0.33βa , 0.9βa , and 0.9999βa . When the β’s approach the same
value, the spectrum coincides with the one predicted by the single-
fluid HDM (shown with the dashed green line).
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FIG. 6. The spectrum of semiconductor A (parameters given in
the main text) as found by the two-fluid model for different values
of ωb: 0.5ωa , 0.1ωa , and 0.01ωa . As ωb diminishes, the spectrum
becomes identical to the one obtained by the single-fluid HDM (shown
with the dashed green line).

βa = βb = 0, is a special case of identical β’s. This can be
understood from the fact that in the Drude model both current
densities are directly proportional to the electrical field, which
means that they always can be collected into an effective
current density (still assuming that γa = γb).

Apart from the singular situation where the β’s and γ ’s
are identical, the two-fluid model should ideally always be
applied to semiconductors where two kinds of charge carriers
are present. But as noted in the Introduction, materials where
electrons are present as majority carriers can effectively be con-
sidered single-fluid systems. The smaller effective mass and
larger density of electrons compared to holes will according
to Eq. (15) result in a much larger plasma frequency. And this
in turn causes the electrons to determine the optical properties
almost completely, which means that it is sufficient to use the
single-fluid HDM. In Fig. 6, the spectrum of semiconductor A
is shown for various values of ωb. We see that for ωb = 0.01ωa

almost all unique features of the two-fluid model are gone, and
the spectrum coincides with the one predicted by the single-
fluid HDM including only charge carrier a. Ratios of 0.01
between the plasma frequencies are easily obtained in doped
semiconductors. If we consider an n-doped semiconductor
with n = 1018 cm−3 and an intrinsic carrier concentration
of nint = 1016 cm−3, the fundamental relation [44] n2

int = np

tells us that the hole concentration will be p = 1014 cm−3.
Accounting for the larger mass of the holes (h) compared
to the electrons (e) we indeed obtain ωh/ωe < 0.01. For this
reason we propose the two-fluid model for p-doped systems
and systems where ωh/ωe > 0.1.

C. Indium antimonide and gallium arsenide

After analyzing the artificial material semiconductor A,
we will now look at more realistic semiconductors. The
first material we will consider is intrinsic InSb where the
electrons are thermally excited across the band gap. As seen
in Table I, InSb has a very narrow band gap which gives
rise to relatively high charge-carrier densities even at room

TABLE I. Data for GaAs and InSb. The intrinsic charge-carrier
density is denoted by ni . The masses m∗

e and m∗
hh for InSb are taken

from Refs. [60,61], respectively. For GaAs, m∗
e and m∗

e,cond (which
depends on the doping level Na) are from Ref. [62], and m∗

lh and m∗
hh

are from Ref. [63]. Eg for InSb is taken from Ref. [64], and μe and
μh for GaAs are from Ref. [65]. The rest of the data are taken from
Ref. [66]. Note that for InSb the value of m∗

e,cond is assumed to be
identical to m∗

e , and m∗
lh is the 0-K value.

GaAs (300 K) InSb (300 K) InSb (400 K)

ε∞ 10.86 15.68 15.68
Eg (eV) 1.424 0.174 0.146
ni (cm−3) 2.18 × 106 1.34 × 1016 5.73 × 1016

μe (cm2 V−1 s−1) 7000a 77000 48000
1100b

μh (cm2 V−1 s−1) 400a 850 480
80b

m∗
e/m0 0.0636 0.0115 0.0100

m∗
e,cond/m0 0.0636a 0.0115 0.0100

0.1014b

m∗
lh/m0 0.093 0.016 0.016

m∗
hh/m0 0.50 0.37 0.40

aNa = 0 cm−3.
bNa = 1019 cm−3.

temperature. If we choose T = 300 K, electrons (e) as the
a fluid, and holes (h) as the b fluid and use the data from
Table I, we then find ωe = 6.09 × 1013 s−1, ωh = 1.07 ×
1013 s−1, γe = 1.99 × 1012 s−1, γh = 6.67 × 1012 s−1, βe =
1.13 × 106 m s−1, and βh = 1.99 × 105 m s−1. Here we have
used Eqs. (15) and (19), but the values of ni and βi have been
found by numerical solution of the sums in Eqs. (A9) and
(A10) rather than by using Eqs. (B7) and (16). This allows us
to use the Fermi-Dirac distribution instead of the Boltzmann
distribution and thus obtain slightly more accurate values.

Considering a very small particle of InSb would give us
clearly visible nonlocal effects which are interesting in terms
of analyzing the model, but the number of charge carriers,
which scale as R−3, would also be smaller. And at some
point there will be too few charge carriers for them to be
considered a plasma, which means that a plasma model no
longer is suitable. Therefore we will choose the radius of the
InSb particle to be 100 nm, which results in the number of
electrons and holes being Ne = Nh = 56. If we then choose
the surrounding medium to be vacuum, we find the extinction
spectrum shown in Fig. 7(a) with the dashed red line. Here we
see the LSP peak at ∼3 × 1013 s−1 followed by several electron
bulk plasmon peaks. The hole plasmon peaks are completely
invisible, a result of the size of the particle and the low mobility
of the holes. However, one of the acoustic peaks is still visible,
which could be interesting in terms of verifying the model.

The solid blue line in Fig. 7(a) shows the extinction
spectrum of a 40-nm intrinsic GaAs particle in vacuum with
electrons excited to the conduction band by a laser pulse.
The pulse has an energy density of upulse = 105 J cm−3

which results in a number of electrons and holes of
Ne = Nh = 114. Using the equations from Sec. III
and Appendix B we find ωe = 1.46 × 1014 s−1, ωh =
5.07 × 1013 s−1, γe = 3.95 × 1012 s−1, γh = 1.16 × 1013 s−1,
βe = 3.29 × 105 m s−1, and βh = 3.95 × 104 m s−1. We here
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FIG. 7. Extinction spectra for InSb and GaAs. In all cases is
εD = 1. (a) The dashed red line and the solid blue line show the
spectra for intrinsic InSb at 300 K with R = 100 nm and laser excited
GaAs with upulse = 105 J cm−3 and R = 40 nm, respectively. (b)
The dashed red line and the solid blue line show the spectra for
intrinsic InSb at 400 K with R = 60 nm and laser excited GaAs with
upulse = 106 J cm−3 and R = 15 nm, respectively. (c) The spectrum
for p-doped GaAs with NA = 1019 cm−3 and R = 30 nm is shown
with the dashed red line. For the solid blue line the mobility of the
holes is artificially set 100 times higher.

recognize the largest peak as the LSP peak followed by a
series of electron bulk plasmon peaks, while the hole bulk
plasmon peaks are completely suppressed by damping.

It is also interesting to consider a higher temperature for the
InSb particle and a stronger laser pulse for the GaAs particle.
The dashed red line in Fig. 7(b) shows an intrinsic InSb particle
with R = 60 nm at 400 K which results in Ne = Nh = 51,
and the solid blue line shows an intrinsic GaAs particle with
R = 15 nm and upulse = 106 J cm−3 which results in Ne =
Nh = 57. Here the acoustic peaks, one of the interesting
features of the spectra, are more visible.

To analyze the two-fluid model for semiconductors with
light and heavy holes, we will consider p-doped GaAs with
an acceptor concentration of NA = 1019 cm−3. According to
the equations of Sec. III and Appendix B, this results in
a concentration of light and heavy holes of nlh = 7.43 ×
1017 cm−3 and nhh = 9.26 × 1018 cm−3 and the parameters
ωlh = 1.59 × 1014 s−1, ωhh = 2.43 × 1014 s−1, γlh = γhh =
5.79 × 1013 s−1, βlh = 2.70 × 105 m s−1, and βhh = 1.17 ×
105 m s−1. Here it has been assumed that the light and heavy
holes have the same damping constant which is found with μh

from Table I and mh,cond from Eq. (B8). Choosing R = 30 nm
and εD = 1 produces the extinction spectrum shown with the

dashed red line in Fig. 7(c). Here the only visible feature is the
LSP peak, while the bulk plasmons are completely damped. For
the purpose of analyzing the model, the solid blue line shows
the spectrum for the same material, but with the mobility of
the holes set 100 times larger. Now we see the bulk plasmon
peaks for both charge carriers as well as the peaks below ωLSP.

Another group of semiconductors that is gaining increasing
popularity as plasmonic materials is the transparent conducting
oxides (TCO) such as indium tin oxide (ITO), aluminum-doped
ZnO (AZO), and indium-doped CdO (In:CdO). ITO was used
in Refs. [25,29,30], and In:CdO was used in Refs. [33,42].
Apart from the advantages that TCOs share with other semi-
conductors (such as tunability), they are particularly suitable
for the creation of thin films and often allow for heavy doping
[67]. The most commonly used TCOs, including ITO, AZO,
and In:CdO, are n-type semiconductors [68] (ZnO and CdO
are even n-type semiconductors without intentional doping
[23,69]) and, as established above, materials with electrons as
majority carriers can be modeled with the single-fluid HDM.
However, much effort is currently going into the development
of p-type TCOs [70–72], and it is not unlikely that TCOs suit-
able for investigating the two-fluid model will be discovered.

In our model, we have left out some of the mechanisms
found in real semiconductors. As mentioned in Sec. III,
interband transitions are ignored, and the effects of them are
assumed to be contained in ε∞. This is a reasonable approxima-
tion as long as the energies considered are smaller than the band
gap. Some semiconductors also contain excitons which are
caused by the Coulomb interaction between electrons and holes
and give rise to energy levels inside the band gap. However,
for doped semiconductors and intrinsic semiconductors with
narrow band gaps, the screening from the high density of
charge carriers significantly weakens the binding energy of
the excitons [73]. It is therefore a decent approximation for
these materials to leave out excitons. A third kind of excitation
especially found in nonelemental semiconductors is optical
phonons. These resonances of the lattice may couple to the
plasmons if they are in the same frequency range, and this
interaction has been studied for both InSb [74,75] and GaAs
[76,77]. It should also be mentioned that for InSb, in particular,
a charge-carrier depleted region known as the space-charge
layer may exist close to the surface which would be relevant
for the optical properties. This layer has been investigated in
several earlier papers [34,78–80], and the question of how
it affects features such as the acoustic peak still remains.
Finally, the two-fluid model, just as the single-fluid HDM,
does not account for Landau damping whereby the energy of
the plasmons dissipates into single-particle excitations. The
excitation of single particles depends on the momentum q, and
in that sense Landau damping is a size-dependent nonlocal loss
mechanism. Although not considered here, nonlocal damping
could be incorporated into the two-fluid model by allowing the
β’s to become complex as it is done for the single-fluid HDM
in Refs. [9,42,81].

D. The acoustic peaks

One of the defining characteristics of the two-fluid model is
the presence of resonances below ωLSP, and the experimental
observation of these could potentially be used to verify the
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FIG. 8. (a) The spectral position of the first acoustic peak as a
function of ωa for semiconductor A is shown with a red line, while
the blue line shows the position of the LSP peak. The vertical dashed
line shows the value ωa = 3.6 × 1014 s−1 which was used in previous
figures with semiconductor A. The dent in the blue line around ωa ≈
1014 s−1 is not a numerical artifact, but is caused by bulk plasmon
resonances that are superimposed on the LSP peak and thereby make
the definition of the peak ambiguous. (b) The amplitude of the first
acoustic peak normalized with σgeom as a function of ωa .

model. Therefore this section will be used to analyze these
acoustic peaks, and the focus will be on the first acoustic peak
[marked with “X” in Fig. 2(b)].

We will start by considering the artificial material semicon-
ductor A, and in Fig. 8(a) the spectral positions of the first
acoustic peak and the LSP peak are shown as functions of ωa

with a red and blue line, respectively. Here it is interesting
to note that while the LSP peak blueshifts as ωa increases,
the acoustic peak instead moves to lower frequencies. Also
shown in the figure with dashed black lines is the position of
the LSP peak in the local response approximation as given
by ωLSP,a+b = (ω2

a + ω2
b)1/2/(ε∞ + 2εD)1/2 (including both

kinds of charge carriers) and ωLSP,i = ωi/(ε∞ + 2εD)1/2 (in-
cluding charger carrier a or b). The vertical dashed line marks
ωa = 3.6 × 1014 s−1, which was used in previous figures with
semiconductor A

Apart from the position of the acoustic peak, the amplitude
will also play a role, especially in terms of detecting the
resonance. Figure 8(b) shows the amplitude of the first acoustic
peak, and we here see that it decreases when ωa goes up.

Turning to intrinsic GaAs, Fig. 9(a) shows the spectral po-
sitions of the first acoustic peak and the LSP peak as functions
of the radius of the particle. The particle has been excited
by a laser pulse of upulse = 106 J cm−3 and is surrounded by
vacuum. Here we see that the position of the acoustic peak,
shown with a red line, blueshifts when R is reduced. The
LSP peak, shown with a blue line, also blueshifts, which is
similar to what is found in the HDM for both metals [5,7] and
semiconductors [41].

FIG. 9. (a) The spectral positions of the first acoustic peak and
the LSP peak as functions of R for intrinsic GaAs shown with a red
and blue line, respectively. GaAs was excited with a laser pulse of
upulse = 106 J cm−3. The vertical dashed line marks the value R =
15 nm which was used in Fig. 7(b). (b) The amplitude of the first
acoustic peak as a function of R (un-normalized). The number of
electrons in the particle is indicated for three different sizes.

Figure 9(b) shows the amplitude of the first acoustic peak,
and it is interesting to see that the height of the peak reaches a
maximum around R = 20 nm. The number of electrons in the
particle is also given in the figure for three different particle
sizes. Note that the extinction cross section in this figure is the
absolute value, since normalization with πR2 would make the
interpretation of the results more difficult.

As the first acoustic peak could be used to verify the model,
it is relevant to find the scenario where this resonance is
easiest to detect. Figure 8 shows the amplitude and position
of the peak as functions of ωa for semiconductor A, but for
a realistic semiconductor it will not be possible to freely
vary this parameter. For laser-excited GaAs, Fig. 9(b) shows,
interestingly, that the amplitude of the acoustic peak reaches a
maximum for a certain finite radius, and a similar behavior is
expected for other materials and geometries.

The materials investigated here are not all equally well
suited to test the model. In the case of p-doped GaAs, it
was found that none of the features of the two-fluid model
are present due to the low mobility of the holes. However,
a p-doped semiconductor with higher mobility of the holes
might still be used to test the two-fluid model. In the case
of laser-excited GaAs with upulse = 106 J cm−3, clear acoustic
peaks were found, but it must be remembered that the charge
carriers will decay over time, which will create new experimen-
tal opportunities and challenges. Finally, intrinsic InSb with
thermally excited charge carriers is perhaps the best candidate
in terms of testing the model, as the spectrum remains stable
over time and is expected to contain the acoustic peaks.
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VII. CONCLUSIONS

The hydrodynamic Drude model, which has successfully
described the optical properties of metallic nanostructures,
can be adapted to semiconductors by accounting for the fact
that several different kinds of charge carriers are present.
In this paper, we have presented a two-fluid hydrodynamic
model for semiconductors containing electrons and holes or
light and heavy holes. We have shown that the two-fluid
model is supported by a microscopic theory, and simulta-
neously we found expressions for the nonlocal parameter β

for thermally excited charge carriers, laser excited charge
carriers, and p-doped semiconductors with light and heavy
holes.

It was found that the two hydrodynamic fluids hybridize
to form an acoustic and an optical branch, both longitudinal,
whereas the single-fluid HDM only contains an optical branch.
An extended Mie theory was developed to accommodate the
two longitudinal waves, and this theory was subsequently
applied to semiconductor nanospheres to find the extinction
spectra. We found that in addition to the well-known features
of the single-fluid HDM the two-fluid model displays at least
two additional optical features: (1) a second set of bulk plasmon
resonances and (2) acoustic resonances below the dipole LSP

peak, of which the first attains its maximal strength at a finite
particle size [Fig. 9(b)]. Although we considered only spherical
particles here, it is expected that these features will be present
in other geometries as well.

The acoustic resonances are particularly interesting since
they are completely absent in the single-fluid HDM, and exper-
imental observation of these peaks could serve as verification
of the two-fluid model. To this end we analyzed different
materials and different kinds of charge carriers. Here we saw
that for the considered p-doped semiconductors with light and
heavy holes the damping was too high to discern any of the
features of the two-fluid model. On the other hand, the intrinsic
semiconductor particles that we studied, with thermally excited
or laser-excited charge carriers, both have acoustic peaks in
their spectra.
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APPENDIX A: THE SUSCEPTIBILITY

We will show that the susceptibility is given by Eq. (14). Starting from Eq. (13), this can be rewritten in the following way by
using the temporary variable k′ = −k − q:

χi(q,ω) = 2e2

ε0q2

1

V

(∑
k

fi(k)

Ei(k + q) − Ei(k) − h̄ω − iη
−
∑

k′

fi(k′)
Ei(k′) − Ei(k′ + q) − h̄ω − iη

)

= 4e2

ε0q2

1

V

∑
k

fi(k)
Ei(k + q) − Ei(k)

[Ei(k + q) − Ei(k)]2 − (h̄ω + iη)2
. (A1)

For holes the substitutions fi → 1 − fi and Ei → Ev − Ei can be made in order to treat the electrons and holes on equal footing
(Ev is the valence-band edge). However, this will leave Eq. (A1) unchanged. The next step is to take the limit q → 0 which
allows for the series expansion

χi(q,ω) = − 4e2

ε0q2

1

V

∑
k

fi(k)
Ei(k + q) − Ei(k)

(h̄ω + iη)2

(
1 + [Ei(k + q) − Ei(k)]2

(h̄ω + iη)2 + . . .

)
. (A2)

Without loss of generality it is assumed that q = q ẑ, which means that

Ei(k + q) − Ei(k) = h̄2

2m∗
i

(2kzq + q2), (A3)

and inserting this into χi(q,ω) gives us

χi(q,ω) = − 4e2

ε0q2

(
1

(h̄ω + iη)2

h̄2q2

2m∗
i

1

V

∑
k

fi(k) + 1

(h̄ω + iη)4

3h̄6q4

2m∗
i

3

1

V

∑
k

fi(k)k2
z + · · ·

)
, (A4)

where it has been taken into account that odd powers of kz cancel out.
To evaluate the k sums in Eq. (A4) for light and heavy holes, we assume that T = 0 K, whereby the distribution becomes a

step function. By using that the volume of a single state in k space is Vk = (2π )3/V , we find the first sum to be

1

V

∑
k

fi(k) = 1

V Vk

∫
dkfi(k) = 4π

V Vk

∫ kFi

0
dkk2 = 4π

V Vk

k3
Fi

3
, (A5)

which by definition also is equal to ni/2. From this we also find the following simple relation:

k3
Fi = 3π2ni. (A6)
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The second sum is given by

1

V

∑
k

fi(k)k2
z = 1

V Vk

∫ kFi

0
dkk4

∫ π

0
dθ sin θ cos2 θ

∫ 2π

0
dφ = 4π

3V Vk

k5
Fi

5
= k2

Fi

5

ni

2
. (A7)

The same results are obtained for laser-excited charge carriers, except that the Fermi levels kFi are for the quasiequilibria that are
assumed to be formed.

For the thermally excited intrinsic semiconductor, we will assume that the Fermi-Dirac distribution can be approximated by
the Boltzmann distribution

fe(E) = 1

exp
(

E−EF

kBT

)
+ 1

≈ exp

(
−E − EF

kBT

)
,

which is reasonable for electrons whenever Ec − EF � kBT where Ec is the conduction-band edge (a similar expression exists
for holes). For electrons, the first sum becomes

1

V

∑
k

fe(k) = 4π

V Vk

∫ ∞

0
dkk2fe(k) ≈ 2π

V Vk

(
2m∗

e

h̄2

) 3
2
∫ ∞

Ec

dE
√

E − Ec exp

(
−E − EF

kBT

)
, (A8)

where it has been used that

E = Ec + h̄2k2

2m∗
e

.

We now introduce the variable ρ = (E − EF )/kBT , whereby the integral can be identified as a gamma function. With this, the
sum is found to be

1

V

∑
k

fe(k) ≈ 2π

V Vk

(
2m∗

ekBT

h̄2

) 3
2

exp

(
EF − Ec

kBT

)√
π

2
, (A9)

which by definition also is equal to ne/2. Using a similar method, the second sum is found to be

1

V

∑
k

fe(k)k2
z ≈ 2π

V Vk

(
2m∗

ekBT

h̄2

) 5
2

exp

(
EF − Ec

kBT

)
1

3
�

(
5

2

)
= m∗

ekBT

h̄2

ne

2
. (A10)

The sums for the holes can be found in the same way.
Inserting the expressions of the sums into Eq. (A4), using η2 ≈ 0 and defining γ = 2η/h̄ gives us Eq. (14) where βi is given

by either Eq. (16) or (17) depending on the nature of the charge carriers.

APPENDIX B: CHARGE-CARRIER DENSITIES AND
FERMI WAVE NUMBERS

To find expressions for kF lh and kFhh for light and heavy
holes, we will use the fact that the Fermi energy is the same
for both kinds of holes:

h̄2k2
F lh

2m∗
lh

= h̄2k2
Fhh

2m∗
hh

. (B1)

If we then use the relation between ni and kFi from Eq. (A6)
and assume complete ionization, Na = nlh + nhh, we straight
away get

kF lh = kFhh

√
m∗

lh

m∗
hh

=
⎡
⎣ Na3π2

1 + (m∗
hh

m∗
lh

) 3
2

⎤
⎦

1
3

. (B2)

For laser-excited charge carriers, the energy density of a
laser pulse that excites electrons from the valence band to the
conduction band is given by

upulse = ue + ulh + uhh + Egne, (B3)

where ui is the energy density of the charge-carrier type i

with respect to the band edge, and e, lh, and hh are electrons,

light holes, and heavy holes, respectively. From Eq. (A6) and
Ei = h̄2k2/2m∗

i we have ni = E
3/2
Fi (2m∗

i )3/2/3π2h̄3 and the
energy densities are given by

ui = (2m∗
i )

3
2

2π2h̄3

∫ EFi

0
dEiE

3
2
i = 3h̄2

10m∗
i

(3π2)
2
3 n

5
3
i . (B4)

Inserting this into Eq. (B3) and using the following definition
of the density-of-states hole mass [44],

m∗
h = (m∗

lh

3
2 + m∗

hh

3
2
) 2

3 , (B5)

together with charge conservation ne = nh = nlh + nhh and
Eq. (B1) we obtain

upulse = 3h̄2

10
(3π2)

2
3

(
1

m∗
e

+ 1

m∗
h

)
n

5
3
e + Egne. (B6)

From this expression, the density of electrons can be found
using numerical tools, and kFi is found using Eq. (A6).

For thermally excited charge carriers in an intrinsic semi-
conductor, the charge-carrier densities are given by [44]

ne = nh = 2

(
2πkBT

h2

) 3
2

m∗
e

3
4 m∗

h

3
4 exp

( −Eg

2kBT

)
, (B7)
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where Eg is the band gap. Here it is assumed that the Boltzmann
distribution can be used for the electrons.

For both laser-excited and thermally excited charge carriers
the density-of-states effective hole mass is given by Eq. (B5),

while the conductivity effective hole mass is given by [82]

m∗
h,cond = m∗

lh

3
2 + m∗

hh

3
2

m∗
lh

1
2 + m∗

hh

1
2

. (B8)

APPENDIX C: MATRIX NOTATION

Here, we rewrite the two-fluid equations (1) in a matrix notation:

L̂E = −iωμ0

(
1

1

)(
Ja

Jb

)
, (C1a)

≡ξ 2︷ ︸︸ ︷⎛
⎝ β2

a

ω2
a

0

0 β2
b

ω2
b

⎞
⎠∇(∇·)

(
Ja

Jb

)
+ k2

(
c2

ω2
a

0

0 c2

ω2
b

)[
I +

(
iγa

ω
0

0 iγb

ω

)]
︸ ︷︷ ︸

≡�2

(
Ja

Jb

)
= iωε0

(
1

1

)
E, (C1b)

where L̂ = −∇ × ∇ × +ε∞k2 with k = ω/c, while I is a
2 × 2 identity matrix. Next, we follow a trick developed in
Ref. [83], where one acts with L̂ on the constitutive equation
(C1b). At first sight, this generates less appealing fourth-order
derivatives, but the curl of any gradient field vanishes, and we
are eventually left with only second-order derivatives, i.e.,

[ε∞ξ 2∇(∇·) − �2∇ × ∇ × −M]

(
Ja

Jb

)
= 0, (C2)

where M ≡ 1̃ − ε∞k2�2 and 1̃ is a 2 × 2 all-ones matrix.
While ξ and � are diagonal matrices, M has nonzero off-
diagonal elements and the two currents are consequently
coupled. The coupling originates from a mutual interaction
through common electromagnetic fields (which we have inte-
grated out).

To find the uncoupled homogeneous equations for the
normal modes, we take either the curl or the divergence of
Eq. (C2) and obtain the following equations:

[�2∇2 − M]∇ ×
(

Ja

Jb

)
= 0, (C3a)

[ε∞ξ 2∇2 − M]∇ ·
(

Ja

Jb

)
= 0, (C3b)

where it is used that ∇2 = ∇(∇·) − ∇ × ∇×. Next, the linear
relations between {Ja,Jb} and {J1,J2} given in Eqs. (20) are
introduced for both the transversal fields (the curl equation)
and the longitudinal fields (the divergence equation), which
gives us

[�2KT ∇2 − MKT ]∇ ×
(

J1

J2

)
= 0, (C4a)

[ε∞ξ 2KL∇2 − MKL]∇ ·
(

J1

J2

)
= 0, (C4b)

where

Kz =
(

az
1 az

2

bz
1 bz

2

)
,

with z = T ,L. If we then require that J1 and J2 are uncoupled
for both the transversal and the longitudinal fields, the 2 × 2
nondiagonal matrices can be treated as 4 × 4 diagonal matri-
ces. In other words, we obtain eight homogeneous equations
in total: for both curl and divergence we get two for both J1

and J2. These are the Boardman equations written explicitly in
Sec. IV. The fact that there are two equations for every ∇ × Jj

and ∇ · Jj can be used to find the coefficients az
j and bz

j which
so far have been undetermined.

APPENDIX D: LINEAR EQUATIONS

When applying the boundary conditions �E‖ = 0, �B‖ = 0, Ja,⊥ = 0, and Jb,⊥ = 0 to the electrical fields in Eqs. (33)–(35),
the following system of linear equations is obtained:

−ar
l h

(1)
l (xD) + at

l jl(xT ) = jl(xD), (D1a)

−ar
l

[
xDh

(1)
l (xD)

]′ + at
l [xT jl(xT )]′ = [xDjl(xD)]′, (D1b)

−br
l

[
xDh

(1)
l (xD)

]′
kD

+ bt
l

[xT jl(xT )]′

kT

+ ict
1ljl(x1) + ict

2ljl(x2) = [xDjl(xD)]′

kD

, (D1c)

−br
l xDh

(1)
l (xD) + bt

l xT jl(xT ) = xDjl(xD), (D1d)
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−ibt
l

l(l + 1)

xT

jl(xT ) + ct
1lj

′
l (x1)kL,1

(
1 + β2

a ε∞k2
L,1

ω2
a(1 + α1)

)
+ ct

2lj
′
l (x2)kL,2

(
1 + β2

a ε∞k2
L,2

ω2
a(1 + α2)

)
= 0, (D1e)

−ibt
l

l(l + 1)

xT

jl(xT ) + ct
1lj

′
l (x1)kL,1

(
1 + β2

b ε∞k2
L,1

ω2
b

(
1 + α−1

1

)
)

+ ct
2lj

′
l (x2)kL,2

(
1 + β2

b ε∞k2
L,2

ω2
b

(
1 + α−1

2

)
)

= 0, (D1f)

which directly allows us to find ar
l and br

l .
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