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Abstract

This thesis deals with the fabrication and characterization of ac-
tive photonic crystal waveguides, realized in 1I1-V semiconductor
material with embedded active layers.

The platform offering active photonic crystal waveguides has many
potential applications. One of these is a compact photonic crystal
semiconductor optical amplifier. As a step towards such a compo-
nent, photonic crystal waveguides with a single quantum well, 10
quantum wells and three layers of quantum dots are fabricated and
characterized. An experimental study of the amplified spontaneous
emission and amplified transmission are presented in this thesis. A
variation of photonic crystal design parameters are used leading to
a spectral shift of the dispersion, it is verified that the observed
effects shift accordingly. An enhancement of the amplified sponta-
neous emission was observed close to the band edge, where light is
slowed down due to photonic crystal dispersion. The observations
are explained by the enhancement of net gain by light slow down.

Another application based on active photonic crystal waveguides
is micro lasers. Measurements on quantum dot micro laser cavities
with different mirror configurations and photonic crystal designs are
shown. Laser emission is observed at wavelengths corresponding to
the slow light regions of the cavity mode, where the enhanced gain
lead to lower lasing threshold.

Gain dynamics of the quantum dot gain material, used in both am-
plifier and laser structures, are investigated. The measurements are
based on degenerate pump-probe transmission spectroscopy using
180 fs pulses. The characteristic gain recovery times are measured
to be ~ 2ps and ~ 0.2ps, with little variation over a wavelength
span of 260nm. Sub-assemblies of quantum dots which vary in
height by one monolayer are observed. No noticeable changes in
carrier dynamics can be associated with dots of different number of
monolayers.



Resumé

Denne PhD afthandling omhandler fremstilling og karakterisering af
aktive fotoniske krystal bglgeledere, realiseret i I1I-V halvlederma-
terialer med indlejrede aktive lag.

Platformen, der muligggr aktive fotoniske krystal bglgeledere, har
mange potentielle anvendelsesmuligheder. En af disse er en kom-
pakt fotonisk krystal halvleder optisk forsteerker. Som et skridt i
retning af sadanen komponent, er der fabrikerat og karakteriserat
fotoniske krystal bolgeledere med en enkelt kvantebrgnd, 10 kvante-
brgnde og tre lag af kvantepunkter. En eksperimentel undersggelse
af den forsteerkede spontane emission og forsteerkede transmission
praesenteres i denne afhandling. Variationer af fotoniske krystal
fabrikationsparametre anvendes og forer til en spektral forskydning
af dispersionen, og det bliver verificeret, at de observerede effek-
ter skifter som fglge heraf. En forsterkning af den amplificerede
spontane emission blev observeret taet ved bandkanten, hvor lyset
bliver langsommere pa grund af dispersionen i det fotonisk krystal.
Observationerne er forklaret ved forstaerkning af netto-gainet ved
langsomt lys.

En anden anvendelse der er baseret pa aktive fotoniske krystal bgl-
geledere, er mikro-lasere. Malinger pa kvantepunkt mikro-laserkaviteter
med forskellige spejlkonfigurationer og fotoniske krystal design er
prasenteret. Laseremission iagttages ved de bglgelaengder, der svarer
til langsomt lys i kavitets-tilstanden, hvor en forstzerkning af gainet
fgrer til lavere teerskel-verdier.

Ultra hurtig dynamik af forsterkningen af kvantepunkt materi-
alet, der anvendes i bade forstaerker og laser strukturer, undersgges.
Malingerne er baseret pa degenererede pumpe-probe transmission
spektroskopi med 180fs pulser. De karakteristiske relaksations-
tider er malt til at veere ~ 2ps og ~ 0.2ps, med lille variation over
et bolgeleengde interval pa 260nm. Under-grupperinger af kvan-
tepunkter, som varierer i hgjden med et monolag er observeret.
Ingen maerkbare @ndringer i ladningsbaerer-dynamiken forbundet
med kvante punkternes forskellige hgjder er observeret.
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Chapter 1

Introduction

1.1 Ultrafast communications

There is an ongoing race to increase the speed of devices and sys-
tems used in communication networks. In ten to twenty years from
now the conventional techniques will fail to scale the capacity to
meet the operating speed (i.e. bandwidth) demands [1]. The ever
increasing amounts of internet traffic at higher data rates call for
basic research in wideband optical components, because if only a
few functions could be done optically instead of electronically there
would be much to gain in terms of bandwidth. It will be necessary
to process signals in terabit per second regime and photons are bet-
ter candidates than electrons to represent and transmit data at such
high rates. Most information is already represented by light pulses,
transmitted through low loss optical fibres with large bandwidth.
However, the full bandwidth is not utilized today. One bottleneck
is the numerous electro-optical conversions required, since most op-
erations performed on the signal are done using electronics. Recent
progress in communication systems has led to more complex archi-
tects with many components, each component performing only one
specific function. As a result such systems require large storage
areas and demands huge amounts of energy. Only to cool the racks
of electronics demands huge amounts of energy, hence server farms
are often built at geographical locations with cold climate.
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Photonic integrated chips have been a hot research topic for many
years, striving to create an optical equivalent to the silicon elec-
tronic chip. Integration is desired on order to reduce the power
consumption and footprint area. It remains to be seen if funda-
mental functionalities for signal processing in the terabit per sec-
ond data rate can be realized. One promising platform for photonic
integrated chips is photonic crystals [2].

1.2 Photonic Crystals

Photonic crystals (PhCs) have the potential of integrating several
different functionalities on the same lattice; such as lasers, ampli-
fiers and switches. Even though it might sound contradictive, one
of the key properties which brings PhC to the top of the candidate
list for the realization of ultra-fast optical devices, is its ability to
slow down light.

1.2.1 Brief Historical Background

During the past century, the interaction of electromagnetic waves
with periodic media have been studied. During the first years of the
18’th century theoretical and experimental reports were communi-
cated by Lord Rayleigh and Wood respectively [3, 4]. Around the
same time Bragg demonstrated that the diffraction pattern from a
periodic media may be explained by single and multiple scattering
events |5|. Following these reports, multi-layered films received in-
tense study. The concept of photonic crystal was first introduced
by Othaka in 1979 [6], and the impact of photonic band gap mate-
rials were discussed theoretically by Yablonovitch and John [7, §].
A number of natural photonic crystals exist; the iridescent colour
of the opal gemstone, the eye of the peacock feather and the wing-
scales of the Morpho butterfly arise from a periodic nano-structure
of the material |9, 10, 11|. Despite the absence of pigments they
all exhibit striking colour effects. Lightwaves in a structural peri-
odic material experience a periodic perturbation from the structure
causing them to behave very different compared to lightwaves in an
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homogeneous media. This situation is analogous to electrons in a
semiconductor crystal, which due to the interaction with the peri-
odic potential are confined to certain energy bands and are forbid-
den to occur at a certain range of energies. This analogy suggests
that the dispersion of lightwaves in a photonic crystal should be de-
scribed in terms of a (photonic) band structure, just like electronic
bands in condensed matter physics. One important consequence
of the band formation in photonic crystals is the appearance of
a photonic band gap (PBG), which forbids propagation of certain
frequencies of light.

Experimental demonstrations of photonic crystals had at first band
gaps for micro wavelengths [12]. A PhC for microwave control has
millimeter dimensions, while a crystal for infrared waves require
micrometer dimensions. The design of the PhC may be scaled to
tune the bandgap region to desired wavelength. As the dimensions
decrease, the demands on high resolution fabrication technology in-
crease. The first PhC with sharp band edges for telecommunication
wavelengths was demonstrated by Krauss in 1996 [13]. Their fabri-
cation was based on semiconductor processing, making the technol-
ogy assessable for other laboratories. There are several advantages
in creating PhC devices out of semiconductor materials. First, a
strongly modulated crystal can be created. By etching air-holes
into a high refractive index semiconductor material (n > 3) a re-
fractive index ratio of at least 2 is achieved, which is a requirement
to obtain 2D or 3D PBGs |14, 15]. Secondly, it is possible to use di-
rect band gap semiconductors which could be manipulated to emit
light at a wavelength within the photonic band gap of the PhC.
It enables experimental verification of Yablonovitch’s original idea;
that it should be possible to control the spontaneous emission in a
PhC. It has been demonstrated that there is a modification in the
spontaneous emission decay time [16], originating from the Purcell
effect. In this work we show experimentally that also the output
intensity of the amplified spontaneous emission in a PhC waveguide
is enhanced due to the PhC.
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1.2.2 Types of Photonic Crystals

PhCs may be one, two or three dimensional. A quarter wave stack
of alternating layers of different dielectric materials is an example of
one dimensional PhC. An incoming wave at the Bragg wavelength
will be partly reflected at each interface. At each low-to-high in-
dex interface the light will be phase shifted 180 degrees, compared
to at the high-to-low interface. This leads to constructive inter-
ference; the total reflection depends on the number of dielectric
layers. This low loss dielectric mirror has proven to be incredible
useful in many devices, for example as dielectric Fabry-Perot fil-
ters and in distributed feedback lasers. The main limitation is it
only reflects light at normal incidence to the layer stack. In order
to fully confine light of all polarizations and in any direction the
PhC needs to be extended into all three dimensions. With proper
design and with sufficient refractive index contrast it is possible to
achieve a complete PBG, but it is a challenging task. Many ef-
forts have been made to achieve a 3D PhC; such as stacking two
dimensional slabs of PhC on top of one another [17], or creating a
"woodpile" structure by layer-by-layer lithography [18|. Neither of
the methods are suitable for large scale production. One of the most
promising methods to fabricate 3D PhC is by using self-assembly to
create a colloidal crystal, also named artificial opal. Monodisperse
microspheres made of polystyrene or silica tend to self assemble
in an ordered face-centred cubic structure in proper environment.
Complete PBG has been achieved by infiltrating a silica opal ma-
trix with silicon and subsequently removing the silica spheres with
a Fluoride-based etch [19]. Other materials which do not require
chemical vapour deposition can be used, such as sol-gel, to cre-
ate a partial band gap inverse opal. Scanning Electron Microscope
(SEM) images of a polystyrene opal, and a sol-gel inverse opal can
be seen in Figure 1.1. Figure 1.1 a) shows a photo taken of two
polystyrene opals when illuminated with white light. Only light
with a frequency within the partial PBG is reflected, while the light
at other frequencies are transmitted. If the sphere size is chosen so
that the PBG falls within the visible part of the spectra, the opal
shows brilliant colour effects when viewed in the normal direction.
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12 mm

Figure 1.1: a)Photo taken under white light illumination of two polystyrene
opals created on microscope slides. To the left: sphere size 270 nm. To the
right: sphere size 240 nm. b) SEM image of a polystyrene opal. Showing
the long range order also in the third dimension, a thickness of about 20um
achieved in a single growth. c) Sol-gel inverse opal. [20]

1.2.3 Functional Photonic Crystal Membranes

In this work the devices are 3D but with a PhCs band gap in
only two dimensions, their partial PBG covers only a limited range
of directions for a certain polarization. Though, with appropriate
design this partial PBG can function in a very similar way to a
complete PBG. From now on it will be referred to simply as PBG.
An hexagonal array of holes are defined in a slab of semiconductor
material. The reason for choosing an hexagonal lattice is because it
has the largest 2D PBG in TE-polarization (the electric polarization
parallel to the 2D plane) [21]. If intentional defects are introduced
in the PhC lattice, then many different functional devices may be
built from this platform, such as lasers, switches and amplifiers.
Defects, such as missing holes, may allow localized modes to exist,
with frequencies inside the PBG, see Figure 1.2. The denotations
“dielectric band” and “air band” on the low and high frequency side
of the band gap respectively will be further explained in Section
2.1.1.

If one hole is removed from the lattice a cavity with reflective walls is
created. The localized mode cannot escape from the defect because
it has a frequency within the gap, which is prohibited to propagate
through the crystal. The defect mode decays exponentially away
from the defect, and is localized in two dimensions while it extends
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Figure 1.2: A schematic drawing of the photonic density of states (DOS) for
a PhC. Defects such as waveguides or cavities creates modes within the PBG
which are very well confined [22].

in the z-direction. Besides from resonators, waveguides may be
created by removing a row of holes, see Figure 1.3. Also a line
defect mode has its frequency inside the PBG. Light can therefore
not leak out into the surrounding band gap material. However, in
the third dimension (out-of-plane) the guiding mechanism is the
same as for conventional waveguides (for example fibers or ridge
waveguides), where the light is confined only if the law of total
internal reflection (TIR) is obeyed. When light in a high index
material strikes the interface of a low index material, light might
be transmitted or reflected depending on the incident angle. If
the angle is greater than the critical angle, all light is reflected
back into the waveguide. The critical angle depends on indices of
refraction of the two materials according to Snell’s law of refraction.
For optimal vertical confinement the 2D PhC is implemented in a
membrane surrounded by air. All modes in a PBG are gap guided
[23]. It enables low loss transmission through sharp bends; a feature
desired for guiding light between a dense network of devices on an
optical chip.

The 2D membrane PhC’s have several advantages over current 3D
PhC’s, in which it is challenging to incorporate linear waveguides
or other defects with good accuracy. In the membrane PhC’s pre-
sented in this work, functionalities may be included without addi-
tional fabrication steps and the PhC pattern can be freely designed
with high resolution. It is a limitation that light will suffer out-of
plane radiation loss if TIR is not fulfilled, but the high refractive
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Figure 1.3: SEM image of 2D membrane PhC. a) Top view showing the linear
waveguide defect. b) Sideview of a cleaved facet showing the free-standing
membrane surrounded by air, for efficient confinement, in the third dimension.

index ratio in air-membranes ensures that the guided mode covers a
broad range of frequencies, which is required for processing of ultra
short optical signals.

1.3 At the Speed of Light

The speed of light in vacuum, ¢, is approximately 3 x 10® m/s.
When light propagates through a transparent material it is slowed
down. The ratio by which it is slowed down is the refractive in-
dex of the material, n. The speed of light through all materials
except for vacuum is wavelength dependent, which in turn means
the refractive index is wavelength dependent.

When waves propagate through a material, they will interfere with
one another. Consider two plane waves with the same amplitude
but different frequencies, the sum of the two will be [24]:

Ey(t) + Es(t) = Asin(wit — ki) + Asin(wat — kox)  (1.1)
W1 — Wo _ k‘l — kg

= 2Acos( 5 t 5 :t)sm(wl ;—w2t _h ; kzm) (1.2)

The mean values and differences in angular frequencies (w) and

7
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Figure 1.4: Two waves (blue and pink) with the same amplitude and almost
the same frequency is propagating through a dispersive material. Due to in-
terference, a beat frequency (black) is created. The velocity at which the beat
frequency propagates is the phase velocity v,. The velocity of the wave-packet
(envelope of the beat frequency) is described by the group velocity vg.

wavevectors (k) between the two waves are expressed as

W1 + Wo k1+k2
= —" = 1.
5 k 5 (1.3)
Aw = % Ak = R ; ks (1.4)

If two waves are almost in phase with on another, their frequencies
are only slightly shifted with respect to each other ( f; ~ f3). Then
the interference can be written as

Ei(t) + Es(t) = y(t)sin(wt + kz) (1.5)

This can be interpreted as the beating having a frequency corre-
sponding to the mean of the two waves, and its propagation speed
is v, = w/k. This is the phase velocity of light. The beat frequency
is represented by the black curve in Figure 1.4. The amplitude
modulation of the beating is described by

y(t) = 2Acos(Awt — Akx) (1.6)
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The amplitude modulation is also a wave with a frequency very
different from f; and f5, namely the beating frequency. The velocity
at which the envelope of the beat frequency propagates is called the
group velocity

vy = Aw/Ak = dw/dk. (1.7)
It may be rewritten as:

dvy, B 1

A n+w(dn/iw) (18)

Vg = Up —
The first equality then clearly shows that v,=wv, in a non-dispersive
material.

If light is propagating in a dispersive material (where the propaga-
tion velocity depends on the wavelength), we need to keep track of
several different velocities. If the group velocity v, is measured ex-
perimentally, it is not the velocity of an individual wave but rather
the energy distribution of a wave-packet which is measured, see
Figure 1.4.

1.3.1 Slow Light in Photonic Crystals

As discussed earlier the fastest way to transfer information is at
the speed of light, for a number of applications it is an advantage
to be able to slow down light. Slow light is expected to enhance
the functionality in devices such as switches, optical delay lines, all-
optical storage [25] and amplifiers [26]. Group velocity reduction
leads to pulse compression and an enhancement of linear and non-
linear effects are expected |27, 28|.

Optical resonances within a material or a periodic structure causes
large first order dispersion [27|. It has been known since 2001 that
a slow group velocity can be achieved in a PhC waveguide [29, 30].
An impressive 300-fold retardation of the group velocity has been
demonstrated experimentally using an unbalanced Mach-Zehnder
interferometer [31]. The slow down of light occurs at the band-
edge of the guided mode, as further discussed in Section 2.1.

The research topic of slow light has attract a lot of attention the
past decade. In 1999 Hau et al. were able to slow down light to the
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speed of a bicycle, 17ms~! [32]. The experiment was performed in
ultracold gas of sodium atoms; an opaque medium which can be
made transparent using electromagnetically induced transparency
(EIT). EIT has also been observed in semiconductors |33|, but its
observation is very difficult due to both inhomogeneous and homo-
geneous broadening effects in semiconductors. The key advantage
of PhC slow light has over other slowdown effects, such as (EIT) is
that it is broadband, which is required for processing of ultra short
optical signals and it is also possible to freely tune the wavelength
because of its dependency on the structural geometry rather than
a material resonance.

1.4 Semiconductors

ITI-V semiconductors have become the basis for many commercial
optoelectronic devices, such as diode lasers, light-emitting diodes,
and photodetectors only to mention a few. They have a direct band
gap, making their optoelectronic properties more favourable than
in-direct band gap semiconductors such as silicon. By definition,
the valence band of a semiconductor is entirely filled, and there are
no free electrons in the conduction band, at T" = 0K if no exter-
nal field is applied. Electrons may be promoted to the conduction
band if externally excited. Let us consider optical excitation; if
an incident photon has an optical energy above the gap, it will be
absorbed. An electron will be excited from the valence band to the
conduction band, leaving a hole behind. Both the electron and the
hole can now contribute to conduction. The kinetic energy of the
excited electron, the energy above the conduction band edge, may
be transferred into heat (phonon-phonon scattering) as the elec-
tron relaxes down towards the band edge of the conduction band.
The recombination of an excited electron with a hole in the valence
band can be a radiative, or a non-radiative process. In a radiative
recombination, a photon will be emitted. The transition may occur
in absence of a perturbing external electromagnetic field; which is
denoted spontaneous emission. The transition may also be trig-
gered by a photon propagating in the semiconductor which results
in stimulated emission (SE). The photon created through stimu-
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1.4. SEMICONDUCTORS

lated emission will have the same phase, energy, polarization and
direction of propagation as the photon stimulating the transition
[34]. Amplified spontaneous emission (ASE) is spontaneously emit-
ted light, which is amplified by stimulated emission as it propagates
through a gain medium. The three scenarios; excitation, sponta-
neous emission and stimulated emission are illustrated in Figure
1.5 a)-¢). In a non-radiative recombination the conduction band

O
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Figure 1.5: Electronic transitions between the conduction and valence bands.
Open circles represent unfilled states (holes) and solid circles represent filled
states (electrons). The red arrows symbolise photons. a) excitation, b) spon-
taneous emission, c¢) stimulated emission, d) surface recombination, e) Auger
recombination. Inspired by a figure in [34].

electrons escapes from usefully contributing to the gain. Such pro-
cess does not generate any photons, the energy is instead dissipated
as heat in the semiconductor crystal lattice. There are two main
non-radiative recombination schemes, as illustrated in Figure 1.5
d)-e). The first scheme depicts an energy level in the middle of the
gap, which temporary traps the electron from the conduction band
before releasing it to the valence band. Such an energy level can
arise do to point defects or impurities in the crystal lattice. How-
ever, in modern crystal growth technologies the density of impurity
atoms is very low which in turn means negligible impurity recom-
bination rates [34]. The energy levels within the gap can also be
associated with surface states in the crystal. Electron recombina-
tion via surface states results in a non-radiative transition denoted
surface recombination. Surface recombination does not require an
electron-hole pair, so the recombination rate is directly proportional
to the carrier density. It is known that dry etching cause near-
surface lattice damage which increase surface recombination rates
[35], one should therefore avoid etching through the active layers
of the device. Unfortunately, the total area of etched surfaces is
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large in all the devices presented in this work, because the active
layers are located in the center of the PhC membrane. Surface
recombination is therefore and important loss-factor. The surface
recombination velocity can be reduced by surface passivation [36],
a permanent passivation of PhC membranes would improve device
performance. The last non-radiative transition illustrated in Figure
1.5 e) is Auger recombination. The recombination energy does not
generate a photon, but is given as kinetic energy to another electron
or hole. Auger recombination increase with carrier density, because
it depend on carriers colliding with one another.

Unless the excitation energy is very high, electrons are dominantly
excited to energy levels close to the band edge. Therefore, the op-
tical energy of the emitted photon is typically only slightly larger
than the band gap energy. The technologies in crystal growth, such
as metalorganic vapour phase epitax (MOVPE), makes it possible
to engineer the band gap. The red line in Figure 1.6 shows the
band gap energies achievable by creating InGaAsP quartinary al-
loys lattice matched to the binary compound InP. As the diagram
shows, the band gap energy of InGaAsP alloys match well with the
wavelength corresponding to low loss transmission in optical fibres
(1.55um), making it a good material choice for optical communica-
tion applications.
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Figure 1.6: Bandgap vs. lattice constant for III-V compounds. The red line
indicate the quaternary alloys, InGaAsP, lattice matched to InP [34].
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1.4.1 Quantum Confinement

If the physical dimensions of the material are smaller than the co-
herent length of the conduction band electrons, quantum confine-
ment effects occur [37]. A two-dimensional confinement can be ac-
complished by growing a quantum well (QW), which is a thin layer
(5 — 10mm) of a narrow band gap material sandwiched in between
wider band gap material. Carriers are confined in a QW poten-
tial in discrete energy levels, similar to the classic particle in a box
example. In a narrow well the electron wave function penetrates
deeper into the barrier, leading to a higher energy of the quantized
state. Hence, the transition energy of the lowest quantized states
depend on the well thickness as illustrated in Figure 1.7. QWs have

Figure 1.7: A simple illustration of QWs of different thickness. The energy
separation of the quantized states is larger for a narrow well, leading to a
shorter emission wavelength.

become an important gain material as they are more easily inverted
than bulk material and the emission wavelength can be precisely
tuned by altering their size [34]|. The performance of the QW gain
material can be improved further by introducing a strain in the well
material. A small lattice mismatch in relation to the bulk material
is tolerated up to a certain thickness, without introducing defects.
Typically 1% mismatch is tolerable for a thickness less than 20nm
[34]. Strained wells in lasers can reduce the lasing threshold to lower
energies. An external force on a crystal lattice will cause distortion.
The strain causes a splitting between the light-hole and the heavy
hole band. The heavy-hole band rises relatively to the light-hole
band and as a result, non-radiative recombinations are reduced.

Also 3D quantum confinement can be achieved by manipulating
the crystal lattice. If a material, which is lattice mismatched to
the substrate (for example InAs, lattice mismatched 3% relative
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InP), is grown beyond the critical thickness, the induced strain
will cause the lattice to break. Islands, quantum dots (QD), of
material are formed on top of a ~2 monolayer wetting layer [38].
The dots composition and size determines their band gap energy.
As for the QWs; a smaller dot splits the energy levels more due
to the quantum confinement effect, resulting in shorter wavelength
emission. The formation of the dots is a statistical process, which
leads to a distribution in dot sizes; 10 — 20nm wide and 3 — bnm
high. The different dot sizes result in an inhomogeneous broadened
photo luminescence spectrum [39].

The electronic density of states (DOS) in QWs and QDs are differ-
ent from that of bulk. For bulk material the energy states are so
closely spaced they can be treated as a continuum of states. The
bulk DOS forms an envelope for the steps of discrete energy levels
which can be occupied with electrons in the QW case, see Figure
1.8. Each energy level in a QD can only occupied by 2 electrons
(spin up and spin down electron). The density of states is therefore
described by a Dirac delta function, indicated in green in Figure
1.8.
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Figure 1.8: Electronic density of states for semiconductors of 3, 2, and 0
degrees of freedom, referred to as bulk (red), QW (blue) and QD (green) re-
spectively. Figure by courtesy of Troels Shur.
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1.5 Photonic Crystal Amplifiers

Slow light has been an active topic of research for the last decade,
both due to fundamental interest in understanding light-matter in-
teractions as well exploiting these effects for improving the perfor-
mance of photonic devices or realizing new functionalities. Pho-
tonic crystal (PhC) line defect waveguides constitute an interesting
platform for exploiting slow light effects and much work has been
performed on passive waveguide structures |25, 31, 40, 41, 42].

When including layers of QWs or QDs in the PhC membrane slab
one can control both the optical and electronic properties in an ac-
tive PhC waveguide. By exploiting the slow light effect in active
PhC waveguides, it has been suggested that an efficient, ultra com-
pact semiconductor optical amplifier (SOA) can be achieved [26].
The device length can be drastically decreased compared to con-
ventional ridge SOAs due to slow light enhanced light-matter inter-
action |27|. Such a device is desired for compact photonic chips and
interconnects, e.g. for chip-to-chip or board-to-board links. Optical
amplification is essential on a photonic integrated chip. By com-
pensating for the attenuation more functionalities can be included.
PhC amplifiers have proven challenging to realize experimentally
and to the best of our knowledge there are no experimental demon-
strations of gain in broad band PhC amplifiers. There are only
few contributions in the literature on the study of the amplified
SE from active PhC devices; in reference [43| investigations were
carried out on highly multimoded waveguides with three rows of
missing holes, not suitable for high-speed operation, and Raineri et
al. presents optical amplification within a resonance whose quality
factor is @@ ~ 1200 [44]. In this work enhanced net gain in PhC
amplifiers is demonstrated, the enhancement is shown to correlate
well with the increase of the group refractive index due to light
slow down. The devices have nearly zero input and output reflec-
tion coefficients and we emphasize that we focus on the output light
intensity rather than the modification of the spontaneous emission
decay time originating from the Purcell effect [16].

There are many demonstrations of lasing in photonic crystal struc-
tures [45, 46, 47|, but most of them rely on the realization of a
high-Q cavity in order to achieve lasing at a small net gain. There
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are only a few contributions in the literature, where lasing is ex-
plained by gain enhancement at low group velocities [48, 49, 50].

1.6 Outline

In Chapter 2 the dispersion diagram for the PhC is presented and
the important parameters for PhC design are highlighted. Calcu-
lations of the influence of slow light on transmission and ASE are
presented followed by considerations for efficient optical pumping
of the structures. In Chapter 3 the process for fabricating active
InGaAsP PhC waveguides is presented. Chapter 4 contains the
main experimental results on slow light enhanced gain and ASE in
PhC amplifiers. Results on fabrication of topology optimized PhC
waveguides and micro-lasers along with optical characterization of
the lasers are presented in Chapter 5. In Chapter 6 pump-probe
measurements of a ridge QD SOA are shown followed by a discus-
sion of the ultrafast gain dynamics of the QDs, used in the amplifier
and laser devices. Chapter 7 concludes the work and provides sug-
gestions for future work. The parts which are done in collaboration
with others are stated in the text.
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Chapter 2

Photonic Crystal Amplifiers:
Theory and Design

The intricate confinement of light in PhC waveguides result in a
strong dispersion. With an understanding of how the structural
parameters effects the propagating modes, the dispersion proper-
ties can be designed and optimized for each application. By reduc-
ing the lattice constant or increasing the hole diameter the mode
can be shifted to shorter wavelengths. These scaling properties of
PhCs allow fine-tuning of the slow light wavelength region which is
valuable for active PhC waveguides. Light matter interaction can
be enhanced by slow light propagation cite |27, 51|, why an overlap
between the wavelength for slow light and material gain is desired.
There is also a freedom to tune the material gain, through ma-
terial composition and QW thickness, to desired wavelength. For
telecommunication applications, devices operating around 1550 nm
are of interest because that wavelength region has shown lowest
fibre loss transmission through optical fibres. Simple estimates of
the drastic effect the slow light factor has on transmission and ASE
in a semiconductor optical amplifiers are presented in Section 2.2,
followed by challenges to overcome to achieve population inversion
experimentally.
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CHAPTER 2. PHOTONIC CRYSTAL AMPLIFIERS: THEORY
AND DESIGN

2.1 Design of Photonic Crystal
Waveguides

Eigenstates of light in a transparent, uniform medium are described
by the photon energy, wave vector and polarization state. Each
eigenstate is specified by a mode, which is a plane wave for uniform
media. The dispersion relation is a relation between the photon
frequency (w) and the wave vector (k). In vacuum, the velocity of
light is the same independent of photon energy and wave vector,
leading to a linear dispersion relation; w = ck. A photonic crystal
has a periodic variation of the dielectric constant £(r) = (r + R),
where R = na; + mas + las is a linear combination of the real
lattice vectors (a1, as, ag) and (n,m, () are integers. The periodicity
leads to a modification of the eigenstates. Light which enters such a
periodic material need to be described by a periodic eigenfunction
and not by a pure plane wave. Using Bloch’s theorem the electric
and magnetic fields are written [52]:

Erp(r) = e®uy(r) (2.1)
Hy(r) = ™ u(r) (2.2)

where (1) = ug(r+ R) are the periodic Bloch eigenfunctions with
the same periodicity as the dielectric function. At each k-point
(Bloch wave vector), a discrete set of eigenstates exists. The eigen-
states form bands, because k is a continuous variable. These pho-
tonic bands of the structure are calculated using Maxwell’s equa-
tions. The periodicity of a photonic crystal greatly reduces the
computational effort needed to calculate all eigenstates. If adding
a multiple of 27 /a the wave will repeat itself, so k-values separated
with 27 /a will give the same physical result. Hence, the solutions
for all wave vectors can be found within the so called “Brillouin
zone” —w/a < k, < m/a by adding a lattice vector.

Considering wave propagation in a mixed dielectric material con-
sisting of isotropic, transparent materials (£(r) is real and positive),
the displacement field, D(r,t) can be related to the electric field as
D(r) = eperE(r). Because the magnetic permeability is close to
unity for most dielectric materials, the magnetic induction field,
B(r) can be related to to the magnetic field via B(r) = poH(r).
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WAVEGUIDES

In these relations £y and py are the vacuum dielectric constant and
permeability respectively. Under these conditions, assuming there
are no free charges or electric currents, Maxwell’s equations can be
represented in the following form [53, 52|

V- -H(r,t) =0, (2.3)
V- e(r)E(r,t) =0, (2.4)
V x E(r,t) = —MO%H(r,t), (2.5)
V xH(r,t) = 505(1')%E(r,t). (2.6)

Maxwell’s equations are linear, so the space and time dependence of
the fields can be separated by expressing them as harmonic modes:
E(r,t) = E(r)e ™! H(r,t) = H(r)e ™' The two equations Eq.
2.5 and Eq. 2.6 can be combined to eliminate E(r). Also, the
speed of light in vacuum, c, can be expressed in terms of ¢y and py
according to ¢ = 1/,/gopip. This results in the “master equation”
[52]:

v xHED) = (¢

VX <5(r) c

)*H(r). (2.7)
The solution to this problem will provide the eigenfrequencies w(k).
The operator in Eq. 2.7 is Hermitian, while the corresponding
equation for the E-field is not. An Hermitian operator is desired
because its eigenvalues are real numbers and the eigenvectors of two
different eigenvalues are orthogonal. Once the solutions for H(r) are
obtained, E(r) can be derived from Eq. 2.6: [52]

E(r) — ic

SV < HO), (2.8)

A freely available software package, MPB was used to solve the
eigenvalue problem in Eq. 2.7 [54].

2.1.1 Linear Defect Waveguides

The dielectric structure is built by defining a unitcell, which is re-
peated using the periodic boundary conditions in MPB. The unit-
cell is the smallest part in the crystal, and in a defect-free mem-
brane PhC it consists of a slab of dielectric material with a single
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hole (cylinder of air). When introducing defects into the crystal lat-
tice, such as a row of missing holes, the unitcell needs to be made
larger. Lets introduce a coordinate system for the PhC structure,
and place x along the waveguide, y vertically out from the waveg-
uide in plane with the crystal, and z normal to the crystal. The
unitcell we used for a PhC waveguide simulations consist of 7 rows
of holes on each side of the waveguide (y-direction) and 2 lattice
constants high in the z-direction. All devices in this work consist of
a 340nm InGaAsP slab (n = 3.45), surrounded by air and with air-
holes arranged in a triangular lattice. Figure 2.1 (left) shows a dis-
persion diagram plotted versus the wave vector component k along
the waveguide, in the first Brillouin zone k& = (0,7/a). The figure
displays the polarization parallel to the 2D plane (TE polarization).
All structural parameters scale with the lattice constant because
Maxwell’s equations are scale invariant. Hence, also the frequency
is normalized wyorm = a/A. This means that from the dispersion
diagram one can select a desired center transmission wavelength
of the guided mode, and obtain the structural dimensions of the
crystal. This requires that the thickness of the membrane can be
adjusted freely too. In practice, membrane thickness as defined in
the epitaxial growth of the wafer. It is chosen to be 340nm thick
for all samples in this work. So one dispersion diagram for each
lattice constant needs to be derived. The parameters of the crystal
in Figure 2.1 (left) are: hole radius r = 0.27a, membrane thickness
h = 0.85a, leading to a lattice constant a = 400nm.

Light is confined in plane with the membrane by the PhC effect
and vertically by index guiding. The light-line indicates the border
between vertically confined light by TIR and out of plane radiation
modes (the grey shaded area in Figure 2.1. Light coupled to modes
above the light-line will suffer large intrinsic loss. In the band
diagram two regions with a continuum of modes can be seen, at
low and high frequencies respectively. The electric field of these
modes are not confined in the waveguide, but extend out in the
membrane. Low frequency modes have most of their energy located
in the high index regions of the crystal. High frequency modes
on the other hand, have a larger fraction of their energy in the
low index material. Hence, the two regions are called index and
air band respectively. The fact that the energy field distributions
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Figure 2.1: Left: a dispersion diagram for a membrane waveguide with refrac-
tive index 3.45 surrounded. The defect waveguide (one row of missing holes)
introduces guided modes in the bandgap of the PhC. The red curve represents
the fundamental, even mode. And the dark blue curve represents the odd
mode. Right: The group index of the fundamental mode. Lower: H, field
distributions for the fundamental mode at the three marked frequencies.

depend on the mode frequency explains why a gap arises. If it was
not for the linear defect waveguide in this example, there would be
no modes in the gap region between the index and the air band.
However, the waveguide has a series of guided modes within the gap
(red, darkblue), and also below the index band (light blue). The
modes below the index band are purely index guided, due to the
high index of the waveguide compared to the lower average index
in the PhC cladding and in the surrounding air. There are also two
guided modes inside the gap. The fundamental mode is the one
with lowest frequency, marked in red. We focus on the fundamental
mode, because owing to its even field distribution this is the one
which is most easily excited by an incoming plane wave. The second
mode (marked in dark blue) has an odd spatial distribution of the
field in the waveguide. This does not only cause coupling loss, but
also leads to poor light matter interaction.

Figure 2.1 (lower) shows the fundamental mode’s electric field dis-
tributions at the k-points indicated in the dispersion diagram. The
field distribution for wave vectors approaching the edge of the Bril-
louin zone show two additional nodes in the y-direction, compared
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with the distributions for wave vectors close to the light line. The
drastic changes in the field distribution along the same mode is
explained by an anti-crossing phenomena caused by the band gap
[52], this have been observed in reference [29]. Two bands which
are expected to intersect, instead couple to one another. An anti-
crossing occurs, leading to the formation of an hybrid mode which
resembles an index-guided mode for 0.28 < k£ < 0.35 and band
gap guided for 0.35 < k£ < 0.5. Looking at fundamental mode
(red) in Figure 2.1 it is clear that the band flattens out close to
the Brillouin edge. Because the group velocity is described by the
derivative of the dispersion v, = dw/dk, it is clear that it approaches
vy, = 0ms~! at the band edge. In Figure 2.1 (right) the group index
(ny = ¢/v,) of the fundamental mode is plotted. Using the lattice
constant (a = 400nm) the normalized frequency is converted to
wavelength. Experimentally, the highest group index measured in
a PhC waveguide to date is 300 [31]. Slow light is very sensitive
to disorders, because of its wide field distribution [55, 56]. Scatter-
ing loss is believed to be the main limiting factor for slow light [57].
Despite the high resolution process technologies employed to realize
theses structures, a fabricated device will always exhibit a certain
degree of side-wall roughness and disorder [58]. The nature of the
slow down can be understood by light being backscattered at each
unitcell of the photonic crystal. As illustrated in Figure 2.2 light,
qualitatively, moves forward four steps and back three steps, re-
sulting in a net slow forward propagation [25]. Because slow modes
experience almost as much backward as forward propagation there
is a fine balance between the two which can easily be disrupted by
scattering caused by process-disorder. This effect is strong when
the propagating wavelength is in resonance with the structure. By
careful design a broader range of wavelengths can be slowed down,
and not only highly dispersive light at the band edge of the PhC
mode.

In Figure 2.3 shows how the wavelength of the fundamental mode
bandedge (at k—=a/m) shifts as different design parameters change.
Except for the parameter under investigation in each plot the re-
maining parameters are: radius r = 0.25a, thickness ¢ = 340nm
, lattice constant a = 400nm and relative permittivity ¢ = 11.2.
The lattice constant and the hole diameter are freely variable pa-
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Figure 2.2: Tlustration of the forward and backscattering which a slow light
mode experiences. The lattice constant, a, is marked in the figure.

rameters, and can be varied to achieve a systematic shift in the
band-edge spectrally, and thereby the slow light region of the PhC
waveguide. Also the membrane thickness has a pronounced affect
on the band edge wavelength. It is therefore important to have a re-
producible process, where the same membrane thickness is achieved
in every run. If the band edge is at too long wavelength, the mem-
brane could be systematically thinned down in order to tune the
wavelength. However, it requires a reproducible method and one
issue is that also the hole radius will increase when etching the
membrane. The fourth parameter which is varied is the relative
permittivity of the material. Including more active material into
the membrane, such as 10 QWs, will increase the relative permittiv-
ity, and thereby shift the band edge to longer wavelength. External
sources such as an energetic optical pump focused onto the sample,
can also cause a change in refractive index, and thereby shift the
band edge wavelength.

A final note on PhC design is on the TM polarization (perpendicu-
lar to the 2D plane). Tmperfection, roughness, or non-vertical holes
can result in some depolarization of light. Light is not only scat-
tered, but can also be coupled into other waveguide modes such as
the TE odd or TM modes [59, 60]. Complete bandgap crystals have
been investigated [61] and experimentally demonstrated [62] using
triangular holes which might limit other design possibilities. Fig-
ure 2.4 (left) shows the dispersion diagram for the TM polarization
(grey) and the fundamental TE mode (red). The TM polarization
exhibit a small gap (named TM minigap in figure), about 5 nm
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Figure 2.3: The spectral position of the fundamental guided band edge for
different design parameters. Except for the variable under investigation in
each plot, the other design parameters are kept constant. Lattice constant a
= 400nm, radius r=0.25a=100nm, membrane thickness t=340nm and relative
permittivity e=11.2. Using these parameters the wavelength region is not cen-
tred around 1550nm in each plot, but provides an idea about the wavelength
shift associated with a change in each design parameter. Left top: Lattice con-
stant. Right top: radius. Left bottom: membrane thickness. Right bottom:
relative permittivity.

wide. The slow light modes at the edges of the minigap, as well as
the sharp drop in intensity at the gap wavelength for TM transmis-
sion, are observed in Section 4.4.1. However, it does not interfere
with the TE performance because the TM minigap is well sepa-
rated from the TE band edge. The TM dispersion is more affected
by changes in membrane thickness than TE, as shown in Figure 2.4
(right). Thus, the TM dispersion could play a role in choosing the
membrane thickness.

2.2 Photonic Crystal Amplifiers

The energy band diagram for the 340nm thick membrane including
6nm thick 1% compressively strained QWs is presented in Figure
2.5 (left). In the following calculations, 4 QWs are used, and no
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coupling between the wells are included.
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Figure 2.5: Left: Band diagram of the membrane with 4 QWs of 6nm thick-
ness. The dashed lines in the QW region indicates the lowest quantum con-
fined state (calculated for a single well). The depth of the wells are noted in
the legend. Right: Calculated gain curves for carrier densities ranging from
1-10% — —30-10'2.

For gain calculations of the active material used in the PhC am-
plifiers only the transition between the conduction band and the
heavy hole band are considered. The membrane material is

Ing77GaAsg 503 P, lattice matched to InP. The gap energy is F, =
1.078eV or expressed in wavelength; A\ = 1.15um, and the band
edge c-hh transition is at A = 1538nm for the 6nm thick QWs
considered. Once the individual electron and hole energies are ob-
tained, the Fermi occupation probability can be derived for both
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the electrons (f.) and holes (f) at the band edge. Material pa-
rameters are taken from [63]. The following relation between the
modal TE gain (g) and the inversion of the material (f. + f, — 1)
can be used [37]:

g = Fgmam : (fe + fh - 1) (29)

where I' is the confinement factor, proportional to the number of
wells. The material gain from one well, g,,.., takes density of states,
wave function overlap (only allowed transitions) and matrix ele-
ments (polarization dependence) into account'.

A crude prediction of how a PhC can change the transmission and
ASE spectra is derived by including a slow down factor S(w):

S(w) = e 2.10
(W) back ( ’ )
ng

It has been suggested by others that in the linear regime, the en-
hanced interaction with slowly propagating light is proportional to
S(w) |64, 65|. Both the gain and the loss is expected to scale with
the S-factor. The transmission 7'(w) then becomes:

Pout(“)
Bin(w)

T(w) = = exp[S(w)(MNw)g(w) — @ine) L] (2.11)

where L is the length of the device (1mm) and «;,,; are the internal
losses which is the sum of disorder induced losses and free carrier
absorption, the latter scale with the carrier density. The band edge
of the PhC guided mode is at A\ = 1.57um and group index is
limited to reach a value of nghc = 150, because that is credible to
achieve experimentally. The transmission spectra at three different
carrier densities are shown in Figure 2.6. When slightly higher gain
(the corresponding gain curves are curve 3, 4, and 5 in Figure 2.5
(right)), the transmission increases rapidly owing to the exponential
dependence of the enhancement.

The ASE has been suggested to be doubly enhanced by the slow
down factor |[66]. The two key factors responsible for the enhance-
ment are firstly that the slow light propagates an effectively longer

!Private communication with Kresten Yvind, DTU Fotonik.
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Figure 2.6: Transmission spectra for a PhC amplifier at three different current
densities.

path length through the active material, the second factor is that
the optical density of states is enhanced. ASE is stimulated emis-
sion due to vacuum modes, also the vacuum modes depend on the
density of states, so the optical transition is accelerated. The ex-
pression for the ASE (power spectral density) becomes:

1
1 — i/ (T(w)g(w))

where ng, is the population inversion factor, defined as [34]:

n (w) _ fc(Ec)fv(Ev)
* fc(Ec) + fv(Ev> -1

where F,. and E, denote the electron energy in the conduction and
the valence band respectively. Figure 2.7 shows transmission and
ASE for a PhC waveguide (red) and as a reference for a ridge waveg-
uide (black) where gain is not enhanced due to light slow down. op

| B(w) |*= 27hS (w)ng,(w) (T(w) —1) (2.12)

(2.13)

These calculations are based on simple gain calculations and as-
sumptions. To our knowledge, no rigorous theoretical descriptions
of PhC amplifiers can be found in the literature. The presented
calculations gives an indication about the pronounced enhancement
effect the slow down factor has on both the amplification of trans-
mitted light and on the ASE. PhCs can be simulated using FDTD
techniques, see e.g. [51]. But a description of PhC amplifiers require
FDTD simulations including gain material. FDTD simulations are
time consuming and difficult to scale up to actual device sizes. In
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Figure 2.7: Transmission (left) and ASE (right) with and without slow down
factor.

order to get an insight into the physics of the devices, and assist de-
vice design, coupled wave based simulations can be an used |67, 68|.
The computation of Bloch modes are done separately which reduces
computational cost, and makes the model compatible with disper-
sion engineering methods such as topology optimization.

2.3 Population Inversion by Optically
Pumping

All the devices in this work are optically pumped. Light is focused
onto the sample from the top, because a short wavelength is used
(800mm or 980nm), carriers are excited into the barriers. There-
fore, the full thickness of the membrane is absorbing the incoming
photons.

The optical power required to pump a single QW in a 340 nm
membrane slab is estimated through the rate equation. The change
in carriers, N, is;

dN
E = Ggen — Ryec (214)

dN AP N
A S 2.1
dt hwAwg T 0 (2.15)

where G ., is the rate of injected electrons (absorbed photons) into
the active region. The absorbed power, AP = atP;,, depends on

28



2.3. POPULATION INVERSION BY OPTICALLY
PUMPING

the absorption in the waveguide region o = nar X Aywg/Aspor and
the membrane thickness, t. R,.. is the rate of spontaneous, non-
radiative and leakage recombination of electrons per unit volume
which is described by a carrier lifetime, 7, as N/7 [34]. From Eq.
2.15 the required input power, P;, to achieve population inversion
becomes:

o NhWASpOt

TOmatl

P, (2.16)
Using material constants from reference [34| , a membrane thick-
ness of ¢ = 340nm and a pump spot of A,y = 2um x Imm, the
estimated input power is P, = 240mW. The required power level
is high, and it is clear that a tight focus, or a shorter waveguide
than 1mm, is called for. The Gaussian beam profile affects the spa-
tial distribution of the population inversion along the waveguide.
Hence, even higher powers might be required to reach a total in-
version and avoid ending up with a section of gain in the center
part of the waveguide, surrounded by absorbing regions, see Figure
2.8. The figure illustrates the smooth transition from pumped to
unpumped regions of the device. Systematic measurements at dif-
ferent pump lengths requires a more well defined profile by cutting
the beam in an imaging plane or just in front of the device.

2.3.1 Thermal Resistance

To obtain the best possible optical confinement in the InGaAsP
membrane, it is surrounded by air. The large index contrast be-
tween the membrane and the surroundings allows light with a large
range of wavevectors to propagate with limited out of plane losses.
It offers a large degree of freedom when designing the PhC. Unfor-
tunately it comes with a huge disadvantage; extremely poor heat
conduction. Additional to the unfavourable geometrical configu-
ration, quartenary material such as InGaAsP exhibit much lower
thermal conductivity (5.93 W/mK) than its binary counterpart InP
(68 W/mK) [69]. Not only amplifiers but also PhC laser structures
suffer from heating, which might prevent CW lasing operation. Also
when CW operation is achieved |70, 71|, heating limits the output
power. Electrically pumped structures, e.g.lasers in [72|, are less

29



CHAPTER 2. PHOTONIC CRYSTAL AMPLIFIERS: THEORY
AND DESIGN

0z . . . . 0.2 . .
-

Moving pump peak
ut of device

1550nm

02 02

04t 04t

06} 06}

0.8 08f

ncreasing Pumping Power

Fopulation Inwversion Factor @@

1 1 1 1 -1 1 - [l [
il 200 400 GO0 |00 1000 0 200 400 BOO 8OO 1000
Fosition (um) Position (um)

Figure 2.8: Left: Spatial population distribution along a 1 QW waveguide
when using an optical pump with a Gaussian beam profile. Right: Illustrating
the scenario when the pump is moved along the waveguide to excite different
lengths of the device. Figure by courtesy of Yaohui Chen, DTU Fotonik.

heated than optically pumped structures, because the carriers do
not have as much excess energy. Also heat-conductive claddings
[73] have proven to improve the thermal properties. In reference
|73] heat dissipation is improved by bonding the PhC membrane to
sapphire. It results in more loss due to the higher index of sapphire
and the non-symmetric device design hampers dispersion engineer-
ing. In general, it is difficult to introduce electrical contacts or in-
teractive heat spreaders [74] without also causing more loss in the
system. This trade-off needs to be balanced to reach optimal per-
formance, but it is desirable to end up with a symmetric design. An
important development is the demonstration of buried heterostruc-
ture PhCs by Matsuo et al. [75]. It is challenging to transfer the
well known buried heterostructure to the PhC platform, due to the
high demands on precision and sub-micrometer feature sizes. How-
ever, such device structure can strongly improve thermal relaxation
and efficiency. By limiting the active region to the waveguide re-
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gion only, a higher confinement of carriers will result in reaching a
complete population inversion at lower pump powers. Burying the
active InGaAsP region in a InP membrane, will limit the heating
to the active region only, and from there it is efficiently conducted
out into the surrounding InP.

The thermal resistance was calculated?for our device design using a
two dimensional finite element method. The differential equation
describing the heat flow in the material is:

V- (=kVT) =ps—pCu-VT (2.17)

where the heat source density p, is defined as the thermal power
(assumed to be 10% of the absorbed power, energy released due
to electron relaxation from excited states to QW states) divided
by the volume of material, T is the temerature in Kelvin, and u
is a velocity vector. Thermal conductivity, k& = 5.93W/(m - K),
density, p = 5120kg/m?, and specific heat, C = 304.J/(kg - K),
are all material parameters [69]. The numerical simulation of the
surface temperature in our 340nm thick Ing77GaAsy 5P membrane
is shown in Figure 2.9. If a pump power of 200mW is absorbed
in the material, the estimated thermal power is 20mIV. From the
simulations a thermal resistance (R = AT/ Pyperma of the structure
was found to be 4.57 K/mW. A 7-fold improvement of the thermal
resistance is expected for an InP membrane.

2.3.2 Pulsed Pumping

The performance of an active PhC membrane waveguide is severely
deteriorated if the material is heated. Allowing time for thermal
relaxation in between each pumping event will prevent a high tem-
perature to build up in the material. Therefore, a pulsed excitation
where each pulse is powerful enough to bring the material into the
gain regime, while ensuring a low overall energy due to a low rep-
etition rate is preferable. It is necessary to reduce the material
heating as much as possible to achieve best device performance.
A heated lattice will spread the carriers in energy and make the
carriers more mobile, and more likely to leak out of the QW /QD

2The thermal simulations were done by Luca Carletti, DTU Fotonik.
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Figure 2.9: Numerical simulation results for a vertical cross section of the
InGaAsP membrane structure. Figure by courtesy of Luca Carletti, DTU Fo-
tonik.

region and hence not contributing to the optical gain. Another im-
portant issue is the physical damage itself. If the temperature is
raised above the temperature for thermal damage the sample will
literally burn, see SEM images in Section 4.2.1.

With a pulsed pump net gain can be achieved during the short
time window when the pulse is present. If the duty cycle is 1% or
less, it means that the material is absorbing most of the time. This
calls for sensitive detection schemes and a synchronization between
pump and signal. If ultrashort pulses are used, in this work a pulse
duration of 1 ps was used in part of the measurements, the time
window where there is a significant carrier excitation is proportional
to the carrier lifetime. The population inversion®induced by a single
pump pulse is shown in Figure 2.10.

As long as the pulses are significantly shorter than the carrier life-
time (which is about 500 ps), the actual pulse duration does not in-
fluence the population inversion and switch-on time window much.
However, the period between each excitation event is important.

3Modelling of active PhC waveguides by Yaohui Chen, DTU Fotonik.
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Figure 2.10: Left: An example of short pulse excitation at different energies.
Right: the corresponding population inversion at each pump power as a func-
tion of time. The time-window for gain is proportional to the carrier lifetime
(set to be 500 ps in the calculations). Figure by courtesy of Yaohui Chen, DTU
Fotonik.
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Chapter 3

Fabrication

The fabrication process developed within this project to achieve
active photonic crystal waveguides is described in this chapter. All
processing is done at DANCHIP cleanroom facility and the process
is developed for the equipment available during the time of this
work. First, an overview of the process is given, followed by more
detailed descriptions.

3.1 Process Overview

The fabricated devices are based on the InP-material system, which
is commonly used for communication applications operating in the
1.31/1.55um regime. The top cladding of the wafer consists of qua-
ternary In;_,Ga,As, Py, (A, = 1150nm) material in which active
layers of quantum dots or quantum wells are incorporated. To-
gether these layers form a 340nm thick active slab in which the
PhC pattern is created. Beneath the active slab there are 1 pm of
sacrificial layers, to be etched away in order to obtain an air mem-
brane structure. A more detailed description of the epistructure is
presented in Section 3.2.1.

A schematic overview of the process is illustrated in Figure 3.1.
Each step as shown in the figure is described briefly below.

Mask deposition A 200 nm layer of SisN, was deposited uni-
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Figure 3.1: An illustration of the processing steps involved to achieve a free-
standing membrane PhC.

formly on the wafer using a plasma enhanced vapor deposition
(PECVD). This serves as a hard mask which shield everything
but the features to be etched into the quaternary material. A
positive e-beam resist (zep520A) is spin-coated onto the hard
mask. The resist viscosity and spin settings were chosen to
obtain a 500nm thick film.

E-beam lithography Patterning is done using a 100kV e-beam
writer JEOL-JBX9300FS. After the exposure the wafer is de-
veloped in ZED N50 for 2 minutes, while constantly swirling
the developer over the wafer to fully develop all features.

Pattern transfer The pattern is transferred onto the hard mask
by C'H F3/0O; reactive ion etching (RIE), more details in Sec-
tion 3.4.1.

Semiconductor etch A cyclic CH;/Hs—Oy RIE was used, which
is highly anisotropic and selective, see section 3.4.1.
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Wet etch The final steps of the processing was completed using
wet etch. A 2 minute hydrofluoric acid etch to remove the
Si3N, was followed by a cyclic 1THCl : 1H>O - HF etch to
remove the sacrificial layers and obtain a free standing air
membrane.

3.2 Sample Layout

Scattering is an important loss mechanism and is reduced by im-
proving the surface roughness, verticality of the holes, and unifor-
mity; means to reduce these fabrication imperfections are discussed
in this chapter. Any device will suffer from fabrication disorders,
and the most efficient way to further reduce the scattering loss is
to limit the device length. Arbitrary short PhC waveguides can
be fabricated if access waveguides made for on chip guiding from
the chip edge to the crystal are used [31]. Such access waveguides
should preferably be passive, to avoid the need to pump them and
to let the PhC waveguide alone be responsible for the amplification.
To achieve that a buried heterostructure 75|, with active material
in selected region of the membrane only, is desired. Another solu-
tion would be to selectively etch away the active layers on the access
waveguides only. The active layers would then need to be placed
close to the top surface of the membrane, corresponding to the edge
of the propagating optical field envelope, resulting in reduced light-
matter interaction. Despite of that disadvantage the layout would
still be interesting. In order to realize it, the membrane needs to
rest on a low index material, which also can support the access
waveguides. This approach, having a low index insulator under the
devices, have proven useful in silicon photonics, as most silicon de-
vices are on the silicon on insulator platform. A non-symmetric
environment around the PhC, with a higher index material below
the slab than above, is undesired because it complicates the designs
and reduces the bandwidth of the PhC guided mode. On the other
hand there could be a lot to gain in being able to reduce the device
size, and through that reduce loss and allow for more tightly focused
optical pump spots. A promising candidate for such a low index
insulator material is oxidized InAlAs |76, 77|, which was investi-
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gated in this work. The waveguide layers can be epitaxially grown
on top of the InAlAs because both are lattice matched to InP. A
wafer with a 1um thick layer of InAlAs underneath a 340nm thick
InGaAsP waveguide layer was used. Ridge waveguides, defined in
the waveguide layer using photo lithography are used in order to
expose the InAlAs layer to the environment in certain areas, while
being able to see the quality of the oxide undercut. Nitrogen is
bubbled through water, heated to a stable temperature of 95 de-
grees. The stream (flow=990 sccm) of gas then enters the furnace
set at 550 degrees, where the sample is oxidized for 30 minutes.
These were found to be the best conditions for the present wafer
and the result is shown in Figure 3.2. The SEM image shows a
side-view of a cleaved facet. The surface roughness at the bottom
of the waveguide layer is considered to be too severe for PhC ap-
plications. Alternatively, access waveguides of a different material
can be used, for example BCB. It can be achieved by bonding the
ITII-V top layer to BCB, recently achieved at DANCHIP with good
yield |78].

InGaAsP

Figure 3.2: Oxidation test of a InAlAs below InGaAsP. Oxidized for 30
minutes at 550 degrees with 95° bubbler.

Due to the unsatisfactory result of the oxidization and in absence
of other methods at the time, all the devices used in this project
are without access waveguides. The device length was therefore
limited by how small chips InP can be cleaved into. A cleaving
accuracy of +5um is required, and that can be achieved for a chip
sizes of about 1mm. In order to obtain shorter PhC amplifiers,
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the PhC waveguide is interrupted by a PhC mirror so that only
one accurate cleave is required and the device length is defined by
the mirror location. Figure 3.3 illustrates the two PhC amplifier
designs.

Figure 3.3: An illustration of the two amplifier designs equipped with tapers.
Left: an amplifier with input and output tapers. This design can be made
down to 900um long, limited by cleaving capability. Right: an amplifier with
one single taper. This design can be made as short as desired.

In- and out coupling losses due to mismatch of mode profiles inside
and outside the PhC waveguide are important loss mechanisms.
The coupling efficiency into the slab PhC waveguide can be im-
proved using an inverted taper, as demonstrated for a passive de-
vice by Tran et al. [79]. The tapers are 6 lattice constants long and
are shown in Figure 3.3, they are added to the device without an
extra processing step. By using tapers the Fabry-Pérot oscillations
which are caused by reflection at the end facets are suppressed, and
lasing action in the amplifiers is avoided. Coupling to slow modes
could be improved further by using a slow light coupler. The abrupt
difference in the spatial distribution if an incoming gaussian mode
and the slow light mode causes a coupling loss greater than that for
fast light. A PhC design which allows for efficient coupling between
the incoming fast light and the slow light could improve the perfor-

39



CHAPTER 3. FABRICATION

mance of slow light devices, examples of such couplers are found in
references 80, 81].

3.2.1 Epitaxial layout

All wafers used in the processing were grown epitaxially!.  The
structure for the wafer with one QW is outlined in Table 3.1. The
top capping layer is there to protect the wafer from dirt trough
the processing and is removed during the final wet etch, along with
etching the sacrificial layers. The InGaAsP (Q1.15) layers with the
incorporated active quantum well in the center makes up the mem-
brane. Underneath the 340 nm thick membrane there are layers of
InP and InAlAs, which together add up to 1um of sacrificial mate-
rial. The choice of sacrificial layers is discussed in Section 3.4.2.

Table 3.1: Epitaxial structure of the wafer with a single quantum
well

Composition  x y  Thickness (nm) comment
InP 20 capping layer
In,GaAs,P 0.77 0.503 163.4 membrane
In,GaAs,P 0.49 0.86 3.6 barrier
In,GaAs,P 0.75 0.86 6 well
In,GaAs,P 0.49 0.86 3.6 barrier
In,GaAs,P 0.77 0.503 163.4 membrane
InP 100 sacrificial layer
In,AlAs 0.52 200 sacrificial layer
InP 700 sacrificial layer
Galn,As  0.53 200 etch stop
InP 50 buffer
InPwafer

LAll wafer growth is done by Elizaveta Semenova and Kresten Yvind, DTU
Fotonik.
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Samples processed on 10QW and 3QD wafers are also presented
in this work. They have similar epitaxial structures but with more
layers of active material in the membrane and with a slightly thinner
layer of InAlAs (100nm) in the sacrificial stack. The 10 QWs are
located in the center of the membrane with a 8.6 nm barrier in
between each well. Figure 3.4 shows the band diagram of the 10QW
wafer (top) and SEM images of 3QD, 1QW and 10QW devices
respectively.

—?00 0 100 200 300 400

Position (nm)

20y eoolnm

Figure 3.4: Top: band diagram of a 10 QW membrane. Bottom: SEM
images of processed samples showing the active material incorporated in the
membrane; 3QD, 1QW and 10QW from left to right.

Only a few groups have been able to achieve InAs QDs on (001)
InP wafer with an emission wavelength at 1.55 pm [82, 83, 84,
85]. The main challenge compared to InAs dots on GaAs is that
the lattice mismatch is lower which leads to larger dots, emitting
at wavelengths beyond 1.65 pm. It has been shown that a thin
underlayer of GaAs [83], or a double capping technique [85] can
be used to control the emission wavelength of the dots. This was

successful in our group using a 1.6 monolayer GaAs capping on top
of the InAs QDs [38|.
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3.3 Patterning

3.3.1 Masking materials

Two masks are used; ZEP 520A which is a high resolution e-beam
resist, and Si3/N,; which can withstand the semiconductor RIE etch.
The Si3N, is deposited using PECVD and the film thickness is
measured with an ellipsometer. The desired film thickness is 200
nm, which is a trade off between it being thick enough to remain
during the entire RIE etch, while being as thin as possible to avoid
shadowing effects, see Section 3.4.1.

The resist is spin-coated onto the Si3N,. It may be diluted with
anisol (methoxybenzene) to desired viscosity. With 11% ZEP spin-
coated for 60s at 2000rpm a thickness of 500nm was obtained.
After the RIE hard mask etch the resist is removed in a heated
(60°C") microdeposit Remover 1165 at a low ultrasonic agitation.
The sample is placed with the pattern facing down in order to
prevent the resist from reattaching onto the surface, and it is left in
the remover for two hours. Any resist residuals left on the surface
are removed by plasma ashing. In the hard mask etch (in CHF3/O;
plasma) the morphology of the resist surface changes, or becomes
damaged. It was found that if the resist is not sufficiently thick,
damaged resist will attach to the Si3/V, surface from where it is very
difficult to remove, and will therefore cause pattern deformation.
Figure 3.5 shows a bad example of the rough edges around each
hole as a result of damaged resist attached to the hard mask.

Figure 3.5: SEM image of a bad example of etched holes with very rough
edges. The roughness is a result a damaged resist, causing non-perfect holes in
the hard mask.
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3.3.2 Electron Beam Lithography

The electron lithography system available at DANCHIP was used
for the patterning in this work. It is an electron beam (e-beam)
writer JEOL JBX-9300FS with an acceleration voltage of up to
100kV . E-beam lithography is employed because of its nm-accuracy
and ability to define sub-um features. An continuous electron beam
is focused using magnetic lenses onto the wafer. The pattern is
written point by point and the writing field is 500um x 500um with
a stitching overlay of 30nm [86]. It is a well known phenomena that
when exposing a dense pattern, such as a PhC, proximity effects
can give rise to a non-uniform exposure [87|. Due to forward- and
back-scattering of electrons from the resist and wafer, the exposed
region becomes larger than the point of beam incidence. Features
in the center of a dense pattern may end up larger than the features
at the edges. This effect can be compensated for by using different
exposure doses for different parts of the pattern |88|.

The dose for all the samples in this work is 220uC per em? and
proximity correction is not used for any samples. However, this
should be addressed for future devices, as proximity effects limit the
processing accuracy of complicated designs with a dense pattern of
features of different sizes.

3.4 Etching

3.4.1 Reactive lon Etching

A highly anisotropic etch is desired to define holes with vertical
sidewalls. Dry etching is therefore a good choice. Photonic crystal
holes with impressive depth have been reported using Inductively
Coupled Plasma (ICP) systems [89, 90|. In such a system a high
density plasma is created by electromagnetic induction, while the
ion acceleration towards the sample is controlled by parallel plate
RF-power. The main advantage of this system compared to a RIE
is that the concentration and ion energy can be controlled sepa-
rately. During the time of this project there was no ICP in the
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DANCHIP facilities so instead we used a RIE parallel plate sys-
tem from PLASSYS. In that system the same RF power generates
the plasma and provides the voltage drop towards the sample that
determines the ion acceleration and bombardment energy. The ion
concentration is mainly controlled by changing the gas flow and the
pressure of the gases.

The two plates in the RIE chamber are the anode; where the gas-
inlets are located, and the cathode, on which the sample is placed.
The applied RF oscillating electromagnetic field creates a plasma
by ionizing the gas molecules. Plasma is a complex mixture of
ions, electrons and neutrals. The electrons have high mobility and
respond to the RF potential, so in each cycle of the field they are
accelerated in the chamber, eventually striking a chamber wall and
are grounded. The ions on the other hand, are heavy and respond
only to the time-averaged potential. Ions are accelerated in the RF
field and strike the sample. Depending on the energy of the striking
ions the etch may be dominantly physical (sputtering) or chemical

[o1].

Ion Assisted Chemical Etching

In the plasma free radicals, etchants, are created. These are neutral
atoms or molecules with unpaired electrons. The etchants chem-
ically etch the sample by reacting with the material, in order to
form more stable products. If there were no crystallographic effects
this would result in an isotropic etch; with an equal etch rate in all
directions. It would resemble a wet etch of the material with poor
pattern transfer due to a severe undercut of the masking material.

The chemical etching may be assisted by accelerated ions striking
the surface to be etched. At the bombardment site the desorption
of the etch-product is increased allowing access for more radicals.
Ions are accelerated vertically in the chamber and are therefore only
bombarding the sample surface which is not shielded by a mask.
The etch rate on the bombarded surface is much higher than on the
sidewalls, leading to anisotropic profiles [35]. The term "reactive
ion etching" is slightly misleading; the chemical nature of the ion
does not influence the yield much, it is the neutral which reacts with
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the material and dominates the etch rate and selectivity [92]. If the
energy of the bombarding ions is sufficiently high (about 400eV for
argon ions), they may physically brake the bonds in the material
to be etched (sputtering). The result will be a highly anisotropic
etch, with severe damage on the etched surface and poor selectiv-
ity - requiring a mask which can withstand the sputtering. Ion
assisted chemical etching show much faster etch rates than sput-
tering and with good anisotropy. Together with other advantages
such as less damage and better selectivity makes it the preferable
etching technique.

The RIE Chamber

The PLASSYS system used in this project is a parallel plate system
with an RF frequency of 13.56 MHz. The cathode is located in the
bottom of the chamber, covered by a quartz plate on which the
sample is placed. The quartz plate is cooled to 20 degrees Celsius.
The anode is centred at the top of the chamber, and that is also
where the gas inlets are located. The pressure in the chamber is
maintained with a turbo pump and controlled via a throttle valve.
Because there is no load lock on the chamber in DANCHIP, chloride
based etches cannot be used due their highly corrosive and toxic
nature.

Hard mask etch

RIE of SigNy is done in a CHF3/Oy plasma and the etch rate
is found to be 17 nm/min, comparable to that found in reference
[93]. The following settings is used: 15scem C'HFj3, 1scem O, at
a pressure of 10 mTorr and RF power of 13W/. The samples are
slightly over etched to achieve vertical side walls.

It is important that neither of the masks are too thick to cause
shadowing effects, as illustrated in Figure 3.6. Small features re-
quire a thinner mask. All ions does not strike the surface perfectly
vertically, with a thick mask only a small fraction of the ions will
reach the etch surface which will reduce the etch rate [91].
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Figure 3.6: An illustration of the shadowing effect. The etch rate is reduced
if the ions have limited access to the etch surface.

Semiconductor etch

Excellent anisotropy can be obtained for In-based compounds us-
ing reactive ion etching (RIE) with C'Hy/H, mixtures. InP etching
using CHy/Hy chemistry was first reported by Niggebrugge et al.
in 1985 [94]. Most earlier studies on RIE of InP used chlorine-
containing gas-mixtures [95]. However, chlorinated gases are toxic
and corrosive and they etch photoresist and Si3/N4 at significant
rates [96]. The etch profile and surface smoothness do not meet
the requirements either [97|. Also C'H,/H, plasmas have disad-
vantages. It is found that a low concentration of methane in the
plasma gives a low etch rate, probably due to species depletion. As
the concentration increases, the etch rate increases as well. When
the methane concentration is increased above 20% the rate is de-
creased again. This is likely to be caused by the creation of a film
of deposits on the surface. A. Carter et al. found that the film
could be removed with Oy plasma and assigned therefore the film
to be organic [97]. The polymer film will even put the etch to a
full stop if too thick. In order to avoid that the polymer is removed
using an O, cleaning step in between each C'Hy/Hs etching cycle.
A total of 45 minutes of C'H,/H, etching is used for the 340nm
thick membrane. The etch rate is much lower for compounds con-
taining aluminium [98]. In our epitaxial layout we have included
a layer of InAlAs in the sacrificial layers to assist membranization.
Due to the low RIE etch rate in this material the PhC holes are
not etched trough that layer. Closest to the membrane layer there
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is a 100nm thick InP layer to assist epitaxial growth. The holes are
etched through the InP layer before the etch stops at the InAlAs
layer. The ability to etch the holes slightly deeper than necessary
improves the side walls of the holes. Figure 3.7 shows a SEM image
of the etched PhC holes.

Figure 3.7: A SEM image of the a cleaved facet of the PhC pattern after the
CHy/Hs - Oy cyclic etch and hard mask removal.

3.4.2 Wet etch

The sacrificial layers below the membrane layers need to be removed
in order to achieve a free standing membrane surrounded by air. In
difference to the anisotropic RIE etch, it is desired that this etch
is isotropic. All material 1um below the membrane needs to be re-
moved, and the only way to access the material is through the holes.
A wet etch which etches not only downwards but also sideways is
desired, to remove the material also in between the holes. Several
issues may prevent a successful result, such as; poor isotropy, the
creation of etch products which prevents further etching and mem-
brane collapse. Therefore, this step required process development
as discussed in this section.

It was found that InP alone could not be used as sacrificial layer.
Efforts to etch InP sacrificial layers with HCl : H0O resulted in
cylinders of removed material under each hole. Also for long etch
times it was not possible to etch away the side-walls in between
each cylinder. To open up a clear window under the membrane a
layer of InAlAs was placed in the top part of the sacrificial slab.
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The etch rate of HCl : H,O on InAlAs is much lower than for InP,
but it is also much more isotropic. A thin layer of InAlAs, i.e. 100
nm, is enough to clear all material under the crystal. Once that is
achieved, the wet etch has access to the full top area of the volume
to be etched, so also a more anisotropic etch is capable of removing
the remaining material.

When choosing thickness of the InAlAs layer, several factors needed
to be taken into account. A thin layer is desirable to limit the
creation of bi-products and to reduce the etch time. On the other
hand, a sufficiently thick layer is required to open up a large enough
window for further etch down into the InP. Figure 3.8 (left) shows a
sample with too thick InAlAs layer (800nm), the sample have been
etched for 5 minutes with 1HCI : 1H50 and only 150nm of the
sacrificial layer is etched. Figure 3.8 (right) shows a sample with
a thin layer of InAlAs (50nm). The sacrificial InP material still
remains under the PhC waveguide, even after a total etch time of
8 minutes 1HCl : 1H,0O with a HF clean after half the etch time.
A likely explanation is that the wet chemistry could not access the
surface sufficiently due to the narrow window, the problem is more
critical under the waveguide where the distance between the holes
is twice as long.

Figure 3.8: Two samples with different InAlAs thickness. Left: 800 nm.
Right: 50 nm.

Unfortunately when wet etching the InAlAs layer, a bi-product is
created which, if thick enough, hinders further etch. The compo-
sition of the bi-product is unknown, but it was found to be partly
removed by HF. The samples were therefore iteratively cleaned in
HF after each 5 minutes of etch in HCl : H>O. This prevented
the etch to stop, but the debris of the etch product was still visible
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on the membrane, see Figure 3.9 (left). Khankhoje et al. have
reported that they successfully removed an etch product believed
to be hydroxide of aluminium in a solution of potassium hydroxide
(KOH) [99]. Efforts to remove the debris with a 150s dip in KOH
only left the surface in a worse condition, see Figure 3.9 (right). A
150s long KOH treatment of the sample did not remove the debris,
and left the surface dirty in a non-uniform manner. This particular
sample contained 5 layers of QDs (visible in the image) and the
debris on the top surface is believed to be a result of etching the
200nm thick InAlAs sacrifical layer.

Samples with 100nm and 200nm thick InAlAs sacrificial layers were
membranized successfully. But because it is not possible to remove
all of the created bi-product a InAlAs thickness of 100 nm was used
in the 10QW and 3QD samples to limit the debris thickness.

Figure 3.9: Left: SEM image at high magnification showing the debris on the
top surface, created in the wet etch of the 200nm thick InAlAs sacrifical layer.
The lines in the membrane are the active layers. Right: SEM image showing
the surface condition of the same sample after a 150s dip in KOH.

Both HCl and H3PO4/HCI are very selective and etch the sacri-
ficial layers at a fairly high etch rate while leaving the membrane
practically untouched, due to the low etch rate in quartinary mate-
rial. But the phosphor based etch causes the membrane to collapse
while the hydrochloride based etch results in a free standing mem-
brane even for crystals which are more than 30um wide as shown in
Figure 3.10. Neither of these two samples were dried in a controlled
environment (in a critical dryer for example), only a gentle stream
of nitrogen was used. As the aqueous solution under the membrane
is evaporated out, attractive forces may cause the membrane to
sink down towards the etch stop layer. It is believed to depend on
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the surface condition. The problem could probably be avoided by
drying the sample slowly in a humid environment.

Figure 3.10: Identical samples on a wafer with a 200nm thick InAlAs sac-
rifical layer, the only difference is the wet etch chemistry. Left: H3PO4/HCI
etch. Right: HCl : H5O etch.

Using a hydrochloric based etch the PhC membranes may be dried
with nitrogen without it causing the membrane to collapse. This is
an important property because the samples need to be dried several
times during the wet etch procedure developed for these samples:

{2min HF + 1 min H,0O + N,
5min 1HCl: 1H,0 + 0.5 min H,O} x 3

The first 2 minute HF etch removes the Si3N, and the following
three iterations of hydrochloric etch intervened with HF creates the
free-standing membrane. If the sample is not dried before each HCI1
etch, then there could still be water left under the membrane, caus-
ing an uncertainty in HCl : HoO concentration in that region. Fi-
nally, the sample is inspected in an optical microscope where defects
may be detected. However, a verification if all sacrificial material
is removed under the PhC membrane requires a SEM imaging of
a cleaved facet. Figure 3.11 shows the final device after cleaving,
including the taper.
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Figure 3.11: SEM image of 2D membrane PhC. a) Top view showing the lin-
ear waveguide defect. b) Sideview of a cleaved facet showing the free-standing
membrane surrounded by air, for efficient confinement in the third dimension.
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Chapter 4

(Gain Measurements on
Photonic Crystal Amplifiers

Many properties of the PhC waveguides presented in this thesis
are directly related to the dispersion of the crystals. This chapter
begins with a presentation of the measured group index of our sam-
ples using two different experimental methods. It is then followed
by the main results of this work; an experimental demonstration
of slow light enhanced amplified spontaneous emission (ASE) and
gain in PhC amplifiers. The samples are optically pumped from
the top, using a pulsed pump to limit heating. It is found, that
including more QWs in the active layer of the membrane does not
only increase the gain, but also the losses, thus a strong excitation
is required. Gain measurements on 10 QW samples using highly
energetic pulses of light are presented in Section 4.5. During strong
excitation other effects such as the formation of localized modes oc-
cur at the band edge. The presence of localized modes, which are
explained as random lasing, leads to a loss of carriers which will
not contribute to amplification of the transmitted light. This can
deteriorate amplifier applications if not properly controlled. It is
therefore important to understand localized random lasers, which
are also interesting in a fundamental point of view [100]. Random
lasing results on the 10 QW PhC waveguides are given in Section
4.6.
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4.1 Dispersion Measurements

Two methods were used to measure the dispersion. All disper-
sion measurements are done on 1 QW samples. First we present a
method where the group index is extracted from Fabry-Pérot oscil-
lations in the emitted ASE from active PhC waveguides. One limi-
tation is that the method require devices of limited length without
tapers. The second method utilizes a Mach Zender Interferome-
ter (MZI) to measure the group index and samples of any length
preferably with tapers can be measured [59]. However, the current
measurement set-up at Thales Research and Technology does not
allow for optical pumping of active PhC waveguides.

It is desirable to measure the group index on the same devices
that are used for further characterization. The devices used in this
project are up to Imm long, making the Fabry-Pérot method un-
suitable. Measurements on a shorter PhC waveguide which is an
identical copy of a longer crystal, will give valuable information
about the dispersion, and the spectral position at which the light
is slowed down. However, each PhC waveguide suffer from fab-
rication imperfections so creating a perfectly identical copy is not
possible. Furthermore, the imperfections cause propagation loss for
slow light, so the maximum group index achieved in a short PhC
waveguide might not correspond to the magnitude of the group
index in a longer PhC waveguide [101].

4.1.1 Fabry-Pérot Measurement

As described earlier, all devices are equipped with tapers to im-
prove out-and in-coupling and to suppress reflections at the end
facets. Reflections will promote Fabry Pérot oscillations, undesired
in amplifiers. However, the group index may be deducted from the
Fabry-Pérot oscillations [29, 30[, so in that sense they become use-
ful. Short PhC waveguides terminated with a flat end-facets and air
on both sides, were fabricated. The length of the crystals are 50um,
which results in a fringe-spacing of about 0.6nm for a groupindex
of 40, according to Eq. 4.1 below. That fringe-spacing is possible
to resolve on the optical spectrum analyser at a resolution band-
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width (RBW) of 0.1nm. Using the wavelength spacing A\ between
adjacent Fabry-Pérot peaks and the length L, the group index is
calculated using:

ng = A*/(2LAN) (4.1)

The active sample to be characterized is pumped from above with
200mW of laser light with the wavelength 980nm. The pump-light
is focused onto the PhC waveguide using a cylindrical lens, more
details on the pumping scheme is found in Section 4.2.1. When
pumped, the active material in the membrane will spontaneously
emit light, serving as an internal light source. The ASE will prop-
agate through the PhC waveguide and a fraction of the light will
reflect at the end facets. Interference effects will lead to the well
known transmission spectra of Fabry-Pérot cavities, with a fress
spectral range that depend on the length of the cavity and the
group index. The ASE is collected at the output facet using a
lensed fibre, a typical spectra and the corresponding group index is
shown in Figure 4.1. Note that the oscillation period is not constant
for all wavelengths, it becomes smaller for wavelengths approaching
the band edge, reflecting the increase of group index as the band
edge and the slow light region is approached.
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Figure 4.1: Spontaneous emission from a 50um short PhC waveguide with a
hole diameter of 210 nm and flat end facets (RBW= 0.1 nm). The deducted
group index is shown in green.

The decrease in group velocity is significant close to the cut-off
(vy = ¢/ny = ¢/40). The measured group index correspond nicely
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with the theoretical predicted in Figure 2.1. A small spectral offset
is seen due to slightly larger hole diameter in the fabricated device.
One should be aware of defects such as random Fabry-Pérot cavities
in the waveguide might cause narrow-spaced fringes, not necessary
related to a high group index. Another drawback with this method
is that special samples need to be fabricated only for this mea-
surement. The short waveguides for group index measurements are
fabricated only 100pum away from the 1mm long amplifier device,
so that the processing of the two is as similar as possible.

4.1.2 Mach Zender Interferometer Measurement

Another method is to use a fibercoupled MZI [59]. A schematic of
the set up is shown in Figure 4.2. Continuous wave light from a
tunable laser is guided through the two arms of the MZI, the disper-
sive element (the photonic crystal waveguide) is placed in one arm.
When sweeping the emission wavelength from the laser, the phase
evolve differently in the two arms which produces a beating. The
real part of the transfer function, F(w)i, = E(w)eu * |T(w)]e?®“),
is obtained by measuring the beating between the signal and the
reference using two counter balanced detectors. The accumulated
phase along a PhC waveguide of length L equals: ¢(w) = k(w)L,
where k(w) is the wavevector [102]. The group index can then be
retrieved using the relation v, = Ow/0k. If the signal from the
balanced detector drops, it might be difficult to tell if the drop is
caused by changes in ¢(w), or in transmission intensity |T'(w)|. By
performing a Fourier transform of the signal, also very high group
indices, where transmission typically drops due to scattering, can
be measured accurately.

Measured dispersion maps from 1 QW PhC waveguides are shown
in Figure 4.3. The two dispersion maps are from 1mm long PhC
waveguides with two different hole sizes. Transmission intensity is
colour coded, where maximum signal is dark red, and dark blue
is zero (logarithmic scale). Light is slowed down in the spectral
region where the transmission through the PhC waveguide is de-
layed in time relatively the arm without a dispersive element. For
the first waveguide (dispersion map to the left), this occurs at
1570 — 1590nm. Due to the larger hole diameter in the second
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Figure 4.2: An illustration of the MZI set up for dispersion measurements.

waveguide (right), the slow light region is shifted to shorter wave-
lengths 1550 — 1570nm. Because the length of the PhC waveguide
is known, the group index can be derived from the measured time
delay. Figure 4.3 (left): a delay of 15ps (28ps) at A = 1520nm
(A = 1590nm) results in a group index of n, = 4.5 (n, = 8.4). A
similar group index was measured on the second waveguide. It is
apparent from the dispersion maps that there is no transmission
for wavelengths longer than a group index around n, = 8, although
higher group index is expected. As discussed earlier, slow light
experience loss due to scattering because it is more sensitive to fab-
rication imperfections. However, it was not the only cause of the
low group index for these samples. During the measurements the
sample was imaged from the top with an IR camera. The propa-
gating mode is seen as a bright line along the waveguide, arising
from a certain degree of scattering which is present for all guided
wavelengths. The out of plane scattering increased slightly for slow
light, but not enough to be the main loss factor. It was evident that
the slow light was absorbed in the un-pumped QW. The slow light
mode could only be seen the first 200pm into the waveguide, after
this point its scattered intensity faded out to zero. In an absorbing
material, the absorption is expected to be enhanced by slow light.
The measurement demonstrates that light with low group velocity
is more stongly absorbed than fast light.
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Figure 4.3: Time-wavelength map of two 1 QW waveguides. The colour code
is normalized to the highest transmission. Dark red indicates 0 dB while dark
blue indicates 100 dB. Left; lattice constant 400nm and hole diameter 210nm,
the same design as sample A (Section 4.3.1). Right; lattice constant 400nm
and hole diameter 225nm. The dispersive region moves 20nm in wavelength
for the larger hole size, as expected.(15ps — ngy = 4.5 and 28ps — ny = 8.4 )

4.2 Experimental setup

It is challenging to couple light into waveguides with small cross-
area. In Chapter 6, a free-space input beam is aligned after the
amplified spontaneous emission, emitted from the SOA under elec-
trical bias. When no bias is applied to an SOA, it turns into a
photo detector. So once a rough alignment is achieved, the in-
coupling may be optimized while measuring the photo current in
the sample. However, optically pumped PhC amplifiers are un-
able to provide the same feed-back. For free-space coupling into
the PhC waveguides, good imaging with a camera sensor sensitive
to infrared light is desired. In this work we only had access to
such a camera during a short period of time, which is the main
reason why a fibre coupled setup was used. In many aspects, free-
space optics is advantageous. The polarization is easier controlled
and maintained in a free space set-up and light undergoes limited
dispersion. Dispersion is not a problem in the measurements pre-
sented in this chapter, because continuous wave (CW) laser light is
used. For short pulse experiments on the other hand, fibres might
cause severe pulse broadening. Both setups are sensitive to the
laboratory environment; free space optics are sensitive to dust and
particles, while air fluctuations can cause movement in the lensed
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fibres aligned to the device. To ease alignment a fibre-coupled setup
was used, and we were painfully reminded too many times about
the main drawback fibres have compared to free-space optics; the
risk of the fibre crashing into the fragile PhC membrane.

Polarization control

It is important that the input light is linear polarized in the po-
larization state under characterization, most often TE. Because
PhC waveguides are polarizing components, the polarization can
be adjusted while studying the transmission through each waveg-
uide using a manual fibre polarization controller. This holds for
samples with good transmission and limited absorption. When the
TE-polarized light is highly absorbed, for example in a multi QW
sample, the polarization needs to be set before it is coupled into
the device, and kept throughout the measurements. A polarization
maintaining fibre preserves the polarization which is launched into
it, making it a good choice for highly absorbing samples. In or-
der to be able switch in between TE and TM polarized light in a
controlled manner, a manual fibre bench polarization controller is
used.

Transmission measurements

The light source used for transmission measurements is a CW tun-
able laser (Ando AQ4321D). The laser is synchronized with an op-
tical spectrum analyser (Ando AQ6317B).

A schematic of the transmission setup is shown in Figure 4.4, light
from the fibre coupled laser is polarization controlled, guided through
the sample using lensed single mode fibres and finally detected. By
sweeping the wavelength of the laser, while simultaneously measur-
ing the transmitted light at the same wavelength, a transmission
spectrum over a wavelength range of 100nm is obtained. Trans-
mission measurements are preformed on the active samples while
pumping at various powers, as outlined in Section 4.4.2. Gain mea-
surements with a pulsed pump can with advantage be carried out
with a more sensitive detection at the repetition rate of the pump.
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Figure 4.4: An illustration of the fibre-coupled transmission setup. Light
from a tunable laser source (TLS) guided through the device under charac-
terization and the output is detected on an optical spectrum analyser (OSA),
synchronized with the TLS.

After filtering out the scattered pump light from the transmitted
light, it is then detected with an InGaAs detector, connected to a
lock-in amplifier. In this scheme the change of transmission induced
by the optical pump is measured, hence the absolute gain can not
be measured. Instead, a relative gain is derived. The relative gain is
defined as the logarithm of the differential transmission normalized
with the transmission at the lowest measurable pump power.

For PhC amplifiers designed with a mirror, i.e. only one taper, a
fibre optic circulator is used to couple light in and out through the
same fibre.

Measurement of the amplified spontaneous emission

The ASE is measured by collecting the emitted light from the
pumped device using a tapered fiber. The amplified spontaneous
emission (ASE) from an optically pumped sample provides a lot of
information about its properties. A slow light enhancement can be
seen in the ASE spectra, and the modal gain can be derived from
ASE spectra accumulated while pumping different lengths of the
PhC waveguide. In order to extract gain from the measurements,
the pump lengths needs to be well defined and the power fluence as
uniform as possible. The gaussian profile has a smooth transition
between high and low intensity at the edge of the spot. In order to
achieve a step-like transition between light on and off, a thin piece
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of metal was placed as close to the sample as possible, partially
shadowing the pump. Only the center part of the spot is used by
positioning the pump spot so that the other tail of the gaussian
profile falls outside the wafer edge. The optical pumping scheme is
detailed in next section.

For measurements requiring better sensitivity, a liquid nitrogen
cooled InGaAs spectrograph (Acton SP2500) was used. The spec-
tral range of the cooled InGaAs sensor is 700 — 1600nm.

4.2.1 Optical Pumping Scheme

Due to poor thermal conductivity of the quaternary material in
combination with the free standing membrane quite severe pump-
induced heating effects can be experienced. Actually, even to the
point where the sample was burned. SEM images in Figure 4.5 show
two burned samples. The one to the left was burned when pumped
with 300mW continuous wave (CW) and the sample shown to the
right was burned at the taper when trying to couple light with too
high intensity into the waveguide. It was found that a maximum
of 1mW can be focused onto the taper. It is therefore not possible
to pump the device through the waveguide, unless short pulses are
used.

The measurements were performed at room temperature and in or-
der to reduce heating effects the pump was pulsed in most of the
measurements. Two different lasers were used to optically pump
the active PhC waveguides. To ensure efficient absorption, a pump
wavelength which excites carriers into the InGaAsP barrier material
is chosen. The first source is a laser diode emitting at A\ = 980nm
with an output power up to 300mW , it can be driven at continuous
mode or using a pulse generator, resulting in down to 500ns long
pulses at 1% duty cycle. The other source is a laser setup gen-
erating fourier limited pulses with a minimum duration of 150fs
at a repetition rate of 250k H z, emission wavelength 800nm. The
pulses are generated in a mode-locked laser (Coherent Mira 900
Ti:Sapphire). The output from the Mira is then amplified in a Re-
generative Amplifier (RegA Coherent Ti:Sapphire), leading to high
intensity output with a pulse energy of 4uJ. The laser system is
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Figure 4.5: SEM images of 1 QW PhC waveguides, each during experiments.
Left: burned when pumping CW with 300mW, 980nm from the top. Right:
burned when coupling CW 2mW, 1550nm onto the in-coupling taper.

used also in Chapter 6, where experiments utilizing the full poten-
tial of the laser system are presented. For the PhC measurements
in this chapter the output from the RegA is merely used to opti-
cally pump the device, because it offers more energetic pulses than
the diode can offer. Only a small fraction of the full intensity is
split off to be coupled into a fibre, a pulse energy of about 35n.J
(corresponding to an average power of 10mW) is used to pump the
devices. Short pulse propagation through fibre causes pulse broad-
ening, leading to an output pulse duration of about 1ps, which still
is short enough to avoid heating the sample.

A pump spot covering the full length of the device (up to 1mm)
is required, with tightest focus possible across the PhC waveguide
(on the order of micrometers). There is limited space close to the
sample because fibres needs to access the sample on both sides,
and an imaging objective is limiting the space above the sample,
see a photo of the set in Figure 4.6. Imaging using a visible, or
an infrared camera is necessary to align and focus the pump spot
onto the waveguide. It is essential to be able to pump and image
the sample independently of one another, so a separate lens sys-
tem was built for the pump. A long working distance microscope
objective clears enough space for the following configuration: the
pump light is collimated at the output of the fibre, using a commer-
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Figure 4.6: A photo of the optical pump scheme.

cial available collimation package (Thorlabs, F810FC-780). Within
the focal length of a planar convex lens (f = 38mm), a cylindrical
lens (f=20 mm) is placed. The cylindrical lens focuses light along
one axis and its focal point is slightly misaligned with the convex
lens’ focal spot. The length of the spot is determined by the posi-
tion of the cylindrical lens. The focal length of the cylindrical lens
was chosen so that it can be mounted as close to the sample as
possible without shielding the field of view through the microscope
objective. The large diameter (7 mm) of the collimated beam en-
sures a tight focusing despite the relatively long focal length of the
cylindrical lens.

All measurements in Section 4.3 and 4.4 are done with 980 nm
diode as pump, while the measurements in Section 4.5 and 4.6 are
done with RegA or MIRA respectively.
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4.3 Enhanced Amplified Spontaneous
Emission

A lot of interesting information can be deducted from the ASE
emitted from active PhC waveguides. The spectral shape of the
emitted light reveals the strong impact the band gap material has
on the propagating light, see experimental study in Section 4.3.1.
An enhancement of the ASE is observed close to the band edge of
the fundamental mode. The enhancement is attributed to the de-
crease in group velocity for wavelengths approaching the band edge.
Light within the slow light regime of the PhC will be enhanced
because coherent backscattering and omnidirectional reflection in-
creases the path length through the amplifying medium. The modal
gain of the device determines how much the spontaneous emission
is amplified as it propagates along the waveguide. For positive net
gain, a longer propagation length results in higher output inten-
sity; exponentially related to the modal gain. The modal gain of
the device can therefore be extracted from ASE measurements ac-
quired at many different, well defined, pump lengths; as presented
in Section 4.3.2.

4.3.1 Experimental Study of the Slow Light
Enhancement

In this section experiments aiming to demonstrate slow light en-
hancement of the amplified spontaneous emission are presented.
Photonic crystals with a variation of lattice constants and hole di-
ameters are used to show that the effect is consistent, and can be
tuned to desired wavelength region by altering the photonic crystal
design.

From weak to strong enhancement

The PhC has a pronounced effect on the emitted light from the
QW, as shown in Figure 4.7 (left). The figure shows emission from
three different waveguides with different hole sizes, located only
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200pum away from one another on a 1 QW wafer, when pumped
with 200mW from the 980 diode (CW). All spectra are normalized
and plotted with an offset for clarity. Only the smallest diameter is
designed to exhibit strong photonic crystal effects, the others show
very weak or close to no effects due to the large holes. The different
spectra differ significantly; the QW peak at 1525nm can be seen in
all spectra, but as the holesize decreases the spectral shape changes
drastically. ASE from the crystal with a hole diameter of 210nm
show a strong enhancement for wavelengths around 1590nm, after
which the intensity abruptly drops due to the PhC band edge. It
is known from the dispersion measurements that the wavelength
region where the enhancement occurs overlaps with the slow light
region of the crystal, see the group index measurement of this PhC
design in Figure 4.1. It is also noted that the band edge is shifted to
longer wavelength when the hole diameter is decreased, as expected.
The peak about 10nm away from the band edge is TM polarized
light, verified in the measurements presented in Figure 4.9 below.

Sample A
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Figure 4.7: Left: Spontaneous emission from three different 1 QW waveguides
with hole diameters of 210, 245 and 290 nm. Pump alignment and pump
intensity are comparable between the samples (Pump: 980 nm diode, power
200mW CW). The curves have been offset for clarity. Right: Further study on
the waveguide with a hole diameter of 210 nm. ASE at different pump length,
the legend indicates the central position of the 1mm long pump spot where 0
is at the out-coupling taper.

Dependance on pump length

Figure 4.7 (right) shows the effect altering the length over which
the sample is optically pumped (200mW,980nm, CW), thereby
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effectively varying the waveguide length over which spontaneous
emission is generated. The PhC waveguide with a hole diameter
of 210nm from Figure 4.7 (left) is used. The whole pump spot
is moved along the waveguide in these measurements. First it is
severely shifted out over the fibre collecting the ASE and then it is
stepwise shifted inwards to pump a longer section of the PhC waveg-
uide, to finally cover almost the full 1mm device length. When
pumping only the very tip of the PhC waveguide the emitted light
is barely affected by the band gap of the PhC and the spectrum
is close to pure QW emission. As the pump length increases, the
enhancement increases dramatically in the slow light region. Also
the low, as well as high energy cut off, becomes more apparent.
The results of these measurements confirm our interpretation that
the photonic crystal dispersion enhances the ASE.

Variation of pump power
1 QW

A study of the ASE as a function of pump power is presented here,
aiming to compare the emission from the PhC waveguide with that
from the wafer itself. A better detection sensitivity is required to be
able to measure at very low pump powers, the OSA was therefore
replaced by the cooled InGaAs spectrograph in these measurements.
Measurements on a PhC fabricated on the same 1 QW wafer, but
with smaller hole diameter is used to show the tunability of the
slow light enhancement. Figure 4.8 shows the ASE from a PhC
waveguide, sample B, with its band edge at 1558nm, and ASE from
the wafer, measured close to the waveguide. Both are measured at
pump powers ranging from 7 — 125mW, CW. When measuring the
emitted light from the wafer itself, the fibre is aligned to be in
level with the active layer, and focus is adjusted (distance between
fibre and wafer) to optimize in-coupling into the fibre. There is
no defined waveguide in the bulk wafer. However, the pump spot
is a narrow line, identical to the one used for pumping the PhC
waveguide, and light is detected at the cleaved facet. This means
that light is very weakly guided, which is why the emission from
the wafer also is denoted ASE.
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Looking closer at the measurements in Figure 4.8 b), heating is seen
as a red-shift of the spectral features (about 2nm) between the low
and high pump powers. For the bulk wafer (a) heating is not as
big of an issue, because heat can dissipate down into the wafer, and
does not accumulate in the pumped region as it does in air-slab.
Heating of the membrane cause carrier loss. Studying the ASE
normalized with the ASE,, s, displayed in ¢), an amplification of
2 — 4 times can be seen over the full spectra, with the maximum
4-fold enhancement in the slow light region close to the band edge.
The spectral shape shows a clear signature of the photonic crystal
dispersion.
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Figure 4.8: a) ASE spectra from the 1 QW wafer at CW pump powers
ranging from 7-125 mW (980 nm) b) ASE spectra from sample B ¢) The nor-
malized ASE, showing the PhC dispersion influence on the spectral shape and
an enhancement in the slow light regime. (cps = counts per second)

In Figure 4.8 b) a peak about 10nm away from the band edge is
apparent. Its relative intensity compared to the slow light emission
is less here than in previous measurements. The reason is because
a half wave plate is now placed in front of the free-space coupled
spectrograph such that mainly TE-polarized light is detected. The
emission from the QW at the wafer edge is highly polarization de-
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pendent. A half wave plate is placed in front of the detector, and
it is aligned to optimize the signal from the wafer, corresponding
to TE polarization. A quarter wave plate is placed in front of the
half-wave plate to ensure planar polarized light. The TE and TM
polarization state of the emission can then be measured indepen-
dently, Figure 4.9 shows both polarizations of the ASE emission
from sample B. It is clear that the peak is TM polarized light, and
not a part of the TE fundamental mode. As seen in the dispersion
diagram for TM polarized light in Figure 2.4, TM modes close to
the TE fundamental mode exist. The observed TM peak is assigned
to be a spectrally narrow slow light region of a TM mode.

1 |—T™
—TE

Normalized intensity
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Figure 4.9: ASE from sample B (1 QW), collecting the TE (black) and TM
(red) polarized part of the emitted light respectively. Pumped with 200mW
CW using the 980 nm diode in continuous mode.

10 QW

A power dependance series with comparison of the wafer emission
was carried out on 10 QW samples as well. Figure 4.10 shows
measurements on a PhC waveguide with its band edge located at
1580nm, which is a big offset to the center QW emission at 1540nm.
This sample is from here on referred to as sample C, as further
measurements on the same waveguide will follow. Figure 4.10 (left)
shows the ASE when pumping with 980 nm diode, CW 7—125mW,
identical to the pump scheme used for sample B (1 QW) in Figure

68



4.3. ENHANCED AMPLIFIED SPONTANEOUS
EMISSION

4.8, in order to make them directly comparable. When comparing
the ASE from the wafer (ASE, ) with the ASE from the PhC
(ASEppc) an obvious shift of the peak intensity can be observed.
That the maximum of the ASEp,c overlaps with the slow light
regime, rather than the material gain maximum. The emission
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Figure 4.10: Left: a) ASE spectra from the 10 QW wafer at CW
(980nm)pump powers ranging from 7-125 mW b) ASE spectra from sample
C (10 QW) ¢) The normalized ASE. Right: ASE spectra from sample C (10
QW) when pumped with RegA (1 ps pulses, repitition rate 270 kHz), the legend
shows the average power.

from the 10 QW wafer shows three times higher intensity than the
emission from 1 QW. The fact that the pump powers are identical
for the single and multi QW wafer, means that the same amount
of carriers are absorbed in the two cases. With more wells in the
membrane the possibility for carriers to be captured in one of the
potential wells increase. This leads to more carriers contributing to
the spontaneous emission in the multi QW wafer than in the wafer
with a single well, hence a stronger 10QW ASE,,, e signal. The
emission from the wafer is predominately SE, because there is no
waveguide present.

The captured carriers are distributed in the 10 QWs, leading to a
lower carrier density in each well. The emission from the 10 QW
PhC sample C is much weaker than the emission from the wafer
itself, seen in magnitudes of the ASE spectra and also in Figure
4.10 (left ¢). That indicates that an inversion is not achieved and
the material is in the absorption regime. The ASE emission is then
expected to be low, and the collected emission could be mainly
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spontaneous emission from the region closest to the out-coupling
taper. For the wafer, SE is emitted from a larger spot than from
the PhC waveguide where only limited SE is expected from the
PhC cladding regions, hence a higher SE intensity is expected from
the wafer. More loss is expected in the PhC than in the wafer
for two resons; firstly, the PhC suffers from more heating than the
bulk wafer, where heat can dissipate down into the wafer. Heating
causes a spectral red-shift, and by looking at the spectra Figure
4.10 (left b) a 6nm shift can be seen. Secondly, the large matrix of
holes etched through the active medium in the PhC cause surface
recombination. Surface recombination is known to be a big loss
factor in these samples, since they are not passivated.

The 1 QW AS Epyc signal from sample B is larger than the ASEp;, ¢
from 10 QW sample C (about 30 times more) because a popula-
tion inversion is achieved, so the SE is amplified as it propagates
through the 1 QW waveguide. Surface recombination is just as an
important loss factor for a 1 QW sample as for a 10 QW sample. It
is proportional to the carrier density, however at high carrier den-
sities (as achieved in the single QW) the surface states begins to
saturate [103].

Figure 4.10 (right) shows the ASFEpj¢ from sample C, when pumped
with short, highly energetic pulses from the RegA. The average
power of the 1ps, 270k H z pulse train is indicated in the legend. At
similar average pump powers, the output intensity increases with
three orders of magnitude when pumped with RegA compared with
the CW 980 diode. The higher ASE intensity when using a short
pulse excitation indicates that during a time window, corresponding
to the carrier lifetime after the pump pulse have excited the mate-
rial, net gain is achieved due to the large carrier density. From these
measurements it is concluded that the 10 QW samples require the
high pulse energy from the RegA in order to enter the gain regime.

4.3.2 Gain Measurements

Modal gain can be extracted from ASE measurements from waveg-
uides of different length. Omne would like to avoid deriving gain
from a range of PhC waveguides with different length, because the
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propagation loss might vary between samples due to local irregu-
larities in the crystal. Instead, different lengths of the waveguide
are pumped, a technique which have been used to measure gain in
bulk material [104] and also for electrically pumped SOAs with the
help of segmented contacts [105].

The different lengths at which the device is pumped is denoted [,
while the total length of the device (or the longest pump length)
is denoted L. If pump efficiency, coupling-, and detection loss are
all included in the constant A; the detected intensity I(x) can be
written as:

I(z) =LA /L erdx (4.2)

where ¢ is the net gain, including all loss mechanisms, and I is
the density of spontaneous emission generated at each segment dx.
By integrating over the pump length [ the total detected ASE is
obtained. A normalized intensity I, defined by dividing the
intensity at a given length I(l) with the full length intensity (L),
will cancel out the prefactors I;A/g. We end up with only one
unknown; the net gain (Eq. 4.4). The gain which best match the
measurements is extracted when fitting Eq. 4.4 to the experimental
measured data.

I,A

9
I CI(l) 14
norm _[(L) - _1+€gL

A series of measurements with different pump lengths are done
using the cooled InGaAs spectrograph. The pump is pulsed to
reduce heating; pulse duration 500ns, period 50us. The length
is defined by blocking part of the pump spot using a thin piece
of metal, and the absolute value of the length is later deducted
from calibrated microscope images from an IR camera. A 1400nm
longpass filter is inserted on the microscope, so that only PL from
the wafer is visible on the camera image. A good IR camera is a
very helpful tool when aligning the pump, and also to accurately
measure the pumped length.

I(l) = == (=1 +e%) (4.3)

(4.4)

The measured data from sample B and the extracted gain is shown
in Figure 4.11 (left). A gain up to 38cm™! is measured, with a clear
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enhancement in the slow light region. The gain of 1 QW semicon-
ductor optical amplifiers is typically 10cm ™" |34]. In these samples
the thin membrane confines the mode more than in a conventional
ridge waveguide, so a slightly higher gain is expected because of the
higher confinement factor. However, the increase of gain to a value
of 40cm ™! is believed to be a result of the light slow down.
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Figure 4.11: Left: a) ASE spectra measured while pumping different lengths
of the PhC waveguide (sample B, 1 QW). Pump power 125 mW peak power,
pulse duration 500ns, period 50us, wavelength 980nm. b) the extracted gain
for 125mW and 70mW pulse peak power. Right: Measured data (blue) and
fit (red) for three representative wavelengths (1530, 1540, 1550 nm

4.4 Enhanced Transmission

Transmission measurements of active PhC waveguides as a function
of pump power are presented in Section 4.4.2. Due to heating of
the lattice when pumping continuously, a pulsed pump is required
for those measurements. It is not possible to observe a change
in transmission on a the OSA, which detects the incoming signal
continuously, when the device is pumped only a fraction of the
time. A lock-in amplifier, locked at the pump frequency, is therefore
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used instead. In Section 4.4.1, transmission spectra from samples
with various configurations of absorbing material are presented and
discussed.

4.4.1 Transmission Measurements

1 QW sample

By using tapers the Fabry-Pérot oscillations which are caused by
reflection at the end facets are suppressed, shown in Figure 4.12.

The measurements are done on a 1mm long 1 QW PhC waveguide
and the total transmission through the device with tapers is 5.6%.

| |— with taper
— without

Intensity (dBm)

1500 1520 1540 1560 1580
Wavelength (nm)

Figure 4.12: Measured transmission spectra from an un-pumped 1 QW PhC
waveguide with (black) and without (red) taper. Right: SEM picture of the
sample without and with the mode adapting taper respectively.

10 QW samples

Transmission measurements were done on multi QW samples as
well. Because of severe absorption of TE polarized light propagat-
ing down the un-pumped material, no transmitted TE polarized
light can be detected on the OSA. Instead, TM polarized light
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shows high transmission at wavelengths beyond the material ab-
sorption. Figure 4.13 shows the transmission spectra of 10 QW
PhC waveguides with different lattice constants. The green spectra
(lattice constant a = 380nm) is measured on sample C, which has
been introduced earlier. The clear dip in the spectra is assigned
to the TM minigap shown in the TM dispersion diagram in Figure
2.4. The width of the dip is about 5nm, which match well with
the calculated value. The fact that the transmission shows a sharp
drop, and display low loss transmission on either side of the minigap
makes it interesting for filter applications [106]. The TM minigap
is beyond the band edge for the fundamental mode, but still within
the TE band gap. Hence, light with a wavelength within the TM
minigap is inhibited to propagate, independent of polarization.

-10

— pitch=360 nm
-20+ pitch=375 nm
— pitch=380 nm

Intensity (dBm)
3

_70 L

“B40

1580 1600 1620

Wavelength (nm)

1560

Figure 4.13: Transmission spectra from un-pumped 10 QW waveguides with
different lattice constants. The green spectra with a = 380nm is measured on
Sample C.

3 QD samples

To study the filter-effect further a PhC sample with three layers
of QDs, is investigated. The same dip occur in the transmission
spectra and the spectral position can be precisely tuned by altering
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the design parameters of the PhC. The dispersion maps, acquired
from the MZI setup outlined in Section 4.1.2, from the 3QD sample
are displayed in Figure 4.14.

Wavelength (nm)
BEEEEZEEEZEE

.Tir;e (p.;)

Figure 4.14: Time-wavelength map of two un-pumped 3 QD waveguides
with a lattice constant of 385 and 390nm respectively. Bright red indicates
high signal (log scale). The TM minigap shifts in wavelength as predicted in
the PhC design.

The dip is clearly visible in the dispersion map, and the expected
wavelength shift with increasing lattice constant is seen when com-
paring Figure 4.14 a) and b). The spectral width of the minigap
corresponds to the measured spectra in Figure 4.13. On each side
of the dip there is a narrow region of slow light. This is expected for
the TM minigap, where the slope of both modes defining the gap
decrease close to the band edge in the dispersion diagram shown in
Figure 2.4. Also the spectral width of the minigap is predicted in
the dispersion diagram. Both waveguides show strong transmission
also for large delays, i.e. light with low group velocity. A group
index of ny = 20 is achieved in the measured sample.

4.4.2 Relative Gain

The transmission spectra in the previous section are all measure-
ments without pumping the active material in the sample. Pumping
the sample continuous wave lead to net modal gain, as shown in
the ASE measurements. There are several competing effects; high
pump powers leads to an increase of carriers, but also more heating.
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Slow light propagates an efficiently longer path length through the
active material, and enhances the positive or negative net gain. It
turns out, due to severe heating of the material when pumped CW,
it is not possible to detect an increase in transmission on the OSA.

Heating of the sample is reduced by using a pulsed pump. Using a
pulse generator, the laser diode can operate in pulsed mode with a
pulse duration of 500ns and a period of 50us. Because the sample
is now illuminated only 1% of the time, it is still difficult to re-
solve a change in transmission using continuous detection. Instead,
light modulated at the repetition rate of the pump laser is detected
using an InGaAs detector connected to a lock-in amplifier. From
the measurements a relative gain can be derived. The differential
transmission signal at different pump powers was normalized with
the signal at the lowest measurable pump power:

transSpymp — ASE

translowestpump

RelativeGain = 10log;o( ) (4.5)
A sample which has its slow light region within the range of the tun-
able laser, yet still beyond the wavelength for maximum material
gain, is chosen. The ASE and transmission spectra in Figure 4.15 a)
is from a 1 QW sample with a lattice constant of 400nm and hole di-
ameter of 220nm. As expected from the dispersion diagram for this
design, the measurements show that the band edge is at 1600nm.
Despite the fact that the wafer emission is centred around 1520nm
for this 1QW wafer, the PhC waveguide show higher relative gain
close to the band edge of the guided mode, which corresponds to
the slow light region.

Relative gain measurements were carried out on 10 QW and 3 QD
PhC waveguides as well. The fact that the TE mode was fully
absorbed in a 1 mm long un-pumped 10QW or 3QD waveguide im-
plies good absorption, which also implies that a large gain should
be achieved with appropriate pumping. The increase in transmis-

sion when pumping the waveguide at different pulse peak powers is
shown in Figure 4.16 (left) for 10 QW and Figure 4.17 (left) for 3

QD.

These measurements show a maximum relative gain of 17 dB (1
QW), 13dB (10 QW) and 15dB (3 QD) in 1mm long devices pumped
with 500ns pulses with a peak power of 300mW, and wavelength
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Figure 4.15: Left: ASE (pump: 200mW, 980nm, CW ) and transmission
(un-pumped) showing the band edge at 1600nm of the 1 QW sample. Right:
Relative gain gain measurement showing highest relative gain in the slow light
region. The pump-power levels at the x-axis indicate the peak power of the
500ns long pulses from the 980nm diode.

980nm. The 10 QW sample is most likely still below transparency
in these pumping conditions, according to ASE power series with
980 diode in Figure 4.10 above. The relative gain for the different
samples (Figure 4.15, 4.16 and 4.17) cannot be directly compared
with one another because the extracted gain depends on the lowest
power measurement relative to which the measurements are per-
formed. However, it is clear there is no tendency of saturation, so
by increasing the pump power the relative gain is increased.

4.5 Gain Measurements with Short Pulse
Excitation

Two actions were made to improve the gain measurements; shorter
10 QW devices were fabricated, and the diode laser pump was ex-
changed to the output from the RegA which is fed by a mode-locked
Ti:Sapphire laser (MIRA). Light propagating through a shorter de-
vice is expected experience less scattering induced loss, but also less
amplification. As a consequence of shortening the device, the pump
can be more tightly focused into a smaller spot, thus increasing the
pump fluence on the pumped area. Because the device length is
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Figure 4.16: Left: Change of transmission for the 10 QW PhC waveguide at
several different pump powers. Right: the derived relative gain. The indicated

pump-power levels are peak power of the 500ns long pulses from the 980nm
diode.

limited by how narrow the InP material can be cleaved accurately,
the device design is modified to obtain shorter devices. The PhC
waveguides are now equipped with a taper in one end to improve
coupling and reduce residual reflection, and terminated with a PhC
mirror in the other end. Calculations of the reflection coefficients
based on finite difference time domain in 2D indicate close to 100%
reflectivity for all wavelengths in the guided mode. The device is
illustrated in Figure 3.3 (right). From now on this device design
will be called a semi-closed waveguide. Transmission measurements
can be done by accessing the taper with a fibre circulator. There is
a trade-off between reducing propagation loss and optimizing light
amplification when choosing length of the amplifier. Here, the am-
plifiers are made 200 or 300um long, hence a propagation length
of 400 or 600um. The following measurements on short amplifiers
pumped with RegA (800nm and about 1ps pulse duration at a
repetition rate of 270k H z) are presented.

4.5.1 Semi-Closed Waveguide

In this Section a series of measurements performed on the same

sample are presented. The sample, which is named sample D, is a
200pum long 10 QW PhC semi-closed waveguide.
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Figure 4.17: Left: Change of transmission for the 3QD PhC waveguide at
several different pump powers. Right: the derived relative gain. The indicated
pump-power levels are peak power of the 500ns long pulses from the 980nm
diode.

ASE

ASE measurements are done using the 980 CW pump, to be able
to compare with sample C above. The ASE spectra from the wafer
and sample are presented in Figure 4.18. As seen in earlier samples,
the ASE emission is strongly influenced by the PhC dispersion. The
emission is greatly enhanced in the region close to the band edge at
1588nm (the slow light region). The difference between sample D
and sample C, is that ASE p, saturates at long wavelengths first
(corresponding to the slow light region). This is expected due to
gain saturation caused by band filling, however not clearly observed
in sample C. An alternative explanation could be that a higher
group index is achieved in sample D, increasing the gain sufficiently
to make the effect visible in the ASE spectrum. This would require
the ASE to be so strong that it saturates the gain itself, and that
is not likely to be the case.

Transmission

Transmission measurements were also carried out on sample D in
reflection, using a fibre circulator. TE polarized light was coupled
into the sample and collected through the same fibre. More interfer-
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Figure 4.18: ASE spectra from the wafer and 200um long semi-closed sample
D respectively (10 QW). Pump: 980 nm diode, CW at powers ranging from
7-125 mW.

ence can be seen on the transmission spectrum from a semi-closed
than from an open waveguide. The higher reflectivity of the closed
end of the waveguide sets higher demands on having a low reflection
at the taper to maintain a low product of the two. Transmission
spectra as a function of pump power is shown in Figure 4.19. Due
to the shorter propagation length in sample D, compared to sample
C, the TE polarized fundamental mode is not fully absorbed, and
transmission can be measured also without pump. The lower graph
in the figure shows the change in transmission normalized with the
transmission without pump. At wavelengths in the fast light regime
of the guided mode the pump cause additional loss, and gain is not
sufficient to overcome the losses, resulting in a lower transmission
when pumping. The fringes occur at the same wavelength for the
different pump powers so there is only limited heating of the crys-
tal lattice. However, there is a wavelength shift at the cut-off. The
pump cause a small increase of the InGaAsP refractive index and
the PhC band edge shifts in wavelength as a function of the refrac-
tive index, as seen in Figure 2.3. The observed shift of 3nm corre-
sponds to a refractive index shift of order 1072, which is a realistic
pump induced change. For 10 QW gain material, pumped with an
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average power of 8mWW, high enough amplification is achieved so
that it can be detected on an OSA (continuous operation) despite
the low repetition rate of the pump laser.
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Figure 4.19: a) Transmission spectra from Sample D (semi-closed 10 QW)
for different pump powers. The legend indicates the averaged power of the
pulsed pump from the RegA. b)The normalized change in transmission plotted
as a function of wavelength.

Lock-in measurements

If the OSA is exchanged for an InGaAs detector connected to a
lock-in amplifier, more sensitive measurements can be carried out
by detecting transmitted light at the same frequency as the rep-
etition rate of the laser. The pump-induced changes in transmis-
sion are thereby more directly probed, and the amplification is not
washed out by detecting also when there is no pump present. Lock-
in measurements of sample D are presented in Figure 4.20 (left).
The ASE signal, which is measured when the tunable laser is off
for each pump power, is subtracted. Transmission is measured at
a large range of wavelengths, and the lock-in signal is measured at
each wavelength. The lock-in signal is very wavelength dependent
with a maximum signal in the slow light regime, close to the band
edge.
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Figure 4.20: Teft: Change of transmission at several different pump pow-
ers, average power of the RegA pump noted in the legend. Sample: 10 QW
semi-closed (sample D) Right: lock-in measurements on 10 QW samples with
different lattice constants, each normalized with its peak value. A high trans-
mission correlate with the slow light region of each crystal.

To show the correlation with slow light region, lock-in measure-
ments on waveguides with band edges located at 1600, 1588, and
1566nm are presented in Figure 4.20 (right). All samples are lo-
cated on the same chip, so the gain material is identical. The study
shows that the wavelength region of high transmission scales sys-
tematically with the variation of the structural parameters of the
PhCs.

Gain

Gain measurements, similar to the gain measurements outlined in
Section 4.3.2, were performed on semi-closed waveguides too. The
semi-closed configuration calls for a modification of the equations.
Consider a semi-closed waveguide, pumped a certain length [ from
the taper and in over the waveguide, as illustrated in Figure 4.21.
In the following relations gain and absorption in the pumped and
unpumped regions respectively are denoted with g and «. Light
generated within a small fraction, dz, can propagate towards the
taper and then be amplified along the way, indicated with a blue
arrow and corresponds to I(z) = I;Ae%". It might also propagate
the opposite direction and experience both amplification and ab-
sorption on its return trip towards the output taper. The propaga-
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tion can be divided into three steps as indicated in Figure 4.21;
green: I(z) = I,Ae9) red: [(x) = I,Ae ?*=0 and black:
I(x) = I,Ae?". The total ASE intensity at a pump length [ can
be written as:

!
I(x) = LA / ¢97 4 e9(l=a)=2a(L-Vs+gl gy (4.6)
0

(4.7)

The normalized intensity used to fit gain and absorption coefficients
for each wavelength becomes:

P O I(l)  ee(—1 4 ey (e2 + ellg+2a)) (4.8)

norm — ](L) - _1+€29L .
The method and has the advantage that both gain and absorption
can be measured simultaneously. However, it requires a more ac-
curate fitting. Here, the mirror is expected to be 100 % reflecting,
which corresponds to the 2D calculations. However, scattering out
of plane at the mirror can even be seen on the IR camera so there
is a certain degree of loss. This leads to an overestimation of the
absorption.

Figure 4.21: An illustration of the semi-closed waveguide, and the pumping
scheme used to extract gain and absorption.

The measured spectra along with the fitted gain and absorption
for a 300um long 10 QW semi-closed waveguide are presented in
Figure 4.22. The sample is the same as the one presented in Figure
4.20 (right) with a lattice constant of 380nm, and band edge at
1566nm.

The gain measurements shows a larger gain for higher pump powers,
as expected. A gain above 100cm ™! is measured, which is realistic
for a 10 QW device.
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Figure 4.22: Gain extracted from ASE measurements acquired while pump-
ing the different lengths of the 300um long semi-closed 10 QW PhC waveguide.
Data points beyond 1567nm are not trustworthy as they are beyond the band
edge of the guided mode. The legend indicate the average pump powers of
the RegA pump. To the right the experimental data along with the fits are
presented for each pump power at the wavelength 1557nm.

4.5.2 Open Waveguide

To finalize the experimental study of slow light enhanced gain
in PhC amplifiers we present gain measurement of three different
10QW PhC waveguides, each with a shift of the slow light region
of 20nm in relation to each other. Using the RegA pump, which
has proven to pump the 10 QW samples more efficiently than the
980 nm diode, gain measurements can be done also on the open
waveguides (1 mm long with a taper on either end). Lets return
to sample C, and waveguides next to sample C on the same chip.
Eq. 4.4 is used for the fitting. Measured ASE accumulated at dif-
ferent pump lengths are presented to the left in Figure 4.23, all
pumped at an average power of 6mW from the RegA. The corre-
sponding gain curves for each waveguide are shown to the right.
The fits fail to represent the measured data accurately at wave-
lengths much shorter than the gain maximum. The transparency
levels are therefore not trustworthy. A clear slow light enhance-
ment of the net gain is seen for all the different PhC designs and
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the gain maximum shifts with PhC design. There is an variation
of the spectral shape of the different gain curves. That could be
assigned to different slow down factors. In difference to b) and d),
the gain curve in f) does not show its maximum gain close to the
band edge. This is likely caused by larger scattering loss which is
more deteriorating for slow light, thus resulting in a smaller slow
down factor. If the observed effects were to be explained by a pure
filter effect (without slow light enhancement) the gain curves would
be the same for all three devices, but with a sharp drop at the wave-
length corresponding to the band edge of each device. However, a
spectral shift of the gain maximum is observed as a result of a slow
light enhancement.
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Figure 4.23: Gain measurements on three 10 QW PhC waveguides with
different lattice constants. All are pumped with RegA at an average power
of 6 mW. a-b) PhC waveguide with lattice constant 380nm (Sample C). c-d)
PhC waveguide with lattice constant 375nm. e-f)PhC waveguide with lattice
constant 370nm.

4.6 Random Lasing

All samples were not good candidates for systematic ASE measure-
ments, such as comparing the ASE at different pump lengths to
extract the gain. When 10 QW samples are pumped with the out-
put from the RegA, a large gain is achieved by each pump pulse,
as shown in the measurements. During the measurements lasing
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modes were observed at discrete points along the waveguide in 10
QW samples. Such lasing modes are deteriorating for the gain
measurements because they complicates the [,,,., curves, making
fitting more challenging. A drastic drop in intensity occurs when
the pump is moved away from the lasing location, like an internal
light-source which is suddenly switched off, see Figure 4.24. The
images are taken with an IR camera attached to the imaging mi-
croscope in the set-up. A 1400nm longpass filter is placed in front
of the camera, so it is only photoluminescence which is imaged, no
stray pump light.

Figure 4.24: A photo series taken with an IR camera while pumping different
lengths of a 10 QW sample with three distinct lasing modes in the PhC waveg-
uide. The guided ASE intensity (seen as scattering out of plane at the taper
tip at the bottom of each image) is drastically reduced as the lasing modes are
shadowed.

Interference and random scattering can give rise to strong localiza-
tion, also named Anderson localization [107]. There is no inten-
tional introduced disorder in the samples, merely inherent disorder
originating from the fabrication process. Surprisingly, light local-
ization is stronger in a PhC waveguide with fabrication induced
disorder than in a waveguide with an intentional degree of disor-
der [108]. A high gain might cause random localized modes to
lase. Such localized lasing modes are also known to cause severe
loss in transmission [109]. It is therefore of interest to characterize
the localized modes further. The measurements on random lasing
presented here were performed by Jin Liu, DTU Fotonik.
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All the 10 QW samples which were tested show some degree of lo-
calization; not necessarily as strong and deteriorating for amplifier
applications as the sample in Figure 4.24, but still present. Sample
C has shown strong ASE and a gain of 380cm ™! (Figure 4.23), still
it is believed that the localized modes are preventing the slow light
gain to reach even higher levels. A SEM image of sample C is shown
in Figure 4.25 a) and the measurement in ¢) show that within only
20pm several hotspots are found. This is consistent with the nu-
merical simulation in b), where the mode profiles from a 2D finite-
difference time-domain calculation are shown on the InGaAsP-air
PhC structure with randomly varied hole positions (Gaussian distri-
bution with standard deviations of 6 = 1%). A strong localization
due to slow light enhanced multiple scattering is shown for a fixed
wavelength within the slow light regime. Figure 4.25 d) presents a
study of random lasing at 5 different 10 QW waveguides, with the
same pitch, but increasingly larger holes. Waveguide 2 corresponds
to sample C, and the lasing occurs close to the band edge, which is
located at 1580nm as known from previous measurements.
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Figure 4.25: a) SEM image of Waveguide 2 (Sample C). No intentional dis-
order is introduced, only inherent fabrication disorder is present. b) Numerical
finite-difference time-domain calculation of the localized modes in a random
PhC waveguide (6 = 1%), for a fixed slow light wavelength. c¢) Experimentally
measured localized modes using a micro-photoluminescence technique. The ex-
citation/collecting objective is translated 20pum along the waveguide (sample
C). d) Localized random lasing spectra for 5 waveguides with increasing hole
diameter. The inset graph shows the full QW photluminescence spectra from
the wafer, indicating the spectral range d). Figure by courtesy of Jin Liu.
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The measurements' were done using a micro-photoluminescence
setup where the sample is excited, and emission collected through
the same objective, normal to the membrane. The excitation laser
is the MIRA (Ti:Sapphire) emitting pulses with a wavelength cen-
tred at 800nm, at a repetition rate of 78 M Hz. Light is coupled
through a fibre, broadening the pulses to a duration of about 1ps.
Sample emission is detected using the cooled InGaAs spectrograph.

Spatially localized modes with a distribution of emission wave-
lengths within the slow light region of each crystal design are ob-
served. For waveguide 1, the lasing occurs at a wavelength with
a large offset to the maximum wafer emission, which distinct it
from diffusive random lasing which takes place at the maximum of
the gain curve. Waveguide 1 and 5 show single mode lasing, while
waveguide 2-4 show multi-mode lasing. This reflects the complexity
of the lasing modes, characteristic for localized random lasing. In
Figure 4.26 the properties of a multi-mode random laser are studied
closer.
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Figure 4.26: Left: Input-output curves for all the individual modes in a
multiple mode random laser. The onset of a higher threshold mode at the same
power as the previous saturates indicates mode competition. The experimental
data is fitted with modified semiconductor laser rate equation. Right: Emission
spectra at different powers. Each spectra is normalized and plotted with an
offset for clarity. The modes starts to lase one by one. Figure by courtesy of
Jin Liu.

Input-output curves for each individual mode is plotted in Fig-
ure 4.26(left), different lasing threshold for the various modes is
observed. The data is extracted from the peak intensity of each

'Random lasing measurements are done by Ph.D. student Jin Liu, DTU
Fotonk.

88



4.7. SUMMARY

mode. As one mode saturates, another mode begins to lase, which
is a strong indication of mode competition. The laser emission spec-
tra in Figure 4.26 (right), show that a higher pump power brings
an additional mode over threshold, one by one. Solid lines show
fittings for each laser mode, the fits are based on semiconductor
lase rate equations where Purcell enhancement is included for both
the spontaneous and stimulated emission'[110|. There are good
agreements between experiment and theory apart from the region
far above threshold. Saturation and mode competition effects are
not included in the current model.

4.7 Summary

In this chapter slow light enhanced amplified spontaneous emis-
sion and slow light enhanced net gain have been experimentally
observed. Heating is a limiting factor when optically pumping PhC
membrane structures. However with pulsed excitation the issue can
be circumvented and net gain of 38c¢m ™! and 380cm !, for 1 QW
and 10 QW structures respectively, have been measured. Measure-
ments on PhC devices with different structural design show that
the observed effects scale consistently with the attribution of the
effect of slow light enhancement.

Lasing was observed in the 10 QW PhC waveguide, even in absence
of intentional cavities. It is attributed to random lasing in localized
modes.

2Theoretical fit by DTU student Troels Suhr, DTU Fotonik.
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Chapter 5

Topology Optimized
Waveguides and Lasers

5.1 Dispersion Engineering

A critical point in signal processing and optical communication is
the requirement of a large bandwidth. Short pulses and high speed
modulated signals have a very broad frequency spectrum. A con-
stant high group index (i.e. low group velocity) over a sizeable
bandwidth is desirable in order not to distort the signal. The com-
plex confinement of light in PhC waveguides results in strong dis-
persion. As shown in this report, a single row of missing holes in
a PhC membrane promotes a guided mode with large group index
close to the band edge, where the dispersion relation has a parabolic
form. Many reports are devoted to reduce the group velocity dis-
persion (GVD). One route is to compensate for the dispersion using
coupled waveguides, as propsed by Baba et. al [111, 112]. Another
route is to tailor the dispersion by changing the structural param-
eters of the PhC lattice, i.e. dispersion engineering.

For the best performance the following points should be fulfilled;

e Transmission under the light line
Light is vertically confined in the membrane under the light
line. If this condition is not fulfilled light will suffer severe
out of plane losses.

91



CHAPTER 5. TOPOLOGY OPTIMIZED WAVEGUIDES AND
LASERS

e Single mode
Inter coupling between modes should be avoided. If two
modes are present at the same frequency, light could be lost
to the other mode.

e Even symmetry
Even modal field distribution improves in and out coupling
to a gaussian mode.

e Flat group index
A low GVD will cause less distortion of the signal. It also
provides a uniform enhancement of optical amplification, or
non-linear effects. It is desired to reach as high a group index
as possible, while also maximizing the bandwidth.

Unfortunatley, the goals are conflicting. The slow down factor is in-
trinsically linked to the operation bandwidth; the higher the group
index, the narrower the bandwidth [2|. It has been shown that
the transmission spectrum of a PhC waveguide can be modified by
changing the width of the waveguide [29]. By reducing the waveg-
uide width to W0.7 (30% more narrow than a single row of missing
holes, W1), a flat dispersion can be achieved [23|. The modifica-
tion of waveguide width pushes both the index- and the gap-guided
part of the mode up in frequency. Because the gap-guided mode
moves faster, the anti-crossing point will shift to a lower k-vector
in the band diagram, resulting in a flat band with low dispersion.
Also double defect multi mode PhC waveguides, W2, has shown
an improvement in second and third order dispersion compared
to the W1 waveguide [60]. However, a single mode design with
higher design freedom is desirable. A shift of the holes closest to
the waveguide preserves the properties for the index guided wave-
lengths, while modifying the dispersion to a "U“-type group index
curves [113]. One approach presented by Frandsen et al. is based
on the knowledge that the modal field distributions differ between
the index-guided part of the mode and the gap-guided mode with a
low group velocity, see Figure 2.1. The field of the slow-light mode
is concentrated in the two rows of holes closest to the waveguide,
and is therefore more affected by changes of the structural parame-
ters in that region. A flat plateau of the dispersion can be achieved
by varying the hole diameter of the first and second rows of holes
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[41]. Instead of changing the hole diameter the location of the holes
can be shifted [101].

While the methods described above have resulted in high transmis-
sion waveguides with a desired flat dispersion region, many have
been developed using trial and error approaches. In order to re-
alize a PhC with any specified dispersion relation, especially de-
signed for the application at hand, a more efficient design tool is
needed. Topology optimization has proven to be a valuable tool
when maximizing transmission through sharp bends and splitters
in PhC structures [114]. Recently, it has been extended to find the
best match between the fundamental mode dispersion and a preas-
signed dispersion relation [115]. The topology optimization tool is
based on repeated finite element calculations and design updates,
aiming to minimize the error between the actual and the target
group velocity. The mode confinement is maximized, odd and mul-
tiple modes are avoided in the core region, and fabrication errors
such as over- and under-etching are included to create a robust
design [116].

5.1.1 Implementation of Topology Optimized
Designs

Topology optimized designs'are implemented in passive InGaAsP
PhC waveguides. An optimization limited to vary the radius and
the location of circular holes only, provides a tool for systematic
design of “classical” PhC waveguides. The prescribed group index,
aiming for a group index of 40 over a bandwidth of 20nm, and
the dispersion relation for the optimized design in 2D is shown in
Figure 5.1. Current state of the art topology optimization is done
in two dimensions.

Before processing the device it is desirable to have a 3D simulation
of the dispersion in order to choose a suitable lattice constant. A 3D
calculation is done in MPB, using the unitcell parameters from the
optimized design. Unfortunately there is a big difference between

1 All topology optimization is done by Ph.D student Fengwen Wang at DTU
Mekanik.
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Figure 5.1: Topology optimization in two dimensions. The marked points
illustrate the pre-described group index, dotted lines indicate the allowed devi-
ation, and the red curve shows the dispersion of the optimized design. To the
left an extended unitcell is shown Figure by courtesy of Ph.D student Fengwen
Wang at DTU.

group index simulated in 2D and 3D. Due to higher confinement
of light in an air-membrane, the group index is increased. The flat
group index plateau is raised to n, = 70, a higher group index
also comes with a narrower bandwidth, see Figure 5.2. A lattice
constant of 400nm tunes the slow light region into 1560 — 1580nm
which is within the range of the tunable laser used for the charac-
terization, and was therefore chosen for the fabricated device.

A SEM image of the fabricated sample is shown in Figure 5.3. The
radius of the holes in the row closest to the waveguide are denoted
ry, the second row ro and the rest of the holes r. The structural
parameters of the fabricated structure (topology optimized design)
are: . = 0.302a (r; = 0.317a), ro = 0.225a (ro = 0.227a) and
r = 0.315a (r = 0.31a). A good agreement between the design and
fabricated structures are achieved, it is subject to uncertainty of
the last digit in the SEM measurements. Also location shift of the
holes corresponds to the design. The spatial position of the holes
are in general easier to control than the exact hole radius, because
the latter is affected by proximity effects during e-beam patterning.

Measurements?of the dispersion were done using the MZI setup ex-
plained in Section 4.1.2. Both the dispersion map and the group

2Measurements performed by Sylvain Combrie, Thales Research and Tech-
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Figure 5.2: Dispersion diagram (left) and group index (right) from a 3D MPB
calculation of the optimized design. A lattice constant of 400nm (membrane
thickness 340nm) brings the band edge to about 1580nm.

Figure 5.3: Left: a unitcell of the optimized design. Middle: SEM image of
the fabricated structure. Right: a magnification showing the size of the holes
71 at the bottom of the image, followed by 7o and r. The location shift of the
two rows closest to the waveguide can be seen.
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index from the 1mm long waveguide are shown in Figure 5.4. The
slow light region is spectrally located at the predicted wavelength,
but the group index only reaches a value of 25. Thus, the predicted
narrow plateau at ny, = 70 was not observed. According to the band
diagram in Figure 5.2 (left), the fundamental mode does not over-
lap with any other mode at the frequencies in the slow light region.
However, the measurement show propagation (zero dispersion) only
10nm away from the high group index region. It is not clear from
the band diagram in Figure 5.2 which mode that might be, but
is likely to be index guiding at the band gap edge. If irregular ge-
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Figure 5.4: Left: time wavelength map of the topology optimized sample.
Plotted on a log scale normalized to maximum transmission. Dark red is max-
imum transmission (0dB). Right: Extracted group index, using the sample
length, 1 mm. The mode with zero dispersion at 1580 — 1600nm is plotted in
a different colour because it is believed to be a different mode.

ometries are allowed in the optimization a much better performance
than the “classical” design, including only holes, can be obtained. A
group index of 80 over the wave vector region 0.35 < ka/2m < 0.45
is theoretically obtained in the 2D topology optimization. Figure
5.5 shows the design and a SEM image of the fabricated sample.
Reasonable agreement between the design and device is achieved.
Some small features are missing, which can be explained by the
dose (energy density with which the e-beam exposes the pattern)

nology, France.
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Figure 5.5: SEM image of the sample fabricated using the topology optimized
design to the left.

being too low 220uC'/cm?. There are issues with proximity effects
during the patterning (e-beam) in the InGaAsP material which is
not yet fully controlled. With a proper proximity correction the
proper dose for each feature size can be used which would improve
the result. Improved results could be achieved by proper prox-
imity correction, the correction failed due to a faulty estimation
of the backscattering of electrons on the complex epitaxial layout.
The topology optimized design was therefore fabricated in silicon.
Optical characterization showed that the guided mode was out of
range of the tunable laser. Further investigation include experi-
mental trials using a different lattice constant, and 3D calculations
of the structure.

5.2 Photonic Crystal Micro Laser

Recently, much attention have been given to micro- and nano-lasers
in PhCs, due to the wide possibilities of designing the quality factor
(Q) and mode volume (V) in this type of material. High Q-factors
are desirable as they imply long photon lifetimes and low thresh-
olds. While large Q/V ratios can give high Purcell enhancement
of the radiative decay, which can lead to faster and more effective
devices. High-Q cavities have been realized [47, 45, 117, 118]. A
superior confinement of light in a cavity included in a bandgap re-
sults in small mode volume (order of a cubic wavelength) and a high
Q (around 10°). This makes photonic crystal cavities an exciting
route towards nano-scale lasers and single photonic sources. Lasers
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with very small mode volume are not optimal for all applications.
For an integrated laser on a photonic circuit, it is rather desired
with stable single mode operation and higher output powers [119].
A promising candidate could be the PhC micro laser. One obvi-
ous disadvantage they hold compared to a ridge Fabry-Pérot laser
is the pumping scheme. It is desirable to be able to electrically
pump the PhC laser. It is challenging because of the current mem-
brane configuration, but realistic within the near future. Electrical
contacts on PhC membranes have been realized for light emitting
diodes [120, 121], and nanocavity lasers [46, 72|, although with rel-
atively low quantum efficiency which leaves room for improvement.
However, PhC lasers hold two important advantages; the ability to
achieve high reflectivity at the cavity mirrors and operation in the
slow light regime which means a longer propagation time in between
the mirrors which results in increased photon lifetime, hence en-
hanced light-matter interaction [53, 27|. Also vertical cavity emit-
ting lasers exhibit high reflectivity at the cavity mirrors owing to
the Bragg reflection. The reflectivity of each mirror is determined
by the number of mirror pairs included in the epitaxial structure.
The design parameters in an in-plane configuration (PhC cavities
) are more easily accessible. Integrated circuits based on PhC have
been suggested [52], if realized, PhC micro cavities would be eas-
ily incorporated because they do not require cleaved facet mirrors,
instead partly reflective mirrors can be introduced by inserting var-
ious number of holes into the PhC waveguide. Alternatively, laser
light from a cavity with complete PhC mirrors can evanescently
couple out to a nearby PhC waveguides. If a multi-mode laser is
achieved with an equi-distance between the oscillating modes, the
PhC microcavity holds great promise for a mode-locked laser. By
the use of QDs in the gain region and QWs in the absorbing re-
gion of the cavity, an efficient compact passive mode-locked laser
could be achieved [122]. The use of a slow light waveguide would
increase the roundtrip time without compromising device size. In
such a device dispersion engineering would play an important role,
so that high repetition rates can be achieved while sustaining the
short pulses.

There are only a few contributions in the literature where lasing
explained by gain enhancement at low group velocities is shown
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[49, 48]. One of these references [49], shows lasing operation at a
low group velocity point above the light line, which leads to out of
plane emission. Here, we present lasing in the guided fundamental
mode below the light line. The low group velocity enhances the
gain, as shown in measurements in Chapter 4, which is expected to
reduce the lasing threshold.

Results on lasing in PhC micro cavities are presented in this Sec-
tion. Lasing oscillation at the slow light wavelength of the mode is
demonstrated. All laser structures are 3 QD PhC structures on 340
nm thick membranes. Two laser designs are presented which differ
in PhC design and output mirror configuration.

5.2.1 Multimode Lasing

Measurements on a 50um long cavity, which is a line defect ter-
minated by PhC in one end and a cleaved facet in the other, are
presented here. The lattice constant of the PhC is 390nm and
the hole diameter in the fabricated laser is 132nm. The dispersion
properties of the device are modified by altering the size of the holes
closest to the waveguide; r1 = 95nm and ry = 156nm (r; and ry
as indicated in Figure 5.3). This does not result in a flat disper-
sion plateau, but rather a fairly complicated dispersion as will be
discussed.

The lasers are optically pumped with the output from the RegA,
so 1ps long pulses at a wavelength of 800nm and repetition rate of
270kHz. The power levels noted in the emission spectra, Figure
5.6 (left), denotes the average pump power over the full pump spot
which has an area of about 10 - 400pum. The emission is detected
on the cooled InGaAs spectrograph, with a resolution of 0.15nm.
Emission spectra at representative pump powers are shown in the
figure. There are two spectral regions where laser oscillation oc-
curs, around 1435nm and at 1595nm. The integrated intensity as a
function of average pump power is shown in Figure 5.6 (right). The
emission show a threshold behaviour at an average pump power of
0.3mW. A zoom in at low pump powers is seen in the inset. The
increase in output power at increasing pump-powers below thresh-
old show that it is not data points corresponding to the noise floor

99



CHAPTER 5. TOPOLOGY OPTIMIZED WAVEGUIDES AND
LASERS

of the detector. The spectral shape of the emission below threshold

is seen in the top plot 0.12mWto the left.
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Figure 5.6: Left: Laser emission spectra from a 50um long 3 QD cavity,
pumped with RegA. The indicated power levels are average powers of the pulsed
pump laser. The holes closest to the waveguide are of different size than the rest
of the lattice, leading to emission at two wavelength regions. Right: the top
figure illustrates the cavity configuration. The cleaved facet serves as a partly
reflective mirror. The bottom figure show the measured Pin/Pout curve. The
inset is a zoom-in at low pump powers.

A linewidth narrowing is observed at pump-powers up to 0.3mW
, just above threshold. As the pump power increases the peak
is broadened (compare emission at 0.31mW and 1.4mW). Since
the peak is not red shifted for higher pump powers, the broad-
ening is not believed to be caused by heating. Rather, the large
carrier density injected by the short, energetic pump pulses might
introduce a deterministic chirp. A linewidth broadening of up to
2.5nm is observed in nanocavity PhC lasers, pumped with the same
mode locked laser [86, 123]. Confirmation that nanocavity lasers
are chirped under pulsed pumping is found in a recent recent re-
port from Braive et al. [124| and a similar effect has shown to cause
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Figure 5.7: Laser emission at 1mW average pump power (blue) and the
measured group index (red).

broadening in microdisk lasers [125].

The group index can be derived from the spacing between the peaks
of the multimode emission. As shown in Section 4.1.1 the following
relates the group index with the mode-spacing:

ng = A*/(2LAN) (5.1)

The laser emission at a pump power of 1mW, and the measured
group index is shown in Figure 5.7. Since there is mainly one lasing
mode at 1495nm the group index could not be measured in that
region. However the measured group index in the region around
1435nm show an increase from 4 to 34. The lasing occurs at a slow
light region of the lasing mode.

In order to investigate the origin of the lasing a 3D MPB calculation
of the dispersion diagram is calculated for the fabricated structure.
The dispersion diagram (left) and the group indices for the funda-
mental (red in the middle) and the odd mode (blue to the right)
are shown in Figure 5.8. The fundamental mode overlaps in fre-
quency with the index band, which lead to severe loss into modes
propagating in the slab. It is therefore not likely that the lasing
oscillation occurs in that mode. The odd mode, indicated in blue,
exhibit two slow light regions. At the band edge (1500nm) and at
light-line cut-off. The two regions with slow light are separated by
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Figure 5.8: Left: Calculated dispersion diagram using the structural param-
eters from the fabricated device. The red line indicates the even mode and the
dark blue mode in the gap indicates the odd guided mode. Middle: group index
of the even mode. Right: group index of the odd mode. The group indices are
plotted as a function of wavelength, derived from the normalized frequency of
each mode, using the lattice constant a = 390nm. The gray regions in all the
plots indicate the region above the light line. In that region light suffers severe
out of plane loss.

100nm, which does not correspond to the measurements where a
spacing of 60nm is observed. The odd mode has not been probed
in previous experiments in this thesis due to its odd parity across
the center of the waveguide, which lead to less efficient coupling.
Despite a reduced light-matter interaction compared to an even
mode, lasing oscillation can occur in that mode. An alternative ex-
planation is that the lasing occurs at the band edge of the odd and
the fundamental mode. The wavelength spacing between the two
band edges are 40nm, which does not match the measured spacing
either. These initial results are promising and encourages further
investigation of lasing in dispersion engineered laser cavities.

5.2.2 Single Mode Lasing

Laser cavities with a triangular lattice of equally sized holes were
also fabricated and characterized. The design is identical to the
amplifier design, the dispersion diagram can be seen in Figure 2.1,
incorporating a 70um long W1 micro cavity. A lattice constant
of 400nm is used with a variation of hole size to shift the lasing
wavelength of the band edge laser. The line defect which forms the
cavity extends 70um into the PhC from the out coupling mirror,
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5.2. PHOTONIC CRYSTAL MICRO LASER

where it is blocked by holes. Thus, it is the same configuration
as the semi-closed amplifier mirror. The output mirror is made
to be only partly reflective by inserting four holes 5um away from
the out-coupling taper. Calculations of the reflection and trans-
mission spectra of the structures based on 2D finite difference time
domain simulations, indicates that 4 holes results in 97% reflec-
tivity for wavelengths within the photonic bandgap. A schematic
over the laser configuration is shown to the right in Figure 5.9.
Laser emission at different pump powers (same pump scheme as in
the previous Section) is shown in Figure 5.9 (left). The linewidth
broadening, explained by a chirp caused by the energetic short ex-
citation pulses, is observed here as well. A blueshift of the emission
mode is seen for increasing pump powers, this may also be caused
by pump induced refractive index changes. Since the peak is not
red shifted for higher pump powers, the broadening is not believed
to be caused by heating.
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Figure 5.9: Left: emission spectra from a 70 pm long 3QD laser, pumped
by the output from the RegA, the average power is noted in figure. Right:
an illustration of the cavity configuration. Four-holes placed in the line defect
close to the out-coupling taper forms a partly reflective mirror.

All the tested devices show lasing operation at a wavelength corre-
sponding to the band edge of each design, as seen in Figure 5.10.
Laser emission spectra from three PhC cavities are shown, all with
a hole diameter shift of 5nm relative the previous. As theoretically
predicted in Figure 2.3, such a shift in hole diameter corresponds
to a wavelength shift of about 8nm in band edge position.
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Figure 5.10: Samples: 70 um long 3QD lasers of different designs. Pump:
RegA, average power 6 mW. Left: Laser emission spectra from three 70um
long 3QD lasers with increasing hole size. All with four-hole output mirror and
a out-coupling taper. The cavities are optically pumped with the output from
the RegA, at an average power of 1mWV.

5.3 Summary

Topology optimized PhC waveguides, aiming to achieve a constant
group index over a broad range of frequencies have been fabricated.
The fabricated structure with a “classic” design, consisting of holes
only, is structurally well matched to the design. A light slow down
is observed at the predicted wavelength, however it does not reach
the predicted magnitude.

QD micro laser cavities of different configurations and photonic
crystal design have been fabricated, and lasing operation is demon-
strated. The lasing wavelength shifts depending on the PhC design,
and the lasing is assigned to occur at the cavity mode band edge. A
partly reflective mirror consisting of a number of holes in front of an
out-coupling taper allows for optimization of the reflectivity, here 4
holes was used. Lasing in a PhC cavity with a complex dispersion
relation was demonstrated. For future devices it is desired to use
dispersion engineered designs for the micro-cavities, such that lasing
occurs away from the band edge at a pre-assigned slow down factor.
Operation at the band edge involves large scattering losses [57|, and
recently it was shown in reference [126], that a large material gain
degrades the slow down properties compared with a corresponding
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passive device, and thereby limits the slow light enhancement of
the effective gain. The impact of gain is less detrimental where the
enhancement factor is kept at a value of about 60— 100, rather than
at the band edge where the slow down factor approaches infinity

theoretically.
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Chapter 6

Ultrafast Dynamics in
Quantum Dots

When engineering components which aim to operate in the terabit
per second regime it is important to fully understand the ultra fast
gain dynamics of the device. Such studies have not yet been per-
formed on PhC amplifiers, but are of central importance for future
experiments. In order to distinguish the influence of light slow down
from the dynamics of the gain material itself, it is desirable to have
measurements of the gain material without PhC for comparison. In
this Chapter pump-probe measurements on the GaAs capped InAs
QDs used in both PhC amplifiers and PhC lasers (Chapter 4 and
5) are presented.

As opposed to the former experiments in this thesis, these mea-
surement were based on a single mode ridge waveguide. The ac-
tive region was sandwiched in a PIN configuration allowing for
electrical carrier injection. The ASE from the electrically biased
(10 — 180mA) sample, measured with an OSA, is shown in Figure
6.1 (left). The spectra show indications of more than one transition
being involved. The peak near 1400 increase with almost no sat-
uration, while a lower energy state, around 1580nm saturates. If
there were only one exciton transition involved, the whole spectrum
would increase equally for all wavelengths. Another feature which
is observed in the measured ASE spectrum is a modulation with
clear dips an peaks at different wavelengths. One possible cause of
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the dips in the spectra could be the phonon bottleneck, described
theoretically in [127| and observed experimentally in [128, 129|. In
QDs with discrete energy levels, carrier relaxation can be reduced
at energy transitions with inefficient phonon scattering [130]. Effi-
cient relaxation can take place only when the electron level spacing
match the LO-phonon energy, or within a few meV to be assisted by
LA-phonons. The LO-phonon energy in InGaAsP is about 37 meV
[131] (A = 60nm) which roughly correspond to the spacing between
the peaks in the ASE emission spectrum. If the modulation is ex-
plained by the phonon bottleneck, the characteristic gain recovery
times at a peak relative a dip should differ. However, as shown in
Section 6.2, such wavelength dependency of the gain recovery times
was not observed which challenges the hypothesis.

700
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§ 500

1300 1400 1500 1600
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Figure 6.1: Left: ASE spectrum from an electrically biased 5QD SOA at
currents ranging from 10 to 180 mA. (RBW=2nm) Right: HAADF STEM
image of a GaAs capped InAs QD followed by InGaAsP. The InAs rich dot
appear bright in the image, red lines are guides to the eyes. Figure by courtesy
of Shima Kadkhodazadeh, DTU Fotonik.

A high-angle annular dark-field (HAADF) scanning transmission
electron microscopy (STEM) image of a GaAs capped InAs QD is
shown in Figure 6.1 (right). The InAs rich dot appear bright in
the image. The average measured height and diameter of the QDs
were 2.6 nm and 31.9 nm, respectively. The use of a GaAs capping
layer results in a flat top dot with reduced height compared to a
dot capped with InGaAsP only [38]. The ASE modulation is most
likely attributed to sub-ensembles of QDs which differ in height by
one InAs monolayer. Dots with a discrete number of monolayers
in height lead to well defined transitions. The fact that the effect
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is clearly seen in the ASE spectra demonstrates that there is a
low statistical deviation around the mean transition energy in each
sub-assembly [132]. This multimodal nature of the QDs have been
observed by others [132], and the wavelength spacing between the
peaks in Figure 6.1 (left) are on the same order as that measured
on InAs/GaAs dots [133].

6.1 Experimental Details

6.1.1 Sample

A 2pm wide, 500pm long ridge SOA with electrical contacts is used
in the pump-probe measurements '. The end facets are cleaved at
the Brewster angle and to further reduce back reflections the end
facets are anti-reflection coated. The waveguide material is InP,
and the five layers of GaAs capped InAs dots are surrounded by
InGaAsP barriers?. There is a large variation in dot size, resulting
in an inhomogeneously broadened photoluminescence spectra from
the unprocessed wafer with a full width half maximum of 140nm
centred at 1620nm. The sample is mounted on a Peltier cooled
copper block to keep a stable temperature of 20°C during the pump-
probe measurements.

6.1.2 Pump-probe setup

The Mira mode-locked laser (Coherent Mira 900, Ti:Sapphire) and
the RegA (Coherent regenerative amplifier with Ti:Sapphire as gain
medium) have been introduced in Chapter 4, where the amplified
pulses from the RegA are used to optically pump the PhC waveg-
uides. Here, the output from the RegA is injected into an optical
parametric amplifier (Coherent OPA) for wavelength tuning.

The ultra fast relaxation which occur only picoseconds after a pump
pulse has propagated through a SOA can be measured by a probe

'Sample processed by Ph.D. student Irina Kulkova at DTU Fotonik.
’Epitaxial growth by Elizaveta Semenova and Kresten Yvind at DTU Fo-
tonik.
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pulse. The pulse duration is 180 fs, and this sets the temporal res-
olution of the measurement. Each pulse in the idler beam from
the OPA is split up into three paths using acousto optic modula-
tors (AOMs); a pump modulated at 40 MHz, a probe modulated
at 80 MHz and a reference beam. This requires two AOMs as in-
dicated in the set-up schematic in Figure 6.2. The figure is slightly
misleading, it is important that light propagates the same optical
path length in each arm. This so that the pump and the probe
arrive simultaneously (or at a short delay) at the sample. In order
to detect the probe selectively a heterodyne detection technique is
used [134], the pump and the probe can then be of same wave-
length and polarization and still be distinguishable. The probe can
be measured by achieving a temporal and spatial overlap with the
reference, and detect the lowest beat frequency between the two on
a balanced detector. The beat signal is sent to a lock-in amplifier.
The measurement technique allows measurements of both ampli-
tude (gain) and phase (refractive index), here we focus on the gain
measurements.

sample

Rt}
Chopper +
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somHz A 80 MHz
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Figure 6.2: A schematic of the pump-probe set-up. The figure is slightly
misleading, the optical path lengths for the pump, probe and reference are all
of equal length.

An illustration of the pump-probe principle is shown in Figure 6.3.
The bottom curve show a typical response function where the dip in
probe transmission is seen at zero delay. Zero delay means that the
pump and the probe enters the waveguide simultaneously, as illus-
trated in the top figure. The pump depletes the carrier distribution
leading to a gain saturation and a decrease in probe transmission.
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The probe transmission is reduced at all time-delays until enough
time has passed so the material is fully recovered due to refilling of
carriers. In the absorption regime an increase in probe transmission
is expected due to optical excitation of carriers by the pump. The
delay between the pump and the probe is increased by decreasing
the optical path length of the pump. This is controlled accurately
in small steps using a motorized delay stage.

Ml gl
—

Delay tume 7

Probe
power

Figure 6.3: A schematic of the delay between the pump (higher amplitude)
and the probe (lower amplitude) and the corresponding pump-probe measure-
ment in the gain regime.

At each delay, the probe transmission with and without the pump
present, is measured. The pump signal is chopped at 15Hz and
the lock-in amplifier integrates over 1 ms. This results in tolerable
signal to noise while allowing to detect a fast shift between the
“on” and “off” state of the pump. When the pump is chopped,
and all beams are aligned in time and space, the modulation at
the chopper frequency is clearly visible on the lock-in signal. If
the probe arrives up to 100ps (time for full gain recovery) after
the pump, the modulation is seen. The pump delay stage can be
adjusted to find the maximum modulation of the signal, to find the
complete overlap between the pump and the probe (zero delay).

The differential probe transmission AT/T is extracted from the
measured lock-in signal according to:

AT T, —Tyw Vi-V2,

T T V2 (6.1)
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where V is the measured lock-in signal, the indices w and wo in-
dicate with and without the pump pulse present. The heterodyne
cross correlation technique detects changes in the electric field am-
plitude, resulting in the squared dependence of the measured volt-
age signal.

6.1.3 Response Function

A response function approach can be used to describe every system
where there is a linear relation between input and output. Here
the response function is denoted with h and the change in probe
transmission through a SOA can be written as [135, 136]:

AT o o0
T(T) - / h(r — t)dt / S()S(t —t')dt’ (6.2)
The impulse function S(t) describes the photon flux, the probe
pulse is assumed to be a weak replica of the pump. The response
function,h, includes several amplitudes and time constants, repre-
senting different physical processes:

h(t) = Arpad(t) + Are™/™ + Age /™ 4 Age™"/™ (6.3)

The pump pulse cause carrier depletion from the considered energy
state, which results in reduced gain. This is then followed by sub-
sequent refilling by carrier relaxation. Instantaneously as the pump
and the probe overlap at probe time delay equals zero, two photon
absorption (TPA) occur, the time constant for TPA is therefore
very short and is described by a Dirac’s d-function. There are two
characteristic gain recovery times which can be measured in the
current set-up. The fastest out of the two, (73), describes the re-
laxation of carriers from discrete energy states within the dot. The
slower time constant, (7;), describes the relaxation from the wet-
ting layer into the dot. There is a third time constant (7x) which
is related to the total carrier density. This could not be accurately
measured because it requires longer delay scans than what is possi-
ble in the current set-up. It is on the order of 100ps [137], and after
that time the gain material is totally recovered. We set et/™ =1,
and the associated amplitude Az is the offset to the zero-axis at the
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longest measured delay. Expressions for the amplitudes, Arpa, Aq
and A,, can be found in reference [138|.

6.2 Experimental Results

Pump-probe measurements were carried out at six different wave-
lengths, chosen to overlap with dips and peaks in the ASE spectrum
while covering the full range from absorption to gain regime. At
each wavelength, a variation of bias currents were used. The bias
dependency at the wavelength 1440nm are presented in the end of
this section. The OPA laser spectra for each wavelength along with
the ASE (gray) spectrum are shown in Figure 6.4.

Normalized intensity

\
_ §-. X / e
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Wavelength (nm)

Figure 6.4: ASE spectra (gray) and normalized laser emission spectra at
each wavelength at which pump probe measurements were carried out. The
wavelengths 1423, 1440nm and 1565, 1590nm correspond to a dip and a peak
respectively. The chosen wavelengths covers a range of 260nm.

Figure 6.5 shows pump-probe measurements at the chosen wave-
lengths. The pulse energy for the pump and probe were set at
0.9pJ and 0.2pJ respectively, and the sample is biased at a cur-
rent of 100mA. All measurements were carried out for a probe
delay ranging from —1.5ps to 10ps. Largest gain is seen for the
wavelength 1440nm, where a large decrease in probe transmission
is seen. Going to shorter wavelengths the pump photon energy is
so high so that it corresponds to the absorption regime and car-
riers are excited, that leads to an increase in probe transmission.
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For long wavelengths (low photon energies) mainly instantaneous
processes at zero time delay takes place. Because the photon en-
ergy corresponds to an energy close to the band edge it is barely
influenced by total carrier density variations. The material then re-
covers owing mainly to the fast component. This is also confirmed
by the extracted amplitudes in Figure 6.6 (right). Both amplitudes
which represent the slow contributions (A; and Aj3) are close to zero
for long wavelengths. As provides information about how close the
material is to full recovery at 10ps delay. It is positive in absorp-
tion, negative in the gain regime and zero at transparency. For all
wavelengths in the gain regime it is measured to be close to zero, in-
dicating that the total gain recovery is dominated by fast intra-dot
and wetting layer-dot relaxation. All amplitudes are normalized
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Figure 6.5: Differential transmission as a function of probe delay. The differ-
ent colours indicate different pump-probe wavelength and each curve is offset
0.2 for clarity. Applied current: 100mA. Solid red lines represents the fitted
response function to each measurement.

A longer recovery time for the slow component, 7 is seen for absorp-
tion compared to the other wavelengths in gain regime in Figure
6.6 (left). An increase of 71 is also observed in reference [139] in
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the absorption regime. The effect can be explained by the following
reasoning: for wavelengths in the gain regime carriers are depleted
from the energy state considered. The vacancies are filled by carri-
ers from the higher energy levels in the dot or from the wetting layer.
For wavelengths in the absorption regime, the pump excites carriers
to a high energy level within the dot. In the absence of available
states at lower energy levels, the injected carriers need to escape to
higher laying energy states in the wetting layer. Such process can
be phonon-mediated or carrier-carrier mediated (scattering), which
is slower than carrier capture. Following the reasoning, a short,
highly absorbing wavelength such as 1330nm, results in large A
and As, as shown in Figure 6.6 (right). Besides from the devia-
tion in 7; between absorption and gain regime, the slow and fast
time constants 7 and 75 does not vary much as a function of wave-
length. That reflects the large inhomogeneous broadening in the
sample. The relaxation time constants are on the order of 7 ~ 2ps
and 75 ~ 0.2ps, in good agreement with earlier reports on relax-
ation times in QDs emitting at 1550nm [139, 140, 141, 142|. The
fast time constant is close to the resolution, defined by the pulse
duration (0.18ps). Hence, there is an uncertainty in the amplitudes
Arpa and As. It is also noted that the carrier dynamics does not
differ for dots with different number of monolayers, represented by
wavelengths at the different peaks in the ASE spectrum.
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Figure 6.6: Left: Characteristic gain recovery times for QD SOA as a function
of wavelength. Slow component (77) shown in red and fast component (72)
shown in black. Right: normalized amplitudes coefficients of the response
function in Eq. 6.3. The applied current is fixed at 100mA.

Figure 6.7 presents the temporal gain dynamics as a function of
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injected current at a fixed pump-probe wavelength of A = 1440nm.
The indicated current levels are normalized with the transparency
current, [,.. The transparency current is measured at a constant
delay of 5ps between the probe and the pump. At that delay the ul-
trafast carrier dynamics can be discarded and the differential trans-
mission is negative in the gain regime, positive in the absorbing
regime while vanishing at transparency point. At the transparency
the TPA will take place a zero time delay, but since there is no
net stimulated emission there is no change in carrier density. The
measured transparency current is I, = 60mA is valid for the ma-
terial gain, corresponding to the bias current where the stimulated
emission rate equals the absorption rate.

Pumpprobe wavelength: 1440nm
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Figure 6.7: Differential transmission at A = 1440nm as a function of injected
current. The different colours green to blue indicate increasing current, as
indicated relative the transparency current (I = 60mA) in the border . Each
curve is offset 0.2 for clarity. Solid red lines represents the fitted response
function to each measurement.

It is clear that with increasing current injection, the material changes

from being in to absorbing regime to the gain regime. The mea-
sured data is well represented by the bi-exponential fits, represented
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by red solid lines. The fit parameters are presented in Figure 6.8.
Both the fast and the slow timeconstants (Figure 6.8 (left)) seem
almost unaffected by injected current. Only at zero bias a large in-
crease in 71 can be seen, due to the longer relaxation time for carrier
escape than for carrier capture. For comparison, the timconstants
derived from measurements at 1423nm, corresponding to a dip in
the ASE emission spectrum, are shown in the figure as well. If the
modulation in the ASE spectra was explained by the phonon bot-
tleneck, the time-constants for a wavelength corresponding to a dip
(1423nm) and a peak (1440nm) would differ. That is not observed
in the measurements.

1 15
Current I/Itr

1 1.5
Current I/1,

Figure 6.8: Left: Characteristic gain recovery times for QD SOA as a function
of injection current. Slow component (71) shown in red and fast component
(12) shown in black. Derived time constants for both 1423nm and 1440nm
are shown for comparison. Right: normalized amplitudes coefficients (at A =
1440nm) of the response function in Eq. 6.3.

6.3 Summary

A modulation is observed in the measured ASE from a SOA with
five layers of quantum dots. The modulation is explained by emis-
sion from sub-ensembles of dots with different number of mono-
layers. Pump-probe measurements of the sample show that the
carrier dynamics from dots of different height does not differ. Two
characteristic gain recovery times are measured to be 7 ~ 2ps and
Ty ~ 0.2ps, consistent with previous reported values for dots with
an emission wavelength of 1550nm. The recovery times are almost
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constant over a large range of wavelengths, and applied currents.
Only when in the absorption regime a increase in 71 (~ 10ps) is ob-
served, which is expected due to the optical excitation of carriers.
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Chapter 7

Conclusion and outlook

Photonic Crystal Amplifiers

Photonic crystal slab waveguides, incorporating active layers have
been fabricated, and the possibility of enhancing gain by using
slow light effects have been investigated. Structures with a sin-
gle quantum well, 10 quantum wells and three layers of quantum
dots were fabricated, all emitting at 1550nm. All waveguides have
taper structures at input and output to minimize insertion loss and
suppress residual reflection. Measured amplified spontaneous emis-
sion spectra were observed to be enhanced close to the band edge,
where light is slowed down due to photonic crystal dispersion. The
amplified spontaneous emission from photonic crystal waveguides
of different designs were characterized, showing that the enhanced
region consistently shifts to overlap with the slow light region of
each design. The modal gain was derived from systematic mea-
surements of the amplified spontaneous emission at different exci-
tation lengths. A single quantum well sample show a modal gain
of 38¢m™! in the enhanced region, while a gain of 370cm ™! was
measured for 10 quantum well samples. The spectral profile of the
modal gain envelope along with the high absolute values are ex-
plained by enhancement of net gain by slow light.

The slow light enhancement of gain was measured also investigated
by transmission measurements. Due to severe heating when op-
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tically pumping the structure in continuous wave mode, the mea-
surements were done using short excitation pulses. Lock-in mea-
surements at the repetition rate of the pump laser show that the
amplification is clearly wavelength dependent with more than 10
times greater differential transmission in the slow light regime rel-
ative fast light regime.

Lasing was observed even in absence on intentional cavities. It is
attributed to random lasing in Anderson localized modes.

outlook

Heating of the samples turned out to be a more critical point
than first anticipated. For future devices the thermal management
needs to be improved. Ongoing experiments on patterned epitaxial
growth are well under way at DT'U Fotonik and will be implemented
in photonic crystal amplifiers soon. Such buried heterostructure is
expected to reduce heating significantly. Alternative designs where
the membrane is encapsulated in BCB are also being considered.
That would improve the thermal conductivity compared to the cur-
rent air-membrane configurationm and more importantly, it would
allow for passive access waveguides.

In this work, a taper was used to improve coupling and reduce
reflections at the facets. However, the taper was not specifically
optimized for coupling of a slow light mode. The field distribution
of a slow light mode is very different from an incoming gaussian
mode, leading to a weak coupling. A slow light coupler will be
implemented for future designs. Further efforts will be made to
realize topology optimized designs.

Photonic Crystal Micro Lasers

Photonic crystal micro lasers were fabricated and its optical prop-
erties were investigated. The device design was identical to the
photonic crystal amplifiers, with an addition of cavity mirrors. The
demonstration of laser oscillation confirms that net gain is achieved
in the 3QD photonic crystal devices.

120



Lasing was observed in cavities which were 50 - and 70pum long,
with two different output mirror configurations; a flat cleave and a
partly reflective photonic crystal mirror consisting of four holes. In
a crystal with uniform hole sizes, lasing occurs at the band edge of
the defect mode. Measurements on 70um long lasers with different
hole size show that the shift in emission wavelength correspond to
the shift in band edge position. In a dispersion engineered photonic
crystal cavity, lasing was observed at two spectral regions separated
by > 60nm.

Outlook

The effect of slow light enhanced gain in photonic crystal micro
cavities will be further investigated. The lasing threshold is ex-
pected to be greatly reduced for low group velocities |53|, why an
experimental study of the dependency will be initiated. Attention
will be given to achieve lasing away from the band edge in a dis-
persion engineered device. Operation at the band edge has several
disadvantages; light suffers high losses due to scattering [57], a large
material gain is expected to degrade the slow down properties at
the band edge [126], and the slow down factor can not be precisely
controlled.

Photonic crystal amplifiers can also become and interesting plat-
form for mode-locked lasers. Although several challenges needs to
be overcome before the realization of such a device, efforts will be
made in that direction. Advances in selective growth will enable
incorporation of gain and absorber regions and further work will
focus on multi-mode photonic crystal micro lasers.

Pump-probe Measurements on Quantum Dot SOA

The gain dynamics of the quantum dot material used in the am-
plifiers and lasers were measured. The measurements were done on
a ridge single mode SOA with five layers of quantum dots. Sev-
eral dips and peaks were observed in the amplified spontaneous
emission spectrum from the device. The modulation is related to
sub assemblies of InAs quantum dots which differ in height by one
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InAs monolayer. Pump-probe measurements were carried out at six
different wavelengths with a fixed applied current of 100mA. Two
characteristic times of 7, ~ 2ps and 75 ~ 0.2ps were extracted using
a response function fitted to the measurements. It was shown that
the carrier dynamics does not depend on the number of monolayers
in the quantum dots.

Pump-probe measurements at a fixed wavelength (1440nm) with
various applied currents were also presented. The gain recovery
was measured in both the gain regime and absorbing regime.

Outlook

To date there are no measurements on pulse propagation or gain dy-
namics in active photonic crystal waveguides. Future measurements
will focus on characterizing photonic crystal amplifiers. Pump-
probe measurements at wavelengths corresponding to the slow rel-
ative the fast regime of the photonic crystal can provide interesting
information about the carrier dynamics. For these measurements a
short photonic crystal amplifier, which can be measured in trans-
mission is required (i.e. with access waveguides). If the device is
too long, it will not be possible to measure in the absorption regime.
The highly dispersive nature of photonic crystal devices requires a
longer pulse duration of the pump to achieve a spectrally narrow
pulse. Dispersion engineered devices with a constant group index
over a broad range of wavelengths would be advantageous for these
measurements.
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