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Abstract

This thesis deals with the theoretical study of plasmonic excita-
tions in metallic nanostructures. The main issue that we address
is the description of the free-electron gas when the size of metallic
structures is of the order of 10 nm, that is comparable with the
Fermi wavelength of the gas. These are the typical sizes of the
nanoplasmonics structures, that can be fabricated nowadays. The
model we propose is the hydrodynamic Drude model, a semiclassi-
cal model that describes the free-electron gas in a metal as a Fermi
gas subject to the electromagnetic force, as defined by the Navier-
Stokes like equation. New in this model is the presence of pressure
waves, analogous to sound waves, that give rise to a spatially non-
local optical response. We provide a theoretical derivation of the
hydrodynamic equations, and we point out the main differences be-
tween the hydrodynamic model and the classical Drude model, that
is commonly used in plasmonics. In particular, we show that the
surface charge density has a finite thickness in the hydrodynamic
model, and we discuss the correct form of the boundary conditions
in the case of no electron spill-out. We present the numerical im-
plementation of the hydrodynamic equations in COMSOL, and we
apply this code to the study of a cylindrical nanowire, a cylindrical
nanowire dimer, and a bow-tie dimer. The final results reveal the
blueshift of the surface plasmon resonances with respect to the ones
calculated with the Drude model. In a metallic dimer, much of the
electromagnetic energy is confined in the gap between the struc-
tures, and this gives rise to the phenomenon of field enhancement.
We show that the hydrodynamic model causes the enhancement
factors to decrease significantly. The finite thickness of the sur-
face charge layer allows us to calculate the electric field near sharp
tips, where the classical model gives divergent results. We apply
this concept to the study of a groove structure for SERS applica-
tions, and we evaluate the maximum enhancement factor that is
possible to achieve with this structure. Finally, we present a new
formulation of the hydrodynamic equation, that has the same form
of the ordinary wave equation in the local model. This formula-
tion allows us to study the propagation in plasmonic waveguides
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in the hydrodynamic model. We calculate the dispersion relations
for the cylindrical, V-groove, and Λ-groove waveguides. We evalu-
ate the ultimate surface mode area for both the V-groove, and the
Λ-groove, that has important implications for the understanding of
the Purcell effect in spontaneous emission.



Resumé

Denne afhandling beskriver et teoretisk studie af plasmoniske exci-
tationer i metalliske nanostrukturer. Hovedproblemet som vi adres-
serer, er beskrivelsen af den frie elektron gas n̊ar størrelsen af de
metalliske strukturer er i omegnen af 10 nm som er sammenligne-
lig med gasens Fermi bølgelængde. Disse størrelser er typiske for
nanoplasmoniske strukturer som kan fabrikeres p̊a nuværende tids-
punkt. Modellen vi foresl̊ar, er en hydrodynamisk Drude model, en
semi-klassisk model som beskriver den frie elektron gas af et metal
som en Fermi gas p̊atrykt en eletromagnetisk kraft, defineret ved
hjælp af et Navier-Stokes lignende udtryk. Det nye i modellen er til-
stedeværelsen af trykbølger, en analog til lydbølger, som medvirker
til en rumlig ikke-lokal optisk respons.

Vi fremlægger en teoretisk udledning af de hydrodynamiske lig-
ninger og vi illustrerer hovedforskellene mellem den hydrodynami-
ske model og den klassiske Drude model, som ofte bliver brugt
indenfor plasmoner. Særligt viser vi at overfladeladningstætheden
har en endelig tykkelse i den hydrodynamiske model og vi diskute-
rer den korrekte form af grænsebetingelserne i tilfældet, hvor der
ikke er noget elektron spill-out.

Vi præsenterer en numerisk implementering af de hydrodynami-
ske ligninger i COMSOL og vi anvender denne kode til at studere en
cylindrisk nanowire, en cylindrisk nanowire dimer og en butterfly
dimer. Resultatet viser et bl̊askifte af overflade plasmon resonansen
i forhold til beregningen med Drude modellen. I en metallisk dimer
er meget af den elektromagnetiske energi begrænset til tomrummet
mellem strukturerne og det fører til fænomenet feltforstærkning.
Ved at bruge den hydrodynamiske model viser vi at denne feltfor-
stærkning reduceres betydeligt.

Den endelige tykkelse af overflade ladningslaget gør det muligt
at beregne det elektriske felt nær skarpe kanter hvor den klassiske
model giver divergerende resultater. Vi anvender dette koncept til
at studere groove strukturer til SERS applikationer og vi evalue-
rer den maksimale forstærkningsfaktor, som er mulig af opn̊a med
denne struktur.
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Til sidst præsenterer vi en ny formulering af den hydrodynami-
ske ligning som har den samme form som den normale bølgeligning
i den lokale model. Denne formulering gør det muligt at stude-
re formering i plasmoniske bølgeledere med den hydrodynamiske
model. Vi beregner dispersionsrelationen for cylindriske, V-groove
og Λ-groove bølgeledere. Vi evaluerer den endelige overflade mode
arealet for b̊ade V-groove og Λ-groove som har nogle vigtige impli-
kationer for at forst̊a Purcell effekten i spontan emission.
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Foreword

I remember the first time I saw Maxwell’s equations on a black-
board. It was spring 2002, the sun was shining outside, and I was
attending a physics class at the University of Naples. The professor
wrote the equations down, and all the people in the class looked
astonished. A moment of silence followed, then he turned to his
four-hundred people class and said, laughing: “When I go out of
the door, I will not see them anymore. Many of you will see them
for the rest of their lives from now on”. I felt like I was included
in that group of people. Love at first sight, and from that moment
Maxwell’s equations followed me everywhere, at least in my mind.

At some point during my studies, I was at the University of
Rome and I encountered two other beautiful subjects: “Solid State
Physics” and “Fluid Dynamics”. I loved those subjects too, but it
seemed I could not find anything traveling at velocity of light in
them! Electrons and holes looked slow, and fluids were fast, but
not so fast. Thus, I said to myself: “If I find a subject that merges
electromagnetism, solid state physics and fluid dynamics, this will
become the research topic of my PhD!” Luckily enough, I had a
friend, Jure Grgić, who was a PhD at DTU Fotonik, and he told
me that his supervisor could maybe help me. I wrote to his su-
pervisor, and he proposed me this topic straightaway: plasmonics.
I was really enthusiastic! I left everything, also a PhD position at
EPFL, in order to come to Denmark, and work on this topic. Jure’s
supervisor became my supervisor, Prof. N. Asger Mortensen, and
Jure became my collegue, of course.

I still feel this enthusiasm nowadays, while writing these words,
smiling, in a dark winter day. Plasmonics is a real multi-faceted
topic, where you can find electromagnetism, solid state physics,
fluid dynamics, quantum physics, and even chemistry at once. As
we will discover, it is a new field and it is still a realm full of wonders,
waiting to be explored. Everyday there are new findings, and this
keeps feeding my curiosity.

If you are a student, and you are reading these pages, then I
have an advice to give you: keep always your curiosity, and intel-
lectual interests alive. Keep your mind open all the time: you can
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find inspiration almost in everything. If you have these elements,
motivation will follow, and your work will show the path naturally.

I have had the fortune of working in a group where all these
elements are continuously nourished and nurtured. It is a very
young group, and everybody is so full of energy and curiosity. There
are always interesting discussions, either during ordinary meetings
or just in the corridors, by the coffee machine. The doors are always
open, people are always smiling and available. These are all the
ingredients of a healthy scientific environment, where ideas can be
born and grown.

My big thanks go to my daily supervisors Prof. N. Asger Morten-
sen, and Assoc. Prof. Martijn Wubs. It is mainly due to their
efforts that my PhD studies flourished. Knocking on their doors
could really make my day. They provided me with scientific sup-
port, but also with human support and understanding during my
ups and downs, typical of our lives. It is quite rare to find people
that show both scientific knowledge and humanity.

I would also like to thank my third supervisor, Prof. Antti-
Pekka Jauho, for his wise suggestions, his interesting lectures on
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this possible. I thank Sanshui Xiao, and Claus Jeppesen for the
conversation we had on SERS and waveguiding. I thank Christian
Agger, for his help with COMSOL and Linux.

I would like to thank Peter Norlander, Javier Garćıa de Abajo
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1
Motivation and plot

Everything should be made as simple as possible,
but not simpler.

Ockham’s razor

“Light cannot be confined to dimensions much smaller than λ/2”
(Abbe 1873 [1, 2]). This is the sentence you can read if you open
your favorite classic book on optical microscopy, and it sounds like
a rule carved in stone. The usual demonstration is the well-known
“single-slit” experiment, that is actually very convincing: if you
squeeze the slit down to a characteristic width, the light beam is
not focused on the screen anymore, but it spreads into very distinct
directions. This characteristic width where this occurs is actually
λ/2, and the phenomenon is known as diffraction.

However, there is perhaps a flaw in the single-slit example.....
is λ/2 the only fundamental limit to light confinement? Of course,
this was the case at Abbe’s time, but it is not like that any longer.
In fact, in 1957, Richie predicted the existence of self-sustained
collective excitations of electrons at metal surfaces, while studying
energy loss of fast electrons passing through thin metal films [3,4].
Two years later, Powell and Swan demonstrated experimentally
the existence of these excitations [5, 6], that were later called sur-
face plasmons [7]. We know from classical electrodynamics, that
if a charge oscillates, it generates an electromagnetic field. Thus,
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there is always an electromagnetic wave coupled with a surface plas-
mon, and this coupling is called surface plasmon polariton. Luckily
enough, the electromagnetic radiation associated with a surface-
plasmon excited in a metal particle of nanometer size falls into the
visible or infrared spectrum region, and this gives us the answer to
the previous question: focusing light beyond the diffraction limit
can be achieved by means of surface-plasmons! [8, 9].

Why do we want to overcome this limit? Obviously, there is
a fundamental interest, and in addition there are numerous tech-
nological implications. Nowadays optical devices and interconnects
are limited by the diffraction limit. The wavelength of the light is
of the order of hundreds of nanometers, so the size of the optical
devices is bigger than their electronic counterparts, and this limits
the amount of data that can be transferred on a chip. However, the
fabrication process of metallic devices allows to design structures
that are crucial for the realization of fast on-chip optical commu-
nication in nanoscale integrated circuits [10]. An example of these
structures is a waveguide that has been fabricated recently [11], and
it is able to drive and focus light to a spot of sub-100nm scale by
means of a 3D tapered geometrical structure. Squeezing light to
such small areas means increasing the energy density, that is linked
to the field strength. This phenomenon is called “field enhance-
ment”, and the focusing spots are known as “hot-spots”.

Mathematical modeling of surface plasmon propagation is im-
portant in order to understand the fundamental processes and to
support the design of the plasmonic nanostructures. Plasmon prop-
agation can be studied by using a classical approach based on
Maxwell’s equations, and the dielectric function used for describing
the free electrons in the metal is obtained by means of the well-
known Drude model [12, 13]. This relatively simple model gives
reliable results, and can be safely applied if the sizes of the metal
particlesD are bigger than 10 nm [14]. However, for smaller particle
sizes, the electrons start to “feel” the boundaries of the particle, and
the quantum effects due to their wave nature are anticipated. The
term “Quantum Plasmonics” has even been introduced [15–22],
and very recent experiments support new exciting physics in this
regime [23–25].

In principle, a full quantum mechanical calculation is called for
in this new regime [15, 26], but in practice this could involve at
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most a few hundreds of atoms, that are definitely not enough to
describe the behavior of more realistic plasmonic devices. Another
perhaps more practical approach would be the introduction of a
correction term to the Drude model that takes into account for the
wave nature of the electrons. This is what actually comes out of
the application of the hydrodynamic model of the electron gas, that
was developed by Bloch in the 30s [27], and applied to optics in
the 70s and 80s by Boardman [28], Fuchs [29, 30], Halevi [31] and
others.

Recently, the hydrodynamic model has received considerable at-
tention from the plasmonic research community because of its sim-
ple, yet more accurate way of describing the subnanometric features
of plasmon excitations [14, 32]. Our work is based on this model,
and we took an active part into the scientific discussions and inves-
tigations, that have grown rapidly in the last two years [17,33–50] .
One of our main contributions to this field was the clarification of
the correct form of the hydrodynamic equation, and of the correct
boundary conditions, that gave new insight into the application
of this model to plasmonics [32]. Another important contribution
was the implementation of a numerical code in COMSOL Multi-
physics for solving 2D scattering problems with the hydrodynamic
model [47, 48]. This code is open source, and the source is avail-
able to the research community at the website www.nanopl.org.
Finally, we have just recently reported a generalized nonlocal wave
equation that (without approximations) brings the hydrodynamic
model onto a form closely resembling the common local response
approximation wave equation [51]. This new ”master wave equa-
tion” has the potential to become the new workhorse in plasmonic
simulations as nonlocal effects can be included at almost no increase
in computational complexity.

Last year, some behaviors predicted by the hydrodynamic model
were observed experimentally, and reported in two important pa-
pers [46, 52]. The results obtained with our numerical code for
scattering provided an important theoretical support for these ex-
periments.

This thesis summarizes my PhD work, but it is also written
with future students in mind, who want to continue my work on
the hydrodynamic model as their Master’s or PhD projects. I have
made an effort to include the ideas, methods, and numerical tests,
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that were not described in detail in the published papers. The
style is linear and essential, in order to provide a clear message
to the readers. I hope that both this thesis and the numerical
codes available online are able to provide enough information to
understand my work and perhaps to follow my footsteps.

The thesis also summarizes the results of my PhD work reported
in the publications [32,47,48,51], included in the Appendices A, B,
C, D.

Chapter 2 reports a complete derivation of the hydrodynamic
equations. Some parts can be found in ordinary textbooks, whereas
other parts are new equations emphasizing the real-space formula-
tions appropriate for non-translationally invariant systems. It could
provide a starting point for new research directions, especially on
the nonlinear hydrodynamic model and electron tunneling.

Chapter 3 contains a description of the formulas and equations
that were used in the 2D scattering code for the scattering of light
by dimers. The results of the simulations are also discussed. I
sometimes refer to the papers in the appendix for further informa-
tion. I also present a full discussion on the numerical convergence,
that is not reported in the paper.

Chapter 4 presents an application of the hydrodynamic model
to a practical problem: field enhancement limitations in Surface-
Enhanced Raman Spectroscopy (SERS). I shortly describe the con-
cept of SERS for people who are not familiar with it, and then I
show the results of my numerical studies.

Chapter 5 deals with the description of the formulas and equa-
tions used for the implementation of the hydrodynamic model for
waveguiding problems. Also in this case, the discussion of the nu-
merical testing is included.

Finally, Chapter 6 offers the conclusions, a comparison to other
approaches, and an outlook on further developments.



2
Hydrodynamic model: an

introduction

In this chapter we will introduce the general derivation of the hy-
drodynamic model starting from the formulation of the classical
Hamiltonian of an electron gas interacting with an electromagnetic
wave. In the first part we will introduce the fundamentals of the
hydrodynamic model. In the second part we will discuss appropri-
ate boundary conditions for the hydrodynamic equation, according
to the considerations we made in Paper A (p. 73).

2.1 Bloch’s Hydrodynamic model

The hydrodynamic model describes the collective motion of an elec-
tron gas in terms of the deviation from the equilibrium density n0(r)
assuming that all the relevant physical quantities can be expressed
in terms of the electron density n(r) [27,53]. The basic assumption
of this theory is that the ground state of the gas can be described
with the Thomas-Fermi theory, and it is characterized by a ground
state density n0(r), and the corresponding one-electron potential
V0(r). The system is characterized by the following quantities: the
density n(r), the kinetic pressure in the electron gas P = P [n(r)],
and the hydrodynamic velocity v(r, t).

The single electron classical Hamiltonian function is given by
[54]:

H =
3

5

�
2

2m
(3π2)2/3n2/3(r, t) +

1

2m
(p− eA)2 + eφ(r, t),
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where the vector p = mv + eA is the canonical momentum of
an electron in an electromagnetic field. The first term represents
the internal kinetic energy of an electron in a Fermi gas, while
both the second and the third term represent the Hamiltonian of
an electron in the electromagnetic field associated with the scalar
potential φ(r, t), and the vector potential A(r, t). These potentials
are generated by the fluctuations of the electron gas, and they can
be written as:

φ(r, t) =
1

4πε0

∫
ρ(r′, tr)
|r− r′| dr

′,

and

A(r, t) =
μ0

4π

∫
J(r′, tr)
|r− r′| dr

′,

where tr is the retarded time tr = t− |r−r′|
c

, ρ = en is the charge den-
sity, and J = env is the current density vector. The electromagnetic
field can be calculated by means of the relations E = −∇φ − ∂A

∂t
,

and B = ∇×A.
The internal kinetic energy term can be expressed in terms of

the kinetic pressure P = P [n(r)], by using the well-known relation
between the kinetic energy per particle and the kinetic pressure in
a Fermi gas P [n(r)] = 2

5
�
2

2m
(3π2)2/3n5/3(r, t).

The canonical coordinates qi are represented by the Cartesian
coordinates xi = (x1, x2, x3), and their conjugate canonical mo-
menta are given by pi = mvi+ eAi. In order to study the dynamics
of the electron gas, we need to obtain the equation of motion of the
electron gas. This follows from the Hamilton equation, that reads:

ṗi = −∂H

∂xi

.

This equation can be worked out by means of the Einstein notation,
and we obtain:

ṗi = evj
∂Aj

∂xi

− 2

5

�
2

2m
(3π2)2/3

1

n1/3

∂n(r, t)

∂xi

− e
∂φ(r, t)

∂xi

. (2.1.1)

Moreover, ṗi is defined as:

ṗi = mẍi + eȦi = mẍi + e
(∂Ai

∂t
+ vj

∂Ai

∂xj

)
. (2.1.2)
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If we adopt the Eulerian specification of the flow field, so that
velocity of the fluid v is a function of space r and time t, then the
acceleration term in equation (2.1.2) can be rewritten in this way:

ṗi = mẍi + eȦi = m
(∂vi
∂t

+ vj
∂vi
∂xj

)
+ e

(∂Ai

∂t
+ vj

∂Ai

∂xj

)
. (2.1.3)

If we substitute (2.1.3) into (2.1.1), we get to:

m
(∂vi
∂t

+ vj
∂vi
∂xj

)
= −2

5

�
2

2m
(3π2)2/3

1

n1/3

∂n(r, t)

∂xi

+

− e
(∂φ(r, t)

∂xi

+
∂Ai

∂t

)
+ e

(
vj
∂Aj

∂xi

− vj
∂Ai

∂xj

)
.

(2.1.4)

The term
(
vj

∂Aj

∂xi
− vj

∂Ai

∂xj

)
can be written by means of the Levi-

Civita symbol εijk, and we obtain:

vj
∂Aj

∂xi

− vj
∂Ai

∂xj

= vj[δilδjm − δimδjl]
∂Am

∂xl

= εijkvjεklm
∂Am

∂xl

,

where we used the contracted epsilon identity:

εijkεklm = δilδjm − δimδjl.

At this point we can recognize that:

Bk = εklm
∂Am

∂xl

,

so we can rewrite equation (2.1.4) as:

m
(∂vi
∂t

+vj
∂vi
∂xj

)
= −2

5

�
2

2m
(3π2)2/3

1

n1/3

∂n(r, t)

∂xi

+e
(
Ei+εijkvjBk

)
,

(2.1.5)

that contains the Lorentz force term e
(
Ei + εijkvjBk

)
.

The equation (2.1.5) is the well-known Euler equation, where
the pressure term is given by the pressure in a Fermi gas, and the
force term is due to the electromagnetic field force. The electron
density n(r, t) must satisfy the continuity relationship, that in the
Einstein notation reads:

∂n

∂t
+

∂

∂xj

[n(r, t)vj] = 0. (2.1.6)
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2.1.1 Linearized hydrodynamic model

The Euler equation and the continuity equations are are nonlinear,
but they can be linearized in the case of small-amplitude motion as
follows [54]:

n(r, t) = n0(r) + n1(r, t)

Ei(r, t) = E1i(r, t)

Bi(r, t) = B1i(r, t)

vi(r, t) = v1i(r, t),

(2.1.7)

where n0(r) is the electron density at rest, and the zero-order terms
are Eoi(r), B0i(r), v0i(r) vanish. We can now substitute the terms
of equation (2.1.7) into the equation (2.1.5), and consider only the
terms of order zero and order one. For the sake of clarity, we now
analyze each term of equation (2.1.5). The term on the left hand
side becomes:

m
(∂vi
∂t

+vj
∂vi
∂xj

)
= m

(∂v1i
∂t

+v1j
∂v1j
∂xj

+O(v2i)
)
= m

∂v1i
∂t

+O(v2i).

In order to analyze the first term on the right hand side of equation
(2.1.5), we point out the Taylor expansion around the point x = 0
of the function f(x) = 1/(τ + x)1/3:

f(x) =
1

(τ + x)1/3
=

1

τ 1/3

(
1− 1

3

1

τ
x
)
+O(x2).

We can now proceed, and obtain:

1

n1/3

∂n(r, t)

∂xi

=
1

n
1/3
0

(
1− 1

3

1

n0

n1

)(∂n0

∂xi

+
∂n1

∂xi

)
+O(n2) =

1

n
1/3
0

(∂n0

∂xi

+
∂n1

∂xi

− 1

3

1

n0

n1
∂n0

∂xi

)
+O(n2).

The Lorentz force term reads:

Ei + εijkvjBk = E1i + εijkv1jB1k = E1i +O(E2i),
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and we can notice that the magnetic force does not give any contri-
bution to the first order approximation. We can now finally write
the linearized hydrodynamic equation:

m
∂vi
∂t

= −2

5

�
2

2m
(3π2)2/3

1

n
1/3
0

(∂n0

∂xi

+
∂n

∂xi

− 1

3

1

n0

n
∂n0

∂xi

)
+ eEi,

(2.1.8)

where we dropped the notation n1 and E1i in order to improve the
readibility.

A similar procedure can be followed for the continuity equation,
that to first order reads:

∂n

∂t
+

∂

∂xj

(n0(r, t)vj) = 0. (2.1.9)

These equations form the basis of the calculation of the linear
response to an external field in the hydrodynamic model. Most of
the applications of the hydrodynamic theory are based on a sim-
plified version of the linearized equations, where the medium is
assumed to behave locally as a uniform electron gas. This allows
us to neglect the terms explicitly containing the derivatives of n0

in both the equations (2.1.8) and (2.1.9), that become

m
∂vi
∂t

= −2

5

�
2

2m
(3π2)2/3

1

n
1/3
0

∂n

∂xi

+ eEi, (2.1.10)

and
∂n

∂t
+ n0

∂

∂xj

vj = 0. (2.1.11)

If we introduce the Fermi velocity vF, defined as:

vF =
�

m
(3n0π

2)1/3,

then we can write the equation of motion (2.1.10) as:

m
∂vi
∂t

= −β2m

n0

∂n

∂xi

+ eEi, (2.1.12)
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where β2 = 2
5
v2F. The equation (2.1.12) states that the force that

acts on the electron is given by the sum of the force exerted by
the electric field and the pressure force given by the gradient of the
electron density.

It is useful for the next considerations to write both eq. (2.1.11)
and eq. (2.1.12) in vectorial notation. In this case, the continuity
equation looks like:

∂n

∂t
+ n0∇ · v(r, t) = 0, (2.1.13)

and the equation of motion reads:

m
∂v

∂t
= −β2m

n0

∇n(r, t) + eE(r, t). (2.1.14)

2.2 Hydrodynamic Drude model

A classical model that describes the electron motion in a metal is
the Drude model, that was proposed by P. Drude in 1900 [55, 56].
In this model the electrons in a metal are assumed to move freely
through space, apart from collisions, not with each other, but rather
with the much larger atomic cores. The Drude equation of motion
for the free electron can be written as [13]:

m
∂v

∂t
= eE(r, t)− γv, (2.2.1)

where γ = 1/τ , and τ is the relaxation time, that is the average
time between collisions of the electron with the nuclei. Thus, the
electrons are subject to both the electromagnetic field force and to
the drag force exerted by the nuclei.

When we derived the hydrodynamic equation of motion (2.1.14),
we did not take into account for the interaction of the electrons with
the atomic cores. We can include this effect by means of the drag
term −γv , as in eq. (2.2.1), and we obtain:

m
∂v

∂t
= −β2m

n0

∇n(r, t)− γv + eE(r, t). (2.2.2)

This is the hydrodynamic Drude equation, and it differs from eq.
(2.2.1) for the presence of the pressure term −β2 m

n0
∇n(r, t).
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We can now look at the hydrodynamic model from the electro-
magnetic point of view by means of the current density vector J,
that to the first-order approximation is defined as J = −en0v, and
the charge density ρ = −en. If we multiply both sides of eq. (2.2.2)
by −en0, we can rewrite it as:

∂J

∂t
= −β2∇ρ− γJ+ ε0ω

2
pE, (2.2.3)

where ωp is called plasma frequency of the electron gas, and is given

by ωp =
√

n0e2

mε0
, and ε0 is the electric permittivity of vacuum.

In the same way, the continuity equation (2.1.13) becomes:

∇ · J = −∂ρ

∂t
. (2.2.4)

These two equations can be merged by deriving eq (2.2.3) respect
to time, and using eq. (2.2.4) into it. We obtain the following
equation:

β2∇∇ · J− ∂2J

∂t2
+ γ

∂J

∂t
= −ε0ω2

p

∂E

∂t
, (2.2.5)

that links the electric field E to the polarization current J. The
two fields are also linked by means of Maxwell’s equations, and
the polarization of the electron gas is fully described by the closed
equation system:

∇× E = −μ0
∂H

∂t

∇×H = ε0
∂E

∂t
+ J

β2∇∇ · J− ∂2J

∂t2
+ γ

∂J

∂t
= −ε0ω2

p

∂E

∂t
(2.2.6)

where H is the magnetic field. In the next chapters, we will al-
ways work with time harmonic field, so it is useful to transform
the previous system in the frequency domain. The equation (2.2.5)
becomes:

β2∇∇ · J+ ω(ω + iγ)J = iωε0ω
2
pE, (2.2.7)
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then the equation system (2.2.6) reads:

∇× E = iωμ0H

∇×H = −iωε0E+ J

β2∇∇ · J+ ω(ω + iγ)J = iωε0ω
2
pE.

(2.2.8)

This is the equation system that we used in our work. It is impor-
tant to mention that the value of β2 = 2

5
v2F we introduced at par.

(2.1.1) is valid at low frequencies, and it must be corrected in the
visible frequency range. The corrected value is β =

√
3/(D + 2)vF,

where D is the number of spatial dimensions that are not quantum
confined [57]. In the next chapters, we will assume D = 3.

We can follow the same procedure and derive the expression of
the polarization current density in the Drude model, that turns out
to be proportional to the electric field [58]:

J = iωε0
ω2
p

ω(ω + iγ)
E = σDrudeE, (2.2.9)

where σDrude is the AC Drude conductivity of the electron gas, that
can be written as:

σDrude =
σ0

(1− iωτ)
, (2.2.10)

with σ0 =
noe2τ
m

is the DC Drude conductivity. Equation (2.2.9) is
the well-known Ohm’s law, and it could also be obtained from eq.
(2.2.7) for β = 0.

2.2.1 Spatial nonlocality

The pressure term in the hydrodynamic equation of motion (2.2.3)
indicates that the compression or expansion of the electron gas in
a point propagates to the other points in the gas, by means of a
pressure wave, analogous to a sound wave [28]. This pressure wave
affects the polarization of the electron gas in a given point. From
the electromagnetic point of view, this is equivalent to say that the
electron gas described by the hydrodynamic model is a nonlocal
medium. To show this, we rewrite eq. (2.2.7) as:

β2

iωε0ω2
p

∇∇ · J+
(ω + iγ)

iε0ω2
p

J = E,
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that we can reformulate by introducing the linear operator

L =
β2

iωε0ω2
p

∇∇ ·+(ω + iγ)

iε0ω2
p

,

as:
L[J] = E.

If we introduce the dyadic Green function σ(r, r′, ω) associated to
the operator L, that solves

L[σ(r, r′, ω)] = δ(r, r′, ω), (2.2.11)

then equation (2.2.7) can be written in integral form as:

J(r, ω) =

∫
Ω

σ(r, r′, ω) · E(r′, ω) d3r′,

where Ω is the volume of the electron gas. This equation shows
that the polarization current density in a point r is affected by the
application of the electric field in all the points of the gas volume.
This is the definition of spatial dispersion [59], and the metal is a
nonlocal medium.

If we put β = 0 in eq. (2.2.11), we get the conductivity for the
Drude model:

σ(r, r′, ω) = σDrudeδ(r, r
′, ω),

that actually shows that the polarization current density in a point
r is affected by the application of the electric field in the same
point (see fig. 2.1). The electron gas in the Drude model is a local
medium.

In the next sections and chapters, we will use the term local
model to indicate the Drude model, and nonlocal model to refer to
the hydrodynamic Drude model.

2.2.2 Boundary Conditions

The system of equations (2.2.8) must be equipped with an appro-
priate set of boundary conditions (see Paper A, p. 73). The usual
Maxwell’s boundary conditions are no longer sufficient, because the
polarization current is no longer given in terms of the Ohm’s law,
but as a solution of a differential equation. Thus, something must
be stated about the behavior of this quantity on the boundary. We
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Figure 2.1 Spatial dispersion. The polarization current density in a point r is
affected by the field in a point r′.

can start by recalling Maxwell’s boundary conditions, that state
the continuity of the tangential components of both the magnetic
and electric field:

n× [E1 − E2] = 0,

n× [H1 −H2] = 0,

where 1 and 2 refer to the inner volume and the external one respec-
tively. The polarization current has a tangential component and a
normal component on the surface boundary. The tangential com-
ponents n× J are in general non-zero because the electron plasma
is described as a fluid that is free to move around the boundaries.
More specifically, there is no viscous term into the Euler equation
(2.1.5). Something different happens for the normal component
n · J, that is related to the electron spill-out. The phenomenon
of electron spill-out can be important in case of electron transport
among nanostructures [26], but this is not treated in this thesis.
The structure that we study are always considered as “isolated”, so
to avoid all the complications due to the treatment of the electron
transport. Thus we can state the boundary conditions that suit
this physical reasoning are [32]:

n · J = 0. (2.2.12)

There is an important consequence of this boundary condition and
it is related to the surface charges. In the local mode, the charges
are distributed on the surface as “impulsive” charges. We know that
in the absence of free charges, the divergence of the displacement
vector D is zero:

∇ ·D = 0, (2.2.13)
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and this implies that the normal component of the D field is con-
tinuous across the boundary:

n · [D1 −D2] = 0. (2.2.14)

In a local medium, the D vector can be expressed as:

D = ε0εrE,

so the condition (2.2.14) implies that:

n · ε0[ε1E1 − ε2E2] = 0.

This means that there is a jump in the normal component of the
electric field due to impulsive polarization surface charges:

n · [E1 − E2] =
σ

ε0
.

This is the case of the local Drude model, where ε1 = εDrude, and
ε2 = εdiel, the permittivity of the surrounding dielectric. This is not
the case of the nonlocal HD model. In order to show this, we can
start from the general formulation of the D field:

D = ε0E+P,

where P is the polarization vector, that is linked to the polarization
current by:

J = −iωP, (2.2.15)

so we can write:

D = ε0E+
J

iω
. (2.2.16)

If we impose the condition (2.2.14), we get:

n · [ε0E1 +
J

iω
− ε0E2] = 0.

We can apply the condition (2.2.12), then we get:

n · [E1 − E2] = 0. (2.2.17)

This means that there is no impulsive charge density in the hydro-
dynamic model for the pure electron plasma. In this case, indeed,
there is only volume charge density. However, for metals that, be-
side the pure plasma response, also have interband absorption, eq.
(2.2.17) does not hold and a jump in the normal component of the
E field does occur.
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2.2.3 Charge distribution

The volumetric charge distribution in the hydrodynamic model sat-
isfies the homogeneous Helmoltz equation. In order to show this,
we can apply the divergence operator to eq. (2.2.16), and obtain

∇ · E =
ρ

ε0
, (2.2.18)

where we used the continuity equation (2.2.13), and (2.2.4) in the
frequency domain.

If we apply the divergence operator ∇· to both sides of eq.
(2.2.7), and we use the continuity equations ∇ · J = iωρ and
∇ · E = ρ/ε0, we obtain:

∇2ρ+
ω(ω + iγ)− ω2

p

β2
ρ = 0. (2.2.19)

The Helmholtz equation (2.2.19) describes the plasma oscillations
in the electron gas. If we put γ = 0, it can be easily seen that the
oscillations are damped for ω < ωp. This corresponds to the case of
surface plasmons, that are localized around the surface of the metal
and they fade into the bulk. Bulk plasmons are excited instead for
ω ≥ ωp [54]. We will observe these behaviors in the next chapters.

In the previous paragraph we analyzed the effect of the finite
charge distribution on the boundary conditions for the electric field.
However, the presence of volumetric charges also affects the prop-
agation properties of the electric field.

We know that the electric field can be decomposed in a transver-
sal (divergence-free) and longitudinal (curl-free) component, by us-
ing the Helmholtz decomposition:

E = ET + EL.

It is then evident that if ∇ ·E �= 0, then a longitudinal wave prop-
agates in the electron gas.

For the sake of simplicity, we can choose γ = 0. We consider
the Ampère-Maxwell equation in the local case, that reads

∇×H = −iωε0
(
1 + i

σDrude

ε0ω

)
E.
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If we apply the divergence operator ∇· to both sides, and we use
the definition of σDrude in eq. (2.2.10), we get:

(
1− ω2

p

ω2

)
∇ · E = 0.

This expression implies that ∇ ·E = 0, unless ω = ωp. This means
that the electric field in the local case is transversal for ω �= ωp.
A longitudinal wave can arise only at ω = ωp, and it is associated
with a bulk plasmon [13].

This is not the case anymore in the hydrodynamic model. In
fact, we can see from eq. (2.2.18) that ∇ · E �= 0, and this means
that there is always a longitudinal wave propagating in the gas.
These waves are called plasma waves, and are well known in plasma
physics [60]. Thus, in the hydrodynamic model both transversal
and longitudinal waves are allowed to propagate in the gas at any
frequency.

2.3 Electromagnetic Energy stored in the free-electron gas

The EM energy density stored in the free-electron gas plays an im-
portant role in the study of the mode confinement in plasmonic
nanostructures (see chapter 5). We derive here a generalized ex-
pression for the electromagnetic energy density, that includes the
contributions stored in the hydrodynamics of the free-electron gas.
We start from the Poynting theorem in time: domain [61]∫

∂Ω

E×H · n̂ dS = −
∫
Ω

[
ε0E · Ė+ E · Ṗ+ μ0H · Ḣ]

dV, (2.3.1)

where P is the polarization vector, V is the volume of the electron
gas, and ∂V is its boundary. The polarization current J is linked
to P by:

J =
∂P

∂t
= Ṗ. (2.3.2)

At the same time, the polarization current is related to the electric
field by means of the hydrodynamic equation. In time domain, the
linearized hydrodynamic Euler equation for the electron dynamics
is given by eq. (2.2.2), that we recall here:

m
∂v

∂t
= −β2m

no

∇n−mγv − eE, (2.3.3)
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where v is the electron velocity, n is the electron density, n0 is the
electron density at rest, and m the electron mass. If we introduce
the polarization current J = −en0v and the charge density ρ =
−en, the Eq. (2.3.3) becomes:

∂J

∂t
= −β2∇ρ− γJ+ ε0ω

2
pE.

Next, if we use the definition (2.3.2), and the continuity equation
ρ = −∇ ·P, we get:

β2∇∇ ·P− ∂2P

∂t2
− γ

∂P

∂t
+ ε0ω

2
pE = 0.

We can now isolate E in this expression,

E = − 1

ε0ω2
p

[
β2∇∇ ·P− ∂2P

∂t2
− γ

∂P

∂t

]
,

and by taking the inner product with Ṗ, we obtain:

E · Ṗ = − 1

ε0ω2
p

[
β2∇∇ ·P · Ṗ− 1

2

dṖ2

dt
− γṖ2

]
. (2.3.4)

In the spirit of Eq. (2.3.1), we now integrate Eq. (2.3.4) over the
metallic volume,

∫
Ω

E · Ṗ dV = − 1

ε0ω2
p

∫
Ω

[
β2∇∇·P · Ṗ− 1

2

dṖ2

dt
−γṖ2

]
dV. (2.3.5)

Our next step is to integrate by part,∫
Ω

∇∇ ·P · Ṗ dV = −
∫
Ω

∇ ·P∇ · Ṗ dV +

∫
∂Ω

∇ ·PṖ · n̂ dS.

To further proceed, we now apply the physical boundary condition
J · n̂ = 0. This gives:∫

Ω

∇∇ ·P · Ṗ dV = −
∫
Ω

1

2

d(∇ ·P)2

dt
dV.

In this way Eq. (2.3.5) now reads

∫
Ω

E · Ṗ dV =
1

ε0ω2
p

∫
Ω

[β2

2

d(∇ ·P)2

dt
+

1

2

dṖ2

dt
+ γṖ2

]
dV,
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and substituting into the Poynting theorem, Eq. (2.3.1), we get

∫
∂Ω

E×H · n̂ dS+

∫
Ω

γ

ε0ω2
p

Ṗ2 dV = −
∫
Ω

u̇ dV.

Here, u is the electromagnetic energy density defined as

u =
1

2
ε0E

2 +
β2

2ε0ω2
p

(∇ ·P)2
+

1

2ε0ω2
p

Ṗ2 +
1

2
μ0H

2.

Finally, if we recall the continuity equation for the polarization
charge density, given by ρ = −∇ ·P, and we use Eq. (2.3.2), then

u =
1

2
ε0E

2 +
β2

2ε0ω2
p

ρ2 +
1

2ε0ω2
p

J2 +
1

2
μ0H

2. (2.3.6)

This is our generalization of the common energy-density to account
for the energy stored in the additional degrees of freedom associated
with the nonlocal hydrodynamics of the electron gas. For time-
harmonic fields, this expression can easily be time-averaged.





3
Scattering of light from metallic
nanowires in the hydrodynamic

model

In this chapter we will discuss the application of the hydrodynamic
equation that we derived in the previous chapter to the study of
some important 2D structures: the cylindrical nanowire, the dimer
of cylindrical nanowires and the bow-tie dimer. The discussion
will follow the material described in Paper B (p. 79), but more
details will be given about the used formulas, the implementa-
tion of the algorithm in COMSOL, and the computational vali-
dation/benchmarking.

3.1 Numerical implementation

The system of equations (2.2.8) was solved numerically by means
of COMSOL Multiphysics 4.1. This is a commercial software for
solving partial differential equations based on the Finite Element
Method (FEM). COMSOL has built-in routines for treating specific
physical models, such as fluid flow, acoustics, and heat transfer.
The routine that was used extensively in our case is the Electro-
magnetic Waves (EM) module, that includes methods for solving
electromagnetic problems like scattering and waveguiding. These
routines can be coupled in order to treat multiple or simultaneous
physical phenomena. COMSOL also has a general routine for solv-
ing mathematical equations in the general form, called weak form
PDE, that turns out to be very useful in our case.
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The EM module can treat only media that are spatially homoge-
neous, described by a dielectric function that can be either a scalar
or a tensor, in case of an anisotropic medium. Thus, the module
does not allow to treat nonlocal media, where the relationship be-
tween the polarization field and the dielectric field is described by
a differential equation. This is actually the case of the HD model,
because the polarization of electron gas is a nonlocal phenomenon,
as we discussed in Chapter 2. We had to devise a specific approach
to overcome this problem in COMSOL. The solution we proposed
is the implementation of the HD equation of motion (2.2.7) in the
general “weak form PDE” module and to couple it with the “EM
module”.

COMSOL solves the differential equations by implementing the
Galerkin method [62], so we need to provide the HD equation of
motion (2.2.7) in the weak form. This can be done straightforwardly
by applying the standard integration by part procedures. We recall
the HD equation of motion here:

β2∇∇ · J+ ω(ω + iγ)J = iωε0ω
2
pE

this is defined on a domain in space, say Ω, that is in general 3-
dimensional. We can multiply both sides of this equation by a test
function J̃ that satisfies the same boundary conditions of J on ∂Ω,
and belongs to the space C∞(Ω). We can integrate both side over
the domain Ω, and we obtain:∫

Ω

[
β2∇∇J · J̃+ ω(ω + iγ)J · J̃− iωε0ω

2
pE · J̃

]
dr = 0. (3.1.1)

If we integrate by part the ∇∇· operator, we get:∫
Ω

∇∇ · J · J̃ dr = −
∫
Ω

∇ · J∇ · J̃ dr+
∫
∂Ω

∇ · J J̃ · n̂ dσ,

that can be substituted into the equation (3.1.1), and obtaining:∫
Ω

[
− β2∇ · J∇ · J̃+ ω(ω + iγ)J · J̃− iωε0ω

2
pE · J̃ dr

]
=

=

∫
∂Ω

∇ · J J̃ · n̂ dσ. (3.1.2)

The integral at the right-hand side of equation (3.1.2) can be in-
terpreted as a flux of energy through the boundaries of the domain
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Ω due to the flow of electric current. We exclude this possibility
here, and we apply the boundary conditions (2.2.12). We can finally
write down the equation that we implemented in COMSOL:∫

Ω

[
− β2∇ · J∇ · J̃+ ω(ω + iγ)J · J̃− iωε0ω

2
pE · J̃ dr

]
= 0.

(3.1.3)

3.2 Scattering from nanowires

The first application that we are going to discuss is the scattering
from a gold cylindrical nanowire in vacuum. The free-electron gas
parameters for gold are obtained from [63], and we do not consider
interband effects here.

The electromagnetic problem can be solved analytically, and it
has been treated by Ruppin in the work [64]. The analytical solu-
tions provide an important benchmark for our numerical results, as
we discussed in Paper B (p. 79).

As it is shown in Fig 3.1, our system is infinite in one direction,
say z, and the incoming electric field Ei is a TM-polarized plane
wave, in order to excite the longitudinal waves associated with the
nonlocal effects (see par. 2.2.3). In fact, it can be seen from the
motion equation in the system (2.2.8), that if the electric field is
polarized along z, the z-component of J does not show any nonlocal
effect because the derivative ∂Jz

∂z
= 0. An important parameter that

is introduced for studying the scattering by a particle [65], is the
extinction cross-section σext, that is defined by the quantity:

σext(ω) =
|Pext|
2aI0

,

where a is the radius of the wire, I0 is the power density of the plane
wave, I0 = |E0|2/2ξ0, where ξ0 = 376.730Ω is the impedance of free
space. We can look a bit further into the definition of extinction
power, by introducing the extinction power density vector Sext:

Sext =
1

2

(
Ei ×H∗

scat

)
+

1

2

(
Escat ×H∗

i

)
,

that contains the exchange terms between the incoming source
field,

(
Ei,Hi

)
, and the scattered field

(
Escat,Hscat

)
. The extinc-

tion power can be calculated by integrating the vector Sext along
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Figure 3.1 Cylindrical nanowire. The incoming field is TM-polarized.

an arbitrary closed path l surrounding the structure:

Pext =

∮
l

Sext · n dl, (3.2.1)

where n is the outward normal vector along the path l. It can be
easily shown that:

Pext = Pabs − Pscat,

where Pabs is the power dissipated in the metal due to losses (Joule
effect), and Pscat is the scattered power. It is important to notice
that the convention for the verse of n implies that Pabs < 0, and
Pscat > 0. It is clear that σext takes into account both the power
that is scattered and the power absorbed by the structure. The
frequency spectrum of σext gives information about the plasmonic
excitations into the metal.

Fig. 3.2 shows the extinction cross section for the case of a
nanowire with radius a = 2nm in Panel (a), and a nanowire with
radius a = 25 nm in Panel (b). The nanowires are made of gold,
and the interband effects are not included.

Panel (a) illustrates an important characteristic of the nonlocal
hydrodynamic model: the blueshift of surface plasmon resonance.
In the local case, the surface plasmon frequency is given by ωloc

sp =

ωp/
√
2 = 6.231 eV, and it is independent of the size of the rods, if

the quasi-static conditions are fulfilled, as in the case of nanorods
with sizes of the order of 10 nm or below. The blueshift amounts
for Δ�ω = 0.19 eV, so ωnloc

sp = 6.421 eV.
In the Panel (b) the case of a = 25 nm is considered, and it is

clear that the difference between local and nonlocal case is not as
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Figure 3.2 Cylindrical nanowires, Extinction Cross Section. Panel (a) Radius
a = 2nm; The plot shows σext for the local case (red-dashed curve) and the
nonlocal case (blue curve). The SPP resonance peak for the nonlocal case is
blueshifted of Δ�ω = 0.19 eV with respect to the local case. Panel (b) Radius
a = 25nm. The nonlocal effects are almost negligible. The numerical data are
benchmarked with the analytical results, and the numerical curves overlap the
corresponding analytical curves.

evident as before. This is due to the fact that the nonlocal effects
become more pronounced when the gas is very confined, that is
when the dimension of the structure become comparable with the
Fermi wavelength of gold, λF = 0.52 nm.

Figure 3.3 Charge density ρ (a) and norm of the electric field |E| (b) at ωnloc
sp =

6.421eV in the nonlocal case.

Fig. 3.3a shows the charge distribution corresponding to the
surface plasmon resonance in the nonlocal case. The typical thick-
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ness of the surface large layer is of the order of λF, and this is
a general property of the hydrodynamic model. The blueshift of
the surface plasmon resonance is caused by the finite thickness of
the charge density, because the distance between charges of oppo-
site sign is smaller respect to the LRA case. This means that the
Coulomb forces are more intense, so the work that must be done
to separate the charges is higher. The fingerprint of the charge dis-
tribution is also evident from the electric-field distribution in Fig.
3.3b.

Another important feature of the nonlocal model is the excita-
tion of longitudinal bulk plasmons for ω > ωp (see par. 2.2.3). We
know that in the local case it is possible to excite a longitudinal
bulk mode only for ω = ωp, while in the nonlocal case there is a
numerable infinity of modes for frequencies above the plasma fre-
quency. However, the intensities of the extinction cross section for
these modes are low compared to the intensity of the peak of the
surface plasmon resonance (see Fig. 3.2).

3.3 Scattering from dimers

The case of dimers is more interesting for applications, because
dimers can concentrate a high amount of energy in their gaps, that
can lead to an enhancement of the electric field of many orders of
magnitude with respect to the incoming field. This phenomenon is
called Field Enhancement, and it is very important for example for
chemical sensing based on SERS spectroscopy (see Chap. 4).

Figure 3.4 shows the systems that we analyzed with our code:
the cylindrical dimer and the bow-tie dimer in vacuum.

The information about the surface plasmon excitations are ob-
tained from the spectrum of the extinction cross section σext. The
extinction power is obtained by integrating the expression (3.2.1)
along a circular path that surrounds the dimer. If we introduce the
quantity γ (not to be confused with the Drude damping parameter):

γ(r) =
|E(r)|2
E2

i

,

we can then define the field enhancement in the gap as the line-
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Figure 3.4 Cylindrical dimer (left) and bow-tie dimer (right). The incoming
field is TM-polarized.

average value of γ along the axis � of the dimer:

〈γ〉 =
∫
�
dr γ(r)∫
�
dr

=
1

E2
0d

∫
�

dr |E(r)|2.

The choice of the integration path is arbitrary, and it is justified
by the fact that the fundamental mode is strongly localized in the
gap, along the axis of the dimer.
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Figure 3.5 Cylindrical dimer. Panel (a) Extinction cross-section. The main
resonance peak for the nonlocal case is blueshifted of Δ�ω = 0.12eV with
respect to the local case. The blueshift is a function of frequency. Panel (b)
Field enhancement. Blueshift of the main resonance and reduction Δ〈γ〉 =
5.4· 103 of the enhancement factor for the nonlocal case.

Figure 3.5 shows the extinction cross section and the field en-
hancement for two gold cylindrical nanowires of radius a = 25nm,
separated by a gap of size d = 1 nm. In this case there is a
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strong coupling between the two wires, and the modes of the iso-
lated nanowires hybridize. The field is strongly localized into the
gap. From Panel (a) in (3.5), it can be seen that the main surface
plasmon resonance (SPR) occurs at 3.28 eV in the local case, and
3.40 eV in the nonlocal case, that accounts for a blueshift of Δ�ω =
0.12 eV. The high order modes appear to be more blueshifted than
the fundamental one. This is due to the fact that high modes
are multipolar, and complex charge distributions may be associated
with them, giving rise to different energy absorption.

The field enhancement factor 〈γ〉 is depicted in Panel 3.5b, and
it also shows the blueshift of the resonance peaks, but the main
point here is that the peak associated with the main SPR is re-
duced by the nonlocal effects. In fact, 〈γ〉 = 1.4 × 104 for local
response, and 〈γ〉 = 8.6 × 103 for nonlocal response. This is due
to the fact that the field intensity at resonance is smaller for the
nonlocal case (see Fig. 3.6). However, this is not always the case
because the value of 〈γ〉 is higher for the nonlocal case at some fixed
frequencies. This is an effect due to our arbitrary choice of the in-
tegration path for averaging γ. At high frequencies, the modes are
not confined along the dimer axis (see fig 3.7), so it may happen
that the intensity of the electric field along the path � is higher for
the nonlocal case.

Figure 3.6 Cylindrical dimer, main SPR, intensity of the normalized electric
field |E|/|Ei|. Left: local case. Right: nonlocal case. The field intensity and its
spatial distribution are different in the two cases. The asymmetry is due to the
fact that the light comes from the left side.

The case of the gold bow-tie dimer is presented in Fig. 3.8. The
dimer is made of two equilateral triangular nanorods with sides
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Figure 3.7 Cylindrical dimer, intensity of the normalized electric field |E|/|Ei|
at 5.1eV, where 〈γ〉loc ≈ 〈γ〉nloc (see Fig. 3.5). Left: local case. Right: nonlo-
cal case. The electric field Ei comes from the left side.

L = 45nm. The tips of the triangle are rounded with a radius of
curvature r = 1nm, and the gap distance between the nanowires is
d = 1nm. The rounding of the tips is needed in order to remove
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Figure 3.8 Bow-tie dimer. Panel (a) Extinction cross-section. The main reso-
nance peak for the nonlocal case is blueshifted of Δ�ω = 0.10eV with respect
to the local case. The blueshift is a function of frequency. Panel (b) Field
enhancement. Blueshift of the main resonance and reduction of the enhance-
ment factor Δ〈γ〉 = 1.03· 104 in the nonlocal case.

the sharp tip singularity and make the local simulations converge.
Indeed, the local simulations were often the more challenging ones,
once our nonlocal program was written.

The results mimic very closely those for the circular dimer. A
strong interaction between the plasmon modes localized on the tips
is observed, and the surface plasmon hybridization occurs. The
SPR peak in the nonlocal case is blueshifted, and the main SPR
appears at 2.86 eV for local, and at 2.96 eV for the nonlocal re-
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sponse. The field enhancement for the bow-tie dimer is higher than
for the cylindrical dimer, because of the well-known ability of sharp
tips of confining the electromagnetic field. The enhancement factor
is 〈γ〉 = 3.2 × 104 in the local case, and 〈γ〉 = 2.17 × 104 in the
nonlocal case.

Figure 3.9 Triangular dimer, main SPR, intensity of the normalized electric
field |E|/|Ei|. Left: local case. Right: nonlocal case. The field intensity and
its spatial distribution are different in the two cases. The fingerprint of the
spatially non-singular charge distribution is clearly visible in the nonlocal case.

In general, the nonlocal effects fade out as soon as the distance
between the wires is increased. This is discussed in detail in Paper
B (p. 79).

3.4 Numerical convergence analysis

In this section we analyze the convergence of the numerical code
for nonlocal response in metallic nanostructures. This was done by
studying the convergence of both the extinction cross section and
the enhancement factor as the mesh density on the surfaces of the
structures changes. Before doing that, we introduce the important
parameters that define the physical and numerical validity of our
model.

3.4.1 Physical and numerical consistency

Energy conservation is an essential property of electromagnetic sys-
tem, so it is an important parameter that must be kept under con-
trol during the simulations. The energy conservation is stated by
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the Poynting theorem. We briefly recall the statement of the theo-
rem, and the quantities that were checked for physical consistency.
The Poynting vector in the frequency domain is defined as:

S =
1

2
E×H∗.

If we calculate the divergence of S, and use Maxwell’s equations,
we get:

∇ · S = −2ωi
(1
4
ε0E

2 − 1

4
μ0H

2
)
− E · J∗.

This is a general definition, that shows the electromagnetic energy
balance in every point in space. We want to apply this energy bal-
ance to our system that is made of a metallic structure in space, and
it is illuminated by an EM field. If the space is filled with a loss-
less medium, we can define a generic closed surface that surrounds
the metallic structure, and study the energy exchange through this
boundary. The current density vector J is the polarization current
in our next considerations, as we did not consider injected currents
in this work. We can thus write:∫

∂V

S · n̂ dσ + 2ωi

∫
V

(1
4
ε0E

2 +
1

4
μ0H

2
)
dV − 1

2

∫
V

E · J∗ dV = 0,

where V is the volume enclosed by the surface ∂V . This is a com-
plex quantity, and if we separate the real and imaginary part, we
get:

∫
∂V

	{S} · n̂ dσ +
1

2

∫
V

	{E · J∗} dV = 0
∫
∂V


{S} · n̂ dσ + 2ω

∫
V

(1
4
ε0E

2 − 1

4
μ0H

2
)
dV +

+
1

2

∫
V


{E · J∗} dV = 0.

(3.4.1)

The first equation states the conservation of the real power, that is
the power dissipated by the Joule effect in the metal. The second
term states the conservation of the reactive power, that takes into
account for the balance between the electric and magnetic energy
in the volume V . The conservation of both the real power and
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reactive power are the parameters for physical consistency that are
checked during the simulations.

The linearization procedure that we developed in the previous
chapter is valid as soon as the perturbed charge density ρ is much
smaller than the charge density at rest ρ0. The ratio |ρ/ρ0| is a
function of the incoming field intensity Ei. The condition of math-
ematical consistency at a given field intensity to be checked during
the simulations is:

max
Ω

∣∣∣ ρ
ρ0

∣∣∣� 1. (3.4.2)

3.4.2 Convergence tests

As we have discussed earlier, the external electric field excites the
charges in the metal that localize to a region of thickness ≈ λF

about the surface of the structures. This is true for frequencies lower
than ωp, where only surface plasmons are present. In these cases,
the meshing of the surfaces is of crucial importance for obtaining
the convergence of our model because a sensitive variation of the
observables with the size of the surface meshes is expected [66]. For
this reason, we study the variation of these parameter as the number
of edge elements n changes, with all the other meshed geometrical
entities fixed. The edge elements are the elements that lie on the
surface of the structure, and they provide a measure of the mesh
density at the surface. The convergence tests are conducted at
the fundamental resonance frequency for all the structures. The
observables that we consider here are the extinction cross section
σext and the enhancement factor 〈γ〉. We define the relative error:

δnumx =
|xmesh − xreg|

xreg

· 100 (3.4.3)

where x can be either σext or < γ >. The observable value xmesh

is the value at a fixed mesh edge number, and xreg is the value at
convergence regime.

The first example that we consider is the convergence of the
extinction cross section for the case of the circular nanowire in
the hydrodynamic model. In this case, we have the possibility to
benchmark the numerical solutions with the analytical ones, that
were calculated by Ruppin in the paper [64]. The benchmarking is
very satisfactory because the results show a very good agreement
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Figure 3.10 Relative error δnumext of the extinction cross section versus number
of edge element for cylindrical nanowires. Panel (a) Cylinder of radius R = 2
nm. The convergence occurs for n > 150, but it is already small (0.066%) at
n = 32. Panel (b) Cylinder of radius R = 25 nm. The convergence occurs for
n > 150. The insets show the mesh densities. The scale bars are 2nm long.

between both kinds of data, as shown in fig. 3.2. The benchmarking
procedure is described in Paper B (p. 79).

The outcomes of our current convergence analysis are shown
in fig. 3.10, that presents the cases of the cylinders with radii
R = 2nm and R = 25nm respectively. The only observable in this
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Figure 3.11 Relative errors for the cylindrical dimer versus number of edge
elements at the cylinders surface. Panel (a) δnumext , the convergence occurs for
n > 550. Panel (b) δnumγ , the convergence occurs for n > 800. The inset shows
the mesh density in the gap. The scale bar is 1nm long.

case is σext, and the convergence parameter is δnumext of eq. (3.4.3). It
can be seen that the case of the nanowire with radius a = 2nm, the
convergence is reached easily. The value of δnumext is already 0.066%
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with only 32 edge elements. The convergence is reached at 250
elements, and the simulation lasts less than one minute.

The intensity of the incoming field is Ei is 1V/m, that corre-
sponds to a power density Si of 2.7·10−3W/m2, that is much smaller
of the typical power density needed to excite nonlinear effects in
nanostructures [22]. Indeed, the condition of numerical consistency
(NC) defined in eq. (3.4.2) is fulfilled, because |ρ/ρ0| < 1.356· 10−9

on the domain at the convergence regime. The reactive power bal-
ance (RPB) in eq. (3.4.1) value is 2.9· 10−17 var, and the active
power balance (APB) is 2.59· 10−19W at regime. These can be
considered as numerical zeros.

The case of a nanowire with radius a = 25 nm is reported in fig.
3.10b. It can be noticed that the δnumext value converges more slowly,
starting from a value of ≈ 30%. The observable σext converges
for edge numbers bigger than 150. The intensity of the incoming
field Ei is 1V/m also in this case, and the corresponding value of
|ρ/ρ0| at convergence regime is smaller than 8.146· 10−11, so the
NC condition is fulfilled. The RPB value is 4.90· 10−18 var, and
the APB is 8.41· 10−19 W. These can also be considered numerical
zeros. The simulation time is about 1min.

The case of cylindrical nanowire dimers is described in fig. 3.11,
that shows the convergence study for σext in Panel (a) and the 〈γ〉
factor in Panel (b). The number of edge elements is relative to
the surface of the structures facing each other. It can be seen that
the convergence of the extinction cross section occurs at a lower
number of edge elements as compared to the enhancement factor.
This is due to the fact that a high number of mesh elements is
needed in the gap in order to reach convergence. The convergence
of σext occurs at about 550 elements, while 〈γ〉 convergences at
about 800 elements. The intensity of the incoming field is Ei is
1V/m, and the corresponding value of the ratio |ρ/ρ0| is smaller
than 8.8743· 10−10 at regime, so the NC condition is fulfilled also for
a high field enhancement factor. The value of the RPB is 1.77· 10−18

var, and the value of the APB is 3.2796· 10−19 W, so the physical
consistency conditions are fulfilled as well. The simulation time is
about 5min.

Finally, we examine the case of the bow-tie dimer. The conver-
gence tests are shown in fig 3.12. As in the previous case, Panel
(a) shows the convergence for σext, and Panel (b) shows the con-
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Figure 3.12 Relative errors for the bow-tie dimer versus number of edge ele-
ments at the triangles tip. Panel (a) δnumext , the convergence occurs for n > 400.
Panel (b) δnumγ , the convergence occurs for n > 800. The inset shows the
mesh density in the gap. The scale bar is 1nm long.

vergence test for 〈γ〉. The observable σext converges much faster
than 〈γ〉, as in the case of the cylindrical dimer. It can be seen that
σext converges for n > 400, while 〈γ〉 convergences for n > 800.
However, the variations are pretty small, also for smaller n. The
intensity of Ei is again 1V/m, and the ratio |ρ/ρ0| is smaller than
2.19· 10−9 on the domain at convergence regime, so the NC condi-
tion is fulfilled also in this case. The value of RPB is 2.43· 10−17

var, while the value of APB is 1.15· 10−19 W at convergence regime.
These can also be considered as numerical zeros. The simulation
time is about 5min.





4
Field enhancement in the HD

model and its application to SERS

In this chapter we will discuss about an important consequence
of the finite extension of the surface charges in the hydrodynamic
model: the ability to calculate fields near sharp tips where the
classical model gives divergent results. This has a great impact on
the understanding of the field enhancement phenomenon, and casts
new light on the fundamental limitations of the field enhancement
of the Raman signal that occur in the Surface-Enhanced Raman
Spectroscopy. The results we will show are published in Paper C
(p. 93).

4.1 Resolution of sharp tips

The numerical solutions of Maxwell’s equations is not always de-
fined in proximity of very sharp corners or edges. This is the usual
case of local media, where the polarization charges are distributed
as a delta function on the surface of the medium. To obtain con-
vergent field distributions, the procedure used in local response is
the smoothening of the sharp features by introducing a curvature
radius r, and this is usually supported by the fact that the physical
structures do not present infinitely sharp features [67,68]. However,
the state-of-the-art fabrication techniques in nanoplasmonic allow
to produce devices with very sharp tips, so it can be important to
include sharp features in the simulations. Moreover, the simulation
of sharp features allows us to perform “limit-procedure” analysis,
where we study the ultimate theoretical values of a given quantity
as the curvature radius r goes to zero. This is the case for the
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field enhancement in this chapter and of the mode area in the next
chapter.

As we have seen in the previous discussions (par. 2.2.3 and sec.
3.2), in the HD model the charges are distributed on the surface
as an ordinary function, and the extension of the charge layer is
of the order of λF for surface plasmons. This causes the field to
be smeared out on a layer surrounding the surface of the structure,
and it ultimately removes the singularities on sharp corners.

We perform a numerical experiment to show this effect by simu-
lating the scattering from a gold triangular nanowire, as depicted in
fig. 4.1. The triangle is equilateral with side length L = 45nm, and
the incoming electric field is linearly polarized, and directed along
the height of the triangle, in order to excite the plasmon localized
on the tip.

Figure 4.1 Triangular nanowire. The incoming field is TM polarized and it
is parallel to the height of the triangular cross-section of the wire, in order to
excite the plasmon localized on the tip.

The main surface resonance for this structure occurs at �ω =
3.72 eV, and the electric field is localized on the tip of the trian-
gle (see fig. 4.2). This simulation is supported by the convergence
study of the extinction cross section. In this case, the σext is nor-
malized to the triangle side L, σext(ω) =

|Pext|
2LI0

. The value of σext at
the main resonance peak is 2.450. The same structure cannot be
simulated in the LRA because the computation does not converge.

4.1.1 Convergence tests

A careful converge study is performed in this case. The areas that
need to be meshed accurately are the triangle tips. We devise an
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Figure 4.2 Intensity of the normalized electric field |E|/|Ei| at resonance fre-
quency �ω = 3.72eV. The field is localized on the tip surface. The fingerprint
of the surface charges is clearly visible.

ad-hoc procedure that consists into defining circular neighborhoods
of the tips enclosing a constant number of triangular elements, n =
244, and varying the the radii of the circles from Rmesh = 25nm
to Rmesh = 0.3 nm. We expect that σext would converge as we
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Figure 4.3 Convergence test for the triangular nanowire. The radius of the
circle varied, while the number of elements within a circle was kept constant.
The picture shows the case Rmesh = 0.3nm. The converge occurs for Rmesh ≈
3nm, corresponding to n = 8. The scale bar is 1nm long.

approached the usual size of the localized charges, that is ≈ λF .
The results are shown in fig. 4.3, where we represent the numerical
error δγ defined in eq. (3.4.3), against the number of triangular
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elements contained in the circle per unit of area, n. The plot clearly
shows that the convergence is obtained for n > 8, that corresponds
to a radius Rmesh ≈ 3 nm. The intensity of the incoming field
Ei is 1V/m, and the corresponding value |ρ/ρ0| < 2.9· 10−9 at
convergence regime, so the NC condition is fulfilled. The conditions
of physical consistency are also fulfilled because RPB is 1.45· 10−17

var, while the value of APB is 2.48· 10−19 W at Rmesh = 0.3 nm.
The simulation time is about 5min

4.2 Surface-Enhanced Raman spectroscopy: an introduction

Before discussing the application of the sharp tip resolution to
the study of metallic nanostructures for SERS, let us briefly re-
call the concepts of Raman effect and Surface-Enhanced Raman
Spectroscopy [69], [70], [71].

The Raman effect is a scattering process between a photon and
a molecule. Incident photons ωL are inelastically scattered from a
molecule and shifted in frequency by the energy of its characteristic
molecular vibrations ωM . Frequency-shifted scattered photons can
occur at lower and higher energy relative to the incoming photons,
depending on whether they interacted with a molecule in the vibra-
tional ground state or in an excited vibrational state. In the first
case, photons lose energy by exciting a vibration and the scattered
light appears at a lower frequency ωS, called Stokes scattering. By
interacting with a molecule in an excited vibrational state, the pho-
tons gain energy from the molecular vibrations and the scattered
signal appears at higher frequency ωaS, called anti-Stokes scatter-
ing. The Raman effect probes the vibrational levels of the molecule,
and the Raman spectrum provides a fingerprint of its structure.
The intensity of the Raman signal PRS(ωS), can be written in this
way:

PRS(ωS) = NσR
freeI(ωL),

where σR
free is the Raman cross section, I(ωL) the intensity of the

excitation field, N is the number of molecules probed in the volume.
The typical Raman cross sections per molecule range between 10−30

and 10−25 cm2, which is very small if compared with the usual flu-
orescence cross sections, that are of the order of 10−16 cm2. Thus,
the intensity of a Raman signal of a free molecule is very low.
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Nonetheless, if the molecules are adsorbed on a metallic struc-
ture, a strong Raman signal can be detected, and this is due to the
interaction of the molecule with the metallic surface. In principle,
two effects can be recognized in this case:

• Electromagnetic effect. The Raman scattering takes place in
the enhanced local optical fields due to the excitation of sur-
face plasmon polaritons on the metallic surface.

• Chemical effect. A molecule in contact with a metallic surface
exhibits a cross section that is larger than the cross section
of the free molecule. This is due to the fact that a charge
transfer between the molecule and the metal occurs, and this
may alter the polarizability of the molecule and increase the
Raman-scattering efficiency.

This can be summarized by the formula:

P SERS(ωS) = N ′σR
ads|A(ωL)|2|A(ωS)|2I(ωL), (4.2.1)

where N ′ is the number of molecules that are involved in the SERS
process, and can be smaller than the number of molecules in the
probed volume N . The cross section σR

ads describes an increased
cross section of the new Raman process of the adsorbed molecule.
The factor A(ω) is the local field enhancement factor due to the
plasmon excitation, defined as:

A(ω) =
|E(ω)|
|E(ω)0|

.

The term A(ωL) denotes the enhancement of the excitation signal,
and A(ωS) expresses the enhancement of the Raman scattered light
by the molecule. The SERS enhancement is particularly strong
when both the excitation and the scattered fields are in resonance
with the surface plasmons. The frequency shift between the excita-
tion and scattered light is usually small compared with the width of
the plasmon resonance, so we can say that A(ωL) ≈ A(ωS). Then,
equation (4.2.1) can be rewritten as:

P SERS(ωS) = N ′σR
ads|A(ωL)|4I(ωL),

so the Raman signal intensity is proportional to the fourth power
of the enhancement of the local incident near field.
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The earliest sensing experiments showed a modest enhancement
of the SERS signal with respect to the ‘normal’ RS signal, of the
order of 104 to 106. Recent experiments have reported much higher
enhancements, of the order of 1014 [71]. However, the relative im-
portance of the electromagnetic and chemical effects is still not clear
because both the chemical and the electromagnetic effects involved
in SERS are difficult to quantify.

The usual theoretical approach for the assessment of the elec-
tromagnetic contribution to the field enhancement is based on the
Drude model (LRA). As we discussed above, a rounding of the
sharp tips or edges is needed in order to make the simulations con-
verge. Unfortunately, the field intensity is strongly affected by the
variations of the curvature angle r, and it diverges as r → 0 [72].
This unlimited increase in the electric field intensity does not allow
to determine the maximum enhancement of the Raman signal that
can be reached by means of the electromagnetic field enhancement.

This is where the nonlocal effects come into play, and can pro-
vide us with an answer.

4.3 Groove structure for SERS applications

In SERS, the molecules under test are usually adsorbed on sur-
faces of copper, silver or gold that are rough at the nanometer
scale. This surface roughness can be modeled by means of a pe-
riodic structure of infinitely long metallic half-cylinders of radius
R, resting shoulder-by-shoulder on a semi-infinite metal film (fig.
4.4). This is called groove structure, and it reproduces the large
curvature areas and small interstices that are expected to generate
a large local field enhancement.

This structure was initially proposed and studied by Garćıa-
Vidal and Pendry [73], to explain qualitatively the electromagnetic
origin of the large enhancement factors observed experimentally.
Near the bottom of the groove, the surfaces of the two touching half-
cylinders become tangential to each other and a field singularity
forms within the traditional LRA of the dielectric function. As
we stated in the previous subsection, a rounding r of this point is
needed in order to prevent the field from growing indefinitely. We
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Figure 4.4 A section of the groove structure for SERS applications. The
structure is indefinitely extended in all directions.

write here the definition of SERS enhancement factor γ :

γ(r, ω) = A(r, ω)4 =
|E(r, ω)|4
|E0(ω)|4

,

where we indicated the dependence of all the quantities on the po-
sition. The parameter that we consider here is the surface averaged
field enhancement factor 〈γ〉, that is defined as:

〈γ〉(ω) = 1

L

∫
L

γ(r, ω) dr,

where L is a period of the groove structure. This definition is based
on the assumption that the molecules under test are adsorbed on
the surface, and they experience the local field on the surface.

We excited the structure by means of a plane wave E0(ω) normal
to the substrate, with the electric field polarized across the groove
section, as it is shown in fig. 4.5a [48]. The structure is made
of silver, and the interband effects are included in this case. The
simulation parameters are obtained from [74]. All the simulations
are performed in the visible frequency band [400, 800] nm, that is
relevant for the SERS applications.

Fig 4.6 presents the results of two studies that show the relative
importance of the nonlocal effect as the curvature angle r becomes
comparable with λF . The 〈γ〉 factor is the same for r = 5nm
for both LRA and HD model. The nonlocal effects are clearly
visible when r = 0.1 nm. The fundamental dipolar mode occurs at
λ = 700.88 nm for the HD model, and it is blueshifted of Δλ =
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Figure 4.5 Panel (a) Unit cell of the groove structure, with geometrical param-
eters and incident field polarization. Panel (b) Typical electric field intensity in
the groove crevice.
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Figure 4.6 Blueshift of the main resonance peak and field enhancement re-
duction due to the nonlocal effect. The picture shows the case of a groove
with R = 75 nm. The effect of spatial nonlocalities is negligible for r = 5 nm,
while it is visible for r = 0.1nm. The fundamental dipolar mode occurs at λ =
700.88nm for the HD model, and the wavelength blueshift is Δλ = 27.534nm.
The insets show the charge distributions corresponding to the two resonance
peaks.

27.534 nm with respect to the local case. The field enhancement
factor 〈γ〉 in the HD model is 1.02· 108 and it is smaller than the
relative value in the LRA model. The difference Δ〈γ〉 between
the values of 〈γ〉 is 1.62· 108. Fig. 4.7 is very important because it
shows the highest value of 〈γ〉 that can be reached in the HD model
when r → 0 for an array of cylinders with radius R = 15nm. The
picture shows a monotonic behavior that saturates when r = 0, and
it reaches the enhancement 〈γ〉 = 1.52· 109 at λ = 707.78 nm.

The final analysis consists into studying the ultimate field en-
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Figure 4.7 Variation of 〈γ〉 as r changes in [0, 1] nm for a groove made of
cylinders with radius R = 15nm in the HD model. The main resonance peaks
are redshifted, and the maximum 〈γ〉 value saturates to the value 1.72· 109 at
λ = 707.78nm for r = 0.

hancement that can be reached by varying R, while keeping r = 0.
The results are presented in fig. 4.8, that shows the maximum
field enhancement that can be reached with a groove structure.
This corresponds to a structure with R = 120 nm, and it occurs
at λ = 765.43 nm. The value of 〈γ〉 is 1.72· 109. This value of the
maximum 〈γ〉 is still far from the enhancement of the Raman signal
present in the literature, that is of the order of 1014. This means
that there must be an important contribution from the chemical
effect to the high signal enhancement that occurs in SERS.

4.3.1 Convergence tests

The converge test for the groove structure is very similar to the one
we performed for the triangular nanowire in the previous section.
The surface charges tend to localize on the two cylindrical surfaces
that border the crevice of the groove, so the side extension of the
distribution is bigger. In this case, we defined a circular neighbor-
hood of the tangent point of the two cylinders, and we varied the
number n of triangular elements in this circle.

The example we consider here is a groove structure with R =
75nm, with r = 0, that is included in the study of fig. 4.8. The
main resonance frequency occurs at λ = 668.734 nm and the value
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Figure 4.8 Maximum field enhancement factor that can be reached with a
groove structure in the HD model. The picture shows the variations of 〈γ〉 as
a function of R, when r = 0. The maximum value is smaller than 2· 1010.
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Figure 4.9 Convergence test for the groove structure. The radius of the circle
is Rmesh = 5nm, and the number of triangular elements varied from n = 1100
to n = 16800. The convergence occurs for n > 7800.

of the field enhancement factor 〈γ〉 is 9.31· 109. We defined a circle
of radius Rmesh = 5nm, that encloses the surface charges on the
cylindrical surface in the crevice, and we varied the number of tri-
angular elements n from 1100 to 16800. The results are shown in
fig. 4.9, and the convergence occurs for n > 7800 elements. The
intensity of the incoming field E0 is 1V/m, and the corresponding
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value of |ρ/ρ0| is smaller than 5.75· 10−9 at regime, so the NC con-
dition is fulfilled. The value of RPB is 1.31· 10−17 var, while the
value of APB is 3.11· 10−19 W at n = 16800. The integration path
for the power flux calculation was arbitrarily chosen as a line that
encloses a period of the groove (it passes through the metal). The
simulation time is about 5min





5
Hydrodynamic theory for

plasmonic waveguides

In this chapter we will study an important application of surface
plasmon polaritons: plasmonic waveguides. The surface plasmons
that we studied in chapter 3 and 4 are “localized”, and the plasma
oscillation are stationary waves. We have seen that this has many
interesting applications, but this is not the full story. Plasmons can
also be propagating waves, and this is one of the most promising
applications to the field of optoelectronics and telecommunications.
We will analyze waveguides that show high field confinement, such
as nanowires, grooves and edges for which the nonlocal effects are
important. The results we will show are issued in Paper D (p. 97).

5.1 Plasmonic waveguides

Before starting our discussion on the hydrodynamic theory of plas-
monic waveguides, let us briefly review different types of plasmonic
waveguides and their application. In the introduction of this thesis,
we talked about the ability of surface plasmon polaritons of focusing
light beyond the diffraction limit. We have seen some examples in
the previous chapters concerning the confinement of energy in gap
regions between nanorods (Chapter 3) or in groove crevices (Chap-
ter 4). In this chapter, beside the focusing properties of SPP, we
also consider the ability of surface plasmon polaritons of carrying
energy between two given points of an optical circuit. The metallic
devices that support these propagating modes are called plasmonic
waveguides.
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Various types of plasmonic waveguides have been proposed for
guiding SPP, and these include, for example, thin metal films [75,
76], chains of metal nanoparticles [77–79], cylindrical nanorods [80],
metal nanostrips on a dielectric substrate [81–84], sharp metallic
wedges [85–89], nanogrooves in metallic substrates [88–93]. For
plasmonic waveguides, focusing refers to the ability of laterally con-
fining light, i.e. orthogonally to the propagation direction. There is
usually a trade-off between lateral field confinement and propaga-
tion distance for these guides, so not all of them can focus light in
the same way [9]. For example, metal nanostrips on a metallic sub-
strate are long-range guides. This is due to the fact that most of the
energy carried by the SPP modes in these guides is localized into
the dielectric substrate, that is usually less lossy then the metal-
lic strip. Moreover, decreasing the thickness of the strip or of the
film, causes the field to leak into the dielectric, and this results in
poorer localization of the modes. In the telecommunications band
[1300−1600] nm, the propagation length for the fundamental mode
of this guide can be of the order of millimeters, but they are not
suitable for integrated optical circuits.

In order to reach a subwavelength focusing of light, guided SPP
modes must mainly propagate in the metal, and this unavoidably
reduces the propagation length of the guide. Some of the guides
we listed above are able to focus light efficiently, but they are af-
fected by high propagation losses. A typical example of this kind
of guides is the chain of nanoparticles, that is rather difficult to use
for plasmonic interconnects [78]. Cylindrical nanowires are difficult
to fabricate, and they are too sensitive to imperfections.

Recently, Λ-wedges and V-grooves have received considerable
attention from the plasmonic research community because they are
relatively easy to fabricate, and they show very good light con-
finement and relatively low propagation losses. In particular, at
telecommunications frequencies wedge plasmon waveguides show
better lateral field localization and less attenuation with respect to
the groove waveguides. This means that they are good for optical
interconnects of signals in the near infrared. At optical frequen-
cies, the situation is reversed, and V-grooves show better lateral
confinement of light, and longer propagation distances [9]. These
waveguides find important applications in all areas where nano-
scale resolution is essential, such as near-field optical microscopy,
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electromagnetic probing of separate molecules and quantum dots,
non-linear plasmonics, and nanofocusing [94]

In this chapter, we examine in detail the light confinement and
propagation properties of V-grooves, and Λ-wedges in the hydrody-
namic model.

5.2 Hydrodynamic wave equation for the electric field

The waveguiding problem is a 3D problem, because all the compo-
nents of the electric and current density field must be considered.
The solutions of the full hydrodynamic system (2.2.8) would be
based on the 6 dimensional vector (E,J), and this can be very dif-
ficult to handle numerically. However, it is possible to work the
equations out and eliminate the current density vector, and writ-
ing a compact equation that contains only the electric field E. We
report here all the steps of the derivation.

We start again with the equation of motion (2.2.7):

β2∇∇ · J+ ω(ω + iγ)J = iωε0ω
2
pE, (5.2.1)

and recall the definition of displacement vector D as:

D = ε0E+ i
J

ω
.

If we apply the divergence operator on both sides and we use the
fact that∇·J = iωρ, where ρ is the polarization charge density, and
D is solenoidal because there are no free charges, then we obtain:

∇ · E =
ρ

ε0
,

from which we derive the relation:

∇ · J = iωε0∇ · E.

We can substitute this expression in the equation of motion (5.2.1),
and isolate J, and obtain:

J = −iωε0 β2

ω(ω + iγ)
∇∇ · E+ iωε0

ω2
p

ω(ω + iγ)
E. (5.2.2)
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The term:

χDrude = −
ω2
p

ω(ω + iγ)
,

is the Drude electric susceptibility. If we define:

ϑHD =
β2

ω(ω + iγ)
,

and rewrite (5.2.2) as:

J = −iωε0ϑHD∇∇ · E− iωε0χDrudeE,

that can be substituted in Maxwell’s wave equation and obtain:

∇×∇× E− εDrudek
2
0E = k2

0ϑHD∇∇ · E, (5.2.3)

where εDrude = 1 + χDrude. This equation can be written in a more
compact way by using the vector identity ∇ [∇ · E] = ∇×∇×E+
∇2E:

∇×∇× E(r) = k2
0

1

(1− k2
0ϑHD)

ε̂NL(r)E(r),

where ε̂NL(r) is defined as:

ε̂NL(r) = εDrude + ϑHD∇2.

The term
1

(1− k2
0ϑHD)

=
1

1− (
β
c

)2 ω
(ω+iγ)

≈ 1

for noble metals at optical frequencies. The hydrodynamic wave
equation for the electric field becomes:

∇×∇× E(r) =
(
ω
c

)2
ε̂NL(r)E(r).

This is formally similar to the ordinary Maxwell’s equation in a
local medium, where all the aspects of the nonlocal response are
included in the operator ε̂NL(r). We still need an additional bound-
ary condition to solve this equation, because ε̂NL(r) is a differential
operator. This condition is given in this case by equation (2.2.17),
discussed at section (2.2.2), that states the continuity of the normal
component of the E vector.
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It is useful to write eq. (5.2.3) in the weak form, in order to
implement it in COMSOL Multiphysics. For this reason, we rewrite
the equation (5.2.3) in the weak form.

Before doing that, we introduce the mathematical identities
that will allow us to integrate the differential operators in equa-
tion (5.2.3) by parts.

The first identity it permits to write the differential∇× operator
in its integral equivalent. If we consider an integration domain Ω,
and the vectorial functions a(r), F(r), and C(r) are integrable on
Ω, the identity reads:

∫
Ω

a · ∇ × F d3r =

∫
Ω

F · ∇ × a d3r +

∫
∂Ω

n̂× F · a d2r.

The second identity permits to transform the ∇∇· operator in its
integral equivalent:

∫
Ω

a · ∇∇ ·C d3r = −
∫
Ω

∇ ·C ∇ · a d3r +

∫
∂Ω

∇ ·C a · n̂ d2r,

where n̂ is the outward normal vector on ∂Ω.
If we specify C = E, F = ∇ × E, and a = Ẽ, where Ẽ is the

test function applied to E (see sec. 3.1), we obtain:

∫
Ω

∇× E · ∇ × Ẽ d3r − εDrudek
2
0

∫
Ω

E · Ẽ d3r+

+

∫
∂Ω

Ẽ · (n̂×∇× E) d2r = −k2
0ϑhd

∫
Ω

∇ · E ∇ · Ẽ d3r+

+k2
0ϑhd

∫
∂Ω

∇ · E Ẽ · n̂ d2r,

(5.2.4)

and this is the hydrodynamic wave equation in the weak form. The
term on the left-hand side represents the ordinary Maxwell’s wave
equation, while the term on the right-hand side represents the non-
local contribution. This equation is very easy to implement in a
finite-element method program, such as COMSOL.
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5.3 Plasmonic waveguides: mathematical formulation

The equations (5.2.3) and (5.2.4) are general formulations that can
be used for any kind of electromagnetic problem involving nonlocal
response. We are interested into plasmon propagation into metallic
waveguides, that are indefinitely extended along the guiding direc-
tion (say z), and they have a constant section that is invariant along
z . The metallic waveguide is immersed into a dielectric medium
with permittivity εr, that we can consider as infinitely extended in
all directions (see fig. 5.1).

In waveguiding problems, we look for solutions of Maxwell’s
equations that are propagative along the guiding direction, and are
confined in the near vicinity of the guiding structure. Thus, we
must specialize the form of the electric field, and seek for solutions
of this form:

E(x, y, z) = E(x, y)eikzz, (5.3.1)

where (x, y) are the coordinate of the transversal section, kz is the

Figure 5.1 Metallic waveguide. The picture shows a generic waveguide. Ω is
the metallic domain, that it is surrounded by a dielectric of permittivity εr. The
guide is indefinitely extended along z.

propagation constant, that can be written as kz = β + iα, β is the
propagation constant, and α is the attenuation constant. This is a
wave that has a “shape” E(x, y) in the transversal direction, that
propagates along z with propagation constant β, and the intensity
|E(x, y)| is attenuated of 1/α in the propagation direction. The
dynamics of the solutions in the z direction is determined, so we
have to find the field E(x, y) in the transversal direction.
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The field (5.3.1) must obey to the hydrodynamic wave equation
(5.2.3) in the transversal metallic domain Ω, and the ordinary wave
equation for a local medium in the transversal dielectric R

2 \ Ω.
This equation reads:∫

R2\Ω

[
∇× E · ∇ × Ẽ− εrk

2
0E · Ẽ

]
d3r+

−
∫
∂Ω

Ẽ · (n̂×∇× E) d2r = 0,

where the sign of the flux integral is negative due to the convention
on the versor normal to ∂Ω.

The test-function Ẽ must have the same form of (5.3.1), so it
will be of the kind:

Ẽ(x, y, z) = Ẽ(x, y)e−ikzz.

The solution in the metallic domain Ω, and in the in the dielectric
R

2\Ω must be “glued” along the boundary ∂Ω, and the z direction.
This procedure leads to an eigenvalue problem for the electric field,
with eigenvalue kz.

The general procedure that we have illustrated here constitutes
the the algorithm that we implemented in COMSOL 4.1, by us-
ing only the PDE Weak form module, and the standard MUMPS
eigenvalue solver.

5.3.1 Implementation issues and workarounds

The numerical implementation that we discussed above allows us
to determine the eigenvalue kz of a given plasmonic waveguide con-
figuration. However, the convergence of the electromagnetic field
on the boundary of the structures is not pointwise. This is due to
the fact that COMSOL does not give enough flexibility to the pro-
grammer concerning the boundary conditions and the interpolating
polynomials.

An implementation based on the scheme discussed in Chapter
3, that is the solution of the coupled equations (2.2.8), would be
possible in principle, but it does not converge in practice. The
explanation for such behavior is not clear, but we think that it is
due to two reasons: the fact that the solver has to handle a six
dimensional vector as discussed in section 5.2, and the fact that |J|
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has higher value with respect, for example, the polarization vector
|P|.

Indeed, a way to overcome the latter problem is to write the
equation of motion in terms of the polarization vector P, that is
linked to J by the equation:

P = i
J

ω
,

so |P| is smaller than |J| by a factor 1/ω. The system of equation
in strong for in this case reads:

∇×∇× E− k2
0E = ω2μ0P (5.3.2)

β2∇∇ ·P+ i(ω + iγ)P = −ε0ω2
pE. (5.3.3)

The equation (5.3.2) is solved by means of the Mode Analysis rou-
tine of the “EM module”, and the equation of motion for P (5.3.3)
is solved by means of the “PDE weak form” module. This imple-
mentation works correctly, and the convergence on the boundaries
is punctual, and it is useful to determine the field shapes in prox-
imity of the boundaries.

We call HDW code the implemetation based on the hydrody-
namic wave equation, and HDP code to indicate the code based on
the approach that we have just presented.

The propagation properties in section (5.4) are calculated with
the HDW code, while the mode confinement properties calculated
in sec. (5.5) are calculate by means of the HDP code.

5.4 Propagation properties of nanowires, V-grooves, and
Λ-wedges

In this section we examine the dispersion relations for plasmonic
waveguides that are characterized by an extreme light confinement:
cylindrical nanowires, V-grooves and Λ-wedges (see fig. 5.2). All
the waveguides we study are made of silver, and the interband
effects are not included. The parameters for the free-electron gas
are obtained from [74]. The analysis for the V-grooves and Λ-
wedges is conducted in visible and near infrared band.

The case of the cylindrical nanowire is one of the first examples
presented in the literature because it is possible to find analytical
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solutions for the fields in the HD model for this kind of structures
[95].

Analytical solutions for the V-grooves in the HD model are dif-
ficult to obtain. Nonetheless, it is possible to calculate approxi-
mated solutions by using the effective-index method (EIM) in the
LRA [96, 97]. The EIM method might be also applied to the HD
model, but there are no works concerning this approach in the lit-
erature.

Finally, as far as we know, there are no analytical solutions for
either the HD model or the LRA for the Λ-wedge.

Figure 5.2 Generic plasmonic waveguides geometries with wave propagation
in the z-direction and extreme transverse confinement in the xy-plane due to
subnanometer geometric dimensions. a) Cylindrical nanowire b) V-groove c)
Wedge.

It is difficult to find an analytical solution also for this kind of
structures both for LRA and HD model.

The analysis that we performed is also a “limit-procedure” as
described in chapter 4. In particular, we investigated the “funda-
mental limit” for the dispersion relation for both the V-groove and
the wedge in the limiting case of curvature radius r → 0 (r shown
in fig. 5.2). A limit-procedure analysis was also performed for the
cylindrical nanowire, in order to study the behavior for small radii.

5.4.1 Circular Nanowires

Fig. 5.3 shows the dispersion relation ω(kz) for the fundamental
mode of a cylindrical nanowire of radius R = 2nm (blue) and R =
4nm (green) in air. The solid points refer to the numerical results,
while the solid lines represent the analytical results calculated by
Ruppin [98]. The non-retarded analytical result for the LRA case
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Figure 5.3 Dispersion relation ω(kz) for the nanowire radius R = 2 nm (blue)
and R = 4nm (green) respectively. Numerical solutions are indicated with
solid points, and analytical results are indicated with solid lines. The red
dashed curve shows the universal result of the non-retarded LRA. with its
large kz limiting value ωp/

√
2 indicated by the horizontal light-blue line.

[99] is indicated by the red-dashed curve, and its large kz limiting
value ωp/

√
2 is indicated by the horizontal light-blue line. The effect

of the nonlocal response is clearly visible. The local curve has an
asymptotic behavior for large kz, while the nonlocal curve shows a
monotonically increasing behavior that depends on the radius R.
The smaller the radius, the bigger is the slope of the line. This is
again the blueshift effect: if we fix the value of kz, the highest value
of ω corresponds to the smallest radius R. This means that the
nonlocal effects are non-negligible for very small isolated structures,
as we discussed in 3. We did not calculate the dispersion relation
for high-order mode. The analytical calculations were performed
by Boardman and can be found in [95].

5.4.2 V-groove and Λ-wedge waveguides

The propagation in this kind of metallic waveguide is studied in
terms of the effective refractive index and propagation length. These
parameters are linked to the propagation constant β and the atten-
uation constant α by the definitions:

neff =
β

k0
L =

1

2α
.

The V-groove waveguide that we considered has an opening angle
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Figure 5.4 neff (left axis) and L (right axis) versus λ for the fundamental mode
in complimentary (a) V-groove and (b) wedge silver waveguides, both with
opening angle of 30◦. The nonlocal results (solid circles) are contrasted to the
LRA (open circles). The dashed lines are eye guides. Results for structures
with r = 0 (blue solid circles) are contrasted to rounding r = 1 nm (red open
circles). Insets show field-intensity distributions (scale bars are 1 nm long)
calculated with the HDM (λ = 600nm) for r = 0.

of θ = 30◦. We studied the fundamental mode that is localized
in the gap. It must be noticed that the depth of the groove must
be chosen appropriately in order to ensure the mode localization
[96,97].
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Fig 5.4a shows the dispersion relation neff(λ) on the left axis, and
the propagation length L(λ) on the right axis. It can be noticed that
the differences between local and nonlocal cases are negligible for
both quantities neff and L when the radius of curvature r = 1nm.
However, in the limiting case of r = 0, there are variations with
respect to the case of r > 0.

Analogous discussion can be done for the sharp metal Λ-wedge
(see fig. 5.4b). This wedge has an aperture angle of θ = 30◦,
and it is the complimentary structure of the groove. There are
no appreciable differences between the local and nonlocal case for
r = 1nm for both neff and L. The effective refractive index is larger
for the nonlocal case when r = 0 at short wavelengths, while the
propagation length is smaller in the same wavelength band.

5.5 Measure of confinement: mode area

As we said earlier, the plasmonic waveguides that we considered
here are characterized by a high field confinement far beyond the
diffraction limit.

An intuitive way to measure the efficiency of the mode confine-
ment of a waveguide is by defining an effective area. There are
many kinds of definition for mode areas in the literature, but the
one we are interested here is [100]:

Aeff =

∫
Vm+Va

dxdy u(r)

maxVa

{
u(r)

} , (5.5.1)

where u(r) is the electromagnetic energy functional, and the cross-
sectional integral extends over the volumes Vm and Va occupied by
metal and air, respectively, while the evaluation of the maximal
energy density is restricted to the air region. The electromagnetic
energy functional u(r) for the electron gas in the HD model is given
by equation (2.3.6) in time domain. However, here we will consider
the electric part of the functional, that for time-harmonic field is:

uHD

E =
1

4
ε0E

2 +
β2

4ε0ω2
p

ρ2 +
1

4ε0ω2
p

J2.

The analogue of this expression for the free-electron gas in the LRA
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is [101]:

uLRA

E =
1

4
ε0E

2 +
1

4
ε0

( ω2
p

ω2 + γ2

)
E2,

while the energy density in air is simply uAIR
E = 1

4
ε0E

2.
This definition of mode area is linked to the Purcell factor, that

characterizes a mode ability to enhance the spontaneous emission
rate of light of a near-by quantum system (atom, molecule, quan-
tum dot). The rate of spontaneous emission by a quantum system,
depends on the nature of the light source, and on the electromag-
netic environment of the source itself. In the 1940s, Purcell discov-
ered that the emission rate could be enhanced by placing a source
close to a dielectric microcavity that is resonating with the radiative
transition frequencies of the quantum system [102]. The emission
rate for a dipole emission is proportional to the Purcell factor, that
is defined by:

FP =
3Q

4π2Veff

(λ
n

)3

,

where Veff is the mode volume for a cavity, that corresponds to the
definition (5.5.1) extended to a 3D structure. The Purcell factor is
a “coupling factor” between the emitter and the photonic structure,
and it can be defined analogously for the coupling to a plasmonic
waveguide [103]. In this case, the factor reads:

FP 
 1

π

ng

n2

A0

Aeff

,

where A0 = (λ/2)2, ng is the group index of the waveguide mode, n
is the refractive index of the medium surrounding the emitter, that
is air in our case. The details of the derivation can be found in [100].
It is evident that a small mode area strongly enhances the coupling,
and this makes the plasmonic waveguides that we examined good
candidates for quantum communication applications [104].

We can now analyze the effect of nonlocal response on the mode
area for our structures.

5.5.1 Cylindrical Nanowires

The case of the cylindrical nanowire is depicted in fig. 5.5, that
shows the effective mode area for the fundamental mode Aeff nor-
malized to R2 as a function of the normalized propagation constant
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kzR. As in the case of the propagation properties β and α, the
nonlocal effects are visible for values of the radius R smaller than
10 nm. This confirms once again that the nonlocal effects in isolated
systems become important for very small systems. Panel (b) shows

min
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Wavevector, kzR
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Figure 5.5 Panel (a) Normalized effective mode area within the HDM for the
nanowire radius R = 2nm (blue) and 4nm (green), respectively, showing ex-
cellent agreement between numerical solutions (solid points) and analytical
results (solid lines). For comparison, the red-dashed curve shows the univer-
sal result of the nonretarded LRA. Panel (b) Radial distribution of the electric
field

∣∣Eρ

∣∣ at ω = 0.6ωp for R = 4nm, contrasting the continuous field variation
in the HDM with its usual boundary discontinuity in the LRA.

the distribution of the radial component of the electric field
∣∣Eρ

∣∣
for both the local and nonlocal case at a high frequency, ω = 0.6ωp

and for a wire with R = 4nm. In the nonlocal case, the mode
pattern in the metallic structure is affected by the excitation of the
longitudinal field, and this is clearly visible in the cross-section plot.
Moreover,

∣∣Eρ

∣∣ is continuous across the boundaries in the nonlocal
case, while it shows a jump in the local case, as discussed in sec.
2.2.2.

5.5.2 V-groove and Λ-wedge waveguides

Fig 5.6 shows the effective mode area Aeff for the fundamental mode
for both the V-groove (Panel a) and Λ-wedge (Panel b) structure.
The area Aeff is normalized by the area A0, and this provides a direct
comparison of the mode area with the wavelength, showing the
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subwavelength dimensions of the modes. It is possible to compare
the relative size of the areas for both the wedge and the groove,
and see that the wedge confines the light much better, as reported
in [105].

We conducted a “limit-procedure” for the mode area as we did
in par. 5.4.2 to determine how the mode area behaves when the
curvature of the sharp tips r → 0 both for the groove and the
wedge. What we found is that the mode area in the LRA approxi-
mation decreases indefinitely as r → 0, while it saturates in the HD
model. This has an important impact on the spontaneous emission
applications because it gives an upper limit on the Purcell factor.

The mode area for the wedge varies pretty slowly for long wave-
lengths, and it drops only for very short wavelengths. The mode
area for the the V-groove varies quite abruptly instead. More-
over, Aeff for the Λ-wedge is almost 4 order of magnitude smaller
that the relative value for V-groove in the telecommunications band
[1300−1600] nm. A high field confinement capability and a consid-
erably long propagation length make Λ-wedges very amenable for
optical nanocircuits in the near infrared band. In the optical re-
gion of the spectrum, the effective areas for the two waveguides are
comparable, but the propagation length for the V-groove is larger
then the one for the Λ-wedge. Thus, V-grooves are superior to the
Λ-wedges in the optical domain. This confirms the properties of
these waveguides that we anticipated in sec. 5.1.

5.6 Convergence tests

In this section we consider the convergence tests for the waveg-
uides that we have analyzed in the sections above. It is possible
to observe in fig. 5.3 and fig. 5.5 that the agreement between the
analytical and numerical solutions is very good. More quantita-
tively, the relative error of the numerically calculated propagation
constant β with respect to the analytical value is always smaller
than 0.3% in the entire frequency range of figure 5.3. The relative
error for the effective mode area Aeff is always smaller than 0.12%
on the same frequency range.

The convergence analysis for the circular nanowire waveguides
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Figure 5.6 Normalized mode area versus wavelength for the fundamental
mode in complimentary (a) V-groove and (b) wedge silver waveguides, both
with opening angles of 30◦. The HDM results (solid symbols) are contrasted
to the LRA (open circles), for r = 1nm (red) and r = 0.2nm (green). Results
for mathematically sharp structures with r = 0 (blue solid circles) define a
lower limit in the HDM (grey-shaded regions are inaccessible). For the LRA,
the r = 0.1nm results (magenta) exceed this limit and the mode area tends
to zero when r → 0. Insets show field-intensity distributions (white scale bars
are 5 nm long) at λ = 600nm. The LRA intensities are with rounding r = 1nm,
while r = 0 is used for the HDM maps.

is based on the methodology that we developed in sec. 3.4 for
the scattering problem. In this case we have two observables, that
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are the propagation constant β and the effective mode area Aeff .
Thus, we define the relative errors δnumβ and δnumA according to the
definition given in eq. (3.4.3). We select the test that is performed
at high frequency ω = 0.6ωp, because in this case the field is mainly
localized in the metal. This is a “worst-case” condition for the
calculations because a high number of edge elements is needed. The
results are shown in fig. 5.7. It is important to underline that the
propagation constant β is calculated by means of the HDW code,
while the mode area is calculated with the HDP code. However,
both codes show a convergence of the calculated parameters for
n > 250. The corresponding simulation time is about 5min for
both codes.
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Figure 5.7 Convergence test for a cylindrical nanowire with radius R = 2 nm.
Panel (a) Relative error δnumβ of the propagation constant β versus number of
edge elements for cylindrical nanowires. The convergence occurs for n > 200.
Panel (b) Relative error δnumA of the effective mode area Aeff versus number of
edge elements for cylindrical nanowires. The convergence occurs for n > 250.
The scale bar is 1nm long. The inset refers to n = 250.

The convergence test for the V-groove is similar to the one we
developed for the groove structure for SERS applications in par.
4.3.1. We consider the case λ = 600 nm, because it corresponds to
the maximum field localization in the visible spectrum, and a high
mesh density is needed. The observables are the effective refractive
index neff , and the propagation length L. Both relative errors δnumn

and δnumL converge for n > 200, and the simulation time is about
10 min. These results were calculated with the HDW code.

The convergence test for the Λ-wedge structure is similar to
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Figure 5.8 Convergence test for a V-groove structure with aperture angle
θ = 30◦. The radius of the meshing circle Rmesh = 10nm, and it is kept
constant while varying the number of triangular elements. Panel (a) Relative
error δnumn of the effective refractive index versus the normalized number of
triangular elements n. The convergence occurs for n > 200, that corresponds
to n = 6283 elements. Panel (b) Relative error δnumL of the propagation length
L versus n. The convergence occurs for n > 200. The scale bar is 10nm long.
The inset refers to n = 200, and the shaded blue area indicates the metal.

the analysis performed for the triangular nanowire at par. 4.1.1.
Also in this case, we show the test performed at λ = 600 nm, that
corresponds to the highest field confinement in the metal. The re-
sults are shown in fig. 5.9, and it is possible to notice that the
propagation length converges at higher n with respect to the ef-
fective refractive index. The Λ-wedge presents high losses at this
wavelength, and the simulations can be very sensitive on the mesh
density. The results are obtained with the HDW code, and the
typical computation time is about 10min.

Finally, we consider the convergence of the effective mode area
for both V-groove and Λ-wedge. The results are shown in fig. 5.9.
It must be pointed out that the mesh densities in the two cases are
relative to different geometrical entities, so they cannot be com-
pared directly. This can be seen in the insets of fig. 5.9 and 5.8.
The results are obtained with the HDP code, and the simulation
time is about 10min also in this case.
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Figure 5.9 Convergence test for a Λ-wedge structure with aperture angle
θ = 30◦. The radius of the meshing circle Rmesh = 1nm, and it varies, while the
number of triangular elements is kept constant. Panel (a) Relative error δnumn

of the effective refractive index versus the normalized number of triangular
elements n. The convergence occurs for n > 30, that corresponds to n > 94
elements. Panel (b) Relative error δnumL of the propagation length L versus
n. The convergence occurs for n > 45, i.e. n > 141. The scale bar is 1nm
long.The inset refers to n = 141, and the shaded blue area indicates the metal.

0

3

6

9

12

20 40 60 80
0

15

30

45

60

100 200 300 400

Figure 5.10 Convergence test for the effective mode area for V-groove and
Λ-wedge waveguides. Panel (a) Relative error δnumA of the effective mode area
Aeff versus number of edge element for the V-groove. The convergence occurs
for n > 400, i.e. n > 12566. Panel (b) Relative error δnumA of the effective mode
area Aeff versus number of edge elements for the Λ-wedge waveguide. The
convergence occurs for n > 60, i.e. n > 188.





6
Conclusions and outlook

In this thesis I presented a theoretical study and a numerical imple-
mentation of the hydrodynamic model, and focused on its ability
to describe fundamental phenomena that can not be accounted for
in the Drude model.

In Chapter 2 I discussed the derivation of the hydrodynamic
equations, that were used in my implementation. The key informa-
tion is contained in Section 2.2, where I analyze both differences
and similarities between local and nonlocal models from a theoret-
ical point of view. The main point is the presence and importance
of the pressure term, and the correct form of the boundary condi-
tions. In particular, I showed that the surface charge layers have
finite thicknesses in the nonlocal model, and this constitutes the
novelty of the hydrodynamic approach to plasmonics.

In Chapter 3 I presented the numerical implementation in COM-
SOL Multiphysics of the hydrodynamic equation of motion (2.2.7),
and derived its weak form. Then, I studied the scattering from
a gold nanowire and a nanowire dimer. I observed that one of
the main fingerprints of the hydrodynamic model is the blueshift
of the surface plasmon resonance peaks, and this is due to the fi-
nite extension of the surface charge layers. The blueshift plays
an important role in dimer structures, where two metallic parti-
cles face each other and Coulomb forces between them arise. For
dimer structures, the electromagnetic energy is mainly confined in
the gap, and this causes the phenomenon of field enhancement.
The enhancement peaks are notably influenced by nonlocal effects,
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and a decrease of the enhancement factor is usually but not always
observed.

Another important feature of the hydrodynamic model is the
ability to calculate fields near sharp tips where the classical model
gives divergent results. This has important implications for the
study of the structures where field enhancement is expected to sat-
urate when the sharpness of the edges increases. This is actually
the case of the groove structure for SERS applications that I pre-
sented in Chapter 4. I calculated the maximum field enhancement
that is possible to achieve with this structure, and I noticed that it
is smaller than the values typically measured experimentally.

Finally, in Chapter 5 I presented a new formulation of the hy-
drodynamic equation of motion, that has the same form of the
usual wave equation in the local case. This implementation was
fundamental for the definition and implementation of the waveguid-
ing problem in COMSOL. The dispersion relations for the circular
waveguide, V-groove and Λ-wedge were calculated. I also presented
the ultimate surface mode area for V-groove and Λ-wedges, that has
important implications for the understanding of the Purcell effect
in spontaneous emission.

A natural direction for the future development of this work
would be the study of the combined effects of spatial nonlocali-
ties and electron tunneling for small gaps. A possible solution for
this implementation has been devised by Dong et al. [39]. In this
study, two circular nanorods were bridged by a fictitious medium
that describes the conducting electrons in the gap region. Their
results show that the tunneling effects dominate over the nonlo-
cal effects in the conducting regime. However, the hydrodynamic
model that they use is not correct, as I pointed out in [32]. The
idea behind this particular implementation was initially presented
by Esteban et al. [17], who used the Drude model for the metallic
dimers.

From the experimental point of view, the effect of electron tun-
neling is still an open question because it is difficult to control the
particles separation at a distance where these effects can be ob-
served. However, the fabrication, control and analysis techniques
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have improved in the last years, and new preliminary results were
recently obtained. For example, Kern et al. [52] managed to control
the gap between two gold nanorod dimer down to a width of 0.3 nm,
with a combined HAADF-STM study. They showed that the tun-
neling starts to occur for gap widths that are ≤ 0.5 nm. They also
made important measurement of resonance shifting and they ob-
served a good qualitative agreement with my results for nanowire
dimers. The control of the separation distance between two gold
nanoparticle was also reached by Savage et al. [23], by means of a
two gold-nanoparticle-terminated atomic force microscope (AFM),
and they observed the onset of the tunneling effects at a separation
distances of ∼ 0.4 nm. Scholl et al. [106] also managed to control
the distance between two nanosphere by means of a STEM-EELS
combined approach. They show that the field enhancement in the
quantum limit gap width of ∼ 0.5 nm reaches a saturation, due to
the tunneling current that neutralizes the charge separation at the
junction between the spheres.

Another possible direction for my work could be the implemen-
tation of the nonlinear hydrodynamic model, I introduced in eq.
(2.1.5). This model is highly complex from the computational point
of view, but it would be possible to start from the analysis of the
quadratic terms in the expansion (2.1.7). A similar approach has
already been applied by Cirac̀ı et al. [49, 50] in order to study the
second-harmonic generation in metals.

There are other methods that are developing in parallel with
the hydrodynamic model, and they are mainly based on ab-initio
calculations. I recall here a pioneering work on plasmon resonance
in a nanoparticle dimer as a function of the interparticle separation,
that was conducted by Zuloaga et al. [26] in 2009. Some of the
phenomena anticipated by these calculations, such as the plasmon
resonance blueshift due to the conduction regime, were confirmed
in the measurements made by Scholl et al. [106]. In my calculations
for dimers [47], I showed that the nonlocal effects start already to
be relevant for gap sizes of 3 nm, and it would be interesting to see
ab-initio calculations confirming these results. The comparison of
the effects observed in the hydrodynamic model with the outcomes
of ab-initio calculations could be considered as another possible
development of my work. In a recent work by Andersen et al. [107],
an attempt was made to compare the classical Drude model with
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a more advanced DFT-RPA combined approach for the study of
plasmonic excitation in Na layers. The results showed a redshift of
the surface plasmon resonance calculated with the ab-initio method
respect to the classical one, and this is mainly due to the electrons
spilling out of the Na layers.

The combination of ab-initio calculations and hydrodynamic
model might be important for the description of 2D materials, such
as graphene. The implementation of such a computational solution
could be a new challenge to be taken up in the near future.
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We study the nonlocal response of a confined electron gas within the hydrodynamical Drude model. We address
the question as to whether plasmonic nanostructures exhibit nonlocal resonances that have no counterpart in the
local-response Drude model. Avoiding the usual quasistatic approximation, we find that such resonances do
indeed occur, but only above the plasma frequency. Thus the recently found nonlocal resonances at optical
frequencies for very small structures, obtained within quasistatic approximation, are unphysical. As a specific
example we consider nanosized metallic cylinders, for which extinction cross sections and field distributions can
be calculated analytically.
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Nanoplasmonics1,2 is presently entering an era where the
metallic structures offer nanoscale features that will eventually
allow both photons and electrons to exhibit their full wave na-
ture. This regime challenges the existing theoretical framework
resting on a local-response picture using bulk-material param-
eters. In tiny metallic nanostructures, quantum confinement3–7

and nonlocal response8–18 are believed to change the collective
plasmonic behavior with resulting strong optical fingerprints
and far-reaching consequences for, e.g., field enhancement and
extinction cross sections. Within nonlocal response, Maxwell’s
constitutive relation between the displacement and the electric
fields reads

D(r,ω) = ε0

∫
d r ′ ε(r,r ′,ω) · E(r ′,ω). (1)

The dielectric tensor ε(r,r ′,ω) reduces to ε(r,ω)δ(r − r ′) in
the local-response limit. Historically, there has been a strong
emphasis on nonlocal response in extended systems with
translational invariance (TI),10 where a k-space representation
is useful. However, for the present problem of metallic
nanostructures, TI is broken and a real-space description is
called for.

Recent theoretical studies of nanoscale plasmonic struc-
tures have predicted considerable differences in the field
distributions and scattering cross sections between local
and nonlocal response theories, both in numerical imple-
mentations of a simplified hydrodynamic Drude model,14–18

and in corresponding analytical calculations.15 Importantly,
additional resonances of the free-electron plasma were found,
also at optical frequencies, which have no counterparts in
local-response theories. Such resonances have already gained
interest both from a fundamental7 and an applied19 perspective.
At present, the status of these optical nonlocal resonances is
unclear, since in Ref. 13 the same nonlocal model was used as
in Refs. 14–18, and yet no corresponding modes were found
at visible frequencies. Resolving this issue is important for the
engineering of ultrasmall plasmonic structures with optimized
functionalities.19–21

In this Rapid Communication we report that unusual
resonances due to nonlocal response do exist in nanoplasmonic
structures, but only above the plasma frequency, not in the
visible. We illustrate this property of arbitrary plasmonic

structures by exact calculations for metallic cylinders. We
also clarify that different implementations of the common
quasistatic approximation9,11 are the reason for the conflicting
results in Refs. 13–18. Here we refrain from making this
approximation altogether, and by comparison analyze the
validity and implementation of the quasistatic approximation
in the hydrodynamic model.

The hydrodynamic Drude model. We express the collective
motion of electrons in an inhomogeneous medium in terms of
the electron density n(r,t) and the hydrodynamical velocity
v(r,t).8 Under the influence of macroscopic electromagnetic
fields E(r,t) and B(r,t), the hydrodynamic model is defined
via10

[∂t + v · ∇] v = −γ v − e

m
[E + v × B] − β2

n
∇n, (2)

along with the continuity equation ∂tn = −∇ · (nv), express-
ing charge conservation. In the right-hand side of Eq. (2), the
γ term represents damping, the second term is the Lorentz
force, while the third term is due to the internal kinetic energy
of the electron gas, here described within the Thomas-Fermi
model, with β proportional to the Fermi velocity vF. In analogy
with hydrodynamics, the third term represents a pressure that
gives rise to a nonlocal dielectric tensor, since energy may
be transported by mechanisms other than electromagnetic
waves.

We follow the usual approach11 to solve Eq. (2) and the
continuity equation, by expanding the physical fields in a
zeroth-order static term, where, e.g., n0 is the homogeneous
static electron density, and a small (by assumption) first-
order dynamic term, thereby linearizing the equations. In the
frequency domain, we obtain

β2∇[∇ · J] + ω(ω + iγ ) J = iωω2
pε0 E (3a)

for a homogeneous medium, where J(r) = −en0v(r) is
the current density, and ωp is the plasma frequency which
also enters the Drude local-response function ε(ω) = 1 −
ω2

p/[ω(ω + iγ )]. We focus on the plasma, leaving out bulk
interband effects present in real metals that could be easily
taken into account,14,22 as well as band-bending effects at the
metal surface.

121412-11098-0121/2011/84(12)/121412(4) ©2011 American Physical Society
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The electromagnetic wave equation. The retarded linearized
hydrodynamic model is then fully described by Eq. (3a),
together with the Maxwell wave equation

∇ × ∇ × E = ω2

c2
E + iωμ0 J . (3b)

In order to see that these coupled equations (3) indeed describe
a nonlocal dielectric response, one can in Eq. (3b) rewrite the
current density J as an integral over the Green’s tensor of
Eq. (3a) and the electric field, whereby the nonlocal dielectric
tensor of Eq. (1) can be identified.

In a local-response description it is commonplace to
introduce the quasistatic or curl-free assumption that ∇ × E =
0.23 This well-established approximation lies at the heart of
most treatments and interpretations of electromagnetic wave
interactions with subwavelength structures. Intuitively, one
might expect that it can be extended to the nonlocal case and in-
deed several nonlocal treatments use this assumption.9,11,13–17

However, as we shall demonstrate, one should proceed with
care.

Three models. Here we solve Eqs. (3) directly, without
further assumptions or approximations. We also compare
the nonlocal model with two other models obtained by
further assumptions. The curl-free nonlocal model enforces
the condition ∇ × E = 0, which with Eq. (3a) implies that
also ∇ × J = 0 in the medium. For the differential-operator
term in Eq. (3a), from now on denoted L̂J , this has the
consequence that ∇[∇·] simplifies to the Laplace operator ∇2,
which gives the model used by Ruppin in the context of exciton
physics in Ref. 27, and recently in plasmonics by McMahon
et al.14–17 and also by ourselves.18 Finally, by assuming L̂J = 0
in the hydrodynamic treatment (3a), the familiar local model
is obtained, with J and E related by Ohm’s law.

We assume that the static density of electrons n0 vanishes
outside the metal of volume V , while it is constant and equal
to the bulk value inside V , thus neglecting tunneling effects
and inhomogeneous electron distributions associated with
quantum confinement.3,6 As a consequence, J = 0 outside
V for all three models.

Boundary conditions. In the local model the current J
has the same the spatial dependence as the E field. Thus,
in this case there are no additional boundary conditions
(ABCs) to those already used in Maxwell’s equations. For
the nonlocal-response models, on the other hand, ABCs are
in general needed.10,16,24–26 From discussions in the literature
it might appear that the number of necessary ABCs is a
subtle issue, but we emphasize that there should be no
ambiguity. The crucial point is that the required number of
ABCs depends on the assumed static electron density profile
at the boundaries.26 For the present problem with the electron
density vanishing identically outside the metal, only one ABC
is needed in the nonlocal model to obtain unique solutions,26

and it is readily found from the continuity equation and
Gauss’ theorem: n̂ · J = 0 on the boundary, where n̂ is a
normal vector to the surface, i.e., the normal-component of
the current vanishes,10,24,26 for all three models. On the other
hand, in general, the tangential current n̂ × J is nonzero. This
“slip” of the current is not surprising, since the hydrodynamic
equation (2) describes the plasma as a nonviscous fluid.

TABLE I. Summary of the three different response models. V is
the volume of the nanostructure, and ∂V its boundary.

r ∈ V r ∈ ∂V r �∈ V

∇ × J L̂J n̂ · J n̂ × J J

Local �=0 0 0 �=0 0
Nonlocal �=0 β2∇[∇·] 0 �=0 0
Nonlocal
(curl-free)

0 β2∇2 0 0 0

Likewise, in several implementations of the quasistatic
approximation, no further ABCs are needed to uniquely
determine the electric field and current density.11,13 In contrast,
in the curl-free nonlocal model of Refs. 14–18 and 27,
one more ABC is needed. It is assumed that the tangential
components of J vanish at the boundary (n̂ × J = 0), so that
both normal and tangential components of the current field
vanish on the boundary. In the different context of exciton
physics27 these are often referred to as Pekar’s additional
boundary conditions. There, the vanishing of the tangential
boundary currents is motivated by the physical assumption that
exciton wave functions vanish on the boundary.27,28 Instead,
in the hydrodynamical theory of metals, the ABC n̂ × J = 0
seems more ad hoc: not a direct consequence of the quasi-static
approximation, and not correct if that approximation is not
made. The different boundary conditions are summarized in
Table I.

Extinction cross section of metallic nanowires. To illustrate
the surprisingly different physical consequences of the three
models, we consider light scattering by a nanowire. Rather
than solving Eqs. (3) numerically for a general cross-sectional
geometry, we here limit our analysis to cylindrical wires
whereby significant analytical progress is possible. We use an
extended Mie theory, developed by Ruppin,27,29 to calculate
the extinction cross section σext of an infinitely long spatially
dispersive cylindrical metal nanowire in vacuum. Outside the
wire there are incoming and scattered fields (both divergence
free), whereas inside the wire both divergence-free and curl-
free modes can be excited, the latter type only in the case of
nonlocal response. The cross section is30

σext = − 2

k0a

∞∑
n=−∞

Re{an}, (4)

where a is the radius, k0 = ω/c is the vacuum wave vector,
and an is a cylindrical Bessel-function expansion coefficient
for the scattered fields. We consider a normally incident plane
wave with the electric-field polarization perpendicular to the
cylinder axis (TM). The expression for the coefficients an

depends on the particular response model and the associated
ABCs. For the curl-free nonlocal model, the an are known.27

For the full hydrodynamic model we follow the approach of
Ref. 29, where the ABC of Ref. 25 is employed. This ABC is
for metals in free space equivalent to n̂ · J = 0. We obtain

an = −
[
dn + J ′

n(κta)
]
Jn(k0a) − √

εJn(κta)J ′
n(k0a)[

dn + J ′
n(κta)

]
Hn(k0a) − √

εJn(κta)H ′
n(k0a)

, (5)
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FIG. 1. (Color online) Extinction cross sections σext as a function
of frequency for TM-polarized light normally incident on a metallic
cylinder in vacuum. Parameters for Au as in Ref. 14: h̄ωp = 8.812 eV,
h̄γ = 0.0752 eV, and vF = 1.39 × 106 m/s. Inset: Frequency shift of
the maximum σext(ω) for nonlocal against local response, as a function
of radius.

where Jn and Hn are Bessel and Hankel functions of the first
kind and κ2

t = ε(ω)k2
0. The dn coefficients are

dn = n2

κla

Jn(κla)

J ′
n(κla)

Jn(κta)

κta
[ε(ω) − 1] , (6)

where κ2
l = (ω2 + iωγ − ω2

p)/β2. In the limit β → 0, the dn

vanish and the an of Eq. (5) reduce to the local Drude scattering
coefficients,30 which confirms that the nonlocal response in our
model requires moving charges.

Are there nonlocal resonances? Figure 1 depicts the extinc-
tion cross section of Eq. (4) for two cylinder radii, comparing
the nonlocal models with the local Drude model. The main
surface-plasmon resonance peak at ωp/

√
2 is blueshifted as

compared to the local model, and more so for smaller radii.
Similar blueshifts have been reported for other geometries12

and in the curl-free nonlocal model.14,27

Figure 1 shows the unusual resonances mentioned in the
title of this Rapid Communication: Additional peaks do appear
in the nonlocal theory but only for frequencies above the
plasma frequency ωp (h̄ωp = 8.9 eV for Ag and Au; 1.5–3 eV
is visible). These peaks (such as P2 in Fig. 1) are due to
the excitation of confined longitudinal modes, which are
bulk-plasmon states with discrete energies above h̄ωp due
to confinement in the cylinder.13 These peaks are analogous
to discrete absorption lines above the band gap in quantum-
confined semiconductor structures. Interestingly, contrary to

FIG. 2. (Color online) Field distributions in the three different
models, for TM-polarized light normally incident on a cylinder of
radius a = 2 nm. (a) Normalized displacement field |D|2/|Din|2 at
the frequency ω = 0.6503ωp (P1 in Fig. 1). Din = ε0 Ein and Ein

is the incident electric field. (b) Analogous plots of |E|2/|Ein|2 for
ω = 1.1963ωp (P2 in Fig. 1).

the common belief that light does not scatter off bulk plasmons,
which is correct in the local theory (i.e., no peak around ωp in
Fig. 1), here in the nonlocal model we do find such a coupling
to longitudinal modes. The corresponding resonances could
therefore be observed with electron loss spectroscopy but also
with extreme UV light. The curl-free model also exhibits these
resonances.

The striking difference between the two nonlocal-response
models is that the curl-free nonlocal model shows additional
stronger resonances, both above and below the plasma fre-
quency, such as P1 in Fig. 1, in particular also at optical
frequencies. These peaks do not show up in the full hydro-
dynamical model, and thus originate from a mathematical
approximation rather than a physical mechanism. It would,
however, be premature to conclude that the quasistatic ap-
proximation breaks down, because in Ref. 13 the modes of
cylinders in the hydrodynamical Drude model were found after
making the quasistatic approximation, and the only different
modes found were the confined bulk plasmon modes above
ωp. Figure 1 also illustrates that for increasing radii, σext in
the two nonlocal models converges toward the local-response
value. This convergence is slower for the curl-free model.

In Fig. 2(a) we depict the scaled displacement-field dis-
tributions for the three models at the frequency marked P1
in Fig. 1, where only the curl-free nonlocal model has a
(spurious) resonance. Correspondingly, in Fig. 2(a) we find
a standing-wave pattern only in that model. Its appearance in
the displacement field illustrates that the spurious resonance
is a transverse resonance, i.e., occurring in the divergence-free
components of E and J . Figure 2(b), on the other hand, shows
the normalized electric-field intensity for a true resonant mode
at the frequency P2 of Fig. 1. Only the two nonlocal models
give rise to resonant electric-field patterns. These confined
bulk plasmon modes are longitudinal and would not produce
standing waves in the displacement field.
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Origin of spurious resonances. By eliminating the electric
field from Eqs. (3), it follows that the exact hydrodynamic
current satisfies the pair of third-order equations(

β2∇2 + ω2 + iωγ − ω2
p

)∇ · J = 0, (7a)

[c2∇2 + ω2ε(ω)]∇ × J = 0, (7b)

which reduce to the more symmetric Boardman equations31

in the absence of damping. For arbitrary geometry, Eq. (7a)
has damped solutions of ∇ · J for ω < ωp and finite-width
resonances for ω > ωp, as seen in Fig. 1. Both solutions can
be consistent with the quasistatic approximation ∇ × J = 0
that trivially solves Eq. (7b). On the other hand, we find
that the spurious resonances have resonant divergence-free
components of E and J. However, these cannot at the same
time be curl free. Thus the curl-free nonlocal model has
resonant solutions with nonvanishing curl, which is logically
inconsistent. But how could this arise? Once the ∇ × J = 0
assumption has been invoked to simplify the differential
operator into L̂J = β2∇2, the resulting Laplacian equation
analogous to (3a) carries no information that the resulting
solution should also be curl free. Thus, the solutions found for
this equation are not necessarily self-consistent.

Conclusions. We have shown that plasmonic nanostructures
exhibit unique resonances due to nonlocal response in the
hydrodynamic Drude model, but only above the plasma
frequency. The recently reported nonlocal resonances in the
visible14–18 agree with older work,27 but are a surprisingly pro-
nounced consequence of an implementation of the quasistatic
approximation that is not self-consistent. For nanowires, we
find extinction resonances without making the quasistatic
approximation that agree with the quasistatic modes of Ref. 13,
so we do not claim a general breakdown of the approximation
itself. Even though there are no nonlocal resonances in the
visible, plasmonic field enhancements are affected by nonlocal
response. For arbitrary geometries, numerical methods must be
used to quantitatively assess their importance. Self-consistent
versions of the versatile time-domain14–17 and frequency-
domain18 implementations of the hydrodynamical model can
do just that.
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Abstract: We study the effect of nonlocal optical response on the
optical properties of metallic nanowires, by numerically implementing
the hydrodynamical Drude model for arbitrary nanowire geometries. We
first demonstrate the accuracy of our frequency-domain finite-element
implementation by benchmarking it in a wide frequency range against
analytical results for the extinction cross section of a cylindrical plasmonic
nanowire. Our main results concern more complex geometries, namely
cylindrical and bow-tie nanowire dimers that can strongly enhance optical
fields. For both types of dimers we find that nonlocal response can strongly
affect both the field enhancement in between the dimers and their respective
extinction cross sections. In particular, we give examples of blueshifted
maximal field enhancements near hybridized plasmonic dimer resonances
that are still large but nearly two times smaller than in the usual local-
response description. For the same geometry at a fixed frequency, the field
enhancement and cross section can also be significantly more enhanced in
the nonlocal-response model.

© 2012 Optical Society of America
OCIS codes: (240.6680) Surface plasmons; (240.5420) Polaritons; (250.5403) Plasmonics;
(160.4236) Nanomaterials; (260.3910) Metal optics; (290.0290) Scattering.
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1. Introduction

In plasmonics [1–3], subwavelength metal structures are used to confine and enhance [4, 5],
guide [6, 7], and scatter [8–11] light. The goal to measure and control light at ever smaller
length scales drives the research field towards true nanoplasmonics. It is then a natural question
to ask: down to which sizes is the optical description of the metal solely in terms of its bulk
dielectric function still accurate?

One phenomenon beyond this usual description that becomes important is nonlocal optical
response [1,12–17]: the fact that not only light but also moving electrons in the metal transport
energy. Here we will focus on effects due to nonlocal response, using the linearized hydrody-
namic Drude model [1, 16, 18, 19]. Compared to the usual local-response Drude theory for free
electrons, this hydrodynamic theory has the Fermi velocity of the electrons as an additional
parameter.

Nowadays, simulating local-response plasmonic properties has almost become a standard
task, even for complex geometries, thanks to the availability of advanced numerical methods
and dedicated software. Because of the continuing success in fabricating ever smaller plasmonic
nanostructures, the nonlocal response will become increasingly important. This has stimulated
us to develop a similar reliable and easy-to-use numerical tool also for nonlocal response, and
apply it to geometries where we expect effects of nonlocal response to be significant, as pre-
sented here. The nonlocal calculations are numerically more challenging, since the Fermi wave-
length λF which is 0.5nm both for silver and gold enters as a new length scale of longitudinal
waves [1, 16, 18, 19]. The computational grid with typical separations Δx should resolve not
just the sub-wavelength features, but rather sub-Fermi-wavelength features of the geometry of
typical size L and field distributions for optical wavelengths λ . The numerical grid size Δx must
be smaller than all physical length scales in our study, and the latter satisfy λF < L� λ .

The core of this article is a numerical study of nonlocal-response effects when light scat-
ters off nanoplasmonic dimer structures, which are archetypical structures to study both field
enhancement [4, 20], scattering [8, 9], and hybridization of plasmonic resonances [21–24]. Im-
portant is also that dimers can display resonances in the visible [25] even when their two con-
stituents, taken separately, would not. As is known from local-response hybridization theory,
hybridization energies grow as dimer distances are reduced. Here we study how nonlocal re-
sponse affects his behavior. Our study of nanowire dimers complements recent work on dimers
of nanospheres [14,17,26–28]. Here we present results for dimer separations only down to 1nm,
because for smaller separations, quantum effects not taken account into our model are predicted
to strongly reduce hybridization energies [29]. We focus solely on extinction cross sections and
field enhancements that can be probed with light, leaving for later study the dark modes of
the nanowire dimers that could be seen in electron energy loss spectroscopy [25, 30, 31] or
cathodoluminescence experiments [32].

The structure of this article is as follows. In Sec. 2 we introduce the theoretical formalism,
and the numerical implementation in Sec. 3. In Sec. 4 we benchmark our implementation of the
hydrodynamical Drude model against the analytically solvable problem of the scattering off a
single cylindrical nanowire, and also study the size dependence of nonlocal effects. In Sec. 5 we
compare nonlocal response against local response for dimers consisting of two such cylindrical
nanowires where field enhancement occurs in the open cavity between the cylinders. Then in
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Sec. 6 we do the same for bow-tie dimer nanowires, where field enhancement occurs near the
almost touching sharp tips of the triangles. Our conclusions are given in Sec. 7, and details on
our numerical calculations in the Appendix.

2. Theoretical formalism

The usual local-response dielectric function of realistic metals is the sum of a Drude free-
electron response plus interband effects [2,11]. In the hydrodynamic description, only the free-
electron response is modified while the other (interband) effects are unaltered. In the Maxwell
wave equation for the electric field E, the free-electron response is described by a current den-
sity J, while the rest of the optical response is modeled with a local, usually spatially piecewise
constant, dielectric function εother(r,ω). We are interested in the linear optical response, and
the linearized hydrodynamical model then leads to coupled equations for the electric field E
and the current density J [1, 16]

∇×∇×E(r,ω) = εother(r,ω)
ω2

c2 E(r,ω)+ iωμ0J(r,ω), (1a)

β 2

ω (ω + i/τDrude)
∇ [∇ ·J(r,ω)]+J(r,ω) = σ(r,ω)E(r,ω). (1b)

This linearization is valid as long as first-order variations in the electron density are small
compared to the static electron density. Also in linear response, this static electron den-
sity is homogeneous inside the metal while it is vanishing outside. In Eq. (1b), this elec-
tron density has been parameterized by the spatially piecewise constant AC Drude conduc-
tivity σ(r,ω), which equals σ0/(1− iωτDrude) in the metal and vanishes elsewhere. The
σ0 = n0e2τDrude/m is the DC Drude conductivity, where n0 is the static electron density and
τDrude is the Drude damping time that also occurs in the Drude local-response dielectric func-
tion ε(ω) = 1−ω2

p/[ω(ω + i/τDrude)], where ωp is the plasma frequency. We take parameters
for gold, namely the plasma frequency h̄ωp = 8.812eV, Drude damping h̄/τDrude = 0.0752eV,
and Fermi velocity vF = 1.39× 106 m/s, the same values as in Refs. [15, 16]. In the Thomas–
Fermi model and for ωpτDrude � 1, the nonlocal-response parameter β is proportional to the
Fermi velocity through β =

√
3/(D+2)vF. Here D is the number of spatial dimensions from

the point of view of the electron dynamics, which is the number of dimensions that are not
quantum confined [33]. For β → 0 we recover the local-response model where the dynamics
is governed by Ohm’s law with J = σE. We leave out the additional complexity of interband
effects by taking εother(r,ω)≡ 1 in Eq. (1a). The interband effects could be taken into account
as well, following Refs. [14, 15, 17].

As stated in the Introduction, we do not consider the ‘spill-out’ of the electron density at the
metal surface leading to quantum tunneling, as described by microscopic many-body calcula-
tions [29, 34]. As an immediate consequence of this approximation, the normal component of
the current J vanishes at the surface of the metal volume(s). We proceed to solve the coupled
equations (1) self-consistently, with the usual Maxwell boundary conditons plus the additional
boundary condition of the vanishing normal component of the current J at the metal surface(s).
For further details of the model and the appropriate boundary conditions we refer to our recent
theoretical work [16].

3. Computational method and implementation

We first discuss the light extinction properties of infinitely long nanowire structures surrounded
by free space. Since the electrons are confined in two directions but not quantum-confined in the
nanowires, we should take D = 3 whereby the nonlocal parameter becomes β =

√
3/5vF [33].
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As the light source, we take a monochromatic plane wave incident normal to the wire axis and
with an in-plane polarized electric field (TM polarization).

We solve Eq. (1) numerically with the aid of a finite-element method (FEM). To obtain a
reliable and flexible implementation, we have built it as a nonlocal-response extension of a
commercially available multi-purpose code for local-response (the RF module of Comsol Mul-
tiphysics, version 4.1). The FEM is known to have a high ability to handle complex geometries,
and to accurately model small surface details, such as gaps and tips [35]. Furthermore, retarda-
tion is automatically taken fully into account, which is important according to the very recent
study by David and Garcı́a de Abajo [17].

The translational invariance of the structure in one spatial dimension simplifies the calcula-
tion, since the calculation domain (or ‘grid’) becomes two-dimensional. Within this plane, the
wire geometry can be chosen at will. We imbed the 2D-projection of our metallic nanostruc-
ture into a square computational domain. Perfectly-matched layers (PML) at the edges of this
domain mimic the reflectionless coupling to the surrounding free space. For the meshing of the
geometry we take advantage of the built-in algorithm of the software, paying special attention
to mesh refinement needed to account for surface effects and abrupt changes in the surface
topography.

Our code runs on a pc. For details about our hardware implementation we refer to the Ap-
pendix. The code was first successfully tested in the limit β → 0 [see Eq. (1b)], where it cor-
rectly reproduces the local scattering response of various standard problems. Below, we report
our benchmarking against analytical results, both for local and for nonlocal response.

4. Benchmark problem: a single cylindrical nanowire

First we compare our numerical method against analytical results for a single cylindrical
nanowire, where the cylindrical symmetry allows for analytical solutions in terms of Bessel
and Hankel functions, both for local and for nonlocal response [16, 18]. Figure 1 summarizes
the results of our benchmarking, and illustrates the strong dependence of the nonlocal effects
on the subwavelength size of the nanostructure. The figure shows the dimensionless scaled
extinction cross section σext, defined as the cross section per length of the wire, divided by its
diameter. In more detail, σext = (|Pabs|+ |Pscat|)/(2aI0), where I0 represents the intensity of the
incident plane wave, Pabs the absorbed and Pscat the scattered power per length of the wire, and
2a is its diameter. The powers are obtained by numerically integrating the Poynting vector on a
circle surrounding the nanowire.

Figure 1(a) compares the numerical results for a nanowire of radius a = 2nm to the exact
analytical solution, Eq. (4) in Ref. [16], both for local and nonlocal response. For these tiny
nanowires, nonlocal effect can be considerable. To give two examples, the relative difference
of σext for nonlocal against local response in the figure can be up to 15.33, and the resonant
frequency is 6.20eV for local and 6.39eV for nonlocal response, a considerable blueshift of
Δ = 0.19eV, being more than 2% of the resonance frequency.

The analytical and numerical curves overlap almost completely for the local-response model,
and likewise for the hydrodynamical nonlocal model. Hence only two of the four curves are vis-
ible. Thus our numerical model accurately captures the prominent effects of nonlocal response,
namely the blueshift of the (localized) surface-plasmon resonance ωp/

√
2 [14, 16–18], as well

as the confined bulk plasmon resonances above the plasma frequency ωp [16, 18]. More quan-
titatively, the relative error of the numerically computed cross section for nonlocal response
is always smaller than 0.4% in the entire frequency range of the figure, which includes many
resonances, while for local response the relative error is always smaller than 0.6%. Further
details about the accuracy and convergence of our numerical implementation are given in the
Appendix.

(C) 2012 OSA 13 February 2012 / Vol. 20, No. 4 / OPTICS EXPRESS  4180



0.001

0.01

0.1

1

10

0.01

0.1

1

10

(a)

(b)

Non-local (Num.)
Non-local (Anal.)
Local (Num.)
Local (Anal.)

(a)

(b)

2 3 4 5 6 7 8 9 10 11 12

h̄ω [eV]

σ
ex
t

a

E k

(b)

Non-local (Numerical)
Non-local (Analytical)
Local (Numerical)
Local (Analytical)

Fig. 1. Extinction-cross section σext (logarithmic scale) versus frequency for cylindrical
nanorods for two radii: (a) radius a = 2nm, (b) a = 25nm. σext is normalized to the di-
ameter of the rod. Both panels show comparisons of numerical simulations of Eq. (1) to
analytical results both for local response (β = 0) and for nonlocal response (β =

√
3/5vF).

All numerical curves overlap the corresponding analytical curves.

Figure 1(b) shows the analogous four curves as Fig. 1(a), but now for a larger cylinder with
radius a = 25nm. As one can see, the four curves all overlap almost completely. Over the
frequency range 1.5 to 12eV, the maximum relative difference in cross section for the nonlocal
against the local model is 7%, which means that for most practical purposes nonlocal effects
will be negligible for a single nanowire of this size. However, as we will see in Sec. 5, this
conclusion does not carry over to a dimer of two such nanowires! The maximum relative error
in the numerically computed cross section for nonlocal response in Fig. 1(b) is 0.89% while
for local response it is 0.86%. These numbers show that the numerical method is accurate in
a large frequency range also for larger nanostructures, here up to sizes where nonlocal effects
can be neglected.

Summarizing, the implementation for the cylindrical nanowire is accurate in a wide range
of frequencies and length scales, correctly reproducing the location of resonances and their
amplitudes even for high frequencies beyond the plasma frequency.

5. Nonlocal effects in dimers of cylindical nanowires

Having addressed single isolated nanowires, we now turn to nanowire dimers. For two closely
separated nanostructures, the usual local-response model predicts a strong hybridization of the
(localized) surface-plasmon resonance [22,24]. Thus dimers can even display resonances in the
visible, with strongly enhanced fields in the tiny gap separating the two parts. Here we study
the effects of nonlocal response both on the hybridization and on the field enhancement. We
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consider dimers of cylindrical nanowires (in this section) and bow-tie nanowires in Sec. 6.
For definiteness, we consider a dimer of two identical cylindrical nanowires, with the same

radius a = 25nm as for the single nanowire of Fig. 1(b), and separated by a few-nm gap of
size d � a. When excited by a plane wave normal to the wire axis and with the electric field
polarized across the dimer gap, the surface modes for this structure become highly confined
to – and enhanced in – the narrow region of the gap. This field configuration is due to the
hybridization of the modes of the isolated nanorods [14, 22, 23].

We examine the effects of nonlocal response on energy confinement and field enhancement
for several gap sizes of 1 nm and beyond, where quantum tunneling, absent in our model, can
be neglected [29]. The results for cylindrical dimers are summarized in Fig. 2. We first discuss
the three panels (a1-a3) on the left of Fig. 2, that depict extinction cross sections for increasing
gaps, before addressing the average field enhancements in the right-hand panels.

The results in panel (a1) corresponding to a very small gap of d = 1nm show a strong plas-
monic interaction between the two nanowires. This interaction gives rise to a pronounced hy-
bridization and consequently the main surface-plasmon resonance (SPR) now appears at much
lower energy of 3.28eV for local response and 3.40eV for nonlocal response, as opposed to the
SPR in an isolated wire around 5.91 eV in both local and nonlocal case, recall Fig. 1(b). The im-
portant point is a pronounced nonlocal blueshift of 0.12eV of the hybridized dimer resonance.
As the separation is doubled to d = 2nm, the hybridization decreases and consequently the
SPR appears at higher frequency around 3.63eV for local and 3.69eV for nonlocal response.
Again the effect of nonlocal response is a noticeable blueshift of the hybridized dimer reso-
nance, still noticeable but smaller than for d = 1nm. Finally, for d = 3nm, the hybridization is
again weaker, so that the SPR is again blueshifted in the direction of the single-nanowire SPR
(see Fig. 1). In all three cases, there is a nonlocal blueshift of the SP resonance frequency. This
shift vanishes for larger d, because the blueshift for single nanowires with radius a = 25nm
also vanishes, as we saw in Fig. 1(b).

Now let us discuss the field enhancement in the right panels of Fig. 2, or more precisely the
local field (intensity) enhancement factor γ(r) = |E(r)|2/|E0|2, where E(r) is the local electric
field and E0 the amplitude of the incoming plane wave. Dimers support modes that are strongly
localized in the gap separating the two nanowires. Due to the strong spatial localization, the
amplitude of the local electric field E(r) may by far exceed the amplitude E0 of the incoming
plane wave. Rather than considering local field enhancements in single points, we will consider
spatially averages, because local field probes such as atoms cannot be positioned with infinite
precision. The average field enhancements 〈γ〉 in Fig. 2(b) were obtained by line-averaging γ(r)
over the narrow gap along the axis � of the dimer, i.e.

〈γ〉=
∫
� drγ(r)∫

� dr
=

1
E2

0 d

∫
�
dr |E(r)|2. (2)

A direct comparison of left and right panels of Fig. 2 shows that the spectral dependence of
the field enhancement 〈γ〉 for lower frequencies is similar to the corresponding extinction cross
section σext. However, 〈γ〉 peaks at higher frequencies than σext, both for local and nonlocal
response. The agreement between the two types of curves is not complete, because the extinc-
tion cross section is the sum of a scattering and an absorption cross section. The latter can be
interpreted as a two-dimensional loss average inside the cylinders, whereas the field enhance-
ment factor 〈γ〉 of Eq. (2) is a more local one-dimensional spatial average of the empty space
in between the cylinders. For that reason, the extinction σext can be high near 6eV while the
field enhancement 〈γ〉 is low. Indeed, there exists a resonant hybridized mode at this frequency
(hence the peak in σext) with a mode profile with low intensity on the line joining the cylinder
centers (which explains the low value for 〈γ〉); the mode intensity grows away from this line
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Fig. 2. Extinction-cross section versus frequency for a dimer of two cylindrical nanorods
of radius a = 25 nm separated by a distance d, excited by a TM-polarized plane wave with
wave vector perpendicular to the line connecting the centers of the cylinders, as illustrated
in the inset with a/d not to scale. σext is normalized to the diameter of the single wire. The
left panels labeled (a) depict σext, while the (b) panels on the right show the average field
enhancement 〈γ〉 as defined in the main text. The upper panels (a1) and (b1) correspond to
d = 1nm, where the SPR appears at 3.28eV and 3.40eV for the local and nonlocal case,
respectively. The middle panels (a2) and (b2) concern d = 2 nm where the SPR appears at
3.63eV in the local case and at 3.69eV in the nonlocal one. The lower panels (a3) and (b3)
correspond to d = 3nm.
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(mode profile not shown). Such resonant modes suffer from our definition of field enhancement,
one could say: their average field enhancement as we defined it shows no maximum where the
extinction does peak.

For the narrowest gap of d = 1nm, Fig. 2(b1) shows a field enhancement of 〈γ〉= 1.4×104

at the main SPR (i.e. at the lowest-energy peaks) for local response, and of 〈γ〉= 8.6×103 for
nonlocal response. Thus, the nonlocal response gives a strong average field enhancement, yet
it is considerably smaller than for local response. As the gap distance increases to d = 2 nm,
the maxima of 〈γ〉 decrease for both types of material response. Finally in Fig.2(b3) the gap
has been increased further to d = 3nm, and we still find considerable differences for nonlocal
response, even though there is a further decrease both of the peak amplitudes of 〈γ〉 and of their
relative differences.

Thus we find for the scattering off cylindrical nanowire dimers with radius a = 25nm sepa-
rated by 1 to 3 nm that nonlocal-response effects are considerable, for cross sections but more
so for field enhancements, even though in Sec. 4 we found that nonlocal effects were negligible
for the single cylindrical nanowire with the same radius.

The above discussion compares peak enhancements, which are significantly lower for non-
local response. Since the nonlocal peaks also shift in frequency, the nonlocal effects are even
more pronounced when studying observables at fixed frequencies. For then Fig. 2(a1) shows
that σext can be reduced by a factor of 3.1 at 4.0 eV, and enhanced by a factor of 3.4 at 3.7 eV.
Nonlocal field enhancements for some frequencies can also turn out to be just a bit larger, for
example by a factor 1.34 at 5.95 eV in Fig. 2(b3), even though we mostly find smaller nonlo-
cal values for the field enhancement 〈γ〉 in between the cylinders. Finally, it is interesting to
notice frequencies in Fig. 2(b) at which the local-response field enhancement peaks while the
nonlocal-response field enhancement goes through a minimum.

6. Nonlocal effects in bow-tie nanowires

Let us now consider light scattering off the bow-tie nanowire dimer, the geometry as sketched
in the inset of Fig. 3. Bow-tie structures can give rise to high field enhancement near the almost
touching sharp tips of the two triangles [32,36–38]. Sharp features in nanoplasmonic structures
are known to give strong field enhancements. The cylindrical dimer of the previous section
did not have this type of field enhancement, and therefore it is interesting to compare nonlocal
effects on field enhancement for the two types of dimers.

In particular, we consider a dimer of two equilateral triangular nanowires with side L =
45nm. The tips of the triangles have been rounded with a radius of curvature of 1 nm. Such
rounding for computational reasons is common practice [10,39,40]. In Fig. 3 we present extinc-
tion cross sections and average field enhancements for bow-tie dimers, analogous to Fig. 2. The
field enhancements are averaged over the line connecting the almost touching tips of the trian-
gles.

The results resemble those for the circular dimers, but with narrower and thus less overlap-
ping plasmon resonances. One main feature is again that all (hybridized) surface-plasmon reso-
nances are blueshifted due to nonlocal response. The case d = 1 nm shows a strong interaction
between the plasmons localized on the tip of the triangles, and the main SPR appears at 2.86 eV
for local and 2.96 eV for nonlocal response. Larger distances imply weaker hybridization so that
lowest-energy resonances shift to higher energies. Indeed for d = 2nm the resonance frequency
of the main SPR is 3.08 eV in the local model but blueshifted by 0.07 eV in the nonlocal one.
Finally for d = 3nm the main SPR occurs at 3.24 eV in the local case and 3.29 eV in the non-
local one. As for the dimer of cylinders, for the bow-tie nanowire dimer we find larger nonlocal
blueshifts of peaks in σext in case of increased hybridization of surface-plasmon resonances.

As to the importance of nonlocal effects in the field enhancement for the bow-tie dimer,
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Fig. 3. Extinction-cross section versus frequency for a dimer of two equilateral triangles
nanowires of side L = 45 nm separated by a distance d, excited by perpendicularly incident
TM-polarized light. The inset shows a sketch with d/L not to scale. As in Fig. 2, the left
and right panels show extinction cross sections σext and average field enhancements 〈γ〉,
respectively. Upper, middle, and lower panels again correspond to d = 1,2 and 3nm.

Fig. 3(b) shows that 〈γ〉 peaks at 3.2×104 in the local case and at 2.17×104 in the nonlocal case
for d = 1 nm. For the tip distance d = 2 nm these values are 9.2×103 and 7.2×103, respectively,
and they become 4.7× 103 and 4.6× 103 for d = 3nm. For field enhancement, like for cross
sections, nonlocal effects turn out to be more important in case of stronger hybridization.

If instead of focusing on peak values we compare again nonlocal with local response at fixed
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frequencies, then for bow-tie dimers we can easily identify frequency intervals for which the
field enhancement is larger for nonlocal than for local response, in contrast to what we found
for the cylindrical dimers. For d = 3 nm at 4.81 eV, 〈γ〉 is even 14.3 times larger for nonlocal
than for local response. And for some frequencies, the nonlocal cross section is larger while for
other frequencies it is smaller than the local response, and all differences are roughly within
a factor of 5. Near 4.8 eV the field enhancements vanish even though the cross section peaks.
Again this combination is a fingerprint of a resonant mode with low mode density near the
center of the dimer.

The peak field enhancements 〈γ〉 for the bow-tie dimers in Fig. 3(b) are roughly a factor 2
higher than for the cylindrical dimers in Fig. 2(b), both for local and for nonlocal response. Thus
the quite different shapes of the dimers give rise to non-negligible but not too big differences in
field enhancement, considering that all enhancement peaks 〈γ〉 are of order 104 or higher. This
applies both to local and to nonlocal response.

7. Discussion and conclusions

We have implemented the hydrodynamical Drude model for arbitrary nanowire geometries as
an extension of state-of-the-art numerical software in nanoplasmonics. Our code was tested
against analytical results and was shown to be very accurate. We advocate the use of such
benchmark problems, to be able to present results for more complex geometries with confi-
dence.

We studied tiny cylindrical nanowires, their dimers, as well as bow-tie dimers. In all cases we
find that (hybridized) surface-plasmon resonances are blue-shifted due to nonlocal response. It
is not simply the size of the plasmonic nanostructure that determines whether nonlocal effects
are important. For example, we found that nonlocal effects were negligible for the extinction
cross section of 25nm cylinders, but important for their closely spaced dimers.

We find that the usual explanations of plasmonic hybridization carry over to nonlocal theo-
ries. Below the plasma frequency we do not find new resonances due to nonlocal response, in
agreement with our Ref. [16], but the hybridized resonances occur at higher frequencies than ex-
pected based on a local-response picture, with modified mode profiles. The nonlocal blueshifts
are a correction to the larger hybridization energy splittings. As an important conclusion, we
find that the nonlocal blueshifts are larger for more strongly hybridized dimer structures. It is a
package deal, so to say: one cannot have the one without the other, at least for dimers for which
the individual parts are too big to exhibit any nonlocal blueshift.

Bow-tie dimers have sharp tips and cylindrical dimers do not, but somewhat surprisingly
this did not result in large differences in nonlocal shifts in both cases. For the extinction cross
sections of the dimers we found blueshifts in resonance peaks but hardly a change in their
amplitudes. For the average field enhancements on the other hand, we find both blueshifts
and a reduction in height of resonance peaks, roughly by a factor of 2 for cylindrical dimers
and a factor of 1.5 for the bow-tie nanowires. Nevertheless this general conclusion is fully
consistent with the fact that for some fixed frequencies, the field intensities in between the
cylinders or bow-ties are extra enhanced due to nonlocal as compared to local response, by up
to factors of 14. We also found frequencies for which the field enhancement peaks for nonlocal
response but has minimum for local response. Thus it is important to take effects of nonlocal
response into account in the context of spontaneous emission rates of nearby quantum dot
emitters, fluorescence of dye molecules, and surface-enhanced Raman scattering (SERS) of
bio-molecules, especially in the close vicinity of strongly hybridized plasmonic nanostructures.

An important difference between the two types of dimers, we find that the gap-line averaged
field enhancements of cylindrical dimers are significantly blueshifted as compared to the corre-
sponding extinction peaks, whereas bow-tie dimers exhibit their extinction and field enhance-
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ment peaks at practically the same energies. This is related to the fact that for cylinders, there
exist resonant modes with low field enhancement in the gap, whereas for bowties all resonant
modes have corresponding high field enhancements in the gap. There is an element of choice
in the definition of “field enhancement”: either one considers maximal values, line-, area-, or
volume-averaged values, and on top of that there may be some arbitrariness in the respective
choice of the line, area or volume that one averages over. Using a different definition of field en-
hancement, Ref. [41] reports redshifts of field enhancements as compared to extinction peaks,
in contrast to the blueshifts that we see in Fig. 3 for the cylindrical dimers. This illustrates that
the definition of the field enhancement may influence the results even qualitatively.

In this work we neglected quantum tunneling effects [29, 34]. In their quantum many-body
calculations, Zuloaga et al. [29] identify a cross-over regime for dimer gaps between 0.5 and
1.0nm, where narrow-barrier quantum tunneling effects strongly reduce the classical hybridiza-
tion energies, and a conductive regime for d < 0.5nm. The classical (local-response) limit is
also found in their calculations for large dimer separations. The message of our hydrodynami-
cal calculations is that significant departures from classical local-response theory will already
occur at larger dimer separations in the range 1 to 10nm, where quantum tunneling between the
dimers is negligible, and that the local-response limit is found for large separations (i.e. for the
individual a = 25nm cylindrical wires for example). It would be gratifying to see experimen-
tal nonlocal blueshifts for dimers, and to see many-body quantum calculations confirming not
only the large-separation local-response limit, but also the hydrodynamical nonlocal-response
blueshifts for dimers with separations in the range 1-3 nm as presented here.

8. Appendix: hardware implementation and accuracy studies
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Fig. 4. Relative error δ of the numerically calculated extinction cross section σnum
ext for

a single cylinder of radius a = 2nm at the nonlocal-response resonant frequency ωsp =
6.38 eV, and for a single cylinder of radius a= 25nm at the frequency 5.91 eV, as a function
of the number of mesh elements. Modeled with parameters of Au as given in Sec. 2.

All the presented results are obtained on a personal computer equipped with four Intel 2Ghz
processors and 24Gb of RAM. Single-frequency calculations typically take about one minute
for regular geometries with smooth boundaries. The frequency step used to make the spectra is
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0.0088eV, and with this value all the data presented can be harvested in less than three days on
our pc.

The code that we have developed has undergone several reliability tests. In Fig. 4 we present
a convergence study that has been carried out for the nanorod of radius a = 2 nm with nonlocal
response. The simulation box is a square of side W = 300 nm, surrounded by a PML that is
30 nm thick. The walls of the box are in the far-field zone of the scatterer, so that they cannot
influence the field scattered away from our system under test.

First we studied the convergence of the nonlocally blueshifted value of the surface-plasmon
resonance frequency, and we found that it converged to the analytical value 6.38 eV without
much mesh refinement. Then at this resonance frequency, being a challenging spot, we studied
the dimensionless convergence parameter δ = |σnum

ext −σ an
ext|/σ an

ext as a function of the number
of mesh elements used in the calculation. Meanwhile the number of mesh elements of both the
box and the PML were kept fixed. The parameter δ represents the relative error of σnum

ext with
respect to the σ an

ext, so that a vanishing δ not just signifies convergence but rather convergence
to the analytical value.

Figure 4 depicts δ versus the number of mesh elements. It shows that the convergence sets in
for less than 8000 mesh elements, a small number for modern pc’s. In particular, δ = 1.3% for
7241 mesh elements and 0.12% for 15106 mesh elements. This means that our code could eas-
ily run on a laptop, at least for the small structures considered here. The non-uniform mesh size
allows also convergence on a pc for a larger cylinder with a= 25nm, with δ = 0.11% for 37830
mesh elements. Much larger structures can of course be handled on a powerful workstation.
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Giant field enhancement and field singularities are a natural consequence of the commonly employed local-
response framework. We show that a more general nonlocal treatment of the plasmonic response leads to new
and possibly fundamental limitations on field enhancement with important consequences for our understanding
of surface-enhanced Raman spectroscopy (SERS). The intrinsic length scale of the electron gas serves to smear out
assumed field singularities, leaving the SERS enhancement factor finite, even for geometries with infinitely sharp
features. For silver nanogroove structures, mimicked by periodic arrays of half-cylinders (up to 120 nm in radius),
we find no enhancement factors exceeding 10 orders of magnitude (1010). © 2012 Optical Society of America
OCIS codes: 240.6680, 290.5860, 300.6450.

While the Raman response of (bio)molecules is inherently
weak, nanostructures may be used to tailor and tremen-
dously enhance the light–matter interactions. This is
the key electromagnetic element of surface-enhanced
Raman spectroscopy (SERS) [1]. In particular, metallic
nanostructures [2] are known to support plasmonic
field-enhancement phenomena that are beneficial for
SERS [3]. Inmany cases, field singularities arise in geome-
trieswith abrupt changes in the surface topography.While
such singularities constitute the basic electromagnetic
mechanism behind SERS, the singularities are, on the oth-
er hand, an inherent consequence of the common local-
response approximation (LRA) of the plasmons [4]. In
this Letter, we relax this approximation and allow for
nonlocal dynamics of the plasmons. To illustrate the con-
sequences, we revisit the model geometry in Fig. 1, initi-
ally put forward by García-Vidal and Pendry [5] to
qualitatively explain the electromagnetic origin of the
large enhancement factors observed experimentally.
The metallic surface topography is composed of a peri-
odic structure of infinitely long metallic half-cylinders
of radius R, resting shoulder-by-shoulder on a semi-
infinite metal film. The steep trenches or grooves support
localized surface plasmon resonances (LSPRs). Near the
bottom of the groove the surfaces of the two touching
half-cylinders become tangential to each other and a field
singularity forms within the traditional LRA of the dielec-
tric function. In the common treatment, the field enhance-
ment thus eventually turns infinite [6], while it remains
finite, albeit large, in any experiment reported so far. Geo-
metrical smoothening is known to remove the singularity
within the LRA and, in quantitative numerical studies, a
rounding needs to be added to make numerical conver-
gence feasible [7,8]. Thus, within the LRA framework
the field enhancement would just grow without bound
the sharper one could make the geometry confining the
plasmon oscillations. Nonlocal effects have been shown
to result in large blueshifts and considerably reduced field
enhancements (as compared toa local description) in con-
ical tips [9], metallic dimers involving small gaps below a

few nanometers [10,11], or even vanishing gaps [12]. What
is the limit in field enhancements that canbeachievedwith
(geometrically) ideal structures? This question is impor-
tant not only from the fundamental but also from the
applied perspective, as the answer to it would allow one
to determine technological tolerances in fabrication of
nanostructures designed for achieving record-high field
enhancements. In this Letter we show how nonlocal re-
sponse introduces a new intrinsic length scale that serves
to remove the field singularities, leaving field enhance-
ments finite even in geometries with arbitrarily sharp
changes in the surface topography. For the particular geo-
metry of Fig. 1 we evaluate γ�r;ω� � jE�r;ω�j4∕jE0�ω�j4
andfindno(surface-averaged)SERSenhancement factors
hγi exceeding 10 orders of magnitude.

The electromagnetic response of a metal is commonly
divided into intraband contributions [13] and the disper-
sive Drude free-electron response

εD�ω� � 1 � i
σ
ε0ω

� 1 −
ω2
p

ω�ω� i∕τD�
;

Fig. 1. (Color online) (a) Groove structure formed by an
infinite periodic array of half-cylindrical nanorods. (b) Cross
section of the unit cell. (c) and (d) Typical electric-field
intensity and charge distributions for a dipole mode.
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where σ is the complex conductivity also appearing in
Ohm’s law J � σE. We relax the latter local-response
constitutive equation and turn to a linearized hydrody-
namic nonlocal treatment [10,11,14,15] where the usual
Maxwell wave equation is coupled to a hydrodynamic
equation for the current density; see [11] for the full de-
tails of our numerical approach. This is the simplest
nontrivial extension of the common LRA Drude model,
which, in addition to the usual metal parameters (ωp,
τD, etc.), now also carries information about the kinetics
of the charge carriers at the Fermi level. The strength of
the nonlocal correction to Ohm’s law depends on the
Fermi velocity vF , which introduces a new length scale,
being a factor vF∕c of the free-space wavelength
λ � 2πc∕ω. For the noble metals, vF∕c is of the order
10−2, which explains the overall success of the LRA.
However, when exploiting plasmonics at the true nanos-
cale, effects due to the nonlocal dynamics start to man-
ifest themselves. Field-enhancement structures turn out
to be prime examples of this.
We consider the metallic groove structure shown in

Fig. 1, which has previously been considered as a model
system to mimic corrugated metal surfaces [5]. Alterna-
tively, it may be viewed as a model for arrays of the more
recent groove or channel waveguides [7,16]. In our nu-
merical study, the structure is excited by an incoming
plane wave E0�ω�, normal to the substrate and with the
field polarized perpendicularly to the axis of the half-
cylinders, i.e., across the groove cross section. Noble
metals are common choices for plasmonics and in the
following we focus our attention on silver [13]. The
grooves have been shown to support LSPRs [7], which
we have previously explored in the context of SERS,
using a LRA and with the necessary addition of geome-
trical smoothening [8]. To quantify the SERS effect and
the consequences of nanoscale spatial dispersion, we
solve the nonlocal wave equation numerically [11]. As
an example of our results, Fig. 2 shows the spectral de-
pendence of hγi throughout the visible regime for groove
structures with R � 75 nm and with a radius of curvature
of the crevice given by r � 0.1 nm. The LSPR at λ �
700 nm allows the (surface-averaged) Raman rate to

be enhanced by a factor of 108. For comparison, the
dashed curve shows results when treating the plasmonic
response within the common LRA. In both cases, the re-
sonant behavior is well pronounced, being caused by in-
terference of the incoming field with the gap surface
plasmon mode reflected at the bottom, similarly to that
described for V grooves [16]. As a general fingerprint of
nonlocal response, the peak is blueshifted compared to
the expectations from a local-response treatment of the
problem (this happens due to a decrease in the gap plas-
mon index caused by nonlocal effects [10]). In this par-
ticular case, the LSPR by the common treatment is off
by more than 25 nm, which illustrates the importance
of nonlocal effects for quantitative SERS predictions.
Even more importantly, the common LRA is seen to sig-
nificantly overestimate the enhancement factor; for some
wavelengths by more than 1 order of magnitude. The
large quantitative differences between the nonlocal
treatment and the traditional LRA are associated with
changes in the induced-charge distribution (insets of
Fig. 2). In the common treatment, the charge is strictly
a surface charge, while in the general nonlocal case the
intrinsic scale vF∕ω serves to spatially smear out the
charge distribution. Effectively, this smearing increases
the electric-field penetration into the metal (silver) and
thereby increases the field absorption (ohmic loss)
and damping of resonant oscillations. Interpreting the
field enhancement in a capacitor picture, the finite thick-
ness of the charge distribution near the surface increases
the effective separation (beyond that given by the metal-
surface geometry) and, consequently, the capacitor sup-
ports a lower electrical field compared to in the LRA. In
general, the intrinsic length scale of the electron gas al-
lows one to resolve the field also in the proximity of very
sharp corners and tips. On the other hand, by relaxing the
sharpness of the trench the influence of spatial disper-
sion becomes less pronounced, as illustrated in Fig. 2
in the lower set of curves (r � 5 nm), where the LRA
accounts well for the results obtained from a full nonlo-
cal treatment. We note a drastic change in the field-
enhancement spectrum, with the fundamental resonance
now appearing at around 450 nm, due to a very rapid de-
crease in the gap plasmon index when the gap width in-
creases (at the groove bottom) from 0.1 to 5 nm.

With less geometrical smoothening (i.e., when r is
made smaller and smaller), the shortcomings of the
LRA become more severe. The LRA anticipates a mono-
tonically increasing enhancement factor [8], and de-
creasing r also causes a stronger interaction between
neighboring half-cylinders and, consequently, a redshift
[5]. Note that, in the interpretation based on gap surface
plasmons [16], the redshift is simply related to an in-
crease in the gap plasmon index when the gap width de-
creases at the groove bottom. In Fig. 3 we decrease
r from 1 nm down to zero and see how nonlocal effects
cause a different trend (indicated by the dashed curve)
due to the competing length scales. In particular, for
r ≲ vF∕ω, there is a fundamental saturation of the en-
hancement factor rather than a monotonic increase
and, for our particular choice of the cylinder radius R,
we see that the hγi does not exceed 2 × 109.

To explore the ultimate limitations on the SERS in this
geometry, Fig. 4 shows results where we have completely

Fig. 2. (Color online) Surface-averaged SERS enhancement
factor hγi for the case of R � 75 nm with r � 0.1 nm (upper
curves) and r � 5 nm (lower curves). For comparison, the
dashed curves show the results of the commonly employed
LRA.

July 1, 2012 / Vol. 37, No. 13 / OPTICS LETTERS 2539



refrained from any geometrical smoothening (r � 0) and
where vF∕ω is the only length scale that puts fundamen-
tal limitations on the field enhancement. As the radius R
of the half-cylinders is increased from 30 to 120 nm we
see a redshift of the peak, as also anticipated in the LRA
[8]. At the same time, the enhancement factor exhibits an
increasing trend where larger cylinders support larger

field enhancement by harvesting the incoming field from
larger areas. We emphasize that in all examples the field
enhancement remains finite despite the fact that the cre-
vice is arbitrarily sharp and well defined (r � 0). For the
largest radius R considered the electromagnetic SERS
enhancement factor does not exceed 2 × 1010. This illus-
trates the fundamental limitations imposed by nonlocal
response in our specific SERS configuration.

In conclusion, we have shown that a nonlocal treat-
ment of the plasmonic response leads to new and possi-
bly fundamental limitations on the electromagnetic SERS
enhancement factor, thereby completely changing the
message of the commonly employed LRA of the plas-
mons. The intrinsic length scale of the electron gas serves
to smear out the field singularity that otherwise would
arise from a local-response treatment and, as a conse-
quence, the enhancement remains finite even for geome-
tries with infinitely sharp features. Finally, beyond the
linear response, fundamental limitations may arise due
to nonlinearities [17].
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Fig. 3. (Color online) Surface-averaged SERS enhancement
factor hγi for the case of R � 15 nm and with r varying from
1 to 0 nm. The dashed curve connecting fundamental dipole re-
sonances for different values of r serves as a guide to the eyes,
clearly illustrating both a redshift and the saturation effect in
the field enhancement as r → 0.

Fig. 4. (Color online) Near-resonance plots of the surface-
averaged SERS enhancement factor hγi for arbitrarily well-
defined grooves without smoothening (r � 0) for six cases
with R varying from 30 to 120 nm. The inset shows the
field-amplitude distribution jEj∕jE0j for R � 75 nm.
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  Wave propagation along dielectric waveguide structures 

has over the years been extended also to plasmonic 

systems with waveguide modes in the form of surface-

plasmon polaritons. Plasmonic waveguides have attracted 

considerable attention during the past decade, primarily 

due to their ability to support extremely confined modes, 

i.e., modes that do not exhibit a diffraction-limited cutoff 

for progressively smaller waveguide cross sections but 

transform themselves into their electrostatic counterparts 

[1]. Investigations of nanowire [2], groove [3] and wedge [4] 

waveguides, shown to ensure extreme light confinement, 

raise a natural interest in the influence of nonlocal effects 

on strongly confined plasmonic modes [5]. Waveguid-

ing by metal nanowires [6] and more recently plasmonic 

focusing by conical tips [7, 8] have been studied in the 

context of nonlocal response. However, with the excep-

tion of few analytical studies of simple planar geometries 

[9, 10], nonlocal effects in the dispersion properties of 

complex waveguides remain unexplored, a circumstance 

that can partly be explained by the added complexity due 

to nonlocal effects as compared to the widespread frame-

work of the local-response approximation (LRA) [11]. 

 There is also another good reason to look for nonlocal 

effects in extreme light confinement. Subwavelength mode 

confinement implies large effective Purcell factors and 

thereby strong coupling of single emitters to nearby plas-

monic waveguide modes [12]. The latter opens a doorway 

to quantum optics with surface plasmons, including the 

possibilities for realization of single-photon transistors 

[13] and long-distance entanglement of qubits [14]. Since 

one would expect that the plasmonic mode confinement 

is fundamentally limited by nonlocal effects, similarly 

to nonlocal limits in the field enhancement of localized 

plasmon excitations [15, 16], studies of the plasmonic 

mode confinement beyond the LRA are of great interest for 

quantum plasmonics. More specifically, in the LRA higher 

single-photon efficiencies [12] and Purcell factors [13] have 

been found to occur for smaller waveguide radii  R , and 

the  R  → 0 limit is commonly taken to estimate the strong-

est light-matter interactions. Nonlocal response effects 
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become increasingly important in this  R  → 0 limit, which is 

an important motivation for our present study of nonlocal 

effects for highly confined plasmonic waveguides. 

 In this Letter, we derive a novel wave equation which 

fully takes into account the nonlocal dynamics of an often-

employed hydrodynamical model (HDM). We apply the 

wave equation to plasmonic waveguides ( Figure 1 ) with 

extreme light confinement, defined by the subnanometer 

dimensions of the waveguide cross section. After stringent 

bench-marking of our approach against the analytically 

tractable case of nanowires with circular cross-section, we 

analyze in detail groove and wedge waveguides and dem-

onstrate the existence of fundamental limits in their mode 

confinement and Purcell factors, imposed by the nonlo-

cal effects. At the same time, our results reveal that there 

is room for downsizing present-day quantum plasmonic 

devices before these fundamental limitations set in.  

 The nonlocal response, or spatial dispersion, is a con-

sequence of the quantum many-body properties of the 

electron gas, which we here take into account within a 

semi-classical model [17 – 20]. In this model the equation-

of-motion for an electron in an electrical field is supple-

mented with a hydrodynamic pressure term originating 

from the quantum kinetics of the electron gas. By lineari-

zation, the plasmonic response is governed by the follow-

ing pair of coupled real-space differential equations [21]: 

    

2

0
( ) ( ) ( ),i

c
ω

ωμ
⎛ ⎞

∇×∇× = +⎜ ⎟⎝ ⎠
E r E r J r

 
(1a)

 

    

2

[ ( ) ] ( ) ( ) ( ).
( / )i

β
σ

ω ω τ
∇ ∇⋅ + =

+
J r J r r E r

 
(1b)

 

 Here, the term  ∇ [ ∇  ‧  J ] =  ∇   ×   ∇   ×   J  +  ∇  2  J  is a correction to 

Ohm ’ s law and scales as   2 2(3 / 5) Fvβ =  within the Thomas –

 Fermi model [22] with   ν  F   being the Fermi velocity. For sim-

plicity we neglect here any interband effects present in 

A B

y

x

z

R
r

r

C

 Figure 1      Generic plasmonic waveguiding geometries with wave 

propagation in the  z -direction and extreme transverse confinement 

in the  xy -plane due to subnanometer geometric dimensions, e.g., 

the nanowire radius  R  or the edge radius-of-curvature  r .    

real metals; these can be included straightforwardly [23, 

see Supplemental material]. In our numerical solutions we 

will consider Drude parameters appropriate for silver [24]. 

Assuming a hard-wall confinement associated with a high 

work function, the boundary conditions for the current at 

the metal surface become particularly simple: the tangen-

tial component is unrestricted while the normal compo-

nent vanishes due to the current continuity and vanishing 

of all electron wave functions at the surface [10, 21]. 

 For analytical progress one can eliminate the current 

from Eq. (1a), thereby arriving at an integral equation 

where a dyadic Green ’ s function accounts for the nonlo-

cal dynamics of the electron gas [25, 26]. Alternatively, the 

coupled equations (1a) and (1b) form a natural starting 

point for a numerical treatment of arbitrarily shaped metal-

lic nanostructures, e.g., with a state-of-the-art finite-ele-

ment method [23, 27]. Recently, we employed this approach 

to study field enhancement and SERS in groove struc-

tures [15]. However, for waveguiding geometries we seek 

solutions of the form  E ( r ) ∝ exp( ik z z ) leading to an eigen-

value problem for  k z  (  ω  ) with a six-component eigenvector 

 {  E,  J  } . In that context the coupled-equation formulation 

is numerically less attractive. Here, instead, we eliminate 

the current from Eq. (1b), a procedure that, after straight-

forward manipulations using standard vector calculus (see 

Supplemental material), results in an appealingly compact, 

but yet entirely general nonlocal wave equation: 

    
NL

2

ˆ( ) ( ) ( ),
c
ω

ε
⎛ ⎞

∇×∇× =⎜ ⎟⎝ ⎠
E r r E r
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 Here, the operator   
NL

ˆ ( )ε r  contains the nonlocal effects. 

In the limit   β   → 0,   
NL

ˆ ( )ε r  reduces to the usual Drude dielec-

tric function   2

0
( ) 1 ( ) /( ) 1- ( ) / [ ( / )]

D pi iε σ ε ω ω ω ω τ= + = +r r r  

used in the LRA. Thus, with a simple rewriting we have 

turned the coupled-wave equations into a form reminis-

cent of the usual wave equation, with all aspects of non-

local response contained in the Laplacian term   β   2  ∇  2  in 

  
NL

ˆ ( ).ε r  This is the main theoretical result of this Letter. 

In passing, we note that with Eq. (2b) we immediately 

recover the dispersion relation   2 2 2( ) pk kω ω β= +  for bulk 

plasmons in translationally invariant plasma (see Supple-

mental material). Clearly, the single-line form is beneficial 

for the conceptual understanding and further analytical 

progress, as well as for numerical implementations: the 

additional Laplacian does not add any complications 

beyond those already posted by the double-curl opera-

tor on the left-hand side equation. Likewise the bound-

ary condition that was imposed on the current  J  in Eq. (1) 
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translates into an additional boundary condition on the 

electric field in Eq. (2), see (Supplemental material). While 

Eq. (1) can be solved numerically for scattering problems 

[15, 23, 27] and some waveguide problems [28], the result 

in Eq. (2) is clearly a major advancement for efficient and 

accurate numerical eigenvalue solutions in waveguiding 

geometries with arbitrarily shaped waveguide cross sec-

tions. In particular, differential operations reduce to a 

Laplacian and the dimension of the eigenvalue problem is 

reduced from six field components to only three. 

 We now apply the developed formalism to the wave-

guide configurations of  Figure 1  which can provide 

extreme light confinement [1]: i) metal nanowires with cir-

cular cross sections [2] where analytical solutions [7] are 

available for benchmarking of the numerics, ii) grooves 

in metal [3], and iii) metal wedges [4]. In addition to the 

usual mode characteristics, effective index and propa-

gation length, we also evaluate the effective mode area: 

 A  
eff

  =  V  
eff

 / L , where  V  
eff

  is the effective mode volume associ-

ated with the Purcell effect, i.e., 

    
eff

d d ( )

,
{ ( )}max

a

V Vm a

V

x y u
A

u
+

=
∫ r

r
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 where  u ( r ) is the electromagnetic energy functional (see 

Supplemental material). The cross-sectional integral 

extends over the volumes  V m   and  V a   occupied by metal 

and air, respectively, while the evaluation of the maximal 

energy density is restricted to the air region where dipole 

emitters can be placed. 

 The dispersion curves and effective mode areas (nor-

malized to the nanowire cross section) calculated for 

silver nanowires of different radii ( Figure 2 A,B) exhibit 

a blueshift and increased mode area (for fixed  k z  ) when 

taking nonlocal effects into account. The numerical results 

of Eq. (2) show excellent agreement with the correspond-

ing analytical results previously derived from Eq. (1) [7]. 

Importantly, nonlocal dynamics influences strongly the 

mode field distribution (see  Figure 2 C), because, contrary 

to the LRA case, the normal component of the electrical 

field within the HDM is continuous across the interfaces 

(this is a special case for a Drude metal without interband 

effects and surrounded by vacuum [See Supplemental 

material]). It is indeed seen ( Figure 2 C) that  |  E     
ρ
    |  is discon-

tinuous on the boundary in the local case, while it varies 

continuously across the boundary in the nonlocal case. 

This variation occurs in a region extending over  ≈ 0.1 nm, 

that is of the order of the Fermi wavelength of silver.  
 The results for cylindrical nanowires, while dem-

onstrating the main effects of nonlocal dynamics on 

the mode characteristics, indicate that the quantitative 
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 Figure 2      Fundamental waveguide mode of a cylindrical silver 

nanowire embedded in air. (A) Dispersion relation   ω  ( k z  ) and (B) 

normalized effective mode area within the HDM for the nanowire 

radius  R  = 2 nm (blue) and 4 nm (green), respectively, showing excel-

lent agreement between numerical solutions of Eq. (2) (solid points) 

and analytical results (solid lines). For comparison, the red-dashed 

curve shows the universal result of the nonretarded LRA, with its 

large- k z   limiting value of   ω / 2p  indicated in (A) by the horizontal 

line. (C) Radial distribution of the electric field  |  E      
ρ 
    |  at   ω   = 0.6   ω  

p
   for 

 R  = 4 nm, contrasting the continuous field variation in the HDM with 

its usual boundary discontinuity in the LRA.    

changes are modest even for very small radii ( Figure 2 ). 

In order to explore  fundamental  limitations, one has to 

consider the limit of vanishing radii of curvature. While 

subnanometer radii appear unrealistic for nanowires, fab-

rication of grooves cut in metal and metal wedges, e.g., 

by nanoimprint lithography [29], can in fact result in nm-

sharp edges with corresponding nm-sized wedge modes 

[4]. We expect that nonlocal effects then come into play. 

 Rather surprisingly, the mode effective index and 

propagation length calculated for silver grooves and 
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 Figure 3      Effective index (left axis) and propagation length (right 

axis) versus wavelength for the fundamental mode in complimentary 

(A) V-groove and (B) wedge silver waveguides, both with an opening 

angle of 30 ° . The nonlocal results (solid circular symbols) obtained 

with Eq. (2) are contrasted to the LRA (open circles), with dashed lines 

serving as eye guides. Results for mathematically sharp structures 

with  r  = 0 (blue solid circles) are contrasted to finite rounding with 

 r  = 1 nm (red open circles). Insets show field-intensity distributions 

(white scale bars are 1 nm long) calculated within the HDM (  λ   = 600 

nm) for infinitely sharp edges. The fingerprint of nonlocal effects is 

clearly visible as the field penetrates into the metal by a distance of 

the order of the Fermi wavelength of silver.    

wedges ( Figure 3 ) exhibit even weaker influence of the 

nonlocal effects as compared to the case of nanowires 

( Figure 2 ). In fact, there is no noticeable difference between 

the LRA- and HDM-based results obtained for 1-nm-radius 

of edges. In the limit of mathematically sharp edges, the 

mode effective index becomes only slightly larger and the 

propagation length slightly smaller than those calculated 

for 1 nm edge radius ( Figure 3 ). We explain this result by 

the fact that groove and wedge plasmonic modes are only 

partially affected by the very tip, being distributed also 

and predominantly over flat edges (see insets in  Figure 3 ).  

 The situation changes drastically when one consid-

ers the mode confinement, using the mode area associ-

ated with the Purcell factor, Eq. (3). We recall that the 

field enhancement calculated within the LRA grows 

without bound for progressively sharper pointed struc-

tures while it remains finite when calculated within HDM 

[15, 16]. Analogously, in the present case, one may expect 

that the mode area calculated within the LRA decreases 

without bound for a decreasing edge radius, while it may 
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 Figure 4      Normalized mode area versus wavelength for the funda-

mental mode in complimentary (A) V-groove and (B) wedge silver 

waveguides, both with opening angles of 30 ° . The HDM results 

(solid symbols) are contrasted to the LRA (open circles) for  r  = 1 nm 

(red) and  r  = 0.2 nm (green). Results for mathematically sharp struc-

tures with  r  = 0 (blue solid circles) define a lower limit in the HDM 

(gray-shaded regions are inaccessible). For the LRA, the  r  = 0.1 nm 

results (magenta) exceed this limit and the mode area tends to 

zero when  r  → 0. Insets show field-intensity distributions (white 

scale bars are 5 nm long) at   λ   = 600 nm. The LRA intensities are with 

rounding  r  = 1 nm, while  r  = 0 is used for the HDM maps.    
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saturate within the HDM. LRA-based simulations for sub-

nanometer radii of edges show ( Figure 4 ) that the mode 

area indeed tends to zero, without any apparent satura-

tion. This trend is more pronounced for wedges than for 

grooves, because the wedge geometry ensures generally 

a better mode confinement (cf.  Figure 4 A and B), as was 

also noted previously [4]. At the same time, the simula-

tions conducted within the HDM demonstrate clearly 

the existence of a lower bound for the mode area which 

remains finite even for mathematically sharp edges (blue 

circles in  Figure 4 ). The associated Purcell factors can be 

estimated by inverse of the normalized mode areas dis-

played in  Figure 4  [30]. Thus, our calculations show that 

there is a fundamental limit for the maximum Purcell 

factors achievable with plasmonic waveguides. It is inter-

esting that the upper limit of Purcell factors evaluated 

in this way decreases noticeably in the long-wavelength 

regime. This feature is related to a general weakening 

of all plasmonic effects, including waveguiding [1], for 

longer wavelengths (with metals approaching the limit-

ing case of perfect conductors). At the same time, in the 

case of wedges, these factors remain substantial even 

at telecom wavelengths, with the propagation lengths 

becoming considerably long ( Figure  3 ) and amenable 

for circuitry application. It should also be borne in mind 

that the plasmonic field confinement in both grooves and 

wedges increases for smaller opening angles [3, 4], so 

that even larger Purcell factors can be achieved, albeit at 

the expense of shorter propagation.  

 In conclusion, using a novel wave equation account-

ing for nonlocal dynamics, we considered plasmonic 

waveguides with extreme light confinement and demon-

strated the existence of a fundamental limit in their mode 

confinement imposed by nonlocal effects. Our results 

imply fundamental limitations in the corresponding 

Purcell factors, showing at the same time the possibility 

of achieving very high Purcell factors with V-groove and 

wedge waveguides that ensure sufficiently long propa-

gation lengths for applications in quantum plasmonics. 

Here, we have focused on single-connected metal geome-

tries where dominating currents are naturally of an Ohmic 

nature, whereas tunneling currents may cause important 

limitations too in e.g., closely spaced metallic objects [31]. 

Finally, beyond the linear response fundamental limita-

tions may arise due to nonlinearities [32].  
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In this supplemental material we offer further details on 1) the derivation of the nonlocal wave
equation, 2) the formulation of boundary conditions associated with the hydrodynamic model, 3)
the derivation of a generalized energy density expression, and 4) the numerical implementation and
its convergence properties.

THE NONLOCAL WAVE EQUATION

In this section of our supplemental material we derive
Eq. (2) in our Letter. We start from the coupled hydro-
dynamic equations, i.e. Eq. (1) in our Letter. Our first
step is to isolate J from Eq. (1a),

J =
1

iωμ0

{
∇×∇×E− (

ω
c

)2
ε∞E

}
, (1)

where for generality we have included the ε∞ interband
contribution usually appearing in the Drude permittivity
εD = ε∞ − ω2

p/[ω(ω + i/τ)]. Substituting this expression
into Eq. (1b) we get

β2

ω(ω+i/τ)∇
[
∇ ·

{
∇×∇×E− (

ω
c

)2
ε∞E

}]

+
{
∇×∇×E− (

ω
c

)2
ε∞E

}
= iωμ0σE. (2)

Next, for any vector field F, the divergence of its curl is
zero, i.e. ∇·(∇×F) = 0. Thus, without loss of generality
the expression now simplifies to

− β2

ω(ω+i/τ)

(
ω
c

)2
ε∞∇ [∇ ·E]

+
{
∇×∇×E− (

ω
c

)2
ε∞E

}
= iωμ0σE. (3)

Furthermore, utilizing that in general ∇ [∇ · F] = ∇ ×
∇× F+∇2F we get

− β2

ω(ω+i/τ)

(
ω
c

)2
ε∞

{∇×∇×E+∇2E
}

+
{
∇×∇×E− (

ω
c

)2
ε∞E

}
= iωμ0σE. (4)

Re-grouping the double-curl terms on the left-hand
side (as in the common LRA wave equation) and re-
introducing the local-response Drude permittivity as
εD = ε∞ + iσ/(ε0ω) we get

∇×∇×E =
(
ω
c

)2K [
εD + β2ε∞

ω(ω+i/τ)∇2
]
E. (5)

For the re-normalization on the right-hand side we note

that K = c2

c2−β2ε∞(1+i/ωτ)−1 = 1 + O(ε∞[β/c]2[1 −
i/ωτ ]−1) and for all practical purposes involving the com-
mon noble metals it is close to unity. In this way we end
up with Eq. (2) in our Letter.

TRANSLATIONALLY INVARIANT SYSTEMS

For infinite systems with translational invariance it is
convenient to work in Fourier space and this has been
the common approach in most of the early literature. To
connect our result in Eq. (5) to k-space formalism we
Fourier transform the wave equation which gives

−k× k×E =
(
ω
c

)2 (
1− ω2

p

ω2

)
E−

(
β
c

)2

k (k ·E) , (6)

where for simplicity we have suppressed the interband
contribution and the damping. Below, we will use the
Helmholtz decomposition E = Et + El and to clearly
distinguish between transverse fields (k · Et = 0) and
longitudinal fields (k × El = 0) we have above in the
Laplacian term deliberately used the identity given below
Eq. (3).

For longitudinal fields we now get

0 =
(
ω2 − ω2

p − β2k2l
)
El, (7a)

or alternatively, pulling a factor (ω2 − β2k2l ) outside the
parenthesis, we get

0 =
(
1− ω2

p

ω2−β2k2
l

)
El. (7b)

Thus, we immediately find that the non-trivial lon-
gitudinal solutions have dispersion relation ω(kl) =√

ω2
p + β2k2l , i.e. we exactly recover the classical solu-

tion for longitudinal bulk plasmons commonly derived
from εl(ω, kl) ≡ 0 where εl(ω, kl) = 1− ω2

p/(ω
2 − β2k2l ).

Likewise, for transverse fields we get

k2tEt =
(
ω
c

)2 (
1− ω2

p

ω2

)
Et, (8)



2

so that we arrive at the common transverse dispersion
relation kt = (ω/c)

√
εt(ω) where εt(ω) = εl(ω, k → 0) =

1− ω2
p/ω

2.

BOUNDARY CONDITIONS

The Eq. (2) in our Letter must be equipped with a
physically appropriate boundary condition, as we dis-
cussed in Ref. [1] and more recently in detail in an ap-
pendix of Ref. [2]. This condition can be easily worked
out from the continuity of the normal component of the
displacement vector D across the boundaries, that reads:

Dm · n̂ = Dd · n̂ (9)

wherem indicates the metal and d refers to the surround-
ing dielectric material. The displacement vector in the
metal is defined as:

Dm = ε0ε∞E+
i

ω
J, (10)

where J is the free-electron current density. The displace-
ment vector in the dielectric material reads:

Dm = ε0εdE, (11)

where εd is the permittivity of the surrounding material.
Equation (9) can now be rewritten as:

(
ε0ε∞Em +

i

ω
J

)
· n̂ = ε0εdEd · n̂ (12)

Next, we impose the boundary condition J · n̂ = 0, dis-
cussed in detail in Refs. [1, 2], which gives

ε∞Em · n̂ = εdEd · n̂. (13)

This equation states that the normal component of the
electric field is continuous across the boundaries only
when interband contributions are neglected and the sur-
rounding material is free space. Eq. (2) in our Letter is
solved subject to this boundary condition. We empha-
size that this is fully consistent with original requirement
that J · n̂ = 0 on the boundary.

GENERALIZED ENERGY DENSITY

In this section of our supplemental material we derive
a generalized expression for the electromagnetic energy
density, including the contributions stored in the hydro-
dynamics of the free-electron gas. We start from the
Poynting theorem in time domain [3]

∫
S

E×H· n̂ dS = −
∫
V

[
ε0E·Ė+E·Ṗ+μ0H·Ḣ

]
dV (14)

where P is the polarization vector, V is the volume of
the electron gas, and S is its boundary. The polarization
current J is linked to P by

J =
∂P

∂t
= Ṗ. (15)

At the same time, the polarization current is related to
the electric field by means of the hydrodynamic equa-
tion. In time domain, the linearized hydrodynamic Euler
equation for the electron dynamics is

me
∂v

∂t
= −β2me

no
∇n−meγv − eE (16)

where v is the electron velocity, n is the electron den-
sity, n0 is the electron density at rest, and me the elec-
tron mass. If we introduce the polarization current
J = −en0v and the charge density ρ = −en, the Eq. (16)
becomes

∂J

∂t
= −β2∇ρ− γJ+ ε0ω

2
pE. (17)

Next, if we use the definition (15), and the continuity
equation ρ = −∇ ·P, we get

β2∇∇ ·P− ∂2P

∂t2
− γ

∂P

∂t
+ ε0ω

2
pE = 0. (18)

We can now isolate E in this expression,

E = − 1

ε0ω2
p

[
β2∇∇ ·P− ∂2P

∂t2
− γ

∂P

∂t

]
(19)

and multiplying by Ṗ, we get

E · Ṗ = − 1

ε0ω2
p

[
β2∇∇ ·P · Ṗ− 1

2

dṖ2

dt
− γṖ2

]
. (20)

In the spirit of Eq. (14) we now integrate Eq. (20) over
the metallic volume,

∫
V

E·Ṗ dV = − 1

ε0ω2
p

∫
V

[
β2∇∇·P·Ṗ− 1

2

dṖ2

dt
−γṖ2

]
dV.

(21)
Our next step is to integrate by part,∫
V

∇∇·P ·Ṗ dV = −
∫
V

∇·P∇·Ṗ dV +

∫
S

∇·PṖ · n̂ dS

To further proceed, we now apply the physical boundary
condition J · n̂ = 0 [1], i.e. no electrons leaving the metal
volume. This gives∫

V

∇∇ ·P · Ṗ dV = −
∫
V

1

2

d(∇ ·P)2

dt
dV.

In this way Eq. (21) now reads

∫
V

E ·Ṗ dV =
1

ε0ω2
p

∫
V

[β2

2

d(∇ ·P)2

dt
+
1

2

dṖ2

dt
+γṖ2

]
dV

(22)



3

and substituting into the Poynting theorem, Eq. (14), we
get

∫
S

E×H · n̂ dS+

∫
V

γ

ε0ω2
p

Ṗ2 dV = −
∫
V

u̇ dV. (23)

Here, u is the electromagnetic energy density defined as

u =
1

2
ε0E

2+
β2

2ε0ω2
p

(∇·P)2
+

1

2ε0ω2
p

Ṗ2+
1

2
μ0H

2. (24)

Finally, if we recall the continuity equation for the polar-
ization charge density, given by ρ = −∇ ·P, and we use
Eq. (15), then

u =
1

2
ε0E

2 +
β2

2ε0ω2
p

ρ2 +
1

2ε0ω2
p

J2 +
1

2
μ0H

2. (25)

This is our generalization of the common energy-density
to account for the energy stored in the additional degrees
of freedom associated with the nonlocal hydrodynamics
of the electron gas. For time harmonic fields, this expres-
sion can easily be time-averaged.
In our Letter, we focus on electrical dipole emitters

where the H contribution can be neglected. For our ac-
curate numerical evaluation we rely on Eqs. (1) in our
Letter, i.e. an eigenvalue-problem with a six-element
eigenvector {E,J}, rather than Eqs. (2) where one would
in a subsequent (and less accurate) step have to numer-
ically derive J from the obtained 3-element eigenvector
{E}.

NUMERICAL IMPLEMENTATION AND
CONVERGENCE

In this section of our supplemental material we offer
some details on the numerical implementation and the
convergence tests for the waveguides that we have ana-
lyzed in our Letter. For scattering problems involving ar-
bitrarily shaped metal geometries, Eq. (1) can be solved
numerically with the aid of finite-element methods [4]. In
particular, the hydrodynamic model can conveniently be
integrated into commercially available software such as
Comsol Multiphysics. For the scattering problem we have
already made such an add-on to Comsol Multiphysics
freely available [5]. Here, we extend this approach to
an eigenvalue problem appropriate for waveguiding prob-
lems. Our code for solving Eq. (2) in our Letter is an
add-on to Comsol Multiphysics 4.1, employing the PDE
Weak form module and the standard MUMPS eigenvalue
solver.
For our discussion of the numerical convergence we first

note that in Fig. 2 of our Letter, the agreement between
the analytical and numerical solutions is very good. More
quantitatively, the relative error of the numerically cal-
culated propagation constant kz with respect to the an-
alytical value is always smaller than 0.3% in the entire

frequency range of Fig. 2. Likewise, the relative error for
the effective mode area Aeff is always smaller than 0.12%
within the same frequency range.

The convergence analysis for the circular nanowire
waveguides is based on the methodology that we have de-
scribed in previous work for the scattering problem [4].
In the present case we have two observables, i.e. the
propagation constant kz and the effective mode area Aeff .
Thus, we define the relative errors δnum

k and δnum

A accord-
ing to the definition δnum

x = |xmesh − xreg| /xreg where xmesh

is the observable value at fixed mesh edge number and
xreg is the value in the convergence regime. To illus-
trate the convergence performance we consider a rela-
tively high frequency ω = 0.6ωp, because in this case the
field is mainly localized in the metal. This represents
a “worst-case” condition for the calculations because a
high number of edge elements is needed. The results are
shown in Fig. S1 for a varying number η of triangular
elements while we for late convenience introduce η̄ as
the normalized number of triangular elements. It is im-
portant to underline that the propagation constant kz is
calculated by means of the Eq. (2) in our Letter, while
the mode area is calculated with Eq. (1) of our Letter,
i.e. providing us with both the electrical field and the
current density. As clearly seen, both codes show a con-
vergence of the calculated parameters for η > 250. The
corresponding simulation time is about 5min for both
codes. The faster convergence of Eq. (2) over Eq. (1) is
also noted when comparing panels (a) and (b).

The convergence test for the V-groove is performed
for the case λ = 600 nm, because it corresponds to the
maximum field localization in the visible spectrum, and
a high mesh density is needed. The observables are the
effective refractive index neff and the propagation length
L. As seen in Fig. S2, both relative errors δnum

n and δnum
L

converge for η̄ > 200, and the simulation time is about
10 min. These dispersion results were calculated from
Eq. (2) in our Letter.

The convergence test for the Λ-wedge structure follows
the same lines. Also in this case, we show the test per-
formed at λ = 600 nm, that corresponds to the highest
field confinement in the metal. The results are shown in
Fig. S3 and we notice that the propagation length con-
verges at higher η with respect to the effective refractive
index. The Λ-wedge presents high losses at this wave-
length, and the simulations can be very sensitive on the
mesh density. The results are obtained from Eq. (2) in
our Letter, and the typical computation time is about
10min.

Finally, we consider the convergence of the effective
mode area for both V-groove and Λ-wedge. The results
are shown in Fig. S4. Note that the mesh densities in the
two cases are relative to different geometrical entities, so
they cannot be compared directly. The results for the
mode area are calculated with Eq. (1) of our Letter, i.e.
providing us with both the electrical field and the current



4

density. The simulation time is about 10min also in this
case.
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FIG. 1: Convergence test for a cylindrical nanowire with radius R = 2 nm. Panel a) Relative error δnum
k of the propagation

constant kz versus number of edge elements for cylindrical nanowires. The convergence occurs for η > 200. Panel b) Relative
error δnumA of the effective mode area Aeff versus number of edge elements for cylindrical nanowires. The convergence occurs
for η > 250. The scale bar is 1 nm long. The inset refers to η = 250.
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FIG. 2: Convergence test for a V-groove structure with aperture angle θ = 30◦. The radius of the meshing circle Rmesh = 10nm,
and it is kept constant while varying the number of triangular elements. Panel a) Relative error δnumn of the effective refractive
index versus the normalized number of triangular elements η̄. The convergence occurs for η̄ > 200, that corresponds to 6283
elements. Panel b) Relative error δnumL of the propagation length L versus η̄. The convergence occurs for η̄ > 200. The scale
bar is 10 nm long. The inset refers to η̄ = 200, and the shaded blue area indicates the metal.
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FIG. 3: Convergence test for a Λ-wedge structure with aperture angle θ = 30◦. The radius of the meshing circle Rmesh = 1nm,
and it varies, while the number of triangular elements is kept constant. Panel a) Relative error δnum

n of the effective refractive
index versus the normalized number of triangular elements η. The convergence occurs for η̄ > 30, that corresponds to η > 94
elements. Panel b) Relative error δnum

L of the propagation length L versus η̄. The convergence occurs for η̄ > 45, i.e. η > 141.
The scale bar is 1 nm long. The inset refers to η̄ = 141, and the shaded blue area indicates the metal.

0

3

6

9

12

20 40 60 80
0

15

30

45

60

100 200 300 400

FIG. 4: Convergence test for the effective mode area for V-groove and Λ-wedge waveguides. Panel a) Relative error δnum
A of the

effective mode area Aeff versus number of edge element for the V-groove. The convergence occurs for η̄ > 400, i.e. η > 12566.
Panel b) Relative error δnum

A of the effective mode area Aeff versus number of edge elements for the Λ-wedge waveguide. The
convergence occurs for η̄ > 60, i.e. η > 188.
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