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Abstract

The nonlinear pulse broadening phenomenon of supercontinuum generation
in optical fibres is appreciated as one of the most striking in nonlinear
physics. Thanks to the unique combination of high brightness and octave-
spanning spectra, modern ”white-light” supercontinuum lasers have found
numerous applications in areas such as spectroscopy and microscopy.

In this work, we exploit the tremendous design freedom in air hole
structured photonic crystal fibres to shape the supercontinuum spectrum.
Specifically, the supercontinuum dynamics can be controlled by clever en-
gineering of fibres with longitudinally varying air hole structures. Here we
demonstrate supercontinuum generation into the commercially attractive
deep-blue spectral region below 400 nm from an Yb laser in such fibres. In
particular, we introduce the concept of a group acceleration mismatch that
allows us to enhance the amount of light in the deep-blue by optimising the
fibre structure. To this end, we fabricate the first single-mode high air-fill
fraction photonic crystal fibre for blue-extended supercontinuum sources.

The mechanisms of supercontinuum broadening are highly sensitive to
noise, and the inherent shot-to-shot variations in long-pulsed supercontin-
uum sources are a limiting factor for several applications. We investigate
different approaches to quantify and lower the spectral noise. Specifically,
we characterise the spectral noise in the framework of statistical higher-
order moments, which provides insight into the nature of the noise across
the spectrum. We further investigate the possibilities of reducing the spec-
tral noise by modulating the pump with a weak seed, which makes the
broadening dynamics increasingly deterministic rather than driven by noisy
modulation instability. Particular attention is paid to the commercially rel-
evant high power regime. Finally, we examine passive noise reduction in
photonic crystal fibres with longitudinally varying air hole structures.
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Resumé

Bl̊a-forstærkede superkontinuum lyskilder baseret
p̊a taperede fotoniske krystal fibre

Den ekstreme pulsforbredning i optiske fibre, superkontinuum generering,
er anerkendt som et af de mest spektakulære fænomener i den ulineære
fysik. Takket være den unikke kombination af en høj lysstyrke og spektre
der spænder over mere end en optisk oktav, har moderne superkontinuum
”hvidlys” lasere fundet talrige anvendelser inden for bl.a. spektroskopi og
mikroskopi.

I dette arbejde udnytter vi den enorme designfrihed i fotoniske krystal
fibre, best̊aende af en mikrostruktur af lufthuller, til at forme superkontin-
uum spektret. Konkret kan dynamikken bag superkontinuum generering
styres ved at variere mikrostrukturen af lufthuller p̊a langs af fiberen. Ved
at gøre dette, demonstrerer vi superkontinuum generation i det kommer-
cielt attraktive mørkebl̊a bølgelængdeomr̊ade under 400 nm fra en Yb laser.
Vi indfører desuden begrebet gruppe-accelerations tilpasning, der gør det
muligt, at øge lyseffekten i den bl̊a spektrale kant ved at optimere fiber-
strukturen. Til dette formål fabrikerede vi den første single-mode fotoniske
krystal fiber med høj luftfyldningsfaktor til bl̊a-forstærkede superkontinuum
kilder.

Forbredningsmekanismerne bag superkontinuum generering er meget føl-
somme over for støj, hvilket medfører store variationer fra puls til puls i su-
perkontinuum kilder baseret p̊a lange pulser. Dette er en klar begrænsning
for adskillige potentielle anvendelser. Vi undersøger forskellige tilgange til
at kvantificere den spektrale støj, samt til at sænke støjen ved at kontrollere
forbredelsesmekanismerne. Konkret karakteriserer vi den spektrale støj med
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statistiske højereordens momenter, der giver indsigt i karakteren af støjen
over hele den spektrale b̊andbredde. Vi gransker desuden mulighederne for
at reducere den spektrale støj, ved at modulere pumpen med en svag puls.
Dette gør i højere grad forbredelsen deterministisk fremfor drevet af mod-
ulations instabiliteter. Vi fokuserer specielt p̊a det kommercielt relevante
høj-effekts regime. Derudover undersøger vi, om den turbulente superkon-
tinuum forbredning kan tæmmes i fotoniske krystal fibre med longitudinalt
varierende mikrostruktur.
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Chapter 1

Introduction

Supercontinuum (SC) generation is a spectacular phenomenon of extreme
spectral broadening involving a plenitude of nonlinear physics [1,2]. Follow-
ing the first observation of SC generation in bulk glass in the 1970s [3,4], the
field was taken to optical telecom fibres [5,6]. However, the full potential of
SC generation that pushed the technology from a mere laboratory curiosity
to the development of today’s commercial sources was first realised with
the invention of the photonic crystal fiber (PCF) in the late 1990s [7–12], in
which light can be manipulated by tailoring the PCF’s air hole structure.
Because of the unprecedented design freedom of the guiding properties that
were impossible in bulk materials and standard optical fibres, the advent
of the PCF spawned a renaissance of nonlinear optics in general and SC
generation in particular [13]. Specifically, by design optimisation the zero-
dispersion wavelength (ZDW) can be tuned into the visible [14]; the fibre
can be made endlessly single-mode [15] or even guide light in air [16].

SC generation in PCFs is synonymous with soliton physics: when long
pico or nanosecond pulses, or even continuous waves (CWs), are launched
into the fibre, the process of modulational instability (MI) induces a tem-
poral break-up that splits the pulse envelope into a distributed spectrum
of solitons [17–23]. As it turns out, the subsequent soliton propagation
and interactions are in fact the main driving mechanism behind the spec-
tral SC broadening. Modulational instability is a universal physical phe-
nomenon, in which a weak modulation of a wave experience an exponential
growth [13, 24–26]. In the specific context of fibre optics, the modulation
builds from quantum noise and results in large spectral shot-to-shot varia-
tions. A closer inspection of these variations led to the surprising observa-
tion of optical rogue waves [27]; statistically rare solitons with peak powers
significantly above the mean. Because of their statistical nature, these op-
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2 Chapter 1. Introduction

tical rogue waves constitute an analogue to rogue phenomena found in such
diverse systems as ocean waves, where they appear out of nowhere and cause
serious damage on ships and oil rigs [28–30], finance [31] and biology [32].

It is thus clear that SC generation in PCFs provides an excellent plat-
form for investigating important fundamental effects and their links with
other physical systems. Amongst the numerous effects discovered in this
context are soliton fission [33], Raman redshift cancellation by the pres-
ence of a second ZDW [34], and soliton trapping of dispersive waves (DWs)
in gravitational wells [35–37]. The latter is principal for SC generation,
where the long wavelength spectral ”red” edge is comprised of solitons and
the short wavelength spectral ”blue” edge by trapped DWs. The trapping
mechanism thus manifests itself as a lock between the two edges separated
by upto multiple optical octaves: when the distributed spectrum of MI-
generated solitons are redshifted by the Raman effect, they trap DWs across
the ZDW and force them to blueshift so as to satisfy group velocity (GV)
matching with the solitons [35, 38]. With a clever engineering of the GV
landscape, the SC dynamics can therefore be harnessed to generate certain
spectral qualities, such as an enhancement of the blue edge [38–40].

Commercial SC sources saw the light of day in 2003 (NKT Photon-
ics A/S) and have since been established as a mature and reliable technol-
ogy. As an example of their versatile applicability, Leica’s new generation
TCS SP8 X confocal microscope for fluorescence microscopy allows up to
eight continuously tunable excitation lines to be picked simultaneously from
a single SC sources. High-power commercial SC sources are typically based
on long-pulsed fibre lasers, resulting in bright spectra with more than one
optical octave of bandwidth. These sources are characterised by a low tem-
poral coherence and high spatial coherence, making them suitable for a
range of sophisticated spectroscopy and imaging techniques, such as opti-
cal coherence tomography [41–43] and fluorescence lifetime imaging [44,45].
Broadly speaking, the SC technology has great potential in fields where a
single SC source can replace an array of lasers operating at different wave-
lengths, although the technology has also found applications in areas re-
quiring ultrahigh precision, such as the development of ultra-stable optical
clocks [46–50]. The potential of the SC field is highlighted by the immense
growth over the last ten years, and it was recently estimated that the market
for SC sources has an annual sales potential in excess of $150M [51]. The
future of the fibre-based SC field seems to point to the development of cheap
high-power SC sources based on (quasi) CW lasers [52–54], fully coherent
SC sources in all-normal PCFs [55–61], and extending the SC spectrum into
the infrared (IR) in nonsilica glasses with higher nonlinearities and/or low
transmission loss in the mid-IR [62–65] or into the deep-blue and ultraviolet
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(UV) with dispersion engineering [40,66–69].

In this work we pursue two such goals: (1) to extend the SC into the
deep-blue by manipulating the spectral development with dispersion engi-
neering in tapered PCFs; and (2) to lower the spectral shot-to-shot noise
by controlling either the initial MI dynamics by modulating the input pulse
with a weak seed or the subsequent soliton-driven dynamics with tapered fi-
bres. These goals are motivated by a direct commercial relevance: the entire
visible part of the electromagnetic spectrum is very important for biolog-
ical applications in, e.g. high resolution imaging with confocal microscopy
and studies of ultrafast temporal responses with fluorescence lifetime imag-
ing, as well as optical coherence tomography [41,44,45,70]. However, most
commercial sources are limited to 450-500 nm and hence cannot be used
to access the biologically relevant deep-blue spectral region. Similarly, low
shot-to-shot fluctuations are required in many applications where, e.g. the
dynamics of a biological system is studied on a time scale comparable to
the repetition rate of the light source, and in optical coherence tomogra-
phy where low-noise femtosecond lasers remain the preferred choice over SC
sources, despite their more attractive spectral properties. Indeed, the lim-
ited spectral shot-to-shot stability is currently one of the main drawbacks
facing commercial long-pulsed SC sources.

1.1 Outline

This thesis compiles the main research results obtained during the author’s
PhD study. The thesis is divided into five chapters including this introduc-
tion and a summary, followed by an appendix with complementary informa-
tion and the scientific journal publications Papers I-VIII published during
the study (note: due to copyright ownership the full articles are not in-
cluded in the online version of the thesis). The thesis should be considered
a compliment to these eight scientific journal publications, and contains the
necessary background information to make the thesis and publications self-
contained. In addition to this background information, the thesis highlights
the main results of Papers I-VIII in a coherent manner. This inevitably
introduces a degree of repetition between the thesis and publications.

An introduction to nonlinear pulse propagation in microstructured op-
tical fibres is presented in Chapter 2. The chapter is intended to establish a
frame of reference to understand long-pulsed SC generation and the results
presented in the following chapters. Specifically, Chapter 2 summarises the
basic theory of linear and nonlinear fibre optics with a clear focus on SC
generation.



4 Chapter 1. Introduction

In Chapter 3 we explain how dispersion engineering can be utilised to
extend and enhance SC generation into the deep-blue in tapered PCFs. The
chapter reviews the results of Papers I-IV plus additional unpublished re-
sults. In particular, we introduce the concept of group acceleration matching
that allows us to optimise the blue edge of an SC. This is demonstrated with
an array of experimental results, including the first PCF with longitudinally
varying pitch and hole-size for deep-blue SC generation.

Chapter 4 discusses the noise properties of long-pulsed SC generation.
Specifically, we characterise the noise properties with statistical high-order
moments as described in Paper V, which provides direct insight into the
nature of the noise across the spectrum. Following this, we numerically
examine noise reduction by modulating the pump with a seed and experi-
mentally by taming the SC dynamics with tapered fibres, similar to those
used in Chapter 3. These results relate to Papers VI-VII and Papers III and
VIII, respectively. Particular emphasis is given on the noise properties in
the commercially relevant high-power regime, which has remained relatively
unexplored.

Chapters 3–4 are concluded individually, and a final summary of the
thesis is given in Chapter 5. Additionally, a description of the numeri-
cal modelling and the eight scientific journal publications are included as
appendices.



Chapter 2

Pulse propagation in nonlinear
optical fibres

The interaction of light and matter has been extensively studied for decades.
Today it is well established that light can cause matter to oscillate on an
atomic or molecular level, which in turn re-emits light that interferes with
the original light, and that this interaction is described by the Maxwell
equations. Thanks to this understanding it is today possible to control light
by engineering the medium in which it propagates. In optical fibres light
is subject to dispersion and, if the intensity is sufficiently high, a nonlinear
electronic response called the Kerr effect. That is, the refractive index
depends on both the frequency and intensity of the light, which disperses the
different frequencies of the light as it propagates and leads to the generation
of light at new frequencies, respectively. Light can further interact with the
molecular vibrations of the medium through the Raman effect.

The scope of this chapter is to give a condensed introduction to the
physics of pulse propagation in nonlinear optical fibres, so as to make this
thesis self-contained. Emphasis is given on the basic mathematical and
physical background needed to understand the driving mechanisms in SC
generation. An in-depth treatment is easily found elsewhere, see e.g. the
book by Agrawal [71] and the 2006 review on SC generation by Dudley et
al. [1].

2.1 Linear propagation

An electromagnetic field can be constrained by the physical boundaries of
a waveguide, such a singlemode optical fibre, where guiding is achieved

5



6 Chapter 2. Pulse propagation in nonlinear optical fibres

by surrounding the core region with a lower refractive index cladding. An
electric field E(r, t) propagating in the fundamental mode of an optical fibre
can be mathematically described as

E(r, t) = x̂ {F (x, y)A(z, t) exp [i(β0z − ω0t)]} , (2.1)

where the field is assumed linearly polarised along the x̂-direction. F (x, y)
is the transverse field distribution, A(z, t) is pulse envelope and β0 = β(ω0)
the propagation constant at pulse centre frequency ω0, which specifies the
phase change per unit length.

2.1.1 Dispersion

One of the key parameters of optical fibres is the dispersion, or the frequency
dependence of the refractive index n(ω). Dispersion originates partly from
the frequency dependence of the response of silica to electromagnetic waves,
and partly from frequency dependencies associated with the geometry and
confinement of the waveguide. These two components are referred to as
material and waveguide dispersion, respectively. Dispersion is mathemat-
ically accounted for by Taylor expanding the propagation constant about
the pulse centre frequency [71]

β(ω) = n(ω)
ω

c
= β0 + β1(ω − ω0) +

1

2
β2(ω − ω0)

2 + · · · , (2.2)

where c is the speed of light and the βm coefficients are given by

βm =
∂mβ(ω)

∂ωm

∣∣∣∣
ω=ω0

. (2.3)

The parameters β1 and β2 are particularly important in fibre optics. The
group velocity vg, i.e. the velocity with which the pulse envelope propagates,
is directly related to β1

vg =

(
∂β(ω)

∂ω

)−1
= β−11 . (2.4)

The frequency dependence of vg leads to pulse broadening of short pulses,
and this group velocity dispersion (GVD) (or simply dispersion) is related
to the GVD parameter β2

D =
∂β1
∂λ

= −2πc

λ2
β2, (2.5)

where λ is the wavelength. Dispersion parameters βm of third and higher
order are called higher-order dispersion.
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The sign and magnitude of β2 are crucial for most nonlinear processes
in optical fibres. A region with β2 > 0 (D < 0) is said to have nor-
mal dispersion and a region with β2 < 0 (D > 0) anomalous dispersion.
Normal dispersion means that the GV increases with wavelength, and that
short wavelength ”blue” components of a pulse travels slower than its longer
wavelength ”red” components. The opposite is true for regions with anoma-
lous dispersion. The crossing point is called the zero-dispersion wavelength
(ZDW). Efficient nonlinear conversion requires extended interaction with
propagation of pulses at different wavelengths. The nonlinear interaction
can thus be limited by temporal walk-off if the pulses (or frequency compo-
nents) propagate with different GV, and accurate control of the dispersion
is a clear prerequisite for manipulating nonlinear processes.

2.1.2 Photonic crystal fibres

Single-mode optical fibres consist of a small core surrounded by a cladding
with a lower refractive index (Fig. 2.1(a)). They are typically made from
fused silica glass and the index difference is controlled by dopants. Light is
guided in the core due to total internal reflection at the boundary between
the core and cladding. In contrast, photonic crystal fibres (PCFs) have a
fundamentally different design with a complex cladding made of an array of
air holes running along the length of the fibre, resembling the structure of a
photonic crystal. In solid-core PCFs (Fig. 2.1(b)), the periodicity is broken
by introducing a solid core, which enables light guidance in the core by a
modified total internal reflection due to a lower (effective) refractive index
of the air hole-surrounding relative to the core [9–11]. The first solid-core
PCF was demonstrated in 1995 [7, 8], but the idea of guidance in single-
material fibres was attempted as early as the 1970s [72]. In another class of
PCFs light is guided in a hollow core by a photonic bandgab effect [73–75]
(Fig. 2.1(c)).

PCFs can be drawn on conventional fibre draw-towers. The preform is
typically made by stacking silica tubes in a close-packed array, where the
core is shaped simply by placing a solid tube in the centre of the preform.

The cladding index of PCFs has a much greater wavelength dependence
than that of conventional fibres, as the light distribution in the air and glass
varies with wavelength. This enables endlessly single-mode operation [15],
but also makes calculations of the fibre properties more difficult, and must
be numerically determined with e.g. a finte-element solver. The design of
the air holes allows a unique engineering of the dispersive and nonlinear
properties [76], which offers unprecedented control of nonlinear processes.
In particular, the success of PCFs lies in the easy tunability of the ZDW to
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Figure 2.1: Schematic illustration of fibre cross-section of the fibre types discussed
in the text. Grey areas are glass and black areas are hollow. The pitch Λ and hole
size d are marked in (b).

Figure 2.2: Dispersion profiles of solid-core PCFs with different hole size (d) and
pitch (Λ). The dispersion of bulk silica is from [71].

match the wavelength of commercially available lasers. This is illustrated in
Fig. 2.2, where the dispersion landscape is controlled to match the ZDW to
a pump wavelength of either 800 or 1064 nm, and further to bring the second
ZDW close to the pump or even have normal dispersion at all wavelengths.
By controlling the waveguide dispersion it is thus possible to create fibres
with properties very different from bulk silica.

Modal properties

Optical fibres can support a number of guided modes depending on the
fibre design and wavelength; the modes differ in transverse amplitude pro-
files and propagation constant. Throughout this thesis we will only consider
propagation in the fundamental mode of a solid-core PCF, which is charac-



2.2. Nonlinear propagation 9

terised by the largest effective index and a symmetric intensity profile. In
fibres with circular symmetry, the fundamental mode is two-fold degenerate
with orthogonally polarized modes. The fibre properties considered here
were calculated with the commercial finite-element solver COMSOL from a
specified fibre geometry and appropriate choice of boundary conditions.

Attenuation

The attenuation in PCFs comes partly from the intrinsic material loss
of the silica host material and partly from various sources of imperfec-
tions [10, 11, 71]. The PCF production causes imperfection in the form of
structural defects and contaminations leading to additional extrinsic losses.
PCFs are particularly exposed to water-related losses, where an overtone of
OH-silica bond absorption causes attenuation at 1.38 μm [77]. The material
loss of pure silica is low in the range 500-2000 nm, but increases towards the
ultraviolet and mid-infrared due to electronic and vibrational resonances,
respectively [78]. Scattering from surface roughness at the air-silica bound-
aries can be significant due to the large index contrast [79–81]. This becomes
an increasing problem when the intensity of the guided mode is high at the
boundaries, like for the small cores in the tapered PCFs considered in this
thesis. Similarly, OH losses are known to increase with decreasing core
size [82]. Confinement losses occur when a guided mode has a substantial
evanescent field in the cladding, which can be mitigated by increasing the
number of air hole rings. Appendix A includes a discussion on how to treat
the dominating sources of attenuation when modelling SC generation, and
attenuation in tapered PCFs is further discussed in Chapter 3.

2.2 Nonlinear propagation

From Maxwell’s equations it can be shown that an electromagnetic field
propagating in an isotropic medium with no free charges obeys the wave
equation [71]

∇×∇×E(r, t) = − 1

c2
∂2E(r, t)

∂t2
− μ0

∂2P(r, t)

∂t2
, (2.6)

where μ0 is the free space permeability and P(r, t) is the electric polari-
sation. A high-intensity electromagnetic field can give rise to a nonlinear
response of a dielectric medium, which in turn can generate light at new
frequencies. This happens when the motion of the bound electrons becomes
anharmonic. The nonlinear response of the induced polarisation to an elec-
tromagnetic field can be described by a Taylor expansion in the electric field
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when operating far from any resonances of the medium [71]

P(r, t) = ε0

(
χ(1) + χ(2)E(r, t) + χ(3)E(r, t)E(r, t) + · · ·

)
E(r, t), (2.7)

where χ(n) is the nth order susceptibility. The linear susceptibility χ(1)

is the dominating effect; its real and imaginary parts are related to the
refractive index and attenuation, respectively. Due to the centrosymmetry
of silica all even-order terms vanish. As a consequence, effects like second-
harmonic and sum-frequency generation associated with the second order
susceptibility χ(2) do (normally) not occur in silica fibres.

The lowest-order nonlinear effects in silica fibres can hence be associ-
ated with χ(3), which gives rise to the Kerr effect and Raman scattering.
The former manifests itself as an intensity dependent modification of the
refractive index, which leads to phenomena such as self-phase modulation
(SPM), cross-phase modulation (XPM) and four-wave mixing (FWM) that
are discussed in the following. In its simplest form, the intensity dependent
contribution to the refractive index can be written as

Δn = n2|E|2; n2 =
3

8n
Re(χ(3)

xxxx), (2.8)

where |E|2 is the optical intensity and Re denotes the real part. Many of
the components of χ(3) can be zero for symmetry reasons, and for a linearly

polarized field only the χ
(3)
xxxx component is non-zero. The nonlinearity can

then be quantified through the nonlinear refractive index of silica n2 ≈
2.6 · 10−20 m2/W [71].

A propagation equation for the pulse envelope that includes dispersive
and nonlinear χ(3) effects can be derived from the wave equation Eq. (2.6).
It assumes that the nonlinearity is small (i.e. that the nonlinear polarisation
can be treated as perturbation) and that the bandwidth is less than ∼1/3
of the carrier frequency [83]. The result is the scalar generalised nonlinear
Schrödinger equation (GNLSE) in the retarded time frame τ = t−z/vg [83]

∂A

∂z
= i

∑
m≥2

imβm
m!

∂mA

∂τm
− α

2
A

+ iγ

(
1 + iτshock

∂

∂τ

)(
A(z, τ)

∫ +∞

−∞
R(τ ′)|A(z, τ − τ ′)|2dτ ′

)
. (2.9)

The complex pulse envelope is normalised such that |A(z, t)|2 gives the in-
stantaneous power. The sum on the right hand side of Eq. (2.9) describes
dispersion and α is the loss. The nonlinearties are quantified by the non-
linear coefficient

γ =
n2(ω0)ω0

cAeff
, (2.10)
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where the effective area of the mode Aeff = (
∫ |E|2dA)2/ ∫ |E|4dA depends

on the modal distribution integrated over the xy plane [71, 84]. The time
derivative in Eq. (2.9) describes the dispersion of the nonlinearity and is
characterised by a time scale τshock = 1/ω0 [1,71], which leads to effects like
self-steepening. R(t) is the nonlinear response function of silica

R(t) = (1− fR)δ(t) + fRhR(t), (2.11)

which comprises two effects: (1) the electronic response, which is assumed
instantaneous and hence described by the delta function δ(t), and (2) the
delayed Raman response hR(t) originating from phonon interactions [83].
fR = 0.18 is the relative strength of the Kerr and Raman interactions.

When neglecting all terms except the GVD and instantaneous Kerr non-
linearity, the GNLSE reduces to the standard nonlinear Schrödinger equa-
tion (NLSE) [71]

∂A

∂z
= −iβ2

2

∂2A

∂τ2
+ iγA|A|2. (2.12)

The NLSE is the simplest nonlinear equation for studying χ(3) effects.

2.2.1 Numerical solutions

Analytical solutions to the GNLSE only exist in few highly simplified cases
rendering numerical integration the obvious approach to the full problem.
Numerical solutions to the GNLSE have been demonstrated to produce
spectra and noise properties in good - occasionally excellent - agreement
with experiments over a large range of input conditions, see e.g. [1]. The
numerical modelling in this thesis is based on the particular implementation
by Lægsgaard [85] that directly includes the frequency dependence of the
effective area. The GNLSE is solved in the interaction picture [86] by an
adaptive step-size fourth order Runge-Kutta solver. The implementation is
detailed in Appendix A together with some useful tricks. The mode profile
and effective area were calculated with the finite element mode solver COM-
SOL and will not be discussed here. It should be noted that Eq. (2.9) pre-
serves the number of photons if loss is neglected, but energy is not preserved
due to the photon-phonon energy transfer through the Raman effect [71].

It is often important to include a noise background in the simulations.
This is commonly done with the one photon per mode model by injecting a
fictitious field consisting of one photon with a random phase in each spectral
discretisational bin. Additional noise sources are discussed in Chapter 4 and
Appendix A.

The numerical results can be visualised in various ways. In the time
domain, the pulse envelope is directly related to the instantaneous power
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P (t) = |A(t)|2, as mentioned above. The frequency domain envelope Ã(ω)
is then simply given by the Fourier transform of A(t). However, when
comparing to experiments, it is often more convenient to show the power
spectral density PSD(ω) = c/λ2frep|Ã(ω)|2, where frep is the repetition
rate. The spectrogram or time-frequency representation gives an excellent
characterisation of the complex pulse dynamics, which is particularly useful
for correlating temporal and spectral features. It is found by gating the field
with a gate function g(t− τ) with variable delay τ , S(τ, ω) = | ∫ A(t)g(t−
τ) exp(−iωt)dt|2. Experimentally, the spectrogram can e.g. be measured
using the frequency-resolved optical gating (FROG) technique [87,88].

2.2.2 Self-phase and cross-phase modulation

The Kerr effect entails that the phase-velocity vp = c/n becomes intensity
dependent, which leads to a self-phase modulation of a propagating pulse
[89, 90] and a cross-phase modulation of co-propagating pulses [91–93].

The effects of SPM are easily observed from the NLSE (Eq. (2.12)) by
neglecting GVD (β2 = 0), which has the general solution [71]

A(z, τ) = A(0, τ) exp(iφNL(z, τ)); φNL(z, τ) = γ|A(0, τ)|2z. (2.13)

It is clearly seen that the temporal pulse shape |A(z, τ)|2 remains unchanged
with propagation, while the pulse acquires a phase shift φNL(z, τ) that de-
pends on the initial pulse shape and chirp. The time dependence of the
phase shift leads to spectral changes: in general, for an unchirped Gaussian-
like pulse, the leading edge will be downshifted in frequency and the trailing
edge upshifted, respectively, which spectrally broadens the pulse [90].

The intensity dependence of the GV leads to self-steepening because
the pulse peak moves at a lower speed than the edges. In combination with
SPM this causes an asymmetric spectral broadening; for ultrashort pulses it
shifts the pulse peak to the trailing edge with propagation, which ultimately
creates an optical shock [71].

In addition to SPM, the Kerr effect implies that the refractive index
can be modulated by the intensity of a co-propagating wave through XPM.
The nonlinear phase shift experienced by a field A1 in the presence of a co-
propagating field A2 at a different frequency can be approximated by [71]

φNL,1(z, τ) ≈ γ(|A1(0, τ)|2 + 2|A2(0, τ)|2)z, (2.14)

and similarly for the phase shift of A2. The first term is due to SPM and
the second term is from XPM, which is seen to be twice as effective. It
is important to notice that two waves can interact through XPM without
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any transfer of energy. XPM depends strongly on the GVs of the involved
waves to prevent temporal walk-off. This point is very important for SC
generation, as we shall see.

2.2.3 Four-wave mixing and modulation instability

Four-wave mixing is a parametric χ(3) process. As the name suggests, the
process involves light at four (not necessarily distinct) frequencies that mix
together in a way that satisfies energy and momentum conservation [71,94–
96]. When light with frequencies ω1 and ω2 propagate in a χ(3) medium,
it can induce harmonics in the polarisation, which generates light at ω3 =
ω1− (ω2−ω1) = 2ω1−ω2 and ω4 = ω2+(ω2−ω1) = 2ω2−ω1. The process
can thus be used to parametrically amplify a pre-existing frequency at ω3

or ω4. And the FWM amplified frequencies can further interact with each
other to generate a full comb of equidistantly spaced frequency components.
This technique is utilised in Chapter 4.

Phase-matching is a prerequisite for FWM, and the process can be made
very efficient in fibres by controlling the dispersion to ensure a vanishing
phase-mismatch Δk = β(ω3)+β(ω4)−β(ω1)−β(ω2)+2γP0 ≈ 0, where 2γP0

is the nonlinear phase [71,95,96]. In a special case of FWM, two degenerate
pump photons drive the generation of a Stokes/anti-Stokes photon pair
at frequencies symmetrically positioned about the driving frequency. This
automatically ensures phase-matching of the driving field.

Modulation instability is a nonlinear phenomenon in which amplitude
and phase modulations of a wave experience growth. A weak perturbation
of a continuous or quasi-continuous wave background can, if it falls within a
certain frequency range, undergo an exponential amplification that breaks
the wave into a pulse train. Although first observed in hydrodynamics
[97], the MI process is recognised a universal process in nonlinear physics
[13, 24–26]. In the specific context of fibre optics, MI is a consequence
of the interplay between dispersive and nonlinear Kerr effects, resulting
in an exponential amplification of a weak perturbation that is known to
induce a break-up of quasi-continuous waves into trains of temporally short
pulses [17, 22, 23, 26, 98]. The perturbation can be either quantum noise
(spontaneous MI) or a signal with a frequency shift relative to the pump
(induced MI). In the frequency domain, MI is a degenerate FWM process
where two pump photons are converted to a Stokes/anti-Stokes photon pair
and can be associated with a modulation frequency ΔωMI = (2γP/|β2|)1/2
[99].
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2.2.4 Raman scattering

The electronic responses that give rise to Kerr nonlinearities are effectively
instantaneous. In contrast, Raman scattering of light by molecular vibra-
tions (phonons) is a non-instantaneous χ(3) process. In spontaneous Raman
scattering, a photon is downshifted in frequency by transferring some of its
energy to a phonon [100] or upshifted by combining with a phonon. The
downshifted and upshifted radiation are referred to as a Stokes and anti-
Stokes wave, respectively. The latter process occurs less frequently as it
requires a phonon of the right energy and momentum. It is similarly pos-
sible to utilise Raman scattering for stimulated amplification of a Stokes
signal by a suitable pump. Spontaneous Raman scattering can act as a
seed for further stimulated amplification [71].

The molecular vibrations of silica induced by an optical field can to a
fair approximation be described by a simple damped oscillator model [71,83]

hR(t) =
τ21 + τ22
τ1τ22

exp(−t/τ2) sin(t/τ2)Θ(t), (2.15)

with τ1 = 12.2 fs and τ2 = 32 fs. Θ(t) is the unit step function. The
Raman gain (i.e. the gain seen by a weak Stokes signal with a frequency
offset relative to the pump) is given by the imaginary part of hR(t) in the
frequency domain. The simple Raman gain is shown together with the
full Raman response in Fig. 2.3. The simple model reproduces the overall
shape of the full Raman gain and both show a clear maximum at ∼13.2 THz.
Equation (2.15) has been used extensively for modelling pulse propagation
with good results [1] and was used in this work. However, the model tends
to underestimate the Raman-induced frequency shifts that will be discussed
in the following [71].

2.3 Solitons and solitonic effects

In optical fibers with anomalous dispersion, the chirp from SPM can be
exactly compensated by dispersion. This leads to one of the most intriguing
phenomena in nonlinear physics: the soliton, a translational solitary wave
that retains its shape with propagation. Solitons are known from a wide
range of nonlinear systems and were first discovered in the early 1800s in the
form of water waves [102]. The propagation of solitons in optical fibres was
first considered in 1973 by Hasegawa and Tappert [103] and experimentally
observed in 1980 by Mollenauer et al. [104], although optical solitons were
in fact unknowingly generated in 1978 by Lin et al. [6].
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Figure 2.3: Normalised Raman gain spectrum of silica. The frequency offset is of
the (weak) Stokes signal wave with respect to the pump. The full Raman response
is based on [101].

Mathematically, solitons are exact solutions to the NLSE of the form [71]

A(z, τ) =
√

P0sech

(
τ

τ0

)
exp

(
−i |β2|

2τ20
z

)
, (2.16)

where the width τ0 and peak power P0 are related through the soliton
number

N2 =
γP0τ

2
0

|β2| , (2.17)

and the exponential function represents the nonlinear phase shift attained
with propagation. Fundamental solitons have N = 1 and propagate with-
out any change in temporal or spectral shape. Higher-order solitons have
integer soliton numbers N > 1 and periodically return to their initial shape.
However, the term soliton typically refers to a fundamental soliton, as we
shall do here.

One of the most remarkable features of solitons is the stability: near-
solitonic pulses automatically adjust their shape to that of a fundamen-
tal soliton, possibly by dispersing excess energy. Solitons are similarly
known to be stable under small perturbations, such as losses and amplifica-
tion [103,105–107] as well as changes in dispersion and nonlinearity [22,108].
The changes just need to be sufficiently slow for the soliton to adiabatically
adjust its shape. Because of the stability solitons were quickly suggested
as candidates for optical communication [105, 106, 109, 110]. In contrast,
higher-order solitons are not stable under perturbations, rather they un-



16 Chapter 2. Pulse propagation in nonlinear optical fibres

dergo soliton fission that breaks the higher-order soliton into its fundamen-
tal soliton constituents [35, 71,111].

2.3.1 Soliton self-frequency shift

The spectrum of a temporally narrow soliton can be sufficiently broad for
the short wavelength components of the soliton to act as a Raman am-
plifier for the long wavelength components [112]. This intra-pulse Raman
scattering transfers energy from the blue to the red edge, which effectively
shifts the soliton to gradually longer wavelengths, a phenomenon called the
soliton self-frequency shift [113, 114]. The Raman gain is weak for small
frequency offsets, as seen in Fig. 2.3. This causes a strong dependence
of the redshift rate on the soliton duration that can be approximated by
∂ωs/∂z ∝ −|β2|/τ40 for long pulses [114]. The self-shift rate (generally)
slows down with propagation because energy is lost in the Raman process
and the pulse broadens temporally.

The Raman self-frequency shift can be used to access spectral regions
that are hard to reach with existing lasers. In Paper IX we investigated
the possibility of coupling an ensemble of redshifting solitons between two
different fibres, while ensuring that the solitons remain solitons without
shedding energy. This can e.g. be utilised to extend the redshift of multiple
co-propagating solitons into the mid-infrared by coupling them from a silica
to a softglass fibre. However, this will not be discussed further in this thesis.

2.3.2 Dispersive wave generation

A soliton can, in the presence of higher-order dispersion, resonantly transfer
energy into the normal dispersion regime to a so-called dispersive wave or
Cherenkov radiation [115]. The amplification of DW radiation conditions
resonant coupling, i.e. phase-matching from the soliton to the DW. This can
occur for solitons in the vicinity of a ZDW with spectral components extend-
ing into the normal dispersion regime, so that the centre of the soliton can
resonantly amplify its own spectral tail with propagation [116,117]. A can-
cellation of the self-frequency shift has been demonstrated by a mechanism
where a redshifting soliton slows down as it approaches a long-wavelength
ZDW [34], which causes a recoil of the soliton due to phase-matched energy
transfer across the ZDW.

Recently, Erkintalo et al. [118] identified phase-matched cascaded FWM
as the driving mechanism in DW generation from soliton-like pulses per-
turbed by higher-order dispersion, where a bichromatic pump pair within
the soliton spectrum generates frequencies in the opposite dispersion regime.
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This directly explains the soliton recoil observed near a second ZDW and
DW generation in the anomalous dispersion regime from pulses in the nor-
mal dispersion regime [119]. Also recently, it was demonstrated by Rubino
et al. [120] that the soliton has an additional phase matched component in
the negative frequency branch of the dispersion that can generate DWs at
even shorter wavelengths. This can be understood by noting that an elec-
tromagnetic field is a real function, and can hence be described as a positive
frequency envelope and its complex (negative frequency) conjugate, where
the latter gives rise to additional phase-matching conditions [120,121].

2.3.3 Trapping of dispersive waves

The dispersive radiation generated from a soliton typically propagates at a
lower GV than the soliton, preventing any immediate interaction. However,
as the soliton redshifts it decelerates, which eventually allows the soliton and
DW to interact through a cascade of XPM collisional events. This leads to
the fascinating phenomenon of pulse trapping, where the redshifting soliton
traps the DW and forces it with to move with the GV of the soliton [35–
37,122–126]. This effect is principal for SC generation and its implications
will be discussed in greater detail in Chapter 3. The manifestation of the
trapping effect is demonstrated in Fig. 2.4, which shows the propagation of
a 25 fs fundamental soliton and a GV matched DW package in a typical
PCF with a ZDW at 1054 nm (the modelling in Chapter 4 is based on the
same fibre). The spectral evolution in Fig. 2.4(a) shows how the soliton
forces a continuous blueshift of the DW with propagation, so as to satisfy
GV matching. This is detailed in the spectrograms in Fig. 2.4(b) for the
soliton and DW, the soliton alone and the DW alone, respectively. When
both pulses are present, the DW is trapped by the soliton, which forces it
to propagate at the GV of the soliton and keeps the DW from dispersing.
The soliton undergoes nearly the same redshift in the absence of the DW,
although a small change in the final delay is observed. In contrast, when the
DW propagates alone it is subject to significant dispersion, which clearly
highlights the trapping effect.

The trapping effect has been explained as a consequence of XPM and
the soliton deceleration: The soliton induces a modulation of the refractive
index across the DW via XPM, which effectively creates a potential barrier
that forces the DW to trail behind the soliton. In addition, the soliton
deceleration imposes a gravity-like force on the DW, preventing it from
dispersing behind the soliton. These two effects combined thus creates a
gravity-like potential that effectively traps the DW and forces it to follow
the GV of the soliton. This was first explained by Gorbach and Skryabin [37]
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Figure 2.4: (a) Propagation of a fundamental soliton (λs = 1200 nm, τ0 =
25 fs, P0 = 10.2 kW) and GV matched DW (sech2-shape, λDW = 925 nm, τ0 =
25 fs, P0 = 1.02 kW): as the soliton redshifts it traps and blueshifts the DW.
(b) Spectrograms at 0, 0.5 and 1 m for the soliton and DW, the soliton alone
and the DW alone, respectively. The dotted lines show the GV. The used PCF
has hole-to-pitch ratio d/Λ = 0.52 and pitch Λ = 3.6 μm, which gives a ZDW of
1054 nm.

by investigating the process in the inertial frame of the soliton. The soliton
deceleration is normally provided by the Raman redshift, but can likewise
be achieved by tapering the fiber [127].

2.4 Supercontinuum generation

Supercontinuum generation occurs when short and intense pulses experience
extremely large spectral broadening due to a range of interconnected linear
and nonlinear effects. It is perhaps the most striking and dramatic effect
in nonlinear fibre optics, and is particularly efficient in PCFs due to the
excellent control of both nonlinear and dispersive properties. It was first
observed in the 1970s in bulk by Alfano and Shapiro [3, 4] and later in
optical fibres by Lin et al. [5, 6]. In these first experiments the pump fell
in the normal dispersion regime and the spectral broadening was mainly
caused by the Raman effect and SPM. However, in the 1980s SC generation
was realised from a pump in the anomalous dispersion regime, where MI
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Figure 2.5: (a) Experimental cutback measurement of SC generation in a uniform
PCF with hole-to-pitch ratio d/Λ = 0.85 and pitch Λ = 4.4 μm. (b)–(d) Calculated
dispersion, GV and effective area, respectively. The fibre was pumped at 1064 nm
with 10 ps pulses at 15 W average power and 80 MHz repetition rate. The dotted
lines in (a) show the measured long-wavelength edge and the theoretically calcu-
lated GV matched blue edge.

caused a break-up of the pump into a distributed spectrum of redshifting
solitons [19,35,128]. The resulting broad spectra were attributed to the an
ensemble average of the solitons that had redshifted by different amounts.
The SC field really took off with the invention of the PCF, which greatly
simplified the requirements needed for SC generation, as demonstrated in
the 2000 experiment by Ranka et al. [12]. The first commercial SC source
saw the light of day shortly after in 2003. Today the technology has matured
and SC sources are available from several companies [129].

The commercially available SC sources are typically based on a picosec-
ond high-power fibre laser and a length of PCF to broaden the spectrum.
Here we shall focus on such sources. The spectral broadening as a func-
tion of length is shown in Fig. 2.5(a) for a laser and PCF typical of most
high-power sources. The measurement was made by repeatedly shortening
the fibre and measuring the spectrum. The spectrum broadens very rapidly
over the first ∼2 m, but the broadening slows down in the remaining fibre
length and effectively ceases after ∼8 m. The final SC spectrum is very
smooth and extends over 2.5 optical octaves from 450–2300 nm. The calcu-
lated dispersion, GV and effective area are shown in Fig. 2.5(b)–(d). The
SC broadening in this regime with a picosecond pump in the anomalous
dispersion regime close the to ZDW can be described as follows:

(i) The broadening is initiated when MI breaks the picosecond pump into
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large a number of temporally short pulses that reshape into fundamen-
tal solitons [17–23].

(ii) The solitons generate DWs in the normal dispersion regime and start
redshifting. As the solitons redshift they trap and blueshift DWs
across the ZDW [35–37,124,125].

(iii) The broadening stops when the largest solitons reach the infrared ma-
terial loss edge, which effectively prevents soliton propagation beyond
∼2.4 μm. This in turn defines the short-wavelength blue edge through
GV matching, since this edge is comprised of the most blueshifted
DWs that are linked to the most redshifted solitons at the long-
wavelength red edge [35,38].

The fundamental importance of the soliton-induced trapping can be seen in
Fig. 2.5(a), where the dotted lines mark the experimentally determined red
edge and theoretically calculated GV matched blue edge, respectively. The
agreement is excellent and can be used to theoretically determine the blue
edge [35, 38, 40], as we shall see. The broadening described above becomes
much clearer when investigating the dynamics in spectrograms. To this
end, simulated spectrograms of parameters similar to those of Fig. 2.5 are
shown in Fig. 2.6 at select propagation distances. The initial stage of MI
and the subsequent generation of ultrashort soliton-like pulses are clearly
evident in Figs. 2.6(a)–(b), which is further supported by the close-up of
the temporal dynamics near the pulse centre shown in Fig. 2.6(d). The final
stage of soliton redshift and DW-trapping is apparent in Fig. 2.6(c), where
a clear temporal overlap between the most redshifted solitons and the most
blueshifted DWs is observed.

The break-up of a long pulse has later been linked to Akhmediev breather
theory [13, 25]. Akhmediev breathers are exact analytical solutions to the
NLSE that describe the evolution of a wave with a small time-periodic per-
turbation imposed on a constant background, resulting in the growth and
return of a train of ultrashort pulses. It was suggested in [13] that the onset
of long-pulse SC generation from spontaneous MI can be interpreted as the
generation of large number of Akhmediev breathers that then reshape into
solitons.

The distributed spectrum of MI-generated solitons will redshift at differ-
ent velocities, which inevitable leads to temporal collisions. In fact, it turns
out that inelastic soliton collisions are a key driver in the formation of the
long-wavelength SC edge [128,130,131]. Left isolated, even the most power-
ful MI-generated soliton broadens and slows down before reaching the loss
edge. During such collisions, inter-pulse Raman scattering transfers energy
between the solitons; the energy transfer depends strongly on the relative
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Figure 2.6: (a)–(c) Spectrograms at propagation distances of 10, 20 and 100 cm,
respectively, calculated for parameters corresponding to those in Fig. 2.5. The
spectra are downsampled to 1 nm resolution. (d) Close-up of the temporal evolution
near the pulse centre at propagation distances of 0, 8, 10 and 20 cm, respectively.

phase and amplitude, but on average there is a preferential transfer of energy
from the smaller to the larger soliton [128, 130, 131]. This energy transfer
can lead to the formation of rare large amplitude solitons, also known as
rogue waves [27], which we discuss in Chapter 4.

It is interesting to compare the single-shot spectra in Fig. 2.6 with the
measured averaged spectra in Fig. 2.5: the MI process generates solitons
with a spread in shape and power, which leads to a corresponding difference
in the final spectra from shot to shot. This is characteristic of noise-seeded
MI and explains why the experimental spectra measured over 1000s of shots
are so remarkably smooth and flat. However, there is an intrinsic trade-off
between the spectral flatness and noise.

Finally, it should be noted that the spectral broadening can be achieved
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through other mechanisms. The dominating broadening mechanisms de-
pend on the dispersion, nonlinearity and pump duration and power. In
particular, soliton fission generally takes precedence over MI for short (fem-
tosecond) pulses and soliton-driven broadening is prohibited when pumping
in the normal dispersion regime [1].



Chapter 3

Blue-enhanced supercontinuum
generation in tapered PCFs

Amongst the greatest advantages of SC generation in PCFs is the possi-
bility to shape the SC spectrum through dispersion engineering. Indeed,
by controlling the dispersion, and thereby the phase and GV landscape,
the nonlinear processes that govern SC generation can be manipulated. In
this chapter, tapered PCFs are utilised to extend the SC spectrum into
the deep-blue. This is motivated by a great commercial interest in extend-
ing the bandwidth below 400 nm, in particular for biological applications
in e.g. fluorescence microscopy due to the absorption bands of many fluo-
rophores in this wavelength region [70]. The chapter summarises the results
of Papers I-IV. Specifically, the importance of the taper shape on available
power in the blue edge and the first single-mode high air-fill fraction PCF
for deep-blue SC generation.

3.1 Tapered PCFs for blue-extended
supercontinuum

In soliton-driven SC generation, dispersion engineering can be directly ap-
plied to yield a certain SC bandwidth, since the spectral edges are linked by
GV matching [35,38,39]. The maximal attainable SC bandwidth in a given
fibre is thus limited by the GV profile and where the soliton redshift ceases:
the maximum extent of the soliton redshift defines the red edge, which
in turn defines the blue edge by GV matching. Specifically, in Paper II
we define the red edge λred for a high-power SC source as the wavelength
where the spectral broadening is stopped by the increasing material loss

23
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λloss (the loss ”edge”), here set to 2300 nm, or a wavelength λ2 close to the
second ZDW, whichever is the lowest. Solitons always halt their redshift
about 50-100 nm away from the second ZDW [34, 132] so λ2 is chosen to
λZDW,2−50 nm, which means that λred = min {λloss, λZDW,2 − 50nm}. The
blue edge is then simply determined through GV matching. This is demon-
strated in Fig. 3.1 by showing the calculated dispersion, effective area and
GV for PCFs with a hole-to-pitch ratio of 0.52 and values of the pitch in the
range 4.0 to 2.0 μm. Reducing the pitch shifts the first ZDW to gradually
shorter wavelengths and eventually also brings the second ZDW below the
loss edge. The effective area reduces with the pitch due to the decreasing
core size. But more importantly, the GV decreases with the pitch, which
means that there is GV matching to gradually shorter wavelengths up to
a certain point. This allows us to define an optimum pitch that yields the
shortest possible blue edge (for a fixed hole-to-pitch ratio). Reducing the
pitch below the optimum increases the GV near the loss edge due to the
second ZDW, which increases the GV matched blue edge wavelength. How-
ever, simply starting out with a PCF with the optimum pitch is generally
undesirable: a pulse break-up with an efficient transfer of energy into the
normal dispersion regime requires a pump in the vicinity of the ZDW, and
the optimum pitch generally shifts the ZDW far below the ytterbium pump
wavelength of 1064 nm used in most commercial SC sources. It further
gives a small core that complicates coupling. The trade-off between a short
wavelength blue edge and an efficient conversion across the ZDW can be
resolved by using tapered PCFs, in which an initial length of uniform fibre
with a suitable ZDW ensures an efficient pulse break-up, and a subsequent
tapered section with decreasing pitch (and fixed hole-to-pitch ratio) permits
GV matching to gradually shorter wavelengths [39, 40, 66–68, 70, 133–137].
For the particular PCF in Fig. 3.1 (that we shall be using later) the blue
edge is shifted from 496 nm at a pitch of 3.3 μm (ZDW at 1035 nm) to
476 nm at the optimum pitch of 2.5 μm (ZDW at 963 nm). We emphasise
that the trends described here are applicable over a wide range of hole-to-
pitch ratios.

Tapering has previously been demonstrated as an effective way of ex-
tending the SC bandwidth into the blue by changing the dispersion and
increasing the nonlinearity [40, 66–68, 70, 133, 136, 138–143]. In particular,
spectra extending down to wavelengths as short as 320 nm from a 1065 nm
pump were reported in [67,68], which is at the limit of what can be achieved,
as we shall see. An impressive 280 nm was reached in [69] by pumping an
ultrashort taper with a femtosecond pump at 800 nm. However, in the
latter case the light was generated directly in the UV region by a different
mechanisms of soliton fission directly from the pump. Table 3.1 summarises
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Figure 3.1: Calculated (a) dispersion, (b) effective area and (c) GV for PCFs with
hole-to-pitch ratio 0.52 and values of the pitch from 4.0 to 2.0 μm. The shaded
areas mark the loss region above 2300 nm, and the horizontal dotted lines in (c)
show the GV matching from 2300 nm for a pitch of 3.3 and 2.5 μm, respectively.

a selective review of the literature on SC generation in tapered fibres, and a
more general overview of blue-extended SC generation can be found in the
2010 review by Travers [40].

The use of tapered fibres was first suggested as a means of compensating
temporal pulse broadening in lossy fibres [108, 153–156], where the propa-
gation of a soliton can be made invariant by decreasing the dispersion along
the fibre. Later the same method was used for pulse compression [157–162]
and the generation of high repetition rate soliton trains [22, 23, 156]. Sim-
ilarly, tapered PCFs have been used for more general soliton manipula-
tion [163–166], including the observation of a soliton blue-shift [167]. And
more straightforwardly, tapering has been used to increase the fibre non-
linearity [145, 168, 169]. Indeed, tapered single-mode fibres can be made to
have dispersion and nonlinear properties similar to those of a PCF to facili-
tate SC generation [138,144,170]. This has further been utilised for mid-IR
SC generation in soft glasses like chalcogenide and tellurite, where the taper
increases the nonlinerity and hence expands the SC to longer wavelengths
beyond the transmission window of silica [171–174].

PCFs can be tapered exactly like single-mode fibres either by post-
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fabrication processes or during the fibre draw, and it has been demonstrated
that even very short PCF tapers do not introduce coupling between modes
[175]. In addition to decreasing the overall fibre diameter, PCFs allow for
a longitudinal variation of the hole-size, which we utilise in Sec. 3.3. Post-
processed tapers are fabricated by heating and stretching the fibre, thereby
reducing the diameter. This can be done with high accuracy and hole-
collapse can be avoided either by pressurising the air holes or tapering cold
and fast [136, 149, 176–181]. Post-fabricated tapers are typically limited to
10s of cm, and although longer lengths have been fabricated, such fibres will
be very fragile. This is circumvented by tapering directly at the draw-tower
by varying the draw-speed during fabrication [40,66,70,133,151,160]. It has
generally been the belief [179] that draw-tower tapers shorter than 10 m are
difficult to fabricate. On the contrary, we find that tapering directly on the
draw-tower offers high accuracy of the fibre parameters by pressure control
of the air hole structure, and allows fabrication of accurate fibre tapers
with lengths from less than a metre and up with high reproducibility, as
shown in Paper III. This further makes it possible to use the draw-tower’s
coating system as an integrated part of the taper fabrication. A very short
draw-tower taper of only 10 cm was recently reported in [182], showing the
flexibility of draw-tower tapers.

Blue-extended SC generation has also been achieved by other kinds of
dispersion engineering, such as immersing a post-processed tapered PCF in
a liquid with a suitable refractive index [183] and by doping the silica glass
with e.g. germanium [52, 184, 185]. Changing the material can have the
additional advantage of enhancing the Kerr and Raman responses. Impres-
sive results have been demonstrated by (mainly) SPM broadening in short
lengths of fluoride fibres with an SC spanning 3 octaves from 350 nm to
3.85 μm [64]. And recently uniform PCFs with microstructured cores [186]
were used to achieve GV matching to wavelengths below 400 nm, but at
the expense of a very small effective area.

3.2 Optimum taper profiles for blue-enhanced
supercontinuum

The idea of extending the SC into the deep-blue by changing the GV land-
scape has been described and demonstrated by several authors [39, 40, 66–
68, 70, 133–137], but the importance of the taper shape remained largely
unknown [40]. This section describes the importance of the taper profile on
the available light in the blue edge. It should be emphasized that the ap-
proach pursued here is for long-pulsed MI-initiated SC generation, which is
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Figure 3.2: Calculated blue edge wavelength as a function of hole-to-pitch ratio
d/Λ and pitch Λ, assuming GV match to a red edge at 2300 nm or 50 nm below
the 2nd ZDW. The dashed line indicates the optimum pitch (shortest blue edge)
for a given hole-to-pitch ratio. The full white lines mark where the first ZDW is
at 1064 and 1000 nm, respectively, and where the second ZDW is at 2400 nm.

fundamentally different from e.g. [69,150], where the blue edge is generated
directly from a fs pump pulse in an ultrashort taper. The taper profile was
optimised for this short-pulse SC regime in [142, 187], where the SC band-
width and flatness were controlled by manipulating direct soliton fission of
the pump in a short tapered fibre.

Analytical descriptions of soliton propagation in non-uniform fibres have
been reported by several authors [163, 188, 189]. In particular, Judge et
al. [163] theoretically calculated the condition for an increased soliton red-
shift by clever uptapering, where the long-wavelength ZDW is increased as
the soliton redshifts so as to avoid DW generation and soliton recoil. How-
ever, the focus here is on the downtapering section where the solitons are
decelerated and can trap DWs.

As a starting point, in Fig. 3.2 we extend the analysis of Fig. 3.1 by
mapping out the calculated blue edge as a function of pitch and hole-to-
pitch ratio, which suggests that ∼330 nm can be achieved for d/Λ > 0.95,
and that the optimum pitch is found near 2 μm for large hole-to-pitch ratios,
in agreement with the similar analysis in [40]. This suggests that the results
in [67, 68] are at the limit of what can be achieved in terms of achieving
the shortest possible wavelength. The figure clearly shows the merits of
tapered PCFs for blue extended SC generation: the full white lines mark
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Figure 3.3: Radiation trapping and leakage in (a) uniform and (b) tapered fibres.
In tapered fibres the asymmetric change in the GV of the soliton and DW gives
rise to a group acceleration mismatch.

where the first ZDW is at 1064 nm and 1000 nm, respectively. PCFs with
a ZDW of 1000 nm are seen to have GV matching to wavelengths above
450 nm, which demonstrates that achieving GV matching to wavelengths
much below 450 nm in a uniform fibre is difficult without compromising the
conversion efficiency to the visible due to the offset from the ZDW [38].

3.2.1 Group acceleration mismatch

In order to determine the optimum taper profile it is useful to first review
the soliton-induced trapping of a DW package in a uniform fibre. It has
generally been neglected that the soliton trapping process is in fact not
complete, which means that a trapped DW may continuously loose energy.
This is illustrated in Fig. 3.3(a): the soliton undergoes a continuous Raman
redshift, which leads to a continuous change in GV with propagation length,
i.e. a deceleration. The DW does, however, not move spectrally in its own
right and is thus not subject to the same deceleration. This means that
there is a small difference in GV, and thus potentially a small leakage of DW
energy. The Raman effect therefore leads to a group acceleration mismatch
(GAM); an asymmetric change in the GV of the solitons and DWs. The
effect is not significant in uniform fibres, because the relatively weak Raman
redshift leads only to small GV changes with propagation and hence a minor
GAM. However, in a fibre taper the GV change can be orders of magnitude
larger than the inherent Raman induced change. Moreover, the change in
GV is generally highly asymmetric, i.e. the taper-induced GV change is
much smaller for the DW than for the soliton, as illustrated in Fig. 3.3(b).
Travers and Taylor [127] demonstrated that this taper-induced GV decrease
enhances the trapping potential of the soliton and can in fact supply the
needed soliton deceleration to trap a DW in the absence of the Raman effect.
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In physical terms, the GAM lowers the XPM interaction length (the depth
of the gravitational well), causing light to escape. To this end, Schreiber et
al. demonstrated [190] that light can escape or pass unaffected through the
XPM interaction region when the interaction length is sufficiently short, i.e.
a large GV difference.

The GAM concept was introduced in Paper I, where we further demon-
strated, for the first time, the impact of the taper gradient on the trapping
of a DW by means of single soliton simulations. This directly translates to
a dependence of the available light in the blue edge of an SC on the taper
gradient. To investigate the full scale importance of GAM on SC generation
comprised by hundreds of solitons and DWs, we fabricated an asymmetric
draw-tower taper. The point of the asymmetry is to enforce a difference in
the GAM depending on whether the fibre is pumped from the long or short
downtapering side, while ensuring that the light passes through the same
length of fibre. We based the taper on the commercial fibre SC-5.0-1040
from NKT Photonics A/S with a hole-to-pitch ratio of d/Λ = 0.52 and
pitch 3.3 μm, which we analysed in Fig. 3.1. We chose this particular fibre,
because it it is single-mode at the pump [191].

In all of the SC experiments in this work, we used a modelocked 1064 nm
Yb fibre-laser typical for commercial SC sources. The laser emits 10 ps
pulses with an average output power of 14 W at a repetition rate of 80 MHz.
The PCFs were spliced directly to the laser using a filament splicer, result-
ing in typical coupling losses below 1 dB. The output was collimated and
recorded with an optical spectrum analyser through an integrating sphere.
The output power was measured with a power meter and the spectra nor-
malised accordingly (see [192] for details). The IR part of the spectrum was
measured with an additional spectrum analyser and the two spectra were
stitched together.

The results of the asymmetric draw-tower taper are summarised in
Fig. 3.4. We characterise the taper profile in Fig. 3.4(c), where the pitch
as a function of length is determined from cross-sectional images. It is seen
that the pitch is reduced from 3.3 to 2.5 μm in an asymmetric way that
roughly can be described as a 1.5 m downtaper and a 0.5 m uptaper. The
hole-to-pitch ratio of 0.52 was preserved throughout the taper. We used
an additional 5 m of uniform fibre before and after the tapered section to
generate an initial spectral broadening. The spectra recorded when pump-
ing from the long (blue) and short (red) downtapering sides are shown in
Fig. 3.4(a) together with a reference spectrum from a 10 m uniform fibre
(black) with a constant pitch of 3.3 μm. A close up of the blue edge is
shown in Fig. 3.4(b), where the theoretically calculated blue edges from
Fig. 3.2 are marked; the discrepancy can be ascribed to deviations in the
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Figure 3.4: (a) Experimental output spectra of the asymmetric draw-tower ta-
per. The spectra show the taper pumped from the long (blue) and short (red)
downtapering sides. The spectrum of a 10 m uniform fibre (black dash) is shown
for comparison. (b) Close-up of the blue edge marked in (a). The vertical lines
denote the calculated spectral edges. (c) Measured profile of the taper. The pitch
is calculated from the shown cross-sectional images recorded with an optical mi-
croscope at 100x magnification. The hole-to-pitch ratio d/Λ = 0.52 was constant
through the taper.

hole-to-pitch ratio in the taper. Evidently, both spectra generated in the
tapered fibre extend below the bandwidth achievable in the uniform fibre,
as expected. But more importantly, pumping from the long downtapering
side clearly yields a significantly higher power in the blue edge than pump-
ing from the short, which confirms the importance of GAM: when the taper
is too steep, the solitons at the red edge undergo a much larger deceleration
than the DWs at the blue edge, and a fraction of the energy in the DWs
therefore escapes the trapping potential and is consequently not blueshifted.
In the present case, we see a threefold increase in the energy below 500 nm
when the taper is pumped from the long downtapering side. These results
form the basis of Paper II. The importance of GAM was complimented with
additional experiments and simulations in Paper III.
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3.2.2 Deep-blue supercontinuum generation

The GV matching landscape in Fig. 3.2 tells us, for a fixed hole-to-pitch
ratio, what values of the pitch we should choose to (1) ensure an effective
pulse break-up near the ZDW and (2) give the optimum short wavelength
blue edge. The notion of GAM additionally says that the length of the
downtapering section should be as long as possible to yield an efficient con-
version of light to short wavelengths. However, in reality attenuation and
soliton broadening will enforce an upper limit on the downtapering length.
Specifically, the rapidly increasing loss at short wavelengths will eventually
precede the amount of light that is continuously transferred to the edge,
and for long tapers the solitons will temporally broaden and/or be stopped
by the IR loss edge, and hence terminate the DW trapping and blueshift,
before the optimum pitch is reached. For the tapers considered above and
in Papers II-III, where the SC never extended below 450 nm, we saw a con-
tinual increase in power at the blue edge with increasing taper length. We
later conducted additional experiments with downtaper lengths above 10 m,
which further supported this conclusion. An SC extending down to 450 nm
can, however, be realised in a uniform fibre, as suggested by Fig. 3.2. We
therefore - among other things - turned to designing an SC extending below
400 nm. Although far from the 320 nm reported in the literature [67, 68]
this is still a significant improvement over most commercially available high-
power systems and an important intermediate step on the way to realising
a system extending far into the deep-blue. To this end, we fabricated a
number of tapers with a hole-to-pitch ratio of 0.7, all with a total length of
10 m. They consisted of ∼35 cm of uniform fibre with a pitch of 4.0 μm
(ZDW at 1035 nm), followed by a downtapering section where the pitch is
linearly reduced to either 2.2 or 1.85 μm over a varying length, and finally
a length of uniform waist to fixate the total fibre length at 10 m. A pitch
of 2.2 μm corresponds to the optimum tapering degree defined in Fig. 3.2.
The lower pitch of 1.85 μm was chosen to investigate the influence and sen-
sitivity of the spectrum on the final pitch and the accompanying increased
attenuation due to the smaller core. The total length was fixed at 10 m to
examine if a long downtapering section is preferable over a relatively shorter
downtapering section and a correspondingly longer waist with a fixed pitch.

The results are shown in Fig. 3.5: all spectra show a peak with a high
spectral power density around 395 nm and generally have spectral densities
above 1 mW/nm across the entire visible spectrum. The exact position of
the blue peak varies slightly, which again can be ascribed to slight variations
in the actual fibre parameters. The position of the blue edge is particularly
sensitive to variations in the hole-to-pitch ratio, and the spectrum of the
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Figure 3.5: Experimental spectra of tapered fibres with a hole-to-pitch ratio of
0.7 and varying downtapering length. All fibres had a total length of approximately
10 m, and consisted of a ∼35 cm length of uniform fibre with a pitch of 4.0 μm,
followed by a downtapering section of varying length L (see legend) and a length
of waist with a constant pitch of (a) 2.2 μm (the optimum pitch) or (b) 1.85 μm.

Taper length [m] 10 6 3 1

Vis. power, 2.2 μm taper [W] 1.68 1.40 1.11 -
Vis. power, 1.85 μm taper [W] 1.67 1.41 1.02 1.00

Table 3.2: Visible spectral power below 900 nm of the tapers shown in Fig. 3.5.
All spectra had a total power of 5.8 W.

10 m taper in Fig. 3.5(a) suggests that the optimum pitch and hole-to-pitch
ratio was not entirely reached in this fibre. More importantly, there is a
clear dependence on the downtaper length of the light in the blue edge.
In fact, we observe a clear increase of the spectral density in the entire
visible part of the spectrum with the length of the downtaper for both
values of the final taper pitch. This is detailed in Table 3.2, which gives a
list of the visible power below 900 nm measured through two E02 mirrors.
Interestingly, the total power was 5.8 W in all cases, but the visible power
has a clear dependence on the downtaper length independently on the final
pitch. To understand this difference, we show in Fig. 3.6 the attenuation
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Figure 3.6: Attenuation for PCFs with hole-to-pitch ratio 0.7 and pitch 4.0 μm
(blue) and 2.0 μm (red), respectively. Fibre lengths of 96 and 199 m were used to
measure the loss. Courtesy of NKT Photonics A/S.

of two uniform fibres with hole-to-pitch ratio 0.7 and a pitch of 4.0 and
2.0 μm, respectively. The loss was measured with an incoherent broadband
light source in a 96 and 199 m length of fibre, respectively. Because of the
low loss and short fibre length the measurement of the 4.0 μm fibre must be
considered relatively uncertain. Similarly, the uncertainty increases at low
wavelengths due to a low spectral density of the used light source at these
wavelengths. The trend is nonetheless clear: the attenuation increases at
all wavelengths with decreasing fibre diameter, in line with [80, 82]. Even
so, the loss is still very low at all wavelengths, which explains why we see
a constant total power independent on the relative length of the downtaper
and waist. The downtapering and waist hence redistribute the energy in
the spectrum, but do not introduce any significant additional attenuation
in this case. In [82] it was found that although the attenuation increases in
small core PCFs, it is rather insignificant for core diameters above 2 μm,
but rapidly increasing for smaller core diameters. The fibres considered here
had core diameters in the taper waist of Λ(2− d/Λ) = 2.9 μm and 2.4 μm,
respectively, and are thus far from this high attenuation region.

These measurements suggest that a longer downtaper is beneficial in
two ways: (1) it shifts more energy all the way to the blue edge due to
a lower GAM, and (2) it allows an overall larger transfer of light into the
visible. Finally, it is interesting to notice that tapering to 1.85 μm instead of
2.2 μm only has a minimal impact on the spectrum: the blue edge appears
at the same wavelength, but is enhanced in the 1.85 μm taper. This could
be because the final hole-to-pitch ratio is slightly higher than 0.7, in which
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case the optimum pitch is somewhere between 1.85 and 2.2 μm.

3.3 Single-mode air-fill fraction increasing PCFs

While PCF tapers have proven their worth for blue-extended SC generation,
accessing the deep-blue spectral region requires a high air-fill fraction. This
brings about the drawback that high air-fill fraction PCFs are inevitably
(highly) multi-mode at the pump, which greatly complicates coupling and
interfacing. To overcome this issue, we fabricated a PCF with longitudinally
increasing air-fill fraction and decreasing pitch directly at the draw-tower.
This uniquely ensures single-mode behaviour at the input and GV matching
into the deep-blue at the output, because of the longitudinally increasing
air-fill fraction. This can be appreciated from Fig. 3.2: where the previously
considered tapers had a constant hole-to-pitch ratio and decreasing pitch,
corresponding to moving vertically downwards in the figure, an increas-
ing air-fill fraction and decreasing pitch corresponds to moving diagonally
downwards. Specifically, we chose the same input parameters as the tapers
in Fig. 3.4 with a 0.52 hole-to-pitch ratio and 3.3 μm pitch, which makes
the PCF single-mode at 1064 nm [191]. However, this time we simulta-
neously increased the hole-to-pitch ratio to 0.85 and decreased the pitch
to 2.0 μm, which gives a theoretical GV match to 360 nm, according to
Fig. 3.2. Importantly, we show in Paper IV that the changes in dispersion
and GV in this case follow exactly the same trends as in Fig. 3.1 for a taper
with constant hole-to-pitch ratio. The conclusions from tapered fibres with
constant hole-to-pitch ratio can therefore be immediately extrapolated to
air-fill fraction increasing tapers.

The tapers considered so-far were fabricated by controlling the draw
speed during fabrication. However, increasing the air-fill fraction necessi-
tates an additional control of the pressure on the air holes during the draw.
Left isolated, we found that increasing the air hole pressure leads to an unde-
sirable increase in the pitch. It was thus necessary to control simultaneously
the pressure and draw speed to achieve the desired structure with increasing
hole-to-pitch ratio and decreasing pitch. The fibre structure realised after
a number of iterative draws is shown in Fig. 3.7: the hole-to-pitch ratio
increases from 0.52 to 0.85 over 7 m, while the pitch decreases from 3.3 to
2.15 μm. The hexagonal structure is well preserved during the air hole-
expansion without introducing any structural defects. Although the final
pitch is slightly larger than the optimum pitch of 2.0 μm, this highlights
the amazing design freedom in PCFs and clearly verifies the feasibility of
fabricating PCFs with longitudinally increasing air-fill fractions. A similar
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Figure 3.7: Characterisation of the fibre structure: the top row shows microscope
images of the fibre end facet at selected distances from the input (on the same scale)
and the plot shows the corresponding hole-to-pitch ratio and pitch calculated from
17 images equidistantly spaced along the 8 m fibre.

approach was pursued in [148, 193], where the air hole size was increased
in a short section of an endlessly single-mode PCF using a post processing
technique, but only to enhance the visible power.

Figure 3.8 shows the SC generated in the air-fill fraction increasing PCF,
where an initial 40 cm length of uniform fibre was kept to initiate the
spectral broadening. The spectrum generated in the fundamental mode had
a total power of 5.8 W with 734 mW in the visible part of the spectrum,
and extends down to 375 nm with a spectral density above 0.5 mW/nm
in most of the visible bandwidth. The discrepancy between the measured
spectral blue edge at 375 nm and the theoretical target at 360 nm is due to a
perturbation of the innermost air holes, resulting in a reduction of the core
size. This is detailed in Paper IV. Yet, these results clearly demonstrate
the applicability of air-fill fraction increasing PCFs for single-mode pumped
deep-blue SC generation.
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Figure 3.8: Measured SC spectrum. The inset shows a close up of the spectral
blue edge on a linear scale. The total output power was 5.8 W with 734 mW in
the visible part of the spectrum.

3.4 Conclusions, discussion and outlook

In this chapter we have investigated the applicability of PCF tapers for blue-
extending SC generation into the commercially attractive deep-blue spectral
region. Specifically, tapered fibres bring together two otherwise mutually
exclusive features: an initial fibre section with a ZDW close to the pump
and a subsequent fibre section with GV matching from the mid-infrared
loss edge into the deep-blue. The former ensures an efficient break-up of
the pump into solitons and DWs, while the latter allows the Raman solitons
to trap and blueshift the DWs to short wavelengths.

By introducing the concept of a group acceleration mismatch, we ex-
plained that the amount of light transferred to the spectral blue edge is
directly correlated with the gradient of the taper. This is because the taper-
induced change in GV generally is much larger for the soliton than for its
trapped DW package, which can cause light to escape from the soliton-
induced trap. We verified this by pumping an asymmetric draw-tower ta-
per from either end, where a longer downtaper significantly enhanced the
blueshifted power. Subsequently, we fabricated a range of tapers with a
0.7 hole-to-pitch ratio and successfully demonstrated SC generation with
spectral densities in excess of 1 mW/nm across the visible region down to
390 nm. We found that the spectral power in the entire visible region was
enhanced by increasing the downtaper length, and that attenuation was
not a limiting factor in these tapers. Finally, we fabricated the first single-
mode high air-fill fraction PCF for deep-blue SC generation. For this, we
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exploited the full degrees of freedom to draw a PCF with longitudinally
increasing air-fill fraction and decreasing pitch, which makes it single-mode
at the input and resulted in an SC spectrum extending down to 375 nm.

Future directions would include further development of the air-fill in-
creasing PCF to accurately realise the specified target, but also to vary the
device length and increase the final air-fill fraction to shift the spectrum be-
low 350 nm. A more thorough investigation of the attenuation must also be
conducted to investigate when the increasing material attenuation at short
wavelengths becomes a limiting factor for the spectral broadening. It would
also be highly interesting to examine the effects of scaling the average and
peak power.

It is also yet to be investigated if photodarkening is a limiting factor
for SC sources based on tapered fibres. Photodarkening in pure silica has
been attributed to the generation of structural defects in the silica network,
where partially bound oxygen atoms with one free electron leads to strong
absorption [194, 195]. This may become an increasing problem in tapers
because of the increased intensity. In terms of reaching ultrashort wave-
lengths other methods have been pursued, including gas-filled hollow-core
fibres [196–198], which resolves any degradation issues since the SC is gen-
erated in the injected gas rather than in silica. The combination of very
short PCF tapers with sub-wavelength diameters and femtosecond pulses
in [69, 150] yielded impressive results with a high energy transfer into the
UV region. However, the merits of the method presented here lie in simple
and robust all-fibre design that can be made completely compatible with
existing technology, and the ability of these designs to work with simpler
long-pulsed pump sources with high average powers.



Chapter 4

Supercontinuum noise
properties

The highly nonlinear nature that enables SC generation also makes the pro-
cess very sensitive to noise; even small noise seeds and pump pulse variations
can result in large amplitude variations in the resulting SC [199–203]. A
considerable ongoing effort has been devoted to understand and control the
SC noise properties, motivated both by application demands for low-noise
broadband sources as well as in the fundamental context of clarifying links
with instabilities in other systems. The primary sources of SC noise will be
discussed in this chapter together with a review of the results of Papers V-
VIII. Specifically, we introduce a higher-order moment description of the
spectral noise and pursue two approaches to lower the noise: first numeri-
cally by actively seeding the pulse break-up with a minute seed and second
experimentally by passively controlling the noise with tapered fibres.

4.1 Noise sources and rogue waves

There are two main sources of spectral SC noise [201]: the fundamental
limit is set by quantum noise, i.e. input shot noise and spontaneous Raman
scattering, leading to broadband SC noise. Additionally, the high sensitivity
of SC generation to initial input pulse conditions makes the process sensitive
to technical noise such as pump fluctuations. The relative importance of
these sources depends on the dynamical regime. For most cases - and for
long-pulsed SC generation in particular - input shot noise is the dominant
noise seed, while Raman scattering plays a minor role [201]. Due to the high
stability of modern pump lasers, it is well established that the main source

39
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Figure 4.1: Spectral and temporal evolution of MI-driven SC generation, using
a 3 ps (FWHM) Gaussian pump at 1064 nm with 262.5 W peak power (this odd
peak power is chosen to match Fig. 4.3). The PCF has hole-to-pitch ratio 0.52 and
pitch 3.6 μm and is used throughout the chapter.

of shot-to-shot noise in long-pulsed SC generation stems from the noise-
driven MI process that breaks the pump into ultrashort pulses [55, 204].
This implies a shot-to-shot variation of the distributed soliton spectrum
generated from the MI process, and consequently also of the subsequent
soliton interaction and energy transfer. This adds to the noise, because
soliton collisions depend strongly on the relative phase and amplitude [128,
130,131,205].

The noisy character of SC generation is illustrated in Fig. 4.1 by showing
the spectral and temporal evolution of a typical (low-power) SC in the pres-
ence of noise. The hallmarks of the noise-initiated MI process are clearly
seen in the form of spectral sidebands and a temporal modulation on the
pulse envelope, which leads to a break up of the pulse into redshifting soli-
tons. In what follows we shall quantify and discuss the spectral SC noise in
more detail.

The long-wavelength edge of a high-power SC is thus constituted of a
large number of solitons with a spread in shape and energy that varies
from shot-to-shot. In typical experiments, where the SC is measured as
an average over 1000s of individually generated spectra, this shot-to-shot
information is completely washed-out. This also means that statistically
rare rogue waves are not captured by averaged measurement techniques
[128]. It was in fact exactly an investigation of spectrally filtered pulse trains
of individually generated spectra that allowed Solli et al. [27] to observe
optical rogue waves in the form of large amplitude solitons that experienced
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an enhanced Raman redshift, and hence appeared isolated at the red SC
edge. Rogue solitons can either be generated directly as high-peak power
solitons in the MI pulse break-up for certain initial noise conditions [27,
206] or through collisional events, where the convective nature of solitons
generally transfers energy from the smaller to the larger soliton [29, 205,
207–209]. In that regard, it should be noted that collisional energy transfer
between solitons is a necessity for rogue soliton formation in high-power
SC generation; the individual MI-generated solitons do not have sufficient
energy redshift to the spectral edge.

The rogue wave term is not clearly defined in optics. Following the hy-
drodynamic definition, rogue waves can be associated with solitons whose
height (peak power) is more than twice the significant wave height, i.e. the
mean peak power of the one-third largest amplitude solitons [210]. How-
ever, the term is commonly used to describe a single high-energy soliton
that has experienced an enhanced redshift (relative to the statistical norm),
and spectral regions with L-shaped wave energy (histogram) distributions
are considered synonymous with rogue waves. In [210] it was further demon-
strated that collisional events lead to higher peak powers than any single
rogue soliton, suggesting that on-going collisions could in fact also be per-
ceived as rogue events. It should further be noted that rogue waves - like all
other waves - are quenched when they reach the loss edge. This has been
demonstrated to transform the characteristic L-shaped statistics associated
with rogue events into skewed Gaussian statistics [211].

Finally it should be stressed that although long-pulsed SC generation is
not suitable for applications that require a high degree of spectral coherence,
low pulse-to-pulse energy fluctuations are nonetheless of vital importance
(also for incoherent sources) for several applications, such as fluorescence
microscopy. In fact, relatively large shot-to-shot variation is not necessarily
a disadvantage, since large variations lead to very smooth average spectra
[200], which can be utilised for applications where the pulsed SC is treated as
quasi-continuous. As an interesting example, the randomness of MI-driven
SC generation was utilised to generate random numbers in [212].

4.2 Quantifying supercontinuum noise

SC noise is often quantified by the spectral coherence function calculated
as an ensemble average over independently generated SC spectra Ãi(ω)
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[204,213,214],

∣∣∣g(1)12 (ω)
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where angle brackets denote an ensemble average and the asterisk denotes
complex conjugation. The spectral coherence function provides an inside
into the stability of an SC and is primarily a measure of the shot-to-shot

phase fluctuations, with |g(1)12 | = 1 signifying perfect coherence. Experimen-
tally, the spectral coherence is related to the fringe visibility of the spectral
interference pattern generated by independently generated SC spectra. In
contrast, intensity fluctuations are typically quantified in bandwidths of
e.g. 10 nm across the SC spectrum, either from histograms of pulse heights
(peak powers) [27,207,215] or the relative intensity noise (RIN) of the radio-
frequency spectrum [201–203, 215]. Specifically, the latter is calculated as
RIN(ω) = ΔP(ω)2/Pavg(ω)

2, where ΔP and Pavg are the mean square in-
tensity fluctuations and average optical power, respectively.

To demonstrate the limitations of the existing noise measures based on
histograms, RIN and the spectral coherence, we use numerical simulations in
the presence of noise to generate an ensemble of SC spectra under conditions
where there are significant fluctuations between different realisations of the
ensemble. Throughout this chapter and Papers V-VII, we shall consider a
PCF typical for SC generation pumped at 1064 nm. The particular fibre
has a pitch of 3.6 μm and a relative hole-size of 0.52, resulting in a ZDW
of 1054 nm (for further details see Paper V or VI). These exact parameters
are not special, but chosen because they are realistic and typical of many
experiments.

The simulation results for a 3 ps Gaussian pulse with 250 W peak power
are shown in Fig. 4.2: the spectral plot in Fig. 4.2(b) superposes results of
the 500 individual simulations (grey) together with the calculated mean
(solid line), with the top subplots showing the calculated degree of spec-
tral coherence and RIN calculated in 10 nm bandwidths across the spec-
trum. Figure 4.2(c) shows histograms of the pulse energy fluctuations ex-
tracted over the 10 nm bandwidths marked in the spectral plot in Fig. 4.2(b)
(Fig. 4.2(a) shows a re-analysis of the results described in the following sec-
tion). The close-up of the long wavelength edge clearly shows the presence
of a few rogue wave-like solitons that have redshifted significantly further
than the statistical mean. This is also reflected in the histograms that show
a transition from Gaussian near the pump to long-tailed (L-shaped) near
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the long wavelength edge. The spectral coherence and histograms clearly
provide only limited and qualitative information. For example, whilst it is
easy to calculate and display the coherence at all wavelengths across the
spectrum, the fact we see that it is zero over most of the SC bandwidth
indicates only the presence of severe noise over a wide wavelength range,
without indicating anything specific about its nature. On the other hand,
displaying histograms at specific wavelengths across the SC is useful to show
how statistics can vary from Gaussian near the pump to long-tailed near
the long wavelength edge, but the selection of which particular wavelengths
to filter and analyse in this way is not a priori evident. The RIN gives a
measure of the noise across the full SC bandwidth, and although it captures
the increase in noise with detuning from the pump, it does not provide any
information on the nature of the shot-to-shot fluctuations.

4.2.1 Higher-order moment description of spectral noise

To resolve the limitations of the noise measures discussed above, we in-
troduced higher-order moments as SC noise and rogue wave descriptors in
Paper V. The HOMs characterise the shape of a particular distribution and
not only its location and spread. For a real-valued random variable X, the
nth-order central moment around the mean is given by

μn = 〈(X − 〈X〉)n〉. (4.2)

The zeroth and first central moments are μ0 = 1 and μ1 = 0, respectively.
The second order central moment μ2 is the well-known variance σ2, which
measures the distribution spread. Instead of σ2 we shall be using the so-
called coefficient of variation: Cv = σ/〈X〉, which has the straightforward
interpretation as being inversely proportional to the signal-to-noise ratio
(SNR) that we shall also consider later. Of particular interest for analysing
the asymmetric long-tailed distributions associated with SC generation are
the third and fourth central moments, commonly expressed in normalised
form relative to the variance. The third order central moment is referred
to as the skewness γ = μ3/σ

3, which measures the asymmetry of the distri-
bution, with γ < 0 for a left-skewed distribution, γ > 0 for a right-skewed
distribution and γ = 0 for a symmetric distribution. The fourth-order cen-
tral moment is referred to as kurtosis κ = μ4/σ

4−3, and measures whether
the distribution is peaked or flat relative to a normal distribution of the
same variance. A normal (Gaussian) distribution has κ = 0, and a high
kurtosis arises from rare extreme deviations from the mean. The HOMs all
relate to the pulse intensity, and should hence be considered complementary
to the phase-sensitive spectral coherence, Eq. (4.1).
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Figure 4.2: Numerical simulations in the presence of noise. (b) Spectra, calcu-

lated degree of spectral coherence (|g(1)12 |) and RIN for a 3 ps Gaussian pulse with
250 W peak power after 10 m propagation. A close-up of the long wavelength edge
is shown on the right. (a) Corresponding HOMs calculated both in 10 nm band-
widths (black lines) and using the numerical resolution (grey lines). The HOMs
are kurtosis (κ), skewness (γ) and coefficient of variation (Cv), respectively. (c)
Histograms calculated in the 10 nm spectral windows marked in spectrum in (b).
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We re-analyse the simulation results presented above using HOMs in
Fig. 4.2(a). The HOMs are calculated across the SC spectrum both in
10 nm bandwidths and using the numerical resolution (0.07 nm at 1064 nm).
The moments clearly reflect the transition from low-noise near-Gaussian
statistics to noisy highly skewed and peaked statistics when the window is
moved into the spectral wing. A larger spectral window introduces a higher
degree of averaging and hence results in lower values of the HOMs, but the
particular choice of spectral windows does not affect the overall conclusions.
The HOMs thus provide direct insight into the degree and nature of the
noise across the SC bandwidth, and allows a direct quantitative comparison
between modelling and experiment. In other words, the HOMs capture both
the magnitude and character of the noise, which previously had only been
analysed with a combination of qualitative histograms and a quantitative
measure such as RIN.

In Paper V we detail how the HOMs can be used to gain insight into the
nature of the intensity fluctuations in a few select cases. We further suggest,
as a useful guideline, that rogue wave behaviour can be associated with the
product of skew and kurtosis exceeding ten, γ · κ > 10. This, however,
should be taken as a rule of thumb and not a strict criteria. As a further
example of the utility of the HOMs, Wetzel et al. [216] used a frequency-to-
time mapping technique to measure single-shot SC spectra. The analysis
of the noise properties based on HOMs showed an excellent agreement with
simulation results across the full SC bandwidth.

4.3 Seeded supercontinnum generation

In the long-pulse MI-driven regime, it has been demonstrated that modi-
fying the input conditions can stabilise the otherwise highly turbulent and
noisy SC generation. Indeed, by inducing the MI with an externally ap-
plied modulation, a train of short soliton-like pulses can be generated with
a desired repetition rate [17,18]. It was thus suggested by Islam et al. [128]
that the distributed spectrum of solitons generated from the MI of a pi-
cosecond pulse could be generated deterministically with small shot-to-shot
fluctuations by seeding at the MI frequency. Extensive investigations have
used modulational control of the input pulse both to clarify the funda-
mental physics underlying instabilities and links to rogue wave phenom-
ena [206,217–219], as well as in the application motivated context of lower-
ing the SC noise [220–225].

To illustrate the basic principle of modulational control of the pump
in SC generation, we revisit the results of Fig. 4.1 in Fig. 4.3, where the
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Figure 4.3: Spectral and temporal evolution of seeded SC generation, similar to
Fig. 4.1, but with the pump power split between a 250 W pump and an identical
seed with 5 % of the power and a 3 THz frequency offset relative to the pump.

pump is modulated with a weak seed pulse. This altogether changes the
character of the pulse break up: whereas unseeded MI builds from noise that
differs from shot to shot, the seed ensures the same beating of the temporal
pulse envelope in every shot, and therefore leads to a deterministic rather
than noise-driven pulse break-up. In the frequency domain the seed leads
to the amplification of a FWM cascade rather than an amplification of
MI sidebands from noise. The resulting noise reduction is quantified and
discussed in the following.

Seeded SC generation was numerically investigated in [221, 222, 225]:
Genty et al. [221] found that, for a pump with a low peak power of 75 W,
an optimum SC broadening and stability was achieved for a seed pulse
with a 5 THz offset relative to the pump. Similarly, [225] investigated the
influence of a weak CW seed on low power SC generation in a dispersion-
shifted fiber, and described how seeding leads to a pulse breakup caused by
FWM. A high peak power of 10 kW was used in [222] to generate a coherent
comb-like SC in a short PCF by introducing a seed. An optimal fibre
length on the order of 5-10 cm was determined, for which the comb remains
coherent, yet relatively narrow and highly structured. Experimentally, SC
generation was induced by triggering a sub-threshold pump with a seed
pulse or CW in [217,223,224]. This further led to improved spectral stability
and coherence. This, however, is fundamentally different from the results
of [221,222,225], where the pulse break-up is caused by the amplification of
a FWM cascade. Rather than modulating the pump with a seed pulse, it
has been attempted to feed back a fraction of generated SC from one pulse
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as a seed for the following pulse [220, 226–233]. Although very interesting,
we shall not pursue this approach here.

While it has thus been shown that seeding can reduce the noise of an SC,
this has been either at low pump power, often close to the MI threshold, or
for very short fibres. The previous investigations are thus far from commer-
cial SC sources with peak powers and fibre lengths on the order of 10 kW
and 10 m, respectively. To this end, in Paper VI we investigated seeding
under a variety of conditions, and explain what happens as we approach
the parameters of a commercial SC source. In particular, we investigate the
influence of the seed wavelength and MI gain spectrum on seeding at vari-
ous power levels above the SC threshold, from which we highlight a number
of distinct dynamical regimes. In Paper VII we further demonstrated that
seeded SC generation is extremely sensitive to the degree of phase noise of
the seed. The main results of Papers VI-VII are reviewed in the following.

4.3.1 Influence of seed wavelength and MI gain spectrum

As a starting point, we consider a 3 ps Gaussian pump with 250 W peak
power and a seed with the same temporal width but 5% of the peak power,
similar to Fig. 4.3. We use the same PCF as in Figs. 4.1–4.3 with a ZDW
at 1054.2 nm. The results for pumping close to the ZDW at 1055 nm
with varying seed frequency offset are shown in Fig. 4.4; pumping close to
the ZDW shifts the MI gain peak far away from the pump and above the
Raman gain peak, which yields the richest dynamics and is useful for high-
lighting the general dynamics. The MI and Raman gain spectra are shown
in Fig. 4.4(f). For each set of parameters we carried out 200 simulations to
quantify the noise properties with the spectral coherence and SNR.

Figure 4.4(a) shows the evolution of unseeded SC generation (overlap-
ping pump and seed). Unseeded MI amplifies a single set of side-bands that
evolves into solitons and DWs, as demonstrated in Fig. 4.1. This results in
an incoherent spectrum with near-unity SNR over most of the bandwidth.
The white lines mark the width of the MI gain spectrum, defined by where
the gain is 5% of the maximum gain. By introducing a seed with a small
3 THz offset relative to the pump, the pulse breakup is initiated by a cas-
caded FWM process that causes a coherent broadening of the pump, as seen
in Fig. 4.4(b) (and Fig. 4.3). The width of the frequency comb is limited
by the width of the MI gain spectrum. With further propagation a soliton
is generated from the FWM process with enough power to redshift outside
the MI gain band. The output spectrum is coherent over most of the band-
width, but the soliton at the long wavelength edge of the spectrum has a
varying phase from shot to shot, which degrades the coherence at the spec-
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tral edges, but leads to a high intensity stability. When the seed is shifted
further away to the peak of the Raman gain at 13 THz in Fig. 4.4(c), the
spectral evolution is dominated by the amplification of a single set of co-
herent side-bands amplified through degenerate FWM. At ∼5 m a massive
soliton is ejected from the long wavelength side-band, which is exactly what
was referred to as ’harnessing and control of optical rogue waves’ in [206],
where the pump pulse was modulated with a well-defined frequency to eject
a large amplitude soliton. The soliton is again not phase-stable from shot to
shot, but it is highly intensity-stable. This is opposite to what was reported
in [225], where the rogue soliton was coherently generated from a FWM
side-band. By shifting the seed to the peak of the MI gain at 20 THz in
Fig. 4.4(d), a single set of well-separated side-bands is amplified. The pump
and side-bands broaden independently of each other, mainly by SPM. This
leads to a spectrum with three clearly distinct bands of high coherence and
SNR. Finally, in Fig. 4.4(e) the seed is shifted to the tail of the MI gain
spectrum, and a single set of side-bands is slowly amplified. The pump is
only slightly depleted and experiences noise-seeded MI unaffected by the
seed at 1180 nm.

These general trends were confirmed over a larger parameter space
in Paper VI. In particular, the best noise improvements were found for
0 < νmod � 1

4νMI, where νmod and νMI are the pump-seed frequency off-
set and MI gain bandwidth, respectively. In this regime, the amplification of
a broad FWM cascade with many bands across the MI gain bandwidth leads
to a spectrum with high coherence and SNR over most of the bandwidth,
as in Fig. 4.4(b).

One of the main conclusions of Paper VI is that although it is possible
to divide the results into regimes of high and low coherence and intensity
stability, depending on the wavelength and power of the pump and seed,
the seeding process is highly sensitive to the exact input parameters. Gen-
erally, we find that the shot-to-shot stability can be increased by pumping
further away from the ZDW. This results in an increase of the MI gain at
small frequency offsets, which gives a faster amplification of the FWM cas-
cade that diminishes the influence of noise. This is illustrated in Fig. 4.5,
where we show the temporal dynamics for pump wavelengths of 1055 and
1075 nm, respectively. The strong dependence of the MI gain spectrum on
pump wavelength is clearly seen in the subfigures on the right. The seed
causes a beating of the temporal profile, which, if chosen correctly, leads
to a deterministic pulse break-up. When the pump is close to the ZDW
as in Fig 4.5(a), the MI gain is relatively small at the seed wavelength
(1070.1 nm) and slowly increasing with wavelength. The temporal profile
is therefore only slowly broken up into solitons. The solitons are therefore
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Figure 4.4: Single-shot simulations of pumping at 1055 nm with a 250 W pump
and a 5% seed at frequency offsets of (a)-(e) 0, 3, 13, 20, and 30 THz, respectively.
The white lines indicate the MI gain bandwidth. The top rows in (a)-(e) show

the ensemble calculated signal-to-noise ratio (SNR) and spectral coherence (|g(1)12 |).
(f) MI and Raman gain curves, the vertical lines correspond to the frequency offsets
used in (a)-(e). The frequency offset of 13 THz (c) is the Raman gain peak and
20 THz (d) is the MI gain peak.

mainly generated from the pulse centre where the peak power is highest.
This gives the solitons time to redshift before the cascade is amplified and
the dynamics is relatively turbulent. In contrast to this, pumping further
from the ZDW gives a much larger gain at the seed wavelength (1090.6 nm)
that increases more rapidly with wavelength. This causes a fast breakup of
the temporal pulse, where the individual temporal fringes generate funda-
mental solitons in a controlled fashion that almost resembles soliton fission,
as seen in Fig 4.5(b). The most powerful solitons are still generated near
the centre of the pulse where the power is highest. The most powerful
rogue-like soliton only collides with the smaller solitons generated from the
trailing edge of the pulse. Interestingly, a closer inspection reveals that
this rogue-like soliton is generated incoherently when pumping close to the
ZDW, but coherently when the pump is shifted away from the ZDW.
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Figure 4.5: Temporal evolution, spectrogram at the fiber end (10 m) and MI gain
spectrum for a 5% seed with a 4 THz offset for pump wavelengths of (a) 1055 nm
and (b) 1075 nm. The black dashed lines in the spectrograms mark the ZDW at
1054 nm and the seed wavelength is marked with red circles in the MI gain spectra.

4.3.2 Seeding at high peak power

It thus seems safe to conclude that a suitably chosen seed can be used to
effectively manipulate the pulse breakup and improve the noise character-
istics. However, the situation changes drastically when we approach the
power levels and fibre lengths of typical SC sources. To this end, we show
in Fig. 4.6 the spectral evolution and noise statistics (calculated from an
ensemble of 100 simulations) for a 1064 nm pump with peak powers of
500, 750, and 1500 W, respectively, and a seed at 3 THz offset. When
the peak power of the pump is increased, the SC bandwidth increases and
multiple distinct solitons and GV matched DWs become visible. However,



4.3. Seeded supercontinnum generation 51

Figure 4.6: Single-shot simulations of pumping at 1064 nm with a 5% seed at a
frequency offset of 3 THz for pump peak powers of (a)–(c) 500, 750, and 1500 W,
respectively. The top rows show the signal-to-noise ratio (SNR) and spectral co-

herence (|g(1)12 |).

the increasing pump power also severely degrades the noise properties and
only the central part of the spectrum remains (partially) coherent. At the
highest peak power of 1500 kW in Fig. 4.6(c), the initial FWM cascade
is quickly washed out by the onset of phase-dependent soliton interactions
and DW generation, and the output spectrum is incoherent over most of
the bandwidth.

Although the pulse breakup can be completely deterministic also at
high pump powers, the subsequent turbulent solitonic dynamics makes the
resulting spectrum incoherent. In [220] it was experimentally demonstrated
that the spectral noise increases with the pump power, although this was
for a very different set-up where a fiber with two closely spaced ZDWs
was back-seeded. It is interesting to notice that the typical broad and flat
SC spectra reported in most high-power experiments come at a price of
low coherence; the flatness is exactly a consequence of the averaging over
solitons with large shot-to-shot variations in shape and energy. Similarly,
the high power seeded SC generation in [222] resulted in highly structured
spectra, but only with a sub-octave bandwidth due to the short fibre length.

4.3.3 Influence of phase coherence

The SC noise improvements afforded by seeding have all been obtained
using a phase coherent seed. In particular, the numerical investigations
in [206, 221, 222, 225] and Paper VI all used a perfectly coherent seed to
modulate the pump. Experimentally, the seed was generated by filtering
a fraction of the pump in [217] and in [223] the signal and idler from an
optical parametric amplifier were used as pump and seed, respectively. A
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separate CW source was used as the seed in [224]. It thus seems fair to
assume that in all these cases the seed was at least partially coherent with
the pump. In Paper VII we therefore addressed the influence of the phase
coherence of the seed with numerical simulations, to see which conditions
this enforces on the mechanisms that can be used to generate the seed.

Figure 4.7 recaps the results of Paper VII of seeding with a partially
(in)coherent seed. In addition to the broadband noise of the one-photon
per-mode model, phase noise was added to the seed based on a physically
justified phase-diffusion model. The model assumes fluctuations of the tem-
poral phase with zero ensemble mean, resulting in a Lorentzian noise spec-
trum whose width is quantified by the linewidth ΔνFWHM (see Paper VII
and Appendix A for details). The results in Figs. 4.7(a)–(c) show the spec-
tral evolution and ensemble calculated statistics (from 500 simulations) for
a 250 W pump at 1064 nm and a seed with 3 THz offset from the pump
and varying phase noise linewidth. The phase coherent seed in Fig. 4.7(a)
results in a highly coherent spectrum as described in the previous sections.
When the linewidth of the seed is increased in Figs. 4.7(b)–(c), the broaden-
ing is still initiated by cascaded FWM, but the contrast of the FWM comb
decreases, resulting in a significant degradation of the SNR and coherence.
This is further detailed in Figs. 4.7(d)–(f) by the ensemble calculated spec-
tra at a propagation distance 1 m for the same linewidths as Figs. 4.7(a)–(c).
Although the comb structure is clearly seen in all cases, the fringe contrast
is significantly decreased when the noise linewidth is increased, which re-
sults in a similar decrease in the spectral coherence and SNR. In Paper VII
we confirm these results over a much larger parameter space. In particular,
our results clearly show that the maximum tolerable phase noise of the seed
is in fact quite small and that the specific phase-noise tolerance decreases
with increasing pump power. This directly restricts the mechanisms that
can be used to generate the seed.

Finally, it should be emphasized that quantitative validity of these
results is limited by the numerical resolution: a numerical resolution of
19.1 GHz was used for Fig. 4.7. This is discussed in Paper VII, where we
confirm that although we generally can not quantitatively determine the ex-
act allowable phase noise linewidth, our results are qualitatively valid: The
results clearly show that the SC becomes increasingly noisy when the seed
noise linewidth is increased, and that the seed must be at least partially
coherent with the pump to achieve a coherent SC.
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Figure 4.7: Single shot simulations of seeded SC generation with varying seed
linewidth, ΔνFWHM. (a)–(c) Spectral evolution and ensemble calculated spectral

coherence (|g(1)12 |) and signal-to-noise ratio (SNR) at the fiber output (10 m). (d)–
(f) Ensemble calculated spectra and noise properties at a propagation distance of
1 m for the same linewidths as (a)–(c). The grey spectra show single shot input.

4.4 Noise properties of blue-extended
supercontinuum

So far we considered active noise reduction by seeding the initial stages of
the SC formation. In Paper VIII we experimentally investigated passive
noise reduction by controlling the subsequent soliton-driven dynamics with
tapered fibres. A discussion of this is also included in Paper III. This was
first investigated by Moselund [136], who found a clear difference in the
noise properties of the SC generated in a uniform and short ∼2 cm tapered
PCF. However, the dynamics in such short tapers are very different from
longer tapers, in that the taper length is very short compared to the soli-
ton period and the conversion into the visible poor. The noise reduction
in [136] can therefore not immediately be extrapolated to longer tapers.
Longer tapers were investigated by Kudlinski et al. [137], who speculated
that the taper increases the power density beyond 1750 nm (because of the
increased nonlinearity and decreased dispersion), which translates into an
increased number of solitons at these long wavelengths and hence a noise
reduction. This, in turn, decreases the noise at the blue edge because of
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the GV matched link between the spectral edges. The shot-to-shot noise
was quantified in filtered spectral regions across the SC as the variation of
the smallest to the largest amplitudes in each recorded pulse train. The SC
noise from a uniform and 7 m long tapered PCF were compared using this
noise measure, and the tapered fibre was found to reduce the noise across
the full SC bandwidth upto 1750 nm.

In Paper VIII we measured the RIN across the full SC bandwidth as
a function of power in a uniform and tapered PCF. The RIN measured
in filtered wavelength regions by an electric spectrum analyser are shown
in Fig. 4.8(a) and the corresponding spectra in 4.8(b) (see Paper VIII for
further details). The PCFs had a hole-to-pitch ratio of 0.52 and are thus
similar to those in Fig. 3.4, but with a longer 4 m tapered section. The
noise properties of the uniform and tapered fibres appear very similar; the
RIN increases with the detuning from the pump and exceeds -75 dB/Hz
on the blue side of the spectral edge for both the uniform and tapered
fibre. The figure does, however, suggest that the noise around 600 nm is
slightly lower in the SC generated in the tapered fibre. To investigate the
noise on the edge further, Figs. 4.8(c)–(d) show measurements of the red
and blue edges, respectively, where the pump power was adjusted to shift
the spectral edge (at the -10 dBm/nm level) to a certain wavelength. The
figure shows that the RIN follows the edge and is at the same level in both
the uniform and tapered fibre. This result opposes the conclusions drawn
in [137], although the interpretation is ambiguous: in as much as the noise
follows the spectral SC edge, tapering can indeed lower the noise near the
blue edge compared to an SC generated in the corresponding untapered
fibre, simply because the blue edge is shifted to a shorter wavelength. The
noise level near the edge will, however, remain the same according to our
results based on RIN. One could therefore claim that tapering does indeed
lower the noise in the visible part of the spectrum by moving the spectral
blue edge. Notwithstanding, we do not observe a noise reduction across
the full SC bandwidth as reported in [137]. These results are described in
greater detail in Paper VII, where the RIN is mapped out as a function of
peak power and wavelength. The results are complimented with numerical
simulations in Paper III.

4.5 Conclusions, discussion and outlook

We investigated the noise properties of long-pulsed SC generation. This
regime is characterised by large shot-to-shot fluctuations originating from
the noise-driven MI process that breaks the pump into solitons and DWs.
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Figure 4.8: (a)–(b) Measured spectra and RIN for a uniform fibre (blue) and a
taper (red) pumped with a peak power of 5 kW. The PCFs are similar to those of
Fig. 3.4, but with a 4 m tapered section. (c)–(d) Noise at the spectral red and blue
edge as a function of wavelength. The spectral edges were controlled by adjusting
the pump power.

The subsequent turbulent solitonic dynamics adds to the noise and leads to
the formation of statistically rare optical rogue waves. Previously, SC noise
has been quantified by the phase-sensitive spectral coherence function and
histograms of spectrally filtered pulse energies, which only gives limited and
qualitative information about the noise without revealing anything about
its nature. Here we introduced statistical higher-order moments that col-
lectively give an accurate quantitative measure of the spectral noise across
the full SC bandwidth, and provide a clear identification of regions of rogue
wave behaviour.

Moreover, we attempted two approaches to lower the large spectral noise.
First we numerically investigated noise reduction by seeding the pulse break-
up, where a suitably chosen seed can deterministically break up the pump
by the amplification of a FWM cascade rather than by noise-seeded MI.
Although this method appears very promising at first glance, our results
showed a high sensitivity to the exact parameters of the pump and seed. In
particular, we found that turbulent soliton dynamics overpowers the deter-
ministic pulse break-up for commercially relevant kW pump powers, thereby
completely washing out the noise improvement of the seeded pulse break-
up. Similarly, we found the process to be extremely sensitive to phase-noise
on the seed, which limits the mechanisms that can be used to generate the
seed. Rather than actively controlling the pulse break-up, we attempted
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to passively tame the subsequent soliton-driven spectral dynamics with ta-
pered fibres. This had previously been demonstrated to reduce the spectral
noise across the full SC bandwidth, but we observed no such clear noise
reduction. On the contrary, we found that the spectral noise follows the
spectral edge irrespectively of the fibre geometry.

These results thus clearly show that seeding has little or no impact on
the noise properties of commercially relevant long-pulsed high-power SC
sources. Future directions would include a thorough comparison of the
noise properties of SC generation in various uniform and tapered fibres. In
particular, the noise measure introduced in [137] must be compared to RIN
and HOMs to shed some light on whether tapers can indeed reduce the
noise.

The frequency-to-time mapping technique that was first used to reveal
the existence of optical rogue waves in [27], was recently used to gain insight
into the stochastic nature of MI [234–236] and correlations in the full SC
spectrum [216]. It seems very likely that this approach will further aid the
fundamental understanding of SC noise properties, and may prove especially
useful in comparing experimental results with numerical simulations.

There has currently been renewed interested in generating fully coherent
SC spectra in all-normal PCFs through SPM broadening [55–61]. This
further means that the SC can be temporally compressed, but it comes at
the price of a limited bandwidth and requires shorter pulses. This is in
many ways a return to the roots of SC generation, where a single coherent
broadening mechanism is used rather than a plethora of interconnected
processes. Although such sources may find applications due to their noise
properties, they can not compete with the available long-pulsed sources in
terms of bandwidth and average power, and it is therefore still worthwhile
to investigate noise-reduction of incoherent long-pulsed SC generation.
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Summary

In this thesis we have investigated various fundamental and application ori-
ented aspects of SC generation in customised PCFs. We have focused on
the commercially relevant long-pulsed high-power regime, where the spec-
tral broadening is initiated by noise-seeded MI that breaks the pump into a
distributed spectrum of redshifting solitons and DWs. Broadly speaking, we
have manipulated both the initial pulse break-up by modulating the pump
pulse and the subsequently soliton-driven dynamics with longitudinally in-
variant fibres, which permits a control of the spectral noise properties and
bandwidth, respectively. This has been motivated by a large commercial
potential in low-noise and spectrally blue-extended SC sources for e.g. bio-
logical applications.

The spectral bandwidth can be extended into the deep-blue region below
400 nm by shaping the dispersion and GV landscape. Specifically, PCFs
with longitudinally varying dispersion and GV accommodate the ideal com-
bination of an efficient pulse break-up near the ZDW and a subsequent
spectral extension into the deep-blue by clever engineering of the GV pro-
file. In Chapter 3 we utilised such tapered PCFs fabricated directly on
the draw-tower to demonstrate SC generation with a spectral density in
excess of 1 mW/nm across the entire visible region down to 390 nm. Im-
portantly, we revisited the fundamental effect of soliton trapping in tapered
fibres to introduce and verify the novel concept of a group acceleration mis-
match. This allowed us to enhance the power in the spectral blue edge
by optimising the taper shape. Finally, we pushed the PCF design free-
dom to the limit and fabricated the first PCF taper with longitudinally
increasing air-fill fraction. This uniquely permits single-mode pumped SC
generation down to 375 nm in one monolithic fibre device. Although more
impressive results have been reported in the literature, our results provide a
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highly important step towards realising a commercial deep-blue SC source.
In particular, our investigations of the importance of the taper shape and
the concept of group acceleration matching collectively form an important
milestone, which we expect to influence the further development. We sim-
ilarly consider our single-mode high air-fill fraction PCF a very promising
candidate for next generation SC sources with high spectral density below
400 nm. Importantly, we expect that the conclusions drawn here can be
extrapolated to generate SC spectral extending below 350 nm, which would
be the obvious next step.

The initial stages of long-pulsed SC generation are dominated by noise-
initiated MI that tears the pump into a train of soliton-like pulses. Because
the process is driven by noise, it is responsible for large shot-to-shot vari-
ations of the resulting SC and the generation of statistically rare optical
rogue waves with abnormal peak powers. In Chapter 4 we quantified these
spectral variations with statistical higher-order moments. Specifically, we
demonstrated the utility of the moments of coefficient of variation, skew
and kurtosis, which collectively provide improved quantitative and qualita-
tive insight into the nature of the spectral fluctuations across the spectrum,
and allows easy identification of regimes of rogue wave-like statistics. The
large spectral shot-to-shot fluctuations pose a limiting factor for several
applications. In Chapter 4 we investigated two approaches to bring down
the spectral variations in commercial SC sources. Instead of allowing noise-
driven MI to break the pump into a train of soliton-like pulses, the pump can
be modulated with a weak seed pulse to achieve a coherent pulse break-up.
While seeding works beautifully under a large variety of initial conditions for
a low pump power, the situation changes drastically when we approach the
parameters of a commercial system, where the subsequent chaotic solitonic
dynamics completely overpowers the coherent pulse break-up. Similarly, we
numerically demonstrated that the process is highly sensitive to phase-noise
on the seed pulse, which restrains the mechanisms that can be used to gen-
erate the seed. Although these results are fundamentally highly interesting
in the context of e.g. rogue phenomena, our results seem to unambiguously
suggest that seeding is without effect for commercial high-power systems.

Whilst controlling the pulse break-up in a high-power SC source thus
seems redundant for the noise properties of the resulting SC, we instead
tried to control the subsequent soliton dominated dynamics. Specifically, it
has been suggested that tapered fibres could be used to lower the spectral
noise by taming the soliton propagation. However, we found no immediate
noise reduction in tapered PCFs. Rather, we found that the spectral noise
increases with the detuning from the pump, and is at a constant noise level
at the spectral edge.
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In summary, in this thesis we have investigated blue-extension and en-
hancement of SC generation into the deep-blue in axially non-uniform PCFs
and various aspects of the spectral SC noise. The results presented in this
work provide new insight into the broadening mechanisms and are expected
to have a direct impact on the development of the next generation of high-
power SC sources with deep-blue spectra. The results are further of a
fundamental importance in the context of understanding the origin of the
spectral SC noise and its links with other systems.



Appendix A

Implementing and solving the
GNLSE

This appendix contains a collection of useful information on how to imple-
ment and solve the GNLSE with all the bells and whistles, such as fibre
losses, noise sources, and frequency dependence of all fibre parameters. It
is meant as a compilation of various bits and pieces of information that is
not readily found elsewhere, and should be used to compliment the mate-
rial in e.g. [1,71]. Specifically, the particular implementation of the GNLSE
used in this work is introduced, where the frequency dependence of the fibre
parameters is included according to [85] and the GNLSE solved in the inter-
action picture. It is further discussed how to include noise and attenuation
in the model.

A.1 Frequency dependence of material
parameters

In the case of strong wavelength dependence of the effective area and re-
fractive index, it has been argued by Lægsgaard [85] that the GNLSE in
Eq. (2.9) does not accurately account for modal dispersion. This can be
correctly included by introducing a new nonlinear coefficient

γ(ω) =
n2n0ω0

cneff(ω)
√
Aeff(ω)Aeff(ω0)

, (A.1)
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where n0 = neff(ω0) is the effective refractive index at ω0. The resulting
modified GNLSE is then

∂C̃

∂z
= i [β(ω)− β(ω0)− β1(ω0)(ω − ω0)] C̃(z, ω)− α(ω)

2
C̃(z, ω) (A.2)

+ iγ(ω)

(
1 +

ω − ω0

ω0

)
F
{
C(z, τ)

∫ +∞

−∞
R(τ ′)|C(z, τ − τ ′)|2dτ ′

}
,

where F is the Fourier transform and frequency domain variables are de-
noted with a tilde. The modified envelope C̃ is related to the physical
envelope Ã by

C̃(z, ω) =

(
Aeff(ω)

Aeff(ω0)

)−1/4
Ã(z, ω). (A.3)

The above equations form the basis for all the numerical simulations in
this work. It should be noted that working in the frequency domain is
numerically faster than working in the time domain [237], and further allows
the sum over dispersion terms (βm coefficients) in Eq. (2.9) to be replaced
with the approximation-free expression β(ω)− β(ω0)− β1(ω0)(ω−ω0) [71].

The modified GNLSE conserves a quantity proportional to the photon
number,

∂

∂z

∫
neff(ω)

√
Aeff(ω)

|C̃(z, ω)|2
ω

dω = 0, (A.4)

which can be used to check the numerical accuracy of the simulations.

For the sake of simplicity, we shall use the normal envelope A in what
follows. It is, however, straightforward to substitute A with the modified
envelope C.

A.1.1 Modelling tapered fibres

Modelling pulse propagation in tapered fibres corresponds to introducing a z
dependence on all fibre parameters in the GNLSE. However, the interaction
picture implementation discussed in the next section assumes that the fibre
is invariant in each calculation step, and the taper is hence numerically
modelled by updating the fibre parameters between the calculation steps.
In practice, the modal properties (β, γ and Aeff) are calculated in COMSOL
as a function of wavelength for a limited number of fixed fibre parameters
(hole-to-pitch ratio d/Λ and pitch Λ), and these values are then interpolated
and updated a sufficient number of times with propagation.

Vanvincq et al. [238] recently made a detailed derivation of a scalar prop-
agation model and showed that an additional term is needed in Eq. (A.4)
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to conserve the photon number in tapered fibres. This, however, was re-
solved by Læsgaard [239] by adopting a different normalisation. In [239] it
was further demonstrated that care must be taken when interpolating fibre
parameters in a tapered fibre, but the exact interpolation scheme becomes
less important for longer tapers like those investigated in this work. The
difference in the results obtained with the normal GNLSE model and the
corrected models are modest for long tapers, and all results presented here
are based on the non-corrected model. It was, however, checked that the
interpolation of fiber parameters was sufficiently fine.

A.2 The interaction picture implementation

The GNLSE has traditionally been solved using the so-called split-step
Fourier method, where the pulse envelope A(z, t) is propagated over a small
distance h by alternately applying the dispersive and nonlinear effects,
which yields A(z + h, t). The nonlinear step is typically integrated with
a second or fourth order Runge-Kutta solver. The local error of this scheme
has a leading term that is third order in the step-size, O(h3) [71,86,237,240].
The work in this thesis is based on the closely related four-order Runge-
Kutta interaction picture (RK4IP) method that is faster and firth-order
locally accurate [86]. The RK4IP method works be expressing the GNLSE
as

∂A(z, τ)

∂z
=

(
D̂ + N̂

)
A(z, τ), (A.5)

where D̂ and N̂ are the dispersive and nonlinear operators, respectively,

D̂ = i
∑
m≥2

imβm
m!

∂m

∂τm
; (A.6)

N̂A(z, τ) = iγ

(
1 +

i

ω0

∂

∂τ

)
A(z, τ)

∫
R(τ ′)|A(z, τ − τ ′)|2dτ ′. (A.7)

In the frequency-domain the operators read

D̂ = i (β(ω)− β(ω0)− β1(ω0)(ω − ω0)) ; (A.8)

N̂A(z, τ) = iγ

(
1 +

ω − ω0

ω0

)
F
{
A(z, τ)F−1

{
R̃(ω − ω0)F

{|A(z, τ)|2}}} ,

(A.9)

where F and F−1 are the Fourier and inverse Fourier transforms, respec-
tively. The nonlinear operator is seen to involve several Fourier transforms.
The RK4IP method explicitly gives the pulse envelope at A(z + h, t) from
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A(z, t) calculated with a fourth-order Runge-Kutta solver. In the frequency
domain the RK4IP scheme can be stated as follows [237]

ÃI = exp

(
h

2
D̃

)
Ã(z, ω) (A.10)

k1 = exp

(
h

2
D̃

)[
hÑ

(
Ã(z, ω)

)]
(A.11)

k2 = hÑ
(
Ã(z, ω) + k1/2

)
(A.12)

k3 = hÑ
(
Ã(z, ω) + k2/2

)
(A.13)

k4 = hÑ

(
exp

(
h

2
D̃

)(
Ã(z, ω) + k3

))
(A.14)

Ã(z + h, ω) = exp

(
h

2
D̃

)[
ÃI + k1/6 + k2/3 + k3/3

]
+ k4/6, (A.15)

where N̂(Ã) is the non-linear operator applied to Ã and the ki terms are
slope increments.

A.3 Longitudinal step-size

The RK4IP can be straightforwardly implemented to calculate the evolution
of the pulse envelope with propagation distance. However, treating the
dispersive and nonlinear processes individually gives rise to a local error,
which can be minimised with accurate numerical integration and intelligent
control of longitudinal step-size.

The longitudinal step-size h is thus very important for the accuracy of
a given simulation, and allowing it to adapt throughout a simulation can
increase the accuracy while decreasing the computational effort. In general,
when the nonlinearities are low h can be increased, as the error in splitting
the dispersive and nonlinear processes is small. And visa-versa. An adaptive
step-size can further mitigate issues with spurious FWM [86,241]. The most
commonly applied method is the local-error method [242] that uses the step-
doubling technique and local extrapolation. Each step is taken twice: once
as a full step and once as two half steps, giving a coarse uc and fine uf
solution. The difference between the two gives an estimate of the local
error, δ = ‖uf − uc‖/‖uf‖, and the step-size is adjusted by comparing with
a predefined goal error δg, as described in [242]. The method further gives
a higher accuracy, when a linear combination of the coarse and fine solution
is used as input for the following step. It does however require 50% more



A.4. Numerical resolution 65

Fourier transforms than the constant step-size algorithm, and is therefore
not necessarily more efficient that the constant step-size algorithm.

The extra calculations needed to find both the fine and coarse solution
could be speeded up by using a Runge-Kutta-Fehlberg method, where the
fine solution is found by including a fifth slope increment k5 to the Runge-
Kutta solver, which then can be compared to the solution found using the
first four slope increments. This methods was however not tested here (if it
ain’t broke, don’t fix it).

A.4 Numerical resolution

It is crucial to chose an appropriate numerical grid size and spacing to ensure
that the involved dynamics can be correctly resolved. Thus, the width of the
temporal grid should be sufficiently large to contain the pulse shape after
propagating through the fibre, without any temporal wrapping arising from
the large GV differences relative to the pump. The temporal grid resolution
should be sufficiently fine to resolve all generated frequencies. According
to the sampling theorem, the grid resolution should be at least twice the
highest frequency [243].

A.4.1 Domain size

The frequency and time domains used in the simulations are dependent on
the centre wavelength λ0 and the spacing of points in the time domain Δt.
Specifically, the maximum λmax and minimum λmax wavelengths are [244]

λmin/max =

(
1

2cΔt
± 1

λ0

)−1
, (A.16)

where λ0 often is taken as the pulse centre frequency, which may limit λmin

at a too high value. This can be improved by choosing a centre frequency of
the pulse ω0 that is different from the centre frequency of the domain ωexp,
and in turn give the pulse an initial chirp, so that

A(z = 0, τ) =
√

P0sech

(
τ

τ0

)
exp (iωexpτ) , (A.17)

which gives

Ã(z = 0, ω) =
√
P0πτ0sech

(π
2
τ0 (ωexp + ω)

)
. (A.18)
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That is, the chirp shifts the centre frequency by ωexp, but does otherwise
not change the pulse. The situation is similar for a Gaussian pulse

A(z = 0, τ) =
√

P0 exp

(−τ2
2τ20

)
exp (iωexpτ) ; (A.19)

Ã(z = 0, ω) =
√
P0

√
2πτ0 exp

(
−1

2
τ20 (ω + ωexp)

2

)
. (A.20)

The GNLSE is derived in the retarded frame of reference moving with the
GV of the carrier frequency of the pulse (ωexp), and the dispersion operator
must be changed to

D̂(ω) = β(ω)− β0(ωexp)− β1(ω0)(ω − ωexp) (A.21)

in order to compensate for this. Here β0(ωexp) is the zeroth β-coefficient
expanded at ωexp, and β1(ω0) the first β-coefficient expanded at ω0. It
should also be noticed that Eq. (A.16) dictates Δt > λ0/(2c) in order to
avoid negative frequency components.

Fibre parameters

When using ωexp 
= ω0 one must take care in the definitions of the fibre
parameters. That is, the nonlinear coefficient is given by (using the standard
definition)

γ(ω) =
n2ωexp

cAeff(ω)
, (A.22)

but when calculating e.g. the peak power of a soliton P0 = |β2|/(τ20 γ) the
correct expression reads

γ(ω) =
n2ω0

cAeff(ω)
. (A.23)

The first definition is used when defining the vector used in the simulation,
as this must be the same independently on the input pulse. That latter
definition, on the other hand, is directly related to the pulse, and must be
independent on the chosen expansion frequency.

A.5 Noise sources

Nonlinear pulse propagation in optical fibres is highly influenced by noise,
and noise sources must be included in simulations to obtain meaningful re-
sults. This section describes two such numerical noise sources: the one
photon per mode background noise model and the phase-diffusion laser
linewidth model.
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A.5.1 One photon per mode model

Noise on the input field is commonly included as a fictitious field consisting
of one photon with a random phase in each spectral discretisational bin.
Smith [245] showed that the Raman amplification of spontaneous emission
in a fibre is equivalent to injecting this one photon per mode field. Inclusion
of background noise is highly important for MI-initiated SC generation.

It is straightforward to include this model: the envelope at frequency
bin νn of a field consisting of one photon per mode with random phase is

Ã(νn) = (Tmaxhν)
1/2 exp {iφ(νn)} , (A.24)

where φ(νn) is a random spectral phase in the interval [0; 2π] and Tmax the
width of the temporal window. The Fourier transform of Ã(νn) can then
be added to the input field.

A.5.2 Phase-diffusion model

In addition to the background noise from the one photon per mode model,
it is often necessary to include the spectral noise linewidth of the laser. The
phase-diffusion model naturally includes a spectral linewidth and leads to a
Lorentzian spectrum of the laser. The Lorentzian spectrum can, however,
be reshaped into a Gaussian spectrum [246]. The underlying physics is
well-founded [247,248].

The starting point is the input envelope of the quasi-CW field with
power P (τ)

A(0, τ) =
√

P (τ) exp (iδφ(τ)) , (A.25)

where δφ(τ) is a small fluctuation with 〈δφ(τ)〉 = 0. The fluctuations
correspond to random phase fluctuations νR of the (CW) frequency ν0,
resulting in an instantaneous frequency

νi = ν0 +
1

2π

dδφ

dτ
= ν0 + νR(τ). (A.26)

The phase fluctuation is hence

δφ(τ) = 2π

∫ τ

−∞
νR(η)dη, (A.27)

where νR(τ) is modelled as white noise with zero mean and variance, σ2
νR
.

The variance is related to the FWHM spectral linewidth of the spectrum
ΔνFWHM

σ2
νR

=
ΔνFWHMB

2π
, (A.28)
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where B = 1/Δt is the bandwidth of the spectral window. These equations
form the basis for the phase-diffusion model, and provide an input field
envelope A(0, τ) with the Lorentzian power spectrum

|ÃL(ω)|2 = Pavg
ΔνFWHM

2π

1

(ν − ν0)2 + (ΔνFWHM/2)2
. (A.29)

Note that
∫∞
0 |ÃL(ω)|2dω = Pavg. This can be reshaped into Gaussian

spectrum with same average power [246].

A.6 Attenuation in optical fibres

The attenuation, or power loss, of an optical signal with propagation dis-
tance is an important parameter in optical fibres. Generally, if a signal
with power P0 propagates though a fiber, the transmitted power PT can be
described as

PT = P0 exp(−αL), (A.30)

where the constant α contains all attenuations sources and L is the progation
distance. The attenuation is often expressed in units of dB/km [71]

αdB = − 1

L
10 log10

(
PT

P0

)
= − 1

L
10 log10(exp(−αL)) ≈ 4.343α. (A.31)

The attenuation originates from several physical processes. Pure silica
glass has a very low loss over the full range 500-2000 nm, but shows increas-
ing absorption above and below this region due to electronic resonances in
the ultraviolet and vibrational resonances in the mid/far-infrared, respec-
tively. These losses are intrinsic material properties of silica, and are known
to depend exponentially on the photon energy [78,136]

αUV = aUV exp (λUV/λ) (A.32)

αIR = aIR exp (−λIR/λ) , (A.33)

where aUV = 0.001 dB/km, λUV = 4.67 μm, and aIR = 6 · 1011 dB/km,
λUV = 47.8 μm. The values for the UV loss are from [249] and the IR
from [136,184]. According to these values, the loss at 350 nm is 1.6 dB/m.

Local fluctuations in the refractive index due to density fluctuations in
silica from the fabrication causes scattering in all direction, also known as
Raleigh scattering. This scattering depends strongly on the wavelength.
Raleigh scattering is accompanied by wavelength independent imperfection
scattering due to inhomogeneities of the fiber [136]

αsc = aRay/λ
4 + csc, (A.34)
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Figure A.1: Plot of the individual and combined losses mentioned in this section.

where aRay = 1.3 dB/(km μm4), csc = 1.0 dB/km was measured for a
commercial PCF in [136].

Impurities will add to the attenuation, and most important is the char-
acteristic absorption peak near 1.4 μm, which stems from the presence of
water. The OH ion has a fundamental vibrational resonance at 2.73 μm,
and the overtones of this resonance causes the strong absorption peak in the
near infrared. In [136] the OH absorption was found to be well described
by a Lorentzian profile

αOH = aOH/(1 + ((λ− λOH)/cOH)
2) (A.35)

with parameters aOH = 7 dB/km, cOH = 16 nm, λOH = 1, 380 nm found
for a typical commercial PCF. The parameter aOH reflects the OH content.

The individual and combined losses are shown in Fig. A.1. In simulations
with long pulses and fibre lengths below 10 m, only the UV and IR losses are
high enough to have any significant effects on the SC generation. However,
many PCFs have significantly higher OH losses, which can be detrimental
for SC generation. Additionally, PCFs have confinement losses due to light
leakage from the core to the microstructured cladding. These losses are
thus strongly dependent on the fibre structure and can generally be limited
by increasing the number of air-hole rings. The confinement losses can be
calculated from the imaginary part of the refractive index, although the
values obtained from finite element solvers like COMSOL tend to be rather
unreliable.



70 Appendix A. Implementing and solving the GNLSE

A.7 Pulse parameters

Gaussian pulse

Envelope (time domain): A(τ) =
√
P0 exp

(−τ2/(2τ20 ))
Envelope (freq. domain): Ã(ω) =

√
2π
√
P0τ0 exp

(−1
2τ

2
0ω

2
)

Intensity FWHM: τFWHM = 2
√
ln(2)τ0 ≈ 1.6651τ0

ωFWHM = 4 ln(2)/τFWHM

≈ 2.77/τFWHM

λFWHM ≈ λ2
0/(2πc)ωFWHM

≈ 0.441λ2
0/(cτFWHM)

Energy: E =
∫∞
−∞ |A(t)|2dt =

√
πP0τ0

Avg. power: Pavg = Efrep =
√
πP0τ0frep

Sech pulse

Envelope (time domain): A(τ) =
√
P0sech (τ/τ0)

Envelope (freq. domain): Ã(ω) = π
√
P0τ0sech

(
π
2 τ0ω

)
Intensity FWHM: τFWHM = 2 ln(1 +

√
2)τ0 ≈ 1.7627τ0

ωFWHM = (2
√
ln(2) ln(1 +

√
2))/(πτFWHM)

≈ 0.4671/τFWHM

λFWHM ≈ λ2
0/(2πc)ωFWHM

≈ 0.07435λ2
0/(cτFWHM)

Energy: E =
∫∞
−∞ |A(t)|2dt = 2P0τ0

Avg. power: Pavg = Efrep = 2P0τ0frep
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Abstract: We demonstrate how the gradient of the tapering in a tapered
fiber can significantly affect the trapping and blueshift of dispersive waves
(DWs) by a soliton. By modeling the propagation of a fundamental 10 fs
soliton through tapered fibers with varying gradients, it is shown that the
soliton traps and blueshifts an increased fraction of the energy in its DW
when the gradient is decreased. This is quantified by the group-acceleration
mismatch between the soliton and DW at the entrance of the taper. These
findings have direct implications for the achievable power in the blue edge
of a supercontinuum generated in a tapered fiber and explain observations
of a lack of power in the blue edge.
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We demonstrate how the gradient of the tapering in a tapered fiber can significantly affect the trapping and blueshift
of dispersive waves (DWs) by a soliton. By modeling the propagation of a fundamental 10 fs soliton through tapered
fibers with varying gradients, it is shown that the soliton traps and blueshifts an increased fraction of the energy in its
DW when the gradient is decreased. This is quantified by the group-acceleration mismatch between the soliton and
DW at the entrance of the taper. These findings have direct implications for the achievable power in the blue edge of
a supercontinuum generated in a tapered fiber and explain observations of a lack of power in the blue edge. © 2011
Optical Society of America
OCIS codes: 060.4370, 060.5530.

Most of the physics underlying the generation of a super-
continuum (SC) has been described in both the long and
short pulse regimes [1]. In particular, it is now under-
stood that the spectrum of an SC is comprised of a soliton
red edge linked to a dispersive wave (DW) blue edge
through group-velocity matching (GVM) [2]. The edges
are formed when a redshifting soliton catches up with
a DW, allowing them to interact through cross-phase
modulation (XPM) [3]. An elegant approach described
the process in the inertial frame of the soliton, which ex-
plains the existence of a trapping potential set up by the
decelerating soliton [4]. The trapping process requires a
decelerating soliton. This deceleration normally comes
from intrapulse Raman scattering, but it can likewise
be achieved by tapering the fiber. In the latter case, a
change in the group velocity (GV) causes a deceleration,
which enables the trapping process [5]. The trapping pro-
cess has been described as a combination of two effects
that set up a potential around the trapped pulse: on one
side, the potential is caused by a refractive index change
induced by the soliton via XPM. The other side is
provided by the inertial force arising from the soliton
deceleration [4].
Recently, much interest has been devoted to moving

the short wavelength edge further into the blue below
370 nm. This is motivated by the commercial potential in
areas such as fluorescence microscopy [6]. As an exam-
ple, Leica replaced the need for several sources with a
single SC source (NKT Photonics A/S) in their new gen-
eration TCS SP5 X confocal microscope. Tapered fibers
have been used for SC generation, because it allows one
to move the zero-dispersion wavelength (ZDW) and
obtain a small core with a high nonlinearity [7–10].
Recently, tapering has been used to move the blue edge
further into the blue, due to what was first believed to be
a varying phase-matching point to Cherenkov radiation
or four-wave mixing [11,12]. Later it was shown to be
due to a change in the GV profile, allowing GVM to short-

er wavelengths [5,13,14]. Alternative approaches include
doping the fiber [15] and concatenating multiple fibers
[16]. The soliton redshift was optimized in [17], and in
[18] a theory was developed for the interaction between
the soliton and DW in a nonuniform fiber, which de-
scribes the spectral position of the DW, but not the en-
ergy. While all previous work has focused on shifting the
spectral edges (see, e.g., [19]), little attention has been
devoted to maximizing the power of the blueshifted light.
Here we show by single soliton simulations that the gra-
dient of the taper has a high impact on the power actually
available in the blue edge, and that the key param-
eter quantifying the impact is the group-acceleration
mismatch (GAM).

The pulse envelope ~A ¼ ~Aðz;ωÞ at position z and angu-
lar frequency ω is calculated by the generalized nonlinear
Schrödinger equation (GNLSE), as described in [20]. The
GNLSE is solved using a fourth-order Runge–Kutta in the
interaction picture [21]. The mode profile and effective
area are calculated with a finite element mode solver.
The profile of the tapered fiber is taken into account
by interpolating a number of calculated mode profiles
and effective areas found at fixed points along the fiber.
From the simulations, the evolution of the dominant
spectral components are found by calculating the center
of mass wavelength, λcðzÞ ¼ R

λj~Aj2dλ= R j~Aj2dλ.
A sech pulse centered at 1064 nm was used in all

simulations, Aðz ¼ 0; tÞ ¼ ffiffiffiffiffiffi
P0

p
sechðt=T0Þ, where P0 ¼

20:3kW and TFWHM ≈ 1:763T0 ¼ 10 fs. We first consider
a fiber taper, in which the pitch is linearly decreased from
3:7 μm to 1:85 μm and back again, while keeping the hole-
to-pitch ratio constant. The associated change in disper-
sion and effective area are shown in Fig. 1.

The taper has an initial 2m of uniform fiber to make
sure that the soliton has fully caught up and established
GVM with the DW before entering the taper. The 2m uni-
form fiber is followed by 0:5m of downtapering and
3:5m of uptapering, and a final 1m of uniform fiber.
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The hole-to-pitch ratio is constant over the tapered sec-
tion, and the gradient of the downtapering section is
ΔΛ=Δz ¼ 3:7 μm=m. The evolution of the dominant
spectral components through this fiber taper is shown
in Fig. 2(a). It can be roughly divided into five steps:
(1) The soliton (red cross) generates a DW (purple
diamond) around 820 nm. (2) The soliton redshifts, is
temporally delayed, catches up with the DW, and traps
a fraction of it (green square). (3) As the soliton is further
redshifted, it blueshifts the trapped DW to satisfy GVM.
In a uniform fiber, this process would continue as long as
the soliton is redshifting. (4) However, as the downtaper-
ing starts, the soliton instantaneously accelerates and
leaves behind part of the DW at 767 nm due to the differ-
ence in GV induced by the taper. (5) The trapped DW
(blue circle) blueshifts with the soliton to 511 nm at
the taper waist, where the GVM is broken by the discon-
tinuous change of the dispersion. The four spectral com-
ponents, the soliton and DWs 1–3, are clearly visible in
the spectrum and spectrogram in Fig. 2(b).
Even for a uniform fiber, the soliton is only able to trap

and blueshift a part of the DW. This is a result of a too
short XPM interaction length, caused by the difference in
the GV of the two pulses when they collide. It is only after
several collisions that GVM is achieved between the so-
liton and DW. It was demonstrated in [22] that light can
escape the interaction region of the XPMwith the soliton,
or even pass unaffected through the soliton.
Because of our initial length of 2m fiber, the soliton

and DW will have identical GV at the entrance of the
taper. In the taper, the GVs of the soliton and DW change
at different rates, which again means that the soliton can
only trap and blueshift a fraction of the DW. The GV dif-
ference of the soliton and DW in a taper are illustrated in
Fig. 3 for the extreme case of a transition directly from

the uniform fiber (Λ ¼ 3:7 μm) to Λ ¼ 1:8 μm. From this
we define the group acceleration (GA) as the derivative
of the GV with respect to z, i.e., for the soliton,

GAsol ¼
∂GVsol

∂z
jλ¼λsol ; ð1Þ

and similarly for the DW. In Eq. (1), the wavelength is
assumed to be constant, which is only true over short dis-
tances. An interesting measure is the GAM of the DW and
soliton, which can be calculated as shown in Fig. 3:

GAM ≈ fGVDWðz0 þ ΔzÞ − GVsolðz0 þ ΔzÞg=Δz: ð2Þ
Clearly, the GAM depends on the soliton wavelength,
pitch, and taper gradient. The DW wavelength at the ta-
per entrance is fixed by GVM. Figures 4(a) and 4(b) show
how the GAM increases with gradient and soliton wave-
length for Δz ¼ 10mm. For long wavelengths and very
steep tapers, the proximity of the long-wavelength ZDW
decreases the GAM.

The interactionbetween the soliton andDWdependson
the taper profile. We therefore simulated tapers with the
same total length as above but varying gradients; the pro-
files are shown in Fig. 5(c). The soliton has a wavelength
of 1260 nm as it enters the taper. Based on Fig. 4(b) (solid
blue line), we therefore expect the efficiency of the trap-
ping to increase when the gradient is decreased.

The simulations all showed the same basic dynamics as
in Fig. 2. The spectral position of the soliton and DW 3 are
presented in Fig. 5 together with the energy of DW 3. The
energy is determined in a 40 nm region around λc and nor-
malized to that of DW 3 at the waist in the taper with the
smallest gradient of 3:7 μm=m. The values are calculated
at both the waist and fiber end. In Figs. 5(a) and 5(b) we
show that the redshift at the taper waist increases as
the length of the downtapering section is increased, i.e.,

Fig. 1. (Color online) (a) Dispersion and (b) effective area for
fibers with hole-to-pitch ratio d=Λ ¼ 0:79 and varying pitch Λ.
The inset in (a) shows the cross section.

Fig. 2. (Color online) (a) Spectral evolution of the soliton and
DWs through the illustrated taper; the pitch is reduced from 3.7
to 1:85 μm. The dotted line shows the DWwavelength with GVM
to the soliton. (b) Spectrogram and spectrum at the taper waist
(2:5m). The spectral components in (a) are visible in (b).
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Fig. 3. (Color online) Group-velocity curves for fibers with
pitch Λ ¼ 3:7 and 1:8 μm. The GVs of the soliton and DW
change at different rates in a taper.

Fig. 4. (Color online) (a) GAM as a function of taper gradient
and soliton wavelength for step size Δz ¼ 10mm and pitch
Λ ¼ 3:7 μm, (b) GAM for the three fixed wavelengths indicated
in (a).
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the gradient is decreased. The redshift at the fiber end is
similar for all tapers, as the taper length is constant. The
position of DW 3 in the waist directly reflects the position
of the soliton, and it is therefore blueshifted more when
the length of the downtapering section is increased, i.e.,
when the gradient is decreased. In the very beginning
of the uptapering, the tail of the soliton gives DW 3 a small
blueshift before the GVM is broken entirely. The energy in
the most blueshifted DW 3 is shown in Fig. 5(d), which
confirms that the energy decreases with increasing gradi-
ent. In the present case, the blueshifted energy is in-
creased by a factor of almost 15 when the gradient is
reduced by a factor of 6.
Our results show that for maximizing the blue power in

SC generation, the optimum profile for a taper of a given
length is the one thatminimizes the GAM, i.e., the gradient
of the taper. This conclusion relies on two assumptions:
(1) the soliton and DW are GV matched when entering
the taper, and (2) the soliton does not get near the long-
wavelength ZDW or loss edge of the fiber material. The
second assumption effectively enforces an upper limit
on the taper length, which we are currently investigating.
These observations explain the previously observed lack
of power in the blue edge in, for example, [23].
In conclusion, numerical simulations were carried out

for tapers with varying gradients, and it was shown that
the soliton is able to keep more of the energy of its DW
trapped when the gradient of the taper is decreased. This
was explained as aGAM of the soliton andDW induced by
the taper.

We acknowledge the Danish Agency for Science,
Technology and Innovation for support of the project
no. 09-070566.
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Paper II

Deep-blue supercontinnum sources with optimum ta-
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Abstract: We use an asymmetric 2 m draw-tower photonic crystal fiber
taper to demonstrate that the taper profile needs careful optimisation if
you want to develop a supercontinuum light source with as much power
as possible in the blue edge of the spectrum. In particular we show, that
for a given taper length, the downtapering should be as long as possible.
We argue how this may be explained by the concept of group-acceleration
mismatch (GAM) and we confirm the results using conventional symmetri-
cal short tapers made on a taper station, which have varying downtapering
lengths.
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1. Introduction

Supercontinuum (SC) generation is a striking phenomenon of extreme spectral broadening in-
volving a wealth of beautiful nonlinear physics [1]. Although being first observed in bulk glass
and later studied in telecom optical fibers, the study of SC generation and the development of
today’s commercial SC sources first really took off with the invention of the photonic crystal
fiber (PCF) [2], in which light can be manipulated by air-hole structuring [3]. The study of SC
generation is inherently linked to the fundamental field of soliton physics and due to the striking
efficiency of SC generation in PCFs, researchers have been able to reveal numerous new and
important fundamental effects and surprising links with other physical systems. The advent of
the PCF therefore spawned a re-birth of not only SC generation, but nonlinear fiber optics in
general [1], due to the tremendous degree of design freedom that has enabled engineers to push
the properties of PCFs to limits that could never have been achieved with standard optical fibers
or in bulk materials [3]. For example, one can move their zero-dispersion wavelength (ZDW)
down in the visible [4], make them endlessly single-moded [5], and even make them guide light
in air [6]. The PCF further enabled the discovery of several fundamental nonlinear phenomena,
such as soliton fission [7], Raman redshift cancellation by the presence of a second ZDW [8],
soliton trapping of dispersive waves (DWs) in gravitational wells [9, 10], generation of large-
amplitude optical rogue waves [11–13] and the control of rogue waves by minute seeds [14,15].
Rogue waves are in fact a fundamental nonlinear phenomenon generated by soliton collision
in nonlinear physical models [16]. Thus they appear in such diverse systems as ocean waves,
where they appear out of nowhere and cause serious damage on ships [17], and in biology,
where they are known as ”highly localized modes” that break the bonds in DNA and initiate
DNA denaturation [16].

SC generation involves the full scale of soliton physics and thus all the above mentioned
effects; even rogue waves appear in the form of mega solitons that are subject to large Raman
redshifts and thus define the long-wavelength ”red” spectral edge of the SC. This in turn de-
fines the short-wavelength ”blue” edge through a complex trapping mechanism that manifests
itself as a lock between the two edges; when the solitons at the red edge are redshifted by the
Raman effect, they push the DWs at the blue edge to shorter wavelengths in a way that satisfies
group-velocity (GV) matching [18,19]. The blueshift of a DW package has been explained as a
cascade of cross-phase modulation (XPM) collision events that continuously blueshifts the DW
package in discrete steps [20]. Alternatively, the trapping can be elegantly explained as an effect
imposed by the accelerating soliton that sets up a gravitational well around the DW package
and prevents it from dispersing [9,10]. The trapping effect is of fundamental importance for the
SC generation dynamics, and GV matching is hence of equal importance to ensure a continued
interaction between the spectral components in the normal and anomalous dispersion regime,
and thereby allowing generation of SC spectra with a blue edge reaching into the ultraviolet
below 400 nm.

A topic that has so far remained largely uninvestigated is the consequences of the fact that
the trapping is not complete: the DWs continuously loose energy. The solitons undergo a con-
tinuous Raman redshift, which leads to a continuous change in GV with propagation length,
i.e. a group-acceleration, but the DWs do not in their own right move spectrally and are thus
not subject to the same acceleration. This means that there is continuously a small difference
in GV, and thus a constant small leakage of DW energy, as illustrated in Fig. 1(a). The Ra-
man effect thus leads to a group-acceleration mismatch (GAM), an asymmetric change in the
group-acceleration of the solitons and DWs [21]. The effect is not significant in uniform fibers,
because the weak redshift leads only to a minor GAM. However, in a fiber taper the group-
acceleration can be orders of magnitude larger than the inherent Raman induced change and it
is generally highly asymmetric, in the sense that the taper-induced shift in GV at the DW wave-
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Fig. 1. Radiation trapping and leakage. (a) In a uniform fiber a soliton can trap and blueshift
a GV matched DW, while it is slowly redshifting and thus decelerating. The trapping is
incomplete, i.e. part of the DW continuously leaks out of the trap, as illustrated. (b) In a
taper, there is an asymmetric change in GV of the soliton and trapped DW. That is, there is
a mismatch in the group-acceleration, the rate with which the GV changes, which increases
the amount of light that leaks out of the trap (not illustrated). In the figure it is assumed
that the dispersion increases for the soliton both when it is redshifted and when the fiber is
tapered.

length is much smaller than at the longer soliton wavelength, as illustrated in Fig. 1(b) and for
the real fiber tapers used in this work. In [22] it was demonstrated that the group-acceleration
in a taper can in fact supply the needed soliton deceleration to trap a DW even in the absence
of the Raman effect. In physical terms, the GAM lowers the XPM interaction length, whereas
in the trapping picture GAM lowers the depth of the gravitational well, causing light to escape.
It has been demonstrated in [23] that light can escape or pass unaffected through the XPM in-
teraction region in the extreme case when the interaction length is very short, i.e., when the GV
difference is very large.

In this work, we investigate the influence of the enforced asymmetry in the group-
acceleration of the solitons and trapped DWs in tapered PCFs. The influence of the taper shape
on the spectrum was investigated in [24], where short femtosecond pulses were launched di-
rectly into ultra-short tapers to push the pulse break-up into the tapered part of the fiber. Al-
though interesting, the results in [24] describe a dynamical regime different from that typi-
cal of long-pulsed commercial SC systems investigated this work, where long tapers are used
and where MI breaks up the long pulse into a large number of fundamental solitons and not
higher-order solitons. First we illustrate the fundamental physics behind GAM with numerical
simulations of the propagation of a single soliton and GV matched DW in a taper. We then
present experimental results of high-power SC generation in tapered PCFs of varying lengths
and shapes. In particular, we experimentally demonstrate for the first time that the length of the
downtapering section has a major impact on the available power in the blue edge of the spec-
trum, which provide the first clear evidence of the importance of GAM. The results provide the
first step towards determining the optimum shape of a fiber taper for deep-blue supercontinuum
sources, which has so-far remained largely unknown [25].

2. Numerical results

In [19, 25] it was shown how the position of the blue edge can be accurately predicted from
the dispersion characteristics of any given fiber. The red edge is ultimately limited by the silica
loss edge starting at 2200-2400 nm, and the position of the blue edge is then determined by GV
matching with the red edge. Although useful for tailoring the spectral width, this does not give
any information on the available spectral density in the blue edge of the SC.
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At a first glance, the SC dynamics may seem overwhelmingly complicated. However, due to
the solitonic nature of SC generation, one can gain a lot of insight into the basic dynamics on
the basis of single soliton simulations. It is particularly illustrative to neglect the central part of
the SC and treat only the edges. To get a basic understanding of the SC generation in a tapered
fiber, it will hence suffice to analyse the propagation of a soliton and appropriately delayed and
GV matched DW package. Here we do this by numerical modelling of the generalised nonlinear
Schrödinger equation, which is often utilised to aid the understanding of the dynamics, and has
successfully been demonstrated to accurately reproduce experimental results in both silica [26]
and soft-glass fibers [27].
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Fig. 2. (a) Spectral evolution of a 20 fs fundamental soliton and trapped wave through a
fiber taper with an initial 1 m uniform fiber. (b)-(c) Spectrograms at the entrance (1 m) of
the taper and at the taper waist (2 m). The wave is fully trapped at the taper entrance, but
the taper increases the soliton redshift and deceleration, which causes light to leak from the
soliton induced trapping region.

The propagation of a 20 fs fundamental soliton and GV matched DW in Fig. 2(a) illustrates
the basic dynamics in a tapered fiber: the soliton redshifts throughout the length of the fiber,
and while doing so, it causes a blueshift of the trapped wave. In the first meter of uniform fiber,
the two co-propagate without the DW shedding much energy. As the downtapering starts at
1 m, both the redshift rate of the soliton and the blueshift rate of the trapped wave increase due
to the increase in nonlinearity and change in GV. However, due to the taper induced GAM, a
significant fraction of the trapped DW escapes the trap. The spectrograms in Fig. 2(b)-2(c) show
the pulses in the spectral and time-domain simultaneously; at the taper entrance (Fig. 2(b)), the
two waves are temporally overlapping and the decelerating soliton has fully trapped the DW.
At the taper end (Fig. 2(c)) only a fraction of the originally trapped DW is still trapped and
has a temporal overlap with the soliton. The remaining light has escaped the trap and not been
decelerated and blueshifted by the soliton. This clearly illustrates the need for matching not
only the GVs but also the rate with which they change, i.e. the need for minimising the GAM
as predicted numerically in [21].

3. Experimental results

To investigate the full scale importance of GAM on SC generation comprised by hundreds of
solitons and DWs, we fabricated an asymmetric draw-tower taper. The asymmetry enforces a
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difference in the GAM depending on whether the fiber is pumped from the long or short down-
tapering side, while ensuring that the light passes through the same length of fiber. Tapering
has previously been demonstrated as an effective way of manipulating the pulse propagation by
changing the dispersion and increasing the effective nonlinearity, and thereby move the short-
wavelength edge of an SC further into the blue [24, 25, 28–37]. Spectra extending down to
330 nm from a 1065 nm pump have been reported [25], and an impressive 280 nm was reached
in [38] by pumping an ultrashort taper with a femtosecond pump at 800 nm. In the latter case
the light was generated directly in the UV region by a completely different mechanism.

Unlike the draw-tower tapers presented in, e.g. [25,32–35,37], our taper is tapered back to its
original diameter, which makes splicing and interfacing easier and allows for an investigation of
the impact of the asymmetry. It has generally been the belief [39] that such tapers shorter than
10 m are difficult to fabricate on a draw-tower. On the contrary, we find that tapering directly
on the draw-tower offers high accuracy of the fiber parameters by pressure control, and allows
fabrication of accurate fiber tapers with lengths from a few meters and up. This further makes it
possible to use the draw-tower’s coating system as an integrated part of the taper fabrication. A
very short draw-tower taper of only 10 cm was recently fabricated in [37] showing the flexibility
of draw-tower tapering.

As an additional investigation of the influence of the taper shape on the spectrum, we fab-
ricated three ultra-short tapers using a well-known post-processing technique on a tapering
station (Vytran LDS-1250). This technique limits the length of the tapered section to around 15
cm.

The draw-tower taper was based on the commercial fiber SC-5.0-1040 from NKT Photonics
A/S with a hole-to-pitch ratio of d/Λ = 0.52. In the tapered section its pitch was reduced from
3.3 to 2.5 μm. The ultra-short Vytran tapers were based on a standard fiber with a hole-to-
pitch ratio of d/Λ = 0.79 and a pitch of Λ = 3.7 μm that was reduced by 50% in the tapered
section. The dispersion and GV profiles are shown in Fig. 3 along with an illustration of how
the optimum degree of tapering was determined: We define the red edge λred as the loss edge
λloss (here set to 2300 nm), or a wavelength λ2 close to the second ZDW, whichever is the
lowest. Solitons always halt their redshift about 50-100 nm away from the 2nd ZDW [8, 40] so
λ2 is chosen to λZDW,2−50 nm, which means that

λred = min{λloss, λZDW,2−50 nm}. (1)

The red edge in turn defines the blue edge through GV matching, and the optimum degree of
tapering is determined by finding the pitch at which GV matching is achieved to the shortest
possible wavelength. In Fig. 3(c) and 3(f) we show the so defined red and blue edges together
with both ZDWs. The optimum blue edge, i.e. shortest wavelength, is found at the turning point,
which is for a pitch of 2.6 and 1.8 μm for the draw-tower and Vytran tapers, respectively, giving
a blue edge of 476 and 378 nm, respectively. The realized pitch at the taper waist is very close
to the optimum. In Fig. 4 we have plotted the optimum pitch and blue edge versus the relative
hole size. We see that the optimum pitch approaches∼ 1.8 μm for increasing relative hole sizes,
which corresponds to the point where the second ZDW crosses the loss edge, as can be seen
from Fig. 3(f). For smaller relative hole sizes, where the optimum pitch is larger than 2 μm, the
optimum is obtained before the second ZDW has crossed the loss edge. We emphasize that the
fibers used in this work are not the optimum in terms of generating light at the shortest possible
wavelength. The focus in this work is on how to maximise the amount of light in the blue edge,
and we therefore chose a fiber with d/Λ = 0.52 because it is single-moded at the pump [41].

The blue edge versus pitch between 1.4-2.4 and relative hole sizes larger than 0.6 was mapped
out by Travers in [25], who defined the blue edge as the shortest GV matched wavelength,
without relating it to the inherent material loss edge. Travers found that the optimum pitch was
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Fig. 3. (a) Dispersion and (b) GV for the draw-tower taper for the uniform fiber (solid line)
and at the taper waist (dashed line). The shaded areas mark the loss region above 2300 nm
where the soliton redshift halts, and the horizontal lines in (b) show the GV matching of the
expected red edge to the blue edge for the uniform fiber and taper. (c) Blue edge (blue line),
red edge (red line) and ZDWs (dashed lines) as a function of wavelength and pitch defined
as described in the text. The horizontal lines are as in (b) and confirm that the shortest
possible wavelength is reached in the taper. (d)-(f) show the same for the ultra-short tapers.

2 μm almost independently of the relative hole size and provided a qualitative explanation [25].
Introducing the loss edge has here allowed us to give a quantitative measure of the blue edge
and an explanation of why the optimum pitch saturates close to 1.8 μm for large relative hole
sizes.
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tion of the fiber’s hole-to-pitch ratio, calculated as described in the text by GV matching to
the loss edge at 2300 nm or 50 nm below the second ZDW. For higher hole-to-pitch ratios
the minimum wavelength is generally found for a pitch around 1.8 μm.
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The fibers were pumped with a 1064 nm Yb fiber-laser typical for commercial SC sources.
The laser emits 10 ps pulses with an average output power of 14 W at a repetition rate of 80
MHz. For the draw-tower taper, the fiber was spliced directly to the laser for maximum coupling
efficiency and stability. For the ultra-short Vytran tapers the laser output was free-space coupled
with an efficiency of approximately 70 %. In both cases the output was collimated and recorded
with an optical spectrum analyser (OSA) through an integrating sphere. The output power was
measured with a power meter and the spectra normalised accordingly. For the draw-tower taper
the infrared edge was measured with an additional OSA and the two spectra were stitched
together.

3.1. Draw-tower taper
First we analyse the draw-tower taper. The taper profile was monitored during the fabrication
by measuring the coating diameter. Figure 5(a) shows a final cutback measurement of the cross-
section, which was carried out after the experiments had been performed. The images captured
with an optical microscope confirm that the fiber’s hole structure was maintained and a hole-
collapse avoided. The measured coating diameter and pitch calculated from cross-sectional
images are shown in Fig. 5(b). They are nicely correlated and show how the pitch is reduced
from 3.3 to 2.5 μm in an asymmetric way that roughly can be described as a 1.5 m downtapering
section and a 0.5 m uptapering section. The coating diameter can thus be used to get a good
estimate of the taper profile. The hole-to-pitch ratio of 0.52 was preserved throughout the taper.
In the experiment there was 5 m of uniform fiber before and after the tapered section to allow
for an initial spectral broadening.
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Fig. 5. Measured profile of the asymmetric draw-tower taper. (a) Schematic with cross-
section images captured with an optical microscope at 100x magnification. The structure
was maintained throughout the length of the taper. (b) Coating diameter and fiber pitch
(hole spacing) calculated from cross-section images through the tapered section. The hole-
to-pitch ratio of 0.52 was constant though the taper.

Figure 6(a) shows the spectra recorded when pumping from the long (blue) and short (red)
downtapering sides. A reference spectrum from a 10 m uniform fiber (black) is included to
show the maximum bandwidth achievable in a uniform fiber. Figures 6(b)-6(c) show a close
up of the blue edge and the integrated power. It is clearly evident that pumping from the long
downtapering side yields a higher power in the blue edge than pumping from the short. Both
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spectra from the tapered fiber extend below the bandwidth achievable in the uniform fiber, as ex-
pected. These results confirm the importance of GAM: when the taper is too steep, the solitons
at the red edge are decelerated too fast relative to the DWs at the blue edge. A fraction of the
energy in the DWs hence escapes the trapping potentials from the solitons and is consequently
not blueshifted. In the present taper, pumping from even the optimum long downtapering side
gives only a small addition to the energy below 500 nm compared to the uniform fiber. How-
ever, the energy below the spectral edge of the uniform fiber is increased threefold from 12.8 to
37.7 mW when the taper is pumped from the long downtapering side.
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Fig. 6. Experimental output spectra of the asymmetric draw-tower taper. (a) Output spectra
when pumping the taper from the long (blue) and short (red) downtapering sides. The
spectrum of a 10 m uniform fiber (black dash) is shown for comparison. The insets show the
pump directions. (b) Close up of the blue edge marked in (a), the vertical dotted lines mark
the spectral edges calculated in Fig. 3(b). (c) Integrated power in the blue edge. Pumping
from the long downtapering side clearly gives a higher power in the blue edge.

The prediction of the blue edge from Fig. 3(b)-3(c) is marked by vertical lines in Fig. 6(b).
The agreement is best for the uniform fiber, which may be due to small changes in the hole-to-
pitch ratio in the taper. Furthermore, determining the exact red edge is ambiguous in terms of
the specific wavelength of the loss edge.

3.2. Ultra-short tapers
For the ultra-short Vytran taperes the total fiber length was fixed to 50 cm with a 6 cm sym-
metrically tapered section in the middle. The tapers differed from each other in the length of
the up and downtapering sections that was set to 30, 20 and 5 mm, respectively. This corre-
sponds to waists of 0, 20 and 50 mm, respectively. The results shown in Fig. 7 again clearly
confirm the importance of GAM: increasing the length of the downtapering section with just a
few millimetres gives a dramatic increase in the power in the blue edge.

In Fig. 3(e)-3(f) we found that the blue edge should be at 453 and 378 nm for the uniform
and tapered fiber, respectively. This, however, was found by assuming a red edge at 2300 nm,
which can only be achieved by increasing the fiber length to allow the solitons to redshift all
the way to the loss edge. The results for the ultra-short tapers nonetheless demonstrate that the
blue edge can be easily shifted to much shorter wavelengths than what was demonstrated for
the draw-tower taper by increasing the fiber’s relative hole-size to alter the dispersion and GV
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Fig. 7. Experimental spectra from ultra-short symmetrical tapers with increasing transition
lengths: The blue, green and red lines show the spectra from tapers with increasing lengths
of the downtapering section. The black dashed line shows the spectrum at the entrance of
the tapers. A longer downtapering section again clearly increases the power in the blue
edge.

profile as shown in Fig. 4 and predicted in [25]. Here our goal was to maximize the energy
in the blue-edge and verify the importance of GAM. The conclusions can be straightforwardly
applied to fibers with higher relative hole-sizes and thus make an important step in optimising
the taper profile for SC sources with high power in the deep-blue.

4. Discussion

So far, we have ascribed the energy leakage of the DWs to GAM alone. However, we would
like to point out that a taper can be viewed as a continuous perturbation of the solitons that
causes them to oscillate and shed energy in order to remain fundamental solitons. This oscil-
latory behaviour and energy shedding is also seen in Fig. 2 although the effect is minor here.
A decrease in the peak-power of a soliton will decrease the potential well around the DW and
could therefore also explain why the soliton can not blueshift all the energy of a DW package
thought a taper. The importance of this effect will strongly depend on the size of the perturba-
tion, e.g., a very short taper will cause a large perturbation of the soliton and make it harder to
remain a fundamental soltion.

For the fibers investigated here, the soliton period for the most redshifted solitons at the
entrance of the taper is in the order of a few millimetres assuming a realistic soliton width
of 10 fs. This length is very small compared to the length of the draw-tower taper, and the
solitons should therefore propagate adiabatically without oscillating and shedding more energy
than they would in a uniform fiber due to the Raman effect alone. However, for the ultra-short
Vytran tapers the soliton period is comparable to the length of the taper, which will lead to a
non-adiabatic propagation of the solitons. We thus expect that the dynamics observed in the
draw-tower tapers is dominated by GAM, whereas the dynamics in the ultra-short tapers will
be affected both by GAM and the non-adiabatic propagation of the solitons. We emphasize that
both explanations give the same results, i.e., for a fixed taper length, the available power in the
blue edge will increase with the length of the downtapering section.
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5. Conclusion

In conclusion, we fabricated an asymmetric short draw-tower taper and verified experimentally
the importance of the novel concept of group-acceleration mismatch, or GAM, on solitonic
dynamics and the efficiency of SC generation. In particular, it was demonstrated that, for a
fixed taper length, a longer downtapering section yields a higher power in the blue edge of the
spectrum due to a correspondingly lower GAM. In the present case, the energy in the blue edge
was tripled when the length of the downtapering section was increased from 0.5 to 1.5 m. The
same tendencies were observed in three ultra-short symmetric tapers fabricated on a tapering
station, but for these very short tapers other effects may also play a role. These results are
highly important in the design of deep-blue SC sources with high power in the blue edge based
on tapered fibers.
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Tapering of photonic crystal fibers has proven to be an effective way of blueshifting the dispersive wave-
length edge of a supercontinuum spectrum down in the deep-blue. In this article we will review the
state-of-the-art in fiber tapers, and discuss the underlying mechanisms of supercontinuum generation
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and we demonstrate that the intensity noise at the spectral edges of the generated supercontinuum is at a
constant level independent on the pump power in both tapered and uniform fibers.
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1. Introduction

Since the discovery of supercontinuum generation in bulk
glasses more than 40 years ago by Alfano and Shapiro [1], a revival
of the supercontinuum field with the advert of optical fibers in
general [2], and photonic crystal fibers (PCFs) in particular [3,4],
has paved the way for the development of high-power commercial
SC light sources and the technology has found its way into many
applications [5].

In a simplified physical picture high-power long-pulsed super-
continuum generation in the anomalous dispersion regime can
be understood by looking at the dynamics of single solitons. Mod-
ulation instability (MI) will lead to temporal break-up of the high-
power pump pulse into a distribution of soliton-like pulses and
dispersive waves [6,7]. Each of these solitons may furthermore res-
onantly transfer energy to the normal group velocity dispersion
(GVD) regime if they have sufficient spectral overlap across the
zero dispersion wavelength (ZDW) [8]. For efficient visible super-
continuum generation it is thus of great importance that the pump
wavelength is close to the ZDW. Intra-pulse stimulated Raman
scattering leads to a continuous redshift of the soliton, also known
as soliton self-frequency shift [9–12]. While the soliton is being
redshifted due to the soliton self-frequency shift it keeps a packet
of dispersive waves trapped in a group-velocity matched bound
state, so that the dispersive waves are blueshifted to maintain
group-velocity matching [13,14]. As the soliton is redshifted it
slows down due to temporal broadening when the dispersion is

increasing as in typical used PCFs, such as our fiber (see Fig. 2b, so-
lid line). The dispersive waves then catch up with the soliton and
interact with it. The process of pulse break-up and the formation
of dispersive waves and solitons is illustrated in Fig. 1. The redshift
of the solitons can be limited by the material loss edge, a 2nd ZDW,
or temporal broadening due to increasing dispersion. Silica has an
increasing absorption above 2200 nm, which effectively prohibits
the solitons from propagating beyond the region of 2300–
2400 nm. Interaction through collisions of solitons will lead to
high-energy solitons capable of reaching the silica material loss
edge [15]. In some cases these collisions can even lead to ultra-
high-energy solitons, also known as rogue waves [16–21].

The fundamental physical interpretation of supercontinuum
generation was well established in the early 1990s. However, the
first commercial supercontinuum light source was still more than
10 years away. The main reason for this gap was that the step-in-
dex telecom fiber at the time had a relatively fixed ZDW of 1300–
1550 nm, which meant that the available high-power, commercial
laser sources, e.g. ytterbium (�1064 nm) and Ti:Sapphire
(�800 nm) solid state lasers, were in the normal GVD regime and
thus could not be used for efficient supercontinuum generation.
Although lasers were available above 1300 nm with sufficient
power, they were still bulky and expensive Q-switched solid state
lasers requiring free-space coupling to the nonlinear fiber. What
was missing for commercial supercontinuum sources was there-
fore reliable high-power fiber lasers to allow efficient coupling to
the nonlinear fiber and a suitable nonlinear fiber that allowedmov-
ing the ZDW down to the wavelength of the laser source. During
the telecom boom in the 1990s reliable fiber lasers were readily
developed, and with the advent of the photonic crystal fiber
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(PCF) in 1996 the solution to the fiber challenge was also given [3].
The air-hole structuring in the PCF manipulates the properties of
light and gives a tremendous degree of design freedom, which
has enabled pushing the properties of PCFs to limits that can never
be achieved with standard step index fibers. For example, one can
move the ZDW into the visible [4], guide light in air [22], and make
them endlessly single moded, even for large mode area (LMA) PCFs
[23].

The visible part of the electromagnetic spectrum (350–800 nm)
is very important for biological applications, e.g. optical coherence
tomography [24,25], confocal microscopy [26], Förster resonance
energy transfer (FRET) [27,28], and fluorescence lifetime imaging
microscopy (FLIM) [29]. For these applications it is thus beneficial
that as much light as possible is available in the whole visible part
of the spectrum.

A highly nonlinear fiber is desirable for efficient supercontinu-
um generation. This can be designed by modifying the core diam-
eter and the hole-to-pitch ratio of the fiber. There will, however, be
a practical lower limit to how small the fiber core can be since a too
small fiber core (diameter < 2–3 lm) makes it hard to couple light
into the fiber. This problem can be overcome by longitudinally
altering the fiber diameter, i.e. by tapering. In the recent years,
much research has been devoted to tailoring the fibers for optimiz-
ing the desired supercontinuum spectrum [30–33]. Tapering of fi-
bers have been shown to be an effective way to blueshift the short
wavelength edge of the supercontinuum by means of changing the
fiber dispersion and increasing the nonlinearity [34–36]. Previ-
ously, supercontinuum generation in draw-tower tapers has been
examined experimentally by Kudlinski et al. [34,37] and Travers
[35] where they generated light down to 340 nm. Travers and Tay-
lor have numerically investigated soliton and dispersive wave
propagation in tapers of a few meters [38] and Sørensen et al. have
studied the effect of the taper gradient [36,39]. Recently, Stark
et al. have demonstrated supercontinuum generation down to
280 nm by pumping short, sharply tapered solid-core PCFs with
femtosecond pulses. They used a steep taper gradient to trigger
pulse breakup inside the taper to form an intense and broadband
spike of electromagnetic radiation [40]. Note that the UV-light gen-
eration is in this case not an effect of blueshifted group-velocity
matched dispersive waves.

In this article we will focus on supercontinuum generation in
PCFs pumped in the anomalous dispersion regime with intense
picosecond pulses. We specifically outline how high-energy
solitons reaching the infrared loss edge through trapped and
group-velocity matched dispersive waves is an effective way of
blueshifting the blue edge. The power in the blue edge can further-
more be enhanced by considering the taper shape. Continuous
wave (CW) supercontinuum generation [41], gain-switched

pumping [42] or pumping with long pulses offers high average
power as well as broadband spectra. However, since this type of
supercontinuum generation is initiated by noise induced MI, the
generated supercontinuum will have low coherence and high
intensity fluctuations across the whole bandwidth and in particu-
lar at the edges [43,44]. Femtosecond supercontinuum generation
is initiated by soliton fission and is as such less noisy and has better
coherence properties, but it suffers from a low average power [43].

Several methods have been proposed to modify the supercon-
tinuum spectrum and reduce the noise, including seeding by mod-
ulation of the input pulse [16,45], seeding with minute pulsed and
CW light [18,46,47], seeding with the 2nd harmonic [48], and back
seeding [49]. Here we will discuss the intensity noise properties in
tapered fibers, and we show that the intensity noise at the spectral
edges of the generated supercontinuum is at a constant level inde-
pendent on the pump power in both tapered and uniform fibers.

The article is organized as follows. In Section 2 we describe the
numerical method and experimental setup used throughout the
article, and the reproducibility of tower-drawn tapers is discussed.
In Section 3 we go through the underlying dynamics of supercon-
tinuum generation in tapered PCFs. In Section 4 we introduce the
concept of group-acceleration mismatch (GAM) and we present re-
sults on supercontinuum generation in tapered PCFs with varying
taper length in order to investigate the possible optimum taper
profile capable of generating a fully developed blue-enhanced
edge. Finally, Section 5 goes through the power dependence of
the intensity noise in uniform and tapered PCFs.

2. Material and methods

For the experiments we used an ytterbium fiber laser, which
delivers 10 ps pulses at 1064 nm at a repetition rate of 80 MHz.
The laser delivery fiber was spliced to the PCFs to minimize cou-
pling losses and instabilities. The average input power was 10 W,
corresponding to a pulse energy of 125 nJ and a peak power of
11.7 kW when assuming Gaussian shaped pulses. The generated
supercontinuum output was collimated and the spectra were mea-
sured with two optical spectrum analyzers and stitched together.
For the relative intensity noise (RIN) measurements, the collimated
supercontinuum output was guided through narrow band-pass fil-
ters of 10–30 nm full width at half maximum (450–1600 nm filters
from Thorlabs and 1810–2310 nm from Multi-IR Optoelectronics
Co., Ltd.) and onto a photoreceiver (Newfocus 125 MHz Si and
InGaAs photoreceivers for measurements in the 450–1000 and
1000–1600 nm range, respectively, and a Redwave Labs 100 MHz
extended InGaAs photoreceiver for measurements in the 1600–
2400 nm range). The photoreceiver was connected to an electrical
spectrum analyzer (sweeping for 30 s with a bandwidth of 10 kHz)
and a voltmeter to characterize the DC and AC voltage, respectively
[44].

The simulations use a generalized nonlinear Schrödinger equa-
tion (GNLSE) model, which is often utilized to aid the understand-
ing of the supercontinuum dynamics, and has demonstrated good
agreement with experimental results [43,50–52]. We use the par-
ticular implementation described in [53,54], with input noise in-
cluded in the frequency domain through a noise seed of one
photon per mode with random phase added to each discretization
bin. Loss is neglegted and care is taken to conserve the photon
number. The numerical RIN is calculated from an ensemble of
1000 simulations that only differed in the input noise. Time series
of pulse powers, P(t), were calculated in 10 nm bandwidths across
the spectrum and assumed to be spaced by (80 MHz)�1; the same
bandwidth and temporal spacing that was used in the experiment.
The RIN is then given as the square of the Fourier transform of the
time series normalized to the average power, Pavg [55].

Fig. 1. Schematic of supercontinuum generation. By pumping close to the ZDW in
the anomalous dispersion regime solitons will be generated and trap dispersive
waves. Group-velocity matching will force the dispersive waves to blueshift while
the solitons are redshifting due to soliton self-frequency shift.
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We have focussed on one particular PCF geometry throughout
this article to illustrate our points. The fiber has a hole-to-pitch ra-
tio (d/K) of 0.52 and is a commercially available fiber (SC-5.0-1040,
NKT Photonics A/S), which has been shown to be single moded
near the pump wavelength [56]. The supercontinuum spectrum
from a uniform fiber (K = 3.3 lm) when pumping with the above
mentioned conditions is shown in Fig. 2a, and the calculated dis-
persion profiles for various pitches are depicted in Fig. 2b.

The far-field output of a tapered fiber (shown in Fig. 9) at differ-
ent filtered wavelengths (10 nm bandpass filters used) as well as
the total output field are imaged in Fig. 3. Note that the outputs
of the filtered wavelengths only show the core region to avoid
overexposure of the camera. Leakage to the inner cladding struc-
ture is visible in the image of the full power output. The images
clearly illustrate that the output is predominately single moded.

The PCF tapers discussed in this article are fabricated directly on
the draw-tower by modifying the drawing conditions, and unlike
earlier published work on tapers, e.g. [32,34,35,37,57], these tapers
are tapered back to their original fiber diameter, thereby allowing
easier handling, splicing, and termination of the fibers. Contrary to
earlier reports [58] we find that relatively short tapers with lengths
of 2–7 m can be made directly on the draw-tower with excellent
reproducibility and accurate control of the fiber diameter as dem-
onstrated in Fig. 4.

A standard deviation of 0.5 lm on the cladding diameter corre-
sponds to a deviation of 0.4% relative to the cladding diameter,
which in this case will correspond to a standard deviation of less
than 7 nm of the hole diameter. The increased standard deviation
at the uptapering edge is due to the measurement discretization
of 15 cm. The laser gauge measuring the cladding diameter has
an accuracy of 0.25 lm, which means that the measured standard
deviation is close to, and in some cases limited by, the instrumental

resolution. Such excellent reproducibility is highly important for
commercial applications.

3. Tapered photonic crystal fibers

Tapering is an effective way to manipulate the fiber properties.
Not only does it increase the nonlinearity but it also alters the dis-
persion of the fiber. The spectral edges of the supercontinuum are
comprised by solitons and group-velocity matched dispersive
waves [13,59]. The position of the blue edge for a given fiber can
hence be estimated from numerically calculated group-velocity
curves if the position of the solitonic red edge is known. The calcu-
lated spectral blue edge for the fiber under investigation is shown

(a) (b)

Fig. 2. (a) Measured spectrum from a 10 m PCF. (b) Calculated dispersion of fibers with constant hole-to-pitch ratio d/K = 0.52 and 3 different pitches K. Inset in (b):
microscope image of the fiber cross-section.

Fig. 3. Far-field images of the fiber output at different filtered wavelengths as well as the total output field at maximum output power.

Fig. 4. Demonstration of taper drawing reproducibility. Bottom: the red lines show
the cladding diameter as a function of length for 10 different taper drawings while
the black line shows the mean. Top: standard deviation r of the cladding diameter
for the 10 fiber drawings. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)
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in Fig. 5 as a function of pitch K. The material loss region is not a
well-defined and asymptotic loss edge but it is a region where the
soliton as it redshifts more and more will experience an increased
loss, i.e. more energetic solitons will be capable of redshifting more
before they have lost their energy. The difference in the maximum
blueshift of dispersive waves from a soliton reaching 2400 nm and
a soliton reaching 2300 nm is illustrated in Fig. 5 for a fixed hole-
to-pitch ratio of 0.52. Clearly, the less energetic soliton reaching
2300 nm will not blueshift its trapped and group velocity matched
dispersive waves as much as the more energetic soliton reaching
2400 nm. In Table 1 the blue edge wavelengths for defined red
edges at 2300 nm and 2400 nm, respectively, are listed for differ-
ent pitches.

Calculations of the blue edge for an arbitrary pitch and hole-to-
pitch ratio (d/K) can also be performed. This has previously been
done by Travers [35], who defined the blue edge as the shortest
group-velocity matched wavelength and calculated the blue edge
wavelengths for d/K > 0.6. Travers found that the optimum pitch
for large hole-to-pitch ratios was around 2 lm almost independent
of the hole-to-pitch ratio. Introducing the loss edge in the calcula-
tions, the spectral blue edge is shown in Fig. 6 as a function of hole-
to-pitch ratio and pitch. We define the red edge as the loss edge
(set to 2300 nm in Fig. 6), or a wavelength k2 close to the 2nd
ZDW, whichever is the lowest [39]. Solitons always halt their red-
shift about 50–100 nm away from the 2nd ZDW [60,61], so k2 is
chosen to kZDW,2 – 50 nm, thus assuming group-velocity matching
to a loss edge of 2300 nm or 50 nm below the 2nd ZDW.

The dashed line in Fig. 6 shows the optimum pitch giving the
lowest blue edge for a given hole-to-pitch ratio. By tapering, the
pitch will be altered whereas the hole-to-pitch ratio can be con-
stant, i.e. tapering will cause a horizontal move to the left in
Fig. 6. Tapering further down than the optimum pitch will for lar-
ger hole-to-pitch ratios let the 2nd ZDW come into play as it is
shifted below 2300 nm, i.e. below the silica material loss edge.
When this happens the redshifting solitons will be limited by
the 2nd ZDW, which then again limits the blueshift of the group-
velocity matched dispersive waves. For smaller hole-to-pitch ratios
the optimum pitch is reached before the 2nd ZDW has crossed the
loss edge and is thus solely determined by the loss edge. The blue
edge of a fiber with parameters to the right of the dashed line in
Fig. 6 will therefore be limited by the material loss edge and not
by the 2nd ZDW of the fiber. In this case, the blue edge can be blue-
shifted by tapering. In the opposite case, where the blue edge is

limited by the 2nd ZDW of the fiber for larger hole-to-pitch ratios,
tapering will not increase the blueshift of the blue edge.

According to Fig. 6, one should have a fiber with a hole-to-pitch
ratio as high as possible and a pitch around 1.84 lm to generate
the most blueshifted light. A fiber with a pitch of 1.84 lm and a
hole-to-pitch ratio of 0.96 will yield a blue edge at 333 nm when
assuming a loss edge at 2300 nm. Previously, Kudlinski et al.
[34,37] and Travers [35] have generated light down to 340 nm in
a fiber with a hole-to-pitch ratio between d/K = 0.87 and 0.89,
where the fiber was tapered from a pitch of �6 lm to �2 lm over
a length of 3 meters.

As mentioned in Section 1 there has been some previous work
on tapered fibers with the purpose of modifying the supercontinu-
um generation process. Generally, there are two main techniques
for taper fabrication: post-processing of fibers or during fiber man-
ufacturing. Post-processing is typically used to produce short ta-
pers (<20 cm) by subsequent heating and stretching the fiber.
This technique has previously been used to demonstrate enhanced
self-phase modulation [62], soliton self-frequency shift [63], and to
shift the ZDW and increasing the nonlinearity in standard telecom-
munication fibers [30] and solid-core microstructured fibers
[31,33,64–67] for efficient supercontinuum generation.

Taper fabrication during fiber manufacturing is typically used to
produce tapers in the order of meters to kilometers. Tapers as short
as 10 cm [57], a few meters [39], and several kilometers [68] have
previously been made directly on the draw tower. Importantly,
longer tapers allows the fiber characteristics to change slowly
while the long-pulsed supercontinuum evolves.

4. Tapers for optimum blue-enhanced supercontinuum
generation

Now that we have theoretically predicted how the blue edge
can be shifted by high-energy solitons, one of the remaining chal-
lenges is to shift as much light as possible to the edge. It is clear
from Fig. 6 that the optimum tapering degree, i.e. the depth of
the taper, can be found from group-velocity matching of solitons
and their corresponding dispersive waves. But what about other
tapering parameters, such as down- and up tapering length and ta-
per waist length? This has so far been an open question as stated
by Travers [35].

Fig. 5. Blue edge wavelength kblue as a function of pitch K assuming group-velocity
matching to a loss edge of 2300 nm or 2400 nm.

Table 1
Blue edge wavelength for different pitches and red edges.

K (lm) k2300blue (nm) k2400blue (nm)

3.3 495 479
2.8 480 467
2.5 477 465

Fig. 6. Blue edge wavelength k2300blue as a function of hole-to-pitch ratio d/K and pitch
K assuming group velocity matching to a loss edge of 2300 nm or 50 nm below the
2nd ZDW. The dashed white line indicates the optimum K for a given d/K. The two
solid white lines show the 1st ZDW at 1064 nm and the 2nd ZDW at 2350 nm,
respectively.
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To clarify this one has to recall the trapping effect, which is of
fundamental importance for the supercontinuum generation
dynamics. As previously described, the MI process causes the input
pulse to break up and solitons and dispersive waves will be gener-
ated. As a soliton redshifts it is temporally delayed in typical PCFs
as ours, which allows the dispersive wave to catch up with the sol-
iton and be trapped in a potential created by the soliton. When the
soliton is further redshifted, the trapped dispersive wave is blue-
shifted to satisfy group-velocity matching. For a uniform fiber this
process would continue as long as the soliton redshifts [14,69].
However, as the soliton enters the downtapering section it is accel-
erated and leaves some of the dispersive wave behind. The rest of
the trapped dispersive wave blueshifts with the soliton through
the taper waist and to the uptapering section where the group-
velocity match is broken due to the acceleration of the soliton
relative to the dispersive wave. The uptapering section should
therefore have limited influence on the blueshifted part of the
spectrum. Left is therefore to determine the ratio between the
downtapering length and the length of the taper waist. Alterna-
tively, the blueshift of dispersive waves can be explained as a cas-
cade of cross-phase modulation (XPM) collision events that
continuously blueshifts the dispersive waves in discrete steps [70].

In a fiber, the soliton undergoes a continuous Raman redshift,
which leads to a continuous change of its group-velocity as a func-
tion of the propagation length, i.e. a group-acceleration. However,
the dispersive waves do not on their own move spectrally and
are thereby not subject to the same acceleration. This means that
the dispersive waves will continuously loose energy because of

the difference in group-velocity, which diminishes the interaction
length and hence the trapping effect, as illustrated in Fig. 7a. The
Raman effect thus leads to a group-acceleration mismatch (GAM),
an asymmetric change of the group-acceleration of the solitons
and dispersive waves [36,39]. This effect is not dramatic in a uni-
form fiber because of the relatively weak Raman redshift and
thereby correspondingly low GAM. In a taper, however, the
group-acceleration can be orders of magnitude higher than the
inherent Raman induced change [38]. Furthermore, it is asymmet-
ric in the sense that the group-velocity change induced by the ta-
per is different for the blue edge compared to the red edge as
illustrated in Fig. 7b. In order to minimize GAM and thereby max-
imizing the power transferred to the blue edge due to high-energy
solitons reaching the loss edge, the taper gradient should be as
small as possible.

4.1. GAM illustrated with simulations

Due to the solitonic nature of supercontinuum generation, a lot
of insight into the supercontinuum generation process can be
gained by single soliton simulations. To get a basic understanding
of supercontinuum generation and edge formation in a tapered

(a)

(b)

Fig. 7. Radiation trapping and leakage. (a) In a uniform fiber a soliton can trap and
blueshift a group-velocity matched dispersive wave, while it is slowly redshifting
and thus decelerating. The trapping is incomplete, i.e. part of the dispersive wave
continuously leaks out of the trap, as illustrated. (b) In a taper, there is a mismatch
in the group-acceleration, the rate with which the group-velocity changes, which
increases the amount of light that leaks out of the trap (not illustrated). The group-
velocity curves are calculated for a fiber with a (d/K) = 0.52 lm, K = 3.3 lm and
K = 2.5 lm. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)

(a)

(b)

(c)

Fig. 8. (a) Spectral evolution of a 20 fs fundamental soliton and trapped dispersive
wave through a fiber taper with an initial 1 m uniform fiber. (b) and (c)
Spectrograms at the entrance (1 m) of the taper and at the taper waist (2 m). The
wave is fully trapped at the taper entrance, but the taper increases the soliton
redshift and deceleration, which causes part of the dispersive wave package to leak
from the soliton induced trapping region.
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fiber it is hence instructive to analyze the propagation of a soliton
and an appropriately delayed and group-velocity matched disper-
sive wave package [36,38,39].

The propagation of a 20 fs fundamental soliton and a group-
velocity matched dispersive wave is illustrated in Fig. 8. The soliton
redshifts throughout the length of the fiber, and while doing so, it
causes a blueshift of the trapped wave as seen in Fig. 8a. In the first
meter of uniform fiber, the two co-propagate without the disper-
sive wave shedding much energy. As the downtapering starts at
1 m, both the redshift rate of the soliton and the blueshift rate of
the trapped dispersive wave increase due to the increase in nonlin-
earity and change in group velocity. However, due to the taper in-
duced GAM, a significant fraction of the trapped dispersive wave
now escapes the trap. The spectrograms in Fig. 8b and c show
the pulses in the spectral and time-domain simultaneously; at
the taper entrance (Fig. 8b), the two waves are temporally overlap-
ping and the decelerating soliton has fully trapped the dispersive
wave. At the taper end (Fig. 8c) only a fraction of the originally
trapped dispersive wave is still trapped and has a temporal overlap
with the soliton. The remaining light has escaped the trap and not
been decelerated and blueshifted by the soliton. This clearly illus-
trates the need for matching not only the group velocities but also
the rate of which they change, i.e. minimizing the GAM as pre-
dicted numerically in [36] and verified experimentally in [39].

4.2. GAM demonstrated with experiments

Experimentally it is straightforward to demonstrate the concept
of GAM. Fig. 9 shows the spectra from an asymmetrically tapered
fiber pumped from each end. The asymmetry will yield a difference
of the GAM in the two cases even though the light passes through
the same length of fiber. The dashed line shows the spectrum from
10 m of uniform fiber. It is noticed that the red edge is at 2300 nm
while the blue edge is at 492 nm. This fits well with the predicted
blue edge of 495 nm (Figs. 5 and 6). For this particular fiber the
blue edge is blueshifted the most by tapering it from a pitch of
3.3 lm to the optimum pitch of 2.5 lm. The tapered fiber consists
of a 3 m uniform section before and after the 4 m asymmetrically
tapered section, which is illustrated in the inset of Fig. 9. As ex-
pected the tapering causes a blueshift of the blue edge relative to
the uniform fiber. Pumping the tapered fiber from the steep
downtapering end (blue line in Fig. 9) gives a red edge at

2380 nm and a blue edge of 462 nm at a level of �15 dBm/nm
while pumping from the other end of the tapered fiber (red line
in Fig. 9) gives a red and blue edge at 2435 nm and 454 nm, respec-
tively. Again, this fits reasonably well with the predicted blue edge
of 465 nm when assuming the red edge at 2400 nm.

In the case of pumping from the long downtapering side it is
however not evident if the blue edge is influenced by the abrupt
steepness change of the downtaper after �1 m. The steepness
change happens at a pitch ofK = 2.8 lm for which the group veloc-
ity matched blue edge is 2 nm higher than for the optimum pitch of
K = 2.5 lm (see Table 1).

The main difference between the two spectra is the amount of
light generated at the blue edge. Pumping from the long downta-
pering side clearly yields a higher power in the blue edge than
pumping from the short downtapering side. These results confirm
the importance of GAM: The steeper the downtapering section is,
the faster the solitons at the red edge are decelerated relative to
the dispersive waves at the blue edge. A larger fraction of the en-
ergy in the dispersive waves hence escapes the trapping potentials
from the solitons and is accordingly not blueshifted [36,39].

To further illustrate the concept of GAM, different tapers were
fabricated. The pitch as a function of fiber length for 4 different ta-
pers, where the total fiber length is 10 m and the initial fiber length
before the taper is 1 m, is shown in Fig. 10. When no hole collapse
occurs during the tapering process the variation of the fiber pitch is
correlated to the variation of the fiber cladding diameter. For this
particular fiber it was previously shown that no hole collapse oc-
curs during fiber tapering [39] and the fiber pitch can thus be
found from measuring the cladding diameter of the fiber. The ta-
pered sections of the fibers are approximately 2.0 m, 3.2 m,

Fig. 9. Effect of downtapering length. Experimental output spectra when pumping
the asymmetric taper from the short (blue) and long (red) downtapering ends. The
spectrum of a 10 m uniform fiber (black dash) is shown for comparison. The inset
shows the tapering profile and the arrows indicate the pump direction. (For
interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)

Fig. 10. PitchK as a function of fiber length for the four different tapers. The dashed
lines indicate the beginning and end of each taper.

Fig. 11. Cutback measurement of the uniform fiber. The dashed white line show the
spectrum after propagation in 1 m fiber.
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4.0 m, and 7.5 m and will in the following be referred to as the 2 m,
3 m, 4 m, and 7 m tapers, respectively. We note that these tapers
are some of our earliest tower-drawn fiber tapers before the taper-
ing process had been improved to produce tapers of the quality
shown in Fig. 4.

In order to have a well-documented reference we conducted a
cutback measurement on a 10 m uniform fiber. Fig. 11 shows
how the spectrum widens in the first few meters of the fiber and
after 5 m the spectral width barely increases. The dashed white
line in Fig. 11 indicates the spectrum after propagation in 1 m uni-
form fiber, which is the fiber length before each taper. This fiber
length is much longer than the characteristic length, 16/(cP0),
where a supercontinuum will be developed [43]. This characteris-
tic length is in this case �8 cm. Thus, a distribution of solitons has
been formed and a supercontinuum has been partially developed
at the taper entrance.

A comparison of the spectra obtained from the uniform and ta-
pered fibers is shown in Fig. 12. In all cases the tapered fibers ex-
hibit broader spectra compared to the output spectrum of a 10 m
uniform fiber. The spectral red edge is limited by the material loss
edge in silica at approximately 2400 nm, which also will limit the
blue edge.

As also shown in the previous example (Fig. 9), the blue edge of
the 10 m uniform fiber at a level of �15 dBm/nm is measured to be

at 492 nm, which is in good agreement with the predicted 495 nm
when matching to the red edge at 2300 nm. As expected, the blue
edges of the tapered fibers are shifted below that of the uniform fi-
ber as seen in the inset of Fig. 12. In the case of a pitch of 2.5 lm
the edge is expected to be at 465 nm when matching to the red
edge at 2400 nm. This also fits well with the experimental blue
edges, which are measured to be in the region of 452–455 nm for
the 2 m, 3 m, and 4 m tapers, corresponding to a blueshift of 37–
40 nm. The measured blue edge of the 7 m taper is slightly higher
at 462 nm. This is attributed to the form of the taper; the diameter
of the 7 m taper is gradually decreased as seen in Fig. 10, but right
before the uptapering section the fiber diameter is rapidly de-
creased to its minimum. This will lead to an increased GAM, which
means that the taper is only efficient down to a fiber pitch of
2.8 lm. As a result, the dispersive waves will experience a reduced
blueshift, which can be seen in Fig. 5. However, since the variation
of the blue edge wavelength is small near the optimum fiber pitch,
it is not crucial to have an exact match between the optimum and
actual tapered fiber pitch. For this fiber the blue edge wavelength
will only shift additionally 2 nm when tapering from a pitch of
2.8 lm to a pitch of 2.5 lm, as seen in Fig. 5 and Table 1.

The amount of blueshifted light is however not identical for the
tapers. The spectral shoulder in the blue edge caused by the taper
is increasing for increasing taper length as clearly seen in the inset
of Fig. 12. This is further quantified in Fig. 13 where the integrated
power in the blue edge of the different fibers are shown. Compar-
ing the tapered fibers it is seen that the power density in the blue
edge is increased for increasing tapering length. All light below
495 nm is created in the tapered section of the fiber. The amount
of shifted light below 495 nm is 38.6 mW, 51.3 mW, 60.2 mW,
and 78.8 mW for the 2 m, 3 m, 4 m, and 7 m taper, respectively.
It is noticeable that the 3 m and 4 m tapers have comparable
downtapering lengths, which should blueshift the same amount
of dispersive waves and thus give rise to similar power densities
in the blue edge. The increased power in the spectral region below
495 nm can however be ascribed to the difference in taper waist
length. The group-velocity match will not be broken until the upt-
apering starts. The dispersive waves are hence blueshifted both in
the downtapering section and in the taper waist. The longest of the
investigated tapers, the 7 m taper, clearly blueshifts the most light
which is attributed to lowest GAM of all the investigated tapers
[36,39].

To clarify the impact of the length of uniform fiber after the ta-
per we cut off approximately 1.5 m of the 7 m tapered fiber and
measured the output spectrum directly after the taper. This output
spectrum (not shown) was identical to the output spectrum of the
original 7 m tapered fiber. The uniform fiber after the taper has, in
this case, no impact on the resulting output spectrum but leads to
temporal broadening, pulse walk-off, and loss. This suggests that

Fig. 12. (a) Output spectra of a 10 m uniform fiber (dashed black), the 2 m taper
(blue), the 3 m taper (green), the 4 m taper (red), and the 7 m taper (gray). Inset:
Close-up of the blue edge. The vertical lines indicate the predicted edges. (For
interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)

Fig. 13. Integrated power in the blue edge for the fibers shown in Fig. 12. The vertical line indicates the blue edge of the uniform fiber (495 nm), all power shifted below this
wavelength is generated in the taper. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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the optimum taper for a fully developed blue edge should be as
long as possible and the length of the uniform fiber after the taper
as short as possible.

5. Intensity noise in tapered supercontinuum sources

A lot of attention has been drawn to the phenomenon of large
amplitude rogue wave generation [6,17,21,51,71] and ways to con-
trol these extreme and rare events [16,18]. This attention has been
understandable because of the fundamental nature of rogue waves
and because they appear in diverse systems such as optics
[17,19,21], ocean waves [20,72], breaking of DNA bonds [73],
superfluid helium [74], the atmosphere [75], and even finance
[76]. The hydrodynamic definition of the events that constitute ro-
gue phenomena is defined as a soliton, whose height (peak power)
is more than twice the significant wave height, i.e. the mean peak
power of the one-third largest amplitude solitons [21]. Seen from a
commercial point of view on supercontinuum light sources, these
statistically rare optical rogue waves are of less importance, be-
cause of their minimal contribution to the overall intensity fluctu-
ations of the supercontinuum spectrum. Instead, the stability of
the supercontinuum source can be quantified in terms of shot-to-
shot fluctuation. This has previously been done in different ways,
including calculating higher order moments of intensity fluctua-
tions [77], looking at minima and maxima of the pulse trains
[78], and in terms of the relative intensity noise (RIN) [55].

Recently, Kudlinski et al. have measured the shot-to-shot fluc-
tuations from a uniform and a tapered fiber for one fixed power le-
vel. They defined a noise measure given by the ratio r = 100 �
(Vmax � Vmin)/(Vmax + Vmin), where Vmax and Vmin are the maximum
and minimum photodiode signal amplitudes, respectively, mea-
sured for at least 10 out of 10,000 recorded pulses, and showed
that the noise was reduced in the tapered fiber when observing a
fixed wavelength near the blue edge [78]. They observed that the
noise was reduced at the blue wavelength edge when the fiber
was tapered and attributed it to a presumed increase of the spec-
tral power density beyond 1750 nm. This increase will lead to an
increased probability to encounter solitons at the long wavelength
side of the supercontinuum. Since the dispersive waves at the blue
edge are group-velocity matched to these solitons, the intensity
noise will also decrease in the blue edge of the supercontinuum.
Vanvincq et al. described a significant reduction of power fluctua-
tions at the long-wavelength edge of a SC generated in solid-core
photonic bandgap (PBG) fibers [79]. However, PBG fibers are less
attractive from an application point of view, since the spectral
bandwidth of SC generated in PBGs will be limited and thus not
utilize the full potential of silica. One should also keep in mind that
there is a fundamental difference between the guiding mecha-
nisms and the soliton dynamics in PBG fibers compared to solid-
core PCFs. When a soliton is approaching the bandgap edge in a
PBG fiber it will experience a very strong change of the GVD. This
change will cause the soliton to broaden in time and decrease in
peak power adiabatically. It will never cross the bandgap edge
due to the temporal broadening (and thereby reduction in redshift)
arising from the abruptly increasing dispersion. Near the loss edge
in a PCF the soliton will experience much less variation in the GVD
when redshifting, and the soliton energy will drop because of the
gradually increasing material loss. However, it is still possible for
the solitons to propagate into the loss region, with high-power sol-
itons penetrating furthest. Since the soliton dynamics is different it
is not obvious that the noise properties are the same for the two
fibers. We have recently shown that the noise at the spectral edges
of the generated supercontinuum is at a constant level indepen-
dent on the pump power in both tapered and uniform fibers. At

high input power the spectral bandwidth is limited by the infrared
loss edge, this however has no effect on the noise properties [44].

RIN is a standard way of measuring noise in laser systems and is
quantified by the noise power in an electrical frequency bandwidth
of 1 Hz normalized to the DC signal power,

RINðxÞ ¼ ðDPðxÞÞ2
ðPavgðxÞÞ2

; ð1Þ

where (DP)2 is the mean square intensity fluctuation and Pavg is the
average optical power. The shot-to-shot fluctuations r can then be
found by integrating the RIN up to the Nyquist frequency (1/2 rep-
etition rate frequency) and taking the square root to obtain the
amplitude of the fluctuations:

r ¼
Z xrep=2

0
RINðxÞdx

� �1=2

: ð2Þ

We have numerically investigated the RIN in different taper
structures, which is illustrated in Fig. 14. Three tapers with a total
length of 4 m, but with different up- and downtapering lengths are
compared to a uniform fiber. The relatively low input power and
short pulse length (FWHM of 3 ps with peak-power of 500 W)
compared to the experimental measurements have been used to
decrease the computational time. Although this parameter choice
disables a direct quantitative comparison between simulations
and measurements, the simulations still contribute with valuable
information about the intensity noise in MI-initiated supercontin-
uum, which gives a qualitative agreement with the measurements.
Fig. 14 clearly illustrates the effect of tapers and the importance of
GAM. As expected, the tapered fibers all have blue edges at shorter
wavelengths than the uniform fiber. It is furthermore noticed that
both the position and amount of energy in the blue edge depends
on the downtapering gradient: decreasing the gradient of the
downtaper shifts the blue edge to a shorter wavelength and in-
creases the amount of energy in the edge. The trapping process
and blueshift of dispersive waves cease at the taper waist, where
the group-velocity match to the solitons at the red edge is broken.
A longer downtaper allows the solitons to redshift more and hence
to blueshift the dispersive waves more. If the most redshifted sol-
itons were limited by the infrared loss edge, the blue edge would
be equally blueshifted in all tapers. The amount of blueshifted light

Fig. 14. Simulated output spectra (bottom) and corresponding relative intensity
noise (top) for a 10 m uniform fiber (black), and 3 different tapers (blue, green, red)
with the profiles shown in the inset. The fibers are pumped with 3 ps (FWHM)
pulses with a peak power of 500 W at 1064 nm at a repetition rate of 80 MHz. The
spectra are the mean of 1000 simulations. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)
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can be explained by GAM. In a high-gradient downtaper a larger
pool of the dispersive waves will be leaked from the potential trap
and left behind compared to a low-gradient downtaper. Thus, few-
er dispersive waves will be shifted all the way to the edge.

The RIN illustrated in Fig. 14 is in all cases lowest at the pump
wavelength with a value below �140 dB/Hz and it then slightly in-
creases when moving away from the pump wavelength. When not
considering the spectral edge regions the RIN is similar for the ta-
pers and the uniform fiber. The RIN is strongly increased at the
spectral edges to a level exceeding �100 dB/Hz. This means that
for at fixed near-edge wavelength, e.g. at 700 nm, there will be a
difference in RIN where a less noisy spectral region can be obtained
by choosing the taper with the smallest downtaper gradient. In the
case of tapering down to achieve the maximum blueshift of the
spectral edge, the noise improvement is however primarily due
to the spectral improvement [44].

Fig. 15 shows measurements of a 10 m uniform fiber and a 10 m
fiber with a 4 m tapered section (shown in Fig. 10) when pumping
with a peak-power of 5 kW. The blue edge from the tapered fiber is
blueshifted compared to that of the uniform fiber as expected.
Again, the RIN is lowest near the pump wavelength, it increases
when moving towards the edge, and it exceeds �75 dB/Hz on the
blue side of the spectral edge for both the uniform and the tapered
fiber. It is again seen that due to the spectral improvement caused
by the taper, the RIN is lower for the tapered fiber compared to the
uniform fiber for a fixed near-edge wavelength.

Generally, the measured intensity noise shown in Fig. 15 is
higher than the numerical results shown in Fig. 14. However, the
pump power is different and the general trend is in the two cases
the same: lowest intensity noise at the pumpwavelength and a dif-
ference in the intensity noise between uniform and tapered fibers
at near-edge wavelengths due to the broader spectra from tapered
fibers.

To further quantify the dynamics of RIN in tapered fibers we
have measured the RIN in the whole parameter space of input
power and wavelength, including the region of the silica material
loss edge above 2 lm [44]. The RIN as a function of input peak
power and wavelength is illustrated in Fig. 16 for both a 10 m uni-
form fiber and a 10 m fiber containing 4 m tapered fiber (shown in
Fig. 10). The thick black line indicates the spectral edges of the gen-
erated supercontinuum, defined at the �10 dBm/nm level, and the
black dots indicate the actual measurement points The noise prop-
erties of the supercontinuum generated in the uniform and tapered

fibers are similar. At the spectral edge of the supercontinuum the
RIN is about �75 dB/Hz corresponding to shot-to-shot fluctuations
of �112%. Generally, it decreases when the input power is in-
creased (moving horizontally in Fig. 16) or the wavelength is cho-
sen closer to the pump wavelength (moving vertically in Fig. 16).
Thus, the minimum noise level of about �105 dB/Hz, correspond-
ing to shot-to-shot fluctuations of �3.5%, is observed close to the
pump at a wavelength between 1000–1100 nm at the maximum
input power level. On the outer sides of the spectral edges the
noise increases rapidly.

Both our numerical and experimental results show that the
noise will decrease when the fiber is tapered for a fixed near-edge
wavelength. This is, however, only due to spectral broadening.
Thus, looking at a near-edge wavelength relative to the spectral
edge, e.g. 20 nm from the edge at the �10 dBm/nm level, of a
supercontinuum generated in a uniform and a tapered fiber,
respectively, will yield the same noise level.

To illustrate the intensity noise on the spectral edges we have
measured the RIN by adjusting the input power so that the spectral
edge at a level of �10 dBm/nm is equivalent to the central wave-
length of the narrow band filters. The RIN in the 1600–2400 nm
range was not measured due to less well-defined filters and a nois-
ier photoreceiver. Fig. 17 clearly shows that the level of the RIN on
the spectral edge at the �10 dBm/nm level is fixed at around
�75 dB/Hz. The lower red edge noise level can be explained by
the shape of the spectra. At the blue edge the spectrum is steep
while it is more flat at the red edge, as seen in Fig. 9. Since we have
defined the edge to be at a fixed power level the presence of a finite
power spectral density on the outer side of the red edge will lead to

(a)

(b)

Fig. 15. Measured output spectra (b) and corresponding relative intensity noise (a)
for a 10 m uniform fiber (black) and a taper (red) with the profiles shown in Fig. 10.
The circles in (a) show the actual measurement points. The fibers are pumped with
a peak power of 5 kW. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)

(a)

(b)

Fig. 16. RIN as a function of input peak-power and wavelength in (a) the uniform
fiber and (b) the tapered fiber. The black lines show the spectral edges and the dots
show the measurement points.
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a reduction of the measured noise compared to the blue edge,
where there is no power spectral density on the outer side of the
blue edge because of the steep edge. Vanvincq et al. observed a sig-
nificant reduction of power fluctuations at the long-wavelength
edge of a supercontinuum generated in solid-core photonic band-
gap fibers due to suppression of soliton self-frequency shift near
the bandgap edge [79]. The dispersive waves below 550 nm in
Fig. 17a will be matched to solitons above 2000 nm, i.e. solitons
in the material loss region. Since we observe a nearly constant
RIN in the blue edge, the materiel loss edge is thus not affecting
the RIN of the dispersive waves GVDmatched to solitons in the loss
region.

6. Conclusion

High-power fiber lasers combined with tailored photonic crys-
tal fibers provide efficient and compact supercontinuum sources
spanning from the deep-blue to the near infrared, and tapering of
these photonic crystal fibers is an effective way to blueshift the vis-
ible part of the spectrum. The degree of blueshift depends on the
tapering degree, which can be optimized by calculating the blue
wavelength edge based on the group-velocity of solitons and their
group-velocity matched dispersive waves. The mechanism of
trapped and group-velocity matched dispersive waves responsible
for the formation of the blue edge is now well understood and has
been demonstrated to be accurately predicted. Thus, group-veloc-
ity matching is an efficient fiber design tool. To optimize the power
in the blue edge the downtapering length of the taper should be as
long as possible to minimize the group-acceleration mismatch be-
tween the solitons and their group-velocity matched dispersive
waves.

For the investigated PCF structure, which allows single-mode
operation at 1064 nm, the blue edge of the output spectrum was
blueshifted by 35 nm by tapering the fiber down to 75% of its ori-
ginal diameter. The highest amount of blueshifted light is achieved
for tapers with the longest down tapering length. For the longest
investigated taper 78.8 mW was shifted below the blue edge of
the uniform fiber. A blue edge below 350 nm can be achieved in

PCFs with a large d/K, and the maximum blueshift is obtained by
tapering to a pitch of 1.8–2 lm. To achieve this pitch, a tapering
degree of more that 50% will typically be required, but these fibers
will however be multi-moded at a pump wavelength of 1064 nm.

A higher power in the blue edge is achieved with long tapers.
However, fiber lengths of more than 10–15 m will cause temporal
walk-off, which in practice limits the total fiber length to about
10 m for commercial applications. Excellent reproducibility of
tower-drawn tapers can now be achieved, also for tapering degrees
exceeding 50%.

Since tapering influences the spectral width of the supercontin-
uum it also has an influence on the noise properties. When observ-
ing a fixed wavelength near the spectral edge in a 10 nm
bandwidth the noise is reduced in a tapered fiber due to the spec-
tral broadening. The noise at the spectral edge of a supercontinu-
um is however constant independent of input power for both
tapered and uniform fibers. An increase of power will generally
lead to a decrease of noise for a fixed wavelength and the noise
for a fixed power level will be lowest at the pump wavelength
and highest at the spectral edges.
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The formation of extremely broad SC spectra in highly
nonlinear optical fibers has been extensively studied,
driven both by an interest in understanding the underly-
ing physics and due to a large commercial potential [1].
A considerable ongoing effort has been devoted to ex-
tend the SC into the infrared in non-silica glasses [2–5]
and into the deep-blue in tapered silica PCFs [6–11].
Specifically, the deep-blue spectral region below 400 nm
is highly desirable for biological applications such as flu-
orescent microscopy [6], but not immediately accessible
with typical commercial SC sources based on long-pulsed
ytterbium fiber-lasers with 10s of kW of peak power.
In such sources, the spectral broadening is initiated by
noise-driven modulation instability (MI) that breaks the
pump pulse into a distributed spectrum of solitons and
dispersive waves (DWs) [12]. The SC spectrum is subse-
quently shaped by a complex process in which the Ra-
man redshifting solitons trap the cohort of DWs, thereby
forcing them to blueshift so as to propagate with the
group velocity (GV) of the redshifting solitons [13, 14].
Ultimately, the spectral width is determined, on the long
wavelength ”red” side, by the maximum extent of the
soliton redshift and, on the short wavelength ”blue” side,
by the GV matching to the solitons. The soliton red-
shift typically is limited by the increasing material loss
at ∼2.3 μm and the blue SC edge can then be predicted
by the GV match from this wavelength [7, 9].

Tapering of PCFs with high air-fill fractions has
proven an effective way of extending the spectra into
the deep-blue by shaping the GV landscape [6–11]. This
facilitates the ideal combination of (1) an initial fiber
section to initiate the spectral broadening by MI in the
vicinity of the zero-dispersion wavelength (ZDW) with
an efficient energy transfer into the visible, and (2) a
subsequent fiber section with GV matching to gradually
shorter wavelengths. Previous reports on blue-extended
SC generation typically relied on tapered PCFs where
the air hole structure is preserved [6–11], i.e. with con-
stant hole-to-pitch ratio (d/Λ) and decreasing hole-to-

hole pitch (Λ). However, high air-fill fraction PCFs are
inevitably (highly) multi-mode at the pump, which can
greatly complicate coupling and interfacing. In [15, 16]
this was overcome by increasing the air hole size in a
short section of an endlessly single-mode PCF using a
post processing technique, but only to enhance the visi-
ble power. In this letter, we present the first high-power
SC generation into the deep-blue in a single-mode PCF
with longitudinally increasing air-fill fraction and de-
creasing pitch fabricated directly at the draw-tower. This
uniquely ensures single-mode behavior at the input and
GV matching into the deep-blue at the output.

Fig. 1. (Color online) Calculated (a) dispersion and (b)
GV for the illustrated hole-size increasing PCF taper.
The hole-to-pitch ratio d/Λ and pitch Λ are assumed to
vary linearly with length, and the dispersion and GV are
calculated at equidistant points.

To motivate our fiber design, we show in Fig. 1 the
calculated dispersion and GV at equidistant points along
the length of a PCF, in which the hole-to-pitch ratio is
linearly increased from 0.52 to 0.85 while the pitch is lin-
early decreased from 3.3 to 2.0 μm. The final structure
with a hole-to-pitch ratio of 0.85 and a pitch of 2.0 μm is
our target design, for which GVmatching to the loss edge

1



of 2.3 μm gives a theoretical blue edge of 360 nm [7, 9].
Figure 1 shows that the ZDW shifts from 1033 nm at
the input to gradually shorter wavelengths. The GV
decreases at long wavelengths where waveguide disper-
sion dominates over material dispersion, which gives GV
matching to gradually shorter wavelengths from these
long wavelengths. It should be noted that a continually
decreasing GV is essential for the trapping process, al-
though a too rapid decrease can be detrimental due to
group-acceleration mismatch (GAM) [8,9,14,17]. Impor-
tantly, the trends in Fig. 1 are exactly as for tapered
PCFs with a constant hole-to-pitch ratio and the conclu-
sions from e.g. [7–9, 17] are therefore directly applicable
here. We chose the particular fiber parameters in Fig. 1
to give the optimum conditions in both ends of the fiber:
at the input end, the low air-fill fraction and large core
makes the PCF single-mode at 1064 nm [18] and gives
a ZDW near the pump, while at the output end, the
high air-fill fraction and small pitch ensures GV match-
ing from the loss edge at 2.3 μm into the deep-blue at
360 nm. This is more than a 100 nm shorter than what
can be achieved in a PCF with the hole-to-pitch ratio
and pitch of the input end, as illustrated in Fig. 1.

PCFs can be tapered with high accuracy during the
fiber draw by controlling the draw speed [9–11]. How-
ever, increasing the air-fill fraction necessitates an ad-
ditional control of the pressure on the air holes during
fabrication. Left isolated, we found that increasing the
air hole pressure leads to an undesirable increase in the
pitch. It was thus necessary to control simultaneously the
pressure and draw speed to achieve the desired structure
with increasing hole-to-pitch ratio and decreasing pitch.
The fiber structure realized after a number of iterative
fiber drawings is shown in Fig. 2: the hole-to-pitch ra-
tio increases from 0.52 to 0.85 over 7 m, while the pitch
decreases from 3.3 to 2.15 μm. This is very close to the
targeted hole-to-pitch ratio of 0.85 and pitch of 2.0 μm,
albeit a slightly too large pitch. Indeed, the hexagonal
structure is well preserved during the air hole expansion
without introducing any structural defects. This high-
lights the amazing design freedom in PCFs and clearly
verifies the feasibility of our design.

To investigate the PCF’s applicability for SC genera-
tion, we pumped the fiber with a 1064 nm Yb fiber-laser
typical of many SC experiments emitting 10 ps pulses at
15 W average power and 80 MHz repetition rate. The
PCF was spliced directly to the fiber-laser using a fil-
ament splicer, resulting in a coupling loss of approxi-
mately 1.2 dB. We kept an initial 40 cm length of uni-
form fiber to initiate the spectral broadening. The gen-
erated spectrum recorded with an optical spectrum an-
alyzer and an integrating sphere is shown in Fig. 3: The
SC spectrum indeed extends into the deep-blue with a
spectral density above 0.5 mW/nm in most of the visi-
ble bandwidth. The spectrum had a total power of 5.8 W
with 734 mW in the visible part below 900 nm and ex-
tends down to 375 nm; the spectral intensity measured
below this wavelength is due to stray light.

Fig. 2. (Color online) Characterization of the fiber struc-
ture: the top row shows microscope images of the fiber
end facet at selected distances from the input (on
the same scale) and the plot shows the corresponding
hole-to-pitch ratio and pitch calculated from 17 images
equidistantly spaced along the 8 m fiber.

Fig. 3. (Color online) Measured SC spectrum. The inset
shows a close up of the spectral blue edge on a linear
scale. The total output power was 5.8 W with 734 mW
in the visible part of the spectrum below 900 nm.

The discrepancy between the measured spectral blue
edge at 375 nm and the theoretical target at 360 nm
can be understood by investigating the fiber structure
in more detail: a closer inspection of the fiber struc-
ture reveals that the innermost air holes are elongated
due to the air hole expansion (see insets in Fig. 4).
An ideal hexagonal PCF with a 0.85 hole-to-pitch ratio
and 2.0 μm pitch has a core diameter of approximately
Λ(2− d/Λ) ≈ 2.3 μm, whereas the core diameter of our
PCF is approximately 1.8 μm measured from the micro-
scope images. This core size corresponds to an effective
pitch of 1.6 μm. To verify this approximation, we show
in Fig. 4 the measured dispersion (thick lines) at the
input and output end of the fiber together with the cal-
culated dispersion (thin lines) for the input (d/Λ = 0.52,
Λ = 3.3 μm) and the ideal (d/Λ = 0.85, Λ = 2.0 μm) and
effective (d/Λ = 0.85, Λ = 1.6 μm) output parameters.
The dispersion was measured in 8 cm lengths of fiber
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with a low coherence Mach-Zender interferometer in the
frequency domain, and is shown in individually meas-
ured 100 nm bandwidths. The results in Fig. 4 show an
excellent agreement between experiment and theory at
the input and output, which verifies that the output end
is well described by an effective pitch of 1.6 μm. More-
over, this effective pitch gives a theoretical GV matched
blue edge of 370 nm in fair agreement with the measured
spectrum.

We emphasize that the fiber parameters in Fig. 1 are
calculated over the entire PCF structure. The structure
only deviates from an ideal hexagonal structure in the
innermost air holes for high air-fill fractions, where the
extreme air hole expansion causes perturbations to the
air-silica matrix. We believe this can be mitigated with
a slower air hole expansion by e.g. decreasing the draw
speed or by using a cane designed for a higher air-fill frac-
tion. Nonetheless, our results clearly demonstrate the ap-
plicability of air-fill fraction increasing PCFs for single-
mode pumped deep-blue SC generation.

Fig. 4. (Color online) Measured dispersion (thick lines)
at the input and output of the PCF in Fig. 2, and cor-
responding calculated dispersion (thin lines) for PCFs
with the values of the hole-to-pitch ratio d/Λ and pitch
Λ stated in the plot. The insets show a close up of the
fiber structure around the core at the input (left) and
output (right) end.

To conclude, we fabricated the first single-mode high
air-fill fraction PCF directly on the draw-tower and
demonstrated SC generation extending down to 375 nm
from a 1064 nm pump. The PCF was designed with in-
creasing hole-to-pitch ratio and decreasing pitch, which
permits single-mode operation at the pump wavelength
at the input and a GV match into the deep-blue at the
output. This unique combination makes our air-fill frac-
tion increasing PCF a very promising candidate for high-
power deep-blue SC sources.

We would like to thank J. K. Lyngsø for help with
the dispersion measurements and the Danish Agency for
Science, Technology and Innovation for support of the
project no. 09-070566.
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provide improved insight into the nature of spectral fluctuations across the
supercontinuum and allow regions of long-tailed statistics to be clearly iden-
tified. These moments that depend only on analyzing intensity fluctuations
provide a complementary tool to phase-dependent coherence measures to in-
terpret supercontinuum noise.
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We show that the noise properties of fiber supercontinuum generation and the appearance of long-tailed
“rogue wave” statistics can be accurately quantified using statistical higher-order central moments. Statistical
measures of skew and kurtosis, as well as the coefficient of variation provide improved insight into the nature
of spectral fluctuations across the supercontinuum and allow regions of long-tailed statistics to be clearly
identified. These moments – that depend only on analyzing intensity fluctuations – provide a complementary
tool to phase-dependent coherence measures to interpret supercontinuum noise.
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1. Introduction

There is currently intense research into the noise properties of
fiber supercontinuum (SC) generation, motivated both by application
demands for low noise broadband sources as well as in the funda-
mental context of clarifying links with instabilities in other systems
[1]. The fluctuation properties of SC generation were initially studied
using radio-frequency and coherence based techniques [2,3], but a
new technique was introduced in 2007 by Solli et al., who showed
that the direct measurement of pulse height histograms at particular
wavelengths in the SC spectrum was a powerful technique to reveal
long-tailed statistics on the SC long wavelength edge [4]. This allowed
a statistical verification of the early observation of Islam et al. [5], that
high-intensity solitons in the red SC edge appeared as rare events, not
present in each pulse. Such a high-intensity strongly redshifted soli-
ton was also observed numerically as a result of soliton-collision in
continuous wave SC generation [6]. The measurement of Solli et al.
of long-tailed histograms in this way has opened a new field of re-
search studying analogies between optical fiber and the formation
of extreme “rogue wave” events in other systems ranging from
ocean waves [7,8] to biology [9]. The associated statistical analysis
has been widely used to determine conditions under which such op-
tical rogue waves can be generated or suppressed [10–12] and has
found application in assessing novel fiber designs to generate reduced
noise SC spectra for imaging [13–15].

Existing use of histogram-based analysis of SC noise, however, is
qualitative. Although this is certainly useful to sample and identify re-
gimes where rogue wave-like statistics might be observed [16], such
an approach is difficult to use for quantitative comparisons between
modeling and experiment when large amounts of data is involved.
In this work, we show how histogram analysis of rogue wave like
fluctuations can be quantified using the statistical shape descriptors
of higher-order central moments that quantify not only the mean and
variance of a distribution, but also the asymmetry and the presence
of long tails. We show how this approach provides a clear and quan-
titative means of identifying variations at the spectral edges associat-
ed with rogue wave events. These central moments – that depend
only on analyzing intensity fluctuations – provide a complementary
tool to phase-dependent coherence measures to interpret superconti-
nuum noise and stability. Significantly, these measures are readily ac-
cessible in experiments, since they can be derived from simple
photodiode measurements [17], whereas measuring the coherence
is experimentally very demanding. We suggest that this approach is
adopted widely in numerical and experimental characterization of
SC noise properties, particularly those focusing on the link with
long-tailed statistics.

The analysis is based on the statistical framework of central mo-
ments used in the study of probability distributions, where we wish
to characterize the shape of a particular distribution and not only its
location and spread [18]. For a real-valued random variable X, the
nth-order central moment around the mean is given by

μn ¼ X− Xh ið Þn� � ð1Þ
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where angle brackets denote an ensemble average. The zeroth and
first central moments are μ0=1 and μ1=0, respectively. The second
order central moment μ2 is the well-known variance σ2, which
measures the distribution spread. Instead of σ2 we shall be using
the so-called coefficient of variation: Cv=σ/〈X〉, which has the
straightforward interpretation as being inversely proportional to the
signal-to-noise ratio.

Of particular interest for analyzing the asymmetric long-tailed dis-
tributions associated with SC generation are the third and fourth cen-
tral moments, commonly expressed in normalized form relative to
the variance. The third order central moment is referred to as the
skewness γ=μ3/σ3, which measures the asymmetry of the distribu-
tion, with γb0 for a left-skewed distribution, γ>0 for a right-
skewed distribution and γ=0 for a symmetric distribution. The
fourth-order central moment is referred to as kurtosis (sometimes
also called the “coefficient of excess”) κ=μ4/σ4−3, and measures
whether the distribution is peaked or flat relative to a normal distri-
bution of the same variance. A normal (Gaussian) distribution has
κ=0, and a high kurtosis arises from rare extreme deviations from
the mean.

The skew and kurtosis are particularly important in revealing the
presence of long tails in a distribution and, as we shall see, are key pa-
rameters in allowing the general statistical properties of noisy SC
spectra to be conveniently described. The higher-order moments all
relate to the pulse intensity, and should hence be considered comple-
mentary to the phase-sensitive spectral coherence [19],

g 1ð Þ
12 ωð Þ

��� ��� ¼
~A�
i ωð Þ~Aj ωð Þ
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calculated as an ensemble average of independent SC spectra, Ãi(ω),
in the frequency domain, where the asterisk denotes complex
conjugation.

Although our focus here is on the use of these higher-order mo-
ments for the study of histogram measures of rogue wave regimes
in SC generation, it is appropriate to comment briefly on other possi-
ble methods of SC noise characterization. An additional way in which
the histogrammeasures could be quantified would be via appropriate
distribution fitting (e.g. Weibull) at all wavelengths across the spec-
trum. Whilst the distribution parameters obtained would certainly
provide an alternative measure of distribution asymmetry, a mean-
ingful comparison between different wavelengths would be difficult
since the goodness of fit would very likely vary with wavelength.
The advantage of the higher-order moments in this context is that
they are both easy to calculate and they do not depend on any a priori
particular choice of distribution. In what follows, we therefore focus
on the use of higher-order moments, choosing to compare the results
obtained using this approach with the widely used spectral coherence
function. We note that future work could consider comparison with
the recently-introduced measure of two-time two-frequency
second-order coherence function, which provides additional informa-
tion about the physical nature of contributing noise sources [20,21].

2. Results

To demonstrate the utility of the statistical descriptors (Cv,γ,κ) to
characterize SC generation, we use numerical simulations in the pres-
ence of noise to generate an ensemble of SC spectra under conditions
where there are significant fluctuations between different realiza-
tions of the ensemble. The simulations use a noise-seeded generalized
nonlinear Schrödinger equation (GNLSE) model, which has been
shown to produce average spectra, radio frequency noise and coher-
ence properties in agreement with experiment [3,13,22,23]. We use

the particular implementation described in [24,25], with input noise
included in the frequency domain through a noise seed of one photon
per mode with random phase added to each discretization bin. How-
ever, we note that the particular model used to introduce noise into
the simulations is not significant, and qualitatively-similar results to
those below can be obtained using other approaches to noise inclu-
sion [23].

We considered a silica photonic crystal fiber (PCF) with parame-
ters typical for SC generation pumped at 1064 nm. The particular
fiber that we model has a hexagonal hole structure with a pitch of
3.6 μm and a relative hole-size of 0.52, resulting in a zero-dispersion
wavelength (ZDW) of 1054 nm. At the pump wavelength, the group
velocity dispersion β2=−1.1434 ps2/km, and nonlinearity γNL=
10 W−1km−1, but our simulations included higher-order dispersion
and nonlinearity via the frequency-dependence of all parameters cal-
culated from the mode profile of the fiber. We considered hyperbolic
sechant input pulses of FWHM 300 fs, with pump wavelength and
peak-power set to 1064 nm and 20 kW, respectively, and a fiber
length of 50 cm in all simulations. With these parameters the pulse
break-up is dominated by modulational instability (MI). We stress
that the parameters are realistic and typical of many experiments.

We carried out simulations to generate an ensemble of 1000 SC
spectra under identical conditions apart from different noise seeds.
Under the conditions presented in this paper and for those in a vari-
ety of similar supercontinuum parameter regimes, we found that
the choice of 1000 simulations was satisfactory to obtain consistent
values of calculated higher-order moments. It should be noted that
if explicit identification of very rare events (e.g. at the 10−5 probabil-
ity level) is desired, a greater number of simulations would be
required.

We first present results using basic coherence and histogram char-
acterization as is typical of current approaches used to characterize SC
fluctuations. For these results, the spectral plot in Fig. 1(a) superposes
results of the individual simulations (gray) together with the calcu-
lated mean smoothed by a 3 nm FWHM Gaussian (solid line), with
the top subplot in the figure also showing the calculated degree of
spectral coherence. Fig. 1(b) shows histograms of the pulse energy
fluctuations extracted over a 10 nm bandwidth around 1.35, 1.4 and
1.55 μm. These wavelength ranges are also indicated in the spectral
plot in Fig. 1(a).

The spectral coherence and histograms seen as in Fig. 1, clearly
provide only limited and qualitative information. For example, whilst
it is easy to calculate and display the coherence at all wavelengths
across the spectrum, the fact we see that it is zero over most of the
SC bandwidth indicates only the presence of severe noise over a
wide wavelength range, without indicating anything specific about
its nature. On the other hand, displaying histograms at specific wave-
lengths across the SC is useful to show how statistics can vary from
Gaussian near the pump to long-tailed near the long wavelength
(Raman soliton dominated) edge, but the selection of which particu-
lar wavelengths to filter and analyze in this way is not a priori
evident.

It is here that the higher-order central moments provide a conve-
nient and clear solution that show – at each wavelength across the SC
spectra – the detailed characteristics of the probability distribution of
the spectral fluctuations. We first show this in Table 1, where we cal-
culate γ, κ and Cv of the histograms of Fig. 1. The moments clearly re-
flect the transition from low-noise near-Gaussian statistics to noisy
highly skewed and peaked statistics when the window is moved
into the spectral wing. In Fig. 2, we re-analyze the simulations of
Fig. 1 to show ensemble averaged results as a function of propagation
distance, but also showing for each case the higher-order central mo-
ments and spectral coherence function |g12(1)| for the entire bandwidth.
These are readily calculated from the numerical histograms for each
wavelength in the SC over a 10 nm bandwidth as above. This band-
width was chosen to be typical for the band-pass filters used in
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most experiments, but we have checked that the choice of spectral
window width does not alter our conclusions.

We can now see how these measures aid in the interpretation of
the results. For example, at 5 cm (Fig. 2(a)), the pulse has not yet bro-
ken up into solitons and the spectrum is still relatively narrow. At this
stage the central part of the pulse is still fully coherent and the noise
characteristics are dominated by low amplitude sidebands generated
through spontaneous MI. The coefficient of variation, skew and kurto-
sis are zero around the pump region that has undergone essentially
only self-phase modulation, indicating that the fluctuations in this re-
gime are small and quasi-symmetric, i.e. largely Gaussian. The near
constant-nature of these measures across the sidebands indicates
that the nature of the fluctuations is the same; the fact that the coef-
ficient of variation Cv is much greater across the sidebands than
around the pump reflects how the sidebands develop from an inco-
herent noise background. This is reflected in the phase-sensitive co-
herence plot that shows complete incoherence in the sidebands.

Following the evolution of these parameters with distance pro-
vides further illustration of how they add significant additional in-
sight into the propagation dynamics. At distances exceeding 15 cm
(Fig. 2(b)–(d)) the noise level has increased almost uniformly across
the spectrum, with the intensity noise level and distribution symme-
try in the vicinity of the pump comparable to that at the wavelengths
of the broader SC. Note that the high intensity noise in the vicinity of
the pump is not inconsistent with the residual pump coherence,
which depends more strongly on phase fluctuations. Conversely, a
high spectral coherence implies low phase noise but in general in

SC generation, low phase fluctuations are also associated with low in-
tensity fluctuations, leading to low values of the higher-order mo-
ments. This is particularly visible in Fig. 2(d) where the coherent
part of the spectrum shows low values of all the moments. It is
worth noticing that this coherent region is generated by self-phase
modulation of the pump, and that only the wavelength region
above the pump stays coherent with propagation distance; the coher-
ence of the region below the pump degrades when it crosses the
ZDW. The difference in coherence properties above and below the
pump arises because of the different signs of dispersion, and has
been previously seen in simulations (e.g. Fig. 20(b) of Ref. [22]). We
interpret this in terms of the different nature of the dynamics in the
anomalous and normal dispersion regimes. In the anomalous disper-
sion regime (above the pump) even in the presence of noise, residual
localized structures can form which we expect will preserve coher-
ence over a limited bandwidth [26]. On the other hand in the normal
dispersion regime (below the pump) no such nonlinear localization
occurs; the dispersive nature of propagation in this wavelength
range favors decoherence.

As the propagation distance increases, the figure also shows how
the nature of the intensity fluctuations changes near the spectral
edges, as the dynamics become dominated by extreme sensitivity to
variations in the peak-power of the most redshifted solitons ejected
from the pump pulse and their subsequent collisions. The larger coef-
ficient of variation, skew and kurtosis in the spectral wings clearly
show the presence of the noisy, peaked long-tailed rogue wave statis-
tics in this wavelength regime. This is in sharp contrast to the coher-
ence that only contains information about the central part of the SC,
and thus cannot be used to analyze the extreme rogue events near
the spectral edges.

As an additional illustration of the convenient insight afforded by
the calculation of these statistical moments, Fig. 3 shows simulation
ensembles for 20 kW peak power but with pulse durations of 50,
150 and 300 fs. We see the transition from coherent to incoherent
SC with increasing pulse duration, but it is particularly significant
that even though 150 fs and 300 fs both show significant intensity
fluctuations across the spectrum, it is only for the 300 fs case that
we see long-tailed statistics with elevated skew and kurtosis near

(a)

(b)

Fig. 1. (a) Spectra and calculated degree of coherence for a 300 fs pulse after 50 cm propagation. (b) Corresponding histograms calculated in the 10 nm spectral windows marked in
(a). The inset in the 1.55 μm histogram shows a close-up of infrequent high-energy counts. Note the change of scale in the histograms.

Table 1
Coefficient of variation (Cv), skewness (γ) and kurtosis (κ) calculated from the histo-
grams in Fig. 1(a)–(c). The null values of γ and κ for a normal distribution are shown
for comparison. The value of Cv for a normal distribution depends on the particular
case considered and is thus not shown.

Wavelength [μm] Cv γ κ

1.35 0.517 1.16 2.25
1.40 0.754 1.35 2.55
1.55 3.49 10.4 142
Normal distribution – 0 0
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the spectral edges. This highlights the transition to the SC being more
and more generated by noise-driven MI and the presence of extreme
rogue wave type fluctuations.

In the specific case of MI-driven SC generation, we have found that
for the extreme degree of long-tailedness generally linked with rogue
waves as seen in experiments and numerical studies in the literature,

Fig. 2. Noise and spectral characteristics of a 300 fs pulse for propagation distances of (a)–(d): 5, 15, 30 and 50 cm. The four top rows show the kurtosis (κ), skewness (γ), coefficient
of variation (Cv) and spectral coherence (|g12(1)|), respectively. The corresponding spectra are shown in the bottom row.

(a) (b) (c)

Fig. 3. Noise and spectral characteristics at a propagation distance of 50 cm for pulse durations of (a)–(c): 50, 150 and 300 fs. The four top rows show the kurtosis (κ), skewness (γ),
coefficient of variation (Cv) and spectral coherence (|g12(1)|), respectively. The corresponding spectra are shown in the bottom row.
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a useful guideline is that rogue wave behavior can be associated with
the product of skew and kurtosis exceeding ten, γ ⋅κ>10. We stress
that although this particular value is well supported by the results
presented here, it should be taken as a rule of thumb and not a strict
criteria for identifying rogue wave behavior under all conditions. But
we suggest that the use of higher-order moments and the skew-
kurtosis product appropriately calculated for different SC scenarios
may prove a useful and quantitative guideline allowing regimes of
rogue wave behavior to be identified in future work studying SC
noise properties.

3. Conclusion

In this paper, we have shown the utility and advantages in using
higher-order statistical moments to provide complementary and im-
portant information about the degree and the nature of noise across
the bandwidth of the optical SC. The coherence function that has
been previously used widely in studies of SC noise is strongly phase
dependent and, in the presence of large phase fluctuations is effec-
tively zero across the bandwidth for MI driven SC generation. This
means that it is incapable of identifying regimes of long-tailed distri-
butions and the presence of rogue waves in the intensity fluctuations.
To address this limitation, we have introduced the central moments,
which together with the coherence function provide a complete tool
for analyzing large amounts of data to identify rogue wave signatures.
We suggest that the use of higher-order moments and the comple-
mentary coherence measure is adopted as the norm for analyzing
SC noise properties. To this end, we propose as a useful guideline to
associate extreme event rogue wave statistics in MI-driven SC gener-
ation in terms of a skew-kurtosis product. For the regime considered
in this paper, a skew-kurtosis product of γ ⋅κ>10 was found as a use-
ful guideline where rogue wave like behavior could be identified.
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Paper VI

Influence of pump power and modulation instability
gain spectrum on seeded supercontinuum and rogue
wave generation

S. T. Sørensen, C. Larsen, U. Møller, P. M. Moselund, C. L. Thomsen, and
O. Bang
J. Opt. Soc. Am. B 29, 2875-2885 (2012).

Abstract: The noise properties of a supercontiuum can be significantly
improved both in terms of coherence and intensity stability by modulating
the input pulse with a seed. In this paper, we numerically investigate the
influence of the seed wavelength, the pump power, and the modulation in-
stability gain spectrum on the seeding process. The results can be clearly
divided into a number of distinct dynamical regimes depending on the ini-
tial four-wave mixing process. We further demonstrate that seeding can be
used to generate coherent and incoherent rogue waves, depending on the
modulation instability gain spectrum. Finally, we show that the coherent
pulse breakup afforded by seeding is washed out by turbulent solitonic dy-
namics when the pump power is increased to the kilowatt level. Thus our
results show that seeding cannot improve the noise performance of a high
power supercontinuum source.

http://dx.doi.org/10.1364/JOSAB.29.002875

109



Influence of pump power and modulation instability
gain spectrum on seeded supercontinuum

and rogue wave generation

Simon Toft Sørensen,1,* Casper Larsen,1 Uffe Møller,1 Peter M. Moselund,2

Carsten L. Thomsen,2 and Ole Bang1,2

1DTU Fotonik, Department of Photonics Engineering, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
2NKT Photonics A/S, Blokken 84, DK-3460, Birkerød, Denmark

*Corresponding author: stso@fotonik.dtu.dk

Received April 5, 2012; revised August 23, 2012; accepted August 28, 2012;
posted August 28, 2012 (Doc. ID 166112); published September 21, 2012

The noise properties of a supercontiuum can be significantly improved both in terms of coherence and intensity
stability by modulating the input pulse with a seed. In this paper, we numerically investigate the influence of the
seed wavelength, the pump power, and the modulation instability gain spectrum on the seeding process. The
results can be clearly divided into a number of distinct dynamical regimes depending on the initial four-wave
mixing process. We further demonstrate that seeding can be used to generate coherent and incoherent rogue
waves, depending on the modulation instability gain spectrum. Finally, we show that the coherent pulse breakup
afforded by seeding is washed out by turbulent solitonic dynamics when the pump power is increased to the
kilowatt level. Thus our results show that seeding cannot improve the noise performance of a high power super-
continuum source. © 2012 Optical Society of America
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1. INTRODUCTION
Supercontinuum (SC) sources have by now been established
as a new type of light source well suited for many character-
ization and imaging applications [1]. Many of these applica-
tions require spectra with high power density in the visible
part of the spectrum, which can be achieved in nonlinear fi-
bers with a group-velocity (GV) profile that allows GV match-
ing between long wavelength solitons and dispersive waves at
visible wavelengths [2]. The concept of GV matching has been
used to show how the spectra can be extended into the deep-
blue by optimizing the fiber structure [3], by tapering the fiber
[4–6], or by doping the fiber [7]. Other ways of pushing the
spectrum toward the blue include seeding with the second
harmonic [8], using concatenated fibers [9], or back-seeding
part of the SC [10–12].

Today’s commercial SC sources are using high-power pico-
second (ps) or nanosecond (ns) pump lasers, where the SC
generation is initiated by unseeded modulational instability
(MI). Because of the high stability of the pump laser the main
source of shot-to-shot noise stems from the fact that unseeded
MI grows from noise. Subsequently, MI leads to a pulse break-
up, which generates a distributed spectrum of solitons that
interact and transfer energy between each other during
collisions [13]. The interaction will add to the noise, because
it depends strongly on the relative phase and amplitude of the
solitons, but on average there is a preferential transfer of en-
ergy from the smaller to the larger solitons [14–17]. This en-
ergy transfer can lead to the formation of rare large amplitude
solitons, also known as rogue waves in optics [18] or highly
localized modes in biophysics [14].

To reduce the noise it has been proposed to provide a seed,
i.e., a weak pulse with a frequency offset relative to the pump,

within the MI gain spectrum in order to ensure a deterministic
rather than noise-seeded pulse breakup [13,19–24]. In particu-
lar, Genty et al. [20] numerically investigated seeding with dif-
ferent seed frequencies in a silica fiber with an MI gain peak at
8 THz and showed that a seed at 5 THz from the pump, i.e., at
approximately two-thirds of the MI gain peak, gave an opti-
mum improvement of the broadening and stability of the
SC. In all cases a low pump peak power of 75 W (pulse energy
0.4 nJ) was used, which was then split between the pump and
seed. In [21], a coherent comb-like SC was generated by seed-
ing a high peak power (10 kW) ps pulse, and an optimal fiber
length was determined, for which the comb remains coherent.
The optimum length was found to be 5–10 cm for typical com-
mercial SC sources; broad spectra without comb structure
requires longer fiber lengths and was hence not investigated.
Li et al. [24] investigated the influence of a weak CW seed on
low power SC generation in a dispersion-shifted fiber, and
described how seeding leads to a pulse breakup caused by
four-wave mixing (FWM).

Experimentally, seeded SC generation was investigated in
[10,12,19,22,23]. In [19,22,23] the SC generation was induced
by triggering a sub-threshold pump with a seed pulse or con-
tinuous wave. Improved spectral stability and coherence was
demonstrated in [19], and in [22,23] an optimum spectral
broadening was found when seeding near the MI gain peak.
An enhancement of the spectral bandwidth with increasing
pump or seed power was further demonstrated in [22], but
only for low power near the SC threshold where the spectral
broadening is caused by a single soliton generated from the
seeding process. The results presented in [19,22,23] are differ-
ent from the optimum conditions found in [20,24] and here,
where the pulse break-up is caused by the amplification of
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a FWM cascade. A different approach was pursued in [10,12],
where a fraction of the generated SC from one pulse was used
as a seed for the following pump pulse. This, however, is fun-
damentally different from modulating the pump pulse with a
seed as in this work and [19–24].

While it has thus been shown that seeding can reduce the
noise of an SC, this has been either at low pump power, often
close to the MI threshold, or for very short fibers. The pre-
vious investigations are thus far from commercial SC sources
with spectra extending down in the visible, which are typically
pumped using ns or ps pump pulses at 1064 nm with high peak
powers in the order of ∼10 kW and fiber lengths of ∼10 m.
Here we investigate the effect of seeding under a variety of
conditions, and explain what happens as we approach the
parameters of a commercial SC source. In particular, we in-
vestigate the influence of the seed wavelength and MI gain
spectrum on seeding at various power levels above the SC
threshold, from which we highlight a number of distinct
dynamical regimes. We further demonstrate for the first time
how seeding leads to the generation of coherent or incoherent
rogue solitons depending on the MI spectrum. Finally, we ex-
plain how the coherent pulse breakup caused by the seeding is
eventually washed out by turbulent solitonic dynamics when
the peak power is increased to the kilowatt (kW) level.

This paper is structured as follows. In Sections 2 and 3, we
explain how the MI gain spectrum can be calculated and al-
tered, and how the statistical properties of an SC can be ana-
lyzed both in terms of coherence and intensity stability. In
Section 4 we proceed to analyze the effects of seeding at a
relatively low peak power of 250 W to illustrate the general
improvements in coherence and intensity stability, and ex-
plain the influence of the MI gain spectrum on seeding. We
further describe how this can be used to generate a coherent
or incoherent rogue soliton. Finally, in Section 5 we investi-
gate the effects of seeding at higher peak powers.

2. MODULATIONAL INSTABILITY GAIN
AND SEEDING
The MI gain spectrum g�Ω�, taking into account the Raman
response function, is given by (see, e.g., [25])

g�Ω� � Im
�
Δko �

������������������������������������������������
�Δke � 2γP0

~R�Ω��Δke

q �
; (1)

where Ω is the angular frequency offset relative to the pump.
Δko and Δke are sums over odd and even order derivatives of
the propagation constant β,

Δko �
X∞
m�1

β̄2m�1

�2m � 1�!Ω
2m�1; Δke �

X∞
m�1

β̄2m
2m!

Ω2m; (2)

where β̄m � ∂mβ=∂ΩmjΩ�0. γ is the nonlinear parameter, P0 is
the peak power, and ~R�Ω� is the Raman response for silica,
which can be approximated by [26]

~R�Ω� � �1 − f R� � f R
τ21 � τ22

τ22 − τ21�i � τ2Ω�2 ; (3)

where f R � 0.18 is the fractional contribution of the Raman
response, τ1 � 12.2 fs and τ2 � 32 fs.

The MI gain is strongly influenced by the Raman effect, and
in order to make a detailed investigation of the influence of
the MI gain spectrum on seeding under a variety of conditions,
we wanted the possibility of tuning the peak of the MI gain
spectrum from significantly below to significantly above the
peak of the Raman gain spectrum at 13.2 THz (in silica). For
a given fiber this can be achieved by changing either the pump
wavelength or peak power. In this work we use a solid core
silica photonic crystal fiber (PCF) with pitch (hole spacing)
Λ � 3.6 μm and hole-to-pitch ratio d=Λ � 0.52, resulting in
a zero-dispersion wavelength (ZDW) at 1054.2 nm. Pump
pulses with a temporal width (FWHM) of 3 ps (T0 ≈ 3 ps=
1.665 for a Gaussian pulse) and a fiber length of 10 m were
used in all simulations presented in this paper. The dispersion
and effective area are shown in Fig. 1(a), whereas Figs. 1(b)–1
(c) show how the MI gain spectrum changes with wavelength
and peak power, respectively. For this particular fiber the
peak of the MI spectrum can thus easily be swept over the
desired range by simply changing the wavelength or peak
power of the pump over a range that is experimentally realis-
able. The frequency of the MI gain maximum increases, i.e.,
moves away from the pump, when the pump wavelength is
decreased or the peak power is increased. We stress that
although the pump powers in Figs. 1(b)–1(c) are all signifi-
cantly lower than the ∼10 kW used in high-power commercial
SC sources, it is well above the threshold for SC generation
and the power levels previously reported in the literature
on seeding in, e.g., [19,20,22–24]. As mentioned earlier, seed-
ing at high-power was investigated in [21] but only for very
short fiber lengths.

Figure 1(d) shows the walk-off length of the pump and seed
and MI gain length, respectively. The walk-off length is the
propagation distance over which the two pulses are separated
by less than the pulse width, i.e., T0=jv−1g;pump − v−1g;seedj, where
vg;i is the group-velocity. When the walk-off length is shorter
than the MI gain length, the seed cannot have an effect. In
other words, a seed placed in the tail of the gain spectrum
cannot be expected to have any significant effect because
of a too short interaction length with the pump.

The work in this paper is based on solutions to the general-
ized nonlinear Schrödinger equation (GNLSE), which has
become the standard for simulating nonlinear pulse propaga-
tion in optical fibers due to its ability to reproduce spectra
and noise properties in agreement with experiments [1,27].
The GNLSE takes into account the effects of nonlinearities,
the delayed Raman response, and higher-order dispersion.
We used the implementation of [28] with the GNLSE solved
in the interaction-picture [29], and included a noise back-
ground of one photon with a random phase in each discretiza-
tion bin. This allows ensemble statistics to be calculated by
carrying out simulations under identical conditions, but with
different initial noise. In the simulations we used a Gaussian
pump and seed of identical temporal width T0. The two pulses
were temporally overlapping, and the seed given a frequency
offset νmod, where νmod > 0 corresponds to seeding at a wave-
length longer than that of the pump, i.e., in the Stokes band.
The temporal pulse envelope A�t� was hence,

A�t� �
� ������

Pp

q
�

������
Ps

p
ei2πνmodt

�
exp

�
−t2

2T2
0

�
; (4)
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where Pp and Ps are the peak powers of the pump and seed,
respectively. This is similar to what was used in [20], although
in [20] the peak power was shared between the pump and
seed as would be the case if the seed is generated from the
pump by some frequency shifting technique. This however
means that changing the power of the seed also causes a
change of the MI gain spectrum. Here we consider a seed that
is independent of the pump in order to have the same MI gain
spectrum irrespectively of the seed peak power. Using Eq. (4)
it is thus straightforward to sweep the pump-seed frequency
offset and peak power of the seed for a fixed MI gain spec-
trum. We emphasize that the narrow-banded pulses used here
have a FWHM spectral width of only 0.15 THz. The seed there-
fore only has a substantial spectral overlap with the pump for
very small offsets, i.e. νmod ≈ 0 THz, which results in an effec-
tive increase of the peak power and hence the MI gain
spectrum.

3. QUANTIFYING SUPERCONTINUUM
NOISE
Typically, the noise is quantified by the widely used spectral
coherence function calculated as an ensemble average over
independent SC spectra, ~Ai�ω� [30],

jg�1�
12 �ω�j �

������
h ~A�

i �ω� ~Aj�ω�i
i≠j������������������������������������������

hj ~Ai�ω�j2ihj ~Aj�ω�j2i
q

������; (5)

where the angle brackets denote ensemble averages and the
asterisk denotes complex conjugation. The spectral coher-
ence function provides insight into the stability of an SC
and is sensitive to shot-to-shot phase fluctuations. However,
high-power and long-pulsed MI-driven SC generation is predo-
minantly incoherent, as we shall see in the following, and we

will therefore also consider the intensity stability quantified
here by the signal-to-noise ratio (SNR) defined as the ratio
of the mean μ to the standard deviation σ,

SNR�ω� � μ�ω�
σ�ω� : (6)

The SNR is inversely proportional to the coefficient of varia-
tion introduced as an SC noise measure in [31]. The SNR is
better suited for highlighting regions of high intensity stability,
whereas the coefficient of variation is a good indicator of
noisy regions dominated by statistically rare events.

It is illustrative to integrate the spectral coherence to get
the spectrally averaged or so-called overall spectral coher-
ence of an SC ensemble [1],

hjg�1�
12 ji �

R
∞
0 jg�1�

12 �ω�jhj ~A�ω�j2idωR
∞
0 hj ~A�ω�j2idω

: (7)

The overall coherence is, like the spectral coherence function
itself, bounded by the interval 0 ≤ hjg�1�

12 ji ≤ 1, and gives a single
value measure of the overall coherence of an SC. Similarly, we
introduce the overall SNR to quantify the overall intensity sta-
bility of an SC,

hSNRi �
R
∞
0 SNR�ω�hj ~A�ω�j2idωR

∞
0 hj ~A�ω�j2idω

: (8)

It should be noted that the overall SNR has no upper
boundary.

The statistical properties of the SC are calculated in each
numerical discretization bin across the spectrum. For each set
of parameters we carried out 200 simulations to calculate the
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Fig. 1. (Color online) (a) Dispersion and effective area for the used PCF withΛ � 3.6 μm and d=Λ � 0.52. (b)–(c) MI gain spectra as a function of
seed frequency offset relative to the pump for varying pump wavelength (b) and peak power (c). The peak power in (b) is 250 W and the pump
wavelength in (c) is 1064 nm. The Raman gain is shown for comparison. (d) Walk-off length (solid lines) and MI gain length (dotted lines) as a
function of frequency offset, calculated for T0 � 3 ps=1.665 and a peak power of 250 W.
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statistics of the generated SC. However, for the higher peak
powers in Section 5 only 100 simulations were carried out
for each set of parameters. This was in all cases found to
be sufficient to get consistent results under the conditions
considered here, which was checked by using 1000 simula-
tions in selected cases.

4. SEEDING AT LOW PEAK POWER
A. Single Shot Dynamics
We start our analysis by a detailed discussion of seeding a low
peak power pump. The reason for this is both to demonstrate
the utility of the noise measures introduced in the previous
section, but also to highlight a number of general regimes
as a reference for the further analysis. To this end, we show
in Figs. 2(a)–2(e) the spectral evolution of single simulations
for selected pump-seed frequency offsets for a 1055 nm pump
with Pp � 250 W and a seed with Ps � 5%Pp. In all cases
we also show the coherence and SNR calculated over the

ensemble of 200 simulations. The white lines mark the width
of the MI gain spectrum calculated for the local pump peak
power. We define the MI gain width as the region where
the gain is larger than 5% of the maximum MI gain, but show
only the upper gain limit and not the one for the low gain re-
gion close to the pump. We start the analysis with a pump
wavelength of 1055 nm because pumping close to the ZDW
shifts the MI gain peak far away from the pump and above the
Raman gain peak, which, as we shall see, yields the richest
dynamics. Figure 2(f) shows the MI gain spectrum of the
undepleted pump.

Figure 2(a) shows the evolution for zero frequency offset,
i.e., overlapping pump and seed, and the results are as ex-
pected for unseeded SC generation: The spectral broadening
is initiated by noise-seeded MI, which manifests itself as a sin-
gle set of sidebands positioned at the peaks of the calculated
MI gain spectrum. This is followed by the onset of soliton and
DW generation from around 5 m. The resulting statistics show
only coherence near the residual pump and a flat near-unity
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Fig. 2. (Color online) Single-shot simulations of pumping at 1055 nm with a 250 W pump and a 5% seed at frequency offsets of (a)–(e) 0, 3, 13, 20,
and 30 THz, respectively. The white lines indicate the MI gain bandwidth. The top rows in (a)–(e) show the ensemble calculated signal-to-noise ratio
(SNR) and spectral coherence (jg�12�

12 j). (f) MI and Raman gain curves, the vertical lines correspond to the frequency offsets used in (a)–(e). The
frequency offset of 13 THz (c) is the Raman gain peak and 20 THz (d) is the MI gain peak.
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SNR over the entire spectral bandwidth, except near the pump
and the soliton at ∼1225 nm. We emphasize that the MI gain
spectrum in (f) is calculated for the peak power of the pump
alone. The extra peak power added by the overlapping seed in
(a) causes a slight shift of the spectrum towards a longer
wavelength.

For a small frequency offset of 3 THz in Fig. 2(b), the pulse
breakup is initiated by a cascaded FWM process that causes a
coherent broadening of the pump. The FWM cascade gener-
ates a frequency comb of sidebands with a 3 THz frequency
separation. The width of the frequency comb is limited by the
width of the MI gain spectrum. It should be noted that the MI
gain spectrum is the degenerate FWM gain spectrum of the
pump, which amplifies the FWM cascade of the pump and
seed. With further propagation a soliton is generated from
the FWM process with enough power to redshift outside
the MI gain band, with the redshift being enhanced by prefer-
ential energy transfer during collisions [14–17]. The output
spectrum is coherent over most of the bandwidth, but the so-
liton at the long wavelength edge of the spectrum has a vary-
ing phase from shot to shot, which degrades the coherence at
the spectral edges, but leads to a high intensity stability.

In Fig. 2(c) the seed is placed 13 THz from the pump, which
is near the peak of the Raman gain. In this case the spectral
evolution is dominated by the amplification of a single set of
coherent sidebands amplified through degenerate FWM. The
second set of sidebands are shifted 26 THz from the pump,
which is just on the edge of the initial MI gain spectrum
and therefore quickly becomes outside the gain spectrum
when the pump depletes. At ∼5 m a massive soliton is ejected
from the long wavelength sideband, which is exactly what was
referred to as “harnessing and control of optical rogue waves”
in [32], where the pump pulse was modulated with a well-
defined frequency to eject a large amplitude soliton. The so-
liton is again not phase-stable from shot to shot, but it is highly
intensity-stable. This is opposite to what was reported in [24],
where the rogue soliton was coherently generated from a
FWM sideband. We will elaborate further on this later in
the paper.

In Fig. 2(d) the seed is shifted to the peak of the MI gain
at 20 THz, which leads to the amplification of a set of

well-separated sidebands through FWM. The second FWM
lines effectively lie outside the MI gain band. The residual
pump and sidebands all undergo SPM and broaden indepen-
dently of each other. This leads to an output spectrum with
three clearly distinct bands with high coherence and SNR. Fi-
nally, in Fig. 2(e) the seed is shifted to the tail of the MI gain
spectrum, and a single set of sidebands is slowly amplified.
The short wavelength nonseeded sideband is entirely gener-
ated by FWM and is therefore very weak. The pump is only
slightly depleted and experiences noise-seeded MI unaffected
by the seed at 1180 nm.

To clarify the influence of the Raman effect on seeding, we
show in Fig. 3 the spectral evolution with and without the
Raman effect for a seed near the Raman gain peak at 13 THz.
All other parameters are as in Fig. 2(c). The initial dynamics is
similar irrespectively of the Raman effect, but the MI gain
bandwidth is reduced much faster without the Raman effect,
Eq. (1). When the Raman effect is included, a large soliton is
generated from the FWM sideband at ∼5 m. The soliton also
appears when the Raman effect is turned off, but it is much
weaker and does not give rise to any significant intensity
stability. This is in good agreement with [17]. In both cases
the output spectrum is coherent only near the residual pump
and FWM sidebands, resulting in a comparable overall coher-
ence of 0.45 and 0.39 with and without the Raman effect,
respectively.

From the above discussion, it is possible to divide the seed-
ing results in Fig. 2 into four distinct regimes depending on the
pump-seed frequency offset, νmod, and the MI gain band-
width, νMI.

(i) 0 < νmod ≲
1
4 νMI: A broad FWM cascade gives many

bands across the MI gain bandwidth, which leads to a coher-
ent broadening and a spectrum with high coherence and SNR
over most of the bandwidth.
(ii) 1

4 νMI ≲ νmod ≲
1
2 νMI: A decreasing number of FWM

sidebands are amplified, which diminishes the coherence
and SNR improvement.
(iii) 1

2 νMI ≲ νmod ≲ νMI: Amplification of effectively only one
set of FWM sidebands, subsequent generation of incoherent
large amplitude soliton. Spectrum only coherent near pump
and FWM sidebands.
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Fig. 3. (Color online) Single-shot simulation (a) with and (b) without the Raman effect. Parameters like in Fig. 2(c): 1055 nm pump with 250 W
peak power and a 5% seed at 13 THz. The white lines indicate the MI gain bandwidth. The top rows show the ensemble calculated signal-to-noise
ratio (SNR), spectral coherence (jg�12�

12 j), and averaged output spectrum.
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(iv) νMI < νmod: FWM sidebands outside MI gain, no im-
provement of seeding.

These conclusions will be further specified in the next
section in terms of overall coherence and SNR.

B. Overall Statistics
The ensemble averaged results for both the spectrum, coher-
ence and SNR from Fig. 2 are shown in Fig. 4 for pump-seed
frequency offsets spanning well beyond the entire MI gain
spectrum. The results in Fig. 4 show an almost perfect sym-
metry around zero frequency offset, which indicates that seed-
ing the Stokes and anti-Stokes bands yield near identical
results. We found that this was a general trend in agreement
with the results reported in [24], and wewill therefore limit the
further analysis to seeding in the Stokes band.

The regimes highlighted in connection with Fig. 2 are easily
identified in Fig. 4: For small frequency offsets (≲5 THz), cas-
caded FWM with many peaks leads to a coherent pulse break-
up and a spectrum with high coherence and SNR. When the
frequency offset is increased, the number of amplified peaks
decreases and the coherence of the central part of the spec-
trum degrades. For frequency offsets of ∼10–20 THz only a
single set of sidebands are amplified via FWM and a large am-
plitude soliton is generated. The spectrum is only coherent
near the residual pump and FWM sidebands, but the soliton
is intensity stable. In a frequency range around ∼20 THz no
large amplitude soliton is ejected, but the FWM sidebands un-
dergo SPM and broaden coherently with a high intensity
stability. In this regime, the coherence improves when the fre-
quency offset approaches the MI gain peak. This growth has
not been clearly observed before. When the seed is shifted
outside the MI gain spectrum, the spectrum is largely incoher-
ent except near the weak FWM sidebands. The coherence
plot further shows a high degree of coherence near the
higher-order sidebands, but they are too low in amplitude
to be visible in the output spectra and will hence only have a
minimal effect on the overall coherence.

These general trends are all nicely captured by the overall
coherence and SNR. As a rule of thumb for the parameters
considered here, regimes of improved coherence can be

associated with hjg�1�
12 ji > 0.5. From this criteria the two re-

gimes of improved coherence are easily identified in the over-
all coherence. The second regime of high coherence is found
around 3=4th of the peak of the MI gain of the undepleted
pump, which is roughly where the set of FWM sidebands
see the highest gain when pump depletion is taken into
account.

The spectral coherence is almost mirror symmetric around
the pump wavelength, whereas the SNR is asymmetric and
generally higher for wavelengths above the pump. This re-
flects the FWM nature of the seeding that leads to a determi-
nistic and symmetric pulse breakup with high coherence near
the FWM bands. The subsequent soliton generation is phase-
dependent and incoherent, but tends to give a high intensity
stability in the wavelength region above the pump. As we shall
see, it is actually possible for some seeding conditions to
generate the soliton coherently.

C. Effect of MI Gain Spectrum and Seed Power
With the general mechanisms dominating seeding at varying
pump-seed frequency offsets established, we now turn to in-
vestigating the influence of the MI gain spectrum and seed
power. Figure 5 shows the overall coherence and SNR as a
function of frequency offset for pump wavelengths ranging
from 1054.5 to 1075 nm, which gradually decreases the MI gain
bandwidth. For all pump wavelengths we show the results for
an extensive range of seed peak powers from 0.01% to 20% of
the pump, and for 5% we also show the results without the
Raman effect [see legend in (f)].

The best coherence improvement is observed for a seed
power above 1% of the pump, which gives sufficient power
to initiate the FWM cascade. The intensity improvement is
more sensitive to the exact seed power and frequency offset,
but is again best for seed powers above 1% of the pump. The
coherence and SNR are generally improved in the long wave-
length end of the MI gain spectrum when the power of the
seed is increased, because the seed acts like a separate pump
that remains (partly) coherent like the pump. The effects of
seeding the pulse break-up will be diminished in this regime
because of temporal walk-off (see Fig. 1).
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Pumping at 1054.5 and 1055 nm [Figs. 5(a)–5(b)] gives very
similar results, and the general trends can be clearly divided
into regimes of high and low coherence, as discussed earlier.
Interestingly, the overall coherence is almost unaffected when
the Raman effect is turned off and the dip from ∼8–12 THz
remains. This can be explained by the wide MI gain spectrum
that is almost uninfluenced by the Raman effect, which gives a
smooth gain curve with a sharp cut-off. When the pump is
moved further away from the ZDW the MI gain bandwidth
decreases and becomes increasingly influenced by the
Raman effect, in particular the tail of the Raman gain. In
Figs. 5(e)–5(f) the MI gain bandwidth is very narrow, and it
is only possible to amplify FWM sidebands that are relatively
close to the pump. An overall coherence and stability improve-
ment is therefore only observed for small frequency
offsets, i.e., for cascaded FWM with several closely spaced
sidebands.

In Figs. 5(a)–5(c), the MI gain peak is above the Raman gain
peak, and the gain spectrum therefore has a very sharp cut-off
due to a minimal contribution from the long-tailed Raman
gain. The coherence improvement is consequently nearly
the same irrespectively of the Raman effect. In Figs. 5(c)–5(f)
the Raman gain has a much stronger effect on the MI gain
spectrum that adds a shoulder to the tail of the spectrum,
and the coherence improvement is hence decreased without
the Raman effect.

The MI gain for small frequency offsets increases signifi-
cantly when the pump wavelength is increased, which results
in higher overall SNR. To further illustrate the difference for
small frequency offsets, we show in Fig. 6 the spectral evolu-
tion for single simulations for the same pump wavelengths

as in Fig. 5 but for a fixed frequency offset of 4 THz. In
Figs. 6(a)–6(d) the pump is very close to the ZDW (black
dashed line) and the FWM cascade is slowly amplified and
broadened. When the pump is moved further away from
the ZDW in Figs. 6(e)–6(f), the MI gain is higher and the
FWM cascaded is amplified faster. A higher gain and faster
amplification of the FWM cascade diminish the influence
of noise.

These results can be divided into two broad regimes de-
pending on the bandwidth of the MI gain, νMI, and the peak
of the Raman gain, νRaman.

(i) νMI ≫ νRaman: The MI gain spectrum has a sharp cut-off
and the coherence will be improved both for small frequency
offsets and in a band near νMI.
(ii) νMI ≪ νRaman: The MI gain is high for small frequency
offsets and has a slowly decreasing tail from the Raman effect.
This gives a single region with improved coherence and SNR
for small frequency offsets.

The results in [24] correspond to the first case while [20]
corresponds to the second.

The overall coherence and SNR in all cases show a strong
dependence on the exact frequency offset of the seed. We
emphasize that this is not a numerical artefact but reflects
that the seeding process is very sensitive to the exact input
parameters.

D. Coherent and Incoherent Rogue Waves
There is a striking difference in the statistical properties of
the large rogue-like solitons generated in Fig. 6: In (b) a
powerful soliton is generated completely incoherently, but
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Fig. 5. (Color online) Overall SNR and coherence as a function of pump-seed frequency offset for seed peak powers ranging from 0.01% to 20% of
the pump peak power, PP � 250 W [see legend in (f)]. The pump wavelength is (a)–(f) 1054.5, 1055, 1056, 1057.5, 1064, and 1075 nm, respectively,
which gradually narrows the MI gain spectrum (full black line). The black circled line shows the Raman spectrum.

Sørensen et al. Vol. 29, No. 10 / October 2012 / J. Opt. Soc. Am. B 2881



with high SNR, whereas in (f) the rogue soliton is generated
with both high coherence and SNR. The existence of such
two distinct different types of rogue waves has, to the best
of our knowledge, not been demonstrated before.

To understand the difference between a coherent and inco-
herent rogue wave, we show in Fig. 7 the temporal evolution
and spectrogram at the fiber output corresponding to the re-
sults in Figs. 6(b) and 6(f). The seed causes a beating of the
temporal profile, which leads to a deterministic pulse break-
up. When the pump is close to the ZDW [Fig. 7(a)], the MI gain
is small and slowly increasing with frequency. The temporal
profile is therefore only slowly broken up into solitons. This
means that the solitons are mainly generated from the pulse
center where the peak power is highest. The solitons have
time to redshift before the cascade is amplified and the dy-
namics is relatively turbulent. In contrast to this, pumping
further from the ZDW [Fig. 7(b)] gives a much larger and more
rapidly increasing gain. This causes a fast breakup of the tem-
poral pulse, where the individual temporal fringes generate
fundamental solitons in a controlled fashion that almost
resembles soliton fission. The most powerful solitons are

still generated near the center of the pulse where the power
is highest. These powerful solitons only collide with the
smaller solitons generated from the trailing edge of the pulse.
To summarize,

(i) Coherent roguewave (highcoherenceandSNR):A large
and rapidly increasing MI gain gives a fast breakup of the pulse
into solitons. The solitons are generated deterministically with
high coherence and are not very affected by collisions.
(ii) Incoherent rogue wave (low coherence, high SNR): A
small and slowly increasing gain allows the solitons to start
redshifting before the FWM cascade is fully amplified. The co-
herence is degraded due to collisions.

We emphasize that the generation of both coherent and in-
coherent rogue solitons was observed for several of the
frequency offsets and pump wavelengths considered here.

5. SEEDING AT HIGH PEAK POWER
The results presented in the previous sections and in the lit-
erature [19,20,22–24,32] all indicate that a cleverly chosen
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Fig. 6. (Color online) Single-shot simulations of a 5% seed with a 4 THz offset for the pump wavelengths in Fig. 5. The white lines indicate the MI
gain bandwidth and the black dashed line the ZDW. The top rows show the ensemble calculated SNR and spectral coherence (jg�12�

12 j).
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seed can be used to effectively manipulate the pulse breakup
and improve the noise characteristics or even trigger the SC
generation. While it has thus been demonstrated that seeding
a low peak power pump offers several improvements, the si-
tuation is very different when the peak power of the pump is
increased, as we shall now demonstrate. The coherence prop-
erties at high power were discussed in [21], but only over very
short propagation distances where the spectrum remains
narrow.

Figure 8 shows the spectral evolution of single shot simula-
tions when pumping at the Ytterbium wavelength of 1064 nm
with a 5% seed at 3 THz offset for pump peak powers of 500,
750, and 1500 W, respectively. For a 250 W pump the 3 THz
frequency offset gave the best coherence improvement [see
Fig. 5(e)], due to the controlled breakup of the pump by
cascaded FWM, resulting in an overall coherence of 0.66.
In Fig. 8(a) the peak power is doubled to 500 W. The increased
pump power results in a wider spectrum, but the overall co-
herence is reduced to 0.33 and the coherence improvement is
limited to the central part of the spectrum that was directly
generated by the initial cascaded FWM. The peak power is in-
creased to 750 W in Fig. 8(b), which leads to the generation of
several distinct solitons and GV matched DWs. The spectrum
is not nearly as coherent as Fig. 8(a): The overall coherence is
0.16 and the coherence improvement is again limited to the
central part of the spectrum. When the peak power is in-
creased to 1500 W in Fig. 8(c), the initial FWM cascade is
quickly washed out by the onset of highly phase-dependent
soliton interaction and DW generation, and the output spec-
trum is incoherent over nearly the entire bandwidth with
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an overall coherence of just 0.040. In all cases, the formation
of rouge-like solitons leads to small improvements in the
intensity stability around the soliton, but this too seems to
be gradually washed out by the turbulent dynamics that gov-
ern the evolution and interaction of many solitons and DWs
when the peak power is increased.

In Fig. 9 is shown the overall coherence and SNR corre-
sponding to peak powers of 500, 750, and 1500 W, which
are the same peak powers that were used in Fig. 8. The results
for the lowest peak power in Fig. 9(a) show a minor improve-
ment for seeding close to the pump, but nothing like what was
observed in Fig. 5(e) at 250 W. When the peak power is in-
creased further in Figs. 9(b)–9(c), there is basically no overall
improvement in coherence and intensity stability irrespec-
tively of the pump-seed frequency offset.

When the pump power is increased the improvements af-
forded by seeding are thus quickly washed out by turbulent
solitonic dynamics. In [10] it was experimentally demon-
strated that the spectral noise increases with the pump power,
although this was for a very different set-up where a fiber with
two closely spaced ZDWs was back-seeded. As discussed in
[21], the pulse breakup can be completely deterministic and
coherent also at high pump powers, but as soon as the initial
comb structure is broken into solitons the coherence is de-
graded by the subsequent highly phase-dependent interac-
tions. In other words, the typical broadband and flat SC
spectrum in most high-power experiments comes at a price
of a low coherence as it is intrinsically dominated by solitonic
dynamics.

6. DISCUSSION AND CONCLUSIONS
It seems doubtful that seeding can improve the noise proper-
ties at power levels like those in commercial SC sources.
Although a coherent pulse breakup can be achieved at these
power levels, the coherence will only be preserved over a very
short propagation distance for which the spectrum remains
relatively narrow. Seeding nonetheless remains an interesting
approach for optical switching [19], where the presence of a
seed pulse triggers the SC broadening that would otherwise be
below threshold.

Seeding is very sensitive to the exact input parameters,
such as the wavelength and power of both the pump and seed,
and ultimately has to be studied case-by-case. It is however
possible to identify some broad regimes dominated by certain
mechanisms, as demonstrated in this work. Controlling the

generation of rogue waves by modulating the pump pulse
therefore also seems limited to relatively low power levels.
In particular, it is difficult to imagine that extremely large so-
litonic rogue waves can be deterministically generated by
seeding a high power pump, as these waves can only be gen-
erated through energy transfer from many collisions, which
cannot be controlled by seeding.

In conclusion, we have investigated the influence of the
pump power and MI gain spectrum on seeding. We analyzed
the results both in terms of spectral coherence and intensity
stability. For a low pump power we found that seeding can
give a deterministic pulse breakup due to FWM between the
seed and pump. The overall stability of the spectrum can be
improved by seeding close to the pump, which gives a broad
FWM cascade with many sidebands. However, for a broad MI
spectrum, an overall stability improvement is also observed
when seeding close to the peak of the MI spectrum, which al-
lows a single set of FWM sidebands to be coherently ampli-
fied. It was demonstrated that rogue waves can be excited
both coherently and incoherently from the FWM cascade, de-
pending on the MI gain. Finally, it was found that seeding has
no or little influence on the noise properties when the pump
power is increased to the kW level. At these power levels tur-
bulent solitonic dynamics quickly washes out the coherent
pulse breakup.
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supercontinuum are highly sensitive to the degree of phase noise of the seed
and that a nearly coherent seed pulse is needed to achieve a coherent pulse
break-up and low noise supercontinuum. The specific maximum allowable
linewidth of the seed laser is found to decrease with increasing pump power.
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1. Introduction

The noise properties of supercontinuum (SC) generation have attracted a lot of attention due to a
large application demand for low noise SC sources [1,2]. Commercial SC sources are typically
based on high-power picosecond or nanosecond pump lasers. For such lasers the pulse break-
up is initiated by noise-driven modulational instability (MI), which causes large shot-to-shot
fluctuations. It has been demonstrated that the noise can be significantly reduced by modulating
the pump pulse in order to ensure a deterministic rather than noise-driven pulse breakup [3–11].
Seeding was numerically investigated in [5, 6, 10, 11]. In all cases a phase coherent seed was
used to achieve a coherent pulse break-up through the amplification of a cascade of four-wave
mixing (FWM) side-bands. Experimentally, seeding was investigated in [3, 4, 7–9]. In [3, 8, 9]
the seed was used to trigger sub-threshold SC generation. The seed was generated by stretching
and filtering a fraction of the pump in [3], while [8] used the signal and idler from an optical
parametric amplifier as pump and seed. In [9] a separate continuous wave (CW) source was
used as seed. It is thus fair to assume that the seeds in [3, 8, 9] were at least partially coherent
with the pump. In [4, 7] the generated SC from one pulse was used as a broadband seed for the
following pulse either by back-seeding or using a ring cavity. SC generation with feedback is
however dynamically different from the approach used in this work, where the pump pulse is
modulated with a seed as in [3, 5, 6, 8–11].

While it has thus been shown that seeding can reduce the SC noise, this has been for coherent
seeds. In this paper, we numerically investigate the influence of pump power and the phase
coherence of the seed on the seeding process, and demonstrate the need for seeding nearly
coherently to get a deterministic pulse break-up and thus an improvement in noise. This has,
to the best of our knowledge, not been shown before. The results are important in designing
seeded low noise SC sources.

2. Numerical model and statistical analysis

We base the numerical work on solutions to the generalised nonlinear Schrödinger equation
(GNLSE), which is known to produce spectra and noise properties in excellent agreement with
experiments [1]. The GNLSE includes the effects of nonlinearties, the delayed Raman effect,
self-steepening and higher-order dispersion necessary to accurately simulate pulse propagation
in nonlinear fibers. We used the particular implementation described in [12] with the GNLSE
solved in the interaction picture by an adaptive step-size fourth order Runge-Kutta solver. Noise
was included as a background of one photon with a random phase in each discretisation bin.
Additionally, noise was added to the seed pulse obtained from a physically justified phase-
diffusion model [13, 14]. This model assumes fluctuations of the temporal phase, δφ(t), with
zero ensemble mean, which results in a Lorentzian spectrum of linewidth ΔνFWHM. The noise
linewidth, ΔνFWHM, is the only free parameter of the phase-diffusion model. Experimentally
the noise linewidth will typically by fixed for a given laser source.

For the sake of simplicity, we assume a perfectly phase coherent pump and add phase noise
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to the seed only. For a Gaussian pump and seed with the same temporal width, T0, and peak
powers Pp and Ps, respectively, the input field can thus be written as,

A(t) =
√

Pp exp
[−t2

2T 2
0

]
+
√

Ps exp
[−t2

2T 2
0

]
eiΩmodt exp [iδφ(t)]+AOPPM (1)

where Ωmod is the modulation frequency of the seed relative to the pump and AOPPM is the one
photon per mode background noise. Both the background noise and the phase noise of the seed
were varied from simulation to simulation. It should be noted that in Eq. (1) the Lorentzian
power spectrum of the phase-diffusion model is convolved with the Gaussian power spectrum
of the seed.

Ensemble statistics were calculated by carrying out simulations under identical conditions
apart from the initial noise. The noise of the generated SC is quantified with the phase-sensitive
spectral coherence function calculated from independent spectra, Ãi(ω), [15],

∣∣∣g(1)12 (ω)
∣∣∣=

∣∣∣∣∣∣
〈
Ã∗i (ω)Ã j(ω)

〉
i 
= j√〈|Ãi(ω)|2〉〈|Ã j(ω)|2〉

∣∣∣∣∣∣ , (2)

where the angle brackets denote ensemble averages and the asterisk denotes complex conjuga-
tion. We will further use the overall coherence,

∫ ∞
0 |g(1)12 (ω)|〈|Ã(ω)|2〉dω/

∫ ∞
0 〈|Ã(ω)|2〉dω , to

get a single value for the degree of coherence of an SC ensemble. The intensity noise is quanti-
fied by the signal-to-noise ratio (SNR) defined as the ratio of the mean, μ(ω) = 〈|Ãi(ω)|2〉, to
the standard deviation, σ(ω) = 〈(|Ãi(ω)|2−μ(ω))2〉1/2,

SNR(ω) =
μ(ω)

σ(ω)
. (3)

The SNR is inversely proportional to the coefficient of variation introduced as an SC noise
measure in [16], and is related to the relative intensity noise (RIN) used in most experiments
on laser noise.

In the simulations we used a photonic crystal fiber (PCF) with pitch Λ = 3.6 μm and hole-to-
pitch ratio d/Λ = 0.52, which gives a zero-dispersion wavelength of 1054 nm. The dispersion,
effective area and MI gain spectrum are shown in Fig. 1. We used a Gaussian pump at 1064 nm
with a peak power of Pp = 250 W and temporal width TFWHM = 3 ps. The seed had the same
temporal width but only 5% of the peak power, and was given a frequency offset of 3 THz
relative to the pump, i.e. a wavelength of 1075.5 nm. These parameters were found to give
an optimum coherent pulse break-up into a FWM cascade for a fully coherent seed [11]. For
each set of parameters 500 simulations were carried out, except for cases with a higher peak
power or numerical resolution where only 250 simulations were used, which was found to be
sufficient to get consistent statistical results. Loss was neglected and care was taken to avoid
time-wrapping and conserve the photon number.

The coherence of the seed relative to the pump is quantified by the two-frequency cross-
spectral density (CSD) function [17],

∣∣CSD(ωi,ω j)
∣∣=

∣∣∣∣∣∣
〈
Ã∗(ωi)Ã(ω j)

〉
√〈|Ã(ωi)|2

〉〈|Ã(ω j)|2
〉
∣∣∣∣∣∣ , (4)

which characterises the correlation between frequencies of the SC spectrum. In contrast, the
spectral coherence function measures the correlation between an ensemble of SC spectra at
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Fig. 1. (a) Dispersion and effective area for the used PCF with pitch Λ = 3.6 μm and hole-
to-pitch ratio d/Λ = 0.52. (b) MI gain as a function of wavelength for the 1064 nm pump
with a peak power of 250 W. The dashed line marks the seed wavelength.

a single frequency. Figure 2 shows the ensemble averaged input spectra and CSD function
for varying seed linewidth; the CSD function is calculated relative to the pump (1064 nm)
and shows how the seed becomes increasingly incoherent with the pump when the linewidth
is increased. The seed is partially coherent with the pump for linewidths larger than 1 GHz.
The Lorentzian shape of the phase-diffusion model applied to the seed is clearly visible in the
spectra, and it is seen that the seed linewidth is a simple way of changing the coherence of the
seed relative to the pump.

Fig. 2. Ensemble averaged input spectra (bottom) and cross-spectral density (CSD) function
relative to the pump (top) for varying seed linewidth, ΔνFWHM.

In [14] it was suggested to reshape the Lorentzian power spectrum into a Gaussian, which
falls off much more rapidly. A Gaussian noise spectrum was demonstrated to give good agree-
ment between simulations and experiments. This approach can, however, not be used for the
seed linewidths considered in this work, as we shall elaborate on in more detail in the next
section.

3. Results

The results of seeding with varying seed linewidth is shown in Fig. 3 for a select number of
linewidths. In the absence of a seed the spectral broadening is initiated by noise-induced MI,
as seen in Fig. 3(a). Unseeded MI amplifies a single set of side-bands that eventually evolves
into solitons and dispersive waves. This results in an incoherent spectrum with unity SNR,
except near the residual pump. By introducing a coherent seed near the pump, the spectral
broadening is initiated by the coherent amplification of a cascaded FWM comb, as seen in
Fig. 3(b). Subsequently, the comb leads to soliton formation. The resulting spectrum is coherent
and with high SNR over most of the spectral bandwidth, where there is MI gain to allow a
coherent broadening. When the linewidth of the seed is increased, as seen in Figs. 3(c)-(f), the
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broadening is still initiated by a FWM cascade, but the contrast of the comb is gradually washed
out. This leads to a significant reduction of the coherence and SNR of the generated spectrum.
In fact, for a seed linewidth in the GHz range, the noise properties are only marginally better
than for an unseeded SC.

Fig. 3. Single shot simulations of (a) unseeded and (b)-(f) seeded SC generation with vary-
ing seed linewidth, ΔνFWHM. The top rows show the ensemble calculated spectral coher-
ence function and SNR at the fiber output (10 m).

To further illustrate the effect of seeding with a noisy seed, we show in Fig. 4 the ensemble
calculated spectrum, spectral coherence function and SNR at a propagation distance of 1 m
for the same seed linewidths used in Fig. 3. The input spectrum from a single shot is shown
by a grey line. The comb structure is clearly visible in all cases, except the unseeded where
only a single set of side-bands is incoherently amplified. In Fig. 4(c) the comb structure and
noise properties are similar to those of the fully coherent seed in Fig. 4(b). However, when the
seed linewidth is increased in Figs. 4(d)-(f) the fringe contrast of the comb is decreased and the
coherence and SNR significantly diminished.

Figures 2 and 4 show how the Lorentzian noise spectrum raises the noise floor above that of
the one photon per mode background noise. To confirm that the noise properties of the generated
SC are indeed controlled by the phase noise of the seed and not the higher background noise
imposed by the Lorentzian spectrum, we performed additional simulations with a background
of multiple photons per mode and a fully coherent seed. To this end, we show in Fig. 5(a) a com-
parison of the ensemble calculated spectra, coherence and SNR for a coherent seed with normal
(black line) and raised (blue line) background noise for which the noise floor at the pump is at
approximately -90 and -70 dB/nm, respectively. The noise floor of -70 dB/nm corresponds to
the average noise level at the pump from a partially coherent seed with a 1 GHz noise linewidth
(see Fig. 2). It is seen that the outermost fringes of the comb are not generated when they are
below the noise background. More importantly, we find that the comb is always generated with
high fringe contrast, SNR and coherence irrespectively of the background noise level when the
seed is fully coherent. In contrast, Fig. 5(b) shows a comparison of the results obtained for seed
linewidths of 0 MHz and 1 GHz (average noise at the pump equal to -70 dB/nm) with a normal
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Fig. 4. Ensemble calculated spectra, coherence and SNR at a propagation distance of 1 m
for (a) unseeded and (b)-(f) seeded SC generation with varying seed linewidth, ΔνFWHM.
The grey spectra show single shot input.

one photon per mode noise background, corresponding to Figs. 4(a) and 4(e). When the noise
linewidth of the seed is increased, the fringe visibility of the comb is now seen to degrade much
more severely and only the central fringe is generated with full coherence and high SNR. This
is in sharp contrast to the effects of increasing the noise background, which leads us to con-
clude that the phase noise of the seed - and not the higher background noise level - is indeed
the dominant effect responsible for the SC noise properties seen in Figs. 3-4.

Fig. 5. Comparison of ensemble calculated spectra, coherence and SNR at a propagation
distance of 1 m for (a) coherent seeding with normal (black) and raised (blue) background
noise levels, and (b) seed linewidths of 0 MHz (black) and 1 GHz (blue) with a normal
noise background. The grey spectra show single shot input.

The results are summarised in Fig. 6 by the overall coherence as a function of seed linewidth.
We show the results of seeding for pump peak powers of 125, 250 and 500 W, respectively. The
peak power of the seed was in all cases 5% of the pump. For the highest peak power only 250
simulations were carried out. As a further investigation, we also checked the results for a CW
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seed. The CW field was approximated by a 10th order super-Gaussian with a 1/e width of 15 ps
and a peak power of 1% of the pump, which gives a field that is constant seen by the pump
pulse. In all cases, Fig. 6 clearly shows a decrease in the overall coherence with increasing
seed linewidth. For the pulsed seed there is a major decrease in the overall coherence with
increasing peak power. This is due to the increasingly turbulent dynamics caused by a higher
number of solitons and spectra exceeding the MI gain bandwidth [11]: the spectral evolution
after the pulse break-up is dominated by highly amplitude and phase-sensitive soliton collisions
that significantly degrade the coherence. When the soliton number is increased there will be a
corresponding increase in the number of such collisions and hence a decrease in the coherence
of the generated spectrum. The seed linewidth at which the coherence is decreased by 25%
relative to that of the coherent seed is marked with a black star. It is seen that the tolerance
to phase noise on the seed is significantly decreased with increasing pump peak power, which
again can be explained as a consequence of the increased number of solitons and collisions:
when the number of collisions increases there will be a higher sensitivity to the initial shape
and phase of the solitons, and hence to the phase noise of the seed that is responsible for the
pulse break-up and soliton formation. For all peak powers there is however a clear decrease
in overall coherence when the seed linewidth is increased above the MHz level. The same
tendency is observed for the CW seed, which highlights the generality of the results: the phase
noise of the seed must be weak in order for the pulse break-up and generated SC to be coherent.

Fig. 6. Overall coherence as a function of seed linewidth, ΔνFWHM, for pulsed and CW
seeds at the fiber output (10 m). For the pulsed seed is shown results of pump peak powers
of 125, 250 and 500 W, respectively. The pulsed seeds had 5% of the peak power of the
pump and the CW seed had 1%. The horizontal dashed lines mark the overall coherence for
a fully coherent seed and the black stars mark the seed linewidth at which the coherence is
decreased by 25%.

The results presented so far were all calculated using a numerical resolution of 19.1 GHz,
which is insufficient to resolve most of the relevant seed linewidths. To illustrate the implica-
tions of this, we show in Fig. 7(a) the overall coherence as a function of seed linewidth for
various numerical frequency resolutions from 76.3 to 2.38 GHz and a peak power of 125 W.
The frequency resolution was changed by fixing the temporal resolution and increasing the
number of discretisation points from 212 to 217, everything else was kept constant. For reso-
lutions higher than 4.77 GHz (216 points) only 250 simulations were carried out. The overall
coherence is clearly observed to decrease with increasing frequency resolution. This tendency
is even clearer in Fig. 7(b), where the overall coherence is shown as a function of frequency
resolution down to 0.596 GHz (219 points) for four fixed seed linewidths of 0.01, 0.1, 1 and
10 GHz, respectively. It is seen that the overall coherence converges when the frequency res-
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olution approaches the seed linewidth, as expected. The 10 and 100 MHz seed linewidths can
not be resolved and hence do not converge. Frequency resolutions smaller than∼1 GHz, which
generally requires more than 217 discretisation points, are computationally very intensive to
simulate and it is therefore not possible to resolve noise linewidths much finer than 1 GHz. This
also explains why it is not possible to use the Gaussian shaped noise model suggested in [14]:
a Gaussian with a linewidth in the MHz is too narrow to be resolved numerically, whereas a
long-tailed Loretzian spectrum falls off sufficiently slowly to be at least partially resolved.

We emphasize that the results presented in this paper are all qualitatively valid: when the
seed linewidth is increased, the seed becomes increasingly incoherent with the pump as shown
in Fig. 2. This results in an incoherent pulse break-up and correspondingly noisy and incoher-
ent SC as seen in Figs. 3-4. These results clearly highlight the need for seeding with a seed
that is at least partially coherent with the pump. However, one must be careful with making
quantitative conclusions about noise and coherence based on the phase-diffusion model, unless
the numerical resolution is at least comparable to the noise linewidth.

Fig. 7. (a) Overall coherence as a function of seed linewidth, ΔνFWHM, for varying nu-
merical frequency resolution. (b) Overall coherence as a function of numerical frequency
resolution for the four seed linewidths marked by dotted boxes in (a). In all cases the pump
peak power was 125 W.

The decrease in overall coherence with increasing numerical resolution shows that the max-
imum tolerable phase-noise of the seed is in fact quite small, although we can not accurately
determine a quantitative value. Interestingly, Figs. 3-4 shows that the noise properties of the
generated SC presented are deteriorated even when the linewidth of the seed is in the MHz
range, although the seed is still coherent with the pump at the input (CSD(λpump,λseed)≈ 1) as
seen in Fig. 2. A linewidth of 100 MHz corresponds to just 0.4 pm, and since the actual tolera-
ble seed linewidth will be smaller, this again clearly highlights the need for seeding coherently
to achieve a coherent SC. Importantly, these results dictate which mechanisms can be used to
generate the seed. It would be highly desirable to generate the seed by some frequency-shifting
technique of the pump in an all-fiber design. A simple approach would be to use the Raman
Stokes line as a seed. Unfortunately, a Raman amplified seed will generally not be coherent
and have a significant noise linewidth. This exact approach was tested in [18], where no noise
improvement was observed. However, a high peak power was used, which will by itself lead to
noisy spectra due to chaotic solitonic dynamics irrespectively of the seed [11].

Finally, we would like to point out that FWM is a parametric and hence phase sensitive
process. It was therefore to be expected that the amplification of a FWM comb eventually
becomes noisy when the phase noise of the seed is increased. In the context of SC generation,
the results presented in this work are nonetheless important, as they show just how sensitive
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the seeding process is to the phase noise of the seed. In this paper we have only investigated
the influence of phase noise on the seed for a single set of parameters of the pump and seed.
In [11] it was found that seeding (under reasonable conditions) leads to the amplification of a
number of FWM side-bands, and that the best noise improvement occurs for small pump-seed
frequency offsets where a large number of FWM side-bands is coherently amplified. We have
thus chosen the optimum seeding conditions as the starting point for this work. Seeding relies
on the coherent amplification of FWM side-bands, which, as we have shown here, requires a
seed that is at least partially coherent with the pump. Since FWM is a parametric process, we
hence expect the results presented in this article to be valid for a wide range of parameters. A
complete analysis of the exact dependence on, e.g., seed wavelength and power is beyond the
scope of this manuscript.

4. Conclusions

In conclusion, we investigated the influence of the phase coherence of the seed on seeded SC
generation. Numerical simulations were performed, in which the phase noise of the seed was
modelled by a physically justified phase-diffusion model. For a coherent seed placed at the
optimum near the pump, the pulse break-up is caused by a coherent amplification of a frequency
comb through FWM. When phase noise is added to the seed, the pulse break-up and generated
SC eventually become noisy. It was found that a coherent pulse break-up requires a nearly
phase coherent seed, which limits the mechanisms that can be used to generate the seed. These
tendencies were observed both for pulsed and CW seeding.
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1. Introduction

Supercontinuum generation (SCG) in photonic crystal fibers (PCFs) has drawn a lot of attention
during the last decade [1]. The emergence of commercial fiber-based, long-pulsed supercontin-
uum (SC) sources has matured the technology [2], and the unique properties of SC light sources
have made them ideal tools for a number of applications, including optical coherence tomogra-
phy [3], fluorescence microscopy [4], and frequency combs [5]. However, SCG in commercial
SC sources is initiated by modulation instability (MI) and thus, the SC is characterized by low
coherence and high shot-to-shot fluctuations at the spectral edges. Several methods have been
proposed to modify the spectrum and reduce the noise, including seeding by modulation of the
input pulse [6, 7], seeding with minute pulsed and cw light [8–10], and back seeding [11]. An-
other approach to reduce the noise at a fixed wavelength has been to taper the PCF [12–14]. The
influence of the material loss edge of soft glass PCFs has also been studied in the mid-IR [15].

Short-pulsed (femtosecond) SC is dominated by soliton fission processes and is fundamen-
tally different from MI-initiated SCG and thus has different noise properties [6, 16, 17]. How-
ever, the higher complexity and lack of high average power makes these sources less attractive.
Pumping in the normal dispersion regime will also drastically change the SC properties [18].

In this paper, we compare the noise properties of long-pulsed SC generated in a tapered
and a uniform PCF, at different power levels. We investigate the full spectral region of 400-
2400 nm. Recently, similar work has been done by Kudlinski et al. where they measured the
shot-to-shot variations from a uniform and a tapered fiber for one fixed power level. They
defined a noise measure given by the ratio σ = 100 · (Vmax−Vmin)/(Vmax +Vmin), where Vmax
and Vmin are the maximum and minimum photodiode signal amplitudes, respectively, measured
for at least 10 out of 10,000 recorded pulses, and showed that the noise was reduced in the
tapered fiber when observing a fixed wavelength near the blue edge [14]. In this work we
measure the relative intensity noise (RIN) in the whole parameter space of input power and
wavelength, including the region of the silica material loss edge above 2 μm. RIN is a standard
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measure for describing power fluctuations of lasers. Another article of Vanvincq et al. describes
a significant reduction of power fluctuations at the long-wavelength edge of a SC generated in
solid-core photonic bandgap (PBG) fibers [19]. There are three main reasons why this work is
distinguished from the work of Vanvincq et al.. Firstly, the PBG fibers are less attractive from an
application point of view, since the spectral bandwidth of SC generated in PBGs will be limited
and thus not utilize the full potential of silica. Secondly, there is a fundamental difference of
the guiding mechanisms and the soliton dynamics in PBG fibers compared to solid core PCFs.
When a soliton is approaching the bandgap edge in a PBG fiber it will experience an asymptotic
change of the group velocity dispersion (GVD). This change will cause the soliton to broaden
in time and decrease in peak power adiabatically. It will never cross the bandgap edge due to the
temporal broadening (and thereby reduction in redshift) arising from the increasing dispersion.
Near the loss edge in a PCF the soliton will experience more or less the same GVD when
redshifting, and the soliton energy will drop because of the gradually increasing material loss.
However, it is still possible for the solitons to propagate into the loss region, with high-power
solitons penetrating furthest. Since the soliton dynamics is different it is not obvious that the
noise properties are the same for the two fibers. Thirdly, Vanvincq et al. investigated the noise
properties at one power level where the spectrum was not limited by the material loss edge.

2. Experimental setup

For the experiments we used an ytterbium (Yb) fiber laser (NKT Photonics A/S) which delivers
10 ps pulses at 1064 nm at a repetition rate of 80 MHz. The laser delivery fiber was spliced
to the PCFs to minimize coupling losses and instabilities. The PCF input power was 10 W,
corresponding to a pulse energy of 125 nJ and a peak power of 11.7 kW when assuming Gaus-
sian shaped pulses. The generated SC output was collimated and the spectra were measured
with optical spectrum analyzers. The collimated SC output was guided through narrow-band
pass filters (NBPs) of 10-30 nm full width at half maximum (450-1600 nm filters from Thor-
labs and 1810-2310 nm from Multi-IR Optoelectronics Co., Ltd) and onto a photoreceiver (PR)
(Newfocus 125 MHz Si and InGaAs photoreceivers for measurements in the 450-1000 and
1000-1600 nm range, respectively, and a Redwave Labs 100 MHz extended InGaAs photore-
ceiver for measurements in the 1600-2400 nm range). The photoreceiver was connected to an
electrical spectrum analyzer (ESA) (sweeping for 30 s with a bandwidth of 10 kHz) and a volt-
meter (V) to characterize the DC and AC voltage, respectively. A sketch of the experimental
setup is shown in Fig. 1(a).

Fig. 1. (a) Experimental setup, see detailed description in text. (b) Noise power as a function
of electrical frequency for a typical SC (blue line, 6.4 W input power at 1200 nm) and laser
at 1064 nm (red line), respectively, and the noise floor for the electrical spectrum analyzer
(dashed line) and the photoreceiver (dotted line), respectively.

Since the energy of the spectrally filtered pulses is proportional to their peak power, this
measurement technique is adequate for measuring the shot-to-shot fluctuations [20, 21]. The
RIN of the filtered wavelengths, i.e. the time series of power through the filters, were calculated
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in the electrical frequency range of 20 kHz to 80 MHz. A full noise power spectrum is shown
in Fig. 1(b). The dashed black line shows the noise floor of the electrical spectrum analyzer
(ESA). The dotted line indicates the photoreceiver noise floor while the red line indicates the
laser noise level. Note that the laser noise level and the photoreceiver noise floor in fact are
indistinguishable, except at the carrier frequency of 80 MHz and thus it is not sensitive enough
to resolve the real laser noise level. The blue line shows the noise power of a typical SC,
which easily can be detected by the photoreceiver. When the DC photocurrent is simultaneously
monitored, the noise properties of the SC can be quantified in terms of RIN as a function of
wavelength and input power [22].

3. Results and discussion

3.1. Spectral characterization
A commercially available PCF (SC-5.0-1040, NKT Photonics A/S) with a total length of 10 m
and a 4 m, asymmetric taper was fabricated directly on the draw-tower. This tapered fiber was
compared to a uniform fiber of the same length. The output spectra for an input power of 10
W are depicted in Fig. 2(a) and profile of the tapered fiber is shown in the inset of Fig. 2(a).
The fiber pitch was calculated from the continuous monitoring of the fiber diameter assuming
that they are proportional. This was confirmed by several microscope images of the fiber cross
section throughout the fiber. The tapered fiber is pumped from the fiber-end which gives most
power in the blue edge according to the principle of group acceleration mismatch (GAM) [29].
The blue edge of the SC generated in the uniform fiber at a level of -10 dBm/nm is measured to

Fig. 2. (a) Spectra from a 10 m uniform PCF (black) and a 10 m PCF with a 4 m taper
(red). Inset in (a): profile of the tapered fiber. (b) Calculated dispersion of the uniform fiber
(black) and the taper waist (red). Inset in (b): microscope image of the fiber cross section.

be at 493 nm while it is 35 nm lower at 458 nm for the SC generated in the tapered fiber. The
red edges of the SCs generated in the fibers are both limited by the IR material loss and at a -10
dBm/nm level they are measured to be at 2297 nm and 2342 nm for the uniform and tapered
fiber, respectively. Figure 2(b) shows the calculated dispersion of the uniform fiber and at the
taper waist, and the inset shows the cross sectional structure of the fiber.

The spectral edges of the SC are comprised by solitons and group-velocity (GV) matched
dispersive waves [23–26]. The maximum spectral width and the position of the blue edge can
hence be estimated from calculated GV curves. By tapering the fiber one can blueshift the blue
edge [27–29]. For fibers with only one zero-dispersion wavelength (ZDW), such as the one we
have here (see Fig. 2(b)), tapering will lead to an increased nonlinearity and thus in general to an
increased redshift of solitons compared to a uniform fiber. For a given taper length and degree
of tapering, the longer the downtapering the more power is in the dispersive waves trapped by
the solitons due to reduced GAM [29].
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3.2. Noise measurements
The noise in the SC process can be divided into two contributions: a low-frequency part orig-
inating from technical laser noise and a broadband frequency part originating from ampli-
fied quantum noise [17, 30]. We will here concentrate on the broadband frequency part. RIN
is quantified by the noise power in a 1 Hz bandwidth normalized to the DC signal power,
RIN = (ΔP)2/P2

avg, where (ΔP)2 is the mean square intensity fluctuation spectral density and
Pavg is the average optical power.

The SC noise in Fig. 1(b) is characterized by white noise in between dc and the pump fre-
quency, which was observed for all measured SCs. Thus, the RIN is dependent on the wave-
length and input power, but to a good approximation independent of the electrical frequency.

Figure 3 shows the RIN as a function of SC wavelength and average input power for the
uniform and tapered fiber, respectively. The thick black line indicates the spectral edges of the

Fig. 3. RIN vs. input power and wavelength in (a) the uniform fiber and (b) the tapered fiber.
The thick black line shows the spectral edges. The dots show the measurement points.

generated SC, defined at the -10 dBm/nm level, and the black dots indicate the actual measure-
ment points, where the average RIN in the frequency region of 1-79 MHz has been measured.
The noise properties of the SC generated in the two fibers are similar. At the spectral edge of
the SC the RIN is about -100 dB/Hz. Generally, it decreases when the input power is increased
(moving horizontally in Fig. 3) or the wavelength is chosen closer to the pump wavelength
(moving vertically in Fig. 3). Thus, the minimum noise level of about -130 dB/Hz is observed
close to the pump at a wavelength between 1000-1100 nm at the maximum input power level
of 10 W. On the outer sides of the spectral edges the noise increases rapidly.

In Fig. 4(a) the RIN as a function of wavelength is compared for the uniform and the tapered
fiber at two different power levels. The RIN of the tapered fiber is shown to be lower than the

Fig. 4. RIN of the uniform (black squares) and the tapered fiber (red circles) (a) vs. wave-
length at fixed input power of 0.55 W (open symbols) and 10 W (solid symbols) and (b) vs.
input power at fixed wavelength of 550 nm (open symbols) and 1100 nm (solid symbols).

RIN of the uniform fiber for near-edge wavelengths. This is in good agreement with Kudlinski
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et al. who have recently investigated the noise properties of tapered PCFs in the visible region
[14]. They observed that the noise was reduced at the blue wavelength edge when the fiber was
tapered and attributed it to a presumed increase of the spectral power density beyond 1750 nm.
This increase will lead to increased probability to encounter solitons at the long wavelength
side of the SC. Since the dispersive waves at the blue edge is group velocity matched to these
solitons, the noise will also decrease in the blue edge of the SC. Our experiments show that for
a xed wavelength near the spectral edge the noise will decrease when the fiber is tapered. This
is, however, only due to the fact that the spectrum generated in a tapered fiber is broadened.
Thus, looking at a near-edge wavelength relative to the spectral edge, e.g. 20 nm from the edge,
of a SC generated in a uniform and a tapered fiber, respectively, will yield the same noise level.

Figure 4(b) shows the RIN as a function of input power for the uniform and the tapered fiber
at a near-edge wavelength and at a central wavelength. It is clearly seen that the noise properties
at a central wavelength for the two fibers are close to identical while the tapered fiber exhibit
lower RIN for a fixed near-edge wavelength, which again is in good agreement with [14].

To further quantify the noise on the spectral edges of the SCs we have measured the RIN by
adjusting the input power so that the spectral edge at a level of -10 dBm/nm is equivalent to
the central wavelength of the narrow band filters. The RIN in the 1600-2400 nm range was not
measured due to less well-defined filters and a noisier photoreceiver. In Fig. 5 it is clearly seen

Fig. 5. RIN at the spectral (a) blue and (b) red edge of the uniform and tapered fiber,
respectively, as a function of wavelength.

that the RIN level at the spectral edge is fixed at around -100 dB/Hz. The lower red edge noise
level can be explained by the shape of the spectra. At the blue edge the spectrum is steep while
it is more flat at the red edge. Since we have defined the edge to be at a level of -10 dBm/nm the
the presence of a finite power spectral density (PSD) on the outer side of the red edge (below -10
dBm/nm) will lead to a reduction of the measured noise compared to the blue edge, where the
is no PSD on the outer side of the blue edge because of the steep edge. Vanvincq et al. observed
a significant reduction of power fluctuations at the long-wavelength edge of a SC generated in
solid-core photonic bandgap fibers due to suppression of soliton self-frequency shift near the
bandgap edge [19]. The dispersive waves below 550 nm in Fig. 5(a) will be matched to solitons
above 2000 nm, i.e. solitons in the material loss region. Since we observe a nearly constant RIN
in the blue edge, the materiel loss edge is thus not effecting the RIN.

4. Conclusion

We have experimentally investigated the RIN of picosecond SC generated at different power
levels in uniform and tapered PCFs. When observing a fixed wavelength near the spectral edge
the noise is reduced when the fiber is tapered. This reduction is however only due to the spec-
tral shift of the spectrum. The noise at the spectral edge of a SC is constant independent of
input power for both tapered and uniform fibers. An increase of power will generally lead to a
decrease of noise for a fixed wavelength and the noise for a fixed power level will be lowest at
the pump wavelength and highest at the spectral edges.

(C) 2012 OSA 16 January 2012 / Vol. 20,  No. 2 / OPTICS EXPRESS  2856
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Fig. 3. RIN vs. input power and wavelength in (a) the uniform fiber and (b) the tapered fiber.
The thick black line shows the spectral edges. The dots show the measurement points.

Fig. 4. RIN of the uniform (black squares) and the tapered fiber (red circles) (a) vs. wave-
length at fixed input power of 0.55 W (open symbols) and 10 W (solid symbols) and (b) vs.
input power at fixed wavelength of 550 nm (open symbols) and 1100 nm (solid symbols).

Fig. 5. RIN at the spectral (a) blue and (b) red edge of the uniform and tapered fiber,
respectively, as a function of wavelength.
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