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Summary

Nowadays, emerging applications such as wireless visual sensor networks and
wireless video surveillance are requiring lightweight video encoding with high
coding efficiency and error-resilience. Distributed Video Coding (DVC) is a
new coding paradigm which exploits the source statistics at the decoder side
offering such benefits for these applications. Although there have been some
advanced improvement techniques, improving the DVC coding efficiency is still
challenging.

The thesis addresses this challenge by proposing several iterative algorithms at
different working levels, e.g. bitplane, band, and frame levels. In order to show
the information theoretic basis, theoretical foundations of DVC are introduced.
The first proposed algorithm applies parallel iterative decoding using multiple
LDPC decoders to utilize cross bitplane correlation. To improve Side Infor-
mation (SI) generation and noise modeling and also learn from the previous
decoded Wyner-Ziv (WZ) frames, side information and noise learning (SING)
is proposed. The SING scheme introduces an optical flow technique to compen-
sate the weaknesses of the block based SI generation and also utilizes clustering
of DCT blocks to capture cross band correlation and increase local adaptivity
in noise modeling. During decoding, the updated information is used to iter-
atively reestimate the motion and reconstruction in the proposed motion and
reconstruction reestimation (MORE) scheme. The MORE scheme not only
reestimates the motion vectors for improving SI and noise modeling but also
compensates the residual motion based on the previously decoded WZ frames.
Furthermore, the MORE codec enhances the reconstruction by proposing a
generalized reconstruction algorithm to optimize reconstructing with multiple
competitive SIs. Finally, an adaptive mode decision is investigated to take ad-
vantage of skip and intra mode in DVC by deciding the coding modes based on
the quality of key frames and rate of WZ frames. Overall, the proposed algo-
rithms significantly improve the coding efficiency of DVC contributing valuable
solutions for the emerging applications.



Resumé

I dag kræver nye applikationer, såsom trådløse visuelle sensornetværk og tråd-
løs videoovervågning, simpel videoindkodning med høj kodningseffektivitet og
robusthed overfor fejl. Distributed Video Coding (DVC) er et nyt kodnings-
paradigme, som udnytter kildestatistikken ved dekoderen og kan dermed være
en fordel ved førnævnte applikationer. Selvom der er blevet udviklet avance-
rede teknikker til forbedring af DVC, er forbedring af DVC kodning stadig
udfordrende.

Denne afhandling tager denne udfordring op ved at foreslå flere iterative algo-
ritmer på forskellige niveauer, f.eks. på bitplane-, band-, og frame-niveau. For
at vise det teoretiske grundlag bliver teorien for DVC introduceret. Den første
foreslåede algoritme benytter parallel iterativ afkodning ved hjælp af flere LD-
PC dekodere for at udnytte korrelationen bitplaner imellem. For at forbedre
estimeringen af sideinformationen (SI), støjmodelleringen og samtidig lære af
de tidligere dekodede Wyner-Ziv (WZ) frames, foreslås "Side Information and
Noise learninG"(SING). SING introducerer optisk flow for at kompensere for
de svagheder i blokken, der skyldes SI-estimeringen og udnytter også gruppe-
ringen af DCT-blokkene for at fange korrelationen forskellige bands imellem,
samtidig med at øge den lokale tilpasning i støjmodellering. Under afkodning
bliver de opdaterede oplysninger anvendt til iterativt at opdatere den bereg-
nede bevægelse og gendannelse i den foreslåede "MOtion and REconstruction
reestimation"(MORE) metode. MORE opdaterer ikke kun bevægelsesvektorer-
ne for at forbedre SI og støj-modelleringen, men kompenserer også residualet
af bevægelsen baseret på de tidligere dekodede WZ frames. Endvidere øger
MORE gendannelsen ved at foreslå en generaliseret rekonstruktion ved at op-
timere rekonstruktionen med flere konkurrencedygtige SI’er. Endelig foreslås
en adaptiv algoritme til tilstandsbeslutning som drager fordel af skip og intra-
tilstandene i DVC. Dette sker på basis af kvaliteten i nøgle frames og raten for
WZ frames. Samlet set forbedrer de foreslåede algoritmer i en væsentlig grad
kodningseffektiviteten af DVC og bidrager med værdifulde løsninger for nye
videoapplikationer.
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Chapter 1

Introduction

1.1 Motivation

Digital video is continuously growing in a wide range of emerging applications.
Increasing practical applications in video communications such as Wireless Vi-
sual Sensor Networks (WVSNs) and mobile phone cameras require low com-
plexity encoding, where conventional video standards as H.264/AVC are dis-
advantageous. DVC [1] is a new coding paradigm which entails low-complexity
encoders as well as separate encoding of correlated video sources. DVC is
suitable for the applications where the computational burden is moved from
encoder to decoder. This is particularly attractive for upstream transmissions
such as camera systems in visual sensor networks, where camera sensors re-
quire a simple encoder while base stations can decode with high computational
burden. Therefore, the challenge in such systems makes data compression and
resource constraints key issues which are needed to be solved.

DVC is promising for the WVSNs that have constrained resources in terms
of battery, memory, processing capability, and data rate in error-prone envi-
ronments. The WVSNs are challenged by requiring advanced video coding
and processing techniques in the energy-constrained wireless communications.
One of the main design objectives of the WVSNs is a local (on-board) coding
and processing technique with high compression efficiency, low-complexity, and
error-resilience. The WVSNs also require real-time performance for the pro-
cess extracting visual information from physical environments (by cameras) to
transmit it to control centers (by users). Thus, most camera sensors have em-
bedded processors that only support lightweight processing algorithms. Figure



2 Introduction

1.1 illustrates a WVSN including sensor node such as a MICAz sensor mote
[2] and a wireless endoscopy Pill-Cam ESO2 [3]. These wireless visual sensors
capture information to send to the base station (sink) which is connected to
users through Internet or satellite. At control center, users can issue monitoring
queries and display results obtained from the WVSN.

Internet and SatelliteBase station
(Sink)

Control center
(users)

Sensor field
Sensor nodes

A wireless endoscope A sensor mote

Figure 1.1: A wireless visual sensor network with a Pill-Cam ESO2 endoscope
and a MICAz sensor mote.

The WVSNs have a range of applications including surveillance networks,
health care systems, and monitoring systems. The surveillance visual sen-
sors combined with signal processing and computer vision techniques can be
used to locate criminals, terrorists, or accidents. The sensor networks can be
integrated with other multimedia networks to provide health care services. Re-
mote medical centers are able to perform advanced remote monitoring of their
patients via multimedia sensors with remote assistance services. The wire-
less capsule endoscopy provides visual recordings inside the human body for
diagnosis and monitoring. The WVSN is possibly a part of advance health
informatics challenge, which is one of the grand challenges [4] enabling a new
system of distributed tools to collect medical data. In addition, the monitoring
systems using visual sensors are used to monitor natural environment, health of
human-made structures, e.g bridges, building, ships, etc., and disasters. Multi-
media sensors can be used to monitor and control the industrial processes and
systems in critical conditions.
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The emerging applications require the visual sensors to be exploited using a
high efficiency lower power data compression technique, i.e. lightweight en-
coders, still retaining high compression efficiency, and error-resilience. Most
practical visual sensor platforms use intra-frame coding [5], such as JPEG or
modified JPEG compression, to offer low-complex high efficiency compression.
Despite the potential benefits of DVC with high coding efficiency, low power,
and error resilience, none of the existing WVSN platforms and prototypes have
implemented or tested DVC [5]. In principle, the Slepian-Wolf [6] and Wyner-
Ziv [7] theorems show that the DVC can achieve the same performance as con-
ventional (non-distributed) codings. There are growing endeavors in research
societies to improve the Rate Distortion (RD) performance and deal with major
obstacles of DVC in practical applications under the constraints, where recent
results [8] show that the DVC codec gives a better RD performance than low-
complex H.264/AVC intra-coding except for very complex motion sequences.
However, there is still a gap between the coding efficiency performances of
DVC and H.264/AVC. The DVC coding efficiency is critically dependant on
generating high accuracy SI at the decoder and estimating correlation between
the corresponding source and the SI. Moreover, exploiting different coding
modes with adaptive techniques and controlling rate under delay constraints
can also be challenges towards an efficient and practical DVC for the emerging
applications.

1.2 Objectives

The goal of this thesis is to develop novel algorithms for an advanced and
efficient DVC architecture to improve the DVC coding efficiency. The pro-
posed improvement algorithms are implemented and evaluated on a popular
and efficient approach to DVC, which is TDWZ video coding with a feedback
channel [1]. The significant improvements of the proposed DVC codecs are
also compared with those of the existing DVC codecs and conventional video
H.264/AVC codecs. The main objectives of this thesis include:

• Developing advanced and novel algorithms to efficiently estimate noise
correlation between source and side information at different levels, e.g.
bitplane, band, and frame levels, taking place at the decoder to improve
compression performance without changing the complexity video encod-
ing.

• Reestimating, learning, and optimizing information from previously de-
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coded information and from multiple sources including spatial correlation,
block-based and optical flow-based side information to improve decoding
and reconstructing processes.

• Exploiting and integrating the proposed techniques into a TDWZ DVC
to evaluate the coding performance of the proposed DVC codecs com-
pared with the existing DVC codecs [9,10] as well as conventional hybrid
predictive video coding such as H.246/AVC.

1.3 Contributions

The thesis contributes a number of solutions at different levels, e.g. bitplane,
band, and frame levels at the decoder side to improve the DVC coding efficiency.
The main contributions from this thesis are:

• Parallel iterative decoding using multiple LDPC Accumulate
(LDPCA) decoders: is proposed to utilize cross bitplane correlation
[11, 12] by iteratively refining the soft-input, updating a modeled noise
distribution and thereafter enhancing the bitplane decoding performance.
This parallel iterative decoding exploits a Belief-Propagation (BP) algo-
rithm to propagate soft information back and forth at both bitplane (bit)
and coefficient (symbol) levels. The cross bitplane correlation model is
able to recalculate the soft-input based on the outputs of LDPCA de-
coders and update the estimated noise distribution from the noise model.
Consequently, the DVC scheme employing this technique reduces the bit
rate of WZ frames and improves the rate-distortion (RD) performance of
TDWZ.
This contribution is presented in Chapter 3, which has resulted in the fol-
lowing publications (Papers ICIP11-ICASSP11). In Chapter 3, Wyner-
Ziv codec with parallel iterative decoding is described in Sec. 3.2 using
Sec. 3 in Paper ICIP11, where the working flow of the parallel iterative
decoding algorithm is added. In addition, performance evaluation in Sec.
3.3 (Chapter 3) shows the experimental results in Sec. 4 (Paper ICIP11)
and additionally compares Bjøntegaard relative bit-rate savings (%) and
PSNR improvements of TDWZ codecs (in [13] and Paper ICASSP11)
with those of the proposed TDWZ (Paper ICIP11) over DISCOVER [9].

ICIP11: Huynh Van Luong, Xin Huang, and Søren Forchhammer, "Par-
allel Iterative Decoding of Transform Domain Wyner-Ziv Video us-
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ing Cross Bitplane Correlation," in IEEE International Conference
on Image Processing 2011 (ICIP 2011), Brussels, Belgium, Sep.
2011.

ICASSP11: Huynh Van Luong, Xin Huang, and Søren Forchhammer,
"Multiple LDPC Decoding using Bitplane Correlation for Trains-
form Domain Wyner-Ziv Video Coding," in IEEE International Con-
ference on Acoustics, Speech and Signal Processing 2011 (ICASSP
2011), Prague, Czech Republic, May 2011.

• Side Information and Noise learninG (SING): is proposed using
Optical Flow (OF) and clustering of DCT blocks [8] to improve side in-
formation and noise modeling and learn information from the previously
decoded WZ frames. The optical flow technique is exploited at the de-
coder side to compensate for weaknesses of block-based methods, when
using motion-compensation to generate side information frames. Cluster-
ing [14, 15] is introduced to capture cross band correlation and increase
local adaptivity in the noise modeling. Furthermore, learning techniques
from previously decoded (WZ) frames are also proposed to influence the
noise distribution of the current frame. Different techniques are combined
by calculating a number of candidate soft side information for (LDPCA)
decoding using a multiple soft input decoding approach. Finally, a new
SING TDWZ video scheme is proposed based on enhancing the basic
TDWZ with optical flow in a multi-hypothesis set-up and the novel clus-
tering for noise modeling.

This contribution is presented in Chapter 4, which has resulted in the
following publications (Papers TIP12-PCS12-MMSP11-1). Adaptive
noise model and noise residual learning in Secs. 4.1-4.2 (Chapter 4) use
Sec. IV in Paper TIP12. The proposed SING scheme in Sec. 4.3 (Chap-
ter 4) is presented using Sec. V in Paper TIP12. Furthermore, perfor-
mance evaluation in Sec. 4.4 (Chapter 4) shows more results, e.g. GOP4,
than in Sec. VI in Paper TIP12.

TIP12: Huynh Van Luong, Lars Lau Rakêt, Xin Huang, and Søren
Forchhammer, "Side Information and Noise Learning for Distributed
Video Coding using Optical Flow and Clustering," IEEE Transac-
tions on Image Processing, vol. 21, no. 12, pp. 4782-4796, Dec.
2012.

PCS12: Huynh Van Luong and Søren Forchhammer, "Noise Residual
Learning for Noise Modeling in Distributed Video Coding," in Pic-
ture Coding Symposium 2012 (PCS 2012), Krakow, Poland, May
2012.
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MMSP11-1: Huynh Van Luong, Xin Huang, and Søren Forchhammer,
"Adaptive Noise Model for Transform Domain Wyner-Ziv Video us-
ing Clustering of DCT Blocks," in IEEE International Workshop
on Multimedia Signal Processing 2011 (MMSP 2011), Hangzhou,
China, Oct. 2011.

• MOtion and REconstruction reestimaton (MORE): is proposed
using optical flow reestimation to reestimate SI and noise residue, a resid-
ual motion compensation to improve the noise residue based on the re-
constructed WZ frames, and a generalized reconstruction to optimize the
multiple hypothesis reconstruction. A motion reestimation technique is
based on optical flow to improve side information and noise residue frames
by taking partially decoded information into account. To improve noise
modeling, a noise residual motion reestimation technique is proposed by
using residual motion compensation with motion updating to estimate
a current residue based on previously decoded frames and correlation
between estimated side information frames. In addition, a generalized re-
construction algorithm is proposed to optimize a multi-hypothesis recon-
struction. The proposed techniques using the motion and reconstruction
reestimation are integrated in the SING TDWZ to create a new MORE
TDWZ scheme, which significantly improves the RD performance.

This contribution is presented in Chapter 5, which has resulted in the
following submitted paper (Paper TIP13). Sec. III presenting the OF
works in Paper TIP13 based on the OF in [16] is not included in Chapter
5.

TIP13: Huynh Van Luong, Lars Lau Rakêt, and Søren Forchhammer,
"Reestimation of Motion and Reconstruction for Distributed Video
Coding," submitted to IEEE Transactions on Image Processing,
Apr. 2013.

• An adaptive mode decision: is proposed to take advantage of skip and
intra mode based on the quality of key frames and the rate of WZ frames.
The adaptive mode decision is also combined with the residual motion
compensation to improve noise distribution estimation for a more accu-
rate mode decision. To take advantage of both the refinement technique
in [8, 10] and the decoder-side mode decision in [17], the mode decision
uses estimated rate to form the adaptive mode decision and combined
with a residual motion compensation to generate a more accurate cor-
relation noise. The proposed technique is integrated in the DVC codecs
[8, 10] to enhance the RD performance of the TDWZ scheme.
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This contribution is presented in Chapter 6, which has resulted in the
following submitted paper (Paper PCS13). Besides the description in
Paper PCS13, the final DVC scheme based on the MORE codec with
the adaptive mode decision and its experimental results are additionally
presented in Chapter 6.

PCS13: Huynh Van Luong, Jürgen Slowack, Søren Forchhammer, Jan
De Cock, and Rik Van de Walle, "Adaptive Mode Decision with
Residual Motion Compensation for Distributed Video Coding," sub-
mitted to Picture Coding Symposium 2013 (PCS 2013).

1.4 Outline of the Thesis

The thesis is organized as follows. The foundations and practical codecs of DVC
are introduced in Chapter 2. In Chapter 3, the parallel iterative decoding using
multiple Low Density Parity Check (LDPC) decoders is proposed. Chapter 4
describes the proposed SING scheme where the DVC performance is compared
to several previous DVC codecs. In Chapter 5, the MORE scheme is proposed
based on the SING scheme to exploit motion and reconstruction reestimation
where the MORE’s performance improvements are depicted. Furthermore,
the proposed adaptive mode decision is shown in Chapter 6 to consider the
advantage of promising coding modes in DVC . Finally, Chapter 7 summarizes
this thesis and discusses some possible future directions.



Chapter 2

Distributed Video Coding

Distributed video coding is an interesting instance of Distributed Source Cod-
ing (DSC) that was attracted the interest of many researchers. DSC is an
instance of source coding dealing with multiple correlated information sources
in a distributed context. This chapter introduces two information theory theo-
rems as basis of DSC, the Slepian-Wolf theorem [6] and the Wyner-Ziv theorem
[7]. The Slepian-Wolf theorem states for lossless coding of correlated sources
that the optimal rate by joint encoding and joint decoding can be achieved by
independent encoding and joint decoding. The Wyner-Ziv theorem extends this
result for lossy coding of correlated data sets when independent encoding and
joint decoding are performed utilizing the correlation between the sources only
at the decoder side. In addition, this chapter reviews practical solutions for the
Slepian-Wolf coding [18] including practical codec design and rate adaptation
for asymmetric SW coding. This chapter also reviews one efficient approach
to DVC, which is Transform Domain Wyner-Ziv (TDWZ) video coding. The
first practical DVC architectures are from Stanford University [1] and the Uni-
versity of California, Berkeley [19]. Later, the well known DISCOVER DVC
codec [9] was introduced and now used as a good DVC benchmark in literature.
There have been some recent advances [20–24] to improve the coding efficiency
of DVC. More recently, an enhanced DVC scheme [10] has been proposed by
utilizing the cross-band correlation, which is used as a starting framework for
the contributions presented in this dissertation.

2.1 Distributed Source Coding

This section provides an overview of source coding, where lossless and lossy
source codings are characterized, and the fundamental theorems in DSC. Two
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information theorems, namely the Slepian-Wolf theorem [6] and the Wyner-Ziv
theorem [7], are introduced. These theorems’ results are promising efficient
lossless and lossy coding of correlated source data sets when independent en-
coding and joint decoding are performed by utilizing the correlation between
the sources only at the decoder side.

2.1.1 Source Coding

The lossless source coding [18] describes a source sequence with bit strings that
the original source can be recovered without loss. The lossless source coding
maps L samples of the source sequence to the set of bit strings of a fixed length
N . The performance of a lossless source code can be measured by the ratio
N/L of the number of bits N of this bit string to the number of source samples
L. An achievable rate R = N/L is a ratio that allows the reconstruction error
to go to zero as the source sequence length goes to infinity. In many source
coding issues, the available bit rate is not sufficient to code the information
source lossless. We want to use the available rate to describe the source to
within the smallest possible average distortion D, which is determined by a
distortion function d(., .), a mapping from the source s and reconstruction ŝ
alphabets to non-negative reals, R+. The mean-squared error is widely used,
that is, d(s, ŝ) = |s−ŝ|2. Thus lossy source coding is to deal with the achievable
trade-offs between rate and distortion which can be characterized by the rate-
distortion function.

2.1.2 Slepian-Wolf Theorem

We consider the coding scenario illustrated in Figure 2.1 [18], where two source
streams S1 and S2 are dependent on each other. The coding question now
involves two separate source codes that appear at rates R1 and R2, respectively,
and a receiver where the source codes are jointly decoded. This setting (Figure
2.1) shows a case as a nonasymmetric Slepian-Wolf (SW) coding. Specifically,
if we assume R2 > log |S2|, the decoder would know S2 without error, and thus
this problem includes the special case of side information at the decoder. The
sources S1 and S2 play different roles, thus the scheme is usually referred to as
asymmetric SW coding (Figure 2.3). The Slepian-Wolf theorem [6,18] is stated
in Theorem 2.1.
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ˆ ˆ

S2 R2

S1

S1,S2

R1
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DEC

Figure 2.1: Distributed source coding problem.

Theorem 2.1 Given discrete sources S1 and S2, define R as

R =

{
(R1, R2) : R1 +R2 � H(S1, S2), R1 � H(S1|S2), R2 � H(S2|S1)

}
.

(2.1)
Let R0 be the interior of R. Then the theorem [6] proves that (R1, R2) ∈ R0 are
achievable for the two terminal lossless source coding problem, and (R1, R2) �∈
R are not.

H (X, Y ) RX

H (Y )

RY

B

A

C

H (X |Y )

H (Y |X )

H (X, Y ) H (X )

2

H (X,Y )

H (X,Y )

2

Figure 2.2: Achievable rate region for the coding of correlated sources X and
Y .

We consider Theorem 2.1 applying on two sources X and Y with rates RX

and RY , where X, Y , RX , and RY are here considered as S1, S2, R1, and
R2, respectively, in Theorem 2.1. If the two coders communicate, it is well
known from Shannon’s theory that the minimum lossless rate for X and Y is
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given by the joint entropy H(X,Y ). Slepian and Wolf theorem [6] established
that this lossless compression rate bound can be approached with a vanishing
error probability for infinitely long sequences, even if the two sources are coded
separately, provided that they are coded jointly and their correlation is known
to both the encoder and the decoder.

The SW region [18] for two discrete sources is an unbounded region with two
corner points (see points A and B in Fig. 2.2). At the point A, source Y
is compressed at its entropy rate and can therefore be reconstructed at the
decoder independently of the information received from other source X. The
source Y is called the SI (available at the decoder only). X is compressed
at a smaller rate at the conditional entropy H(X|Y ) and can therefore be
reconstructed only if Y is available at the decoder.

2.1.3 Wyner-Ziv Theorem

The Wyner-Ziv theorem [7] extends the Slepian-Wolf result for lossy coding of
correlated sources. Figure 2.3 [18] considers the setting in which the second
encoder has an unconstrained rate link to the decoder. This configuration is
often referred as the Wyner-Ziv source coding problem as stated in Theorem
2.2 [7, 18].

ˆ

S2

S1

S1

R1
ENC

DEC

Figure 2.3: The Wyner-Ziv source coding problem.

Theorem 2.2 Given a discrete memoryless source S1, discrete memoryless
side information source S2 with the property that (S1(k), S2(k)) are i.i.d over
k, and bounded distortion function d : S×U → R+. A rate R is achievable with
lossy source coding with side information at the decoder and with distortion D



2.2 Distributed Video Coding Architectures 13

if R > RWZ
S1|S2

(D). Here

RWZ
S1|S2

(D) = min
p(u|s1): E[d(S1,U)]�D

I(S1;U |S2) (2.2)

is the rate distortion function for side information at the decoder. Conversely,
for R < RWZ

S1|S2
(D), the rate R is not achievable with distortion D [7], where

p(u|s1) is a conditional distribution of u ∈ U given s1 ∈ S1, E[.] denotes an
expectation operator, and I( ; ) denotes the mutual information.

The Theorem 2.2 provides bounds for DSC systems, where DVC is an inter-
esting specific case. However, building practical DVC systems to achieve those
bounds is challenging.

2.2 Distributed Video Coding Architectures

2.2.1 The Slepian-Wolf Coding

This section deals with practical solutions for the Slepian-Wolf coding [18],
which refers to the problem of lossless compression of correlated sources with
codes that do not communicate. The challenge is here to construct a set of
encoders that do not communicate and a joint decoder that can achieve the
theoretical limit. This section gives practical design and rate adaptation for
asymmetric SW coding.

2.2.1.1 The syndrome approach

If a codeword x is sent over a Binary Symmetric Channel (BSC) with a
crossover probability p and error sequence z, the received sequence is y = x+z.
Maximum Likelihood (ML) decoding over the BSC searches for the closest code-
word to y with respect to the Hamming distance dH(., .).

Let x and y be two correlated binary sequences of length n. These sequences
are the realizations of the sources X and Y . Figure 2.4 [18] shows a syndrome
approach to asymmetric SW coding. The encoder computes and transmits the
syndrome of x∈ Cs={x: s = xHT }. The sequence x of n input bits is thus
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x

DecoderEncoder

y

s x̂H
arg   min dH(x, y)

x :x∈Cs

Figure 2.4: The syndrome approach of asymmetric SW coding

mapped into its corresponding (n−k) syndrome bits, leading to a compression
ratio of n : (n− k). The decoder, given the correlation between the sources X
and Y and the received coset index s, searches for the sequence in the coset
that is closest to y in order to retrieve the original sequence x:

x̂ = arg min
x:x∈Cs

dH(x,y). (2.3)

2.2.1.2 The parity approach

xp
x

DecoderEncoder

y

x̂G
arg       min dH((x xp), (y xp))

(x xp):(x xp)∈C 9

x

Figure 2.5: The parity approach of asymmetric SW coding

Figure 2.5 [18] shows a parity approach to asymmetric SW coding. Let C′ be an
(n, 2n− k) systematic binary linear code, defined by its (2n− k)×n generator
matrix G = (IP ): C′ = {xG = (x xp) : x ∈ {0, 1}n}. The compression ratio
n : (n−k) of the source X is achieved by transmitting only the parity bits xp of
the source X. The correlation between the source X and the SI Y is modeled
as a virtual noise channel, where the pair (y xp) is regarded as a noise version
of (x xp). The decoder corrects the virtual channel noise and thus estimates x
given the parity bits xp and the SI y regarded as a noisy version of the original
sequence x by:

x̂ = arg min
(x xp):(x xp)∈C′

dH((x xp), (y xp)). (2.4)
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2.2.1.3 Rate adaptation

Using LDPC codes [25], the Belief-Propagation (BP) decoder can be adapted
to take into account the syndrome. The syndrome bits are added to the graph
such that each syndrome bit is connected to the parity check equation to which
it is related. The update rule at a check node is modified in order to take into
account the value of the syndrome bit known at the decoder.

In order to select an adequate code and code rate, the correlation between the
sources needs to be known or estimated at the transmitter before the com-
pression process. In practical scenarios, this correlation may vary, e.g. the
correlation decreases, the rate bound moves away from the estimate. The rate
can be controlled by a feedback channel. The decoder could estimate the Bit
Error Rate (BER) at the output with the help of the log-likelihood ratios com-
puted by the channel decoder. If the BER at the output of the decoder exceeds
a given value, more bits are requested from the encoder. The code should be
incremental. In the parity approach, the parity bits are punctured and the
decoder compensates for this puncturing. The source sequence x is compressed
through some punctured parity bits x̃p. The decoder retrieves the original
sequence aided by the SI y. The sequence (yx̃p) can be considered as a combi-
nation of a perfect channel (the unpunctured parity bits), an erasure channel
(the punctured parity bits), and a BSC channel (the correlation between x and
y).

One of the rate-adaptive codes for DSC is LDPC Accumulator (LDPCA) [26]
which has been widely used in DVC, where the puncturing of LDPC encoded
syndromes is investigated in [26]. To avoid degrading the performance of the
LDPC code, the syndrome bits are first protected by an accumulator code
before being punctured. The combined effect of puncturing and of the accu-
mulator code is equivalent to merging some rows of the parity check matrix.
For each rate, a set of parity-check matrices is defined, thereafter, decoding is
performed according to the modified sum-product algorithm.

2.2.2 Transform Domain Wyner-Ziv Video

Transform domain Wyner-Ziv video coding [1] is an efficient approach to DVC,
where a feedback channel is employed at the decoder to control the rate by
requests. DISCOVER codec [9] is an improved DVC based on the initial TDWZ
architecture [1]. The architecture of a TDWZ video codec [9] is depicted in Fig.
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2.6.
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Figure 2.6: Transform domain Wyner-Ziv video codec architecture.

2.2.2.1 The Wyner-Ziv Encoder

• Video Splitting: The sequence of frames is split into key frames and
so-called WZ frames. Key frames are intra coded using conventional
video coding techniques such as H.264/AVC intra coding. Key frames
are periodically inserted with a certain GOP size, e.g. a GOP size of 2
means that odd frames are coded as key frames and even frames are WZ
frames.

• Transform: The Wyner-Ziv frames are transformed by an integer 4×4
Discrete Cosine Transform (DCT). The DCT coefficients are then grouped
based on the position of each coefficient within the 4×4 blocks to form
the DCT bands.

• Quantization: After the transform operation, each DCT band is uni-
formly quantized by a uniform quantizer with given 2Mk levels (where
the number of bitplanes Mk depends on the DCT coefficients). Different
qualities can be achieved by different number of quantization levels, 2Mk ,
used for each DCT band. For instance, eight RD points corresponding
to the various 4×4 quantization matrices depicted in Fig. 2.7, where
the value at position k indicates the number of quantization levels 2Mk

associated with the corresponding DCT coefficients.

• LDPCA Encoder: Thereafter, the quantized DCT band is decomposed
into bitplanes, which bits of the same significance, e.g most significant
bitplane to least significant bitplane, are grouped together. Each bitplane
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Figure 2.7: Eight quantization matrices associated with 8 RD points

is fed to a rate-compatible LDPC Accumulate (LDPCA) encoder [26]
from the Most Significant Bit (MSB) to Least Significant Bit (LSB).
The corresponding error correcting information is stored in a buffer and
requested by the decoder through a feedback channel.

2.2.2.2 The Wyner-Ziv Decoder

• Side Information Generation: At the decoder side, the WZ frame is
predicted by using already decoded frames as references. The predicted
frame, called the SI frame, is an estimate of the original WZ frame. The
SI is created by using frame interpolation by an Overlapped Block Motion
Compensation (OBMC)-based or OF methods between key frames that
can be coded with constant QPs as defined in Table 2.1. The selection
of these QP values for the key frames was chosen so that the average
decoded video quality of frames (both key frames and WZ frames) are
almost constant. The better the predicted frame SI is estimated, the
smaller the bit rate is required for successful decoding. In addition, the
residual frame, NR, the estimated difference between the original WZ
frame and the SI frame, is also generated for noise modeling.

• Noise Modeling: The 4×4 DCT of the transform is then applied on the
SI and NR frames to obtain the Y and R frames in transform domain,
respectively. The residual frame R, which is the statistics between cor-
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Table 2.1: Key frame QPs for 8 RD points

Sequence Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8

Foreman 40 39 38 34 34 32 29 25
Hall 37 36 36 33 33 31 29 24
Soccer 44 43 41 36 36 34 31 25
Coast 38 37 37 34 33 31 30 26

responding WZ frame X and the SI frame Y is modeled by a Laplacian
distribution. The Laplacian parameter α can be estimated at different
granularity levels, e.g. frame, band, or coefficient levels.

• Soft Input Estimation: Given the available SI Y and the Laplacian
distribution α, soft-input information (conditional probabilities Pr for
each bit) within each bitplane is estimated. The soft-input Pr is defined
as the conditional probability, given the information from the previously
decoded bitplanes, of each bit being equal to 0 or 1, which is to be fed
into the LDPCA decoder.

• LDPCA Decoder: Thereafter the LDPCA decoder starts to decode the
bitplanes selected by the quantizer, ordered from most to least significant
bitplane, to correct the bit errors. The decoder requests bits from the
buffer via the feedback channel until the bitplane is decoded. Thereafter
Cyclic Redundancy Check (CRC) check bits are sent for confirmation.
Once all the bitplanes of the DCT coefficient band are successfully de-
coded, the LDPCA decoder starts decoding the next band. This process
is carried out until all the DCT coefficient bands are successfully decoded.

• Reconstruction: When all the bitplanes are successfully decoded, the
WZ frame are decoded through combined de-quantization and reconstruc-
tion to get the reconstructed frame X̂.

• Inverse Transform: After the 4×4 inverse DCT is performed, the re-
constructed pixel domain WZ frame is generated. Finally, the decoded
video sequence is obtained by combining the decoded key frames with the
WZ frames.
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2.2.3 Recent Advances on TDWZ Video

There have been some recent advances on DVC. Noticeably, the work in [20]
proposed a SI refinement technique to improve SI during decoding. More re-
cently, a learning based decoding approach was proposed in [21] using over-
lapped motion vectors for updating the motion field to achieve a better SI
quality and a more accurate correlation. To estimate correlation among source
and SI, an adaptive correlation estimation integrated in joint bitplane decod-
ing was proposed in [22]. Moreover, an approach in [23] was to develop side
information dependant correlation channel estimation in hash-based DVC to
express the correlation noise as statistically dependent on SI. Regarding to
feedback channel issues, DVC with feedback channel constraints was developed
in [24] to constrain number of feedback requests for delay-aware DVC. The RD
performance of TDWZ was improved in [10] using a cross-band noise refine-
ment technique. Despite the advances in practical TDWZ video coding, there
is still a gap between the RD performance of TDWZ video coding and that
of conventional video coding approaches such as H.264/AVC. The cross-band
noise refinement for DVC is introduced in next section as a starting framework
for the following contributions to further improve the DVC coding efficiency.

2.2.4 The Cross-band TDWZ Video Codec

A cross-band noise model [10] was introduced utilizing cross-band correlation
based on the previously decoded neighboring bands. This decoder side cross-
band noise model [10] is shown in Fig. 2.8 to improve RD performance of
TDWZ video coding. The decoder noise model includes a classification esti-
mation module, which is used by the adaptive noise model. The classification
utilizes successfully decoded neighboring lower frequency bands to evaluate the
higher frequency bands and classifies coefficients into different categories re-
flecting their reliability. The adaptive noise model uses a modified maximum
likelihood estimator, which is applied to the different reliability classes in or-
der to calculate a higher level noise parameter first. Thereafter, a lower level
noise parameter is adaptively determined for each coefficient. Furthermore,
a bitplane level Noise Residue Refinement (NRR) scheme was applied in the
cross-band decoder to adaptively refine the quality of side information frame
during decoding. OBMC was used for side information generation [10].

• Classification Estimation: To utilize the cross-band correlation, the
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Figure 2.8: Transform domain Wyner-Ziv video codec architecture with a
cross-band based adaptive noise model.

classification estimation module classifies the coefficients of each band in
to two categories, called classification maps, based on the value of their
Laplacian parameters. The cross-band correlation is utilized by using
the classification maps of successfully decoded bands to influence the
classification map of the current band.

• Adaptive Noise Modeling: In order to adapt the Laplacian parame-
ters for each of the classification maps, the modified maximum likelihood
estimator [10] is calculated within each of the estimated classification
maps. This means that the Laplacian parameters for each map and each
band are treated differently in the noise model. This cross-band modeling
is combined with a coefficient level noise model using a weighted scaling.
Consequently, the Laplacian parameters in the current band are assigned
based on both their own coefficient noise parameters and the adaptivity
of neighboring decoded bands.

• Noise Residue Refinement: The NRR scheme is used to adaptively
refine the accuracy of the noise residue during decoding. The refinement
is carried out after each successful decoding of a bitplane. Given the
decoded bitplane, the error map for the corresponding bitplane is esti-
mated. Thereafter, the NRR refinement for the next bitplane is only
applied in positions in the error map. The NRR scheme is trying to scale
the partially decoded residue or adaptively balance the weights between
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the previous residue and the partially decoded residue to reduce the noise
estimation errors for the next bitplane.

2.3 Summary

This chapter provided backgrounds of theoretical and practical results in DVC.
The theoretical foundations of DVC were introduced in the context of DSC
systems, where correlated sequences were coded using independent encoding
and joint decoding. Bounds on the compression performance of such DSC
systems were derived by the Slepian-Wolf theorem for lossless source coding and
the Wyner-Ziv theorem for extending to lossy source coding. These theoretical
contributions were also applied to DVC, where practical solutions for DVC
systems were described. First of all, practical issues for the Slepian-Wolf coding
were characterized. Thereafter, a TDWZ video codec was described, which
was based on information theory results. Some recent advances on DVC to
improve the DVC coding efficiency were also reviewed. Finally, the cross-band
DVC recently proposed was introduced to improve the coding efficiency of
the practical Wyner-Ziv video codec. These DVC architectures are used as a
starting point for the contributions presented in the following chapters of this
dissertation.



Chapter 3

Parallel Iterative Decoding

using Multiple LDPCA

Decoders

In this chapter, a parallel iterative LDPC decoding scheme is proposed to
improve the coding efficiency of TDWZ video codecs. The proposed parallel
iterative LDPC decoding scheme is able to utilize cross bitplane correlation
during decoding, by iteratively refining the soft-input, updating a modeled
noise distribution and thereafter enhancing the bitplane decoding performance.

TDWZ was first proposed in [27], and thereafter improved by many other tech-
niques, e.g. advanced side information generation schemes [9,28–30], finer noise
models [13,28] and refinement schemes [20,31]. To further improve the coding
efficiency of TDWZ video coding, a Wyner-Ziv codec with parallel iterative
LDPC decoding is proposed in this chapter. The proposed scheme is based on
the initial work in [11], inspired by the work in [32] using joint bitplane LDPC
decoding and the work in [31] with refinement of the modeled noise distribution.
The main advantage of joint bitplane LDPCA decoding is to exploit correla-
tion across bitplanes by exchanging soft information between bitplanes during
the decoding. Different from [31, 32], the proposed scheme utilizes multiple
LDPCA decoders in parallel, taking inter bitplane correlation into account to
iteratively refine the soft-input of bitplanes and update a modeled noise dis-
tribution during decoding, thereby improving the overall RD performance of
the TDWZ codec. Compared with [11], the novelty is that the modeled noise
distribution keeps updating based on the iteratively refined soft-input during
parallel decoding.
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The rest of the chapter is organized as follows. Section 3.1 presents the TDWZ
video codec with rate-adaptive LDPCA codec adopted in this chapter. Sec-
tion 3.2 describes the proposed parallel iterative LDPC decoding scheme. The
performance of the proposed approach is analyzed and compared with other
existing methods in Section 3.3.

3.1 TDWZ Video Coding with Rate-adaptive LD-
PCA Codec

In TDWZ video coding (Sec. 2.2.2), the coding efficiency of the LDPCA codec
plays a key role in terms of overall RD performance. At the encoder side, the
LDPCA encoder encodes each bitplane that is fed to a rate-compatible LDPC
Accumulate (LDPCA) encoder [26] from MSB to LSB. The corresponding
error correcting information generated by the LDPCA encoder for each bit-
plane is stored in the buffer. The amount of information to be transmitted
depends on the requests made by the decoder through a feedback channel. At
the decoder side, the LDPCA decoder starts to decode the bitplanes selected
by the quantizer, ordered from most to least significant bitplane, to correct
the bit errors. The decoder requests bits from the buffer until the bitplane is
decoded.

For LDPCA decoding, a BP algorithm is used to retrieve each transmitted
bitplane. The BP algorithm is a soft-decoding approach, which is passing a
Log-Likelihood Ratio (LLR) of Pr back and forth between source nodes and the
syndrome nodes. Let X = (bm−1, ..., b1, b0) denote a quantized DCT coefficient
of a Wyner-Ziv frame, where bm−1 is an MSB bit and b0 is an LSB bit and let
Y denote a quantized DCT coefficient of the side information. The LDPCA
corrects errors one bitplane after another e.g., from MSB to LSB. The LLR of
a bit bi (0 � i � m− 1) of the ith significant bitplane is described as:

L(bi) = log

(
Pr(bi = 0|Y, bm−1, ..., bi+1)

Pr(bi = 1|Y, bm−1, ..., bi+1)

)
, (3.1)

where bm−1, ..., bi+1 represent bits from previous successfully decoded bits of
the transformed coefficient. The LDPCA decoder utilizes information from
previous successfully decoded bitplanes for decoding future bitplanes.
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3.2 Wyner-Ziv Codec with Parallel Iterative De-
coding

3.2.1 Multiple LDPCA Decoders Using Cross Bitplane
Correlation

In the TDWZ codec described in Section 3.1, the LDPCA decoder utilizes side
information, modeled noise correlation and the information from previous de-
coded bitplanes to decode future bitplanes. One limitation is that the inter bit-
plane correlation is not fully explored during decoding. Although a refinement
scheme is employed in [31] to utilize the bitplane correlation to update the
noise distribution, thereby refining soft-input for decoding further bitplanes,
the soft-input of the LDPCA decoder is fixed until successful decoding. To
overcome the above limitations and improve the performance of the LDPCA
codec, a novel Wyner-Ziv codec is proposed in this section to iteratively refine
soft-input for each bitplane during the decoding process. The soft estimate of
Wyner-Ziv coefficients is used to iteratively update the noise distribution and
thereby refine the reliability of soft-input.

ReconstructionBuffer

Bitplane
Correlation Model

Noise Model

Y

Feedback Channel

LDPCA Decoder

LDPCA Decoder

LDPCA Decoder

…
.

X X̂

Pr(t)

(q)

Figure 3.1: Multiple LDPCA Decoders.

The proposed Wyner-Ziv codec is depicted in Fig. 3.1. It mainly includes
multiple LDPCA decoders and a bitplane correlation model. The bitplane cor-
relation model is able to recalculate the soft-input based on the outputs of
LDPCA decoders and update the estimated noise distribution from the noise
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model. The new soft-input information of the source X is estimated by con-
ditioning on Y and using an iteratively refined Laplacian parameter from the
noise model. The multiple LDPCA decoders are running in parallel to keep
refining the soft-input. Each LDPCA decoder is responsible for one bitplane.
Different from single bitplane LDPCA decoding, where the decoder corrects
errors one bitplane after another e.g., from MSB to LSB [13] or from LSB to
MSB [33], the multiple LDPCA decoders operates on all available bitplanes
at once and exploits the correlation between bitplanes and passes information
from one bitplane to another. In addition, the soft estimate of each Wyner-Ziv
coefficient is iteratively generated to update the noise distribution within the
bitplane correlation model. Therefore, the soft-input for decoding is regener-
ated in a way that exploits the noise correlation between Wyner-Ziv coefficients
and the side information coefficients.

3.2.2 Parallel Iterative Decoding Algorithm

The proposed codec employs iterative refinement at both bitplane (bit) and
coefficient (symbol) levels. The overall decoding procedure using multiple
LDPCA decoders executes the BP algorithm to propagate LLRs back and
forth between the syndrome nodes, bit nodes, and symbol nodes [32]. Let
βk = Pr(bk = 0) define the probability distribution for bit bk. At bit level, the
main difference between our proposed approach and [9] is that the LLR for a
bit bi (0 � i � m − 1) of the ith significant bitplane is computed conditioned
on the binary distributions (βk, 1 − βk) of the remaining bits, bk(k �= i). This
means that the LLR is calculated by using soft information of the other bits.
Moreover, the order of full decoding in our approach is not restricted to follow
the order of significance of bitplanes. The LLR described in (3.1) only uses the
bits from previous successfully decoded bitplanes and decodes from MSB to
LSB. Here the LLR expression is generalized for a bit bi of bitplane i as: The
LLR of a bit bi (0 � i � m− 1) of the ith significant bitplane is described as:

L(bi) = log

(
Pr(bi = 0|Y, βm−1, ..., βi+1, βi−1, ..., β1, β0)

Pr(bi = 1|Y, βm−1, ..., βi+1, βi−1, ..., β1, β0)

)
, (3.2)

where βk(k �= i) are soft-input values for the same coefficient as bi. In or-
der to approximate the LLR expression (3.2), let Pr(t−1)(bi) denote the a pri-
ori probability of bi at iteration t − 1 at bit level. Note that, at bit level,
Pr(t−1)(X|Y ) = Pr(q−1)(X|Y ), where q − 1 indicates iteration q − 1 at co-
efficient level. The denominator and numerator of (3.2) are substituted by
applying the sum-product expressions [32, 34] for specific values of bi = {0, 1}
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and consequently, LLR can be computed via the sum-product algorithm [32,34]
as:

L(t)(bi) = log

( ∑
X∈S0

Pr(q−1)(X|Y )
∏
k �=i

Pr(t−1)(bk)∑
X∈S1

Pr(q−1)(X|Y )
∏
k �=i

Pr(t−1)(bk)

)
, (3.3)

where X = (bm−1, bi, ..., b1, b0), S indicates the set of values {0, 1, 2, ..., 2m−1}
for the coefficient X which is coded by m bitplanes (for DC and the magnitude
of AC coefficients) and S0 = {X ∈ S : bi = 0}, S1 = {X ∈ S : bi = 1}.
Pr(q−1)(X|Y ) is calculated at iteration q − 1 at coefficient level by using the
updated noise distribution between the side information coefficient and the
original Wyner-Ziv coefficient via the noise model [13] as shown in Fig. 3.1.

Similar to bit level, we can rewrite the expression at coefficient level. Let
us have an a priori belief of X conditioning on Y given by the probabil-
ity distribution Pr(q−1)(X|Y ) and variables (βm−1, ..., β1, β0), with likelihood
Pr(q−1)(βm−1, ..., β1, β0|ψ), where ψ = Pr(X|Y ), then the posterior probability
Pr∗(q)(X|Y ) is approximated by:

Pr∗(q)(X|Y ) ∝ Pr∗(q−1)(X|Y )Pr(q−1)(βm−1, ..., β1, β0|ψ). (3.4)

Suppose that prior beliefs of (ψ, βm−1, ..., β1, β0) are independent, we get an
approximation of (3.4):

Pr∗(q)(X|Y ) ∝ Pr∗(q−1)(X|Y )
∑
k

Pr(q−1)(bk). (3.5)

Thereafter Pr∗(q)(X|Y ) is normalized and used to update the noise residual
coefficient at iteration q by:

R(q) = |
∑
X∈S

XPr∗(q)(X|Y )− Y |. (3.6)

A Laplacian distribution with parameter α is used to model the noise between
X and Y . With the updated residue R(q) in (3.6), the Laplacian parameter
α(q) is refined according to the noise model in [13]. The resulting soft estimate
of Wyner-Ziv coefficient X is denoted:

Pr(q)(X|Y ) = Pr(X|Y, α(q)). (3.7)

Since all LDPCA decoders are running in parallel, once a bitplane is successfully
decoded, instantaneously, the re-initialization procedure is performed. The new
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soft-inputs for the rest of the bitplanes are assigned conditional on the success-
fully decoded bitplane. The LDPCA decoders with the successfully decoded
bitplane will no longer request syndromes from the buffer. Assume bi is suc-
cessfully decoded with value 0, then Pr(t)(bi = 0) = 1 and the iteration count
is reset as t = 0. In addition, the remaining unfinished bitplanes (bj , j �= i)
are re-initialized by Pr(0)(bj = 0) = 1/2. The LDPCA decoders are iteratively
operated up to a maximum numbers of iterations (Tmax) with the given syn-
drome bits. If they are not successful after (Tmax) iterations at bitlevel, the
soft estimate of source X is iteratively updated as in (3.7). Furthermore, if
they are not successful after a maximum number of iterations (Qmax) at co-
efficient level either, the LDPCA decoders request more syndromes (one for
each of the bitplanes not fully decoded yet) from the buffer via the feedback
channel. Thereafter a new process is started until all the bitplanes of the DCT
coefficients of the band are successfully decoded.

In some cases, the required number of syndromes consumed for the LSB is (close
to) a maximum number of syndromes denoted by Nmax, even though there is
some correlation. This is due to a (relative) loss in the LDPCA decoder, which
may be reduced by first coding the LSB independently and thereafter apply
the proposed codec to the remaining bitplanes after decoding the LSB. Thus,
an entropy prediction mechanism is proposed to automatically predict these
cases. A set of predefined thresholds is utilized to evaluate (up to 3) less
significant bitplanes. The evaluation starts from LSB with its marginalized
probabilities. For the LSB bitplanes considered, the entropy is estimated based
on the updated LLRs from the output of the multiple LDPCA decoders after
trying to decode by using the first syndrome, i.e. n = 1. The predefined
thresholds are experimentally determined to detect bitplanes for which the
average estimated entropy of each bit is close to 1. If the estimated entropy
of the LSB is larger than its corresponding threshold, the bitplane will be
independently decoded. Then the second LSB will be evaluated based on the
conditional probabilities and so on. As a result, the coding efficiency in terms
of bit-rate is improved. If no LSB bitplanes are decoded first, the basic iterative
multiple LDPCA decoding is handled as follows and the intuitive work flow is
depicted in Fig. 3.2 for each band, one at a time:

1. Initiate parameters. Number of syndromes n = 0; Iteration count: q = 0
at coefficient level, t = 1 at bit level; For all bits bi, Pr(0)(bi = 0) = 1/2.

2. Increase and check conditions.

a. Syndrome bit condition: Increase n = n+1. If n � Nmax then end, else
request a new syndrome for all bitplanes not decoded and continue
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to Step 2.b.
b. Iteration count condition at coefficient level: Increase q = q + 1. If

q � Qmax return to Step 2.a, else go to Step 3.

3. Compute the LLRs. For each bitplane, (3.3) is computed to get the LLRs,
L(t)(bi), which are forwarded as input to the multiple LDPCA unit for
parallel decoding.

4. Check for each bitplane if the LDPCA is successfully decoded.

a. No: Compute probabilities of bitplanes. New probabilities of bit-
planes, Pr(t)(bi), are obtained based on the updated LLRs output
by the LDPCA.

b. Yes: Re-initialize the process. Assume LDPCA (bi) is successfully
decoded with value bi = 0, assign Pr(t)(bi = 0) = 1. Reset itera-
tion count t = 0 and the remaining unfinished LDPCA decoders by
Pr(0)(bj = 0) = 1/2.

5. Iteration counts at bit level. Increase t = t + 1. If t < Tmax return to
Step 3, else go to Step 6.

6. Compute the soft estimate of source X at coefficient level. The soft esti-
mate, Pr(q)(X|Y ), is updated by (3.7), where the noise α(q) is computed
with the updated residue based on (3.6).

7. Check all LDPCA decoders. The process is ended if all bitplanes are
successfully decoded, otherwise, return to Step 2.b. The above procedure
is repeated for all bands of the DCT coefficients for which Wyner-Ziv bits
are transmitted.

3.3 Performance Evaluation

In this section, the RD performance of the proposed approach is presented
and compared with the TDWZ video codec described in Section 3.1 as well
as relevant benchmarks. The test sequences are 149 frames of Foreman, Hall
Monitor, Soccer, and Coast-guard with 15Hz frame rate and Quarter Common
Intermediate Format (QCIF) format. Group Of Pictures (GOP) size is 2, where
the odd frames are coded as key frames using H.246/AVC Intra and the even
frames are coded using Wyner-Ziv coding. Eight RD points (Qj) are considered
corresponding to eight 4× 4 quantization matrices [9]. The values within these
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bi

bi
bi=0, Pr(t)(bi=0)=1 Pr(t)(bi=0)=0;

t=0 (reinitialization);
bj Pr(0)(bj=0)=1/2;

Iteration count q=0 at coefficient level, t=1 at bit level;
Number of syndromes n=0; 
All bits bi, Pr(0)(bi=0)=1/2;

b. Iteration count condition. q=q+1. q < Qmax?

a. Syndrome bit condition. Request new 
set of syndromes, n=n+1. n < Nmax?

. L(t)(bi)

Pr(t)(bi)

Iteration count condition. t=t+1. t Tmax?

6. Compute the soft estimate of X. Pr(q)(X|Y) (q)

Figure 3.2: Parallel iterative decoding algorithm.

matrices determine the number of bitplanes associated to the DCT coefficient
bands, therefore, the number of LDPCA decoding instances is known. The
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Figure 3.3: PSNR vs. rate for the proposed TDWZ(PID) codec for WZ
frames (QCIF, 15Hz, GOP2).

proposed scheme uses m (number of bitplanes of a given band) regular LDPC
accumulate decoders [26] with a length of 1584 bits for each. So 1584 transform
coefficients per given band of a frame are decoded in parallel at a time by m
LDPCA decoders each decoding one bitplane.

Table 3.1 shows the savings in total rate, ΔR (in %), and WZ rate, ΔRWZ

(in %) of the proposed TDWZ codec with the Parallel Iterative Decoding
(Parallel Iterative Decoding (PID)), denoted by TDWZ(PID), compared with
the TDWZ codec in [13], denoted by ICASSP09. The proposed scheme achieves
a reduction of bit-rate for WZ frames up to 3.53% for Foreman; 5.61% for Hall
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Figure 3.4: PSNR vs. rate for the proposed TDWZ(PID) codec for all frames
(QCIF, 15Hz, GOP2).

Monitor; 4.13% for Soccer; 3.75% for Coast-guard. It can be noted that the
Peak Signal-to-Noise Ratio (PSNR) values are the same for both the proposed
scheme and TDWZ in [13]. In addition, in Tables 3.2-3.3, the relative aver-
age bitrate savings for the ICASPP09 codec [13] and the TDWZ codec in [11],
denoted by ICASSP11, and the proposed TDWZ(PID) scheme over the DIS-
COVER codec for WZ frames are 11.97%, 13.86%, 15.53%, respectively (by
average of the Bjøntegaard metric [35] for the four test sequences). Overall RD
performance of the proposed scheme is depicted in Figs. 3.3-3.4. It can be seen
that RD performance has been significantly improved compared with the DIS-
COVER codec. The performance of H.264/AVC Intra coding and No Motion
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Table 3.1: Total rate and WZ rate savings (in %) for the proposed scheme
compared with ICASSP09 TDWZ

Qj
Foreman Hall Soccer Coast

ΔR ΔRWZ ΔR ΔRWZ ΔR ΔRWZ ΔR ΔRWZ

1 0.95 2.57 0.79 5.61 2.75 4.13 0.75 3.75
2 1.45 3.53 0.87 4.80 2.65 3.86 0.61 2.65
3 1.28 3.10 0.81 3.95 2.32 3.48 0.65 2.57
4 1.00 2.42 0.72 3.41 1.81 2.85 0.75 2.76
5 1.17 2.69 0.75 3.28 1.91 2.95 0.82 3.15
6 1.51 3.26 0.89 3.43 2.12 3.23 1.21 4.22
7 1.03 2.25 0.89 3.30 1.45 2.29 1.02 2.95
8 0.79 1.62 1.16 4.06 1.18 1.99 0.89 2.22

Table 3.2: Bjøntegaard relative bit-rate savings (%) over DISCOVER for WZ
and all frames

Sequence
ICASPP09[13] ICASSP11[11] TDWZ(PID)
WZ All WZ All WZ All

Foreman 11.23 4.84 13.02 5.58 14.13 6.03
Hall 5.96 1.99 7.86 2.43 10.09 2.90
Soccer 20.88 11.47 23.13 12.80 24.48 13.58
Coast 9.80 3.42 11.43 3.87 13.42 4.40

Average 11.97 5.43 13.86 6.17 15.53 6.73

Inter coding are also included. It can be noticed that the TDWZ video coding
with the proposed scheme gives a better RD performance than H.264/AVC
Intra coding for some sequences, e.g. Hall Monitor and Foreman, but remain
worse than H.264/AVC no motion Inter coding for most of the test sequences.
However, the gaps between no motion Inter coding and TDWZ are significantly
reduced.
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Table 3.3: Bjøntegaard PSNR improvements (dB) over DISCOVER for WZ
and all frames

Sequence
ICASSP09[13] ICASSP11[11] TDWZ(PID)
WZ All WZ All WZ All

Foreman 0.50 0.27 0.58 0.31 0.64 0.34
Hall 0.27 0.15 0.36 0.18 0.46 0.21
Soccer 1.06 0.58 1.16 0.64 1.22 0.68
Coast 0.29 0.16 0.35 0.18 0.40 0.21

Average 0.53 0.29 0.61 0.33 0.68 0.36

3.4 Summary

A Wyner-Ziv video codec with parallel iterative LDPC decoding is discussed
in this chapter. The technique takes bitplane correlation into account by iter-
atively refining the soft-input for each bitplane and updating the noise distri-
bution during decoding. Experimental results show that the proposed scheme
can improve the coding efficiency of TDWZ in terms of WZ rate savings up
to 5.6% compared with the available TDWZ video codec [13]. For a GOP size
of 2, an average bitrate saving of 15.5% (or equivalent an average Bjøntegaard
improvement in PSNR of 0.7dB) was achieved by the TDWZ(PID) codec for
WZ frames compared with the DISCOVER codec.



Chapter 4

Side Information and Noise

Learning

This chapter considers Transform Domain Wyner-Ziv (TDWZ) coding and pro-
poses the use of optical flow to improve side information generation and clus-
tering to improve noise modeling. The optical flow technique is exploited at
the decoder side to compensate weaknesses of block based methods, when us-
ing motion-compensation to generate side information frames. Clustering is
introduced to capture cross band correlation and increase local adaptivity in
the noise modeling. This chapter also proposes techniques to learn from previ-
ously decoded (WZ) frames. Different techniques are combined by calculating
a number of candidate soft side information for (LDPCA) decoding.

The DVC coding efficiency is highly dependent on the accuracy of side infor-
mation at the decoder. A soft-input estimate is calculated at the Wyner-Ziv
decoder, obtained by side information frame generation and noise modeling
calculated using reference frames [9, 10, 20]. Although the quality of side in-
formation frames and the accuracy of the noise model [9] have been improved
[10,20], the coding efficiency of TDWZ coding trails that of conventional video
coding solutions, such as H.264/AVC, most notably for high motion sequences.
We shall consider techniques which can enhance the performance of these ba-
sic TDWZ schemes and thereafter integrate the proposed techniques in the
DVC codec in Sec. 2.2.4 [10] to enhance performance. As one technique for
improved performance, multiple side information based TDWZ has been pro-
posed [30,36]. In [36], two different frame interpolation methods are employed,
but the Wyner-Ziv decoder only considers the average of the two estimates for
decoding and reconstruction. In [30], the results of frame interpolation and
frame extrapolation are combined using weighting to generate multiple soft-
inputs to the decoder in a TDWZ scheme. However, the contribution brought
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by frame extrapolation is limited and only used for the soft inputs, while for the
reconstruction part, only the frame interpolation is used. Providing multiple
soft inputs to the Slepian-Wolf (SW) decoder may be seen as a generic way to
introduce adaptivity in SW coding and thereby in TDWZ.

In order to enhance performance and reduce the rate-distortion gap between
TDWZ and conventional video coding, which is especially pronounced in high
motion sequences, a multiple-input TDWZ decoder is used in this chapter.
Multiple versions of soft side information are generated by applying both block
based and optical flow based side information generation techniques using frame
interpolation. The intuition is that optical flow based frame interpolation can
generate side information which is different and to some extent may compen-
sate the weaknesses in block based methods, if the scheme allows the techniques
to efficiently compensate each other. Optical flow has previously been used in
a DVC scheme [37], where the optical flow was calculated using the classical
method of Lucas and Kanade [38], which is a local method that can be consid-
ered as a limit of block matching. In this chapter a global method for optical
flow based on an TV-L1 energy is used, which should complement block-based
approaches better. Furthermore, in contrast to previous multiple soft-input
DVC methods [30], the decoding and reconstruction are based on a weighted
joint distribution. In this way, the proposed multi-hypothesis based TDWZ
decoder will not only reduce the required bitrate for decoding but also improve
the quality of reconstructed frames.

The noise estimation is also an important aspect influencing the coding per-
formance. The decoder needs to estimate the correlation between the corre-
sponding source and the side information, which can be obtained through frame
interpolation at the decoder side. The accuracy of the correlation has a signif-
icant impact on the compression performance of DVC. Our goal is to improve
coding efficiency by improving the adaptive noise modeling and by better learn-
ing of the correlation between source and side information using both spatial
and temporal correlation. Several noise models [9, 10, 39] have been proposed
using the Laplacian distribution for the DCT coefficients. The advanced noise
models operate with different granularity levels, e.g. frame level, band level,
and coefficient level. Estimating the correlation noise has been enhanced by
utilizing the correlation of coefficients in each residual frame [9,39,40] and noise
residual refinement [10] in the transform domain.

The technique in [40] estimates the correlation noise by first classifying blocks
within a frame. A residual energy between source and side information of a
given block is used to classify blocks, and for each class a predefined value of the
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Laplacian parameter is assigned. In [10], the reconstructed bands were used to
influence the noise model for subsequent bands by classifying the reconstructed
band into two categories. The cross-band correlation was only based on 1-
2 already decoded neighboring bands. Furthermore, two categories may not
be enough to fully utilize the correlation. The noise residue refinement [10]
updates the estimated noise residue for noise modeling and side information
quality during decoding. More recently, an initial work on an adaptive noise
model using clustering of DCT blocks was presented [14] to explore cross-band
correlation. This technique not only utilizes the correlation over all bands but
takes the decoded bands into account to influence the decoding of subsequent
bands. In a recent work [22], adaptive correlation is performed integrated in
joint bitplane decoding.

In order to further improve the noise estimation, this chapter proposes a refine-
ment technique that utilizes clustering of DCT blocks for cross-band correlation
and enhances performance by using the correlation of neighbor coefficients to
refine the Laplacian parameter of the coefficient considered, and thereafter,
updates the noise parameters. To utilize the temporal redundancy, we shall
use residuals of already decoded (WZ) frames to influence the noise distribu-
tion of the current frame. As a last enhancement of the noise model, adaptive
optimization of the number of clusters in the noise model is addressed to adap-
tively get the best soft side information during decoding. These improvements
of noise modeling are finally combined with the side information generation
using optical flow. The techniques are combined using a multiple soft input
decoding approach.

The rest of this chapter is organized as follows. The adaptive noise model
using clustering of DCT blocks is presented in Section 4.1 along with the new
learning techniques proposed in Section 4.2. A new TDWZ video scheme is
presented in Section 4.3 based on enhancing the basic TDWZ with optical
flow in a multi-hypothesis set-up and the new clustering for enhanced noise
modeling. Section 4.4 presents simulation results, analyzes the contributions of
the different techniques and compares the performance with reference methods.

4.1 Adaptive Noise Model for Distributed Video
Coding

We consider the difference between the original Wyner-Ziv frame X and the side
information frame Y. The residual difference, Z, between the transformed coef-
ficients of the WZ frame and the interpolated frame will be modeled by a Lapla-
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cian distribution with probability density function f(z) = (α/2) exp(−α|z|)
with variance σ2 = 2/α2.

Rate distortion bounds for simple source models may be derived [18]. Assuming
quadratic distortion D and a memoryless source with variance σ2 and entropy
power Q, the upper and lower rate distortion bounds are [18]

1

2
log

Q

D
≤ �(D) ≤ 1

2
log

σ2

D
(4.1)

where �(D) denotes the rate at distortion D, the entropy power is

Q = (1/2πe) exp(2h(Z)), (4.2)

and h(Z) = E[− log f(Z)] denotes the differential entropy of the source Z,
where E[.] denotes the expectation operator. For the Laplacian distribution,
the entropy power is Q = (e/π)σ2 [18]. Inserting in (4.1) gives
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The bounds in (4.1) may be decreased if the outputs of a given source are split
into a number of subsets having different variance and entropy (assuming we
also know which subset each sample belongs to). This may be shown based
on the concavity of the log and entropy functions, applying Jensen’s inequal-
ity, f(E[Z]) � E[f(Z)], to log σ2 of the upper bound and the entropy term
−f(Z) log f(Z) of h(Z) in the lower bound (4.1). As a result, for a given dis-
tortion level, the �(D) bounds (4.1) over all clusters are reduced. Below we
will describe the process of using clustering for DVC noise modeling.

4.1.1 Adaptive Noise Model Using Clustering of DCT
Blocks

The decoder must estimate the statistics of the residual without access to the
original frame X. Consistent with the remarks above, it was noted in [14] that
the variance of the residual frame based on an estimated residual is higher
than the expected variance over the sub-sets (see Appendix B). This means
that the estimation at cluster level should be more accurate than at frame
level. This motivates reducing the codelength by clustering into sub-sets, which
are processed using different parameter values. The techniques proposed in
this chapter are based on an initial work on the adaptive noise model using
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clustering of DCT blocks [14]. The adaptive noise model considers the (4×4
DCT) transformed residual of frequency bands in a block as components of a
(feature) vector.

Let Rh be the residual frame in the transform domain using a frame inter-
polation scheme h. Rh is used to calculate the parameter of the Laplacian
noise distribution fX|Yh

. The value of the Laplacian parameter expresses the
reliability of the corresponding estimated side information frame. Rh is ini-
tialized at the decoder based on the difference between matching blocks of the
reference images [10]. Let Rhk denote block k out of the N 4×4 blocks in
the residual frame Rh, 1 ≤ k ≤ N . Each block Rhk, considered as a fea-
ture vector, contains 16 frequencies given by the transformed residual coeffi-
cients. Consider block k of band l and let Rl

hk and R̂l
hk (1 ≤ l ≤ 16) denote

the initial coefficient of the residual and a refined coefficient based on the
partially decoded information, respectively. The feature vector of each block
Rhk = (R̂1

hk, R̂
2
hk, ..., R̂

l−1
hk , Rl

hk, R
l+1
hk , ..., R16

hk) belongs to the updated residual
based on the successfully decoded bands (up to band l − 1) before decoding
band l. This feature vector is classified into one of M clusters, within which an
estimate of the noise parameter is calculated. Thus, using clustering of DCT
blocks, an adaptive noise model creates M noise parameters, α, one for each
cluster.

4.1.2 Noise Model B

An extended noise model, which we denote Noise Model B, is obtained by adap-
tively combining the cluster level noise model in Section 4.1.1 with the noise
model in [10]. The clustering technique in [14] was updated at coefficient level
and is here extended by updating at bitplane level. A noise residue refinement
is exploited at bitplane level and integrated in the DVC scheme in [10]. The
refinement is carried out once a bitplane is successfully decoded. The model
consists of 4 steps as follows.

Step 1. Clustering of DCT blocks

Our block clustering algorithm is operating on a set of N feature vectors Rhk.
This set is separated into M subsets or clusters by using Fuzzy-C means clus-
tering, the algorithm is described in Appendix A [41], (the algorithm is con-
figured with the fuzzification degree equal 2 and the predefined termination
ε = 0.0001 as in [14].) For block k belonging to cluster j, let Rl

hkj = Rl
hk

denote the coefficients of feature vectors and αl
hj denote the Laplacian noise

distribution parameter of cluster j (1 ≤ j ≤ M) containing Nj elements of
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band l, where
∑
j

Nj = N . Figure 4.1 illustrates an example of clustering of

(a) Original frame (b) SI frame (c) Residual frame

(d) Cluster 1 (e) Cluster 2 (f) Cluster 3

Figure 4.1: An example of clustering Soccer frame no. 88 into 3 clusters.

DCT blocks for the Soccer sequence where OBMC was used to generate the
SI frame (Fig. 4.1(b)). The residual frame in the transform domain Rh (Fig.
4.1(c)) is estimated at the decoder side before decoding the first (DC) band,
l = 1. Thereafter the residual is classified into 3 clusters (M = 3) (Figs.
4.1(d)-4.1(f)).

Step 2. Noise parameter estimation

In band l, a noise parameter, αl
hj , is obtained for each cluster j of the band

based on the Nj observations within the cluster. We estimate this Laplacian
parameter, αl

hj , based on the variance σl2

hj by

αl
hj =

√
2/σl

hj , (4.4)

where σl
hj =

√
E[|Rl

hkj |2]− E[|Rl
hkj |]2. As a result, a noise parameter is esti-

mated for each of the M clusters in a given band l.
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Step 3. Updating feature vectors

The bands are decoded in a zig-zag order starting from DC and traversing
the other (AC) coefficients, l > 1, following the order in [10]. Whenever a
bitplane of band l is successfully decoded, the coefficients of the band are
partially reconstructed and the set of feature vectors is now updated. There-
after, the set of updated feature vectors is used to refine these vectors by
Step 4 below. When all bitplanes are successfully decoded, band l is com-
pletely decoded. Subsequently, the set of feature vectors is updated as Rhk =
(R̂1

hk, R̂
2
hk, ..., R̂

l−1
hk , R̂l

hk, R
l+1
hk , ..., R16

hk) before decoding band l + 1. This set
of updated feature vectors is further refined by Step 4 (below) and thereafter
αl+1
hj is updated for the next band l + 1 to be decoded. When all bands are

successfully decoded, the process is completed.

Step 4. Refining feature vectors using neighbors

To take advantage of the correlation between the DCT coefficients of the resid-
ual of neighbor blocks within each band, a refinement of residuals is proposed.
This technique uses neighboring residual coefficients along with the estimated
noise parameters. Specifically, Noise Model B refines Rl

hkj based on αl
hj and

the 8-neighbor residual coefficients, indexed by s and denoted Rl
hks. Using the

current coefficient Rl
hk0 and the 8-neighbors, Rl

hks with 1 ≤ s ≤ 8, a refined
R∗l

hkj (= R∗l
hk for k in cluster j) is obtained by weighing the neighborhood

coefficients as

R∗l
hkj =

8∑
s=0

⎛⎜⎜⎝ exp(−αl
hj |Rl

hkj −Rl
hks|)

8∑
t=0

exp(−αl
hj |Rl

hkj −Rl
hkt|)

⎞⎟⎟⎠Rl
hks. (4.5)

Also assuming a Laplacian distribution for the difference of a coefficient and
its neighbors, the weights (4.5) may be seen as likelihood values and the de-
nominator normalizes these. These refined residuals are used in the set of N
refined feature vectors, R∗

hk = (R̂1
hk, R̂

2
hk, ..., R̂

l−1
hk , R∗l

hk, R
l+1
hk , ..., R16

hk) used for
decoding band l. The set is reclassified again by going back to Step 1 and
thereafter updating the noise parameter following Step 2 above. Consequently,
refined noise parameters α∗l

hj are obtained using (4.4) based on the observations
within the current band for each refined cluster j. The set of α∗l

hj parameters is
denoted by α1 and together with the set α0 from [10], they constitute the set
of estimates provided by Noise model B IV-B. The resulting coding is referred
to as Clustering TDWZ.
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4.2 Noise Residual Learning for Adaptive Noise
Model

4.2.1 Noise Residual Learning Using Previously Decoded
Residual Frames

This subsection extends Noise Model B above by using the previously WZ
decoded residual frames to influence the noise distribution of the current frame.
A window of previously decoded WZ frames are used to create decoded residual
frames corresponding to the WZ decoded frames. The motivation is that the
noise distributions based on previously decoded frames are available at the
decoder and may be similar to the noise distribution of the current frame.
To take advantage of both the previously decoded noise distributions and the
estimated current noise distribution, the residuals based on previously decoded
frames are used together with the current residual frame to form a larger set of
data. This set is classified into clusters to estimate noise parameters for each
cluster of the residual frame considered.

Let W be the window size specifying the number of previously decoded WZ
frames for the learning process. Let R̂h(2n−2W ), ..., R̂h(2n−2) denote residu-
als based on previously decoded frames and Rh(2n) denote the current resid-
ual coefficient frame at time 2n. Let R̂h(2n−2W )k, ..., R̂h(2n−2)k, Rh(2n)k de-
note block k, 1 ≤ k ≤ N , of N 4×4 blocks of R̂h(2n−2W ), ..., R̂h(2n−2), Rh(2n).
For each of the residuals based on previously decoded frames, consider a set
of N feature vectors R̂h(2n−2ω)k with 1 ≤ ω ≤ W , where R̂h(2n−2ω)k =

(R̂1
h(2n−2ω)k, R̂

2
h(2n−2ω)k, ..., R̂

16
h(2n−2ω)k) is given by the residuals of decoded

bands. For the current residual frame Rh(2n), Rh(2n)k = (R̂1
h(2n)k, ..., R̂

l−1
h(2n)k,

Rl
h(2n)k, ..., R

16
h(2n)k) is the updated residual based on the successfully decoded

bands (up to band l − 1) before decoding band l.

Consider W sets, Shω, of feature vectors where each set is created by combining
N feature vectors R̂h(2n−2ω)k of a previous frame with N feature vectors Rh(2n)k

of the current frame,

Shω = {Rh(2n), R̂h(2n−2ω)}. (4.6)

Each set Shω is classified into M clusters by using Fuzzy C-means clustering
as in Appendix A [41]. Thereafter noise parameters αl

hωj are obtained based
on the observations for each cluster j of band l of set Shω. As a result, there
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Figure 4.2: TDWZ with adaptive noise model using clustering and noise
residual learning.

are W sets of noise parameters for decoding band l for each cluster j, αl
hωj ,

1 ≤ ω ≤ W . The resulting adaptive noise model, denoted by Adaptive (C)
and shown in Fig. 4.2, adaptively estimates the noise distribution by creating
W different noise parameters α2ω by Noise model IV-C1. Together with α0, α1

obtained from Noise model B IV-B in Section 4.1.2, α2ω provide multiple inputs
to the Soft Input Estimation block.

4.2.2 Adapting The Number of Clusters For Noise Mod-
eling

This part extends the noise residual estimation by selecting the number of clus-
ters, m ≤ M , giving the best decoding, i.e. optimizing the model order. The
statistical characteristics of the noise distribution may change from region to
region, and over time when decoding. One reason being, that the noise distri-
bution may not be estimated properly in regions containing moving objects. It
may improve the noise modeling, if the noise residual Rh is adaptively mod-
eled using a variable number of noise distributions. A dynamic mechanism is
carried out to determine the optimal number of candidate distributions within
each frame once a bitplane is successfully decoded.

For each cluster j, m Laplacian distributions, for 1 ≤ m ≤ M , are estimated.
For each set in (4.6), we apply estimation by (4.4) to obtain the noise parame-
ters αl

hωj , 1 ≤ ω ≤ W , based on the observations for each cluster j, 1 ≤ j ≤ m,
of band l of the set Shω. This results in the set of distributions,

Dhm = {αl
hωmj}, 1 ≤ ω ≤ W, 1 ≤ j ≤ m, (4.7)

where αl
hωmj is the noise parameter estimated for band l of set Shω of the
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distribution set Dhm.

The noise parameters αl
hωmj of the W ×M candidates are used as candidates

for decoding band l for each cluster j. The resulting noise model, called Adap-
tive (D) (Fig. 4.2), adaptively estimates the noise distribution by creating
W × M candidate noise parameters α2ωm by Noise model IV-C2, along with
α2ω, α0, α1 obtained from Adaptive (C) in Section 4.2.1 as input to the Soft
Input Estimation block.

4.2.3 Multiple Input LDPCA Decoding
In this subsection, multiple input LDPCA decoding is introduced using multi-
ple soft input candidates when decoding. The multiple input LDPCA decoder
tries to decode using each candidate soft side information and then selects the
soft side information which converges first during decoding for each bitplane.
(Convergence is confirmed using a CRC check.) This way, the decoder adap-
tively selects the best soft input for decoding. Thereafter, the selected noise
parameter set for each bitplane is also used for the minimum mean squared
error reconstruction process [36]. It can be noted that the computational cost
of the LDPCA decoding is increased. In the worst case, the LDPCA decoding
will try to decode using all inputs. In Fig. 4.2, the multiple input LDPCA de-
coder is used to decode with the candidates denoted Pr0,Pr1,Pr2ω, and Pr2ωm.
These candidates are calculated by the Soft Input Estimation using the noise
parameters from the Adaptive (D) model. In particular, Pr0,Pr1 are soft in-
puts calculated based on α0, α1, Pr2ω based on α2ω, and Pr2ωm based on α2ωm.
The multiple input LDPCA decoding, as well as the learning technique, is car-
ried out until all bitplanes (of the given quantization level) are successfully
decoded. Applying multiple input LDPCA decoding based on the parameters
of the Adaptive (D) noise model is referred to as Clustering(learning) TDWZ.

4.3 TDWZ Video with Side Information and Noise
Learning

The quality of soft-input information plays a key role in terms of overall RD
performance of TDWZ video coding. The quality of the reconstructed frame
is highly dependent on the accuracy of the estimated noise distribution fX|Yh

.
The soft-input Pr is defined as the conditional probability of each bit bi being
equal to 0 or 1, and denoted Pr = P(bi|yh, b−; fX|Yh

), where yh denotes the
corresponding estimated side information value in the transform domain for
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bit bi and b− is the information from the previously decoded bitplanes. The
probability is obtained by marginalizing the estimated conditional probability
density function fX|Yh

for the coefficient, which bi is part of. The essential
aspects to improve the coding efficiency of TDWZ video are the quality of the
soft-input information fed into the LDPCA decoder and the accuracy of the
noise distribution for frame reconstruction.

4.3.1 Multi-hypothesis Based Wyner-Ziv Decoding

To address these issues, multiple input LDPCA decoding (Section 4.2.3) is
used. The Wyner-Ziv encoder is not changed. The basic idea is to generate
H (> 1) different side information frames Yh, h ∈ [1, H], at the decoder for each
Wyner-Ziv frame. Each side information frame is considered as an observation
of the original Wyner-Ziv frame X with a different amount of noise. The
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Figure 4.3: Architecture of multi-hypothesis TDWZ video codec based on
two frame interpolation schemes.

architecture of the proposed Wyner-Ziv video decoder with an example of two
side information generation schemes [42] (H = 2) is presented in Fig. 4.3. In
principle, there can be any number of competitive side information generation
schemes at the proposed Wyner-Ziv decoder. The two interpolation methods
in Fig. 4.3 are the OBMC based frame interpolation described in [10] and
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the OF based frame interpolation method [8]. As shown in Fig. 4.3, the Side
Information Generations generate the side information frames SI 1, SI 2 and
the noise residual frames NR1, NR2, using OBMC [10] and OF techniques,
respectively. SI 2 and NR2 are generated by first applying OF based Side
Information Generation and thereafter 4 × 4 DCT to I0 and r0, respectively.
After transformation, each side information generation scheme not only creates
an estimate of the Wyner-Ziv frame, Yh, but also an estimated noise residue
frame Rh. Rh is used to estimate the noise between the Wyner-Ziv frame X
and its estimated side information frame Yh. Here based on Rh and Yh, the
coefficient level noise model [10] is used. Each transform coefficient in a given
band l is assigned an estimated Laplacian distribution parameter αl

h.

Using Laplacian parameters based on different calculations of Yh, multiple soft-
inputs are calculated based on a weighted joint distribution. All the hypotheses
of soft-input are fed into the multiple input LDPCA decoder (Section 4.2.3).
Based on the estimated noise distribution fX|Yh

for each individual side infor-
mation observation Yh, a joint weighted distribution Fq is defined as

Fq =

H∑
h=1

uhqfX|Yh
, (4.8)

where q, q ∈ [1, C], denotes the index of a candidate joint weighted distribution,
C is the total number of candidate joint distributions, and uhq denotes the qth
predefined weight on side information h, h ∈ [1, H], uhq are predefined weights,

uhq � 0 and
H∑

h=1

uhq = 1. (For the example shown in Fig. 4.3, H = 2, C = 6).

The frame interpolation schemes, using OBMC and OF [42], employed in this
chapter give different results on the different test sequences as shown in Table
4.1. The OBMC and OF techniques may provide complementary results for

Table 4.1: The Average PSNR [dB] Results for Different Side Information
Generation Methods (GOP2)

Sequence Extra OBMC OF OF(learning)

Foreman, QP=25 25.20 29.26 29.28 29.63
Hall, QP=24 33.24 36.46 32.28 35.71
Soccer, QP=25 19.26 21.30 22.43 22.93
Coast, QP=26 28.55 31.83 30.92 30.99
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each frame and thus, compensate each other’s weaknesses frame by frame and
even bitplane by bitplane. We consider a multi-hypothesis TDWZ video codec
with two (or more) frame interpolation schemes based on either the OBMC
or the OF scheme. Without loss of generality, assume that scheme h is now
considered the basic scheme. The soft input calculation is only based on the
joint weighted distribution within a specific unreliable region specified by the
set Λh. Outside of the region Λh, the side information is given by the basic
scheme h. The values of the Laplacian parameters may express the reliability of
the corresponding side information frame. Therefore a set of Λh values for each
single side information estimation Yh in band l is determined by evaluating the
individual Laplacian parameters and their corresponding mean value by

Λh = {k|αl
h(k) < ᾱl

h}, (4.9)

where αl
h(k) is the Laplacian parameter of side information Yh at the kth

coefficient in band l and ᾱl
h is the mean of all noise parameters in a given

band l. Thus Λh (4.9) determines a map of coefficients whose noise parameters
are potentially less reliable, as they are smaller than the mean value ᾱl

h. The
unreliable region Ω, which will be processed differently, is defined as a union of
the sets Λh,

Ω =

H⋃
h=1

Λh. (4.10)

The multi-hypothesis soft-inputs using the Yh as basic scheme are given by

Prhq =

{
P(bi|yh, b−; fX|Yh

) if i /∈ Ω

P(bi|y1, ..., yH , b−;Fq) if i ∈ Ω
(4.11)

where Prhq is the qth candidate soft-input fed into LDPCA decoder, bi de-
notes the ith bit in the current bitplane, and y1, ..., yH denote different side
information values in the transform domain based on diverse side information
generation schemes. Again the conditional probability of bi is obtained by
marginalizing the estimated noise distribution fX|Yh

(i /∈ Ω) or Fq (i ∈ Ω). We
use the cross-band noise model [10] to calculate fX|Yh

in (4.8) and (4.11). The
resulting parameter set is denoted αhCB .

In order to evaluate the quality of the side information, we calculate an Ideal
Code Length (ICL) [10], which measures the number of bits required by apply-
ing ideal (arithmetic) coding to the given soft-input values if a (non-distributed)
encoder would calculate the same soft-input values. Prhq(bi) (4.11) is calcu-
lated by reading bi as the bits after decoding. The code length, L, for one
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bitplane is calculated as

L =

N∑
i=1

− log Prhq(bi). (4.12)

The ICL is obtained as the sum over all bitplanes. This is equivalent to a
log-likelihood measure of the coded coefficients.

All the soft-input hypotheses, Prhq, q ∈ [1, C] which are calculated by (4.11)
are fed into the multiple input LDPCA decoder as in Section 4.2.3. The first
converging soft-input is chosen thus reducing the rate of LDPCA decoding.
Subsequently, using the selected soft-input, the corresponding joint weighted
distribution Fq, q ∈ [1, C], in the unreliable region Ω is determined. Using
the selected joint weighted distribution, Fq, the Minimum Mean-Square Error
(MMSE) reconstructed value, x′, in the unreliable region Ω is obtained as a
generalization of the MMSE expression in [36]

x′ = E [x|x ∈ [L,U), y1, ..., yH ] =

U∫
L

xFq(x)dx

U∫
L

Fq(x)dx

=

H∑
h=1

U∫
L

xuhqfX|Yh
(x)dx

H∑
h=1

U∫
L

uhqfX|Yh
(x)dx

(4.13)
where [L,U) are decoded quantization intervals, Fq is the joint weighted distri-
bution (4.8) selected by the LDPCA decoding. The reconstructed value outside
the Ω region is calculated following the single side information reconstruction
technique based on Yh as in [36], i.e. for H = 1 in (4.13).

4.3.2 Side Information and Noise Learning Using Multiple-
hypothesis and Adaptive Noise Modeling

To take advantage of both side information learning (Section 4.3.1) includ-
ing optical flow [8] and noise learning using clustering (Section 4.2), a TDWZ
scheme with Side Information and Noise LearninG, called SING(2SI), is pro-
posed. The basic elements of the SING codec are depicted in Fig. 4.4. They
consist of OBMC and OF(learning) based side information generations, a noise
model using the residual learning as in Section 4.2, the soft-input estimation,
the reconstruction using side information and noise learning (Section 4.3.2.2)
and multiple input LDPCA decoding. First, the Side Information Generations
generate the noise residual frames NR1, NR2 and the side information frames,
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SI 1, SI 2, using OBMC [10] and OF(learning), where SI 2 and NR2 are gener-
ated, as in Sec. 4.3.1, by the OF(learning) based Side Information Generation
[8]. The OF(learning) is a global method for OF based on a total variation
energy and its parameters is learnt from previously decoded frames. These are
transformed and input to the noise models. For each side information scheme
h, noise parameters αhRL are calculated using the Adaptive (D) model (Sec-
tion 4.2.2) and parameters αhCB are calculated using multi-hypothesis (Section
4.3.1) combined with the cross-band estimate [10] for fX|Yh

.
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Figure 4.4: TDWZ with Side Information and Noise Learning (SING 2SI).

4.3.2.1 Soft Input Estimation with SI and Noise Learning

Based on the transformed side information frames and the noise parameters,
the soft-inputs Pr1q, Pr2q, and Pr1RL, Pr2RL are calculated. Pr1q and Pr2q
are calculated by (4.11) based on the cross-band noise (Noise Model V-A) and
multi-hypothesis techniques with two OBMC and OF(learning) side informa-
tion generations as described in Section 4.3.1. Pr1q are soft-inputs with the
OBMC frame interpolation as basic scheme and Pr2q are soft-inputs with the
OF(learning) frame interpolation as basic scheme. Pr1RL, Pr2RL are obtained
by applying the Adaptive (D) model in Section 4.2.2 to each side informa-
tion generation scheme, here OBMC and OF(learning). All soft-inputs are fed
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into the multiple input LDPCA decoder as described in Section 4.2.3. The
soft-input which converges first is selected for LDPCA decoding.

4.3.2.2 Reconstruction with SI and Noise Learning

Decided by the selected candidate, the corresponding weighted joint distribu-
tion of multi-hypothesis or the corresponding input to the Adaptive (D) noise
model is chosen for reconstruction. For instance, if Pr13 is the best candidate,
the corresponding weighted joint distribution is F3 and the multi-hypothesis
based scheme is the OBMC based method (h = 1 in (4.11)). Consequently, the
weighted joint distribution F3, the multi-hypothesis OBMC based scheme, and
the corresponding noise parameter αhCB are used for reconstruction by (4.13).
As another example, if Pr2RL is chosen as the best candidate, α2RL from the
Adaptive (D) model, NR2 and SI 2 from the OF(learning) side information gen-
eration are used for the mean squared error reconstruction [36] (4.13) in the
reliable region. In the unreliable region Ω, the reconstruction is based on the
multi-hypothesis reconstruction corresponding to the basic frame interpolation
scheme in (4.13). As we do not have a winner Fq for the joint weighted distribu-
tion in this case, the Fq for reconstruction is determined by the corresponding
soft-input that has the smallest ICL measured on the decoded data by (4.12)
among the soft-input hypotheses. By this approach, the reconstruction takes
advantage of different side information generation techniques in the unliable
region to achieve a better quality of the reconstructed frames.

4.4 Performance Evaluation
The RD performance of the proposed techniques are evaluated for the test se-
quences (149 frames of) Foreman, Hall Monitor, Soccer, and Coastguard with
15Hz frame rate and QCIF format. The GOP size is 2, where odd frames are
coded as key frames using H.264/AVC Intra and even frames are coded using
Wyner-Ziv coding. Eight RD points are considered corresponding to eight 4×4
quantization matrices [9]. H.264/AVC Intra is here given by the intra coding
mode of the H.264/AVC reference codec JM 9.5 [43] in main profile. The pa-
rameters for H.264/AVC Intra are set as by DISCOVER [9] and QP values
are set to those used for the key frames in the Wyner-Ziv video coding in the
DISCOVER codec [9]. It can be noted that only the luminance component of
each frame is evaluated. In this chapter, the number of candidate distributions
in (4.8) is constrained to C = 6, which is an adequate number of candidates
to improve performance. For the case H = 2, using side information frames
generated by OBMC and OF(learning), and C = 6, the weighting parameters
(4.8) used are u1q = {1; 0.8; 0.6; 0.4; 0.2; 0} and u2q = 1 − u1q, q ∈ [1, 6]. For
the case H = 3 and C = 6, the weighting parameters uhq used are predefined
as: u1q = {1; 0; 1/2; 1/2; 0; 1/3}, u2q = {0; 1; 1/2; 0; 1/2; 1/3}, and extrapola-
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Figure 4.5: PSNR vs. rate for the proposed SING(2SI) codec for WZ frames
(QCIF, 15Hz, GOP2).

tion [30] u3q = {0; 0; 0; 1/2; 1/2; 1/3}. For H = 3, these parameters provide
a uniform weighting of one, two, or three candidates. The proposed Cluster-
ing(learning) scheme (Section 4.2) uses a window size of W = 6 of previously
decoded residual frames and a maximum number of clusters M = 10 (4.7),
which is large enough to utilize the meaningful past information and adapt to
an efficient number of noise distributions.
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Figure 4.6: PSNR vs. rate for the proposed SING(2SI) codec for all frames
(QCIF, 15Hz, GOP2).
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Table 4.2: Bjøntegaard Relative Bit-rate Savings (%) over DISCOVER for WZ Frames (QCIF, 15Hz, GOP2)

Sequence Cross-band Clustering Clustering MH MH MH SING SING
[10] (learning) (2SI) (learning 2SI) (learning 3SI) (2SI) (3SI)

Foreman 14.0 17.7 21.6 27.0 27.2 32.6 35.1 40.1
Hall 8.3 14.3 21.0 13.3 12.2 13.3 21.6 19.5
Soccer 26.0 30.8 34.5 41.2 46.0 49.2 61.1 62.5
Coast 11.6 17.5 21.1 17.4 17.9 19.9 24.9 25.8

Average 15.0 20.1 24.6 24.7 25.8 28.7 35.7 37.0

Table 4.3: Bjøntegaard PSNR Improvement (dB) over DISCOVER for WZ Frames (QCIF, 15Hz, GOP2)

Sequence Cross-band Clustering Clustering MH MH MH SING SING
[10] (learning) (2SI) (learning 2SI) (learning 3SI) (2SI) (3SI)

Foreman 0.633 0.798 0.974 1.177 1.181 1.398 1.492 1.659
Hall 0.370 0.633 0.903 0.575 0.531 0.581 0.919 0.846
Soccer 1.305 1.521 1.677 1.921 2.088 2.216 2.649 2.690
Coast 0.352 0.530 0.637 0.526 0.540 0.600 0.741 0.762

Average 0.665 0.872 1.047 1.050 1.085 1.199 1.450 1.489
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Table 4.4: Bjøntegaard Relative Bit-rate Savings (%) over DISCOVER for All Frames (QCIF, 15Hz, GOP2)

Sequence Cross-band Clustering Clustering MH MH MH SING SING
[10] (learning) (2SI) (learning 2SI) (learning 3SI) (2SI) (3SI)

Foreman 6.0 7.5 9.0 11.0 11.0 13.0 13.8 15.6
Hall 2.6 3.9 5.4 3.8 3.6 3.8 5.5 4.8
Soccer 14.4 17.2 19.4 22.6 25.1 26.6 32.6 33.2
Coast 3.9 5.6 6.4 5.5 5.7 6.2 7.4 7.6

Average 6.7 8.6 10.0 10.7 11.3 12.4 14.8 15.3

Table 4.5: Bjøntegaard PSNR Improvement (dB) over DISCOVER for All Frames (QCIF, 15Hz, GOP2)

Sequence Cross-band Clustering Clustering MH MH MH SING SING
[10] (learning) (2SI) (learning 2SI) (learning 3SI) (2SI) (3SI)

Foreman 0.335 0.417 0.502 0.606 0.609 0.717 0.762 0.845
Hall 0.187 0.290 0.396 0.276 0.260 0.275 0.400 0.354
Soccer 0.723 0.852 0.950 1.087 1.186 1.255 1.501 1.525
Coast 0.186 0.265 0.306 0.261 0.268 0.296 0.354 0.363

Average 0.358 0.456 0.538 0.558 0.581 0.636 0.754 0.772
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Tables 4.2-4.5 report RD performance of the combined schemes (Section 4.3.2)
SING(2SI) using OBMC and OF(learning) as well as SING(3SI), which addi-
tionally uses side information generation based on extrapolation [30]. Tables
4.2-4.5 present the relative average bitrate savings and equivalently the aver-
age PSNR improvements (using the Bjøntegaard metric [35] and fitting a curve
through the 8 RD points measured) over the DISCOVER codec for WZ frames
and overall frames. The results are also compared to the DVC scheme in Sec.
2.2.4 [10] called Cross-band. The SING codecs are based on combining the
clustering and multi-hypothesis techniques, which are also evaluated individu-
ally. The noise model in Section 4.1.2 integrated in the DVC scheme in Sec.
2.2.4 [10], is named Clustering. The noise model proposed in Section 4.2 inte-
grated in DVC scheme in Sec. 2.2.4 [10] is named Clustering(learning). Both of
these are based on the OBMC side information. The proposed multi-hypothesis
TDWZ codecs combining OBMC with OF and OF(learning) techniques men-
tioned in Section 4.3.1 are called MH(2SI) and MH(learning 2SI), respectively.
MH(learning 3SI) refers to the additional use of extrapolation, respectively.
Compared to DISCOVER, the average bitrate saving for the combined scheme
SING(3SI) model is overall (average Bjøntegaard) 37% and 15% better on WZ
frames and all frames, respectively. The performance improvement is 62.5%
and 33.2% (or equivalently the average improvement in PSNR is 2.69 dB and
1.53 dB) for WZ frames and overall frames, respectively, for the difficult Soccer
sequence. Compared to the Cross-band DVC scheme (Sec. 2.2.4), a bit-rate
saving (Bjøntegaard) of 36.5% is observed for Soccer on the WZ frames. Look-
ing at Table 4.2, we see that both Clustering(learning) and MH(learning) in-
troducing OF improve the average bit-rate savings to about 25% starting from
the 15% savings of the baseline Cross-band codec Sec. 2.2.4 [10]. Further, the
Clustering and MH combine well in SING(2SI) for a 36% saving. Looking at
the individual sequences, we see that using OF in MH improves performance
most for high motion sequences Foreman and especially Soccer, whereas Clus-
tering(learning) achieves better results on the low motion sequences as Coast
and especially Hall Monitor. Our results may be compared with a few GOP2
results in [20], [40], [22], [44]. The TRACE method [44] reports 1.6% bit-rate
saving for Foreman (at 30Hz) compared with [39]. The following comparisons
are evaluated for QCIF and 15Hz frame rate at 400 Kb/s. Compared to DIS-
COVER, the results in [20] show an improvement of 0.4 dB for Foreman and 0.7
dB for Soccer. Improvements of 0.5dB for Foreman and 0.1dB degradation for
Soccer are reported [40]. More recently, the scheme in [22] shows an improve-
ment 0.4 dB for Foreman and 0.5 dB for Soccer . At 400Kb/s, improvements
compared with DISCOVER of 1.0dB for Foreman (Fig. 6.5(a)) and 1.4dB for
Soccer (Fig. 6.5(d)) are achieved by Clustering (learning). Specifically, the im-
provements of MH(learning 2SI) including OF(learning) are robust for the high
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motion sequences as Soccer. The proposed SING(2SI) gains considerable im-
provements on the more complex motion sequences such as Soccer with 61.1%
and Foreman with 35.1% bitrate savings for WZ frames. The improvements
are also robust ranging from the complex sequences, e.g. Soccer, to the sim-
ple motion sequences, e.g. Hall Monitor. As a special case, the performance
of SING(3SI) for Hall Monitor is slightly worse than SING(2SI) as shown in
Tables 4.2-4.5. Looking at both rate and distortion results, the bit rate is, as
expected, lower for SING(3SI) than for SING(2SI), but the problem is that
the PSNR of SING(3SI) is also lower than that of SING(2SI). In general, the
RD performances of all methods proposed are robustly better than using the
noise model in Sec. 2.2.4 [10], as well as DISCOVER. It may be noted that the
encoding and thereby also encoding complexity are the same in all cases.

The RD performance of the SING(2SI) codec and H.264/AVC coding is also
depicted in Figs. 4.5-4.6 for WZ frames and all frames, respectively. The
SING(2SI) codec gives a better RD performance than H.264/AVC Intra coding
for Foreman, Hall Monitor, and Coastguard, and also better than H.264/AVC
No Motion for Coastguard. The RD performance of the SING(2SI) codec clearly
outperforms those of Sec. 2.2.4 [10] and DISCOVER. For medium to high
rates the improvement for Soccer is up to 4dB for WZ frames. The ICL (4.12)
measures the quality of the side information of the coded coefficients. The
SING(2SI) ICL result (Fig. 4.6) actually matches those of H.264/AVC No
Motion for Foreman and Soccer. For Hall Monitor SING(2SI) ICL is close to
H.264/AVC Motion. This illustrates that if more efficient Slepian-Wolf coding
is developed, the performance gap between practical Wyner-Ziv video coding
and the conventional predictive video coding would be further reduced.

We have tested the proposed scheme SING(2SI) on four test sequences (299
frames, QCIF at 30Hz of) Foreman, Soccer, Hall Monitor, and Coastguard using
a GOP size 4. The two key frames are again coded using H.264/AVC Intra.
Thereafter GOP4 follows the hierarchical decoding order, where the middle
frame is first decoded based on the two decoded key frames and then the two
remaining frames are decoded based on the nearest decoded key frame and the
decoded middle frame. RD points are calculated for the four 4×4 quantization
matrices Q1, Q4, Q7, and Q8 [9]. The RD performance of the SING(2SI) codec
in Figs. 4.7-4.8 is better than those obtained by the Cross-band codec [10]
and DISCOVER. The SING(2SI) codec gives a better RD performance than
H.264/AVC Intra and also better than H.264/AVC No Motion for Foreman
and Coastguard. In particular, the SING(2SI) codec performance matches that
of H.264/AVC No Motion for the high motion sequence Soccer. Compared
to DISCOVER, the average Bjøntegaard bitrate saving is 37.5% and 23% (or
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Figure 4.7: PSNR vs. rate for the proposed SING(2SI) codec for WZ frames
(QCIF, 30Hz, GOP4).

equivalently the average PSNR improvement is 1.5 dB and 1.1 dB) for WZ
frames and all frames, respectively. For the difficult sequence Soccer, the bitrate
saving is 54.4% (or equivalently the improvement in PSNR is 2.2 dB) for WZ
frames. The results may be compared with the GOP4 results in [20] at 400
Kb/s. Compared to DISCOVER, the results in [20] show an improvement of
1.0 dB for Foreman (QCIF, 15Hz) and 0.9 dB for Soccer (QCIF, 15Hz). In
comparison, an improvement of 1.6 dB for Foreman and 1.9 dB for Soccer are
achieved by the SING(2SI) codec as seen in Figs. 4.8(a) and 4.8(c).
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Figure 4.8: PSNR vs. rate for the proposed SING(2SI) codec for all frames
(QCIF, 30Hz, GOP4).

4.5 Summary

In this chapter, TDWZ video coding was improved using optical flow and clus-
tering of DCT blocks. Optical flow was used for frame interpolation generating
side information, which was adopted in a multi-hypothesis scheme to compen-
sate weaknesses of block based methods. Adaptive noise modeling using cluster-
ing was introduced additionally utilizing residues of previously decoded frames
and generating a number of noise residual distributions within a frame for
adaptive optimization of the soft side information during decoding. Moreover,
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the adaptive noise model refined the residue to take advantage of correlation
of DCT coefficients between neighboring blocks. Experimental results show
that the coding efficiency of the proposed SING scheme which combines all
the techniques can significantly improve the RD performance of TDWZ video
compared to DISCOVER as well as the cross-band TDWZ scheme in Sec. 2.2.4
[10] without changing the encoder. For a GOP size of 2 the average bitrate
saving of the SING(3SI) codec is 37% (or equivalent the average improvement
in PSNR is 1.5 dB) on WZ frames compared with the DISCOVER codec.



Chapter 5

Motion and Reconstruction

Reestimation

This chapter proposes a motion and reconstruction reestimation technique to
improve side information and noise residue frames by taking partially decoded
information into account. To improve noise modeling, a noise residual mo-
tion reestimation technique is proposed by using residual motion compensation
with motion updating to estimate a current residue based on previously de-
coded frames and correlation between estimated side information frames. In
addition, the chapter proposes a generalized reconstruction algorithm to op-
timize a multi-hypothesis reconstruction. The proposed techniques using the
motion and reconstruction reestimation (MORE) are integrated in the SING
TDWZ (Chapter 4) to create a MORE codec which significantly improves the
TDWZ coding efficiency.

The efficiency of DVC coding mainly depends on the SI and the noise residue,
which is the correlation between the source and the SI. Partially decoded infor-
mation has played a valuable role in improving the SI and the residue during
decoding. Partially reconstructed frames have been utilized to update motion
fields to obtain better SI and residue qualities [21, 45, 46]. SI refinement was
proposed in [45] to refine the SI after decoding all DCT bands in order to im-
prove reconstruction. To extend this approach, SI and residues were refined
in [46] using motion updating after decoding each DCT band. Later, a learn-
ing based decoding approach was proposed in [21] based on using overlapped
motion vectors for updating the motion field to achieve a better SI quality
and a more accurate correlation. It was shown in Chapter 4 that optical flow
based SI generation [8,42] compensates the weaknesses of block-based methods
very well. With the newest development [16], optical flow based SI generation
consistently outperforms block based SI generation in terms of quality.

Noise estimation is one important aspect influencing the coding performance.
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The decoder needs to estimate the correlation between source and SI. In Chap-
ter 4 [8], a noise learning technique was proposed to utilize the residues of
previously decoded frames. Although a number of noise residual distributions
were generated to optimize the soft SI during decoding, the more accurate cor-
relation between the previously decoded residue and the current residue has not
been exploited. This correlation may be expressed by motion vectors between
the previous residue and the current one. Therefore, in this chapter, a residual
motion compensation is proposed to generate a more accurate estimate of cor-
relation noise by exploiting information from previously decoded frames as well
as the correlation between the previous and current estimated SI frames. The
proposed techniques are combined based on the SING DVC codec (Chapter 4
[8]) to improve the RD performance of the TDWZ scheme.

In order to enhance the RD performance, a multiple-input TDWZ decoder
[8, 30, 36] uses multiple versions of soft SI, which can be generated by apply-
ing different SI generation methods, e.g. block based and optical flow based
SI [8]. Previous decodings and reconstructions were based on the average of
two hypotheses [30, 36] or the predefined weighted multiple soft-inputs for de-
coding and a single selected SI for reconstruction [30]. Meanwhile, the multi-
ple soft-inputs in [8] were utilized both for decoding and reconstruction based
on a predefined weighted joint distribution. Predefined weighting parameters
may not be optimal for the multi-hypothesis reconstruction for all bitplanes,
bands, or frames. This chapter proposes a generalized reconstruction algo-
rithm to adaptively optimize the weighting parameters to iteratively improve
the multiple-hypothesis reconstruction during the decoding.

The rest of this chapter is organized as follows. In Section 5.1, the architecture
of the considered TDWZ video codec in Chapter 4 [8] is presented, which we
take as starting point. In Section 5.2, a residual motion compensation and
a generalized reconstruction following a block based motion reestimation are
proposed. A new TDWZ video scheme is presented in Section 5.3, based on the
basic TDWZ [8] with the motion and reconstruction reestimation techniques.
Finally, Section 6.3 presents simulation results, analyzes the contributions of
the different techniques, and compares the performance with reference methods.

5.1 Side Information and Noise Learning (SING)
DVC

The SING scheme was introduced in Chapter 4 [8] by using optical flow to im-
prove the SI generation and clustering to improve noise modeling. The optical
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flow based SI generation can compensate for weaknesses of an overlapping block
motion compensation (OBMC) [10]. Clustering is used to exploit cross band
correlation as well as noise modeling adaptivity. In addition, the SING scheme
improves the SI and noise modeling by learning from previously decoded WZ
frames.

The basic elements of the SING codec are depicted in Fig. 4.4. They con-
sist of OBMC and OF based side information generations without learning, a
noise model using the residual learning [8], the soft-input estimation, the re-
construction using side information and noise learning [8] and multiple input
LDPCA decoding. First, the side information generations calculate the noise
residual frames NR01, NR02 and the side information frames, SI 01, SI 02, using
the OBMC [10] and OF [16], where SI 01, NR01 and SI 02, NR02 are gener-
ated by the OBMC based and OF [16] based Side Information Generations,
respectively. These are transformed and input to the noise models. Noise
parameters αhRL and parameters αhCB are calculated using the SING Noise
Model. The soft-inputs Pr1q, Pr2q, and Pr1RL, Pr2RL are calculated by the
Soft Input Estimation with SI and Noise Learning. All soft-inputs are fed into
the multiple input LDPCA decoder [8]. After decoding, the selected candidate
and the corresponding weighted joint distribution of multi-hypothesis is chosen
for reconstruction.

At the SING decoder, for refining SI and noise distribution during decoding,
the SING scheme reconstructs partially decoded WZ frames after each bitplane
and band decoded. The partially reconstructed WZ frames are obtained by
using already decoded DCT bands which are reconstructed based on decoded
DCT intervals and undecoded DCT bands directly provided by the correspond-
ing SI DCT bands. The more efficiently the partially decoded information is
utilized, the more improvement we get. Therefore, the relation between the
reconstructed WZ frame in pixel domain and the decoded DCT intervals that
are determined by successfully decoded bitplanes at the decoder side shall be
considered to drive our motion and reconstruction reestimation in the following
sections.

5.2 Noise Residual Motion Reestimation and Gen-
eralized Reconstruction

In order to further improve the RD performance of the TDWZ scheme, this sec-
tion takes noise residual motion reestimation and optimal reconstruction into
account to enhance not only noise modeling but also the optimal reconstruc-
tion process. Firstly, the correlation information between a current residue



64 Motion and Reconstruction Reestimation

and previously decoded residues is exploited by a residual motion compensa-
tion technique to generate a more accurate noise distribution. Thereafter, a
generalized reconstruction is used to adaptively optimize the weighting param-
eters for the multi-hypothesis reconstruction. Furthermore, after decoding each
bitplane, the SI and residue frames are updated by a block based motion rees-
timation to reestimate motion vectors to regenerate a better SI and residue.
These techniques are iteratively carried out during decoding until all bitplanes
are successfully decoded.

5.2.1 Residual Motion Compensation
To improve the noise modeling in terms of the noise residue, this chapter pro-
poses a technique exploiting information from previously decoded frames in
terms of the correlation between the previous and current residual frames.
This correlation can be expressed by the motion between the previous residue
and the current residue, which may be considered the same as the motion be-
tween the previous SI and the current SI. This technique generates residual
frames by compensating the motion between the previous SI frames and the
current SI frame to the current residual frame to generate a more accurate
noise distribution for noise modeling.

For a GOP of size two, let X̂2n−2ω and X̂2n denote two decoded WZ frames at
time 2n − 2ω and 2n, where ω denotes the previously decoded ωth WZ frame
before the current WZ frame 2n. Their associated SI frames are denoted by
Y2n−2ω and Y2n, respectively. The side information generation may give similar
quality estimates for the same objects that appear on the previous and current
WZ frames. Here, each frame is split into N non-overlapped 8 × 8 blocks
indexed by k, where 1 � k � N . It makes sense to assume that the motion
vector vk of block k at position zk between X̂2n−2ω and X̂2n is the same as
between Y2n−2ω and Y2n. This is represented as follows,

Y2n(zk) ≈ Y2n−2ω(zk + vk). (5.1)

A motion compensated estimate of X̂2n based on the motion vk, X̂MC
2n , can be

obtained by
X̂MC

2n (zk) = X̂2n−2ω(zk + vk), (5.2)

Based on the estimated SI frames Y2n−2ω and Y2n, the vectors vk are calculated
using (5.1) within a search range Φ as

vk = argmin
v∈Φ

∑
block

(Y2n(zk)− Y2n−2ω(zk + v))2, (5.3)
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where
∑

block is the sum over all pixel positions zk. Thereafter, X̂MC
2n is esti-

mated by compensating X̂2n−2ω (5.2) for the selected motion v (5.3). Let R2n

denote the current residue at time 2n, generated by OBMC or OF, and let
R̂MC

2n denote the motion compensated residue, where R̂MC
2n can be estimated

from X̂MC
2n and Y2n as follows

R̂MC
2n (zk) = X̂MC

2n (zk)− Y2n(zk). (5.4)

Finally, the compensated residue is obtained by inserting (5.2) in (5.4)

R̂MC
2n (zk) = X̂2n−2ω(zk + vk)− Y2n(zk). (5.5)

Figure 5.1 provides an example for frame 18 of Soccer using the residual motion
compensation (RMC) technique, where a motion compensated residue R̂MC

18

(5.5) is predicted based on the decoded frame X̂16 and the motion v between
the SI frames Y18 and Y16. The RMC residue in Fig. 5.1(b) shows a higher
correlation with the ideal residue, calculated by X18−Y18 (Fig. 5.1(c)), than the
OBMC residue [10] (Fig. 5.1(a)). Figure 5.2 depicts the frame by frame PNSR
performance for Soccer for the residue using OBMC and the residue using the
residual motion compensation (5.5), denoted as OBMC and RMC, compared
with the ideal residue. The residue using motion compensation consistently
outperforms the residue using OBMC.

(a) OBMC
residue

(b) RMC residue (c) Ideal residue

Figure 5.1: Residual motion compensation for Soccer frame 18.

Table 5.1 shows PSNR comparisons of the ideal residue with the original residue
for both the OBMC technique and the RMC technique. On all these test
sequences, the RMC quality outperforms the OBMC quality.

5.2.2 Generalized Reconstruction

In this section, we propose a method for optimizing the quality of reconstructed
frames, by means of iteratively refining a multi-hypothesis reconstruction. The
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Table 5.1: The Average PSNR [dB] Results for Quality of Residue Using
OBMC and The Residual Motion Compensation Compared with
The Ideal Residue (GOP2)

Sequence OBMC RMC

Foreman, QP=25 25.08 25.71
Hall, QP=24 30.83 32.68
Soccer, QP=25 17.53 19.23
Coast, QP=26 26.57 27.66
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Figure 5.2: PSNR calculated between the ideal residue and residues using
OBMC and RMC (using residual motion compensation), respec-
tively, for the Soccer sequence (key frames QP=26)

weighting parameters are optimized after each decoded bitplane by an opti-
mization algorithm. In principle, the optimization algorithm can be applied
to any number of generated SI frames. In this work, SI frames using the OF
based and OBMC based techniques are used.

Let us consider H side information frames Yh, h ∈ [1, H], at the decoder side
for each original WZ frame X. Let X̂ denote the reconstructed frame. For
each band, let N denote the total number of coefficients, indexed by k, i.e.
1 � k � N , and let [Lk,Uk) denote the decoded quantization interval for
coefficient index k. The reconstructed values of coefficient index k denoted as
x̂k will be optimized based on a minimum mean-squared error (MSE) estimate
of source xk ∈ X given [Lk,Uk) and Yh, expressed by

x̂k = argmin
x̂k

E[(x̂k − xk)
2|xk ∈ [Lk,Uk), y1k, ..., yHk], (5.6)

where E denotes the expectation operator. The residue between the source X
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and the SI Yh is modeled by a Laplacian distribution fX|Yh
(xk) =

αhk

2 e−αhk|xk−yhk|,
where αhk is a Laplacian parameter of the estimate between the coefficient xk

of source X and the coefficient yhk of SI Yh.

We introduce a generalized objective function for the estimate of xk based on
minimizing over the N coefficients in a given band conditioning on the given H
side information Yh, the corresponding Laplacian distributions, and decoded
quantization intervals as follows

Jm(X̂, U) =

H∑
h=1

um
h

N∑
k=1

Uk∫
Lk

(x̂k − xk)
2fX|Yh

(xk)dxk + η
(
1−

H∑
h=1

uh

)
, (5.7)

where U = {uh} denotes the sets of weights on the SI frames, i.e. uh � 0

denotes the weight for the SI Yh, where we impose the constraint
H∑

h=1

uh = 1.

The parameter η represents a weight on the constraint term that the sum
of uh equals one and m (m � 1) is a constant. The generalized objective
function is optimized by selecting the variables, uh and x̂k. We shall minimize
Jm(X̂, U) by an iterative process, in turn adjusting uh and x̂k. The degree m
will influence how the weighting parameters uh are optimized. If m > 1, the
weighting parameters uh are determined by an iterative minimization, whereas
for m = 1, the weighting parameters uh are decided directly.

The minimum solution is achieved by minimizing the objective function Jm
(5.7). The minimum is obtained when the gradient is zero, i.e. the partial
derivatives of Jm of x̂k and uh are zero. The derivatives are given by

∂Jm
∂x̂k

=

H∑
h=1

um
h

Uk∫
Lk

2(x̂k − xk)fX|Yh
(xk)dxk. (5.8)

∂Jm
∂uh

= mum−1
h

N∑
k=1

Uk∫
Lk

(x̂k − xk)
2fX|Yh

(xk)dxk − η, (5.9)

Setting the partial derivatives of (5.8) and (5.9) to zero, and using the con-
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straint
H∑

h=1

uh = 1, we obtain:

x̂k =

H∑
h=1

um
h

Uk∫
Lk

xkfX|Yh
(xk)dxk

H∑
h=1

um
h

Uk∫
Lk

fX|Yh
(xk)dxk

. (5.10)

uh =

(
N∑

k=1

Uk∫
Lk

(x̂k − xk)
2fX|Yh

(xk)dxk

)1/(1−m)

H∑
h=1

(
N∑

k=1

Uk∫
Lk

(x̂k − xk)2fX|Yh
(xk)dxk

)1/(1−m)
, (5.11)

The minimization of Jm is accomplished by iteratively repeating (5.10) and
(5.11). The process is terminated after iteration t when the following termina-
tion criteria is satisfied

max
1�k�N

{|x̂(t)
k − x̂

(t−1)
k |} < ε, (5.12)

where x̂
(t)
k is an updated reconstructed coefficient, x̂

(t−1)
k is the previous re-

constructed coefficient, and ε is the predefined termination threshold. In this
work ε = 0.0001. The algorithm is outlined in Algorithm 1. Note that Jm is
convex in x̂k. In particular, if m = 1 (5.7), the weighting parameters {uh} as
determined by (5.11) taking the limit m → 1 do not require iterations, as the
resulting x̂k becomes the minimum MSE reconstruction by

x̂k =

H∑
h=1

uh

Uk∫
Lk

xkfX|Yh
(xk)dxk

H∑
h=1

uh

Uk∫
Lk

fX|Yh
(xk)dxk

. (5.13)

In addition, when m → ∞, uh becomes equal to 1/H for all SIs. Thus, for
m > 1, we may consider the solution as an unsupervised way to mix the uniform
and the MSE solutions. In this work m = 2.
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Input: Side information {Yh}; Laplacian parameters {αhk}; decoded
quantization intervals {[Lk,Uk)}

Output: The reconstructed coefficients {x̂k}
Initialization u

(0)
h ; x̂(0)

k by (5.10) ;
for t = 1 to Tmax do

// Iterating until the maximum interation

Compute x̂
(t)
k by (5.10) with u

(t−1)
h ;

// Reconstructing with the previous weights

Compute u
(t)
h by (5.11) with x̂

(t)
k ;

// Updating the weights with the updated reconstruction
if (5.12) is satisfied then

// Checking the termination condition
The algorithm is terminated;

end
end

Algorithm 1: Generalized reconstruction.

5.2.3 Block Based Motion Reestimation

This section introduces a technique to reestimate a bidirectional motion field
after each bitplane is decoded. The SI and the residue are then updated using
the reestimated bidirectional motion. For a GOP size of two, let X̂

(l,i−1)
2n ,

Y
(l,i−1)
2n , and R

(l,i−1)
2n denote the partially decoded frame, the reestimated SI,

and the reestimated residue, at time 2n after decoding band l− 1 and bitplane
i− 1 of the band l. These frames correspond to the frames, X̂2n, Y2n, and R2n

(Secs. 5.2.1, 5.2.2). Each frame is split into N non-overlapping 8 × 8 blocks
indexed by k, where 1 � k � N . Let v

(0)
k denote motion vectors estimated

by the bi-directional motion estimation in the SI generation [10] between two
backward and forward decoded key frames X̂2n−1 and X̂2n+1, respectively. The
bi-directional motion vectors v

(0)
k can be estimated within the search range Φ

by

v
(0)
k = argmin

v∈Φ

∑
block

(X̂2n−1(xk − v)− X̂2n+1(xk + v))2. (5.14)

Let v(l,i−1)
k denote the motion vector reestimated after band l− 1 and bitplane

i − 1 of band l are successfully decoded, where the first band motion vector
is assigned by the bi-directional motion vector (5.14) as v

(1,0)
k = v

(0)
k . Let
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Y
(l,i−1)
2n (xk) and R

(l,i−1)
2n (xk) denote the reestimated SI block corresponding to

the motion v
(l,i−1)
k given by

Y
(l,i−1)
2n (xk) =

1

2
(X̂2n−1(xk − v

(l,i−1)
k ) + X̂2n+1(xk + v

(l,i−1)
k )), (5.15)

R
(l,i−1)
2n (xk) = (X̂2n−1(xk − v

(l,i−1)
k )− X̂2n+1(xk + v

(l,i−1)
k )). (5.16)

Here we reestimate the motion vectors for all blocks after decoding each bit-
plane, by searching for the best match in the search range Φ between the
partially decoded block X̂

(l,i−1)
2n (xk) and Y

(l,i−1)
2n (xk) as:

v
(l,i)
k = v

(l,i−1)
k + argmin

v∈Φ

∑
block

(X̂
(l,i−1)
2n (xk)− Y

(l,i−1)
2n (xk + v))2. (5.17)

The updated motion vectors v(l,i)k obtained are used in the OBMC based frame
interpolation [10], where they are subjected to the processes of motion smooth-
ing, variable block size refinement, and adaptive weighted OBMC [10]. Table
5.2 shows PSNR comparisons of the original OBMC SI quality denoted OBMC
and the iteratively updated SIs, after decoding the DC coefficient and after de-
coding all AC coefficients, denoted by SI(DC) and SI(AC), respectively, using
the DVC scheme in [10]. In general, the SI(AC) and SI(DC) quality outper-
form the SI, especially on higher motion sequences such as Soccer and Foreman.
Moreover, SI(AC) is better than SI(DC) due to the iterative improvement on
each decoded bitplane and band. Consequently, updates of SI Y

(l,i)
2n and noise

residue R
(l,i)
2n are obtained to be used for decoding the next bitplane i + 1 of

band l. They are also further used to iteratively compensate the residual mo-
tion in Section 5.2.1 and optimize the reconstruction process in Section 5.2.2.

Table 5.2: The Average PSNR [dB] Results for SI Quality using OBMC and
the Motion Reestimation, SI(DC) and SI(AC) (GOP2)

Sequence OBMC SI(DC) SI(AC)

Foreman, QP=25 29.26 29.98 30.30
Hall, QP=24 36.46 36.37 36.54
Soccer, QP=25 21.30 23.22 23.64
Coast, QP=26 31.83 31.85 32.06
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5.3 TDWZ Using Motion and Reconstruction Rees-
timation

5.3.1 TDWZ Using Reestimation
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Figure 5.3: TDWZ with the motion and reconstruction reestimation (MORE
2SI).

The proposed TDWZ codec using MOtion and REconstruction reestimation
(MORE) is illustrated in Fig. 5.3. The new techniques, specifically the optical
flow based motion reestimation (in [47]), the noise residual motion reestimation
(Sec. 5.2.1), and generalized reconstruction (Sec. 5.2.2) are integrated into the
SING codec (Sec. 5.1) [8]. Compared with the SING codec (Chapter 4), the
MORE codec introduces two novel modules, a motion and residual reestimation
and a generalized reconstruction. In addition, the MORE codec replaces the
learning based OF SI generation of SING by the OF SI generation presented
in [47]. The motion and residual reestimation consists of both the optical flow
motion reestimation in [47] and the noise residual motion reestimation in Secs.
5.2.1 and 5.2.3. Input noise residual frames, NR01, NR02 and SI frames, SI 01,
SI 02 are generated by the OBMC based SI generation [8] and the OF based SI
generation (in [47]), respectively. The motion and residual reestimation module
recalculates the input residual and SI frames by reestimating motion vectors
as in (5.17) for SI 01, NR01, by the block based technique (Sec. 5.2.3) and
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SI 02, NR02, by the OF based technique (in [47]). It can be noted that the
recalculation of SI 01, NR01 is performed after decoding each bitplane using
(5.15)-(5.16) and that of SI 02, NR02 is performed after decoding each band
based on the partially decoded information. The residual frames in the MORE
scheme, NR1 and NR2, each consists of the current residues and the additional
residues compensated by (5.5). Let W be the window size specifying the num-
ber of previously decoded frames, X̂2n−2ω, 1 � ω � W . Consequently, there
are W compensated residues calculated by (5.5). This compensation process
is called once each band has been decoded. The output SI frames, SI 1 (5.15),
SI 2, and residual frames, NR1 ((5.15) and (5.5)) and NR2 (in [47] and (5.5)), of
the motion and residual reestimation are generated by reestimation (in [47] and
5.2) and thereafter an optimal selection is introduced in the following section
(Sec. 5.3.2).

5.3.2 Selecting Side Information

The quality of the reestimated SI varies for the decoded bands. The quality
also depends on the given sequence, e.g. the quality of sequences with less
motion may be degraded by the OF reestimation (in [47]). Thus, we should
optimally select the best quality among the inital SI and the reestimated SI.
The evaluation process is performed after each band is successfully decoded,
where the given decoded bitplanes and intervals are utilized for selecting the
SI to decode the next band.

In order to evaluate the quality of the so far decoded side information, we
also calculate an Ideal Code Length (ICL) as in (4.12) (Chapter 4) [10], which
measures the number of bits required by applying ideal (arithmetic) coding to
the given soft-input values if a (non-distributed) encoder would encode using
the same soft-input values. Let Pr(bbpi) denote the soft-input values fed into
the LDPCA decoder, where bbpi denotes the ith bit in bitplane bp, and are
calculated by reading bbpi as the bits after decoding. The ideal code length,
Lbp , for bitplane bp is calculated as

Lbp =

N∑
i=1

− log Pr(bbpi). (5.18)

The ICL is obtained as the sum over all bitplanes. This is equivalent to a
log-likelihood measure of the coded coefficients.

For evaluating the reestimated SI after decoding each band, we should not only
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take the rate in terms of the ICL into account but also consider a distortion
cost for the corresponding reestimated SI. The rate distortion cost Cl for a
particular band l is expressed by:

Cl = R+ λlD, (5.19)

where the first term R is an estimated rate for the coded coefficients after
decoding band l, and the second term consists of a Lagrange parameter λl,
which is experimentally set to 0.015, multiplied as the mean square distortion
D. We estimate by the mean of the ICL (5.18) over all decoded bitplanes bp
by

R =
1

Bl

Bl∑
bp=1

Lbp , (5.20)

where Bl is the number of bitplanes used to code the given band l, and Lbp

is the ICL (5.18) of bitplane bp. The distortion term is calculated over the N
decoded coefficients x̂k in the band l on the given decoded interval [Lk,Uk] and
side information Yh by

D =

N∑
k=1

Uk∫
Lk

(x̂k − xk)
2fX|Yh

(xk)dxk. (5.21)

Consequently, the cost Cl is derived from (5.18), (5.20), and (5.21) as

Cl =
1

Bl

Bl∑
bp=1

N∑
i=1

− log Pr(bbpi) + λl

N∑
k=1

Uk∫
Lk

(x̂k − xk)
2fX|Yh

(xk)dxk. (5.22)

The cost Cl (5.22) is used to determine the quality of the reestimated SI after
decoding each band l. When band l is successfully decoded, i.e. Bl bitplanes
and the intervals [Lk,Uk] are given at the decoder side, the cost Cl is calculated
by (5.22) for each SI Yh. Here we calculate the cost Cl for SI 01 and SI 1 to
select the better SI as the one with the smaller cost value Cl. The selection
procedure is carried out similarly for SI 02 and SI 2.

Based on the cost Cl, the output reestimated SI frames, SI 1, SI 2, and residual
frames, NR1, NR2, are optimally selected using (5.22) as either the initial SI 01,
SI 02, NR01, NR02, or the reestimated SI 1, SI 2, NR1, NR2. The reestimated
outputs SI 1, SI 2, and residual frames, NR1 and NR2, are transformed and
thereafter used as inputs for the SING noise model, the soft input estimation
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[8], and the generalized reconstruction (Sec. 5.2.2) applied on two side infor-
mation, SI 1 and SI 2, i.e. H = 2. When the coefficients and the frame are
partially reconstructed, the inverse transform converts the results to the par-
tially decoded frames. The partially decoded coefficients and frames are also
fed back to the motion and residual motion compensation to reestimate the SI
and residual frames for the next process until fully completing the decoding.

5.4 Performance Evaluation

We will evaluate the RD performance of the proposed techniques for the test
sequences (149 frames of) Foreman, Hall Monitor, Soccer, and Coastguard with
15Hz frame rate and QCIF format, where only the luminance component of
each frame is evaluated using GOP sizes 2 and 4. For GOP size of 2, odd
frames are coded as key frames using H.264/AVC Intra and even frames are
coded using Wyner-Ziv coding. Four RD points are considered corresponding
to four 4× 4 quantization matrices Q1, Q4, Q7, and Q8 [9]. H.264/AVC Intra
is here given by the intra coding mode of the H.264/AVC reference codec JM
9.5 [43] in main profile. The parameters for H.264/AVC Intra are set as by
DISCOVER [9] and QP values are set to those used for the key frames in the
Wyner-Ziv video coding in the DISCOVER [9].

The proposed TDWZ codec based on the SING2SI codec (Chapter 4) [8] em-
ploying motion and reconstruction reestimation (Sec. 5.3.1) is denoted by
MORE(2SI). The contributions of the different techniques are evaluated, where
the corresponding TDWZ codecs proposed are based on the SING2SI codec
(Chapter 4) [8] using the 3OF SI generation instead of the learning based
generation of SING. SING2SI(RMC) denotes the SING2SI scheme using the
residual motion compensation (Sec. 5.2.1) and SING2SI(GR) additionally em-
ploys the generalized reconstruction along with the residual motion compensa-
tion (Secs. 5.2.1+ 5.2.2). SING2SI(reOBMC) and SING2SI(reOF) denote the
SING2SI schemes using the noise residual motion reestimation and generalized
reconstruction (Sec. 5.2), and the optical flow motion reestimation (in [47]),
respectively. The proposed codecs are also compared with the DVC schemes
in Sec. 2.2.4 [10] called Cross-band and SING2SI (Chapter 4) [8].

5.4.1 Rate Distortion Results

Tables 6.1-5.6 present the relative average bitrate savings and the average
PSNR improvements (using the Bjøntegaard metric [35] and curve fitting through
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the 4 RD points measured) over the DISCOVER codec for WZ frames and over-
all frames. The results are also compared with the DVC Cross-band scheme
(Sec. 2.2.4) [10] and the SING2SI codec (Chapter 4) [8]. Evaluated against DIS-
COVER, the average PSNR improvement of the proposed MORE(2SI) scheme
is overall 2.5dB and 1.2dB (or equivalently the average bitrate saving is 64.1%
and 24.3%) better on WZ frames and all frames, respectively. In particular,
an average Bjøntegaard improvement of 4.2dB in PSNR (equivalent to 101.8%
in bitrate saving) is achieved for the difficult Soccer sequence on WZ frames.
For the individual techniques, the improvements of the SING2SI(reOF) includ-
ing the OF based motion reestimation (in [47]) are robust for the high and
complex motion sequences Foreman and Soccer with the average bitrate sav-
ings 74% and 94%, respectively. On the other hand, higher improvements of
SING(reOBMC) including the block-based techniques (Sec. 5.2) are achieved
on the lower motion sequences Hall Monitor and Coastguard. In general, the
proposed techniques combine well in the final MORE(2SI) scheme which im-
proves performance most for the high motion Soccer sequence. The RD perfor-
mances of the proposed methods robustly outperform the DISCOVER, Cross-
band, and SING2SI codecs.

The RD performance of the MORE(2SI) codec and H.264/AVC coding is also
depicted in Figs. 5.4-6.5 for WZ frames and all frames, respectively. The
MORE(2SI) codec gives a better RD performance than H.264/AVC Intra cod-
ing for all four test sequences and also better than H.264/AVC No Motion for
Foreman, Soccer, and Coastguard. The RD performance of the MORE(2SI)
codec clearly outperforms those of the SING2SI (Chapter 4) [8], the Cross-
band (Sec. 2.2.4) [10], and DISCOVER. For high rates, the improvement of
the MORE(2SI) codec on Soccer is up to 6dB over the DISCOVER codec for
WZ frames. For evaluating the quality of side information, the MORE(2SI) ICL
(5.18) are also depicted and these results further reduce the gap to H.264/AVC
Motion. This shows that the performance gap between the TDWZ video cod-
ing and conventional predictive video coding would be further reduced if more
efficient Slepian-Wolf coding is developed.
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Table 5.3: Bjøntegaard Relative Bit-rate Savings (%) over DISCOVER for WZ Frames (QCIF, 15Hz, GOP2)

Sequence Cross-band SING2SI SING2SI SING2SI SING2SI SING2SI MORE
(RMC) (GR) (reOBMC) (reOF) (2SI)

Foreman 14.19 35.43 39.36 41.74 44.65 74.24 74.03
Hall 8.59 22.71 35.69 37.07 37.08 24.20 36.21
Soccer 26.72 62.70 68.58 71.06 74.41 94.04 101.75
Coast 11.61 24.98 38.14 39.42 39.97 29.84 44.44

Average 14.92 36.46 45.44 47.32 49.03 55.58 64.10

Table 5.4: Bjøntegaard PSNR Improvements (dB) over DISCOVER for WZ Frames (QCIF, 15Hz, GOP2)

Sequence Cross-band SING2SI SING2SI SING2SI SING2SI SING2SI MORE
(RMC) (GR) (reOBMC) (reOF) (2SI)

Foreman 0.65 1.52 1.66 1.75 1.85 3.09 3.00
Hall 0.39 0.99 1.43 1.47 1.46 1.06 1.42
Soccer 1.33 2.70 2.93 3.02 3.18 4.01 4.19
Coast 0.36 0.76 1.11 1.14 1.16 0.91 1.28

Average 0.64 1.49 1.78 1.84 1.91 2.27 2.47
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Table 5.5: Bjøntegaard Relative Bit-rate Savings (%) over DISCOVER for all Frames (QCIF, 15Hz, GOP2)

Sequence Cross-band SING2SI SING2SI SING2SI SING2SI SING2SI MORE
(RMC) (GR) (reOBMC) (reOF) (2SI)

Foreman 5.98 13.63 14.94 15.79 16.74 26.35 26.22
Hall 2.55 5.52 7.89 8.19 8.18 5.98 8.05
Soccer 14.64 32.83 35.66 36.74 38.30 46.93 50.15
Coast 4.08 7.70 11.19 11.55 11.72 9.14 12.90

Average 6.25 14.92 17.42 18.07 18.74 22.10 24.33

Table 5.6: Bjøntegaard PSNR Improvements (dB) over DISCOVER for all Frames (QCIF, 15Hz, GOP2)

Sequence Cross-band SING2SI SING2SI SING2SI SING2SI SING2SI MORE
(RMC) (GR) (reOBMC) (reOF) (2SI)

Foreman 0.33 0.75 0.82 0.87 0.91 1.45 1.43
Hall 0.19 0.40 0.57 0.59 0.59 0.44 0.58
Soccer 0.73 1.51 1.63 1.67 1.75 2.14 2.26
Coast 0.19 0.37 0.53 0.55 0.56 0.44 0.61

Average 0.33 0.76 0.89 0.92 0.95 1.12 1.22
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Figure 5.4: PSNR vs. rate for the proposed codec for WZ frames (QCIF,
15Hz, GOP2).The proposed scheme MORE(2SI) is additionally tested on the four test se-

quences (299 frames, QCIF at 30Hz of) Foreman, Soccer, Hall Monitor, and
Coastguard using GOP size 4. The two key frames are also coded using
H.264/AVC Intra, thereafter the middle frame is WZ decoded based on the
two decoded key frames. Finally, the two remaining frames are WZ decoded
based on the nearest decoded key frame and the decoded middle frame. The
RD performance of the MORE(2SI) codec in Figs. 5.6-5.7 is better than those
of the Cross-band (Sec. 2.2.4) [10] and the SING2SI (Chapter 4) [8]. The
MORE(2SI) codec achieves better RD performance than H.264/AVC Intra for
all test sequences and outperform H.264/AVC No Motion on Foreman, Soccer,
and Coastguard. Compared with DISCOVER, the average PSNR improvement
is 2.2 dB and 1.6 dB (or equivalently the average Bjøntegaard bitrate saving
is 56.3% and 34%) for WZ frames and all frames, respectively. For the diffi-



5.4 Performance Evaluation 79

50 125 200 275 350 425
28

31

34

37

40

Rate [Kbit/s]

P
S

N
R

 [d
B

]

Foreman, GOP2

MORE(2SI)
MORE(2SI) ICL
SING2SI(reOF)
SING2SI
Cross−band
DISCOVER codec
H.264/AVC Intra
H.264/AVC No Motion
H.264/AVC Motion

(a)

50 100 150 200 250 300
31

33

35

37

39

41

Rate [Kbit/s]

P
S

N
R

 [d
B

]

Hall, GOP2

MORE(2SI)
MORE(2SI) ICL
SING2SI(reOF)
SING2SI
Cross−band
DISCOVER codec
H.264/AVC Intra
H.264/AVC No Motion
H.264/AVC Motion

(b)

0 90 180 270 360 450
27

30

33

36

39

Rate [Kbit/s]

P
S

N
R

 [d
B

]

Soccer, GOP2

MORE(2SI)
MORE(2SI) ICL
SING2SI(reOF)
SING2SI
Cross−band
DISCOVER codec
H.264/AVC Intra
H.264/AVC No Motion
H.264/AVC Motion

(c)

50 130 210 290 370 450
28

30

32

34

36

38

Rate [Kbit/s]

P
S

N
R

 [d
B

]

Coast, GOP2

MORE(2SI)
MORE(2SI) ICL
SING2SI(reOF)
SING2SI
Cross−band
DISCOVER codec
H.264/AVC Intra
H.264/AVC No Motion
H.264/AVC Motion

(d)

Figure 5.5: PSNR vs. rate for the proposed codec for all frames (QCIF, 15Hz,
GOP2).

cult sequence Soccer, the improvement in PSNR is 3.6 dB (or equivalently the
bitrate saving is 87.2%) for WZ frames.

5.4.2 Performance Comparisons
Compared with Cross-band and SING2SI (Table 6.1), bitrate savings of MORE(2SI)
are 75% and 39% for Soccer on the WZ frames, respectively. The average bi-
trate savings of the MORE(2SI) are 49.2% and 27.6% over Cross-band and
SING2SI. It may be noted that the encoding is the same in all cases.

Besides comparison with Cross-band (Sec. 2.2.4) [10] and SING2SI (Chapter
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Figure 5.6: PSNR vs. rate for the proposed MORE(2SI) codec for WZ frames
(QCIF, 30Hz, GOP4).

4) [8], we also compare with the results for a number of recent DVC codecs
[20–23,40,44,46]. The comparison will use the DISCOVER results as common
reference, reporting gains over DISCOVER. This Section reports results for
the high motion Foreman and Soccer as common test sequences for which
comparison is feasible. The RD results may be compared with RD results of
the other recent DVC codecs, some of which [20, 21, 46] utilized the partially
reconstructed information to update the SI and residue during decoding. The
following comparisons are evaluated for GOP2, QCIF, and 15Hz frame rate
at 350 Kb/s for all frames. At 350Kb/s, the improvements of MORE(2SI)
compared with DISCOVER are 2.5dB for Foreman (Fig. 6.5(a)) and 3dB for
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Figure 5.7: PSNR vs. rate for the proposed MORE(2SI) codec for all frames
(QCIF, 30Hz, GOP4).

Soccer (Fig. 6.5(d)). Compared with DISCOVER, the results in [21] utilizing
motion reestimation show an improvement of 1.8dB for Foreman and 1.5dB
for Soccer. Another work employing motion reestimation [46] gains 1dB for
both Foreman and Soccer. The results in [20] show an improvement of 0.4
dB for Foreman and 0.7 dB for Soccer. Improvements of 0.5dB for Foreman
and 0.4dB degradation for Soccer are reported in [40]. More recently, both the
scheme in [22] and the hash-based DVC codec in [23] show an improvement 0.4
dB for Foreman and 0.5 dB for Soccer. Furthermore, the TRACE method [44]
reports 1.6% bit-rate saving for Foreman (at 30Hz) compared with [39]. Thus,
the proposed MORE(2SI) codec robustly outperforms all these codecs as well
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as H.264/AVC No Motion for both Foreman and Soccer. To the best of our
knowledge, there are no other DVC codecs in the literature reporting better
(Bjøntegaard) RD performance for both Foreman and Soccer compared with
H.264/AVC No Motion.

For GOP size 4, the results are compared with the results in [8,10]. The average
bitrate savings of the MORE(2SI) are 42.5% and 18.8% (or equivalently the
improvement in PSNR is 1.6dB and 0.7dB) over Cross-band and SING2SI for
WZ frames. For the difficult sequence Soccer, the bitrate saving is 69.5% and
32.9% (or equivalently the improvement in PSNR is 2.7dB and 1.3dB) on the
WZ frames, compared with Cross-band and SING2SI, respectively.

5.5 Summary

Motion reestimation using optical flow was introduced in TDWZ DVC to take
advantage of the partially decoded information. More accurate side informa-
tion and residual frames were updated during decoding. Furthermore, residual
motion compensation, using motion updating, generated additional residues
to exploit the correlation between the previously decoded and current noise
residues. Also, a generalized reconstruction algorithm was proposed to im-
prove the multi-hypothesis reconstruction by refining weighting parameters.
The proposed techniques were integrated to form the novel MORE scheme.
Experimental results show that the coding efficiency of the proposed MORE
scheme can robustly improve the RD performance of TDWZ DVC without
changing the encoder. For a GOP size of 2, an average Bjøntegaard improve-
ment in PSNR of 2.5dB (or equivalent an average bitrate saving of 64%) and
up to 6dB improvement were achieved by the MORE(2SI) codec for WZ frames
compared with the DISCOVER codec.



Chapter 6

Adaptive Mode Decision

An adaptive mode decision technique for DVC is proposed in this chapter
to control and take advantage of skip mode and intra mode in DVC. The
adaptive mode decision is not only based on quality of key frames but also the
estimated rate of WZ frames. To improve noise distribution estimation for a
more accurate mode decision, a residual motion compensation is proposed to
estimate a current noise residue based on a previously decoded frame.

The DISCOVER codec [9] brought some improvements of the coding efficiency,
thanks to more accurate side information generation and correlation noise mod-
eling. Other researchers have improved upon this approach, for example, by
developing advanced refinement techniques [10, 20]. The rate distortion (RD)
performance of TDWZ has been improved [10] using a cross-band noise refine-
ment technique. Despite advances in practical TDWZ video coding, the RD
performance of TDWZ video coding is still not matching that of conventional
video coding approaches such as H.264/AVC. Including different coding modes
as in conventional video compression may be a promising solution for further
improving the RD performance of DVC.

Some previous works [17, 48, 49] propose to exploit different coding modes en-
tirely at the decoder. In [48, 49], it was proposed to skip or decide between
skipping or WZ coding for coefficient bands or bitplanes. They decided the
modes based on a threshold using the estimated rate and distortion. More the-
oretically, the work in [17] has developed techniques for rate-distortion based
decoder-side mode decision. The decoder-side mode decision takes the side in-
formation position in the quantization bin into account to determine the coding
modes at the coefficient and bitplane levels.



84 Adaptive Mode Decision

To take advantage of both the refinement technique in [10] and the decoder-
side mode decision in [17], this chapter proposes an adaptive mode decision
technique for TDWZ video coding. The mode decision uses estimated rate to
form an adaptive mode decision and develop a residual motion compensation
to generate a more accurate correlation noise. The proposed techniques are
combined based on the DVC codecs the Cross-band in Sec. 2.2.4 [10] and the
MORE in Chapter 5 to enhance the RD performance of the TDWZ scheme.

The rest of this chapter is organized as follows. In Section 6.1, the proposed
adaptive mode decision for DVC is presented. The adaptive mode decision DVC
architectures based on the Cross-band codec in Sec. 2.2.4 [10] and the MORE
codec (Chapter 5) proposed are described in Section 6.2. Section 6.3 evaluates
and compares the performance of our approach to other existing methods.

6.1 Adaptive Mode Decision for Distributed Video
Coding

The techniques for mode decision as employed in our codec extend the method
in [17]. Let X denote the original Wyner-Ziv frame and Y denote the side
information frame. The cost for WZ coding a coefficient Xk with index k in a
particular coefficient band is defined as [17]:

Ck
WZ = H(Q(Xk)|Yk = yk) + λE[|Xk − X̂k||Yk = yk]. (6.1)

The first term in this sum denotes the conditional entropy of the quantized
coefficient Q(Xk) given the side information. The second term consists of the
Lagrange parameter multiplied by the mean absolute distortion between the
original coefficient Xk and its reconstruction X̂k, given the side information.
Entropy and distortion are calculated as in [17].

The cost for skipping the coefficient Xk is given by [17]:

Ck
skip = λ

1

α
. (6.2)

If Ck
skip < Ck

WZ for all coefficients in a coefficient band, all bitplanes in the
coefficient band are skipped and the side information is used as the result. In
the other case, bitplane-level mode decision is performed to decide between
bitplane-level skip, intra, or WZ coding as described in [17]. The coding mode
for each bitplane is communicated to the encoder through the feedback channel.
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One of the contributions in this chapter is to extend the method above. Instead
of using a sequence-independent formula for λ as in [17], we propose to vary
the Lagrange parameter depending on the sequence characteristics.

As a first step, results are generated for a range of lambdas and WZ quantiza-
tion points, using the training sequences Foreman, Coastguard, Hall Monitor,
and Soccer (QCIF, 15Hz, GOP2). Wherever necessary, the intra QP of the
key frames is adjusted so that the qualities of WZ frames and intra frames are
comparable (i.e., within a 0.3dB difference) for each of the RD points. For
each sequence and WZ quantization matrix, the optimal lambda(s) are identi-
fied by selecting the set providing the best RD curve. These points are then
used to create a graph of (optimal) lambdas as a function of the intra QP, as
in Fig. 6.1. For each test sequence, the points were fitted with a continuous
exponential function. This results in an approximation of the optimal lambda
as a function of the intra QP, for each test sequence, i.e.:

λ = ae−b·QP, (6.3)

where QP denotes the intra quantization parameter of the key frames, and a
and b are constants. The optimal λ is obtained by the work in [17] with fixed
a = 7.6 and b = 0.1 for all sequences.

As shown in Fig. 6.1, the optimal λ differs between the sequences. Typically,
for sequences with less motion (such as Hall Monitor), the optimal λ is lower
to give more weight to the rate term in (6.1) and consequently encourage skip
mode. On the other hand, for sequences with complex motion such as Soccer,
the distortion introduced in the case of skip mode is significant due to errors
in the side information, so that higher values for λ give better RD results.

The results in Fig. 6.1 are exploited to estimate the optimal λ on a frame-
by-frame basis during decoding. The approach taken is - relatively simple - to
look at the rate. Apart from the graph (Fig. 6.1) we also store the average
rate per WZ frame associated with each of the points. For sequences with
simple motion characteristics (e.g., Hall Monitor, Coastguard), for the same
intra QP, the WZ rate is typically lower than for more complex sequences such
as Foreman and Soccer. Therefore, during decoding, we first estimate the WZ
rate and compare this estimate with the results in Fig. 6.1 to estimate the
optimal lambda. Specifically, the WZ rate ri for the current frame is estimated
as the median (med) of the WZ rates ri−3, ri−2 ri−1 of the three previously
decoded WZ frames (as in [24]):

ri = med(ri−1, ri−2, ri−3). (6.4)
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By comparing with Fig. 6.1, we then obtain an estimate of the optimal lambda
parameter for the current WZ frame to be decoded through interpolation:

λri =
ri − r1
r2 − r1

λr1 +
r2 − ri
r2 − r1

λr2 , (6.5)

where r1 � ri � r2 and r1, r2 are the rate points for the training sequences
with the corresponding λr1 , λr2 , respectively.
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Figure 6.1: Experiments on optimal λ.

6.2 The Adaptive Mode Decision DVC Architec-
tures

6.2.1 The Adaptive Mode Decision Cross-band Codec

The architecture of an efficient TDWZ video codec with a feedback channel [1,9]
is depicted in Fig. 6.2. The input video sequence is split into key frames and
Wyner-Ziv frames, where the key frames are intra coded using conventional
video coding techniques such as H.264/AVC intra coding. The WZ frames
are transformed (4×4 DCT), quantized and decomposed into bitplanes. Each
bitplane is in turn fed to a rate-compatible LDPCA encoder [26] from most
significant bitplane to least significant bitplane. The parity information from
the output of the LDPCA encoder is stored in a buffer from which bits are
requested by the decoder through a feedback channel.

At the decoder side, OBMC [10] is applied to generate a prediction of each WZ
frame available at the encoder-side. This prediction is referred to as the side
information (Y ). The decoder also estimates the noise residue (R0) between
the SI and the original frame at the encoder. This noise residue is used to
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derive the noise parameter α0 that is used to calculate soft-input information
(conditional probabilities Pr0) for each bit in each bitplane. Given the SI
and correlation model, soft input information is calculated for each bit in one
bitplane. This serves as the input to the LDPCA decoder. For each bitplane
(ordered from most to least significant bitplane), the decoder requests bits from
the encoder’s buffer via the feedback channel until decoding is successful (using
a CRC as confirmation). After all bitplanes are successfully decoded, the WZ
frame can be reconstructed through centroid reconstruction followed by inverse
transformation.
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Figure 6.2: Adaptive mode decision TDWZ video architecture.

To improve RD performance of TDWZ video coding, a cross-band noise model
in Sec. 2.2.4 [10] utilizing cross-band correlation based on the previously de-
coded neighboring bands and a mode decision technique [17] have been in-
troduced. In this chapter, we additionally propose the Adaptive Mode Deci-
sion (AMD) by adapting rate (Sec. 6.1) and compensating residual motions
(Sec. 5.2.1) to further improve the RD performance.

The proposed techniques including the novel adaptive mode decision in Section
6.1 and the novel residual motion compensation in Section 5.2.1 are integrated
in the cross-band DVC scheme [10] as shown in Fig. 6.2. The mode decision,
S, determines the three modes skip, arithmetic, or WZ coding of each bitplane
to be coded. The mode information is updated and sent by the decoder to
the encoder after each bitplane is completely processed. The Residual Motion
Compensation (RMC) technique (Sec. 5.2.1) generates the additional residue
R1 along with the original residue R0 generated by the OBMC technique [10]
of the side information generation. Thereafter, the cross-band noise model in
Sec. 2.2.4 [10] produces the parameters α0, α1 for estimating corresponding
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soft inputs Pr0, Pr1 for the multiple input LDPCA decoder [8]. When all bit-
planes are decoded, the coefficients are reconstructed and the inverse transform
converts the results to the decoded WZ frames X̂. These frames X̂ are also
used along with SI frame Y for the RMC technique to generate the residual
frame R1 for the next frame to be decoded.

6.2.2 The Adaptive Mode Decision MORE2SI Codec
In order to enhance the RD performance of the MORE2SI codec (Chapter 5),
the proposed MORE(2SI) scheme is additionally enhanced by integrating an
adaptive mode decision (AMD) for the RD points with lowest rate. It is applied
for two RD points for Hall Monitor and one for Foreman, Soccer, and Coast-
guard and denoted by MORE2SI(AMD). Mode decision has been proposed to
control and take advantage of skip mode and intra mode in DVC [17]. The
adaptive mode decision is not only based on the decoder-side mode decision
as in [17], but also (decoder side) estimated rate of Wyner-Ziv (WZ) frames
to obtain a Lagrange parameter [17]. Figure 6.3 depicts the MORE2SI(AMD)
architecture, which includes the MORE2SI scheme (Fig. 5.3) and the AMD
technique (Sec. 6.1) determining the three modes skip, arithmetic, or WZ
coding of each bitplane.
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Figure 6.3: Adaptive mode decision MORE video architecture.

6.3 Performance Evaluation
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Table 6.1: Bjøntegaard relative bit-rate savings (%) of the proposed AMD techniques over DISCOVER for WZ
and all frames

Sequence
Cross-band MD AMD AMDMotion
WZ All WZ All WZ All WZ All

Coastguard 11.61 4.08 13.69 4.61 24.01 5.91 32.62 7.50
Foreman 14.19 5.98 16.88 6.95 21.57 8.42 24.47 9.46
Hall Monitor 8.59 2.55 11.54 3.03 39.68 5.96 59.42 8.18
Mother-daughter 13.51 3.98 21.14 5.44 44.75 8.31 57.58 10.04
Silent 17.33 5.77 22.94 6.58 30.96 7.77 38.82 9.50
Soccer 26.72 14.64 26.81 15.36 26.95 15.49 29.78 16.97
Stefan 2.32 1.15 4.11 2.40 4.26 2.34 5.96 3.20

Average 13.47 5.45 16.73 6.34 27.45 7.74 35.52 9.26
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Table 6.2: Bjøntegaard PSNR improvements (dB) of the proposed AMD tech-
niques over DISCOVER for WZ and all frames

Sequence
Cross-band MD AMD AMDMotion
WZ All WZ All WZ All WZ All

Coastguard 0.36 0.19 0.41 0.22 0.65 0.27 0.85 0.34
Foreman 0.65 0.33 0.75 0.38 0.91 0.46 1.02 0.51
Hall Monitor 0.39 0.19 0.51 0.22 1.39 0.41 1.91 0.56
Mother-daughter 0.49 0.22 0.62 0.29 1.11 0.44 1.44 0.53
Silent 0.81 0.36 1.02 0.40 1.29 0.48 1.52 0.58
Soccer 1.33 0.73 1.29 0.75 1.28 0.75 1.42 0.82
Stefan 0.08 0.05 0.15 0.12 0.17 0.12 0.26 0.17

Average 0.59 0.30 0.68 0.34 0.97 0.42 1.20 0.50

Table 6.3: Bjøntegaard relative bit-rate savings (%) of the DVC schemes over
DISCOVER for WZ and all frames

Sequence
Cross-band SING MORE MORE(AMD)
WZ All WZ All WZ All WZ All

Foreman 14.19 5.98 35.43 13.63 74.03 26.22 74.03 26.09
Hall 8.59 2.55 22.71 5.52 36.21 8.05 55.85 8.82
Soccer 26.72 14.64 62.70 32.83 101.75 50.15 100.16 49.46
Coast 11.61 4.08 24.98 7.70 44.44 12.90 45.59 12.88

Average 14.92 6.25 36.46 14.92 64.10 24.33 68.91 24.31

The RD performance of the proposed techniques are evaluated for the QCIF
test sequences (149 frames of) Coastguard, Foreman, Hall Monitor, Mother-
daughter, Silent, Soccer, and Stefan with 15Hz frame rate. The GOP size
is 2, where odd frames are coded as key frames using H.264/AVC Intra and
even frames are coded using Wyner-Ziv coding. Four RD points are considered
corresponding to four 4 × 4 quantization matrices Q1, Q4, Q7, and Q8 [9].
H.264/AVC Intra corresponds to the intra coding mode of the H.264/AVC
reference codec JM 9.5 [43] in main profile. Only the luminance component of
each frame is evaluated. The proposed techniques are integrated in the DVC
scheme in [10], using the adaptive rate mode decision as in Section 6.1 and
combining with the residual motion compensation as in Section 5.2.1 denoted
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Table 6.4: Bjøntegaard PSNR improvements (dB) of the DVC schemes over
DISCOVER for WZ and all frames

Sequence
Cross-band SING MORE MORE(AMD)
WZ All WZ All WZ All WZ All

Foreman 0.65 0.33 1.52 0.75 3.00 1.43 2.93 1.41
Hall 0.39 0.19 0.99 0.40 1.42 0.58 1.95 0.61
Soccer 1.33 0.73 2.70 1.51 4.19 2.26 4.18 2.23
Coast 0.36 0.19 0.76 0.37 1.28 0.61 1.24 0.60

Average 0.64 0.33 1.49 0.76 2.47 1.22 2.58 1.22

by AMD and AMDMotion, respectively. Results for the DVC scheme in Sec.
2.2.4 [10] (Cross-band) and the mode decision in [17] integrated in the Cross-
band DVC [10], denoted by Cross-band and MD, respectively, are also given.

Table 6.1 presents the average bitrate savings and equivalently the average
PSNR improvements using the Bjøntegaard metric [35] compared with the
DISCOVER codec for WZ frames as well as for all frames. Compared with
DISCOVER, the average bitrate saving for the proposed AMDMotion scheme
is 35.5% and 9.26% for WZ frames and all frames, respectively. In particular,
the performance improvement is 59.4% and 8.18% (or equivalently the average
improvement in PSNR is 1.91 dB and 0.56 dB) for WZ frames and overall
frames for the low motion Hall Monitor sequence. Compared with the Cross-
band DVC scheme (Sec. 2.2.4) [10], an average bit-rate saving (Bjøntegaard)
of 22.1% is observed on the WZ frames. It is clear that AMD outperforms MD
with an average relative bitrate saving on WZ frames of 27.5% compared with
16.7%.

The RD performance of the proposed AMD and AMDMotion codecs and
H.264/AVC coding is also depicted in Fig. 6.4 for WZ frames and all frames.
The AMDMotion codec gives a better RD performance than H.264/AVC Intra
coding for all the sequences except Soccer and Stefan and also better than
H.264/AVC No Motion for Coastguard. Furthermore, the proposed AMDMo-
tion codec improves performance in particular the lower motion sequences Hall
Monitor, Silent, and Mother-daughter. In general, the RD performance of the
AMDMotion codec clearly outperforms those of the Cross-band scheme (Sec.
2.2.4) [10] and DISCOVER.
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Furthermore, experiments were conducted enhancing the proposed MORE(2SI)
scheme by integrating an adaptive mode decision (AMD) for the RD points with
lowest rate. It is applied for two RD points for Hall Monitor and one for Fore-
man, Soccer, and Coastguard. Furthermore, the MORE2SI(AMD) codec only
using skip mode achieved 68.9% in average bitrate saving (or equivalent the
average improvement in PSNR is 2.6 dB) on WZ frames for GOP2 improving
the 64.1% of MORE(2SI) (Tables 6.3-6.4). The improvement over MORE(2SI)
was mainly achieved by a significant improvement of the RD performance for
the low motion sequence Hall Monitor with an average bitrate saving of 55.8%
compared with 36.2% that of the MORE(2SI) scheme (Chapter 5). The RD
performance of the proposed DVC codecs and H.264/AVC coding is also de-
picted in Figs. 6.6-6.7 for Hall Monitor for WZ frames and all frames.

6.4 Summary
Adaptive mode decision DVC with residual motion compensation was intro-
duced to utilize skip, intra, and WZ modes based on rate estimation and com-
bined with a more accurate correlation noise estimate. The adaptive mode de-
cision used the estimated rate to more accurately determine the modes during
decoding. Moreover, the residual motion compensation generated an additional
residue to take advantage of correlation between the previously decoded and
current noise residues. Experimental results show that the coding efficiency
of the proposed AMDMotion scheme can robustly improve the RD perfor-
mance of TDWZ DVC without changing the encoder. For a GOP size of 2
the average bitrate saving of the AMDMotion codec is 35.5% (or equivalent
the average improvement in PSNR is 1.2dB) on WZ frames compared with the
DISCOVER codec. On the four test sequences, the average bitrate saving of
the MORE(AMD) is 69% (or equivalent the average improvement in PSNR is
2.6 dB) on WZ frames compared with the DISCOVER codec.
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Figure 6.4: PSNR vs. rate for the proposed AMD codecs for WZ frames.
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Figure 6.5: PSNR vs. rate for the proposed AMD codecs for all frames.
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Figure 6.6: PSNR vs. rate for the proposed AMD codecs for Hall.
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Figure 6.7: PSNR vs. rate for the proposed DVC schemes for Hall.



Chapter 7

Conclusion

In this thesis, theoretical and practical issues of DVC were investigated and
iterative improvement algorithms were proposed to improve the compression
performance of DVC. The backgrounds of theoretical and practical results in
DVC were disscussed in Chapter 2 as a starting point for the contributions
in the following Chapters. A Wyner-Ziv video codec with parallel iterative
LDPC decoding was proposed in Chapter 3, where the technique took bit-
plane correlation into account by iteratively refining the soft-input for each
bitplane and updating the noise distribution during decoding. In Chapter 4,
the TDWZ video coding was also improved using optical flow and clustering
of DCT blocks. Optical flow was used for frame interpolation generating side
information, which was adopted in a multi-hypothesis scheme to compensate
weaknesses of block based methods. Adaptive noise modeling using clustering
was introduced additionally utilizing residues of previously decoded frames and
generating a number of noise residual distributions within a frame for adap-
tive optimization of the soft side information during decoding. Furthermore,
in Chapter 5, motion reestimation using optical flow was proposed to take ad-
vantage of the partially decoded information to generate more accurate side
information and residual frames. The residual motion compensation following
the motion updating generated additional residues to exploit the correlation
between the previously decoded and current noise residues. A generalized re-
construction algorithm was proposed to optimize the multi-hypothesis recon-
struction by refining the weighting parameters. Finally, an adaptive mode de-
cision DVC with residual motion compensation was introduced in Chapter 6 to
utilize skip, intra, and WZ modes based on rate estimation and combined with
a more accurate correlation noise estimate. The adaptive mode decision used
the estimated rate to more accurately determine the modes during decoding.

The proposed iterative improvement algorithms provide numerous solutions to
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improve the RD performance for the DVC scheme, in which the OF techniques
are integrated. On test sequences with GOP size of 2, the proposed DVC
scheme with parallel iterative LDPC decoding (Chapter 3) can improve the
coding efficiency of TDWZ in terms of WZ rate savings up to 5.6% compared
with the available TDWZ video codec [13]. For the proposed SING scheme
(Chapter 4), the average bitrate saving of the SING(3SI) codec is 37% (or
equivalent the average improvement in PSNR is 1.5 dB) on WZ frames com-
pared with the DISCOVER codec. The most improvement is obtained by the
MORE scheme (Chapter 5), where the average improvement in PSNR is 2.5 dB
(or equivalent the average bitrate saving of 64%) of the MORE(2SI) codec on
WZ frames compared with the DISCOVER codec. In addition, on the number
of test sequences, the average bitrate saving of the AMDMotion codec (Chapter
6) based on the Cross-band scheme (Sec. 2.2.4) [10] with the adaptive mode
decision is 35.5% (or equivalent the average improvement in PSNR is 1.2 dB)
on WZ frames compared with the DISCOVER codec. Finally, on the four
test sequences, the the average bitrate saving of MORE(AMD) based on the
MORE scheme (Chapter 5) with the adaptive mode decision is 69% (or equiva-
lent the average improvement in PSNR is 2.6 dB) on WZ frames compared with
the DISCOVER codec. The experimental results show that the proposed DVC
codec gives the better RD performance than the low-complex H.264/AVC Intra
for all four test sequences and also the better RD performance than H.246/AVC
No Motion for Foreman, Soccer, and Coastguard.

The experimental results have proved that the proposed algorithms in this
thesis were efficient for improving the coding performance of the TDWZ video.
Besides classic issues of side information generation and the accuracy of noise
modeling, the work may be extended in the future:

• Slepian-Wolf Coding with Multiple LDPC Decoders: In a Wyner-
Ziv video coding structure, the Slepian-Wolf codec plays an important
role. The experimental results indicate that the DVC scheme with mul-
tiple LDPCA decoders improves the coding performance in terms of bi-
trate. How to estimate and adapt the multiple LDPCA decoders is still
challenging.

• Adaptive Mode Decisions: Integrating adaptive mode decisions with
advanced refinement techniques is one promising approach to take ad-
vantage of skip and intra modes to further improve the DVC coding
efficiency.

• Feedback Channel Constraints with Refinements: Improving the
coding efficiency of more practical DVC codecs with flexible number of
requests and refinement techniques could be one of research directions.
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• Reconstruction with Postprocessing: Improving the reconstruction
process using postprocessing may be a solution to overcome the draw-
backs of reconstructing in DVC which the reconstruction is only carried
out on individual coefficients.

• DVC over Error Channel: In real situations, when syndromes are
transmitted in error prone environment, the DVC over error channel could
be a challenging issue.



Appendix A

The fuzzy C-means (FCM)

clustering

Consider a given finite set R, with elements Rk ∈ R16 i.e. the set of 16-
dimensional real numbers called the feature space, i.e. R = {R1, R2, ..., RN}
with feature vectors Rk = {R1

k, R
2
k, ..., R

16
k }. Let V = {V1, V2, ..., VM} be the

cluster centers, Vi ∈ R16. A feature vector Rk belongs to a specific cluster
Vi that is given by the membership value uik which can be represented by a
matrix U ∈ RMN , where RMN is the set of real M × N matrices. The FCM
algorithm iteratively optimizes the standard FCM objective function defined
as:

Jm(U,V) =

N∑
k=1

M∑
i=1

um
ikd

2
ik, (A.1)

where d2ik = ‖Rk − Vi‖2 represents the squared Euclidean distance between
the feature vector Rk and center Vi, m � 1 is the degree of fuzzification. The

optimization is initiated using the constraint
M∑
i=1

uik = 1.

Local minimization of the objective function Jm(U,V) is accomplished by iter-
atively adjusting the values of uik and Vi according to the following equations:

uik =
1

M∑
j=1

(
dik

djk

)2/(m−1)
, (A.2)
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Vi =

N∑
k=1

um
ikRk

N∑
k=1

um
ik

. (A.3)

As Jm is iteratively minimized, Vi becomes more stable. Iteration of feature
vector groupings is terminated at iteration t when the termination measurement
max

1�i�M
{‖V (t)

i −V
(t−1)
i ‖} < ε is satisfied, where V (t)

i is an updated center, V (t−1)
i

is the previous center, and ε is the predefined termination threshold. Finally,
all feature vectors are classified into clusters by assigning a feature vector Rk

to the cluster Vj for ujk = max
1�i�M

{uik}. The FCM algorithm converges to a

minimum or a saddle point [50].
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The cluster-based variance

Lemma: Let R be a data set where R is classified into non-overlapping sub-sets.
The variance σ2 of a set R is higher than the expected variance of the sub-sets.

Proof : Assume R = {Rk}, 1 � k � N is separated into M clusters, for instance,
cluster j (1 � j � M) includes Nj elements that are denoted by Rj(i)(1 � i �
Nj), where

∑
j

Nj = N . σ2 and σ2
j are the variances of R and a set j including

Nj elements Rj(i) given j, respectively. What we need to prove is:

σ2 � 1

N

∑
j

∑
i

(Rj(i) − Ej [Rj(i)])
2, (B.1)

where Ej [.] is the expectation operator of elements given j, this means the
elements Rj(i) are included in a set j.

Equation (B.1) is equivalent to

σ2 � 1

N

∑
j

Njσ
2
j

⇔ N(E[R2]− E[R]2) �
∑
j

Nj(Ej [R
2
j(i)]− Ej [Rj(i)]

2), (B.2)

where NE[R2] =
∑
j

NjEj [R
2
j(i)] because NE[R2] =

∑
k

R2
k and

∑
j

NjEj [R
2
j(i)] =∑

j

∑
i

R2
j(i).
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Equation (B.2) is equivalent to∑
j

NjEj [Rj(i)]
2 � NE[R]2

⇔ N
∑
j

Nj

(∑
i

Rj(i)

Nj

)2

� (
∑
k

Rk)
2

⇔ (
∑
j

(
√
Nj)

2)

(∑
j

(∑
i

Rj(i)√
Nj

)2)
� (

∑
j

(
∑
i

Rj(i)))
2, (B.3)

which is true due to the Cauchy-Schwarz inequality for any real number Nj > 0

and Rj(i). The two sides are equal if and only if the ratios
∑
i
Rj(i)

Nj
are equal.
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Side Information and Noise Learning for Distributed
Video Coding Using Optical Flow and Clustering

Huynh Van Luong, Lars Lau Rakêt, Xin Huang, and Søren Forchhammer, Member, IEEE

Abstract— Distributed video coding (DVC) is a coding par-
adigm that exploits the source statistics at the decoder side
to reduce the complexity at the encoder. The coding efficiency
of DVC critically depends on the quality of side information
generation and accuracy of noise modeling. This paper considers
transform domain Wyner–Ziv (TDWZ) coding and proposes
using optical flow to improve side information generation and
clustering to improve the noise modeling. The optical flow
technique is exploited at the decoder side to compensate for weak-
nesses of block-based methods, when using motion-compensation
to generate side information frames. Clustering is introduced
to capture cross band correlation and increase local adaptivity
in the noise modeling. This paper also proposes techniques to
learn from previously decoded WZ frames. Different techniques
are combined by calculating a number of candidate soft side
information for low density parity check accumulate decoding.
The proposed decoder side techniques for side information and
noise learning (SING) are integrated in a TDWZ scheme. On
test sequences, the proposed SING codec robustly improves the
coding efficiency of TDWZ DVC. For WZ frames using a GOP
size of 2, up to 4-dB improvement or an average (Bjøntegaard)
bit-rate savings of 37% is achieved compared with DISCOVER.

Index Terms— Adaptive noise, distributed video coding,
multihypothesis, noise residual learning, optical flow.

I. INTRODUCTION

D ISTRIBUTED video coding is an interesting instance of
distributed source coding where the video redundancy

is partly or fully exploited at the decoder side. In recent
years, conventional video coding has been challenged by
some emerging applications, such as video surveillance and
video sensor networks, which require a relatively low cost
encoder with high coding efficiency. DVC [1], [2] has been
proposed as a solution. DVC is based on two information
theoretic results, namely the Slepian-Wolf Theorem [3] and
the Wyner-Ziv Theorem [4], promising efficient lossy coding
of correlated source data sets when independent encoding and
joint decoding are performed utilizing the correlation between
the sources only at the decoder side.
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Transform Domain Wyner-Ziv (TDWZ) video coding [1]
is one efficient approach to DVC. The coding efficiency is
highly dependent on the accuracy of side information at the
decoder. A soft-input estimate is calculated at the Wyner-
Ziv decoder, obtained by side information frame genera-
tion and noise modeling calculated using reference frames
[5]–[7]. Although the quality of side information frames and
the accuracy of the noise model [5] have been improved
[6], [7], the coding efficiency of TDWZ coding trails that
of conventional video coding solutions, such as H.264/AVC,
most notably for high motion sequences. We shall consider
techniques which can enhance the performance of these basic
TDWZ schemes and thereafter integrate the proposed tech-
niques in the DVC codec in [7] to enhance performance.
As one technique for improved performance, multiple side
information based TDWZ has been proposed [8], [9]. In [8],
two different frame interpolation methods are employed, but
the Wyner-Ziv decoder only considers the average of the two
estimates for decoding and reconstruction. In [9], the results
of frame interpolation and frame extrapolation are combined
using weighting to generate multiple soft-inputs to the decoder
in a TDWZ scheme. However, the contribution brought by
frame extrapolation is limited and only used for the soft inputs,
while for the reconstruction part, only the frame interpolation
is used. Providing multiple soft inputs to the Slepian-Wolf
(SW) decoder may be seen as a generic way to introduce
adaptivity in SW coding and thereby in TDWZ.
In order to enhance performance and reduce the rate-

distortion gap between TDWZ and conventional video coding,
which is especially pronounced in high motion sequences, a
multiple-input TDWZ decoder is used in this paper. Multiple
versions of soft side information are generated by applying
both block based and optical flow based side information
generation techniques using frame interpolation. The intuition
is that optical flow based frame interpolation can generate
side information which is different and to some extent may
compensate the weaknesses in block based methods, if the
scheme allows the techniques to efficiently compensate each
other. Optical flow has previously been used in a DVC scheme
[10], where the optical flow was calculated using the classical
method of Lucas and Kanade [11], which is a local method
that can be considered as a limit of block matching. In this
paper we propose to use a global method for optical flow based
on an TV-L1 energy, which should complement block-based
approaches better.
Furthermore, in contrast to previous multiple soft-input

DVC methods [9], the decoding and reconstruction are based
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on a weighted joint distribution. In this way, the proposed
multi-hypothesis based TDWZ decoder will not only reduce
the required bitrate for decoding but also improve the quality
of reconstructed frames.
The noise estimation is also an important aspect influencing

the coding performance. The decoder needs to estimate the
correlation between the corresponding source and the side
information, which can be obtained through frame interpo-
lation at the decoder side. The accuracy of the correlation
has a significant impact on the compression performance of
DVC. Our goal is to improve coding efficiency by improving
the adaptive noise modeling and by better learning of the
correlation between source and side information using both
spatial and temporal correlation. Several noise models [5],
[7], [12] have been proposed using the Laplacian distribution
for the DCT coefficients. The advanced noise models operate
with different granularity levels, e.g. frame level, band level,
and coefficient level. Estimating the correlation noise has been
enhanced by utilizing the correlation of coefficients in each
residual frame [5], [12], [13] and noise residual refinement
[7] in the transform domain.
The technique in [13] estimates the correlation noise by first

classifying blocks within a frame. A residual energy between
source and side information of a given block is used to classify
blocks, and for each class a predefined value of the Laplacian
parameter is assigned. In [7], the reconstructed bands were
used to influence the noise model for subsequent bands by
classifying the reconstructed band into two categories. The
cross-band correlation was only based on 1-2 already decoded
neighboring bands. Furthermore, two categories may not be
enough to fully utilize the correlation. The noise residue
refinement [7] updates the estimated noise residue for noise
modeling and side information quality during decoding. More
recently, an initial work on an adaptive noise model using
clustering of DCT blocks was presented [14] to explore
cross-band correlation. This technique not only utilizes the
correlation over all bands but takes the decoded bands into
account to influence the decoding of subsequent bands. In a
recent paper [15], adaptive correlation is performed integrated
in joint bitplane decoding.
In order to further improve the noise estimation, this paper

proposes a refinement technique that utilizes clustering of DCT
blocks for cross-band correlation and enhances performance
by using the correlation of neighbor coefficients to refine
the Laplacian parameter of the coefficient considered, and
thereafter, updates the noise parameters. To utilize the tem-
poral redundancy, we shall use residuals of already decoded
(WZ) frames to influence the noise distribution of the current
frame. As a last enhancement of the noise model, adaptive
optimization of the number of clusters in the noise model
is addressed to adaptively get the best soft side information
during decoding. These improvements of noise modeling are
finally combined with the side information generation using
optical flow. The techniques are combined using a multiple
soft input decoding approach.
The rest of this paper is organized as follows. In

Section II, the architecture considered for TDWZ video coding
is presented, including the version in [7], which we take as
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Fig. 1. Transform domain Wyner–Ziv video codec architecture.

starting point. A global optical flow technique is presented
in Section III. The use of clustering in DVC noise modeling
is presented in Section IV along with the new learning
techniques proposed. A new TDWZ video scheme is presented
in Section V based on enhancing the basic TDWZ with optical
flow in a multi-hypothesis set-up and the new clustering
for enhanced noise modeling. Section VI presents simulation
results, analyzes the contributions of the different techniques
and compares the performance with reference methods.

II. TRANSFORM DOMAIN WYNER–ZIV VIDEO CODECS

A popular and efficient approach to DVC is TDWZ video
coding with a feedback channel [1], where the decoder
controls the rate by requests over a feedback channel. The
DISCOVER codec [5] improved performance of the initial
TDWZ architecture. More recently, TDWZ video coding with
a cross-band noise model was proposed [7] to further improve
the coding efficiency by utilizing the cross-band correlation.

A. Transform Domain Wyner–Ziv Video

The architecture of a TDWZ video codec [5] is depicted
in Fig. 1. In this system, the sequence of frames is split
into key frames and so-called Wyner-Ziv frames. Key frames
are intra coded using conventional video coding techniques
such as H.264/AVC intra coding. The Wyner-Ziv frames
are transformed (4×4 DCT), quantized and decomposed into
bitplanes. Each bitplane is fed to a rate-compatible low density
parity check accumulate (LDPCA) encoder [16] from most
significant bitplane to least significant bitplane. The corre-
sponding error correcting information is stored in a buffer and
requested by the decoder through a feedback channel.
The Wyner-Ziv frame is predicted at the decoder side by

using already decoded frames as references. The predicted
frame, called the Side Information (SI) frame, is an estimate
of the original Wyner-Ziv frame. Given the available SI,
soft-input information (conditional probabilities Pr for each
bit) within each bitplane is estimated using a noise model.
Thereafter the LDPCA decoder starts to decode the bitplanes
selected by the quantizer, ordered from most to least significant
bitplane, to correct the bit errors. The decoder requests bits
from the buffer until the bitplane is decoded. Thereafter CRC
check bits are sent for confirmation. After all the bitplanes are
successfully decoded, the Wyner-Ziv frame can be decoded
through combined de-quantization and reconstruction followed
by an inverse transform.
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Fig. 2. Transform domain Wyner–Ziv video codec architecture with a cross-
band-based adaptive noise model.

B. TDWZ Video With Cross-Band Noise Model

Coefficient level noise models [7], [12] using coefficient
classifications have been proposed to further improve the
coding efficiency of TDWZ. The noise model in [12] classifies
coefficients into two different categories based on motion
estimated residues and assigns a predefined parameter for each
category. A cross-band noise model [7] was introduced utiliz-
ing cross-band correlation based on the previously decoded
neighboring bands. This decoder side cross-band noise model
[7], which was proposed to improve RD performance of
TDWZ video coding, is shown in Fig. 2. The decoder noise
model includes a classification module, which is used by the
adaptive noise model. The classification utilizes successfully
decoded neighboring lower frequency bands to evaluate the
higher frequency bands and classifies coefficients into different
categories reflecting their reliability. The adaptive noise model
uses a modified maximum likelihood estimator, which is
applied to the different reliability classes in order to calculate
a higher level noise parameter first. Thereafter, a lower level
noise parameter is adaptively determined for each coefficient.
Furthermore, a bitplane level noise residue refinement (NRR)
scheme was applied in the cross-band decoder to adaptively
refine the quality of side information frame during decoding.
An overlapping block motion compensation scheme (OBMC)
was used for side information generation [7]. In this paper, the
scheme presented in [7] is adopted as the baseline cross-band
codec.

III. OPTICAL FLOW SIDE INFORMATION GENERATION

To improve OBMC based performance, optical flow is
also considered for side information generation. Optical flow
estimation concerns the determination of apparent (projected)
motion. Given a set of images I−1 and I1 in pixel domain, we
want to estimate the dense flow field v such that I1(x+v(x)) is
close to I−1(x) with respect to some suitable measure, where
x denotes a point in the image.

A. Duality-Based TV-L1 Optical Flow

One of the most successful approaches to optical flow
estimation is to recover the flow as the minimizer of an energy

(see e.g. Baker et al. [17]). Typically the problem is considered
as having a spatially continuous domain, and using variational
methods, the flow v is recovered as a minimizer of an energy
of the form

E(v) = λF(I−1, I1, v) + G(v) (1)

where F is a positive functional measuring data fidelity, G is a
regularization term and λ is the parameter that determines the
tradeoff between data fidelity and regularity. Many energies
of this type have been suggested throughout the years (e.g.
[18]–[22]), and a large variety of resolution strategies exist.
Block based methods contrast regularized optical flow by
the lack of a specific regularization term, since regularity
is imposed by means of block sizes. Due to this limited
reach of the block regularization, one may not necessarily
be able to determine motion in untextured areas, and the
motion ambiguity caused by the aperture problem may create
problematic estimates. By including an explicit regularization
term, the regularization will automatically reach throughout
the image and give better motion estimates in untextured
areas. The problem of untextured areas may sometimes cause
problems in an interpolation setup as the intermediate frame is
constructed by following motion vectors, and a wrong match
in the surrounding images may create unwanted artifacts in
the interpolated frame. The continuous formulation (1) of the
optical flow energy may also have an advantage for motion
estimation when objects are severely deformed, e.g. a face
changing expression. Here the rigidity of the blocks may not be
able to obtain a good match, while the continuous formulation
of optical flow methods may be able to handle this better.
Here we will focus on the TV-L1 energy (in the sense of

Rakêt et al. [23]), where data fidelity between two frames I−1
and I1 is measured by the L1-norm of the difference:

F(I−1, I1, v) =
∫

‖I1(x + v(x)) − I−1(x)‖ dx (2)

and the regularization term G penalizes the total variation of
the estimated motion:

G(v) =
∫

‖Dv(x)‖ dx (3)

which is to be understood as the integral of the Frobenius
norm of the derivative of v [24].
From the results of the Middlebury Optical Flow Database

[17], one can see that both TV-L1 based methods as well as
block based methods typically do quite well, when it comes
to interpolation quality. It is however also evident that the two
approaches produce quite different motion fields, resulting in
different types of interpolation errors, which means that the
two methods often complement each other very well.

1) Minimization: In the following we will describe the mini-
mization procedure. Because of the high degree of nonlinearity
direct minimization of E is not feasible, so we have to relax
the energy. First we relax the data fidelity term by replacing
I1(x + v) − I−1(x) with its first order Taylor approximation
ρ(v) around a given estimate of the flow v0. We see that ρ is
linear in v

ρ(v)(x) = I1(x + v0)− I−1(x)+ JI1(x + v0)(v(x)− v0) (4)
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where JI1 is the Jacobian of I1. Note that in the case of inten-
sity data, the Jacobian is merely the transpose of the gradient
∇ I1. We furthermore introduce an additional relaxation in the
form of an auxiliary variable u that splits the data fidelity and
regularization functions in two quadratically coupled energies:

E1(v) = λ

∫
‖ρ(v)(x)‖ dx + 1

2θ

∫
‖v(x) − u(x)‖2 dx (5)

E2(u) = 1

2θ

∫
‖v(x) − u(x)‖2 dx +

∫
‖Du(x)‖ dx. (6)

This relaxation, which was first proposed by Zach et al.
[25], has a number of advantages, most notably that the two
problems can be solved pointwise. This makes the solution
very easy to implement on massively parallel processors like
graphics processing units.
For grayscale images the pointwise minimizer of (5) is

given by

v(x) = u(x) − π(u)(x) (7)

where

π(u)(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

−λθ ∇ I1(x + v0)

if ρ(u)(x) < −λθ |∇ I1(x + v0)|2
λθ ∇ I1(x + v0)

if ρ(u)(x) > λθ |∇ I1(x + v0)|2
ρ(u)(x)

|∇ I1(x+v0)|∇ I1(x + v0)

if |ρ(u)(x)| ≤ λθ |∇ I1(x + v0)|2.

(8)

The minimization of the total variation regularization energy
(6) is done using the dual method of Chambolle [24], [26].

2) Algorithmic Setup: The algorithmic setup is of great
importance for the quality of the estimated optical flow. Using
the pointwise solution to the continuous problem we will
estimate the flow vectors at all pixel positions. The outline
of the algorithm is given in Algorithm 1. The basic setup
consists of iteratively solving (5) and (6) in a coarse-to-fine
pyramid scheme. We use �max = 20 pyramid levels with a
downscaling factor of 0.83, and at each pyramid level we
perform wmax = 50 warps [19], where motion is re-estimated
with the image I1 warped to I0 using the current motion
estimate. The image pyramid is built by downsampling the
original images using bilinear interpolation. Each image in the
pyramid is given as the image, at one level lower, obtained by
first smoothing with a Gaussian of standard deviation 0.4, and
thereafter downsampling. When going from a coarser level
to a finer, flows are upsampled using bilinear interpolation
and the flow vectors are multiplied by the reciprocal of the
downscaling factor to correctly fit the finer level. Throughout
the experiments we have used θ = 0.2, and the remaining
parameters will be estimated adaptively for the given image
sequence. For more information, see Section III-C.

B. Motion Compensated Frame Interpolation

If the two images I−1 and I1 are keyframes, we are
interested in estimating the in-between Wyner-Ziv frame I0.
Given the (forward) optical flow v f , the simplest conceivable
approach would be to assume that the true motion follows the

Algorithm 1 Computation of TV-L1 Optical Flow
Data: Two images I−1 and I1
Result: Optical flow field u from I−1 to I1
for � = �max to 0 do
//Pyramid levels
Downsample the images I−1 and I1 to current
pyramid level
for w = 0 to wmax do
//Warping
Compute v pointwise as the minimizer (7) of E1
(5)
for i = 0 to imax do
//Inner iterations
Compute u as the minimizer of E2 (6) (Section
3.2 in [24])

for f = 0 to fmax do
//Median filtering
Apply a 3× 3 median filter on u

Upscale v and u to next pyramid level

estimated motion vectors linearly through I0 and then fill in
I0 according to

I0(x + 1/2v f (x)) = 1

2
(I−1(x) + I1(x + v f (x))). (9)

However since v(x) is a real valued vector, x + 1/2v f (x) is
typically not a pixel position. We solve this by temporally
warping the flow to I0 [17], [27], which is done by determining
a new flow v0f from I0 to I1 under the assumption that the
motion vectors pass linearly through the Wyner-Ziv frame I0.
For every pixel position x, v0f is approximated by

v0f (round(x + 1/2v f (x))) = 1/2v f (x) (10)

where the round function rounds the argument to nearest
pixel value in the domain. There are some drawbacks to this
approach. First, if the area around x in I−1 is occluded in
I1, there will probably be multiple flow candidates assigned
at the point round (x + 1/2v f (x)). In the converse situation,
i.e. dis-occlusion from I−1 to I1 there may be pixels that are
not hit by a flow vector, thus leaving holes in the flow. The
first problem can easily be solved by choosing the candidate
flow vector with the best data fidelity, i.e. the candidate v f for
which ‖I1(x +v f (x))− I0(x)‖ has the smallest value. For the
problem of dis-occlusions the solution is not so simple. Here
we will simply fill the holes in the flow field by an outside-
in filling strategy. The same approach can of course be taken
with the backward flow vb (i.e. the flow from I1 to I−1), and
as our final interpolated frame we will use the average

I0 (x) = 1

2

(
I−1

(
x + v0b (x)

)
+ I1

(
x + v0f (x)

))
. (11)

For later use we define a residual between the backward and
forward warped frames in pixel domain

r0 (x) = I−1
(

x + v0b (x)
)

− I1
(

x + v0f (x)
)
. (12)

Applying 4 × 4 DCT to I0 (11) and r0 (12) gives the side
information and residual in transform domain.
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C. Learning

This section describes the process in which some of the
parameters of the optical flow algorithm are learned from the
data. Optical flow algorithms often have a large number of
parameters which are typically hand-tuned using benchmark
data and then fixed. The perhaps most successful method
for adaptive estimation is the optimal prediction principle
by Zimmer et al. [22], where the prediction quality of the
estimated motion field is used for estimating the data fidelity
weight λ. Here we will present a scheme which, similarly
to the optimal prediction principle, relies on the temporal
correlation between the previously decoded Wyner-Ziv frame
I−2 and the current I0, such that the scheme does not need to
consider future frames for prediction evaluation. The scheme is
generic in the sense that, in principle, all algorithm parameters
can be estimated in this process. As previously mentioned we
have three free parameters, λ, imax and fmax, all of which are
related to the smoothness of the estimated flow. The parameter
λ controls the trade-off between data fidelity and regularity,
a low value means higher weight to the total variation term
which in turn means a smoother estimate, and vice versa. The
parameter imax determines the convergence of the solution
of (6), and while it in principle should be high enough to
guarantee convergence, we have found that varying values
improves results. Finally the parameter fmax determines the
number of times that a 3×3 median filter is applied to the flow
u (in each warp). A median filter is a good way of removing
strong outliers, e.g. caused by a bad data fit. Figure 3 shows
the effect of these three parameters on the estimated motion.
For the given frames, the motion blur and slight intensity shift
means that too high a weight on data fidelity, Fig. 3(d), will
cause motion artifacts. On the other hand choosing a λ-value
that does not cause artifacts, Fig. 3(c), results in an estimate
where the motion of the two rightmost players merges. By
imposing intermediate median filter steps, the strong outliers
that propagate these artifacts throughout the image pyramid
are removed, and a higher lambda can be chosen. This can be
seen in Fig. 3(e) where the motion field has few artifacts, and
the motion of the two rightmost players is clearly separated.
However, a median filtering is not always desirable as it may
remove small-object motion.

1) GOP Size 2: For a GOP size of 2, we propose to estimate
the free parameters as follows. Let a decoded frame be denoted
Î . The side information for I0 is calculated based on Î−1 and
Î1, and used to decode Î0. Validating against the reconstructed
frame Î0, we will find the set of optical flow parameters
for which the interpolation (11) has the lowest mean square
error. These parameters will then be passed on and used for
calculating the next frame, assuming that the type of motion
in the next frame, and hence the parameters, are similar to the
optimal choice for Î0.
For the first Wyner-Ziv frame we cannot learn from the

previous, so we fix the parameters λ = 70, imax = 5 and
fmax = 2. From then on we will evaluate all combinations
of λ ∈ {0, 10, . . . , 130}, imax = 5, 10, 15, 20 and fmax =
1, 2, resulting in 112 distinct flow fields. Figure 4 shows the
optimal λ parameters for four test sequences. We see that the

(a) (b) (c)

(d) (e) (f)

Fig. 3. Frames I−1 and I1 from the Soccer sequence and corresponding
color-coded motion fields [Fig. 3(c)–(f)], for different combinations of the
parameters λ, imax, and fmax. Unless otherwise mentioned, imax = 5 and
fmax = 0. (a) I−1. (b) I1. (c) λ = 20. (d) λ = 100. (e) λ = 100, fmax = 2.
(f) λ = 100, imax = 20.
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Fig. 4. Optimal values of the smoothness parameter λ for the four test
sequences, along with the average λ value (line).

temporal correlation between the frames is more clear in the
Coastguard and Hall sequences, than in Foreman and Soccer
that contain stronger motion. But as is visible in Fig. 3, the
choice of good λ values depends on both imax and fmax,
and even for Coastguard and Foreman, we have found that
the estimation procedure increases side information quality.
We have made a CUDA C implementation for computing
optical flow on graphics hardware. Using this we are able
to compute a single optical flow in less than 200 ms on an
single NVIDIA Tesla C2050 GPU. By taking advantage of the
parallel nature of the optical flow computations, this further
makes the OF learning process for each Wyner-Ziv frame
feasible in a matter of seconds. At a slight cost in accuracy (in
particular lowering the number of levels in the coarse-to-fine
pyramid), the computation of optical flows in QCIF sequences
can be done quite a bit faster than realtime [25].

2) Hierarchical GOP Size 4: Using a hierarchical GOP
size 4, we have three Wyner-Ziv frames for which we need to
generate side information. We proceed by decoding the middle
frame first and thereafter use its reconstruction to find the
optimal set of parameters, as for GOP size 2. The parameters
imax and fmax are then used for the optical flow based side
information generation for the two remaining frames of the
GOP. As the temporal distance has been halved, we simply
increase the data fidelity weight λ (by a factor of 1.2). This
scheme was found to outperform a scheme similar to the
one presented in the previous section, while at the same time
reducing the relative computational complexity by only testing
the parameter sets for one out of three WZ frames in a GOP
of size 4.
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TABLE I

AVERAGE PSNR [dB] RESULTS FOR DIFFERENT SIDE INFORMATION

GENERATION METHODS (GOP2)

Sequence Extra OBMC OF OF(learning)

Foreman, QP = 25 25.20 29.26 29.28 29.63

Hall, QP = 24 33.24 36.46 32.28 35.71

Soccer, QP = 25 19.26 21.30 22.43 22.93

Coast, QP = 26 28.55 31.83 30.92 30.99

3) Side Information Generation Evaluation: The perfor-
mance of the proposed optical flow learning based frame
interpolation scheme, called OF(learning) is evaluated for
GOP2 and compared with the optical flow interpolation [28],
the block based frame interpolation [7] and the extrapolation
described in [28], named OF, OBMC, and Extra, respec-
tively. The quality of interpolated frames is measured by
average Peak Signal-to-Noise Ratio (PSNR) over the set of
test sequences, Foreman, Soccer, Coastguard and Hall at
15 frames per second, QCIF format, and GOP size 2. Key
frames are coded with H.264/AVC intra and QPs are chosen
as in [5]. In Table I, it can be seen that the OBMC based frame
interpolation method gives the best performance on Hall and
Coast. However, the optical flow based frame interpolation
outperforms the OBMC scheme [7] on the high motion
sequences, especially Soccer. The proposed OF(learning)
method outperforms the OF method on all test sequences.
In addition, for the OBMC scheme, increasing the search
range was evaluated. However, the results only improved
slightly by 0.05 dB on average when increasing the search
range. The proposed OF(learning) was still better on the high
motion sequences. Later we shall combine OF side information
generation with OBMC to improve the performance of TDWZ
coding.

IV. NOISE RESIDUAL LEARNING FOR ADAPTIVE
NOISE MODEL

We consider the difference between the original Wyner-
Ziv frame X and the side information frame Y. The residual
difference, Z , between the transformed coefficients of the
WZ frame and the interpolated frame will be modeled by
a Laplacian distribution with probability density function
f (z) = (α/2) exp(−α|z|) with variance σ 2 = 2/α2.
Rate distortion bounds for simple source models may be

derived [29]. Assuming quadratic distortion D and a memory-
less source with variance σ 2 and entropy power Q, the upper
and lower rate distortion bounds are [29]

1

2
log

Q

D
≤ �(D) ≤ 1

2
log

σ 2

D
(13)

where �(D) denotes the rate at distortion D, the entropy
power is Q = (1/2πe) exp(2h(Z)), and h(Z) =
E[− log f (Z)] denotes the differential entropy of the source Z ,
where E[.] denotes the expectation operator. For the Laplacian
distribution, the entropy power is Q = (e/π)σ 2 [29]. Inserting
in (13) gives

1

2
log

e

π

σ 2

D
≤ �(D) ≤ 1

2
log

σ 2

D
. (14)

The bounds in (13) may be decreased if the outputs of a
given source are split into a number of subsets having different
variance and entropy (assuming we also know which subset
each sample belongs to). This may be shown based on the
concavity of the log and entropy functions, applying Jensen’s
inequality, f (E[Z ]) � E[ f (Z)], to logσ 2 of the upper bound
and the entropy term − f (Z) log f (Z) of h(Z) in the lower
bound (13). As a result, for a given distortion level, the
�(D) bounds (13) over all clusters are reduced. Below we
will describe the process of using clustering for DVC noise
modeling.

A. Adaptive Noise Model Using Clustering of DCT Blocks

The decoder must estimate the statistics of the residual
without access to the original frame X . Consistent with the
remarks above, it was noted in [14] that the variance of the
residual frame based on an estimated residual is higher than the
expected variance over the sub-sets. This motivates reducing
the codelength by clustering into sub-sets, which are processed
using different parameter values. The techniques proposed in
this paper are based on an initial work on the adaptive noise
model using clustering of DCT blocks [14]. The adaptive
noise model considers the (4×4 DCT) transformed residual
of frequency bands in a block as components of a (feature)
vector.
Let Rh be the residual frame in the transform domain

using a frame interpolation scheme h. Rh is used to calculate
the parameter of the Laplacian noise distribution fX |Yh . The
value of the Laplacian parameter expresses the reliability of
the corresponding estimated side information frame. Rh is
initialized at the decoder based on the difference between
matching blocks of the reference images [7]. Let Rhk denote
block k out of the N 4×4 blocks in the residual frame Rh ,
1 ≤ k ≤ N . Each block Rhk , considered as a feature vector,
contains 16 frequencies given by the transformed residual
coefficients. Consider block k of band l and let Rl

hk and R̂l
hk

(1 ≤ l ≤ 16) denote the initial coefficient of the residual
and a refined coefficient based on the partially decoded
information, respectively. The feature vector of each block
Rhk = (R̂1hk , R̂2hk, . . . , R̂l−1

hk , Rl
hk , Rl+1

hk , . . . , R16hk) belongs to
the updated residual based on the successfully decoded bands
(up to band l − 1) before decoding band l. This feature vector
is classified into one of M clusters, within which an estimate
of the noise parameter is calculated. Thus, using clustering
of DCT blocks, an adaptive noise model creates M noise
parameters, α, one for each cluster.

B. Noise Model B

An extended noise model, which we denote Noise Model B,
is obtained by adaptively combining the cluster level noise
model in Section IV-A with the noise model in [7]. The
clustering technique in [14] was updated at coefficient level
and is here extended by updating at bitplane level. A noise
residue refinement is exploited at bitplane level and integrated
in the DVC scheme in [7]. The refinement is carried out
once a bitplane is successfully decoded. The model consists of
4 steps as follows.
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Step 1. Clustering of DCT Blocks: Our block clustering
algorithm is operating on a set of N feature vectors Rhk . This
set is separated into M subsets or clusters by using Fuzzy-C
means clustering [30]. (The algorithm is configured with the
fuzzification degree equal 2 and the predefined termination
ε = 0.0001 as in [14].) For block k belonging to cluster j , let
Rl

hkj = Rl
hk denote the coefficients of feature vectors and αl

h j
denote the Laplacian noise distribution parameter of cluster
j (1 ≤ j ≤ M) containing N j elements of band l, where∑
j

N j = N . Figure 5 illustrates an example of clustering of

DCT blocks for the Soccer sequence where OBMC was used
to generate the SI frame (Fig. 5(b)). The residual frame in the
transform domain Rh (Fig. 5(c)) is estimated at the decoder
side before decoding the first (DC) band, l = 1. Thereafter the
residual is classified into 3 clusters (M = 3) (Figs. 5(d)-5(f)).

Step 2. Noise Parameter Estimation: In band l, a noise
parameter, αl

h j , is obtained for each cluster j of the band
based on the N j observations within the cluster. We estimate
this Laplacian parameter, αl

h j , based on the variance σ l2
h j by

αl
h j = √

2/σ l
h j (15)

where σ l
h j =

√
E[|Rl

hkj |2] − E[|Rl
hkj |]2. As a result, a noise

parameter is estimated for each of the M clusters in a given
band l.

Step 3. Updating Feature Vectors: The bands are decoded
in a zig-zag order starting from DC and traversing the other
(AC) coefficients, l > 1, following the order in [7]. Whenever
a bitplane of band l is successfully decoded, the coefficients
of the band are partially reconstructed and the set of feature
vectors is now updated. Thereafter, the set of updated feature
vectors is used to refine these vectors by Step 4 below. When
all bitplanes are successfully decoded, band l is completely
decoded. Subsequently, the set of feature vectors is updated
as Rhk = (R̂1hk, R̂2hk , . . . , R̂l−1

hk , R̂l
hk , Rl+1

hk , . . . , R16hk) before
decoding band l + 1. This set of updated feature vectors is
further refined by Step 4 (below) and thereafter αl+1

h j is updated
for the next band l + 1 to be decoded. When all bands are
successfully decoded, the process is completed.

Step 4. Refining Feature Vectors Using Neighbors: To take
advantage of the correlation between the DCT coefficients of
the residual of neighbor blocks within each band, a refinement
of residuals is proposed. This technique uses neighboring
residual coefficients along with the estimated noise parameters.
Specifically, Noise Model B refines Rl

hkj based on αl
h j and

the 8-neighbor residual coefficients, indexed by s and denoted
Rl

hks . Using the current coefficient Rl
hk0 and the 8-neighbors,

Rl
hks with 1 ≤ s ≤ 8, a refined R∗l

hkj (= R∗l
hk for k in cluster

j ) is obtained by weighing the neighborhood coefficients as

R∗l
hkj =

8∑
s=0

⎛⎜⎜⎜⎝ exp(−αl
h j |Rl

hkj − Rl
hks |)

8∑
t=0
exp(−αl

h j |Rl
hkj − Rl

hkt |)

⎞⎟⎟⎟⎠ Rl
hks . (16)

Also assuming a Laplacian distribution for the difference of
a coefficient and its neighbors, the weights (16) may be seen
as likelihood values and the denominator normalizes these.

(a) (b) (c)

(d) (e) (f)

Fig. 5. Example of clustering Soccer frame no. 88 into three clusters.
(a) Original frame. (b) SI frame. (c) Residual frame. (d) Cluster 1. (e) Cluster
2. (f) Cluster 3.

These refined residuals are used in the set of N refined feature
vectors, R∗

hk = (R̂1hk, R̂2hk , . . . , R̂l−1
hk , R∗l

hk, Rl+1
hk , . . . , R16hk)

used for decoding band l. The set is reclassified again by going
back to Step 1 and thereafter updating the noise parameter fol-
lowing Step 2 above. Consequently, refined noise parameters
α∗l

h j are obtained using (15) based on the observations within
the current band for each refined cluster j . The set of α∗l

h j
parameters is denoted by α1 and together with the set α0 from
[7], they constitute the set of estimates provided by Noise
Model B. The resulting coding is referred to as Clustering
TDWZ.

C. Noise Residual Learning

1) Noise Residual Learning Using Previously Decoded
Residual Frames: This subsection extends Noise Model B
above by using the previously WZ decoded residual frames to
influence the noise distribution of the current frame. A window
of previously decoded WZ frames are used to create decoded
residual frames corresponding to the WZ decoded frames. The
motivation is that the noise distributions based on previously
decoded frames are available at the decoder and may be similar
to the noise distribution of the current frame. To take advantage
of both the previously decoded noise distributions and the
estimated current noise distribution, the residuals based on
previously decoded frames are used together with the current
residual frame to form a larger set of data. This set is classified
into clusters to estimate noise parameters for each cluster of
the residual frame considered.
Let W be the window size specifying the number of

previously decoded WZ frames for the learning process. Let
R̂h(2n−2W ), . . . , R̂h(2n−2) denote residuals based on previously
decoded frames and Rh(2n) denote the current residual coeffi-
cient frame at time 2n. Let R̂h(2n−2W )k, . . . , R̂h(2n−2)k, Rh(2n)k
denote block k, 1 ≤ k ≤ N , of N 4×4 blocks of
R̂h(2n−2W ), . . . , R̂h(2n−2), Rh(2n). For each of the residuals
based on previously decoded frames, consider a set of N fea-
ture vectors R̂h(2n−2ω)k with 1 ≤ ω ≤ W , where R̂h(2n−2ω)k =
(R̂1h(2n−2ω)k, R̂2h(2n−2ω)k , . . . , R̂16h(2n−2ω)k) is given by the
residuals of decoded bands. For the current residual frame
Rh(2n), Rh(2n)k = (R̂1h(2n)k, . . . , R̂l−1

h(2n)k, Rl
h(2n)k, . . . , R16h(2n)k)

is the updated residual based on the successfully decoded
bands (up to band l − 1) before decoding band l.
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Fig. 6. TDWZ with adaptive noise model using clustering and noise residual
learning.

Consider W sets, Shω, of feature vectors where each set
is created by combining N feature vectors R̂h(2n−2ω)k of a
previous frame with N feature vectors Rh(2n)k of the current
frame,

Shω = {Rh(2n), R̂h(2n−2ω)}. (17)

Each set Shω is classified into M clusters by using Fuzzy
C-means clustering [30]. Thereafter noise parameters αl

hωj are
obtained based on the observations for each cluster j of band
l of set Shω. As a result, there are W sets of noise parameters
for decoding band l for each cluster j , αl

hωj , 1 ≤ ω ≤ W . The
resulting adaptive noise model, denoted by Adaptive (C) and
shown in Fig. 6, adaptively estimates the noise distribution
by creating W different noise parameters α2ω. Together with
α0, α1 obtained from Noise Model B in Section IV-B, α2ω
provide multiple inputs to the Soft Input Estimation block.

2) Adapting the Number of Clusters for Noise
Modeling: This part extends the noise residual estimation
by selecting the number of clusters, m ≤ M , giving the best
decoding, i.e. optimizing the model order. The statistical
characteristics of the noise distribution may change from
region to region, and over time when decoding. One
reason being, that the noise distribution may not be estimated
properly in regions containing moving objects. It may improve
the noise modeling, if the noise residual Rh is adaptively
modeled using a variable number of noise distributions. A
dynamic mechanism is carried out to determine the optimal
number of candidate distributions within each frame once a
bitplane is successfully decoded.
For each cluster j , m Laplacian distributions, for 1 ≤ m ≤

M , are estimated. For each set in (17), we apply estimation by
(15) to obtain the noise parameters αl

hωj , 1 ≤ ω ≤ W , based
on the observations for each cluster j , 1 ≤ j ≤ m, of band l
of the set Shω. This results in the set of distributions,

Dhm = {αl
hωmj }, 1 ≤ ω ≤ W, 1 ≤ j ≤ m (18)

where αl
hωmj is the noise parameter estimated for band l of

set Shω of the distribution set Dhm .
The noise parameters αl

hωmj of the W × M candidates are
used as candidates for decoding band l for each cluster j . The
resulting noise model, called Adaptive (D) (Fig. 6), adaptively
estimates the noise distribution by creating W × M candidate
noise parameters α2ωm , along with α2ω, α0, α1 obtained from
Adaptive (C) in Section IV-C.1 as input to the Soft Input
Estimation block.

3) Multiple Input LDPCA Decoding: In this subsection,
multiple input LDPCA decoding is introduced using multiple
soft input candidates when decoding. The multiple input
LDPCA decoder tries to decode using each candidate soft
side information and then selects the soft side information
which converges first during decoding for each bitplane.
(Convergence is confirmed using a CRC check.) This way,
the decoder adaptively selects the best soft input for decoding.
Thereafter, the selected noise parameter set for each bitplane is
also used for the minimum mean squared error reconstruction
process [8]. It can be noted that the computational cost of the
LDPCA decoding is increased. In the worst case, the LDPCA
decoding will try to decode using all inputs. In Fig. 6, the
multiple input LDPCA decoder is used to decode with the
candidates denoted Pr0,Pr1,Pr2ω, and Pr2ωm . These candi-
dates are calculated by the Soft Input Estimation using the
noise parameters from the Adaptive (D) model. In particular,
Pr0,Pr1 are soft inputs calculated based on α0, α1, Pr2ω based
on α2ω, and Pr2ωm based on α2ωm . The multiple input LDPCA
decoding, as well as the learning technique, is carried out until
all bitplanes (of the given quantization level) are successfully
decoded. Applying multiple input LDPCA decoding based on
the parameters of the Adaptive (D) noise model is referred to
as Clustering(learning) TDWZ.

V. TDWZ VIDEO WITH SIDE INFORMATION AND NOISE
LEARNING

The quality of soft-input information plays a key role in
terms of overall RD performance of TDWZ video coding. The
quality of the reconstructed frame is highly dependent on the
accuracy of the estimated noise distribution fX |Yh . The soft-
input Pr is defined as the conditional probability of each bit bi

being equal to 0 or 1, and denoted Pr = P(bi |yh, b−; fX |Yh ),
where yh denotes the corresponding estimated side information
value in the transform domain for bit bi and b− is the
information from the previously decoded bitplanes. The prob-
ability is obtained by marginalizing the estimated conditional
probability density function fX |Yh for the coefficient, which
bi is part of. The essential aspects to improve the coding
efficiency of TDWZ video are the quality of the soft-input
information fed into the LDPCA decoder and the accuracy of
the noise distribution for frame reconstruction.

A. Multihypothesis-Based Wyner–Ziv Decoding

To address these issues, multiple input LDPCA decoding
(Section IV-C.3) is used. The Wyner-Ziv encoder is not
changed. The basic idea is to generate H (> 1) different
side information frames Yh , h ∈ [1, H ], at the decoder
for each Wyner-Ziv frame. Each side information frame is
considered as an observation of the original Wyner-Ziv frame
X with a different amount of noise. The architecture of
the proposed Wyner-Ziv video decoder with an example of
two side information generation schemes [28] (H = 2) is
presented in Fig. 7. In principle, there can be any number
of competitive side information generation schemes at the
proposed Wyner-Ziv decoder. The two interpolation methods
in Fig. 7 are the OBMC based frame interpolation described
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Fig. 7. Architecture of multihypothesis TDWZ video codec based on two
frame interpolation schemes.

in [7] and the OF based frame interpolation method described
in Section III. As shown in Fig. 7, the Side Information
Generations generate the side information frames SI1, SI2
and the noise residual frames NR1, NR2, using OBMC [7]
and OF techniques, respectively. SI2 and NR2 are generated
by first applying OF based Side Information Generation and
thereafter 4×4 DCT to I0 (11) and r0 (12), respectively. After
transformation, each side information generation scheme not
only creates an estimate of the Wyner-Ziv frame, Yh , but also
an estimated noise residue frame Rh . Rh is used to estimate the
noise between the Wyner-Ziv frame X and its estimated side
information frame Yh . Here based on Rh and Yh , the coefficient
level noise model [7] is used. Each transform coefficient in a
given band l is assigned an estimated Laplacian distribution
parameter αl

h .
Using Laplacian parameters based on different calculations

of Yh , multiple soft-inputs are calculated based on a weighted
joint distribution. All the hypotheses of soft-input are fed into
the multiple input LDPCA decoder (Section IV-C.3). Based
on the estimated noise distribution fX |Yh for each individual
side information observation Yh , a joint weighted distribution
Fq is defined as

Fq =
H∑

h=1
uhq fX |Yh (19)

where q, q ∈ [1, C], denotes the index of a candidate joint
weighted distribution, C is the total number of candidate joint
distributions, and uhq denotes the qth predefined weight on
side information h, h ∈ [1, H ], uhq are predefined weights,
uhq � 0 and

∑H
h=1 uhq = 1. (For the example shown in Fig. 7,

H = 2, C = 6).
The frame interpolation schemes, using OBMC and OF,

employed in this paper give different results on the different
test sequences as shown in Table I. The OBMC and OF
techniques may provide complementary results for each frame
and thus, compensate each other’s weaknesses frame by frame
and even bitplane by bitplane. We consider a multi-hypothesis
TDWZ video codec with two (or more) frame interpolation
schemes based on either the OBMC or the OF scheme.
Without loss of generality, assume that scheme h is now

considered the basic scheme. The soft input calculation is
only based on the joint weighted distribution within a specific
unreliable region specified by the set �h . Outside of the region
�h , the side information is given by the basic scheme h. The
values of the Laplacian parameters may express the reliability
of the corresponding side information frame. Therefore a set
of �h values for each single side information estimation Yh

in band l is determined by evaluating the individual Laplacian
parameters and their corresponding mean value by

�h = {k|αl
h(k) < ᾱl

h} (20)

where αl
h(k) is the Laplacian parameter of side information

Yh at the kth coefficient in band l and ᾱl
h is the mean of all

noise parameters in a given band l. Thus �h (20) determines
a map of coefficients whose noise parameters are potentially
less reliable, as they are smaller than the mean value ᾱl

h . The
unreliable region �, which will be processed differently, is
defined as a union of the sets �h ,

� =
H⋃

h=1
�h . (21)

The multi-hypothesis soft-inputs using the Yh as basic scheme
are given by

Prhq =
{
P(bi |yh, b−; fX |Yh ) if i /∈ �

P(bi |y1, . . . , yH , b−; Fq) if i ∈ �
(22)

where Prhq is the qth candidate soft-input fed into LDPCA
decoder, bi denotes the i th bit in the current bitplane, and
y1, . . . , yH denote different side information values in the
transform domain based on diverse side information generation
schemes. Again the conditional probability of bi is obtained by
marginalizing the estimated noise distribution fX |Yh (i /∈ �)
or Fq (i ∈ �). We use the cross-band noise model [7] to
calculate fX |Yh in (19) and (22). The resulting parameter set
is denoted αhC B .
In order to evaluate the quality of the side information, we

calculate an Ideal Code Length (ICL) [7], which measures the
number of bits required by applying ideal (arithmetic) coding
to the given soft-input values if a (non-distributed) encoder
would calculate the same soft-input values. Prhq(bi ) (22) is
calculated by reading bi as the bits after decoding. The code
length, L, for one bitplane is calculated as

L =
N∑

i=1
− log Prhq(bi ). (23)

The ICL is obtained as the sum over all bitplanes. This is
equivalent to a log-likelihood measure of the coded coeffi-
cients.
All the soft-input hypotheses, Prhq , q ∈ [1, C] which are

calculated by (22) are fed into the multiple input LDPCA
decoder as in Section IV-C.3. The first converging soft-
input is chosen thus reducing the rate of LDPCA decoding.
Subsequently, using the selected soft-input, the corresponding
joint weighted distribution Fq , q ∈ [1, C], in the unreliable
region � is determined. Using the selected joint weighted
distribution, Fq , the minimum mean-square error (mmse)
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Fig. 8. TDWZ with side information and noise learning (SING 2SI).

reconstructed value, x ′, in the unreliable region � is obtained
as a generalization of the mmse expression in [8]

x ′ = E [x |x ∈ [L, U), y1, . . . , yH ]

=

U∫
L

x Fq(x)dx

U∫
L

Fq(x)dx

=

H∑
h=1

U∫
L

xuhq fX |Yh (x)dx

H∑
h=1

U∫
L

uhq fX |Yh (x)dx

(24)

where [L, U) are decoded quantization intervals, Fq is the
joint weighted distribution (19) selected by the LDPCA decod-
ing. The reconstructed value outside the � region is calculated
following the single side information reconstruction technique
based on Yh as in [8], i.e. for H = 1 in (24).

B. Side Information and Noise Learning Using Multiple-
Hypothesis and Adaptive Noise Modeling

To take advantage of both side information learning (Section
V-A) including optical flow (Section III) and noise learn-
ing using clustering (Section IV), a TDWZ scheme with
Side Information and Noise LearninG, called SING(2SI),
is proposed. The basic elements of the SING codec are
depicted in Fig. 8. They consist of OBMC and OF(learning)
based side information generations, a noise model using the
residual learning as in Section IV-C, the soft-input estimation,
the reconstruction using side information and noise learning
(Section V-A) and multiple input LDPCA decoding. First,
the Side Information Generations generate the noise residual
frames NR1, NR2 and the side information frames, SI1, SI2,
using OBMC [7] and OF(learning), where SI2 and NR2 are
generated, as in Sec. V-A, by the OF(learning) based Side
Information Generation using (11) and (12), respectively.
These are transformed and input to the noise models. For
each side information scheme h, noise parameters αh RL are
calculated using the Adaptive (D) model (Section IV-C) and
parameters αhC B are calculated using multi-hypothesis (Sec-
tion V-A) combined with the cross-band estimate [7] for fX |Yh .

1) Soft Input Estimation With SI and Noise
Learning: Based on the transformed side information
frames and the noise parameters, the soft-inputs Pr1q , Pr2q ,

and Pr1RL , Pr2RL are calculated. Pr1q and Pr2q are calculated
by (22) based on the cross-band noise and multi-hypothesis
techniques with two OBMC and OF(learning) side information
generations as described in Section V-A. Pr1q are soft-inputs
with the OBMC frame interpolation as basic scheme and
Pr2q are soft-inputs with the OF(learning) frame interpolation
as basic scheme. Pr1RL , Pr2RL are obtained by applying the
Adaptive (D) model in Section IV-C to each side information
generation scheme, here OBMC and OF(learning). All
soft-inputs are fed into the multiple input LDPCA decoder as
described in Section IV-C.3. The soft-input which converges
first is selected for LDPCA decoding.

2) Reconstruction With SI and Noise Learning: Decided
by the selected candidate, the corresponding weighted joint
distribution of multi-hypothesis or the corresponding input to
the Adaptive (D) noise model is chosen for reconstruction.
For instance, if Pr13 is the best candidate, the corresponding
weighted joint distribution is F3 and the multi-hypothesis
based scheme is the OBMC based method (h = 1 in (22)).
Consequently, the weighted joint distribution F3, the multi-
hypothesis OBMC based scheme, and the corresponding noise
parameter αhC B are used for reconstruction by (24). As
another example, if Pr2RL is chosen as the best candidate,
α2RL from the Adaptive (D) model, NR2 and SI2 from the
OF(learning) side information generation are used for the
mean squared error reconstruction [8] (24) in the reliable
region. In the unreliable region �, the reconstruction is based
on the multi-hypothesis reconstruction corresponding to the
basic frame interpolation scheme in (24). As we do not have
a winner Fq for the joint weighted distribution in this case, the
Fq for reconstruction is determined by the corresponding soft-
input that has the smallest ICL measured on the decoded data
by (23) among the soft-input hypotheses. By this approach, the
reconstruction takes advantage of different side information
generation techniques in the unliable region to achieve a better
quality of the reconstructed frames.

VI. PERFORMANCE EVALUATION

The rate-distortion (RD) performance of the proposed tech-
niques are evaluated for the test sequences (149 frames of)
Foreman, Hall Monitor, Soccer, and Coastguard with 15Hz
frame rate and QCIF format. The GOP size is 2, where odd
frames are coded as key frames using H.264/AVC Intra and
even frames are coded using Wyner-Ziv coding. Eight RD
points are considered corresponding to eight 4×4 quantization
matrices [5]. H.264/AVC Intra is here given by the intra coding
mode of the H.264/AVC reference codec JM 9.5 [31] in main
profile. The parameters for H.264/AVC Intra are set as by
DISCOVER [5] and QP values are set to those used for the
key frames in the Wyner-Ziv video coding in the DISCOVER
codec [5]. It can be noted that only luminance component of
each frame is evaluated. In this paper, the number of candidate
distributions in (19) is constrained to C = 6, which is an
adequate number of candidates to improve performance. For
the case H = 2, using side information frames generated
by OBMC and OF(learning), and C = 6, the weighting
parameters (19) used are u1q = {1; 0.8; 0.6; 0.4; 0.2; 0} and
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TABLE II

BJØNTEGAARD RELATIVE BIT-RATE SAVINGS (%) OVER DISCOVER FOR WZ FRAMES (QCIF, 15 Hz, GOP2)

Sequence Cross-band [7] Clustering Clustering(learning) MH(2SI) MH(learning 2SI) MH(learning 3SI) SING(2SI) SING(3SI)

Foreman 14.0 17.7 21.6 27.0 27.2 32.6 35.1 40.1

Hall 8.3 14.3 21.0 13.3 12.2 13.3 21.6 19.5

Soccer 26.0 30.8 34.5 41.2 46.0 49.2 61.1 62.5

Coast 11.6 17.5 21.1 17.4 17.9 19.9 24.9 25.8

Average 15.0 20.1 24.6 24.7 25.8 28.7 35.7 37.0

TABLE III

BJØNTEGAARD PSNR IMPROVEMENT (dB) OVER DISCOVER FOR WZ FRAMES (QCIF, 15 Hz, GOP2)

Sequence Cross-band [7] Clustering Clustering(learning) MH(2SI) MH(learning 2SI) MH(learning 3SI) SING(2SI) SING(3SI)

Foreman 0.633 0.798 0.974 1.177 1.181 1.398 1.492 1.659

Hall 0.370 0.633 0.903 0.575 0.531 0.581 0.919 0.846

Soccer 1.305 1.521 1.677 1.921 2.088 2.216 2.649 2.690

Coast 0.352 0.530 0.637 0.526 0.540 0.600 0.741 0.762

Average 0.665 0.872 1.047 1.050 1.085 1.199 1.450 1.489

TABLE IV

BJØNTEGAARD RELATIVE BIT-RATE SAVINGS (%) OVER DISCOVER FOR ALL FRAMES (QCIF, 15 Hz, GOP2)

Sequence Cross-band [7] Clustering Clustering(learning) MH(2SI) MH(learning 2SI) MH(learning 3SI) SING(2SI) SING(3SI)

Foreman 6.0 7.5 9.0 11.0 11.0 13.0 13.8 15.6

Hall 2.6 3.9 5.4 3.8 3.6 3.8 5.5 4.8

Soccer 14.4 17.2 19.4 22.6 25.1 26.6 32.6 33.2

Coast 3.9 5.6 6.4 5.5 5.7 6.2 7.4 7.6

Average 6.7 8.6 10.0 10.7 11.3 12.4 14.8 15.3

TABLE V

BJØNTEGAARD PSNR IMPROVEMENT (dB) OVER DISCOVER FOR ALL FRAMES (QCIF, 15 Hz, GOP2)

Sequence Cross-band [7] Clustering Clustering(learning) MH(2SI) MH(learning 2SI) MH(learning 3SI) SING(2SI) SING(3SI)

Foreman 0.335 0.417 0.502 0.606 0.609 0.717 0.762 0.845

Hall 0.187 0.290 0.396 0.276 0.260 0.275 0.400 0.354

Soccer 0.723 0.852 0.950 1.087 1.186 1.255 1.501 1.525

Coast 0.186 0.265 0.306 0.261 0.268 0.296 0.354 0.363

Average 0.358 0.456 0.538 0.558 0.581 0.636 0.754 0.772

u2q = 1 − u1q, q ∈ [1, 6]. For the case H = 3 and C = 6,
the weighting parameters uhq used are predefined as: u1q =
{1; 0; 1/2; 1/2; 0; 1/3}, u2q = {0; 1; 1/2; 0; 1/2; 1/3}, and
extrapolation [9] u3q = {0; 0; 0; 1/2; 1/2; 1/3}. For H = 3,
these parameters provide a uniform weighting of one, two, or
three candidates. The proposed Clustering(learning) scheme
(Section IV-C) uses a window size of W = 6 of previously
decoded residual frames and a maximum number of clusters
M = 10 (18), which is large enough to utilize the meaningful
past information and adapt to an efficient number of noise
distributions.
Tables II-V report RD performance of the combined

schemes (Section V-B) SING(2SI) using OBMC and
OF(learning) as well as SING(3SI), which additionally uses
side information generation based on extrapolation [9].
Tables II-V present the relative average bitrate savings and
equivalently the average PSNR improvements (using the Bjøn-
tegaard metric [32] and fitting a curve through the 8 RD points
measured) over the DISCOVER codec for WZ frames and

overall frames. The results are also compared to the DVC
scheme in [7] called Cross-band. The SING codecs are based
on combining the clustering and multi-hypothesis techniques,
which are also evaluated individually. The noise model in
Section IV-B integrated in the DVC scheme in [7], is named
Clustering. The noise model proposed in Section IV-C inte-
grated in DVC scheme in [7] is named Clustering(learning).
Both of these are based on the OBMC side information. The
proposed multi-hypothesis TDWZ codecs combining OBMC
with OF and OF(learning) techniques mentioned in Section
V-A are called MH(2SI) and MH(learning 2SI), respectively.
MH(learning 3SI) refers to the additional use of extrapolation,
respectively. Compared to DISCOVER, the average bitrate
saving for the combined scheme SING(3SI) model is overall
(average Bjøntegaard) 37% and 15% better on WZ frames
and all frames, respectively. The performance improvement is
62.5% and 33.2% (or equivalently the average improvement
in PSNR is 2.69 dB and 1.53 dB) for WZ frames and
overall frames, respectively, for the difficult Soccer sequence.
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Fig. 9. PSNR versus rate for the proposed SING(2SI) codec for WZ frames (QCIF, 15 Hz, GOP2). (a) Foreman. (b) Hall. (c) Soccer. (d) Coast.

Compared to the DVC scheme in [7] denoted Cross-band,
a bit-rate saving (Bjøntegaard) of 36.5% is observed for
Soccer on the WZ frames. Looking at Table II, we see that
both Clustering(learning) and MH(learning) introducing OF
improve the average bit-rate savings to about 25% starting
from the 15% savings of the baseline Cross-band codec [7].
Further, the Clustering and MH combine well in SING(2SI)
for a 36% saving. Looking at the individual sequences, we
see that using OF in MH improves performance most for high
motion sequences Foreman and especially Soccer, whereas
Clustering(learning) achieves better results on the low motion
sequences as Coast and especially Hall Monitor. Our results
may be compared with a few GOP2 results in [6], [13], [15],
[33]. The TRACE method [33] reports 1.6% bit-rate saving
for Foreman (at 30Hz) compared with [12]. The following
comparisons are evaluated for QCIF and 15Hz frame rate at
400 Kb/s. Compared to DISCOVER, the results in [6] show
an improvement of 0.4 dB for Foreman and 0.7 dB for Soccer.
Improvements of 0.5 dB for Foreman and 0.1dB degradation
for Soccer are reported [13]. More recently, the scheme in

[15] shows an improvement 0.4 dB for Foreman and 0.5 dB
for Soccer. At 400 Kb/s, improvements compared with DIS-
COVER of 1.0 dB for Foreman (Fig. 10(a)) and 1.4 dB for
Soccer (Fig. 10(c)) are achieved by Clustering (learning).
Specifically, the improvements of MH(learning 2SI) including
OF(learning) are robust for the high motion sequences as
Soccer. The proposed SING(2SI) gains considerable improve-
ments on the more complex motion sequences such as Soc-
cer with 61.1% and Foreman with 35.1% bitrate savings
for WZ frames. The improvements are also robust ranging
from the complex sequences, e.g. Soccer, to the simple
motion sequences, e.g. Hall Monitor. As a special case,
the performance of SING(3SI) for Hall Monitor is slightly
worse than SING(2SI) as shown in Tables II-V. Looking at
both rate and distortion results, the bit rate is, as expected,
lower for SING(3SI) than for SING(2SI), but the problem
is that the PSNR of SING(3SI) is also lower than that of
SING(2SI). In general, the RD performances of all methods
proposed are robustly better than using the noise model
in [7], as well as DISCOVER. It may be noted that the
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Fig. 10. PSNR versus rate for the proposed SING(2SI) codec for all frames (QCIF, 15 Hz, GOP2). (a) Foreman. (b) Hall. (c) Soccer. (d) Coast.

encoding and thereby also encoding complexity are the same
in all cases.
The RD performance of the SING(2SI) codec and

H.264/AVC coding is also depicted in Figs. 9-10 for WZ
frames and all frames, respectively. The SING(2SI) codec
gives a better RD performance than H.264/AVC Intra cod-
ing for Foreman, Hall Monitor, and Coastguard, and also
better than H.264/AVC No Motion for Coastguard. The RD
performance of the SING(2SI) codec clearly outperforms
those of [7] and DISCOVER. For medium to high rates the
improvement for Soccer is up to 4 dB for WZ frames. The
Ideal Code Length (ICL) (23) measures the quality of the
side information of the coded coefficients. The SING(2SI)
ICL result (Fig. 10) actually matches those of H.264/AVC No
Motion for Foreman and Soccer. For Hall Monitor SING(2SI)
ICL is close to H.264/AVC Motion. This illustrates that if
more efficient Slepian-Wolf coding is developed, the perfor-
mance gap between practical Wyner-Ziv video coding and
the conventional predictive video coding would be further
reduced.
We have tested the proposed scheme SING(2SI) on four

test sequences (299 frames, QCIF at 30 Hz of) Foreman,
Soccer, Hall Monitor, and Coastguard using a GOP size 4.

The two key frames are again coded using H.264/AVC Intra.
Thereafter GOP4 follows the hierarchical decoding order in
Section III-C.2, where the middle frame is first decoded based
on the two decoded key frames (Section III-C.1) and then
the two remaining frames are decoded based on the nearest
decoded key frame and the decoded middle frame. RD points
are calculated for the four 4 × 4 quantization matrices Q1,
Q4, Q7, and Q8 [5]. The RD performance of the SING(2SI)
codec in Fig. 11 is better than those obtained by the Cross-
band codec [7] and DISCOVER. The SING(2SI) codec gives
a better RD performance than H.264/AVC Intra and also better
than H.264/AVC No Motion for Foreman and Coastguard. In
particular, the SING(2SI) codec performance matches that of
H.264/AVC No Motion for the high motion sequence Soccer.
Compared to DISCOVER, the average Bjøntegaard bitrate
saving is 37.5% and 23% (or equivalently the average PSNR
improvement is 1.5 dB and 1.1 dB) for WZ frames and all
frames, respectively. For the difficult sequence Soccer, the
bitrate saving is 54.4% (or equivalently the improvement in
PSNR is 2.2 dB) for WZ frames. The results may be compared
with the GOP4 results in [6] at 400 Kb/s. Compared to DIS-
COVER, the results in [6] show an improvement of 1.0 dB for
Foreman (QCIF, 15 Hz) and 0.9 dB for Soccer (QCIF, 15 Hz).
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Fig. 11. PSNR versus rate for the proposed SING(2SI) codec for all frames (QCIF, 30 Hz, GOP4). (a) Foreman. (b) Hall. (c) Soccer. (d) Coast.

In comparison, an improvement of 1.6 dB for Foreman and
1.9 dB for Soccer are achieved by the SING(2SI) codec as seen
in Figs. 11(a) and 11(c).

VII. CONCLUSION

In this paper, TDWZ video coding was improved using
optical flow and clustering of DCT blocks. Optical flow
was used for frame interpolation generating side information,
which was adopted in a multihypothesis scheme to compensate
weaknesses of block-based methods. Adaptive noise modeling
using clustering was introduced additionally utilizing residues
of previously decoded frames, and generating a number
of noise residual distributions within a frame for adaptive
optimization of the soft side information during decoding.
Moreover, the adaptive noise model refined the residue to take
advantage of correlation of DCT coefficients between neigh-
boring blocks. Experimental results showed that the coding
efficiency of the proposed SING scheme which combines all
the techniques can significantly improve the RD performance
of TDWZ video compared to DISCOVER as well as the
cross-band TDWZ scheme in [7] without changing the
encoder. For a GOP size of 2, the average bit-rate saving
of the SING(3SI) codec is 37% (or equivalent the average
improvement in PSNR is 1.5 dB) on WZ frames compared
with the DISCOVER codec.

REFERENCES

[1] B. Girod, A. Aaron, S. Rane, and D. Rebollo-Monedero, “Distributed
video coding,” Proc. IEEE, vol. 93, no. 1, pp. 71–83, Jan. 2005.

[2] R. Puri, A. Majumdar, and K. Ramchandran, “Prism: A video coding
paradigm with motion estimation at the decoder,” IEEE Trans. Image
Process., vol. 16, no. 10, pp. 1–13, Oct. 2007.

[3] D. Slepian and J. K. Wolf, “Noiseless coding of correlated information
sources,” IEEE Trans. Inf. Theory, vol. 19, no. 4, pp. 471–480, Jul. 1973.

[4] A. Wyner and J. Ziv, “The rate-distortion function for source coding
with side information at the decoder,” IEEE Trans. Inf. Theory, vol. 22,
no. 1, pp. 1–10, Jan. 1976.

[5] Discover Project. (2007, Dec.) [Online]. Available:
http://www.discoverdvc.org/

[6] R. Martins, C. Brites, J. Ascenso, and F. Pereira, “Refining side
information for improved transform domain Wyner-Ziv video coding,”
IEEE Trans. Circuits Syst. Video Technol., vol. 19, no. 9, pp. 1327–1341,
Sep. 2009.

[7] X. Huang and S. Forchhammer, “Cross-band noise model refinement
for transform domain Wyner-Ziv video coding,” Signal Process., Image
Commun., vol. 27, no. 1, pp. 16–30, 2012.

[8] D. Kubasov, J. Nayak, and C. Guillemot, “Optimal reconstruction in
Wyner-Ziv video coding with multiple side information,” in Proc. IEEE
Int. Workshop Multimedia Signal Process., Chania, Greece, Oct. 2007,
pp. 183–186.

[9] X. Huang, J. Ascenso, C. Brites, F. Pereira, and S. Forchhammer,
“Distributed video coding with multiple side information,” in Proc.
Picture Coding Symp., Chicago, IL, May 2009, pp. 1–4.

[10] J. Skorupa, J. Slowack, S. Mys, N. Deligiannis, J. D. Cock, P. Lambert,
C. Grecos, A. Munteanu, and R. V. de Walle, “Efficient low-delay
distributed video coding,” IEEE Trans. Circuits Syst. Video Technol.,
vol. 22, no. 4, pp. 530–544, Sep. 2011.

120 Publications



4796 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 21, NO. 12, DECEMBER 2012

[11] B. D. Lucas and T. Kanade, “An iterative image registration technique
with an application to stereo vision,” in Proc. Int. Joint Conf. Artif.
Intell., Vancouver, BC, Canada, Aug. 1981, pp. 674–679.

[12] C. Brites and F. Pereira, “Correlation noise modeling for efficient pixel
and transform domain Wyner-Ziv video coding,” IEEE Trans. Circuits
Syst. Video Technol., vol. 18, no. 9, pp. 1177–1190, Sep. 2008.

[13] G. R. Esmaili and P. C. Cosman, “Wyner-Ziv video coding with
classified correlation noise estimation and key frame coding mode
selection,” IEEE Trans. Image Process., vol. 20, no. 9, pp. 2463–2474,
Sep. 2011.

[14] H. V. Luong, X. Huang, and S. Forchhammer, “Adaptive noise model
for transform domain Wyner-Ziv video using clustering of DCT blocks,”
in Proc. IEEE Int. Workshop Multimedia Signal, Hangzhou, China, Oct.
2011, pp. 1–6.

[15] S. Wang, L. Cui, L. Stankovic, V. Stankovic, and S. Cheng, “Adap-
tive correlation estimation with particle filtering for distributed video
coding,” IEEE Trans. Circuits Syst. Video Technol., vol. 22, no. 5, pp.
649–658, May 2012.

[16] D. Varodayan, A. Aaron, and B. Girod, “Rate-adaptive codecs for
distributed source coding,” EURASIP Signal Process., vol. 86, no. 11,
pp. 3123–3130, Nov. 2006.

[17] S. Baker, D. Scharstein, J. P. Lewis, S. Roth, M. J. Black, and R. Szeliski,
“A database and evaluation methodology for optical flow,” Int. J.
Comput. Vis., vol. 92, no. 1, pp. 1–31, 2011.

[18] B. K. P. Horn and B. G. Schunck, “Determining optical flow,” Artif.
Intell., vol. 17, nos. 1–3, pp. 185–203, Aug. 1981.

[19] T. Brox, A. Bruhn, N. Papenberg, and J. Weickert, “High accuracy
optical flow estimation based on a theory for warping,” in Proc. Eur.
Conf. Comput. Vis., Prague, Czech Republic, May 2004, pp. 25–36.

[20] A. Bruhn, J. Weickert, and C. Schnörr, “Lucas/Kanade meets
Horn/Schunck: Combining local and global optic flow methods,” Int.
J. Comput. Vis., vol. 61, no. 3, pp. 211–231, 2005.

[21] J. Weickert and C. Schnörr, “A theoretical framework for convex reg-
ularizers in PDE-based computation of image motion,” Int. J. Comput.
Vis., vol. 45, no. 3, pp. 245–264, 2001.

[22] H. Zimmer, A. Bruhn, and J. Weickert, “Optic flow in harmony,” Int. J.
Comput. Vis., vol. 93, no. 3, pp. 368–388, 2011.

[23] L. L. Rakêt, L. Roholm, M. Nielsen, and F. Lauze, “TV-L1 optical flow
for vector valued images,” in Proc. Int. Conf. Energy Minim. Methods
Comput. Vis. Pattern Recognit., Saint Petersburg, Russia, Jul. 2011, pp.
329–343.

[24] X. Bresson and T. Chan, “Fast dual minimization of the vectorial total
variation norm and application to color image processing,” Inverse Probl.
Imag., vol. 2, no. 4, pp. 455–484, 2008.

[25] C. Zach, T. Pock, and H. Bischof, “A duality based approach for
realtime TV-L1 optical flow,” in Proc. Ann. Symp. German Assoc.
Pattern Recognit., Heidelberg, Germany, Sep. 2007, pp. 214–223.

[26] A. Chambolle, “An algorithm for total variation minimization and
applications,” J. Math. Imag. Vis., vol. 20, nos. 1–2, pp. 89–97, 2004.

[27] E. Herbst, S. Seitz, and S. Baker, “Occlusion reasoning for temporal
interpolation using optical flow,” Dept. Comput. Sci. Eng., Univ. Wash-
ington, Seattle, Tech. Rep. UW-CSE-09-08-01, 2009.

[28] X. Huang, L. L. Raket, H. V. Luong, M. Niesen, F. Lauze, and
S. Forchhammer, “Multi-hypothesis transform domain wyner-ziv video
coding including optical flow,” in Proc. IEEE Int. Workshop Multimedia
Signal Process., Hangzhou, China, Oct. 2011, pp. 1–6.

[29] P. L. Dragotti and M. Gastpar, Distributed Source Coding: Theory,
Algorithms and Applications. New York: Academic, 2009.

[30] R. L. Cannon, J. V. Dave, and J. C. Bezdek, “Efficient implementation
of the fuzzy c-means clustering algorithms,” IEEE Trans. Pattern Anal.
Mach. Intell., vol. 8, no. 2, pp. 248–255, Mar. 1986.

[31] Joint Video Team (JVT) Reference Software [Online]. Available:
http://iphome.hhi.de/suehring/tml/index.htm

[32] G. Bjøntegaard, “Calculation of average psnr differences between RD
curves,” ITU, San Jose, CA, Tech. Rep. VCEG-M33, Apr. 2001.

[33] X. Fan, O. C. Au, and N. M. Cheung, “Transform-domain adaptive
correlation estimation (trace) for Wyner-Ziv video coding,” IEEE Trans.
Circuits Syst. Video Technol., vol. 20, no. 11, pp. 1423–1436, Nov. 2010.

Huynh Van Luong received the M.Sc. degree in
computer engineering from the University of Ulsan,
Ulsan, Korea, in 2009. He is currently pursuing the
Ph.D. degree with the Coding and Visual Commu-
nication Group, Technical University of Denmark,
Lyngby, Denmark.
His current research interests include image and

video processing and coding, distributed source cod-
ing, visual communications, and multimedia sys-
tems.

Lars Lau Rakêt was born in 1985. He received
the M.Sc. degree in statistics from the University of
Copenhagen, Copenhagen, Denmark, in 2010. He is
currently pursuing the Ph.D. degree with the Image
Group, Department of Computer Science, University
of Copenhagen.
His current research interests include analysis and

processing of image and video data, particularly
motion estimation and statistical analysis of high-
dimensional functional data.

Xin Huang received the B.A degree in telecom-
munication from Xidian University, Xi’an, China,
in 2004, and the M.Sc. and Ph.D. degrees from
the Technical University of Denmark, Lyngby, Den-
mark, in 2006 and 2009, respectively.
He was a Post-Doctoral Researcher with the Cod-

ing and Visual Communications Group, Technical
University of Denmark, from 2009 to 2011. He is
currently a Senior Engineer with Renesas Mobile,
Copenhagen, Denmark. His current research inter-
ests include image and video coding, image and

video processing, and error correction codes.

Søren Forchhammer (M’04) received the M.S.
degree in engineering and the Ph.D. degree from
the Technical University of Denmark (DTU), Lyn-
gby, Denmark, in 1984 and 1988, respectively. He
has been a Professor with DTU Fotonik, Technical
University of Denmark, since 1988, where he is
the Head of the Coding and Visual Communica-
tion Group. His current research interests include
source coding, image and video coding, distributed
source coding, distributed video coding, processing
for image displays, 2-D information theory, and

visual communication.

TIP12 121



MULTIPLE LDPC DECODING USING BITPLANE CORRELATION FOR 
TRANSFORM DOMAIN WYNER-ZIV VIDEO CODING 

 
Huynh Van Luong, Xin Huang, and Søren Forchhammer 

 
DTU Fotonik, Technical University of Denmark, Building 343, Lyngby 2800, Denmark 

Email: {hulu, xhua, sofo}@fotonik.dtu.dk 
 

ABSTRACT 
 
Distributed video coding (DVC) is an emerging video coding 
paradigm for systems which fully or partly exploit the source 
statistics at the decoder to reduce the computational burden at the 
encoder. This paper considers a Low Density Parity Check (LDPC) 
based Transform Domain Wyner-Ziv (TDWZ) video codec. To 
improve the LDPC coding performance in the context of TDWZ, 
this paper proposes a Wyner-Ziv video codec using bitplane 
correlation through multiple parallel LDPC decoding. The 
proposed scheme utilizes inter bitplane correlation to enhance the 
bitplane decoding performance. Experimental results show that the 
proposed scheme reduces the bit rate up to 3.9% and improves the 
rate-distortion (RD) performance of TDWZ. 

Index Terms— Wyner-Ziv video coding, multiple decoders, 
bitplane correlation 
 

1. INTRODUCTION 
 
Distributed Video Coding [1][2] proposes to fully or partly exploit 
the video redundancy at the decoder, rather than at the encoder as 
in predictive video coding. According to the Slepian-Wolf theorem 
[3], it is possible to achieve the same rate by independently 
encoding but jointly decoding two statistically dependent signals 
as for typical joint encoding and decoding (with a vanishing error 
probability). The Wyner-Ziv theorem [4] extends the Slepian-Wolf 
theorem to the lossy case, becoming the theoretical basis for DVC 
where source data are lossy coded and decoded based on a 
correlated source at the decoder providing the so-called side 
information. 

Transform Domain Wyner-Ziv (TDWZ) video coding is a 
popular approach to DVC. This approach was first proposed in [5], 
and thereafter improved by e.g. advanced side information 
generation schemes [6]-[9], finer noise models [7][10] and 
refinement schemes [11][12]. Despite the advances in practical 
TDWZ video coding, the RD performance of TDWZ video coding 
still remains to reach the performance of conventional video 
coding, such as H.264/AVC. The coding efficiency of error 
correcting codes, an LDPC Accumulate (LDPCA) codec [13] in 
this paper, plays a key role in TDWZ in terms of overall RD 
performance. To improve the RD performance, a Wyner-Ziv codec 
with multiple LDPCA decoders is proposed in this paper. The 
proposed scheme is inspired by the work in [14] using joint 
bitplane LDPC decoding. Different from [14], the proposed 
Wyner-Ziv codec utilizes multiple LDPCA decoders in parallel 
and takes inter bitplane correlation into account during decoding, 
thereby improving the overall RD performance of the TDWZ 

codec. The modifications involve the buffer part and the decoder, 
while the Wyner-Ziv encoder is not changed.  

The rest of the paper is organized as follows. Section 2 
presents the state-of-the-art TDWZ video codec adopted in this 
paper. Section 3 describes the proposed Wyner-Ziv codec with 
multiple LDPCA decoders. Section 4 analyzes the performance of 
our approach and compares with other existing methods. 
 

2. STATE-OF-THE-ART TRANSFORM DOMAIN 
WYNER-ZIV VIDEO CODING 

 
The architecture of a state-of-the-art TDWZ video codec is 
depicted in Fig. 1. It basically follows the same architecture as the 
one developed by the DISCOVER project [6]. However, a better 
side information generation scheme [8] and an improved noise 
model [10] are adopted to achieve a better RD performance.  

At the encoder, periodically one frame out of N in the video 
sequence is named as key frame and intermediate frames are WZ 
frames. The key frames are intra coded by using a conventional 
video coding solution with low complexity such as H.264/AVC 
Intra, while the WZ frames in between are coded with a Wyner-Ziv 
approach. WZ frames are transformed using a 4x4 block size and 
the transformed coefficients within the same frequency band are 
grouped together and then quantized. DC coefficients and AC 
coefficients are uniformly scalar quantized and dead-zone 
quantized, respectively. Thereafter quantized coefficients are 
decomposed into bitplanes, each bitplane is fed to a rate-
compatible LDPCA encoder [13] starting from the most significant 
bitplane (MSB) to least significant bitplane (LSB). For each 
encoded bitplane, the corresponding accumulated syndrome is 
stored in a buffer together with an 8-bit Cyclic Redundancy Check 
(CRC). The amount of bits to be transmitted depends on the 
requests made by the decoder through a feedback channel as 
shown in Fig. 1. 

At the decoder, a side information frame is interpolated and 
the corresponding noise residue is generated by using previously 
decoded frames. Given the available side information, soft-input 
information (conditional bit probabilities Pr) within each bitplane 
is estimated using a noise model. Thereafter the LDPCA decoder 
starts to decode the various bitplanes, ordered from MSB to LSB, 
to correct the bit errors. For each bitplane, convergence is tested by 
the 8-bit CRC sum and the Hamming distance between the 
received syndrome and the decoded bitplanes [6]. After all the 
bitplanes are successfully decoded, the Wyner-Ziv frame can be 
decoded through combined de-quantization and reconstruction 
followed by an inverse transform.    
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Fig. 1. Architecture of feedback channel based Transform Domain 
Wyner-Ziv video codec 

For the LDPCA decoding, a Belief-Propagation (BP) 
algorithm is used to retrieve each transmitted bitplane. The BP 
algorithm is a soft-decoding approach, which is passing a Log-
Likelihood Ratio (LLR) of Pr back and forth between source nodes 
and the syndrome nodes. Let X=(bm-1,…, b1, b0) denote a quantized 
DCT coefficient of a Wyner-Ziv frame, where bm-1 is an MSB bit 
and b0 is an LSB bit and Y denotes a quantized DCT coefficient of 
the side information. The LLR of a bit bi (0 i m-1) of the ith 
significant bitplane is described as:  
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where bm-1…bi+1 represent bits from previous successfully decoded 
bits of the transformed coefficient. The LDPCA decoder utilizes 
information from previous successfully decoded bitplanes for 
decoding future bitplanes. The BP algorithm performs an 
approximation of the Maximum-Likelihood decoding to determine 
an estimate of the transmitted bits.  
 

3. WYNER-ZIV CODEC WITH MULTIPLE LDPCA 
DECODERS 

 
In the TDWZ codec described in Section 2, the LDPCA decoder 
utilizes side information, modeled noise correlation and the 
information from previous decoded bitplanes to decode future 
bitplanes. However, the inter bitplane correlation is not fully 
explored during decoding, although a refinement scheme is 
employed in [12] to utilize the bitplane correlation to update soft-
input for decoding further bitplanes. The limitation is that the soft-
input of the LDPCA decoder is fixed until successful decoding. To 
overcome the above limitations and improve the performance of 
the LDPCA codec,  a decoder  may iteratively refine soft-input for 
each bitplane during the decoding process and take inter bitplane 
correlation into account. Thus, a Wyner-Ziv codec with multiple 
LDPCA decoders is proposed.  

The multiple LDPCA decoders are running in parallel to keep 
refining soft-input at each iteration. Each LDPCA decoder is 
responsible for one bitplane. Different from single bitplane 
LDPCA decoding, where the decoder corrects errors one bitplane 
after another e.g., from MSB to LSB, the proposed Wyner-Ziv 
codec with multiple LDPCA decoders operates on all available 
bitplanes at once and exploits the correlation between bitplanes 
and passes syndrome information from one bitplane to another. 
Once a bitplane is successfully decoded, instantaneously, the 
responsible LDPCA decoder no longer requests syndrome bits 
from the buffer. Meanwhile, the rest of LDPCA decoders are 
reinitialized using the new soft-inputs, which were updated 
conditional on the successfully decoded bitplane. 

 
Fig. 2. Multiple LDPCA Decoders 

We illustrate the proposed Wyner-Ziv codec with multiple 
LDPCA decoders in Fig. 2. It includes a critical part called the 
bitplane correlation model to reform soft-input based on feedback 
from the LDPCA decoders and the estimated noise distribution 
from the noise model. The bitplane correlation model collects all 
the information from multiple LDPCA decoders to recalculate soft-
inputs. The new soft-input information of the source X is estimated 
and updated, where Y is combined with a given Laplacian 
parameter from the noise model. 

The main difference between our proposed approach and [6] 
is that the LLR of a bit bi (0 i m-1) of the ith significant bitplane is 
computed conditioned on the binary distributions ( k, 1- k) of the 
remaining bits, bk (k i). This means that the LLR is calculated by 
using soft information. Let k= Pr(bk=0) denote a probability of 
bitplane k. Moreover, the decoding order of our approach does not 
consider the significance of bitplanes. The LLR described in 
formula (1) only uses the bits from previous successfully decoded 
bitplanes and decodes from MSB to LSB. Here the LLR 
expression is generalized for a bit bi of bitplane i as:  

=

=
=

−+−

−+−

),,...,,,...,,|1Pr(

),,...,,,...,,|0Pr(
log)(

01111

01111

βββββ

βββββ

iimi

iimi
i Yb

Yb
bL

          (2) 

where k are soft-input values for the same coefficient as bi. 
To understand the method, we should take into account both 

bitplane (bit) and coefficient (symbol) levels to get soft side 
information updated via one BP algorithm used for LDPCA 
decoding which is propagated to bit level and thereafter symbol 
level. Similar to [14], the key idea is to use the BP mechanism 
during the decoding of a frame and to convert the LLR back and 
forth between symbol level and bit level. Distinctly, in the 
proposed method, the soft-input is only updated after the multiple 
LDPCA decoders of one coefficient band are completely processed 
(using a certain number of iterations) at bit level based on the 
given syndrome bits. Let Pr(t-1)(bk) denote the probability of bit bk 
at the iteration t-1 at bit level. The LLR of bit bi, is updated at 
iteration t as an approximation of (2):    
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where X=(bm-1,…, b1, b0) and S indicates the set of values 
{0,1,2,…,2m-1} for the coefficient X which is coded by m bitplanes 
(for DC and the magnitude of AC coefficients). Pr(X|Y,bi) is 
calculated at symbol level by using the estimated noise distribution 
between the side information frame and the original Wyner-Ziv 
frame via a noise model as shown in Fig. 2 and selecting X with 
bi=0 and bi=1 in the numerator and denominator in (3), 
respectively. 

The LLRs at iteration t noted by L(t)(bi), are in turn input to 
multiple LDPCA decoders. After one LDPCA is processed, L*(t)(bi) 
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is temporarily achieved as output. The updated Pr(t)(bi) values are 
obtained based on LLR definition: 
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i.e. for the next iteration, we have: 
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This Pr(t)(bi) is used as a new probability of bit bi to compute new 
LLRs, L(t+1)(bi), for the next iteration of multiple LDPCA decoding 
based on (3).  

Since all LDPCA decoders are running in parallel, once a 
bitplane is successfully decoded, instantaneously, the re-
initialization procedure is performed. The new soft-inputs for the 
rest of the bitplanes are assigned conditional on the successfully 
decoded bitplane. The LDPCA decoder with the successfully 
decoded bitplane will no longer request syndromes from the buffer. 
Assume bi is successfully decoded with value 0, then Pr(t)(bi=0)=1 
and the iteration count is reset as t=0. In addition, the remaining 
unfinished bitplanes are re-initialized by Pr(0)(bj=0)=1/2. The 
LDPCA decoders are iteratively operated up to a maximum 
numbers of iterations (Tmax) with the given syndrome bits. If they 
are not successful after this number of iterations, the LDPCA 
decoders request more syndrome bits from the buffer via the 
feedback channel. Then a new process is started until all the 
bitplanes of the DCT coefficient are successfully decoded. Let Nmax 
denote a maximum numbers of syndromes. 

Overall, the multiple LDPCA decoding is handled as follows:  
1. Initiate parameters.  Iteration count t=0; Number of 

syndrome bits n=0; For all bits bi, Pr(0)(bi=0)=1/2. 
2. Increase and check conditions. 

a. Syndrome bit condition: Increase n=n+1. If n Nmax then 
end, else go to Step 2.b. 

b. Iteration count condition: Increase t=t+1. If t<Tmax go to 
Step 3, else return to 2.a. 

3. Compute the LLRs. At bit level, formula (3) is computed to 
get the LLRs, L(t)(bi), by multiplying the soft side information, 
Pr(X|Y,bi) of symbol level, and the probabilities, Pr(t-1)(bk), of 
bitplane level (k i).   

4. Check if any LDPCA is successfully decoded? 
a. No: Compute probabilities of bitplanes. L(t)(bi) are 

forwarded to multiple LDPCA decoders where L*(t)(bi) are 
received from LDPCA outputs. New probabilities of 
bitplanes, Pr(t)(bi), are obtained by (5).  

b. Yes: Re-initialize the process. Assume LDPCA (bi) is 
successfully decoded with value bi=0, assign Pr(t)(bi=0)=1. 

Reset iteration count t=0 and the remaining unfinished 
LDPCA decoders by Pr(0)(bj=0)=1/2; 

5. Check all LDPCA decoders. The process is ended if all 
bitplanes are successfully decoded, otherwise, go to step 2.b. 

The above procedure is repeated for all bands of the DCT 
coefficients for which Wyner-Ziv bits are transmitted. Restarting 
the decoding of single LDPCA does increase complexity of the 
decoding.   
 

4. PERFORMANCE EVALUATION 
 

In this section, the RD performance of the proposed approach 
is presented and compared with the state-of-the-art TDWZ video 
codec described in Section 2 as well as relevant benchmarks. The 
test sequences are 149 frames of Foreman, Hall Monitor, Soccer, 
and Coast-guard with 15Hz frame rate and QCIF format. GOP 
(group of pictures) size is 2, where the first frame is coded as a key 
frame using H.246/AVC Intra and other frame is coded using 
Wyner-Ziv coding. Eight RD points (Qj) are considered 
corresponding to eight 4x4 quantization matrices [6]. The values 
within these matrices determine the number of bitplanes associated 
to the DCT coefficient bands, therefore, the number of LDPCA 
decoding instances is known. The proposed model uses m (number 
of bitplanes of a given band) regular LDPC accumulate decoders 
[13] with a length of 1584 bits for each. At these settings, exactly 
1584 transform coefficients per given band of a frame can be 
decoded at a time by m LDPCA each decoding one bitplane.  

Table 1 shows rate and PSNR values of  the proposed TDWZ 
codec with multiple LDPCA decoders (WZMD) as well as the 
savings in total rate, R (in %), and WZ rate, RWZ (in %), 
compared with the state-of-the-art TDWZ codec [10]. The WZMD 
achieves a reduction of bit-rate for WZ frames up to 1.8% for 
Foreman; 2.59% for Hall Monitor; 2.26% for Soccer; 1.82% for 
Coast-guard. In terms of the overall bit-rate, it saves up to 0.82% 
for Foreman sequence; 0.59% for Hall Monitor; 1.46% for Soccer; 
0.52% for Coast-guard. It can be noted that the same PSNR values 
were obtained for both WZMD and TDWZ [10].  

In some cases, the required number of syndromes consumed 
for the LSB is (close to) Nmax, even though there is still some 
correlation. This is due to a (relative) loss in the LDPCA decoder, 
which may be reduced by first coding the LSB independently and 
thereafter apply WZMD to the remaining bitplanes having decoded 
the LSB. This is called WZMD(LSB). As a result, the coding 
efficiency in terms of bit-rate is improved. Table 2 depicts the bit 
rate savings for WZMD and WZMD(LSB) compared with TDWZ 
[10]. The results shows that WZ rate savings up to 3.9% for 
Foreman and 3.77% for Soccer. 

 
Table 1. Total rate and WZ rate savings (in %) for WZMD based TDWZ compared with TDWZ [10] 

 

Foreman Hall Soccer Coast-guard 
Qj Rate 

[kbps] 
PSNR 
[dB] 

R 
[%] 

RWZ 
[%] 

Rate 
[kbps] 

PSNR 
[dB] 

R 
[%] 

RWZ 
[%] 

Rate 
[kbps] 

PSNR 
[dB] 

R 
[%] 

RWZ 
[%] 

Rate 
[kbps] 

PSNR 
[dB] 

R 
[%] 

RWZ 
[%] 

1 72,34 28,67 0,49 1,32 84,71 31,55 0,21 1,46 58,58 28,01 1,26 1,88 81,68 28,59 0,32 1,58 
2 86,98 29,36 0,62 1,51 95,07 32,13 0,32 1,77 71,93 28,60 1,11 1,62 99,83 29,32 0,35 1,53 
3 96,60 29,87 0,53 1,30 98,04 32,15 0,20 1,00 82,18 29,41 1,38 2,06 103,11 29,36 0,41 1,62 
4 152,38 32,44 0,68 1,66 131,73 34,42 0,36 1,72 135,54 32,04 1,19 1,88 152,93 31,15 0,42 1,53 
5 158,49 32,50 0,78 1,80 134,20 34,42 0,59 2,59 140,64 32,09 1,46 2,26 169,16 31,69 0,27 1,05 
6 204,06 33,74 0,82 1,78 168,26 36,03 0,46 1,80 184,11 33,16 1,35 2,06 224,74 32,98 0,52 1,82 
7 271,93 35,90 0,73 1,61 196,22 37,43 0,46 1,71 250,86 35,16 1,14 1,80 266,44 33,87 0,49 1,44 
8 433,19 39,31 0,66 1,35 291,75 40,84 0,52 1,82 449,12 39,02 0,73 1,24 440,01 37,04 0,43 1,07 
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Table 2. Bit rate savings (in %) of WZMD and WZMD (LSB) 

Foreman Soccer 
WZMD WZMD(LSB) WZMD WZMD(LSB) 

Qj R 
[%] 

RWZ 

[%] 
R 

[%] 
RWZ 

[%] 
R 

[%] 
RWZ 

[%] 
R 

[%] 
RWZ 

[%] 
1 0,49 1,32 1,44 3,90 1,26 1,88 2,51 3,77 
2 0,62 1,51 1,48 3,60 1,11 1,62 1,95 2,84 
3 0,53 1,30 0,99 2,41 1,38 2,06 1,89 2,82 
4 0,68 1,66 0,68 1,66 1,19 1,88 1,38 2,18 
5 0,78 1,80 0,78 1,80 1,46 2,26 1,62 2,51 
6 0,82 1,78 1,05 2,26 1,35 2,06 1,41 2,15 
7 0,73 1,61 0,86 1,89 1,14 1,80 1,29 2,03 
8 0,66 1,35 0,79 1,62 0,73 1,24 0,80 1,36 

 
The experimental results in Fig. 3 demonstrate that the 

proposed approach significantly improves RD performance 
compared with the DISCOVER codec, with PSNR gains up to 
about 0.7 dB for Foreman and 0.9 dB for Soccer. The 
performance of H.264/AVC (Intra) and the H.264/AVC (No 
Motion) codecs are also included. The WZMD is more efficient 
than H.264/AVC (Intra) for Foreman. H.264/AVC (No Motion) 
codec is more efficient than the TDWZ codecs for both sequences 
since it exploits co-located frame differences at the encoder. 

 

 

Fig. 3. RD performance comparison 
 

5. CONCLUSION 
 
This paper proposes a Wyner-Ziv video codec using multiple 
parallel LDPC decoding to utilize inter bitplane correlation. The 

technique takes bitplane correlation into account by iteratively 
refining the soft-input for each bitplane during decoding. 
Experimental results show that the proposed multiple LDPC 
decoding can improve the coding efficiency of TDWZ in terms of 
WZ rate savings up to 3.9% compared with the existing TDWZ 
[10] and provide better RD performance than DISCOVER codec. 
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ABSTRACT 
 

In recent years, Transform Domain Wyner-Ziv (TDWZ) video 
coding has been proposed as an efficient Distributed Video Coding 
(DVC) solution, which fully or partly exploits the source statistics 
at the decoder to reduce the computational burden at the encoder. 
In this paper, a parallel iterative LDPC decoding scheme is 
proposed to improve the coding efficiency of TDWZ video codecs. 
The proposed parallel iterative LDPC decoding scheme is able to 
utilize cross bitplane correlation during decoding, by iteratively 
refining the soft-input, updating a modeled noise distribution and 
thereafter enhancing the bitplane decoding performance. 
Experimental results show that the proposed scheme reduces the 
bit rate of Wyner-Ziv frames up to 5.6% and improves the rate-
distortion (RD) performance of TDWZ. 

Index Terms— Wyner-Ziv, Cross-bitplane correlation, noise 
distribution 
 

1. INTRODUCTION 
 

In conventional predictive video coding, the video redundancy is 
fully or partly exploited at the encoder side. However, in recent 
years, the conventional video coding architecture has been 
challenged by some emerging applications such as video 
surveillance, video sensor networks and wireless cameras etc. 
These applications require a relative low cost encoder. Distributed 
Video Coding [1][2] is proposed to match the low cost encoding 
requirement, be exploring the video statistics, partially or totally, at 
the decoder only. According to the Slepian-Wolf theorem [3], it is 
possible to achieve the same rate by independently encoding but 
jointly decoding two statistically dependent signals as for typical 
joint encoding and decoding (with a vanishing error probability). 
The Wyner-Ziv theorem [4] extends the Slepian-Wolf theorem to 
the lossy case, becoming the theoretical basis for DVC where 
source data are lossy coded and decoded based on a correlated 
source at the decoder providing the so-called side information.  

Transform Domain Wyner-Ziv (TDWZ) video coding is one 
of the most efficient approaches to DVC. It was first proposed in 
[5], and thereafter improved by many other techniques,  e.g. 
advanced side information generation schemes [6]-[9], finer noise 
models [7][10] and refinement schemes [11][12]. To further 
improve the coding efficiency of TDWZ video coding, a Wyner-
Ziv codec with parallel iterative LDPC decoding is proposed in 
this paper. The proposed scheme is based on the previous work in 
[13], inspired by the work in [14] using joint bitplane LDPC 
decoding and the work in [12] with refinement of the modeled 
noise distribution. The main advantage of joint bitplane LDPCA 
decoding is to exploit correlation across bitplanes by exchanging 
soft information between bitplanes during the decoding. Different 

from [12][14], the proposed scheme utilizes multiple LDPCA 
decoders in parallel, taking inter bitplane correlation into account 
to iteratively refine the soft-input of bitplanes and update a 
modeled noise distribution during decoding, thereby improving the 
overall RD performance of the TDWZ codec. Compared with [13], 
the novelty is that the modeled noise distribution keeps updating 
based on the iteratively refined soft-input during parallel decoding. 
The rest of the paper is organized as follows. Section 2 presents the 
basic architecture of the TDWZ video codec adopted in this paper. 
Section 3 describes the proposed parallel iterative LDPC decoding 
scheme. The performance of the proposed approach is analyzed 
and compared with other existing methods in Section 4. 
 

2. TRANSFORM DOMAIN WYNER-ZIV VIDEO 
CODING 

 

The architecture of a TDWZ video codec [10] is depicted in Fig. 1. 
In this system, the frame sequence is split into key frames and so-
called Wyner-Ziv frames. Key frames are intra coded using 
conventional video coding techniques such as H.264/AVC intra 
coding. The Wyner-Ziv frames are transformed, quantized and 
decomposed into bitplanes. Each bitplane is fed to a rate-
compatible LDPC Accumulate (LDPCA) encoder [15] from most 
significant bitplane (MSB) to least significant bitplane (LSB). The 
corresponding error correcting information is stored in a buffer. 
The amount of information to be transmitted depends on the 
requests made by the decoder through a feedback channel. The 
Wyner-Ziv frame is predicted at the decoder side by using already 
decoded frames as references. The predicted frame, called Side 
Information (SI) frame, is an estimation of the original Wyner-Ziv 
frame available at the encoder.  Given the available SI, soft-input 
information (conditional bit probabilities Pr) within each bitplane 
is estimated using a noise model [10]. Thereafter the LDPCA 
decoder starts to decode the various bitplanes, ordered from MSB 
to LSB, to correct the bit errors. After all the bitplanes are 
successfully decoded, the Wyner-Ziv frame can be decoded 
through combined de-quantization and reconstruction followed by 
an inverse transform. 

In TDWZ video coding, coding efficiency of the LDPCA 
codec plays a key role in terms of overall RD performance. For 
LDPCA decoding, a Belief-Propagation (BP) algorithm is used to 
retrieve each transmitted bitplane. The BP algorithm is a soft-
decoding approach, which is passing a Log-Likelihood Ratio 
(LLR) of Pr back and forth between source nodes and the 
syndrome nodes. Let X=(bm-1,…, b1, b0) denote a quantized DCT 
coefficient of a Wyner-Ziv frame, where bm-1 is an MSB bit and b0 
is an LSB bit and let Y denote a quantized DCT coefficient of the 
side information. The LDPCA corrects errors one bitplane after 
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another e.g., from MSB to LSB. The LLR of a bit bi (0 i m-1) of 
the ith significant bitplane is described as:  
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where bm-1…bi+1 represent bits from previous successfully decoded 
bits of the transformed coefficient. The LDPCA decoder utilizes 
information from previous successfully decoded bitplanes for 
decoding future bitplanes.  

 
Fig. 1. Architecture of feedback channel based TDWZ video codec 

3. WYNER-ZIV CODEC WITH PARALLEL 
ITERATIVE DECODING 

 

In the TDWZ codec described in Section 2, the LDPCA decoder 
utilizes side information, modeled noise correlation and the 
information from previous decoded bitplanes to decode future 
bitplanes. One limitation is that the inter bitplane correlation is not 
fully explored during decoding. Although a refinement scheme is 
employed in [12] to utilize the bitplane correlation to update the 
noise distribution, thereby refining soft-input for decoding further 
bitplanes, the soft-input of the LDPCA decoder is fixed until 
successful decoding. To overcome the above limitations and 
improve the performance of the LDPCA codec,  a novel Wyner-
Ziv codec is proposed in this section to iteratively refine soft-input 
for each bitplane during the decoding process. The soft estimate of 
Wyner-Ziv coefficients is used to iteratively update the noise 
distribution and thereby refine the reliability of soft-input. 

 
Fig. 2. Multiple LDPCA Decoders 

The proposed Wyner-Ziv codec is depicted in Fig. 2. It 
mainly includes multiple LDPCA decoders and a bitplane 
correlation model. The bitplane correlation model is able to 
recalculate the soft-input based on the outputs of LDPCA decoders 
and update the estimated noise distribution from the noise model. 
The new soft-input information of the source X is estimated by 
conditioning on Y and using an iteratively refined Laplacian 
parameter from the noise model. The multiple LDPCA decoders 
are running in parallel to keep refining the soft-input. Each 
LDPCA decoder is responsible for one bitplane. Different from 
single bitplane LDPCA decoding, where the decoder corrects 
errors one bitplane after another e.g., from MSB to LSB [10] or 
from LSB to MSB [16], the multiple LDPCA decoders operates on 
all available bitplanes at once and exploits the correlation between 
bitplanes and passes information from one bitplane to another. In 
addition, the soft estimate of each Wyner-Ziv coefficient is 

iteratively generated to update the noise distribution within the 
bitplane correlation model. Therefore, the soft-input for decoding 
is regenerated in a way that exploits the noise correlation between 
Wyner-Ziv coefficients and the side information coefficients. 

The proposed codec employs iterative refinement at both 
bitplane (bit) and coefficient (symbol) levels. The overall decoding 
procedure using multiple LDPCA decoders executes the BP 
algorithm to propagate LLRs back and forth between the syndrome 
nodes, bit nodes, and symbol nodes [14]. Let k= Pr(bk=0) define 
the probability distribution for bit bk. At bit level, the main 
difference between our proposed approach and [6] is that the LLR 
for a bit bi (0 i m-1) of the ith significant bitplane is computed 
conditioned on the binary distributions ( k, 1- k) of the remaining 
bits, bk (k i). This means that the LLR is calculated by using soft 
information of the other bits. Moreover, the order of full decoding 
in our approach is not restricted to follow the order of significance 
of bitplanes. The LLR described in (1) only uses the bits from 
previous successfully decoded bitplanes and decodes from MSB to 
LSB. Here the LLR expression is generalized for a bit bi of 
bitplane i as:  

=
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=
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where k (k i) are soft-input values for the same coefficient as bi. 
In order to approximate the LLR expression (2), let Pr(t-1)(bi) 

denote the a priori probability of bi at iteration t-1 at bit level. Note 
that, at bit level, Pr(t-1)(X|Y)= Pr(q-1)(X|Y), where  q-1 indicates 
iteration q-1 at coefficient level. The denominator and numerator 
of (2) are substituted by applying the sum-product expressions 
[14][17] for specific values of bi={0,1} and consequently, LLR can 
be computed via the sum-product algorithm [14][17] as : 
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where X=(bm-1,…bi,…, b1, b0), S indicates the set of values 
{0,1,2,…,2m-1} for the coefficient X which is coded by m bitplanes 
(for DC and the magnitude of AC coefficients) and 
S0={X�S:bi=0}, S1={X�S:bi=1}. Pr(q-1)(X|Y) is calculated at 
iteration q-1 at coefficient level by using the updated noise 
distribution between the side information coefficient and the 
original Wyner-Ziv coefficient via the noise model [10] as shown 
in Fig. 2.  

Similar to bit level, we can rewrite the expression at 
coefficient level. Let us have an a priori belief of X conditioning on 
Y given by the probability distribution Pr(q-1)(X|Y) and variables 
( m-1,…, 1, 0), with likelihood Pr(q-1)( m-1,…, 1, 0 | ), where 

=Pr(X|Y), then the posterior probability Pr*(q)(X|Y) is 
approximated by: 

)|,,...,(Pr)|(Pr)|(Pr 011
)1()1()*( ψβββ −

−−∝ m
qqq YXYX       (4) 

Suppose that prior beliefs of ( , m-1,…, 1, 0) are independent, 
we get an approximation of (4): 

∏ −−∝
k

k
qqq bYXYX )(Pr)|(Pr)|(Pr )1()1()*(               (5) 

Thereafter Pr*(q)(X|Y) is normalized and used to update the noise 
residual coefficient )(qR at iteration q by: 

|)|(Pr| )*()( YYXXR
SX

qq −=
∈

                    (6)                        

A Laplacian distribution with parameter  is used to model the 
noise between X and Y.  With the updated residue R(q) in (6), the 
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Laplacian parameter (q) is refined according to the noise model in 
[10]. The resulting soft estimate of Wyner-Ziv coefficient X is 
denoted: 

),|Pr()|(Pr )()( qq YXYX α=                      (7) 

Since all LDPCA decoders are running in parallel, once a 
bitplane is successfully decoded, instantaneously, the re-
initialization procedure is performed. The new soft-inputs for the 
rest of the bitplanes are assigned conditional on the successfully 
decoded bitplane. The LDPCA decoders with the successfully 
decoded bitplane will no longer request syndromes from the buffer. 
Assume bi is successfully decoded with value 0, then Pr(t)(bi=0)=1 
and the iteration count is reset as t=0. In addition, the remaining 
unfinished bitplanes (bj, j i) are re-initialized by Pr(0)(bj=0)=1/2. 
The LDPCA decoders are iteratively operated up to a maximum 
numbers of iterations (Tmax) with the given syndrome bits. If they 
are not successful after Tmax iterations at bitlevel, the soft estimate 
of source X is iteratively updated as in (7). Furthermore, if they are 
not successful after a maximum number of iterations (Qmax) at 
coefficient level either, the LDPCA decoders request more 
syndromes (one for each of the bitplanes not fully decoded yet) 
from the buffer via the feedback channel. Thereafter a new process 
is started until all the bitplanes of the DCT coefficients of the band 
are successfully decoded.  

In some cases, the required number of syndromes consumed 
for the LSB is (close to) a maximum number of syndromes denoted 
by Nmax, even though there is some correlation. This is due to a 
(relative) loss in the LDPCA decoder, which may be reduced by 
first coding the LSB independently and thereafter apply the 
proposed codec to the remaining bitplanes after decoding the 
LSB. Thus, an entropy prediction mechanism is proposed to 
automatically predict these cases. A set of predefined thresholds is 
utilized to evaluate (up to 3) less significant bitplanes. The 
evaluation starts from LSB with its marginalized probabilities. For 
the LSB bitplanes considered, the entropy is estimated based on 
the updated LLRs from the output of the multiple LDPCA 
decoders after trying to decode by using the first syndrome, i.e. 
n=1. The predefined thresholds are experimentally determined to 
detect bitplanes for which the average estimated entropy of each bit 
is close to 1. If the estimated entropy of the LSB is larger than its 
corresponding threshold, the bitplane will be independently 
decoded. Then the second LSB will be evaluated based on the 
conditional probabilities and so on. As a result, the coding 
efficiency in terms of bit-rate is improved. If no LSB bitplanes are 
decoded first, the basic iterative multiple LDPCA decoding is 
handled as follows for each band, one at a time:  
1. Initiate parameters.  Number of syndromes n=0; Iteration 

count: q=0 at coefficient level, t=1 at bit level; For all bits bi, 
Pr(0)(bi=0)=1/2. 

2. Increase and check conditions. 
a. Syndrome bit condition: Increase n=n+1. If n Nmax then 

end, else request a new syndrome for all bitplanes not 
decoded and continue to Step 2.b. 

b. Iteration count condition at coefficient level:  Increase 
q=q+1. If q Qmax return to Step 2.a, else go to Step 3. 

3. Compute the LLRs. For each bitplane, (3) is computed to get 
the LLRs, L(t)(bi), which are forwarded as input to the multiple 
LDPCA unit for parallel decoding.   

4. Check for each bitplane if the LDPCA is successfully 
decoded? 

a. No: Compute probabilities of bitplanes. New 
probabilities of bitplanes, Pr(t)(bi), are obtained based on 
the updated LLRs output by the LDPCA. 

b. Yes: Re-initialize the process. Assume LDPCA (bi) is 
successfully decoded with value bi=0, assign Pr(t)(bi=0)=1. 
Reset iteration count t=0 and the remaining unfinished 
LDPCA decoders by Pr(0)(bj=0)=1/2. 

5. Iteration counts at bit level. Increase t=t+1. If t<Tmax return 
to Step 3, else go to Step 6. 

6. Compute the soft estimate of source X at coefficient level. 
The soft estimate, Pr(q)(X|Y),  is updated by (7), where the 
noise (q) is computed with the updated residue based on (6). 

7. Check all LDPCA decoders. The process is ended if all 
bitplanes are successfully decoded, otherwise, return to Step 
2.b.  

The above procedure is repeated for all bands of the DCT 
coefficients for which Wyner-Ziv bits are transmitted.   
 

4. PERFORMANCE EVALUATION 
 

In this section, the RD performance of the proposed approach is 
presented and compared with the TDWZ video codec described in 
Section 2 as well as relevant benchmarks. The test sequences are 
149 frames of Foreman, Hall Monitor, Soccer, and Coast-guard 
with 15Hz frame rate and QCIF format. GOP (group of pictures) 
size is 2, where the odd frames are coded as key frames using 
H.246/AVC Intra and the even frames are coded using Wyner-Ziv 
coding. Eight RD points (Qj) are considered corresponding to eight 
4x4 quantization matrices [6]. The values within these matrices 
determine the number of bitplanes associated to the DCT 
coefficient bands, therefore, the number of LDPCA decoding 
instances is known. The proposed scheme uses m (number of 
bitplanes of a given band) regular LDPC accumulate decoders [15] 
with a length of 1584 bits for each. So 1584 transform coefficients 
per given band of a frame are decoded in parallel at a time by m 
LDPCA decoders each decoding one bitplane.  

Table 1 shows rate and PSNR values of the proposed TDWZ 
codec with parallel iterative decoding as well as the savings in total 
rate, R (in %), and WZ rate, RWZ (in %), compared with the 
TDWZ codec [10]. The proposed scheme achieves a reduction of 
bit-rate for WZ frames up to 3.53% for Foreman; 5.61% for Hall 
Monitor; 4.13% for Soccer; 3.75% for Coast-guard. It can be 
noted that the PSNR values are the same for both the proposed 
scheme and TDWZ in [10]. In addition, the relative average bitrate 
savings for the TDWZ [10], [13], and the proposed scheme over 
the DISCOVER codec for WZ frames are 11.97%, 13.78%, 
15.44%, respectively (by average of the Bjøntegaard metric [18] 
for the 4 test sequences). Overall RD performance of the proposed 
scheme is depicted in Figs. 3-4. It can be seen that RD 
performance has been significantly improved compared with the 
DISCOVER codec. The performance of H.264/AVC Intra coding 
and No Motion Inter coding are also included. It can be noticed 
that the TDWZ video coding with the proposed scheme gives a 
better RD performance than H.264/AVC Intra coding for some 
sequences, e.g. Hall Monitor and Foreman, but remain worse than 
H.264/AVC no motion Inter coding for most of the test sequences. 
However, the gaps between no motion Inter coding and TDWZ are 
significantly reduced. 
 

5. CONCLUSION 
 

A Wyner-Ziv video codec with parallel iterative LDPC decoding is 
discussed in this paper. The technique takes bitplane correlation 
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into account by iteratively refining the soft-input for each bitplane 
and updating the noise distribution during decoding. Experimental 
results show that the proposed scheme can improve the coding 
efficiency of TDWZ in terms of WZ rate savings up to 5.6% 
compared with the available TDWZ video codec [10] and provide 
better RD performance than the DISCOVER codec. 
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   Fig. 3. RD performance comparison on Hall                                  Fig. 4. RD performance comparison on Foreman 

Foreman Hall Soccer Coast-guard 
Qj Rate 

[kbps] 
PSNR 
[dB] 

R 
[%] 

RWZ 
[%] 

Rate 
[kbps] 

PSNR 
[dB] 

R 
[%] 

RWZ 
[%] 

Rate 
[kbps] 

PSNR 
[dB] 

R 
[%] 

RWZ 
[%] 

Rate 
[kbps] 

PSNR 
[dB] 

R 
[%] 

RWZ 
[%] 

1 72.01 28.67 0.95 2.57 84.21 31.55 0.79 5.61 57.69 28.01 2.75 4.13 81.32 28.59 0.75 3.75 
2 86.25 29.36 1.45 3.53 94.55 32.13 0.87 4.80 70.81 28.60 2.65 3.86 99.57 29.32 0.61 2.65 
3 95.88 29.87 1.28 3.10 97.44 32.15 0.81 3.95 81.39 29.41 2.32 3.48 102.86 29.36 0.65 2.57 
4 151.90 32.44 1.00 2.42 131.26 34.42 0.72 3.41 134.70 32.04 1.81 2.85 152.42 31.15 0.75 2.76 
5 157.88 32.50 1.17 2.69 133.99 34.42 0.75 3.28 139.99 32.09 1.91 2.95 168.23 31.69 0.82 3.15 
6 202.65 33.74 1.51 3.26 167.55 36.03 0.89 3.43 182.68 33.16 2.12 3.23 223.18 32.98 1.21 4.22 
7 271.13 35.90 1.03 2.25 195.38 37.43 0.89 3.30 250.07 35.16 1.45 2.29 265.04 33.87 1.02 2.95 
8 432.61 39.31 0.79 1.62 289.88 40.84 1.16 4.06 447.12 39.02 1.18 1.99 437.98 37.04 0.89 2.22 
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Abstract—The noise model is one of the most important 

aspects influencing the coding performance of Distributed 
Video Coding. This paper proposes a novel noise model for 
Transform Domain Wyner-Ziv (TDWZ) video coding by using 
clustering of DCT blocks. The clustering algorithm takes 
advantage of the residual information of all frequency bands, 
iteratively classifies blocks into different categories and 
estimates the noise parameter in each category. The 
experimental results show that the coding performance of the 
proposed cluster level noise model is competitive with state-of-
the-art coefficient level noise modelling. Furthermore, the 
proposed cluster level noise model is adaptively combined with 
a coefficient level noise model in this paper to robustly improve 
coding performance of TDWZ video codec up to 1.24 dB (by 
Bjøntegaard metric) compared to the DISCOVER TDWZ 
video codec.  
 

I. INTRODUCTION 
In recent years, the conventional video coding 

architecture has been challenged by some emerging 
applications such as video surveillance, video sensor 
networks and wireless cameras etc. In contrast to 
conventional downstream applications, these applications 
are rather relying on an upstream model. In this case, many 
clients such as mobile communication devices with limited 
resources are transmitting data to a network. These 
applications require a relative low cost encoder with high 
coding efficiency. Distributed Video Coding (DVC) [1][2] 
is proposed to match the low cost encoding requirement, by 
exploring the video statistics, partially or totally, at the 
decoder only. DVC is an interesting instance of distributed 
source coding. According to the Slepian-Wolf theorem [3], 
it is possible to achieve the same rate by independently 
encoding but jointly decoding two statistically dependent 
signals as for typical joint encoding and decoding (with a 
vanishing error probability). The Wyner-Ziv theorem [4] 
extends the Slepian-Wolf theorem to the lossy case, 
becoming the theoretical basis for DVC where source data 
are lossy coded and decoded based on a correlated source at 
the decoder providing the so-called side information. 
Distributed video coding also provides a flexibility between 
encoder and decoder(s) which may be useful in a distributed 
environment.  

Transform Domain Wyner-Ziv (TDWZ) [5] video coding 
is one popular approach to DVC. The decoder needs to have 
the correlation noise between corresponding source and the 

side information obtained through the frame interpolation at 
the decoder side. Therefore, the noise model is one of the 
most important aspects influencing the coding efficiency. 
The Laplacian distribution is commonly used for noise 
modelling [6]-[8]. The real noise reveals that it is not 
equally distributed across the frame even within one 
frequency band in the transform domain. In other words, the 
noise distribution is different for each object. For the 
adaptive noise modelling [6]-[8] uses both frame level and 
coefficient level estimates. The accuracy highly depends on 
the individual estimated noise residue. As a result, noise 
models may have less confidence when moving from the 
band level to the coefficient level especially when the 
estimated noise residue is not accurate enough. Inspired by 
the above, the noise distribution could be more accurately 
estimated based on classified blocks. 

Related work on noise models is presented in [9]-[11]. 
These techniques consider different classes of correlation 
noise for each band of the side information. The technique 
in [9]-[10] estimates the correlation noise by differentiating 
blocks within a frame based on the accuracy of the side 
information. A residual energy between source and side 
information of a given block is used to classify blocks to 
classes by given thresholds. The Laplacian parameter is 
assigned through a lookup table once the block class is 
determined. The drawback of this work is that it only uses 
the residual energy information obtained between forward 
and backward interpolation based on the initial side 
information of a given block to classify blocks. The more 
reliable information of already decoded bands is not utilized 
at all. The thresholds defining the classes and the 
corresponding lookup table for decoder side use was 
obtained offline by using the training set. In [11], the 
reconstructed bands were used to influence the estimation 
for subsequent bands by classifying the reconstructed band 
into two categories. The bands were decoded conditioning 
on previous bands. The method in [11] has the disadvantage 
that it does not use the correlation of all bands but only 1-2 
already decoded neighboring bands. Furthermore, two 
categories may not be enough to fully utilize the correlation.  

In this paper, we propose a novel approach to adaptively 
estimate the Laplacian parameter by using clustering of 
DCT blocks. The clustering algorithm not only utilizes 
correlation over all frequency bands in a wise way but it 
also takes decoded bands into account. The intuition here is 
that the cross-band correlation and the successfully decoded 
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information can significantly influence the reliability of 
block classification and consequently the accuracy of noise 
parameter estimation of subsequent bands. Furthermore, in 
order to take advantage of adaptive correlation noise 
modeling, the proposed noise model is combined with the 
noise model in [11] to adaptively optimize the soft side 
information for LDPCA decoding. The two noise models 
compete which could be implemented in a distributed 
environment. The rest of this paper is organized as follows. 
In Section II, the architecture of a state-of-the-art TDWZ 
video codec is presented. We describe our proposed noise 
model in Section III. In Section IV, the performance of the 
proposed method is evaluated and comparisons are 
presented as well.  

II. STATE-OF-THE-ART TRANSFORM DOMAIN WYNER-ZIV 
VIDEO CODING 

The architecture of a TDWZ video codec [11] is depicted 
in Fig. 1. In this system, the frame sequence is split into key 
frames and so-called Wyner-Ziv frames. Key frames are 
intra coded using conventional video coding techniques 
such as H.264/AVC intra coding. The Wyner-Ziv frames are 
transformed, quantized and decomposed into bitplanes. Each 
bitplane is fed to a rate-compatible LDPC Accumulate 
(LDPCA) encoder [12] from most significant bitplane (MSB) 
to least significant bitplane (LSB). Corresponding error 
correcting information is stored in a buffer. The amount of 
information to be transmitted depends on the requests made 
by the decoder through a feedback channel. The Wyner-Ziv 
frame is predicted at the decoder side by using already 
decoded frames as references [8]. The predicted frame, 
called the Side Information (SI) frame, is an estimation of 
the original Wyner-Ziv frame available at the encoder.  
Given the available SI, soft-input information (conditional 
bit probabilities Pr) within each bitplane is estimated using 
a noise model. Thereafter the LDPCA decoder starts to 
decode the various bitplanes, ordered from MSB to LSB, to 
correct the bit errors. After all the bitplanes are successfully 
decoded, the Wyner-Ziv frame can be decoded through 
combined de-quantization and reconstruction followed by an 
inverse transform. 

  

 
Fig. 1.  Architecture of feedback channel based Transform Domain Wyner-
Ziv video codec 

III. WYNER-ZIV CODING WITH ADAPTIVE NOISE MODEL 

As described in Section II, in order to take advantage of 
the side information for decoding, the Wyner-Ziv decoder 
needs an accurate noise model describing the distribution of 
the difference between the original Wyner-Ziv frame and 
the SI frame. An online noise model using clustering of 
DCT blocks is introduced below. Thereafter, this model is 
extended by adaptively selecting this model or the model in 
[11] for each bitplane. 

A. Online noise model using clustering of DCT blocks 
The motivation for online noise model parameter 

estimation using clustering of DCT blocks is that the 
coefficients in each cluster are closely correlated, assuming 
the clusters of the estimated residues are reliable enough. 
The Laplacian distribution estimated within each cluster is 
utilized to model the correlation noise in Wyner-Ziv video 
coding. The residual frame calculated as the difference 
between the motion compensated previous and the next key 
frames is first constructed. Often, the variance [13] of the 
correlation noise is estimated from the variance of the 
residual frame at different granularity levels: frame, block 
[11], and coefficient. In this paper, we first replace these 
levels with a cluster level obtained by clustering the DCT 
blocks. Assume that the residual frame is classified into 
non-overlapping sub-sets. The variance of the residual frame 
that is an approximated residual between the original 
Wyner-Ziv frame X and the side information frame Y is 
higher than the expected variance of the sub-sets (see 
Appendix B). This means that the estimation at cluster level 
should be more accurate than at frame level.  

Let R be the residual frame in the transform domain. R is 
obtained by applying a 4-by-4-size block-based discrete 
cosine transform over the residual frame. Rk is used to 
indicate the kth block of N 4-by-4-size blocks of R, 1 k N. 
Each block Rk, considered as a feature vector, contains 16 
frequencies given by the transformed residual coefficients. 
Consider the kth block of band l and let l

kR (1 l 16) and 
l
kR̂ denote the initial coefficient of the residual and a refined 

coefficient based on the partially decoded information, 
respectively. 

The proposed method considers the transformed residual 
of frequency bands in a block as components of a vector and 
classifies each block into one of M categories by using the 
unsupervised clustering algorithm called Fuzzy-C means 
clustering [14]. Once a frequency band is successfully 
decoded, the information of vectors for all blocks is updated. 
Then the clustering algorithm is called again to classify for 
noise parameter estimation of the next band. This means that 
the proposed method not only correlates information of all 
bands in a precise way but takes decoded bands into account 
in the conditional decoding. In addition, the proposed noise 
model uses all bands of a block to create a feature vector for 
classification in order to take advantage of spatial 
correlation among blocks.  

The proposed noise model consists of 3 steps as follows: 

132 Publications



1)  Clustering of DCT blocks: Our block clustering 
algorithm is working on a set of N feature vectors ,kR where 

kR =( 1
kR , 2

kR ,…, 16
kR ) is initialized based on the motion 

estimated residual before decoding the first band DC and 

kR = ( 1ˆ
kR , 2ˆ

kR ,…, 1ˆ −l
kR , l

kR , 1+l
kR ,..., 16

kR ) is the updated 
residual based on successfully decoded bands (up to band l-
1) before decoding band l. The set is separated into M 
clusters by using Fuzzy-C means clustering [14] (as applied, 
the algorithm is described in Appendix A). Let l

kjR denote 

the coefficients of feature vectors and l
jα  denote the 

Laplacian noise distribution parameter of a cluster j (1 j M) 
containing Nj elements of band l, where =

j
j NN .  

Fig. 2 illustrates an example of clustering of DCT blocks. 
The original WZ frame (a) is frame #22 of Foreman 
sequence. The residual frame R (b) before decoding the first 
band DC in the transform domain is estimated at the decoder 
side. Then the residual is classified into 3 clusters (M=3) 
that are presented by binary masks: (c) Cluster 1, (d) Cluster 
2, and (e) Cluster 3, respectively. 

 

 
(a) Original frame #22 

 

  
              (b) Residual frame R                            (c) Cluster 1 
 

  
 (d) Cluster 2                             (e) Cluster 3 

Fig. 2. (a) Original frame, (b) Residual frame R in the transfrom domain, (c) 
Cluster 1, (d) Cluster 2, and (e) Cluster 3, respectively, of Foreman frame 
#22 before decoding the first band DC with M=3 

2)  Noise parameter estimation: In one band l, noise 
parameters l

jα  are obtained based on the observation for 

each cluster j of the band. This means l
jα is estimated for the 

Laplacian distribution of a cluster j containing Nj elements 
of given band l by utilizing the variance 2l

jσ  as: 

l
j

l
j σα 2= , where |][|]|[| 22 l

kj
l
kj

l
j RERE −=σ  where 

E[.] is the expectation operator. As a result, there are M 
noise parameters for the M clusters in a given band l. 

3)  Updating:  The bands are decoded in a zig zag order 
starting from DC and traversing AC coefficients following 
the order in [11]. Whenever a band l is successfully decoded, 
the coefficients of the band are reconstructed. This means 
that the set of feature vectors is now updated as 

kR =( 1ˆ
kR , 2ˆ

kR ,…, 1ˆ −l
kR , l

kR̂ , 1+l
kR ,..., 16

kR ) before decoding 
band l+1. The set of updated feature vectors is used to 
reclassify by going back to Step 1 and then update 1+l

jα for 
the next band l+1 to be decoded as Step 2 above. When all 
bands are successfully decoded, the algorithm is completed. 

The proposed noise model is working on cluster level. 
This can achieve competitive results compared to the 
coefficient level noise model in [11] (as shown in Table I in 
Section IV). By experimental observations, performance of 
the proposed noise model may be worse than the one in [11] 
for some individual frames. The reason is that the estimation 
is more accurate at coefficient level in the case that the 
estimated noise residue highly depends on coefficient values. 
In order to take fully advantage of both of the noise models, 
an adaptive noise model, which adaptively combines cluster 
level and coefficient level noise models, is proposed in the 
next subsection.  

B. TDWZ with adaptive noise model 

 
Fig. 3. TDWZ with adaptive noise model 

The proposed method adaptively estimates the noise 
distribution by combining both the above noise model (Sec. 
III.A) and the noise model [11] as illustrated in Fig. 3. This 
combination creates two different noise parameters 1α and 

2α  as input to the Soft Input Estimation block.  The 
LDPCA module tries to decode both options of soft side 
information Pr1 and Pr2. The LDPCA then selects the soft 
side information that converges first during decoding for 
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each bitplane. In other words, the decoder adaptively 
optimizes the consumed bits for decoding. In addition, the 
chosen noise model for one specific bitplane is also used for 
the minimum mean squared error reconstruction process 
[15]. The adaptive noise model takes advantage of both the 
noise models (Sec. III.A) and [11] where the optimized 
selection is used for both LDPCA decoding and 
reconstruction. As a consequence, the cluster level and 
coefficient level noise model can compensate each other’s 
weaknesses and achieve gains both in bit-rate and PSNR 
performance.  

IV. PERFORMANCE EVALUATION 
In this section, the Rate Distortion (RD) performance of 

the proposed noise model is evaluated and compared to the 
method in [11] and the noise model in [9]. The test 
sequences are 149 frames of Foreman, Hall Monitor, Soccer, 
and Coast-guard with 15Hz frame rate and QCIF format. 
GOP (group of pictures) size is 2, where odd frames are 
coded as key frames using H.246/AVC Intra and even 
frames are coded using Wyner-Ziv coding. Eight RD points 
are considered corresponding to eight 4x4 quantization 
matrices [6].  The number of clusters (M) used in both the 
proposed method and [9] is 8. In this paper, the Fuzzy-C 
means clustering as described in Appendix A is configured 
with the fuzzification degree m=2 and the predefined 
termination threshold ε =0.0001. 

Table I and Table II show the relative average bitrate 
savings and equivalently the average PSNR improvement 
(using the Bjøntegaard metric [16] and fitting a curve 
through the 8 RD points measured) over the DISCOVER 
codec for WZ frames and overall frames, respectively. The 
improvements are reported for the TDWZ (described in 
Section II) with the noise model in [9] (TDWZ offline), the 
coefficient level noise model in [11], and the proposed noise 
model. The average bitrate saving for the proposed noise 
model is up to 24.57% and 13.74% (or equivalently the 
average improvement in PSNR is up to 1.24 dB and 0.69 dB) 
for WZ frames and overall frames, respectively, for the 
difficult Soccer sequence. In general, the performance of the 
proposed noise model in Sec. III.A is competitive with the 
noise model in [11] and robustly better than using the noise 
model in [9]. For both the relative bitrate saving and PSNR 
improvement, the adaptive noise model introduced in 
Section III.B is robustly better than the others.  

The overall RD performance of TDWZ with different 
noise models is illustrated in Fig. 4. The performance of 
H.264/AVC Intra coding and No Motion Inter coding are 
also included. It can be noticed that the TDWZ video coding 
with the proposed noise model gives a better RD 
performance than H.264/AVC Intra coding for Foreman, 
Hall Monitor, and Coast-guard, but it is still not as good as 
H.264/AVC no motion Inter coding for most of the test 
sequences. The RD performance of TDWZ with the 
proposed noise model clearly outperforms those of [9] 
(TDWZ offline), [11], and DISCOVER. 

V. CONCLUSION 
This paper proposes an adaptive noise model for Wyner-

Ziv video codec using clustering of DCT blocks. The 
technique not only utilizes correlation over all frequency 
bands but takes advantage of decoded bands to influence the 
decoding of subsequent bands. Experimental results show 
that the coding efficiency of the proposed noise model using 
clustering of DCT blocks is competitive with the coefficient 
level noise model. Moreover, the proposed adaptive noise 
model can significantly improve the RD performance of 
TDWZ compared to the existing TDWZ noise models 
[9],[11]. The average bitrate savings of TDWZ using the 
adaptive noise model is up to 24.57 % (equivalent average 
improvement in PSNR is up to 1.24 dB) over the 
DISCOVER codec. 
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APPENDIX A. 
The fuzzy C-means (FCM) clustering algorithm [14]: 

Consider a given finite set R, with elements 16ℜ∈kR  i.e. 
the set of 16-dimensional real numbers called the feature 
space, i.e. { }NRRRR ,...,, 21= with feature 

vectors ).,...,,( 1621
kkkk RRRR =  Let V = ),...,,( 21 MVVV  

be the cluster centres, .16ℜ∈iV  A feature vector 

kR belongs to a specific cluster iV that is given by the 

membership value iku which can be represented by a 

matrix MNU ℜ∈ , where MNℜ is the set of real M×N 

matrices.  
The FCM algorithm iteratively optimizes the standard 

FCM objective function defined as: 

( ) ( )2

1 1
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ikm duVUJ

= =

=  

where 22
ikik VRd −= represents the squared Euclidean 

distance between the feature vector kR  and centre iV , m 1 
is the degree of fuzzification. The optimization is initiated 

using the constraint 1
1

=
=

M

i
iku  . 

Local minimization of the objective function Jm(U,V) is 
accomplished by iteratively adjusting the values of iku and 

iV  according to the following equations: 
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As mJ  is iteratively minimized, iV  becomes more stable. 
Iteration of feature vector groupings is terminated at 
iteration t when the termination measurement 

{ } ε<− −

≤≤

)1()(

1
max t

i
t

i
Mi

VV  is satisfied, where )(t
iV is an 

updated centre, )1( −t
iV is the previous centre, and ε is the 

predefined termination threshold. Finally, all feature vectors 
are classified into clusters by assigning a feature vector 

kR to the cluster jV for { }ik
Mi

jk uu
≤≤

=
1
max . The FCM 

algorithm converges to a minimum or a saddle point [17]. 

APPENDIX B. 
The cluster-based variance: The proposed method is 

motivated and supported by the following lemma evaluating 
the cluster-based variance. 

Lemma: Let R be a data set where R is classified into 
non-overlapping sub-sets. The variance 2 of a set R is 
higher than the expected variance of the sub-sets.  

Proof: Assume R={Rk},1 k N is separated into M clusters, 
for instance, cluster j (1 j M) includes Nj elements that are 
denoted by Rj(i)

 (1 i Nj), where =
j

j NN .  

2 and j
2 are the variances of R and a set j including Nj 

elements Rj(i) given j, respectively. What we need to prove is: 

−≥
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where Ej[.] is the expectation operator of elements given j, 
this means the elements Rj(i) are included in a set j.  
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which is true due to the Cauchy–Schwarz inequality for 
any real number Nj > 0 and Rj(i). The two sides are equal 

if and only if the ratios  
j

i
ij

N

R )(
 are equal. 
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TABLE I 
RELATIVE BIT-RATE SAVING (%) AND PSNR DIFFERENCE (DB) OF TDWZ [9], [11], AND THE PROPOSED OVER DISCOVER FOR WZ FRAMES  

Sequence 
Relative bit-rate saving (%) PSNR difference (dB) 

TDWZ 
offline  

TDWZ 
[11] 

Proposed 
(Sec. III.A) 

Proposed 
(Sec. III.B) 

TDWZ 
offline 

TDWZ 
[11] 

Proposed 
(Sec. III.A) 

Proposed 
(Sec. III.B) 

Foreman 2.20 11.23 10.05 14.70 0.06 0.50 0.45 0.66 
Hall 3.56 5.96 6.86 11.50 0.18 0.27 0.32 0.52 
Soccer -8.05 20.88 15.70 24.57 -0.60 1.06 0.82 1.24 
Coast 8.67 9.80 11.64 15.36 0.25 0.29 0.35 0.47 

TABLE II 
RELATIVE BIT-RATE SAVING (%) AND PSNR DIFFERENCE (DB) OF TDWZ [9], [11], AND THE PROPOSED OVER DISCOVER FOR ALL FRAMES 

Sequence 
Relative bit-rate saving (%) PSNR difference (dB) 

TDWZ 
offline  

TDWZ 
[11] 

Proposed 
(Sec. III.A) 

Proposed 
(Sec. III.B) 

TDWZ 
offline 

TDWZ 
[11] 

Proposed 
(Sec. III.A) 

Proposed 
(Sec. III.B) 

Foreman 0.73 4.79 4.35 6.19 0.03 0.26 0.24 0.34 
Hall 1.84 1.98 2.42 3.39 0.13 0.15 0.18 0.25 
Soccer -6.24 11.49 8.56 13.74 -0.41 0.58 0.44 0.69 
Coast 3.16 3.36 4.03 4.94 0.15 0.16 0.19 0.23 

 

 

 
Fig. 4. Overall RD performance 

136 Publications



Multi-hypothesis Transform Domain Wyner-Ziv 
Video Coding including Optical Flow 

Xin Huang1#, Lars Lau Rakêt 2*, Huynh Van Luong#, Mads Nielsen*, François Lauze*, Søren Forchhammer#  
# DTU Fotonik, Technical University of Denmark,  

Building 343, Lyngby 2800, Denmark 
1xhua@fotonik.dtu.dk 

* Department of Computer Science, University of Copenhagen,  
Universitetsparken 1, Copenhagen 2100, Denmark 

2larslau@diku.dk 

 
Abstract—Transform Domain Wyner-Ziv (TDWZ) video 

coding is an efficient Distributed Video coding solution providing 
new features such as low complexity encoding, by mainly 
exploiting the source statistics at the decoder based on the 
availability of decoder side information. The accuracy of the 
decoder side information has a major impact on the performance 
of TDWZ. In this paper, a novel multi-hypothesis based TDWZ 
video coding is presented to exploit the redundancy between 
multiple side information and the source information. The 
decoder used optical flow for side information calculation. 
Compared with the best available single estimation mode TDWZ, 
the proposed multi-hypothesis based TDWZ achieves robustly 
better Rate-Distortion (RD) performance and the overall 
improvement is up to 0.6 dB at high bitrate and up to 2 dB 
compared with the DISCOVER TDWZ video codec. 

I. INTRODUCTION 
Distributed Video Coding (DVC) [1] provides a video 

coding paradigm which fully or partly exploits the temporal 
redundancy of video at the decoder, instead of at the encoder 
as in predictive video coding, thereby shifting computational 
requirements from encoder to decoder. This may be of interest 
when communicating video from mobile devices. Further the 
use of distributed source coding also provides flexibility on 
the decoder side. DVC is based on two major information 
theoretic results: the Slepian-Wolf [2] and Wyner-Ziv [3] 
theorems. The Slepian-Wolf theorem proves that, two 
statistically dependent discrete random sequences (X,Y) which 
are independently and identically distributed (i.i.d.) may be 
independently encoded but jointly decoded, at the same rate as 
for joint encoding and decoding. The Wyner-Ziv theorem 
extends the Slepian-Wolf theorem to lossy source coding of X 
based on side information Y at the decoder. This suggests that 
a novel video coding system, which encodes individual frames 
independently, but decodes them jointly, may achieve low 
complexity encoding with similar coding efficiency as 
conventional hybrid predictive video coding, notably if X and 
Y are jointly Gaussian and a mean-square error distortion 
measure is considered. 

Transform Domain Wyner-Ziv (TDWZ) video coding [4] is 
one efficient approach to DVC. Its coding efficiency is highly 
dependent on the accuracy of side information at the decoder. 
Most TDWZ video codecs are based on a single side 

information estimation mode. For example, in [5]-[9], there is 
one soft-input estimate available at the Wyner-Ziv decoder, 
obtained from side information frame generation and noise 
modeling.  Although the quality of side information frames 
and the accuracy of the noise model have been improved in 
[6][8][9], the coding efficiency of the single estimation mode 
TDWZ trails that of conventional video coding solutions, such 
as H.264/AVC, most notable in high motion sequences. 
Related work about multiple side information based TDWZ 
have been proposed in [10][11]. In [10], two different frame 
interpolation methods are employed, but the Wyner-Ziv 
decoder is only dealing with the average of two estimates for 
decoding and reconstruction. In [11], a set of weighted 
multiple soft-inputs are firstly developed in TDWZ, which is 
based on one frame interpolation and one frame extrapolation 
technique. However, the contribution brought by frame 
extrapolation is rather limited to the multiple soft inputs and 
the reconstruction in [11] was only based on one side 
information. Calculations of multiple side information and 
multi-hypothesis may also be considered in a distributed 
computing environment.  

In order to enhance performance and reduce the RD gap 
between TDWZ and conventional video coding, which is 
especially pronounced in high motion sequences, a novel 
multi-hypothesis based TDWZ decoder is introduced in this 
paper. The multiple side information is generated by both 
block based and optical flow based side information 
generation techniques. The intuition is that optical flow based 
frame interpolation can generate different side information 
and compensate the estimation weakness in block based 
methods.  An additional contribution of this paper is that the 
multiple soft-inputs for decoding and reconstruction are based 
on a weighted joint distribution in contrast to [11]. In this way, 
the proposed multi-hypothesis based TDWZ decoder will not 
only reduce the required bitrate for decoding but also improve 
the quality of reconstructed frames. 

The rest of this paper is organized as follows: Section II 
briefly describes the state-of-the-art TDWZ video coding with 
single side information estimation. In Section III, the proposed 
Wyner-Ziv decoder is introduced. Finally, the performance 
results are presented in Section IV. 
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II. TRANSFOM DOMAIN WYNER-ZIV VIDEO CODING WITH 
SINGLE SIDE INFORMATION 

In a TDWZ video codec with single side information 
estimation mode, the frame sequence is split into key frames 
and so-called Wyner-Ziv frames. Key frames are intra coded 
using conventional video coding techniques such as 
H.264/AVC intra coding. The Wyner-Ziv frames X are 
transformed, quantized and decomposed into bit planes. Each 
bit plane is fed to a rate-compatible LDPC Accumulate 
(LDPCA) encoder [12] from most significant bit plane (MSB) 
to least significant bit plane (LSB). Corresponding error 
correcting information is stored in a buffer. The amount of 
bits to be transmitted depends on the requests made by the 
decoder through a feedback channel. The original Wyner-Ziv 
frame available at the encoder is estimated at the decoder side 
by using already decoded frames as references. An adaptive 
weighted Overlapped Block Motion Compensation (OBMC) 
based frame interpolation scheme [6] is employed to generate 
an estimated side information frame Y. With the obtained 
estimation, soft-input information within each bit plane is 
estimated using a cross-band based noise model [13]. 
Thereafter the LDPCA decoder starts to decode the various bit 
planes, ordered from MSB to LSB, to correct the bit errors. 
After all the bit planes are successfully decoded, the Wyner-
Ziv frame can be decoded through combined de-quantization 
and reconstruction [10] followed by an inverse transform.  

In single side information estimation mode TDWZ video 
coding, the certainty of soft-input information plays a key role 
in terms of overall RD performance. The soft-input Pr is 
defined as a conditional probability of each bit bi being equal 
to 0 or 1, i.e. Pr ),,|( |

−= bfybP YXi , where y denotes the 
corresponding estimated side information value in transform 
domain for bit bi, YXf |  is an estimated probability density 
function obtained from the adopted noise model and b- is the 
information from the previously decoded bit planes. The 
quality of the reconstructed frame is highly dependent on the 
accuracy of the estimated noise distribution YXf | [10]. The 
TDWZ video codec with single side information estimation 
mode presented in this section is considered as the best 
available TDWZ codec [13]. As seen in Section IV, this gives 
better performance than the DISCOVER video codec due to 
better frame interpolation [6] and noise model [13]. For a 
detailed description, we refer to [13].     

III. MULTI-HYPOTHESIS BASED WYNER-ZIV DECODING 
As described in Section II, the essential aspects to improve 

the coding efficiency of TDWZ are the certainty of the soft-
input information fed into the LDPCA decoder and the 
accuracy of the noise distribution for frame reconstruction. To 
address these issues, a multi-hypothesis based Wyner-Ziv 
decoding is proposed. The Wyner-Ziv encoder is not changed, 
as the basic idea is to generate M (>1) different side 
information frames Yk, k (1,M], at the decoder for each 
Wyner-Ziv frame. Each side information frame is considered 
as an observation of the original Wyner-Ziv frame X with a 
different amount of noise. Processing multiple side 

information frames may reduce the bitrate required and 
improve the quality of reconstructed frame.  

The architecture of the proposed Wyner-Ziv video decoder 
with an example of two side information generation schemes 
(M=2) is presented in Fig. 1. In principle, there can be any 
number of competitive side information generation schemes at 
the proposed Wyner-Ziv decoder. The two different 
interpolation methods shown in Fig. 1 are the OBMC based 
frame interpolation introduced in [6] and a novel optical flow 
based frame interpolation method described in Section III-A. 
Each side information generation scheme not only creates an 
estimation of Wyner-Ziv frame, Yk, but also an estimated 
noise residue frame Rk. Rk is used to express the correlation 
noise between the Wyner-Ziv frame X and its estimated side 
information frame Yk. (We refer to Section III-A for more 
details.) 

Rk is used to calculate the parameter of the noise 
distribution 

kYXf |  outlined. The estimated noise residue Rk and 
side information frame Yk undergo the same 4x4 block DCT. 
Taking its corresponding transform coefficients as inputs for a 
coefficient level noise model [13], the noise distribution 

kYXf | between the estimated side information frame Yk and 
Wyner-Ziv frame X in transform domain is modeled by 
Laplace distributions. Each transform coefficient in a given 
band bl is assigned with an estimated Laplace distribution 
parameter ),( nmlb

kα , where (m,n) are the coordinates of the 
corresponding DCT coefficient. The value of the Laplacian 
parameter expresses the reliability of the corresponding 
estimated side information frame.  

With Laplacian parameters based on different calculations 
of Yk, multiple soft-inputs are calculated based on a proposed 
weighted joint distribution (described in Section III-B). All 
the hypotheses of soft-input are fed into a modified LDPCA 
decoder. The soft-input that converges first is chosen as the 
best candidate soft input for LDPCA decoding. Subsequently, 
the corresponding weighted joint distribution is given to the 

 
Fig. 1.  Architecture of multi-hypothesis TDWZ video codec based on 
two frame interpolation schemes 
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reconstruction module for minimum mean-square error 
reconstruction [10]. More details about the soft-input 
calculation and the reconstruction based on the joint weighted 
distribution are described in Section III-B. 

A. Optical Flow based Frame Interpolation 
The goal of optical flow estimation is to determine the 

apparent motion in a given video sequence, and the optical 
flow between two video frames I0 and I1 is the displacement 
field v  between these, i.e. in a suitable sense  

 

)())(( 01 zzz IvI =+ .                              (1) 

where 2ℜ∈z denotes the image coordinates. 
In recent years a large number of techniques have been 

proposed to determine optical flow, and the accuracy of 
optical flow algorithms has improved tremendously [14]. We 
use an optical flow algorithm that determines the optical flow 
by minimizing the energy functional OF given by 

 

zzzzzz d ||)(||d ||)())((||)( 2201 ∇+−+= vIvIvOF λ .      (2) 

This functional consists of a robust L1 norm of the data 
fidelity term (1) and a total variation (TV) regularization of 
the flow v . The parameter λ  determines the tradeoff between 
data fidelity and regularity of the estimated optical flow, and 
has been set to 10 in all experiments. The minimizing flow is 
calculated using a highly efficient method, relying on tools 
from non-smooth convex analysis in a coarse-to-fine pyramid 
setup, which was introduced in [15], and further improved in 
[16]. Here we use the very efficient GPU implementation 
described in [17], which allows for the inclusion of higher 
order terms in the frames I0 and I1, e.g. gradient information 
either alone or in conjunction to the luminance information. 
This can improve flow quality under difficult lighting 
conditions [18], but since the lighting is fairly constant in the 
test sequences, gradient information has not been included in 
the evaluation in Section IV. In general this method for 
calculating optical flow should be more robust under high 
motion than block based methods, as the estimation procedure 
is done in a spatial continuous setting and considers the 
frames on a number of scales, to align structures of different 
size. Furthermore it should handle luminance patterns 
undergoing strong deformation better, as neighborhood 
relations are less rigid when using TV regularization 
compared to the constraints imposed by blocks. On the other 
hand block based methods will typically perform better in low 
motion sequences. This is because the optical flow algorithm 
is fine-tuned for complex motion, so it will be more disposed 
to falsely interpreting small changes in the video frames as 
motion.  

For the interpolation, the forward flow v f  is calculated 
between two consecutive decoded key frames and the 
backward flow vb  is calculated between the same frames in 
reverse temporal order. For each of the flows an estimate of 
the intermediate frame can be produced as the one 
transporting the brightness patterns half way along the flow 
lines between the two key frames. This has the unfortunate 

consequence that the interpolated frames will be blank in 
regions undergoing disocclusion, since the optical flow will 
map away from these. To avoid this problem, one can utilize 
the principle that first following a forward flow line, and then 
taking the backward flow should bring one back to the starting 
point 

                  0)())(( =++ zzz ffb vvv .   (3) 

This identity only holds as long as we stay away from 
occlusion, but ignoring this, one can translate the coordinate 
system by vb for the forward flow and v f for the backward 
flow, which gives that the intermediate frame interpolations Yf  
and Yb  can be calculated as 

 

))(21()( 0 zzz bf vIY +=     and     ))(21()( 1 zzz fb vIY +=         (4) 
in every pixel point z , where the key frame evaluation points 
are rounded to nearest pixel. If a region of points in I0 is 
undergoing disocclusion along the forward flow lines to Yf , 
the equation (3) will not hold, but using (4) will then just 
assign the disoccluded region in Yf  with similar (in terms of 
value) nearby values in I0, because when looking along the 
backward flow lines, the disocclusion will be an occlusion, 
and this occluded region will be mapped to a nearby region in 
I0 that has similar values, since we are minimizing the data 
fidelity term (1). This means that we automatically have an 
implicit inpainting of holes in this scheme. Finally, the 
interpolated frame Y will be the average of Yf  and Yb  

( ))()(
2
1)( zzz bf YYY +=                        (5) 

and the noise residue frame R is calculated as the difference 
between the two estimated frames  

)()()( zzz bf YYR −= .                             (6) 
Given the forward and backward flows, this interpolation 
scheme is quite simple, but the process is independent of the 
flow calculations, so one could improve results by using a 
more sophisticated optical flow algorithm without altering its 
internal mechanics, e.g. a flow calculated using the excellent 
framework proposed by Xu et al. [19] would likely produce 
significantly better interpolations than the method used here 
[14].  

A number of alternative flow based interpolation methods 
have been compared to the one presented here. Interpolation 
based on direct interpolation along the flow lines and 
subsequent calculation of Y as a locally weighted average of 
the two intermediate frames, with weights determined from 
information about occluded/disoccluded areas, proved to give 
results that were marginally worse than (5). The more 
elaborate scheme presented in [20], where motion and 
interpolation are estimated simultaneously has been 
implemented, but while it provides interpolated frames that 
are visually more pleasing than (5), because the forward and 
backward flow will converge to a common interpolation, they 
are quantitatively inferior in terms of difference to the real 
frames. 
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B. Multi-hypothesis Soft-input and Reconstruction based on 
Joint Weighted Distribution  

With the obtained noise distribution 
kYXf | for each individual 

side information observation Yk, a joint weighted distribution 
F is defined as: 

=

=
M

k
YXjkj k

fwF
1

|
                 (6) 

where j, j [1,N] denotes the index of candidate joint 
weighted distribution, N is the total number of joint 
distributions employed candidates, and wjk denotes the jth 
predefined weighting parameter on side information k, k
(1,M] and 

=
=M

k jkw
1

1. M is the total number of distinct side 

information frames available at the decoder. (As the example 
shown in Fig.2, M=2, N=6).  

As the OBMC based frame interpolation scheme [6] gives 
better results on the different test sequences compared to the 
other side information techniques employed in this paper 
(shown in Table I), the soft input calculation is only based on 
the joint weighted distribution within a specific unreliable 
region specified by the set map. Outside of the map region, 
the side information is given by the OBMC based scheme. 
The values of the Laplacian parameters should express the 
reliability of the corresponding side information frame, thus 
an unreliable set Sk of each single side information estimation 
Yk in band bl can be determined by evaluating the individual 
Laplacian parameters and their corresponding mean value as: 

)}(),(|),{( lb

k
lb

kk EnmnmS αα <=                 (7) 
where ),( nmlb

kα  is the estimated Laplacian parameter of side 
information Yk at position (m,n) in band bl and E is the 
expectation operator. The overall unreliable region map is 
defined as a union of the sets Sk: 

k

M

k
Smap ∪=

=1
                        (8) 

The multi-hypothesis soft-input are calculated as:    

Prj= ∈
∉

−

−

mapiifbFyybP

mapiifbfybP

jMi

YXi

),,,..|(
),,,|(

1

1|1         (9) 

where Prj is the jth candidate soft-input fed into LDPCA 
decoder, bi denotes the ith bit in one bit plane, i is the one-
dimensional presentation of the coordinate (m,n), and y1...yM 
denote different side information values in transform domain 
based on diverse side information generation schemes. 
Particularly, y1 and 

1|YXf denote the corresponding side 
information value for bit bi and the estimated noise 
distribution based on the OBMC based frame interpolation 
scheme.  

All the hypotheses of soft-input, Prj, j [1,N], are fed into 
a modified LDPCA decoder. The first converging soft-input is 
chosen thus reducing the rate of LDPCA decoding. 
Subsequently, with the information of chosen soft-input, the 
corresponding joint weighted distribution Fj, j [1,N], in the 
unreliable region map is determined. Given this information to 
a proposed joint weighted distribution based on reconstruction 
module, the minimum mean-square error reconstructed 
value, ,'x in the unreliable region map is obtained as: 
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where [L,U) are decoded quantization intervals. Fj denotes the 
most accurate joint weighted distribution available at decoder. 
wjk (where

=
=M

k jkw
1

1) are predefined weighting parameters 

corresponding to Fj for side information k, k (1,M]. The 
reconstructed value outside the map region is calculated 
following the single side information reconstruction technique 
as in [11]. 

IV. EXPERIMENTAL RESULTS 
In order to make a fair evaluation of the proposed Wyner-

Ziv video coding, the test conditions adopted in this paper are 
the commonly used DISCOVER project [7] test conditions. 
The test sequences are Foreman, Soccer, Coastguard and Hall 
at 15 frames per second, QCIF, GOP size 2. Key frames are 
coded with H.264/AVC intra and QPs are chosen as in [7] so 
that the average quality of Wyner-Ziv frames is similar to the 
average quality of the key frames.  

First of all, in order to evaluate the performance of the 
optical flow based frame interpolation scheme described in 
Section III-B, the quality of interpolated frames is measured 
by average Peak Signal-to-Noise Ratio (PSNR) over the set of 
test sequences and compared with block based frame 
interpolation [6] and extrapolation [11] techniques in Table I. 
It can be seen that the OBMC based frame interpolation 
method gives better performance overall. However, optical 
flow based frame interpolation outperforms OBMC on the 
high motion sequences, e.g. Soccer, and on the individual 
interpolated frames with high motion, as shown in Fig. 2. On 
the other hand, block based methods typically perform better 
in low motion sequences. Taking these diverse side 
information generation schemes as input, the proposed 
Wyner-Ziv video decoder is able to combine the different 
estimated side information adaptively. 

The RD performance of the proposed TDWZ video coding 
is evaluated. Only the luminance component is coded, 
allowing for comparison with the DISCOVER codec [7] and 

TABLE I 
THE AVERAGE PSNR RESULTS FOR DIFFERENT SIDE INFORMATION 

GENERATION METHODS. KEY FRAMES ARE INTRA CODED WITH FIXED QP 

 
OBMC  based 
Interpolation 

[7] 

Optical Flow 
based 

Interpolation 

Block based 
Extrapolation 

[12] 

Foreman, 
QP=25 29.26 29.28 25.20 

Soccer, 
QP=25 21.30 22.43 19.26 

Coast, 
QP=26 31.83 30.92 28.55 

Hall,  
QP=24 36.46 32.28 33.24 
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the best available single side information mode TDWZ codec 
[13]. The performances of benchmark codecs, H.264/AVC 
Intra and Inter no motion, are also included.  The proposed 
Wyner-Ziv decoder is implemented in two different versions, 
by employing two frame interpolation schemes as shown in 
Fig. 1 (i.e. M=2) and three frame generation schemes (two 
frame interpolation shown in Fig. 1 plus the frame 
extrapolation technique employed in [12], i.e. M=3), 
respectively. In order to make the comparison fair, the number 
of candidate hypothesis is constrained to N=6 (also allowing 
for fair comparison with the similar complexity as in [11]). 
For the case M=2 and N=6, the weighting parameters used are, 
w1j={1;0.8;0.6;0.4;0.2;0} and  w2j=1-w1j, j [1,6]. For the case 
M=3 and N=6, the weighting parameters are empirically 
predefined as: w1j={1;0;1/2;1/2;0;1/3}, w2j={0;1;1/2;0;1/2;1/3}, 
and w3j={0;0;0;1/2;1/2;1/3}.  

 
Fig. 2. PSNR for interpolated frames of Foreman, (Key frames QP=25) using 
OBMC and optical flow  

 
Fig. 2 shows that the frame by frame interpolation 

performance may differ even though the overall performance 
is similar. 

 

 
Fig. 3.  Overall RD performance comparison for Foreman 

 

Fig. 4. Overall RD performance comparison for Soccer 

 
Fig. 5.  Overall RD performance comparison for Coastguard 

 
Fig. 6.  Overall RD performance comparison for Hall 

As shown in Figs. 3-6, the performance of the best 
available TDWZ with single side information [13] employed 
in this paper is significantly better than the DISCOVER video 
codec. With the proposed Wyner-Ziv video codec (with M=2 
and N=6 mode), the overall RD performance of TDWZ can be 
improved by up to 0.6 dB at high bitrate for the sequence 
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Soccer. The accumulated improvement compared to the 
DISCOVER codec is up to 2 dB at high bitrate. Compared 
with H.264/AVC Intra coding, the proposed TDWZ codec 
gives a better RD performance for relative low motion 
sequences, Foreman, Coastguard and Hall. For the high 
motion sequence Soccer, the performance gap compared to 
H.264/AVC Intra coding has been substantially reduced but 
not eliminated yet. It is worth to note that, the proposed 
TDWZ significantly outperforms H.264/AVC Inter no motion 
coding for Coastguard but still is not competitive for the other 
test sequences. 

RD improvements are also measured by average 
Bjøntegaard bitrate savings [21] over the DISCOVER codec 
and reported in Table II. It shows that the proposed Wyner-
Ziv video coding scheme (either M=2 or M=3 mode) 
outperforms DISCOVER codec and the best available single 
side information mode TDWZ [13]. By adding one more 
frame extrapolation scheme (M=3 mode) in the proposed 
Wyner-Ziv decoder, the performance can be further improved. 
Compared to the related previous work in [11] with the same 
N, the proposed scheme is also better. The proposed Wyner-
Ziv decoder provides larger gains for high motion sequences 
like Foreman and Soccer with average rate gain up to 44.5% 
for Wyner-Ziv frames (24.2% for overall performance) 
compared to DISCOVER codec. Although the OBMC based 
frame interpolation is quite efficient (see Table. 1) in single 
side information mode TDWZ for low motion sequences, e.g. 
Hall, the other side information generation methods can still 
contribute to RD performance improvement in the proposed 
multi-hypothesis Wyner-Ziv decoder. 

TABLE II 
BJØNTEGAARD AVERAGE BITRATE SAVINGS IN PERCENTAGE COMPARED 

WITH DISCOVER TDWZ VIDEO CODEC  

V. CONCLUSION 
A novel multi-hypothesis TDWZ video coding including 

optical flow frame interpolation is proposed in this paper. The 
multiple side information is generated by both block based 
and optical flow based side information generation techniques. 
Multi-hypothesis soft-input is utilized for both decoding and 
reconstruction based on weighted joint distributions. In this 
way, the proposed scheme is not only able to reduce the 
required bitrate for decoding but also improve the quality of 
reconstructed Wyner-Ziv frame. Compared with the best 
available single side estimation mode TDWZ video coding, 
the overall RD performance can be improved up to 0.6 dB and 
up to 2 dB compared with DISCOVER TDWZ video codec.  
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RD improvement measured in average bitrate savings  
(in %) over DISCOVER codec for WZ frames and for 

overall performance in parentheses 
Best 

Available 
TDWZ with 

Single SI [13] 

Related 
Previous 

Work in [11] 

TDWZ with 
M=2 SI 

TDWZ with 
M=3 SI 

Foreman 13.3 (5.71) 20.3 (8.50) 27.0 (10.9) 31.4 (12.6) 
Soccer 23.1 (12.8) 29.5 (16.5) 41.2 (22.6) 44.5 (24.2) 
Coast 11.5 (3.91) 16.4 (5.22) 17.4 (5.51) 19.1 (5.96) 
Hall 8.77 (2.72) 14.1 (3.88) 13.3 (3.78) 14.3 (3.94) 
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Abstract—Distributed video coding (DVC) is a coding paradigm 
which exploits the source statistics at the decoder side to reduce 
the complexity at the encoder. The noise model is one of the 
inherently difficult challenges in DVC. This paper considers 
Transform Domain Wyner-Ziv (TDWZ) coding and proposes 
noise residual learning techniques that take residues from 
previously decoded frames into account to estimate the decoding 
residue more precisely. Moreover, the techniques calculate a 
number of candidate noise residual distributions within a frame 
to adaptively optimize the soft side information during decoding. 
A residual refinement step is also introduced to take advantage of 
correlation of DCT coefficients. Experimental results show that 
the proposed techniques robustly improve the coding efficiency of 
TDWZ DVC and for GOP=2 bit-rate savings up to 35% on WZ 
frames are achieved compared with DISCOVER. 

Keywords- Distributed Video Coding; noise residual learning; 
adaptive noise model 

I.  INTRODUCTION 

Distributed video coding is an interesting instance of 
distributed source coding where the video redundancy is partly 
or fully exploited at the decoder side. In recent years, 
conventional video coding has been challenged by some 
emerging applications such as video surveillance, video sensor 
networks etc. that require a relatively low cost encoder with 
high coding efficiency. DVC [1][2] has been proposed as a 
solution. DVC is based on two information theory theorems, 
the Slepian-Wolf theorem [3] and the Wyner-Ziv theorem [4], 
where source data are independently lossy coded but jointly 
decoded based on a correlated source at the decoder. 

Transform Domain Wyner-Ziv (TDWZ) [1] video coding is 
one popular DVC scheme where the noise estimation is one of 
the most important aspects influencing the coding performance. 
The decoder needs to estimate the correlation between the 
corresponding source and the side information which can be 
obtained through frame interpolation at the decoder side. The 
accuracy of the correlation has a significant impact on the 
compression performance of DVC. Several correlation noise 
models [5]-[7] have been proposed, where the Laplacian 
distribution is commonly used for the DCT coefficients. The 
noise model uses different granularity levels, e.g. frame level, 
band level, and coefficient level. More recently, an adaptive 
noise model using clustering of DCT blocks has been presented 
[8]. The technique not only utilizes the correlation over all 
frequency bands but takes the decoded bands into account to 
influence the decoding of subsequent bands. Our goal is to 
improve coding efficiency by improving the adaptive noise 
modeling by introducing better learning of correlations using 
both spatial and temporal correlation.  

Estimating the correlation noise has been enhanced by 
correlation of coefficients in each residual frame [5]-[6] or 

noise residual refinement [7] in the transform domain. The 
noise residue refinement updates the estimated noise residue 
for noise modeling and side information quality during 
decoding. In order to improve the noise estimation, this paper 
proposes a refinement technique that utilizes the correlation of 
neighbor coefficients to refine the coefficient considered, and 
thereafter, updates the noise parameters. To utilize the temporal 
redundancy, the paper uses residuals of already decoded frames 
to influence the noise distribution of the current frame. Finally, 
adaptive optimization of the number of clusters in the noise 
model is addressed to adaptively get the best soft side 
information during decoding. The rest of this paper is 
organized as follows. In Section II, the architecture of a TDWZ 
video codec is presented. The new learning techniques 
proposed are described in Section III. Section IV analyzes and 
compares the performance of our approach to other existing 
methods. 

II. TRANSFORM DOMAIN WYNER-ZIV VIDEO CODING  

The architecture of a state-of-the-art TDWZ video codec 
[7] is depicted in Fig. 1. In this system, the frame sequence is 
split into key frames and so-called Wyner-Ziv frames. Key 
frames are intra coded using conventional video coding 
techniques such as H.264/AVC intra coding. The Wyner-Ziv 
frames are transformed (4x4 DCT), quantized and decomposed 
into bitplanes. Each bitplane is fed to a rate-compatible LDPC 
Accumulate (LDPCA) encoder [9] from most significant 
bitplane (MSB) to least significant bitplane (LSB). The 
corresponding error correcting information is stored in a buffer. 
The amount of information to be transmitted depends on the 
requests made by the decoder through a feedback channel.  

Wyner-Ziv DecoderWyner-Ziv Encoder
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Figure 1.  Architecture of feedback channel based Transform Domain 

Wyner-Ziv video codec 
The Wyner-Ziv frame is predicted at the decoder side by 

using already decoded frames as references. The predicted 
frame, called the Side Information (SI) frame, is an estimation 
of the original Wyner-Ziv frame only available at the encoder.  
Given the available SI, soft-input information (conditional 
probabilities Pr at bit-level) within each bitplane is estimated 
using a noise model. Thereafter the LDPCA decoder starts to 
decode the various bitplanes, ordered from MSB to LSB, to 
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correct the bit errors. After all the bitplanes are successfully 
decoded, the Wyner-Ziv frame can be decoded through 
combined de-quantization and reconstruction followed by an 
inverse transform. 

III. NOISE RESIDUAL LEARNING FOR ADAPTIVE NOISE 

MODEL 

We consider the difference between the original Wyner-Ziv 
frame X and the side information frame Y.  The residual 
difference between the transformed coefficients of the WZ 
frame and the interpolated frame will be modeled by a 
Laplacian distribution with probability density 
function |)|exp()2/()( μαα −−= rrf . 

We consider the rate distortion bounds that depend on the 
variance of a source. It is stated in [10] that for a quadratic 
distortion D and memoryless source with variance 2σ and 
entropy power Q, the upper and lower rate distortion 

)(Dℜ bounds are: 

( )
D

D
D

Q 2

log
2

1
log

2

1 σ
≤ℜ≤                       (1) 

where the entropy power is )2exp()2/1( HeQ π= and H denotes 
the entropy of the source. For the Laplacian distribution, H 
may be calculated specifying a lower bound and thus: 

( )
D

D
D

e 22

log
2

1
log

2

1 σσ
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The bounds could be reduced if we split the outputs of a given 
source into a number of clusters having different variance. This 
may e.g. be shown based on the convexity of the log-function 
and Jensen’s inequality. We will consider using clustering for 
DVC noise modeling below. 

A. Adaptive Noise Model using Clustering of DCT Blocks 
The decoder must estimate the statistics of the residual 

without access to the original frame X. Consistent with the 
remarks above, it was noted in [8] that the variance of the 
residual frame based on an estimated residual is higher than the 
expected variance of the sub-sets. This motivates reducing the 
codelength by clustering into several clusters. Therefore, the 
techniques proposed in this paper are based on the adaptive 
noise model using clustering of DCT blocks [8]. Basically, the 
adaptive noise model method considers the (4x4 DCT) 
transformed residual of frequency bands in a block as 
components of a vector.  

Let R be the residual frame in the transform domain. It is 
initialized at the decoder based on the difference between 
matching blocks of the reference images. Rk is used to indicate 
block k out of N 4x4 blocks in R, 1 k N. Each block Rk, 
considered as a feature vector, contains 16 frequencies given 
by the transformed residual coefficients. Consider block k of 
band l and let l

kR (1� l� 16) and l
kR̂ denote the initial 

coefficient of the residual and a refined coefficient based on the 
partially decoded information, respectively. The feature vector 
of each block

kR =( 1ˆ
kR , 2ˆ

kR ,…, 1ˆ −l
kR , l

kR , 1+l
kR ,..., 16

kR ) is classified 

into one of M categories, which in turn provides an estimate of 
the noise parameter. Furthermore, the proposed cluster level 
noise model is adaptively combined with a band level noise 
model. The clustering technique in [8] was updated at 
coefficient level and is here extended by updating at bitplane 
level. The noise residue refinement is exploited by an adaptive 

noise model [8] which is applied on a bitplane level noise 
residue refinement and adopted and integrated in the DVC 
scheme in [7]. The refinement is carried out once a bitplane is 
successfully decoded. Using this as the noise model in Fig. 1 is 
referred to as Model A.  

B.  Noise Model using Neighbors in Residual Refinement  
To take advantage of the correlation of the residual of DCT 

coefficients between neighbors within each band, refinement of 
residuals is proposed. This residual refinement technique uses 
neighbor residual coefficients along with the estimated noise 
parameters to refine the residual of the coefficient considered, 
and thereafter, updates the noise parameters. Let l

kjR denote the 

coefficients of feature vectors and l
jα  denote the Laplacian 

noise distribution parameter of a cluster j within band l. 
Assume that at the time band l needs to be decoded, l

jα  were 

obtained by clustering DCT blocks and estimating the noise 
parameter for each cluster j as in the online noise model using 
clustering of DCT blocks [8].  

Specifically, the extension (Model B) refines l
kjR based on 

l
jα and the 8-neighbor residual coefficients, indexed by s and 

denoted l
kjsR . Using the current coefficient l

kjR 0
and the 8-

neighbors, l
kjsR with 1 s 8, a refined l

kjR* is obtained by: 
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These refined residuals are used in the set of N refined 

feature vectors, *
kR = ( 1ˆ

kR , 2ˆ
kR ,…, 1ˆ −l

kR ,
l
kR* , 1+l

kR ,..., 16
kR ) used for 

decoding band l. The set is classified again into M clusters by 
using Fuzzy-C means clustering [8]. Consequently, refined 

noise parameters l
j

*α are obtained based on the observations 
within the current band for each refined cluster j. The bands are 
decoded starting from DC and proceeding with the AC 
coefficients in zig-zag order. Whenever a band l is successfully 
decoded, the coefficients of the band are reconstructed. This 
means that the set of feature vectors is now updated as 

kR =( 1ˆ
kR , 2ˆ

kR ,…, 1ˆ −l
kR , l

kR̂ , 1+l
kR ,..., 16

kR ) before decoding band l+1. 

The process is continued until all bands are successfully 
decoded.  

C. Noise Residual Learning using Previously Decoded 
Residual Frames 
This subsection extends the residual learning technique by 

using the previously decoded residual frames to influence the 
noise distribution of the current frame. The previously WZ 
decoded frames within a window are used to create decoded 
residual frames corresponding to the WZ decoded frames. The 
motivation is that the noise distributions based on previously 
decoded frames are available at the decoder and may be similar 
to the noise distribution of the current frame. To take advantage 
of both the previous decoded noise distributions and the 
estimated current noise distribution, the residuals based on 
previously decoded frames are used together with the current 
residual frame to form a set of data. Then the set is classified 
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into clusters to estimate noise parameters for each cluster of the 
residual frame considered. 

Let W be the window size specifying the number of 
previously decoded WZ frames for the learning process. We 
consider coding even frames using WZ coding, i.e. GOP size 2. 
Let

)22()22(
ˆ,...,ˆ

−− uWu RR denote residual based on previously 

decoded frames and 
)2( uR denote the current residual coefficient 

frame at 2u. Let
kukukWu RRR )2()22()22( ,ˆ,...,ˆ

−−
denote the block 

k, ,1 Nk ≤≤ of N 4x4 blocks of .,ˆ,...,ˆ
)2()22()22( uuWu RRR −−

For 

each of the residuals based on previously decoded frames, 
consider a set of N feature vectors

kuR )22(
ˆ

ω−
with ,1 W≤≤ ω where 

kuR )22(
ˆ

ω−
= )ˆ,...,ˆ,ˆ( 16

)22(
2

)22(
1
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holds the residuals 

of decoded bands. For the current residual frame
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),...,,,ˆ,...,ˆ,ˆ( 16
)2(

1
)2()2(

1
)2(

2
)2(

1
)2()2( ku

l
ku

l
ku

l
kukukuku RRRRRRR +−= is the 

updated residual based on successfully decoded bands (up to 
band l-1) before decoding band l. 

Consider W sets, 
ωS , of feature vectors where each set is 

created by combining N feature vectors 
kuR )22(

ˆ
ω−

of a previous 

frame with N feature vectors 
kuR )2(
of the current frame,  

}ˆ,{ )22()2( ωω −= uu RRS                             (4) 

Each set 
ωS is classified into M clusters by using Fuzzy C-

means clustering [8]. Thereafter noise parameters l
jωα  are 

obtained based on the observations for each cluster j of band l 
of set

ωS . As a result, there are W sets of noise parameters for 

decoding band l for each cluster j, { l
jωα }, 1� �W. Let 2α  

denote the parameter determined by the noise model in Section 
III.B. The adaptive noise model, denoted by Adaptive (C) and 
shown in Fig. 2, adaptively estimates the noise distribution by 
creating W different noise parameters 

ωα1
as well as 

2α  as 

input to the Soft Input Estimation block. The LDPCA module 
tries to decode using Pr2 based on 

2α  as well as each side 
information Pr1  based on 

ωα1
. The LDPCA then selects the 

soft side information that converges first during decoding for 
each bitplane. The chosen soft side information for one specific 
bitplane is also used for the minimum mean squared error 
reconstruction process [11]. 
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Figure 2.  Adaptive noise using noise residual learning using previous frames 

D. Adapting the Number of Clusters for Noise Modeling 
This part will extend the noise residual estimation by 

selecting the number of clusters, m�M, giving the best 
decoding, i.e. optimizing the model order. The statistical 
characteristics of the noise distribution may change from 
region to region, and over time when decoding. One reason 
being, that the noise distribution may not be estimated properly 
in regions containing moving objects. It may improve the noise 

modeling, if the noise residual R is adaptively modeled using a 
variable number of noise distributions. A dynamic mechanism 
is carried out to determine the optimal number of distributions 
within each frame once a bitplane is successfully decoded. 

 For each cluster j, m Laplacian distributions,
mD for 1�m

�M, are estimated. As in (4), the noise parameters l
jωα  which 

are obtained based on the observation for each cluster j, 1�j�
m, of band l of set 

ωS  are estimated for each
mD . 

mjWD l
mjm ≤≤≤≤= 1,1},{ ωαω

                    (5) 

where l
mjωα is a noise parameter estimated for band l of set 

ωS of 

distribution set
mD .  
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Figure 3.  Adaptive noise using noise residual learning from a number of 

noise residual distributions 

The noise parameters l
mjωα  of W×M candidates are 

considered for decoding band l for each cluster j. Let 

2α ,
ωα1

denote noise parameters that are created by the noise 

model in Section III.C. The resulting noise model, called 
Adaptive (D) and shown in Fig. 3, adaptively estimates the 
noise distribution by creating W×M candidate noise parameters 

mωα1
and 

2α ,
ωα1

as input to the Soft Input Estimation block. 

The LDPCA module tries to decode using each set of soft side 
information Pr1 m and Pr1 , Pr2. The LDPCA then selects the 
soft side information that converges first during decoding for 
each bitplane. This way, the decoder adaptively optimizes the 
number of bits required for decoding. In addition, the chosen 
noise parameter for each bitplane is also used for the minimum 
mean squared error reconstruction process [11]. It can be noted 
that the learning technique is carried out each time one bitplane 
is successfully decoded.  

IV. PERFORMANCE EVALUATION 

In this section, the Rate Distortion (RD) performance of the 
three proposed noise models are evaluated and compared to the 
DVC scheme in [7] and the noise model in Section III.A and 
adopted in the scheme in [7], named TDWZ(A). The three 
noise models proposed in Sections III.B, III.C, III.D are 
integrated in DVC scheme [7] in Fig. 1 and named TDWZ(B), 
TDWZ(C) (Fig. 2), TDWZ(D) (Fig. 3), respectively. The test 
sequences are 149 frames of Foreman, Hall Monitor, Soccer, 
and Coast-guard with 15Hz frame rate and QCIF format. GOP 
(group of pictures) size is 2, where odd frames are coded as key 
frames using H.246/AVC Intra and even frames are coded 
using Wyner-Ziv coding. Eight RD points are considered 
corresponding to eight 4x4 quantization matrices [5]. In this 
paper, the proposed TDWZ(C) learning from the previous 
decoded residual frames uses the window size W=6. The 
proposed TDWZ(D) adapting the number of noise residual 
distributions uses a maximum number of clusters M=10. 

Tables I and II show the relative average bitrate savings and 
equivalently the average PSNR improvements (using the 
Bjøntegaard metric [12] and fitting a curve through the 8 RD 
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points measured) over the DISCOVER codec for WZ frames 
and overall frames, respectively. The improvements are 
reported for the TDWZ(A), TDWZ(B), TDWZ(C), TDWZ(D), 
respectively. Compared to DISCOVER, the average bitrate 
saving for the proposed noise model is up to 35% and 19% (or 
equivalently the average improvement in PSNR is up to 1.67 
dB and 0.95 dB) for WZ frames and overall frames, 
respectively, for the difficult Soccer sequence. Compared to the 
DVC scheme in [7] denoted as TDWZ[7], the most 
improvements are observed for Hall and Coast-guard. 
Improvement of 13% is observed for Hall on the WZ frames. 
In general, the RD performances of the proposed noise models 
in Sec. III.A-D are robustly better than using the noise model in 
[7].  

The overall RD performance of TDWZ(D) with the 
proposed noise model is illustrated in Fig. 4. The TDWZ(D) 
gives a better RD performance than H.264/AVC Intra coding 
for Foreman, Hall Monitor, and Coast-guard, and even better 
than H.264/AVC No motion for Coast-guard. The RD 
performance of TDWZ(D) clearly outperforms those of [7] and 
DISCOVER. 

V. CONCLUSION 

This paper proposes an adaptive noise model for Wyner-
Ziv video coding using residual learning techniques. The 
technique utilizes residues of previously decoded frames and 
generates a number of noise residual distributions within a 
frame for adaptive optimization of the soft side information 
during decoding. Moreover, the technique refines the residue to 
take advantage of correlation of DCT coefficients and 
neighboring blocks. Experimental results show that the coding 
efficiency of the proposed noise model can significantly 
improve the RD performance of TDWZ compared to the 
TDWZ noise model [7]. The average bitrate savings of TDWZ 
using the adaptive noise model are up to 35 % (or equivalent 

the average improvement in PSNR is up to 1.67 dB) over the 
DISCOVER codec. 
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TABLE I.  BJØNTEGAARD RELATIVE BIT-RATE SAVING (%) AND PSNR DIFFERENCE (DB) COMPARISONS OVER DISCOVER FOR WZ FRAMES 
Bit-Rate Saving (%) PSNR Difference (dB) Sequence 

TDWZ[7] TDWZ(A) TDWZ(B) TDWZ(C) TDWZ(D) TDWZ[7] TDWZ(A) TDWZ(B) TDWZ(C) TDWZ(D) 
Foreman 14.029 16.498 17.670 18.888 21.643 0.633 0.745 0.798 0.854 0.974 
Hall 8.305 12.276 14.256 15.274 21.022 0.370 0.550 0.633 0.673 0.903 
Soccer 26.006 29.720 30.846 31.907 34.516 1.305 1.472 1.521 1.572 1.677 
Coast 11.635 16.277 17.471 18.216 21.131 0.352 0.495 0.530 0.552 0.637 
Average 14.994 18.693 20.061 21.071 24.578 0.665 0.816 0.870 0.913 1.047 

TABLE II.  BJØNTEGAARD RELATIVE BIT-RATE SAVING (%) AND PSNR DIFFERENCE (DB) COMPARISONS OVER DISCOVER FOR ALL FRAMES 
Bit-Rate Saving (%) PSNR Difference (dB) Sequence 

TDWZ[7] TDWZ(A) TDWZ(B) TDWZ(C) TDWZ(D) TDWZ[7] TDWZ(A) TDWZ(B) TDWZ(C) TDWZ(D) 
Foreman 6.011 7.004 7.466 7.946 8.967 0.335 0.391 0.417 0.444 0.502 
Hall 2.556 3.571 3.947 4.164 5.393 0.187 0.262 0.290 0.306 0.396 
Soccer 14.419 16.549 17.176 17.775 19.370 0.723 0.823 0.852 0.881 0.950 
Coast 3.937 5.280 5.560 5.748 6.420 0.186 0.251 0.265 0.274 0.306 
Average 6.731 8.101 8.537 8.908 10.037 0.358 0.432 0.456 0.476 0.538 
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Figure 4.  Overall RD performance 
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ABSTRACT

We consider Distributed Video Coding (DVC) in presence of communication errors. First, we present DVC
side information generation based on a new method of optical flow driven frame interpolation, where a highly
optimized TV-L1 algorithm is used for the flow calculations and combine three flows. Thereafter methods for
exploiting the error-correcting capabilities of the LDPCA code in DVC are investigated. The proposed frame
interpolation includes a symmetric flow constraint to the standard forward-backward frame interpolation scheme,
which improves quality and handling of large motion. The three flows are combined in one solution. The proposed
frame interpolation method consistently outperforms an overlapped block motion compensation scheme and a
previous TV-L1 optical flow frame interpolation method with an average PSNR improvement of 1.3 dB and
2.3 dB respectively. For a GOP size of 2, an average bitrate saving of more than 40% is achieved compared
to DISCOVER on Wyner-Ziv frames. In addition we also exploit and investigate the internal error-correcting
capabilities of the LDPCA code in order to make it more robust to errors. We investigate how to achieve this
goal by only modifying the decoding. One of approaches is to use bit flipping; alternatively one can modify the
parity check matrix of the LDPCA. Different schemes known from LDPC codes are considered and evaluated in
the LDPCA setting. Results show that the performance depend heavily on the type of channel used and on the
quality of the Side Information.

Keywords: Distributed Video Coding, LDPC, Error-Resilience, Side Information Generation, Frame Interpo-
lation

1. INTRODUCTION

The distributed video coding paradigm contrasts ordinary hybrid video coding, by fully or partly exploiting the
temporal redundancy of video data at the decoder side. This also means that one has to rethink the components
one would normally use. In particular one does not have to worry about coding motion vectors, which makes
it possible to consider alternative motion estimation strategies. In addition the use of alternative decoders
may give rise to other opportunities. The contribution of this paper is two-fold. First we propose a novel
side information generation scheme, which significantly increases the bitrate saving. Secondly we investigate
methods for exploiting the error-correcting capabilities of the LDPCA1 (low-density parity-check accumulate)
code in DVC, in the case of transmission errors.

A novel DVC side information generation scheme is proposed. In this new setup three different motion
estimates are used to generate a single side information frame. The motion is estimated using standard forward
and backward schemes, and in addition we include a symmetric estimate, that has recently been showed to give
superior quality for frame interpolation.2 Together these three estimates are used for generating side information
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for Wyner-Ziv frames, and we demonstrate that results from this procedure outperforms overlapped block motion
compensation and optical flow methods3, 4, resulting in a significant bitrate saving.

Various techniques for error correction, that has been developed for fixed rate LDPC codes, has been im-
plemented and compared, using transmission modeled by a Binary Symmetric Channel (BSC) and Gaussian
channel. We have restricted ourselves to methods which do not require alterations of the encoder but only of the
decoder. While previous works5 addressed the problem using rate-adaptive Turbo codes, this is the first study
on using LDPCA codes in DVC to also combat transmission errors, to the best of our knowledge.

The rest of the paper is organized as follows: In the next section we will briefly describe the DVC setup
used. In Section 3 we will consider our optical flow driven side information generation. Section 4 describes the
error-correcting techniques that has been implemented. Results are given in Section 5, and finally conclusions
are drawn in the last section.

2. DISTRIBUTED VIDEO CODING

An efficient approach to DVC is Transform Domain Wyner-Ziv (TDWZ) video coding with a feedback channel,
which was first proposed by Girod et al.6 The decoder controls the rate by requests over a feedback channel.
The DISCOVER codec7 improved the performance of the initial TDWZ architecture and it constitutes a well
known benchmark . More recently various improvements have been reported. TDWZ video coding with a cross-
band noise model was proposed3 to further improve the coding efficiency by utilizing the cross-band correlation,
without changing the encoder.

The architecture of a TDWZ video codec7 is depicted in Fig. 1. In this system, the sequence of frames is split
into key frames and so-called Wyner-Ziv frames. Key frames are intra coded using conventional video coding
techniques such as H.264/AVC intra coding. The Wyner-Ziv frames are transformed (4×4 DCT), quantized and
decomposed into bitplanes. Each bitplane is fed to a rate-compatible LDPC Accumulate (LDPCA) encoder1

from most significant bitplane to least significant bitplane. The corresponding error correcting information is
stored in a buffer and requested by the decoder through a feedback channel.

Wyner-Ziv DecoderWyner-Ziv Encoder

Transform

Quantization LDPCA
Encoder Buffer LDPCA

Decoder Reconstruction

Side
Information
Generation

WZ
Frames

Bitplane 1

Bitplane Mk

SI

Transform

Video
Splitting

H.264/AVC
Intra Encoder

Key
Frames H.264/AVC

Intra Decoder

Inverse
Transform

Soft Input
Estimation

Noise Residue

Pr

Noise
Modeling

Feedback Channel

Slepian-Wolf Encoder Slepian-Wolf Decoder

Figure 1: Transform domain Wyner-Ziv video codec architecture3.

The Wyner-Ziv frame is predicted at the decoder side by using already decoded frames as references. The
predicted frame, called the Side Information (SI) frame, is an estimate of the original Wyner-Ziv frame. Given
the available SI, soft-input information (conditional probabilities for each bit) within each bitplane is estimated
using a noise model. Thereafter the LDPCA decoder starts to decode the bitplanes selected by the quantizer,
ordered from most to least significant bitplane, to correct the bit errors. The decoder requests bits from the
buffer until the bitplane is decoded. Thereafter CRC bits are sent for confirmation. After all the bitplanes are
successfully decoded, the Wyner-Ziv frame can be decoded through combined de-quantization and reconstruction
followed by an inverse transform.

Proc. of SPIE Vol. 8499  84990N-2

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 02/26/2013 Terms of Use: http://spiedl.org/terms

148 Publications



In DVC (Fig. 1) there are three different channels, namely the transmission channel, the virtual channel and
the feedback channel. Through the transmission channel the parity bits are sent from the encoder to the decoder.
The feedback channel is used by the decoder in order to request more bits to the encoder. Finally the virtual
channel is used to model and calculate the relation between side information and the actual encoded frame.
While the two previous channels are real communication channels, the latter is only a theoretical construction.

3. OPTICAL FLOW DRIVEN SIDE INFORMATION GENERATION

The problem of frame interpolation find uses in a number of fields, e.g. video post processing, restoration of
historic material, and, the application we will consider here, video coding. For the two former applications, the
goal is often to satisfy a viewer, in which case the main concern often is that the results look good,8 rather than
having good performance in terms of a specific error measure. In distributed video coding, however, it is used to
generate side information for decoding and performance in terms of specific error measures are more important
than crisp results. In ordinary video coding applications discrete methods like block matching has been used very
successfully, and variational motion estimation methods have not gained much ground. One reason for this is
that optical flow fields are dense, and thus problematic to code. In distributed video coding, however the source
statistics are exploited at the decoder side, eliminating the problem of coding the flow field motion vectors. Such
a setup makes it possible to exploit the highly accurate motion estimates of modern optical flow methods4, 26.
We shall extend own previous work on optical flow in DVC, by including a symmetric flow.

3.1 TV-L1 Optical Flow

Optical flow estimation concerns the determination of apparent (projected) motion. Given a sequence of tempo-
rally indexed images It, we want to estimate the optical flow v such that the motion matches the image sequence
while still maintaining sufficient regularity. Here we will consider a Total Variation (TV)-L1 energy for the
optical flow estimation, which is given by

E(v) =

∫
‖It+1(x+ v(x))− It(x)‖ dx+

∫
‖Dv(x)‖ dx, (1)

where the first term is a L1 norm of the difference between It and the motion-compensated version of It+1, and
the second term is a total variation regularization, which is to be understood as the integral over the Frobenius
norm of the derivative of v.9 The total variation regularization will smooth the estimated motion while still
allowing for sharp motion boundaries. In order to efficiently minimize E we introduce two relaxations. First we
linearize the data fidelity term It+1(x+ v)− It(x) ≈ ρ(v)(x), where ρ is the first order Taylor approximation

ρ(v)(x) = It+1(x+ v0)− It(x) + (v(x)− v0)
�∇I1(x+ v0) (2)

with v0 being the current estimate of v around x. We further relax E by introducing an auxiliary variable u
that splits data fidelity and regularization in two quadratically coupled energies:

E1(v) =

∫
λ‖ρ(v)(x)‖+ 1

2θ
‖v(x)− u(x)‖2 dx, (3)

E2(u) =

∫
1

2θ
‖v(x)− u(x)‖2 + ‖Du(x)‖ dx, (4)

The above type of relaxation was first proposed by Zach et al.10, and has since been used in a large number of
optical flow algorithms.11, 12 Its most important advantage is that the two problems can easily be solved pointwise
which makes the solution very easy to implement on massively parallel processors like graphics processing units
(GPUs). The minimizing solutions (3) and (4) will not be replicated here, but we note that the minimizer of (3)
can be found by the method of Zach et al.10 in the case of grayscale images and in the general case of vector
valued images the minimizer is explicitly presented in the work of Rakêt et al.12. The regularization energy (4)
is minimized by the projection method of Chambolle9, 13. We have also applied this to DVC4, 26, but here we
select parameters differently.
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In order to improve interpolation quality we use a specialized coarse-to-fine pyramidal implementation of the
above algorithm (for more details on standard implementations we refer to the works of Rakêt et al.2, 12). We
have 70 pyramid levels with a scaling factor of 0.95, where each pyramid level is smoothed with a Gaussian with

standard deviation
√
2
4 before downscaling to the coarser level. On each level we do 30 warps of first solving (3)

and then solving (4) using 10 iterations of the algorithm of Bresson9, with λ = 3 and θ = 0.2, where in order
to improve interpolation quality, ρ has been weighted by the gradient magnitude ‖∇I1(x+ v0) + 0.01‖ (slightly
shifted to avoid division by 0) in the minimization of (3)14. Additional improvement of interpolation quality was
found by applying a 3× 3 median filter of the flow after upscaling to the next pyramid level11.

3.2 Frame Interpolation algorithm and results

We are interested in interpolating an in-between frame I1/2 using only the two surrounding frames I0 and I1. We
first note that the optical flow algorithm presented in the previous section is asymmetric, since the (forward)
flow estimated from I0 to I1 is not the same as the (backward) flow from I1 to I0. In addition the forward flow
will have a coordinate system corresponding to the pixels in I0 and the backward flow follows the coordinate
system given by the pixels in I1, so in order to use these flows to interpolate at pixel positions in I1/2 we need to
temporally warp the flows15–17 to match the intermediate frame. This is done by assuming that the intermediate
frame follows the estimated motion linearly, and then defining the warped forward flow as the flow from I1/2 to
I1, which is approximated by

v
1/2
f (round(x+ 1/2vf (x))) = 1/2vf (x), (5)

where the round function rounds to nearest pixel. The warped backward flow is estimated similarly. This simple
warping procedure does however contain some problems, first multiple flow vectors may hit the same pixel
round(x+ 1/2vf (x)) (typically occlusion), which can be dealt with by choosing the vector with best data fidelity.
A more serious problem is the problem of dis-occlusion which causes holes in the warped flow. We will correct
this by filling holes using an outside-in strategy, however ideally one would reason about depth and occlusion in
the interpolation procedure, which should give slightly better results16.

With the warped flows, the straightforward approach for interpolation is to interpolate along the flow vectors,

I1/2(x) =
1

2
(I1(x+ v

1/2
f (x)) + I0(x+ v

1/2
b (x))), (6)

however, since we have discarded occlusion information by filling holes and clearing collisions, the warped forward

flow should have been symmetrized, so it can be thought of as a minimizer of I1(x+ v
1/2
f (x)) + I1(x− v

1/2
f (x)),

and vice versa for the backward flow. Even though the two computed flows are symmetric around I1/2, they
will be different since they originated from asymmetric flows. We propose to include a truly symmetric flow
estimate which is calculated directly using the pixel positions of the unknown frame I1/2, to complement the two
asymmetric flows. This flow vs is calculated using the reparametrization of (3) first suggested by Alvarez et
al.18, and recently analyzed in a frame interpolation setup by Rakêt et al.2 i.e. replacing the data fidelity term
in (3) by

I1(x+ vs(x)) + I1(x− vs(x)) ≈ I1(x+ v0) + I1(x− v0) + (vs(x)− v0)
� (∇I1(x+ v0) +∇I0(x− v0)) . (7)

We see that the linearized data fidelity term fits in the setup of Zach et al.10, and so can be minimized by the
formula giving the minimizer of (2). The result will however be different in a number of ways. The motion
vectors are now only half size, which makes the method more robust against large deviations. Furthermore the
sum of the two gradient terms will make the algorithm more robust to noise, and finally we do not have to do
a temporal warping of the flow, in order to use it for interpolation. All in all this produces a more robust flow
for interpolation, and combining the symmetric flow with the warped forward and backward flows, we propose
to do the interpolation as follows

I1/2(x) =
1

6
(I1(x+ v

1/2
f (x)) + I1(x− v

1/2
b (x)) + I1(x+ vs(x))

+ I0(x− v
1/2
f (x)) + I0(x+ v

1/2
b (x)) + I0(x− vs(x))),

(8)
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i.e. the interpolation is the average of the two surrounded frames warped to the center using the three different
flows. Figure 2 shows the results of the three different types of interpolation, along with the estimate (8). The
noise residual frames (in pixel domain) used in the DVC setup are calculated by subtracting the average of the
three warped versions of I0 from the three warped versions of I1.

(a) Frame 84 (b) Frame 85 (c) Frame 86

(d) Forward interp.
PSNR 20.40

(e) Backward interp.
PSNR 20.33

(f) Symmetric interp.
PSNR 21.45

(g) Average (8)
PSNR 21.17

Figure 2: (a)–(c) Frames 84, 85 and 86 of the Soccer sequence. (d)–(f) The forward, backward and symmetric
parts of (8). (e) The average interpolation (8).

We will evaluate (8) which we will denote 3OF on the test sequences (QCIF, 15 fps) Coastguard QP=26,
Foreman QP=25, Hall QP=24 and Soccer QP=25, where we interpolate every other frame and compare to the
overlapped block motion compensation (OBMC) method of Huang et al.3 and the TV-L1 optical flow (OF)
method presented by Huang et al.4. The results can be found in Table 1 where we see that the proposed method
outperforms OBMC and OF on all sequence, with an average increase in PSNR of 1.16 dB over OBMC and 2.14
dB over OF.

Sequence OBMC3 OF4 3OF
Coastguard 31.83 30.92 32.59
Foreman 29.26 29.28 30.08
Hall 36.46 32.28 36.91
Soccer 21.30 22.43 23.90

Table 1: Average PSNR across the 74 interpolated frames for the four test sequences.

The SI generated based on the frame interpolation (8) is then used inside the TDWZ decoder together with
the OBMC method, for more details please refer to Section 5.

4. ERROR CORRECTION

We now consider the problem of having noise on the transmission of the syndrome bits. We assume that the
feedback channel, the transmission channel of the H.264 frames and the transmission of the Cyclic Redundancy
Check (CRC) are error free. In LDPCA-based decoders, since the syndromes are error-free they are used to
check the results. We relax this condition in order to allow the decoder to accept a result even if the syndrome
condition is not satisfied.
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4.1 Expanded Code

The most straightforward method to handle errors on the transmission channel is to consider the syndrome bits
belonging to the code with parity check matrix H as the last parity bits of another larger code [Hm×n|Im×m]
where Im×m is the identity matrix. This was proposed by Tan and Li19 among others. Thus instead of having
to fulfill the syndrome conditions HY = S, where Y is the side information and S is the syndromes, the new
code should fulfill:

[Hm×n|Im×m]

[
Yn

Sm

]
= 0. (9)

This means that instead of only considering Y as a noisy version of the original bitplaneX , the received syndromes
Ŝ are also considered as a noisy version of the original syndromes S.

It is well known20 that there are three major features of the parity check matrix that influence the performance
of the message passing algorithm for a LDPC code. The three features are:

1. The weight of each column should be big enough

2. The weight of each row should be small enough

3. The graph of the code should contain no cycles of length four

In a typical DVC setup with a regular LDPCA code the first feature is satisfied for all rates for the original
parity check matrix, but when concatenated with the identity matrix a problem arises since each new column
only has a weight of one. The second feature is easily satisfied for high rates, but is harder to satisfy for low rates,
since the number of rows drops. The third feature is again easily satisfied for high rates but in typical LDPCA
codes it is not ensured, even for high rates. For low rates it may be impossible to satisfy. The concatenation
with the identity matrix does not change the second and third features. An alternative to item 3 could be that
the girth of the corresponding Tanner graph should be big enough. It should be noted that even though these
features are well known to influence the performance of a LDPC code we do not have theoretical grounds allowing
us to predict the behavior of the modified LDPCA code.

The next two sections will present methods inspired by traditional LDPC codes assuming that the errors on
the transmission channel can be considered as a Binary Symmetric Channel (BSC). In Section 4.4, the noise on
the transmission channel will be assumed to be Gaussian distributed.

4.2 Bit Flip

Bit flipping methods21 for LDPC codes are fairly good approximations to the more advanced belief propagation.
More advanced variations of this method such as weighted bit flip decoding22, reliability ratio based weighted
bit flip decoding23 and gradient descent bit flip decoding24 have also been developed in the recent years.

The main idea behind the methods is that if there is a low enough number of parity checks which fail it
might be due to transmission errors. Thus in this case all the syndromes involved in these failed parity checks
could be flipped and if the decoding is successful with these new syndromes, it is assumed that the flipping was
correct. If the correctness of the decoding is checked by a CRC then it should be noted that each time a sequence
of syndromes are flipped the strength of the CRC is in a sense weakened since there is a new risk of decoding
into a wrong code word which also satisfies the CRC. Before starting the explanation of the developed methods,
it should also be noted that since there are two errors on the syndromes for each error on the accumulated
syndromes (unless the errors on the accumulated syndromes are right next to each other) the expected number
of errors on the syndromes are approximated by multiplying the expected number of errors on the accumulated
syndromes by two.

The first method is the simplest version of this way of thought and it is called “Simple Bit Flip”. Suppose
we have received m bits, and Pe is the error probability on the transmission channel and let τ be a small natural
number. After running the belief propagation algorithm, if the decoding is not successful, we define with PCF
the number of failed parity checks, if PCF < 2mPe + τ we flip syndromes involved in failed parity checks and
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we rerun the belief propagation, after that we again check the syndrome condition and the CRC check. If both
are satisfied we accept the word, otherwise we increase the rate.

The second method is inspired by the gradient descent method of Wadayama et al.24 which outperforms
traditional weighted bit flip. In this method the maximal number of expected errors on the syndrome is calculated
using the binomial distribution, and after the belief propagation an error function value for each bit is calculated:
E (yi) = λyix̂i +

∑
k∈C PC k where λ is a weight parameter, yi is the bit belonging to the SI in bipolar coordinates,

x̂i is the corresponding decoded bit in bipolar coordinates, C is the map of connected parity checks to the current
node, PC k is the value of the parity check in bipolar coordinates. The first term in the error function corresponds
to the correlation between the SI word and a codeword while the second term is the sum of the bipolar syndromes.
At a given rate, after the first belief propagation, if PCF ≤ m where m is the highest number of expected errors
with certainty η, we calculate the error term for each bit and with this the reliability of the syndromes. The
syndromes having lowest reliability are flipped and the belief propagation is executed again.

4.3 Increased Column Weight (ICW)

In order to improve the aforementioned features various methods have been proposed.20, 25 We have developed
an alternative approach in order to increase the weight of columns with column weight one and disregard cycles
of four (since they are present in the original LDPCA code anyway). Our method is outlined in Algorithm 1. It
should be noted that the algorithm is only designed for LDPC codes where all columns have a weight above one
except for the concatenated identity matrix.

Algorithm 1 Increase Column Weight

1: Let Hm×n be the input parity check matrix and initialize NM = n + m and an all-zero output matrix
H ′

4m×n+2m.
2: for i = 1 to i = m do
3: Let the set Oi denote all the positions of 1’s in row i.
4: if any bit in row i is part of a cycle of length four then
5: Choose a random element oi ∈ Oi which is part of such a cycle.
6: else
7: Choose a random element oi ∈ Oi.
8: end if
9: Let N = n+ i and K = 4(i− 1).

10: Set the elements indicated by N and NM + 1 in row number K + 1 of the output matrix to 1.
11: Set the elements indicated by oi, NM + 1 and NM + 2 in row number K + 2 of the output matrix to 1.
12: Set the elements indicated by oi, N and NM + 2 in row number K + 3 of the output matrix to 1.
13: Set the elements indicated by oi \ oi and NM + 2 in row number K + 4 of the output matrix to 1.
14: Set N = N + 2.
15: end for

4.4 Modifications in Case of Gaussian Errors in Accumulated Syndrome Bits

We assume the noise on the transmission channel to be Gaussian distributed. The error function flip method
uses the error probabilities calculated from the soft values of the syndromes. One can calculate the probability
of error of the syndromes P (Si) from the error probability on the accumulated syndromes P (Ai).

The Error Function Flip method is altered to handle soft errors by changing the error function E(yi) =
−λP (1 − x̂i|yi) −

∑
k∈C P (Si), where P (1 − x̂i|yi) is the probability of the decoded bit to be wrong given the

soft value of the received bit and P k
e is the error probability of a connected syndrome.

The Log-Likelihood Ratio (LLR) values for the syndromes, in this work when using soft errors, are initialized
by comparing the magnitude of the current LLR-value (of the accumulated syndrome) and the magnitude of
the previous LLR-value (previous syndrome), and then choosing the lower of the two as the magnitude for the
current LLR-value of the syndrome. In this way the uncertainty for a syndrome bit is propagated to the next
bit to accommodate for the relationship between accumulated syndromes and not accumulated syndromes.
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5. RESULTS

5.1 Performance Evaluation for DVC using Optical Flow

This section considers the TDWZ video codec26 obtained by including the proposed 3OF (Section 3) in our
TDWZ codec, which uses a cross-band3 noise model with clustering27 techniques in the noise model.

5.1.1 Transform Domain Wyner-Ziv Video using Optical Flow and Clustering

The TDWZ video depicted in Fig. 3 consists of OBMC and the proposed Optical Flow based side information
generations (3OF), a noise model (Clustering) using clustering27, and a cross-band noise model (Cross Band)3.
The proposed optical flow (3OF) replaces the optical flow of our previous TDWZ codec26. The cross band noise
model3 was introduced utilizing cross band correlation based on the previously decoded neighboring bands. The
decoder cross band noise model includes a classification module, a bitplane level noise residue refinement, and a
modified maximum likelihood estimator to calculate noise parameter. The clustering noise model27 was utilized
to take correlation of DCT coefficients and residues from previously decoded frames into account to estimate the
decoding residue more precisely. This noise model estimates the correlation noise by clustering of DCT blocks
and using the correlation of neighbor coefficients to refine the Laplacian parameter. Furthermore, the noise
model also generates a number of noise residual distributions based on previously decoded frames for adapting
of soft side information during decoding.

The architecture of the TDWZ decoder26 including the proposed 3OF is presented in Fig. 3. The side
information generations generate the noise residual frames NR1, NR2 and the side information frames, SI 1, SI 2.
SI 1 and NR1 are generated by using OBMC3 and SI 2 and NR2 are generated by the proposed 3OF. These
are transformed and input to the noise models. For each side information scheme, noise parameters αCB using
multiple hypotheses4 combined with the cross-band3 and αCL are calculated using the clustering model27. Based
on the transformed side information frames and the noise parameters, the soft-inputs Pr1CB, Pr2CB, and Pr1CL,
Pr2CL are calculated, where Pr1CB and Pr2CB are calculated based on the cross-band noise and multi-hypothesis
techniques.4 Pr1CL, Pr2CL are obtained by applying the clustering model to each side information generation
scheme, here OBMC and the proposed 3OF. All soft-inputs are fed into the multiple input LDPCA decoder and
the soft-input which converges first is selected for LDPCA decoding. The corresponding selected noise parameter
is chosen for reconstruction.

Wyner-Ziv Decoder

Buffer LDPCA
Decoder

Reconstruction with SI and 
Noise Learning

OBMC 
based Side 
Information
Generation

Transform

H.264/AVC
Intra Decoder

Inverse 
Transform

Soft Input
Estimation with 

SI and Noise 
Learning

Feedback Channel

Slepian-Wolf Decoder

α

3OF       
based Side 
Information
Generation

1NR 1SI 2NR 2SI

Clustering

Cross Band

CB1Pr CB2Pr CL1Pr CL2Pr

CLα

CBα

Figure 3: Transform domain Wyner-Ziv video using 3OF Optical Flow.

5.1.2 Performance Evaluation

The rate-distortion (RD) performance of the proposed techniques are evaluated for the test sequences (149 frames
of) Foreman, Hall Monitor, Soccer, and Coastguard with 15Hz frame rate and QCIF format. The GOP size is 2,
where odd frames are coded as key frames using H.264/AVC Intra and even frames are coded using Wyner-Ziv
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coding. Eight RD points are considered corresponding to eight 4 × 4 quantization matrices7. The parameters
for H.264/AVC Intra are set as by DISCOVER7 and QP values are set to those used for the key frames in the
Wyner-Ziv video coding in the DISCOVER codec7. It can be noted that only the luminance component of each
frame is evaluated.

Table 2: Bjøntegaard Relative Bit-rate Savings (%) over DISCOVER for WZ Frames

Sequence Cross-band Clustering Multi-hypothesis TDWZ (3OF)

Foreman 14.0 21.6 27.0 36.0

Hall 8.3 21.0 13.3 26.0

Soccer 26.0 34.5 41.2 63.2

Coast 11.6 21.1 17.4 35.6

Average 15.0 24.6 24.7 40.2

Table 3: Bjøntegaard PSNR Improvement (dB) over DISCOVER for WZ Frames

Sequence Cross-band Clustering Multi-hypothesis TDWZ (3OF)

Foreman 0.633 0.974 1.177 1.530

Hall 0.370 0.903 0.575 1.095

Soccer 1.305 1.677 1.921 2.782

Coast 0.352 0.637 0.526 1.031

Average 0.665 1.047 1.050 1.610

Tables 2 and 3 report RD performance of the proposed scheme in Section 5.1.1, named TDWZ(3OF). Tables
2 and 3 present the relative average bitrate savings and equivalently the average PSNR improvements (using the
Bjøntegaard difference metric28 and fitting a curve through the 8 RD points measured) over the DISCOVER codec
for WZ frames. The results are also compared to the DVC scheme called Cross-band3. The TDWZ(3OF) codec
based on combining the clustering27 and multi-hypothesis4 techniques, which are also individually compared
(Clustering27 and Multi-hypothesis4). Compared to DISCOVER, the average bitrate saving for the proposed
scheme TDWZ(3OF) is overall (average Bjøntegaard) 40.2% and 16.2% better on WZ frames and all frames,
respectively. The performance improvement is 63.2% and 33.6% (or equivalently the average improvement in
PSNR is 2.78 dB and 1.56 dB) for WZ frames and overall frames, respectively, for the difficult Soccer sequence.

The RD performance of the TDWZ(3OF) codec and H.264/AVC coding is also depicted in Fig. 4 for all
frames. The TDWZ(3OF) codec gives a better RD performance than H.264/AVC Intra coding for Foreman, Hall
Monitor, and Coastguard, and also better than H.264/AVC No Motion for Coastguard. The RD performance of
the TDWZ(3OF) codec clearly outperforms those of Cross-band3 and DISCOVER.

5.2 Error Prone Transmission Channel

In the following sections, results for transmission channels with noise will be presented.

5.2.1 Binary Symmetric Channels

In this section it is assumed that the bit Xi forming the bitplane has equal probability of being 0 or 1 and that
the transmission channel and Side Information channel are BSC’s. We will refer to the error probability of the
SI channel by crossover probability. The effect of different parameters will be investigated and the performance
of the different methods will be evaluated.

The first two simulations compare the two bit flip methods and the expansion methods and show the influence
of λ parameter in the Error Function Flip (EFF) method. The Bit Error Rate (BER) and the rate for different
error probabilities on the transmission channel and for two different error probabilities on the SI channel can
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Figure 4: PSNR vs. rate for the proposed TDWZ (3OF) codec for all frames (QCIF, 15Hz, GOP2).

be seen in Fig. 5. It appears that the EFF method has better performance than the Simple Flip for high error
probability on the transmission channel. It can also be seen that the λ parameter has a very low impact on the
performance of the EFF method, but the best performance is for very low λ parameters which suggests that it
is better to disregard the correlation between a received word and a codeword than taking the correlation into
account. It is apparent that the expansion methods usually outperform the flipping methods. It also appears
that for the good SI the ICW method is performing better than the expansion method19 with regard to BER. In
regards to bitrate the ICW method also outperforms the expansion method when the SI is good, except when
there are no errors on the transmission channel.

5.2.2 Gaussian Transmission Channel

In this section the two expansion methods are tested and evaluated in DVC simulations. The simple expansion
method is also applied to SI estimated by the 3OF method as described in Section 3. To save computation time,
the simulation with 3OF SI has been conducted with SI already calculated in a DVC simulation without channel
errors. Thus errors can not propagate down through the bitplanes and the PSNR cannot be calculated. We
therefore assume that the PSNR is the same for these simulations as their normal SI counterparts. The simple
expansion method is also benchmarked against turbo coding. The noise in the transmission channel is assumed
to be Gaussian distributed. Only four different RD points corresponding to four quantization levels are used
since they seem to match a concave function in rate-distortion sense.

The rate-distortion plots for the four test sequences appear in Fig. 6 with no errors (NE) on the transmission
channel (the punctured lines), with a standard deviation of the Gaussian distribution to match the error proba-
bility of Pe = 0.001 (dotted lines) and Pe = 0.01. From the theoretical point of view we define Pe as the error
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Figure 5: Results for the BSC transmission channel, modeling the SI channel also as BSC.

probability of the Gaussian channel followed by a threshold detector having the threshold at the same distance
from the two symbols used. It is evident that the simple expansion method performs best overall, and in most
cases the simple expansion with noise is also better than ICW with no noise. It also appears that with 3OF SI
the bitrates are lower than a normal SI for the same error rates as expected.

To test the robustness of the LDPC code used versus the robustness of a Turbo code, simulations have been
performed with Pe = 10−2 (Fig. 7) and with Pe = 10−3 (Fig. 8), for the Turbo code 25 iterations are waited
before trying the CRC check for the first time. Since the initial simulations showed that the Turbo code depended
heavily on the CRC both an 8-bit and a 16-bit CRC has been used in the simulations. From the rate-distortion
plots it appears that for an 8-bit CRC the Turbo code has many decoding errors. If the CRC is increased to
16-bit though, the Turbo code has better performance than the LDPCA using the same CRC, which does not
improve by the stronger CRC. It has to be noted however that in absence of errors the LDPCA codes outperform
Turbo codes. In the presence of errors, 16-bit CRC Turbo coding is better in all the sequences except Hall in the
case of Pe = 10−2. In the case of Pe = 10−3 for Hall and Coast the LDPCA codes outperforms Turbo coding,
while on the other two sequences the situation is inverted. The explanation may be that the LDPCA code is
built on a Rate 1/2 LDPC code while the Turbo is built on a Rate 1/3 code, thus in high bit rate cases the
1/2 rate LDPC may not provide enough redundancy to correct both errors in the SI and the transmission of
syndrome bits.

It can also be noted that in some cases a drop in the PSNR is experienced while increasing the quality level,
i.e. increasing the number of bits sent does not improve the PSNR. A possible explanation is that, since increasing
the quality is done by increasing the number of sent LSB bitplanes, these new and high error-prone bitplanes
increase the number of wrongly decoded bitplanes. Hence skipping a bitplane (i.e. not sending it and using the
SI bitplane as substitute) could improve the results, achieving a lower rate and sacrificing PSNR performance in
the case of a possible correct decoding. In Table 4, the results are presented for a system in which skipping was
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Figure 6: Rate-distortion plots with errors and no errors (NE) on the transmission channel

only allowed for the LSB and it was done only if the estimated conditional entropy is higher than a predefined
threshold with Pe = 10−2. The results are presented using the Bjøntegaard difference metric between an 8-bit
CRC LDCPA-based expanded decoder and the same decoder with the skip strategy implemented. Indeed the
skipping improves the performance.

Table 4: Bjøntegaard PSNR and bitrate Improvement over the non-skip decoder for WZ Frames

Sequence PSNR Difference [dB] Bit-rate Savings (%)

Foreman 0.61 13.12

Hall 1.09 23.64

Soccer 0.70 13.30

Coast 0.77 15.73

6. CONCLUSION AND DISCUSSION

A new method for side information generation in a DVC setup is presented. The method has been shown
to consistently outperform the previously suggested methods, while at the same time being computationally
efficient. The novelty of the interpolation method is a setup which includes a symmetric optical flow constraint
in the interpolation, and a specialized setup in the motion estimation process, that produces estimates well suited
for interpolation purposes. The addition of a symmetric term is not tied to the specific setup, nor the chosen
algorithm (TV-L1), and can easily be incorporated in most motion estimation algorithms, at low cost in terms
of computation. A further gain in interpolation accuracy may be obtained from using anisotropic regularization
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Figure 7: Rate-distortion plots of Turbo and LDPC decoding with 8-bit and 16-bit CRC, with Pe = 10−2

instead of TV regularization. In particular, the anisotropic Huber-L1 algorithm of Werlberger et al.11 has
proved to give good interpolation results15. Alternatively one may introduce anisotropy by adaptively adjusting
the smoothness weight locally29, which has recently shown to improve interpolation performance.15

In addition we have considered using the Slepian-Wolf decoder to handle transmission errors . Simple bit flip
methods are presented to add robustness to the LDPC code in DVC. These methods are simple alternatives to
methods where the decoding matrix has to be modified, but the latter shows better performance. Our simulations
have shown that there is a difference in performance when assuming a BSC as the transmission channel versus
a transmission channel with Gaussian distributed noise. In the BSC case our ICW method outperformed the
expanded method when the SI was good, but when the noise in the transmission channel was assumed to be
Gaussian distributed the expanded method was the best choice for all of the four test sequences. Our simulations
also indicate that the bitrate is still improved when using the 3OF SI and the expanded method with an erroneous
transmission channel. Further work with robustness for LDPC in DVC could focus on combining LDPC codes
optimized for different intervals of the rate where a PEG-like approach30 is used to make the LDPC codes
rate-adaptive.

The LDPCA code was compared with Turbo coding for DVC. Without errors on parity bits/syndromes
LDPCA was the best performing decoder. In the error case, Turbo coding (with a 16 bit CRC) performed best
in the high-motion sequences, due to a lower maximum level of redundancy in the investigated LDPCA code.
Finally, a proof-of-concept of a decoder-driven skip strategy was presented as a possible remedy to the weakness
of the LDPCA code, showing promising results.
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Figure 8: Rate-distortion plots of Turbo and LDPC decoding with 8-bit and 16-bit CRC, with Pe = 10−3
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