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Preface 
This thesis represents the research carried out during my Ph. D studies 
from May 2010 to October 2013 at DTU Fotonik, Department of 
Photonics Engineering, Technical University of Denmark. The project has 
been supervised by Associate Professors Michael S. Berger and Sarah 
Ruepp and is partially funded by the Danish Advanced Technology 
Foundation (Højteknologifonden). The thesis is entitled “Towards 
Terabit Carrier Ethernet and Energy Efficient Optical Transport 
Networks” and investigates how future network elements can be scaled 
towards terabit-per-second capacities.  
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Abstract 
This thesis focuses on the challenges of scaling current network node 
technology to support connection speeds of 100Gbps and beyond. Out 
of the many exiting aspects of reaching this goal, the main scope of this 
thesis is to investigate packet processing (address lookup and scheduling), 
forward error correction and energy efficiency.  

Scheduling and address lookup are key functions and potential bottle 
necks in high speed network nodes, as the minimum packet/frame sizes 
in both the popular Ethernet protocol, as well as the Internet Protocol 
(IP) still remains constant (84B and 40B, respectively). Therefore, in order 
to support a single 100 Gigabit Ethernet link, the routing mechanism must 
be able to support address lookup and output scheduling of over 148 
million packets per second (pps) leaving only a few nanoseconds for each 
packet. With the emerging standards for 400Gbps (400GE and OTU5) 
and discussions on how best to exceed the 1Tbps boundary, the packet 
processing rate requirements for future network nodes are likely to 
increase even further in the coming years. Hence, there lies a tremendous 
task in expanding and optimizing current technology and methodology to 
support these increasing requirements.   

Forward Error Correction (FEC) is already a standard component of the 
Optical Transport Network (OTN) protocol as a means of increasing the 
bitrate-length product of optical links. However, the requirements for 
higher bitrates also drive a requirement for higher spectral efficiency in 
order to squeeze more traffic onto the existing physical transmission 
systems. To do this, while keeping the bit error rate (BER) below 
acceptable levels, more advanced FEC schemes are required. This is a 
challenge: Not only do we need to increase the processing speed of the 
FEC to handle the higher throughputs. The more advanced schemes also 
require more complex calculations to process each bit. This thesis will 
investigate how both the standard OTN FEC as well as more advanced 
FEC schemes can be implemented for 100G and above operation.  

As the networks are expanded to run at increasingly higher speeds, an 
unfortunate by-product is higher energy consumption. While advances in 
the physical hardware production (e.g. better chip production techniques) 
somewhat reduces the problem, it is imperative to think energy efficiency 
into the systems from the early design stage to the actual implementation 
and operation. Similar to the now common practice within micro 
processors, recent research aims at dynamically balancing performance 
and energy consumption of optical communication systems based on the 
immediate capacity demands. This thesis will describe various ways of 
achieving this dynamic capacity/energy trade off, with special emphasis 
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on the Celtic project “Elastic Optical Networks” (EO-Net) and on 
adaptive forward error correction in particular.  
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Resumé 
Denne afhandling omhandler udfordringerne i at skalere nuværende 
netværksnodeteknologi til at understøtte hastigheder på 100 gigabit per 
sekund og derover. Ud af de mange aspekter, som indgår i at nå dette mål, 
er fokus i denne afhandling lagt på pakkeprocessering (adresse opslag og 
schedulering), fremadrettet fejlkorrektion og energieffektivitet.  

Schedulering og Adresse opslag er to nøglefunktioner og potentielle 
flaskehalse i højhastighedsnetværksnoder, da den mindste ramme/pakke 
størrelse i både den populære Ethernet protokol, samt i Internet 
Protokollen (IP), er holdt konstant (hhv. 84B og 40B). For at kunne 
understøtte en 100 Gigabit Ethernet forbindelse, skal 
rutningsmekanismerne derfor være i stand til at udføre adresseopslag og 
output schedulering af over 148 millioner pakker per sekund (pps), hvilket 
kun efterlader nogle få nanosekunder til at behandle hver pakke. Med de 
kommende standarder for 400Gbps (400GE og OTU5) og en 
igangværende diskussion om, hvordan man bedst overskrider 1 terabit/s 
grænsen, vil pakkeprocesseringshastigheden for fremtidige netværks- 
knudepunkter med stor sandsynlighed stige endnu mere i de kommende 
år. Der ligger derfor en gevaldig opgave i at udvide og optimere nuværende 
teknologi og metoder til at understøtte disse stigende krav.  

Fremadrettet fejlkorrektion (Forward Error Correction (FEC)) er allerede 
en standardkomponent i Optical Transport Network (OTN) protokollen, 
og tjener det formål at forøge bitrate-længde produktet på optiske 
forbindelser. Kravet om højere bitrater skaber også forøgede krav til 
spektraleffektiviteten for at klemme endnu mere kapacitet ud af 
eksisterende fysiske transmissionssystemer. For at gøre dette og stadig 
holde bitfejlsandsynligheden (BER) under et acceptabelt niveau, er det 
nødvendigt at benytte mere avancerede FEC metoder. Dette er en stor 
udfordring: Ud over at FEC systemerne skal køre hurtigere for at 
understøtte højere datarater, vil de mere komplicerede FEC metoder også 
kræve mere komplicerede udregninger for de enkelte bits. I denne 
afhandling vil det blive undersøgt, hvordan FEC systemet fra OTN, såvel 
som mere avancerede FEC metoder, kan implementeres til at køre med 
linierater på 100Gbps og derover.  

En uheldig bivirkning ved de stadig større datahastigheder er øget 
energiforbrug. Til trods for at forbedringer af den fysiske 
hardwareproduktion til dels modvirker denne udvikling, er det yderst 
nødvendigt at tænke energieffektivitet ind i systemerne lige fra den tidlige 
designfase og indtil systemerne implementeres og tages i brug. I tråd med 
den nu gængse praksis indenfor mikroprocessorer, stiler nylig forskning 
efter dynamisk at afbalancere ydelse og energiforbrug i optiske 
kommunikationssystemer ud fra de øjeblikkelige kapacitetskrav. Denne 
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afhandling vil beskrive forskellige metoder til at opnå dynamisk afvejning 
mellem kapacitets- og energihensyn, med fokus på Celtic-projektet ”Elatic 
Optical Networks” (EO-Net) og i særlig grad på adaptiv fremadrettet 
fejlkorrektion.  
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1. Introduction 
 

Global Internet traffic is rising at a remarkable pace. The increasing 
popularity of bandwidth intensive services such as Internet-based video 
streaming (Netflix, YouTube, IPTV), video telephony (Skype, FaceTime), 
and cloud services has provided a demand for very high speed internet 
connections as well as the applications to utilize bandwidth over long 
periods of time. Combined with the expanding high speed mobile and land 
based access networks, this has given rise to an unprecedented increase in 
internet traffic over the past few years - a trend which is likely to continue 
for years to come. According to the Cisco Visual Networking Index 
(CVNI), global internet traffic has increased more than fourfold in the 
past five years and is expected to increase threefold over the next five years 
(see Figure 1.1)[1]. When it comes to which kinds of services will dominate 
the growth in internet traffic, the prediction from CVNI (Figure 1.2), is 
crystal clear: Video, video, and more video. The slow dialup modems and 
grainy internet videos are truly a thing of the past. And, where internet 
based video-on-demand used to be synonymous with internet piracy, there 
are now plenty of legal content providers, supplying users with high quality 
content immediately and directly to their high definition televisions or 
mobile displays.  

 
Figure 1.1 – Projected growth in monthly internet traffic 2012-2017 [1]. 
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With this rise in traffic in the access part of the network, there is an 
increasing demand for high speed connections in the transport networks 
to handle the aggregated traffic. Instead of simply installing more links 
using the existing 10G standards (e.g. OTN2 and 10G Ethernet), new 
standards for 40G and 100G have paved the way for a 4-10 fold increase 
in the capacities of each logical link. When work presented in this thesis 
started in May 2009, the 40G and 100G standards were not yet finalized 
and equipment was still under development [2]. Now, 40G and 100G 
equipment is commercially available and current standardization and 
research efforts are focused on extending the 40G/100G architectures to 
400G and eventually beyond the 1T boundary [3]–[7].  

Increasing the link capacities above 100Gbps impacts the communication 
systems at multiple levels. The primary focus of this thesis is the challenges 
which arise at the network node level, when moving to 100G and beyond. 
Every sub-system, from the switch interconnection fabric and the 
buffering systems to the packet processors, needs to be redesigned and/or 
upgraded to support these high speeds. The Danish research project “The 
Road to 100 Gigabit Ethernet”, which ended successfully in May 2012, 
aimed specifically at meeting these challenges. The aim of the project was 
to (a) design and implement a 100GE line card with a packet processor 
and a traffic manager, (b) design and implement a 100GE tester capable 
of generating and verifying Ethernet framed data at 100Gbps and (c) 
model and simulate new system architectures and algorithms for 100 
Gigabit operation. The three partners in the project, TPACK, Xena 
Networks and the Technical University of Denmark (DTU) were 

 
Figure 1.2 – Projected service distribution 2012-2017 (EB/month) [1]. 
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responsible for (a), (b) and (c), respectively. Out of the work done in this 
project, this thesis focuses specifically on the research within packet 
processing, in terms of address lookup and packet scheduling, and the 
development of a 100GE framed bit-error-rate tester (BERT).   

At the physical layer, the classical Wave Division Multiplexing (WDM) 
channel slot size of 50GHz can just barely support 100Gbps with the 
current modulation formats [8]. Hence in order to reach above this speed, 
it is either necessary to split up the 400G signal into several serial streams 
(just like the 100GE standard specifies[9]) or to use larger channels. An 
alternative is to use more spectrum efficient modulation formats, which in 
term requires higher signal-to-noise ratios (SNR) and more signal 
processing to achieve the same bit-error-rate (BER) of the transmitted 
information. While all aspects of the physical transmission are important, 
this thesis will limit itself to the forward error correcting codes used at the 
physical layer to aid in increasing spectral efficiency.  

A final aspect of high speed networking, which is important across the 
layers, is energy efficiency. Energy efficiency is both important from an 
economical and environmental point of view, but also for pure technical 
reasons, as high power consumption requires larger power supplies and 
more effective cooling of the systems. Part of the work leading up to this 
thesis was done as part of the European CELTIC project “Elastic Optical 
Networks (EO-Net)” [10]. This project focussed specifically on 
introducing dynamic power reduction into the transport networks as a 
mean of trading off throughput for lower power consumption in off-peak 
periods. Partners in the project included members of academia (DTU, 
Chalmers University of Technology, Nordunet), equipment / IP-core 
providers (Alcatel-Lucent Bell Labs, Ekinops, Analogies, C2Tech) and a 
service provider (France Telecom / Orange labs). Aside from giving a 
general overview of this work, the thesis describes in detail some of the 
efforts put into designing and implementing dynamic forward error 
correction (FEC) for high performance FEC codes.  
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1.1. Thesis organisation 
This section provides an overview of the thesis structure and the content 
of the individual chapters. Some sections presented here have been written 
specifically for this thesis, while others are based on published research 
articles, which have been updated and expanded for the thesis. Of the 16 
published and 2 pending journal and conference publications, which were 
co-authored as part of this Ph. D. study, only the papers most relevant to 
the research area has been chosen for inclusion in this thesis. The list of 
papers and their respective sections is shown in Table 1.1.  

Chapter 2 gives a general introduction to the challenges of pushing 
Ethernet towards 100Gbps and beyond, while elevating Ethernet to 
function as a transport protocol. The chapter also contains a section (2.4) 
on bit error rate testing on 100G Ethernet connections, attaching the bit 
error rate tester (BERT) directly to the 100G Media Independent Interface 
(CGMII). As a prelude to Section 2.4, Section 2.3 provides a brief 
description of the CGMII and CAUI interfaces and how they differ from 
the previous 10G standard (XGMII and XAUI). Sections 2.3 and 2.4 are 
based on papers [P3] and [P2], respectively.   

Chapter 3 looks into the issue of performing address lookups at this high 
speed, specifically on MAC table lookups (Ethernet), and on IP table 
lookups (Internet Protocol) with special emphasis on a novel TCAM-
based scheme for Longest Prefix Matching (LPM). The TCAM section 
(3.3) is based on paper [P15].  

Chapter 4 deals with multicast scheduling and investigates how this can be 
performed efficiently in high speed, high port count network nodes. This 
chapter is based on paper [P17].  

Section Papers Author Number 

2.3 [P3]  1st 

2.4 [P2] 1st 

3.3 [P15] 1st 

4 [P17] 1st 

5.1 [P18] 1st 

5.2 [P4] 1st 

6 [P18] 1st 

Table 1.1 - Sections of the thesis based on research papers. 
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Chapter 5 investigates the issue of performing forward error correction 
(FEC) at high speed. Firstly, the section provides a short introduction to 
FEC codes, with specific emphasis on the codes used in this project, and 
introduces the concept of concatenated codes [P18]. Secondly, a case 
study is described, of a 100Gbps implementation of the Reed-Solomon 
(255,239) FEC, commonly used in the Optical Transport Network (OTN) 
protocol, using a Field Programmable Gate Array (FPGA) (based on 
paper [P4]). Lastly, it is shown how the more complex soft decision Low 
Density Parity Check (LDPC) FEC can be scaled towards 100Gbps as 
well.  

Chapter 6 examines high speed networks from a power-efficiency point 
of view with specific emphasis on reducing the power consumption of the 
FEC circuits (based on paper [P18]).  

Chapter 7 concludes the thesis.  
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2. 100 Gigabit 
Ethernet and 
Beyond 

 

In the beginning of the project “The Road to 100 Gigabit Ethernet” 
(100GE) in 2009, 10 Gigabit links were widely deployed in the transport 
networks [11]. This is still the case. However, as the internet users’ 
behavioral patterns have moved towards more bandwidth intensive 
applications, along with the increasing use of cloud services, the demand 
for extra capacity in the transport networks and data centers have 
increased correspondingly. The new 100G standards, for OTN (OTU-4) 
and 100 Gigabit Ethernet (100GE) [9], are capable of fulfilling these 
bandwidth demands, handling millions of packets per second, and efforts 
are already being made to develop a new 400G standard[6]. In 2009, when 
the 100G project started, the underlying hardware technology was just 
evolved to the point where 100G systems were viable, and even with the 
recent improvements in chip-technology, memory technology etc., 
building efficient 100G systems (not to mention 400G systems!) is still no 
trivial task. The purpose of this chapter is to provide a general overview 
of the 100GE standard as well as the challenges of designing network 
equipment, which can operate at 100G and beyond, taking into account 
recent advances in chip and memory technology.  

2.1. The challenge of 100GE and beyond 
The main area of research in the 100G project has been the challenges of 
scaling Ethernet capacity from the 2009 state‐of‐the‐art at 10Gb/s to next 
generation 100Gb/s. The challenges includes interface adaptation, data 
and control plane processing, switching, power and printed circuit board 
requirements. The original goal of 100Gb/s was very ambitious, and 
required first of all improvements in the low level circuit technology. 
However, these improvements were far from enough to deliver a factor 
10 in performance when moving from 10Gb/s to 100Gb/s, and even less 
so when looking to future 400G connections.  
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2.1.1. Basic line card structure 
The basic structure of a 100GE line card is depicted in Figure 2.1. The 
first logical block in on the line card is the transceiver and the Medium 
Access Control (MAC) block. Since all 100G modules work in full duplex 
and no auto negotiation is supported, the functionality of the Medium 
Access Control (MAC) is reduced to Frame Check Sum (FCS) generation 
and validation (in the TX and RX direction, respectively). The basic 
functions of the transceivers are described in greater detail in Section 2.3. 
Once the data has been received and validated, it enters the network 
processor (NP), which performs classification tasks, such as MAC address 
and VLAN lookup to determine the forwarding port(s), and Class of 
Service (CoS) determination. The NP is also responsible for automatic 
MAC address learning. These functions require lookup tables, which can 
be accessed very frequently, but which generally do not need to be very 
large in terms of memory consumption. The issue of address lookup is 
elaborated further in sub-section 2.1.3. Once classified, the frames move 
on to the traffic manager (TM). The task of the TM is to determine the 
QoS of the packets, based on metering and the information provided by 
the NP, and to shape and prioritize the traffic flows based on this 
information, as well as other information, such as flow control messages 
from its peers. Hence, the TM is responsible for the overall scheduling of 
frame departures into the switch fabric. As such, the TM is also 
responsible for frame buffering. For the purpose of frame buffering, high 
throughput and high capacity memory is needed. While access latency is 
also an issue for the frame buffers, the requirements are not quite as 
stringent as for the lookup memories. The TM is described in further detail 
in sub-section 2.1.5. Finally, the frames are relayed to the switch fabric, 
which interconnects all the line cards in the switch (further details in sub-
section 2.1.6).  

 

Figure 2.1 – Basic linecard architecture.  
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2.1.2. Datapath architecture 
Since, the basic structure of the Ethernet frames at the MAC level has not 
changed with the new 100GE standard, an attractive solution would be to 
simply run the existing 10G designs at 10 times the clock frequency. 
Unfortunately, despite continuous advances in FPGA performance, 
increasing the clock frequency is not in itself a viable solution to the 
problem. Another approach could be to balance the incoming traffic 
between multiple 10G designs. This allows for reuse of existing logic 
blocks, running closer to their designed max clock frequency. The trade-
off here is increased chip area, higher latency (since each packet is 
processed slower than 100Gbps), managing resource sharing amongst 
multiple packet processors (forwarding tables etc.) and a significant 
challenge in balancing the traffic while avoiding frame reordering. A final 
approach would be to redesign the system to work with a wider data path 
i.e. to process more bits in parallel at a lower clock frequency. This poses 
some challenges to the designer. The authors of the 100GE standard have 
been kind enough to impose a 8 byte alignment of the Start-of-Frame 
(SOF) at the CGMII interface[9], which eases the initial frame alignment, 
even for wide data busses. Unfortunately, the length of the frames can still 
be any integer number of bytes, which makes e.g. parallel CRC calculation 
more difficult and poses the potential problem of poor internal bandwidth 
utilization for packets sizes which are not an integer division of the bus 
width.  

2.1.3. Address lookup 
A crucial part of an Ethernet switch is its ability to build and maintain its 
forwarding table and to perform fast lookups in the table to make 
forwarding decisions for the individual packets at line speed. To keep up 
with the worst case traffic patterns of just a single 100GE link, this table 
must be able to handle up to 298 million lookups per second to handle the 
combined destination address lookups and source information updates. 
Furthermore, since switches rarely consist of just a single port, the table 
structure needs to scale to handle traffic from multiple ports. Popular 
technology choices for MAC address tables include linked lists, hash tables 
and Content Addressable Memories (CAMs), depending on the 
requirements of the system. Due to the importance of address lookup 
mechanisms, this subject has been given its own chapter in this thesis. 
Section 3.1 and Sections 3.2-3.3 discuss the issues of address lookups in 
Ethernet switches and IP routers respectively.  
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2.1.4. Memory 
In a perfect world, all data structures would be kept in high speed on-chip 
memory. Unfortunately, the large data structures required to perform 
traffic management, ensure QoS (Quality of Service), perform packet 
buffering, etc. are too much to keep in on-chip memory alone. Hence, 
access to high speed external memory is a necessity. This is a substantial 
challenge when going from 10G to 100G, because the speed of memory 
does not follow Moore’s famous law, stating that the processing power 
will double around every second year.  Especially the larger DRAM-based 
memories have performance issues when data is stored or accessed in a 
non-sequential manner (random access), even though there have been 
significant improvements with respect to the access bandwidth over the 
years, as seen in Table 2.1. Hence, a combination of different memory 
types, traffic shaping, and some degree of over-dimensioning of the 
memory bandwidth is necessary to reach 100Gbps [P11][12]–[15]. When 
moving on to higher speeds and/or denser systems, this becomes an even 
greater problem.  

For the packet buffers, which require high density memory, i.e. DRAM, 
current technology is neither fast enough nor compact enough to reach 
the next goal of 400 Gigabit Ethernet. In order to implement a 400G 
packet buffer, the effective read/write bandwidth must be at least 
800Gbps, assuming perfect bandwidth utilization. Even with state-of-the-
art DDR4-2667 memory, this requires five DIMMs, each with 288 I/O 
pins (see Table 2.1). Hence, a total of 1.440 connections must be routed 
across the printed circuit board (PCB). The bandwidth bottle neck caused 

Technology BW 
(Gbps) 

Power (W) mW/GB/s pj/bit 

SDRAM 
PC133*  8.48 4.96 4664.97 762 

DDR-333*  21.28 5.48 2057.06 245 

DDRII-667* 42.72 5.18 971.51 139 

DDR3-1333* 85.28 5.52 517.63 52 

DDR4-2667* 170.72 6.60 309.34 39 

GDDR5* 160 2.70 135.00 16.88 

LPDDR2-
1066 Die 34.08 0.43 100.2/8 12.54 

HMC Gen1 
512MB Cube 1024 11.08 86.53 10.85 

Table 2.1  Comparison of memory technologies[20][120]. 
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by access dependent internal delays inside the DRAM [P11], can to some 
extent be minimized by clever memory management [13]. Even so, the 
actual bandwidth requirements are likely to be significantly higher than 
800Gbps.   

In recent years, the trend within external memory is moving towards 
memory architectures with high-speed serial interfaces, as opposed to the 
classical approach of using wide parallel busses[16]–[18]. Using serial 
interfaces drastically lowers chip I/O overhead and makes it viable to use 
off-chip packet buffers with enough inter-chip bandwidth to sustain 400G 
throughput. One such technology is the so called Hybrid Memory Cube 
(HMC) [19], [20], which has been created by a consortium of developers 
(Micron, IBM, Altera, Xilinx etc.) and adapters (Napatech, Synopsys, 
AIRBUS etc.). The HMC is basically a 3D structure as depicted in Figure 
2.2, consisting of one logic layer (the controller) and 4-8 layers of DRAM, 
all interconnected with high speed through-silicon-vias (TSVs). The 
interface to the memory is through multiple 10G-15G serial links (full 
duplex). According to the consortium, the resulting memory bandwidth is 
more than 15x higher than DDR3, using 70% less energy and taking up 
90% less space, compared to the common DIMM solution[16]. This is in 
part a result of the new stacked architecture, the built in controller and a 
high degree of subdivision of the memory (128-256 banks as opposed to 
8 banks in a standard DIMM).  

If the promises of the HMC technology hold true, it will go a long way 
towards satisfying the memory bandwidth requirements and random 
access performance necessary to make the next jump to 400G. A 2011 
demo of the HMC by Micron showed a sustained throughput of just under 
1Tbps using 50nm DRAMs and 90nm technology for the logic 
controller[20]. The newly release specification allows for 32 to 64 links 
(10G-15G) or up to 128 links (10G). Thus, the maximum aggregated 
bandwidth supported by this specification (incl. overhead) is 
2.56Tbps[19]. Using this technology, the corresponding I/O count for 

 

Figure 2.2 – Hybrid Memory Cube (HMC) arcitecture. (HMC height is exaggerated)[20].  
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supporting 800Gbps of effective read/write bandwidth is 200 pins, 
assuming 10G differential transceivers and 64B read/writes. The first 
version of the HMC specification was recently published[19], and 
according to Micron, the first commercial HMCs will be ready by the end 
of 2013. Early samples of Altera’s first FPGA to support HMC, the Arria 
10, will be ready in the beginning of 2014, supporting 1.28Tbps aggregated 
HMC bandwidth.  

As described in subsection 2.1.1, data structures related to MAC address 
lookup, flow identification, policing, statistics counters and similar 
functions in the network processor (NP) and traffic manager (TM), do not 
require a high density memory, but rater memory with excellent random 
access performance. For this purpose, SRAM based memory is a good 
choice due to its low and address-independent access latency. One of the 
fastest SRAM memory types on the market is Quad Data Rate (QDR)-II+ 
SRAM. QDR uses separate read and write data busses, each of which 
employs Double Data Rate (DDR) transmission. This eliminates the bus 
turn-around delay found in shared bus memory types (like DDR SRAM). 
Currently, QDR memory comes in 9-bit, 18-bit and 36-bit bus width 
configurations with up to 144Mb of memory. State-of-the-art QDR-II+ 
XTreme (72Mb) runs at up to 633MHz, corresponding to 316.5 million 
transfers per second (MT/s) of four words bursts in both the read and the 
write direction simultaneously [21]. For lower speed applications, Reduced 
Latency DRAM (RLDRAM) is a viable alternative, providing higher 
memory density than SRAM with a significantly better random access 
performance than standard DDR3 RAM.  

2.1.5. Traffic management  
The task of the traffic manager is to manage the bandwidth of the packet 
flows based on multiple criteria such as latency, packet loss, bandwidth 
guarantees, latency and jitter to meet the Quality of Service (QoS) 
guarantees given to the users. This management includes metering and 
policing of individual flows, as well as performing traffic shaping, queuing 
and scheduling are based on this information. The challenge when moving 
to 100G and beyond is mainly that the processing capacity of the switches 
in terms of frames per second, as well as the potential number of flows, 
increases significantly. This poses significant challenges throughout the 
traffic manager. First of all, the data structures for metering, policing etc., 
needs to be updated at up to 10 times the frequency of a 10G system. With 
the high number of flows, these data structures cannot comfortably fit in 
on-chip memory, and must be stored in high speed external memory such 
as the QDR-II+ SRAM mentioned in Section 2.1.4. With current state-of-
the-art QDR-II+ SRAM, it is possible to perform up to 316.5M read- and 
write operations per second on 36 to 144 bits (device specific). This allows 
for more than two 144-bit statistics updates for each frame on a 100G 
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link, assuming minimum sized packets[21]. Given the small I/O count and 
high performance of QDR memory, this technology is well suited for 
100G line cards and appears to be scalable to higher line rates as well.  

Another challenge lies in the packet scheduling function. The purpose of 
the scheduler is to assure that the packets are relayed to the switch fabric 
in a fair manner, taking the mentioned flow priorities into account. This 
involves ordering the packets into multiple queues based on metrics such 
as output port and priority, and arranging the packet departures from the 
queues by means of a weighted scheduling scheme, e.g. Deficit Weighted 
Round-Robin or Weighted Fair Queuing [22], [23].  

2.1.6. Switch Fabric 
Fast processing and efficient queuing is of little help if the underlying 
switch fabric is not able to keep up with the aggregated line speed. For 
switches with a relatively low number of ports, the buffered cross-bar 
architecture yields high switching performance and no blocking. 
Unfortunately, the number of cross-points as well as the required amount 
of buffer memory grows proportionally with the square of the number of 
ports (O(N2)), making this architecture impractical for large switch 
fabrics[24]–[26]. A more scalable approach is employing self-routing 
switch fabric architectures, such as Clos or Banyan networks. The basic 
concept of these architectures is to build up the switch fabric as a network 
of smaller (e.g. two- to four-port) switches. The advantage of this structure 
is that the total number of cross-points is lower than that of a 
corresponding full scale cross-bar. The trade-off is some added routing 
complexity, and in the case of Banyan networks, a small probability of 
internal blocking[24]. As part of the 100GE project, the Clos-design has 
been investigated through modeling and simulation[27][P10]. This 
research revealed only minor performance penalties compared to the 
crossbar architecture with the benefit of higher scalability. From these 
results, it seems that self-routing switch fabrics are indeed a viable solution 
to realize next generation high speed, high port count switches.  

Like for the traffic manager, mentioned in 2.1.5, high performance switch 
fabrics will themselves contain a queuing system and an accompanying 
scheduler. As opposed to the priority-based TM schedulers, the fabric 
scheduler has one simple purpose: to assure optimal utilization of the 
output ports and minimal packet latency under the constraints of the 
underlying switch fabric and queuing system. While it is always possible to 
find the optimal scheduling solution given enough time and resources, it 
is rarely the optimal choice from a practical implementation point of view 
– especially as the number of output ports increases. Usually, it is more 
prudent to go for an algorithm, which converges faster (optimally within 
a fixed runtime) at the cost of lower worst case output utilization and/or 
higher internal bandwidth requirements. In the case of large scale switches, 
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it is also important to take into account how the calculation complexity 
scales with the number of ports and how much the scheduling can be 
segmented to take advantage of hardware parallelism. Section 4 looks 
further into the switch fabric scheduling problem with special emphasis 
on efficient scheduling of multicast packets.  

2.1.7. Improvements in FPGA technology 
Clever design goes a long way towards improving the performance of 
network devices. However, the 2009 chip technology used to reach 100 
gigabit operation cannot support the next step moving towards 400 gigabit 
connections. Luckily, the chip manufactures have made significant 
progress in terms of improving the speed, density and power efficiency of 
their products. In 2009, when the 100GE project started, the then most 
advanced FPGAs from Altera were selected for implementing the 100G 
line card and the accompanying tester. The FPGA type used for these two 
systems was from the Stratix IV family. This FPGA was based on 40nm 
technology, featuring 530k logic elements (LE) and 24 transceivers 
running up to 11.3Gbps.  

As seen in Table 2.2, there has been a significant development during the 
last four years. The basic production technology has moved from 40nm 
to 28nm, with 20nm devices announced for 2014 and a 14nm Stratix 10 
device in the pipeline. This has made it possible to produce FPGAs, which 
are both faster and denser. Hence, the number of available logic blocks 
and on-chip memory has increased by around a factor of two compared 

Year Device 
Family 

Tech. LEs* Transceivers Memory 
(Mbits) 

Altera Devices 

2009 Stratix IV GT 40nm 530k 24@11.3Gbps 20.3 

2011 Stratix V GT 28nm 952k 4@28Gbps   

32@12.5Gbps

52 

2014 Aria 10 GT 20nm 1150k 96@28Gbps 53 

Xilinx Devices 

2009 Virtex-6 40nm 504k 48@6.6Gbps 

24@11.3Gbps

32.8 

2012 Virtex-7 28nm 778k 16@28Gbps 

72@13.1Gbps

68 

Table 2.2 - Evolution of FPGA technology[30], [40] 

*Xilinx “Logic Cells” converted to the Altera “Logic Elements” based on a 1.125:1 ratio[40].  
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to the 2009 generations. Likewise, the aggregated transceiver bandwidth 
has increased by almost a factor of ten in the coming Aria 10 GT device 
compared to the Stratix IV GT from 2009. With this amount of high speed 
transceivers, it is possible to run 400Gbps bi-directional traffic through 
the device (2x16x25Gbps), while supporting 960Gbps of full duplex 
bandwidth (incl. overhead) to an external HMC memory device 
(4x16x15Gbps). Hence, from a transceiver bandwidth perspective, the 
next generation FPGA technology should be able to support 400G 
operation with external memory queues. A more difficult question is 
whether the increased speed and logic density will be enough to process 
information at this speed. According to Altera, they expect the core 
performance of the next generation chips to scale approximately linearly 
with the transistor size. This indicates a factor two increase in processing 
power for the Aria 10 compared to the Stratix IV GT. Along with the 
factor two increase in the number of logic elements, it will likely be 
possible to reach 400Gbps processing throughput by careful optimization 
and parallelization. While initial designs are likely to be FPGA based until 
the standards are finalized and a suitable architecture has been found, mass 
production of 400G devices will most likely be done using Application 
Specific Integrated Circuits (ASICs)[28]. This will drive down the per-unit 
cost (given enough volume) and allow for a much higher degree of 
integration with significantly lower power consumption compared to 
FPGA-based systems.  

2.1.8. Conclusions on the challenges of 100 GE 
and beyond 

This subsection has highlighted some of the challenges in reaching 100 
gigabit line speed and pushing it further towards the future 400G 
standards. It is clear that there has been significant improvements in the 
low level hardware during the past few years since the 100GE project 
started, especially when it comes to the ASIC and the FPGA technology 
[29]–[31]. Within memory technology, the classical RAM technologies 
considered at the beginning of the 100GE project [P1] (QDR SRAM, 
DDR3-DRAM, etc.) have also improved, but not to the same degree. 
However, new approaches to DRAM module design which are close to 
becoming commercially available gives cause for optimism within this field 
as well. Even with these advances in the underlying technology, from an 
architectural, algorithmic and digital design point of view, there are still 
plenty of challenges when moving to 100G and beyond.  
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2.2. Ethernet as a carrier technology 
Ethernet is a very popular and well-known technology, and it is estimated 
that the majority of all internet traffic either originates or terminates in an 
Ethernet device [P3]. With the introduction of 10G, 40G and 100G 
Ethernet interfaces, the standard definitely supports the speeds required 
to migrate further into the core networks. However, the Ethernet standard 
has traditionally been targeting enterprise or local area networks (LANs), 
and thus lacks many of the features required to be considered as a carrier 
grade technology. In order to address these shortcomings, the IEEE has 
developed a number of standards, enhancing the functionality of the 
original Ethernet standard. These include: 

• 802.1Q: Virtual LAN [32] 
• 802.1ad: Provider Bridging (PB) [33] 
• 802.1ah: Provider Backbone Bridging (PBB) [34] 
• 802.1Qay: PBB-Traffic Engineering (PBB-TE) [35] 
• 802.3ah: Ethernet in the First Mile (with OAM) [36] 
• 802.1ag: Connectivity Fault Management (OAM) [37] 
• 802.1aq: Shortest Path Bridging [38] 

The evolution of the MAC frame format corresponding to these standards 
is depicted in Figure 2.3. The first issue to be solved is the fact that there 
is no logical separation of sub-networks within a standard Ethernet LAN. 
Hence, it is not possible to separate the traffic of different customers.  This 
is also a potential security risk, as all LAN ports are part of the same 
broadcasting domain. With the introduction of VLANs, it became 
possible to separate a physical local area network (LAN) into multiple 

 
Figure 2.3 – Evolution of the Ethernet header from standard 802.1 to Provider Backbone 

Briding [P3]. 
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logical networks. However, the limited number of possible VLANs 
defined in the standard (4,096) was not enough to provide the desired level 
of separation within the networks. To improve the scalability, so called 
“Q-in-Q” or “Double Tagging” was introduced with Provider Bridging 
(PB) in 802.1ad, adding a second tag (S-TAG), which could be used to 
separate individual customers – leaving the C-TAG for further 
subdivision, e.g. within a customer’s own network. Even so, the size of 
the S-TAG is still not sufficient for providers with more than 4,096 
customers. To meet these and other challenges, the standard has been 
extended once again to support Provider Backbone Bridging (PBB). PBB 
takes a layered approach, encapsulating the entire PB frame, including the 
source and destination MAC addresses, in a larger PBB frame (earning it 
the nickname “MAC-in-MAC”). The outer PBB frame is only concerned 
with the transport through the backbone network, and thus uses the MAC 
addresses of the backbone endpoints (B-SA and B-DA) for forwarding. A 
B-TAG specifies a flooding domain (virtual networks) within the provider 
backbone. For logical separation of traffic from different customers, a 
much larger 24-bit I-SID tag is used, supporting up to 16 million different 
service instances (customers).  

PBB-TE extends on this concept by discarding the flooding/broadcasting 
mechanisms, as well as the Spanning Tree Protocol (STP) altogether, 
targeting the protocol towards connection oriented network applications. 
The B-MAC addresses together with the B-TAG now specify a unique 
path though the network, using the B-TAG as a means of specifying 
alternate backup-paths. This adds a measure of resiliency, which is 
required for carrier class applications such as IPTV, by allowing protection 
switching in the network and also makes it possible to manually control 
the exact routing of the traffic. With the recent introduction of Shortest 
Path Bridging (SPB) to the VLAN standard in 2012, Ethernet now 
supports shortest path routing between bridge endpoints (e.g. two B-
MACs) with multiple active paths. Hence, the backup paths can now be 
utilized for load sharing to increase performance in meshed networks.  

The price for the extra functionality required to use Ethernet in carrier 
networks is more hardware and software complexity. New functions 
include flow based queuing and scheduling, advanced routing and 
forwarding, a more complicated protocol stack and advanced OAM 
functions, all of which increases the complexity of the network equipment 
compared to standard Ethernet, which is generally considered a simple 
and low cost technology. However, by adding more capabilities in terms 
of customer based Quality of Service differentiation, resiliency, scalability, 
customer isolation etc., these and other enhancements allow the Ethernet 
technology to reach into the core networks, instead of being restricted to 
the edges. There it can serve as a uniform carrier service (much like IP), 
which can run on native Ethernet links as well as other technologies such 
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as Passive Optical Networks (PONs), WiMAX, SDH/SONET or OTN. 
Furthermore, it retains its native capabilities such as multicast, easy 
connectivity (at the customer site), VLANs spanning multiple customer 
sites, and enables the network operator to increase overall link efficiency 
in the network by exploiting statistical multiplexing.  
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2.3. Standardization of 100 Gigabit 

Ethernet   
The 40/100 Gigabit amendment to the Ethernet standard (802.3ba), 
begun in 2006, was released in its final version in June 2010 [9]. The 
following section describes some of the basics of the PCS layer and the 
CGMII interface in accordance with this standard. 

2.3.1. 100G Media Independent Interface  
Similar to the 10G standard, the 100G standard specifies a Media 
Independent Interface (MII) for interconnecting the PHY and the MAC. 
The new 100G MII (CGMII) interface, marked in Figure 2.4, is very 
similar to the 10G MII (XGMII) interface standard, using the same 
control sequences to indicate Error (/E), Start-Of-Frame (SOF), End-Of-
Frame (EOF) and Idle characters. However, a number of simplifications 
have been made to the new interface compared to the 10G version. In 
contrast to the XGMII interface, which is 4 byte aligned, the new CGMII 
interface is 8 byte aligned, i.e. it uses 8 byte words. This affects functions 
such as SOF detection, since this character can only appear in the 1st byte 
position of the 8 byte word. Similarly, Idle sequences after the word 
containing the EOF character can only be a multiple of 8 bytes.  Another 
restriction is placed on the occurrence of Error characters within the 
payload. Where XGMII allowed for single error characters everywhere in 
the binary data, the CGMII interface does not support single error 
characters in between the data bytes in the frame payload. Hence, if an 
error is detected in an 8 byte data word, the standard dictates that the 

 
Figure 2.4 - Ethernet Layers (modified from [9]). 
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entire word should be decoded as error characters. This is due to the 
64b/66b encoding format, which unlike the 8b/10b encoding used in 
XGMII does not allow the decoder to detect single byte or character 
errors in the payload.  

2.3.2. 100G Attachment Unit Interface  
As was the case for the XGMII interface, the pin count of the CGMII 
interface makes it an unviable solution for chip-to-chip or board-to-board 
communications. Hence, when communicating between devices, such as 
the MAC and the physical transceiver, a more serialized Attachment Unit 
Interface (AUI) is used. For the 10G AUI (XAUI), this interface was 
comprised of four individual physical lanes, each running at 3.125Gbps 
using 8b/10b encoding. The 100G AUI (CAUI) builds on the same 
concept, but utilizes 64b/66b rather than 8b/10b encoding to reduce the 
coding overhead. The CAUI also introduces the concept of virtual lanes. 
Instead of splitting the traffic onto 4 physical lanes, the CAUI distributes 
the 66b blocks direction between 20 virtual lanes. Splitting the traffic onto 
20 lanes makes it possible to adapt the output to several physical bus-
width/line-speed combinations by simple multiplexing, such as 1x100G, 
4x25G or 10x10G, depending on the physical output device.   

In order to keep the different lanes correctly aligned, the XAUI uses a 
special 8b/10b encoded character, which is sent periodically over all lanes 
simultaneously. The receiving XAUI uses these alignment characters to 
verify, that all lanes are properly aligned and to correct the problem, 
should a misalignment occur. CAUI uses a similar approach, but has 
extended the alignment markers to fill up an entire 66b codeword on each 
virtual lane. Aside from a known three byte sequence, which is unique to 
each individual lane, the alignment markers also include a BIP8 even parity 
check sum calculated over all the 66b words from and including the last 
alignment marker. The last four bytes in the alignment marker is simply 
the inverse of the first four bytes, thus ensuring proper DC balance.   

A final difference is the fact that the CAUI uses a scrambler in order to 
guarantee DC balance and transition density over the 66b words. The first 
two bits, which determine if the word is a control word or a data word, 
are kept unscrambled as they are used for 66b word alignment. The 
alignment markers are likewise kept unscrambled.  
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2.4. Framed Bit Error Rate Testing for 

100GE 
As the demand for 40 and 100 Gigabit systems rises, so does the demand 
for test equipment, which can keep up with this increase in line speed. As 
with all networking equipment, it is crucial to be able to measure the 
performance of 100GE systems, during development, deployment and 
use. A common metric of this performance is the so-called bit-error-rate 
(BER), i.e. the average ratio between the number of incorrectly received 
bits and the total transmitted bits count. At the beginning of this Ph. D., 
BER test equipment for Ethernet systems was only commercially available 
for speeds up to 40Gb/s [39], [40]. Simply extending these systems to run 
at 100Gb/s by increasing the clock speed proportionally was not a viable 
option. This would require extremely fast and expensive hardware and 
significantly increase the power consumption of such systems. A more 
viable approach to achieve the required throughput was by means of 
parallelization, i.e. increasing the number of processed bytes per clock 
cycle. While this increases the total chip area, parallelization allows for 
layer 1 bit error rate testing at 100Gbps without pushing the clock speed 
of such systems beyond reasonable levels.  

Another important issue is the fact that the 100GE standard is designed 
to run over several physical transceivers or SerDes units. The first 
generations of 100 GE equipment transmit the traffic over several 
aggregated physical chip interfaces, e.g. 10x10G or 4x25G over a 100 
Gigabit Attachment Unit Interface (CAUI) [9]. One approach for BER 
testing is to simply test the aggregated physical links individually. The 
40GE/100GE standard lists this as an optional feature of 40GE/100GE 
devices and specifies the test parameters that should be used.  However, 
this will not verify the various aggregation mechanisms, such as lane 
alignment, in the PCS and PMA Ethernet sub-layers, which are handled 
by the block implementing the CAUI. Nor will it allow the test data to 
pass through a Device Under Test (DUT) for verification. In order to fully 
verify the system, on both the tester and the DUT, the bit-error-rate tester 
(BERT) must be able to verify the aggregated stream as opposed to merely 
its sub components. Therefore, it must be attached at the 100 Gigabit 
Media Independent Interface (CGMII), the intra-chip interface between 
the MAC and the CAUI block (see Section 2.3, Figure 2.4). This poses the 
additional challenge of framing and deframing the BERT data at line speed 
to comply with the CGMII standard.  

The following sections outline an FPGA implementation of a BERT 
system, which interfaces to a CGMII. The FPGA technology was chosen 
over an ASIC implementation due to the lower start up cost, as well their 
non-static nature, which rendered FPGAs highly suitable for the 100GE 
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field in 2009, where standards were still being finalized. Furthermore, the 
FPGA platform made it possible to extend the 100GE tester to work on 
the higher layers (MAC/IP) with limited modifications to the platform.  
Hence, it was possible to use the 100GE BERT as a stepping-stone 
towards a more advanced test system based on the final 40GE/100GE 
standard and continue to mature the product according to evolutions in 
customer needs. Implementing a 100GE CGMII BERT poses two main 
design challenges: Firstly, the test data must be validated and generated at 
the required line speed while keeping the resource utilization down in 
terms of power demands and logic consumption; and secondly, the test 
data must be inserted into an Ethernet framing structure at line speed for 
transport over the CAUI. The following subsections address these 
challenges, and presents and evaluates the power and logic cost of the 
FPGA based BERT implementation.  

2.4.1. Clock Frequency Versus Buswidth 
Before moving on with the actual system design, it is first necessary to 
consider the trade-off between bus width and internal clock frequency. 
Since the required serial throughput of the design is very high compared 
to the achievable internal clock speed in modern FPGAs, it is necessary to 
introduce a high degree of parallelization. As mentioned in Section 2.1.2, 
one could simply replicate a slower circuit (e.g. 10Gbps) several times over 
and multiplex these streams together to form the required 100Gbps of 
throughput. Unfortunately, this way of parallelizing the system comes with 
a substantial overhead in terms of buffering, multiplexing, demultiplexing 
and controlling several aggregated streams, which makes this a far from 
optimal solution. Instead, this design reaches the required throughput 
using a single entity with a very wide bus in order to reduce the clock rate 
to a realistic level. The exact width of the system bus is a compromise 
between design complexity and clock speed. A larger bus width will 
decrease the required internal clock frequency of the FPGA, but increases 
the required FPGA resources and vice versa. Furthermore, the extreme 
cases of either a very high clock frequency or a very large data bus, heavily 
complicates the system design, which increases the development cost. In 
this project, a width/frequency combination of 512bits/195.31MHz has 
been selected. This lowers the required clock speed to one that can be 
realistically achieved in current FPGA technology, while keeping design 
complexity to a minimum. The reason for selecting exactly 512 or 29 bits 
is that bus widths which are a power of 2 are generally easier to work with 
in digital designs.  
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2.4.2. Bit Error Rate Testing 
The heart of the 100G Bit Error Rate Tester (BERT) is the test pattern 
generation-and validation mechanisms, which are located on the transmit 
(TX) side and the receive (RX) side respectively (see Figure 2.5). The test 
traffic is generated in the transmitter using a Pseudo Random Bit Sequence 
(PRBS) generator. This component is able to generate a deterministic 
signal with properties similar to those of a random signal. Since the 
sequence is pseudo random, the resulting bit stream can be compared to 
a locally generated sequence at the receiver after transmission. Because the 
PRBS generator is implemented as a Fibonacci shift register [41], the 
receiver simply uses the first part of the received bit stream to instantiate 
its own local generator. Given that these first bits are received correctly, 
the receiver’s PRBS generator is now synchronized with the transmitter, 
and any bits of the received sequence that deviate from the local sequence 
are counted as transmission errors. The sequence used in this 
implementation is the PRBS-31, which is recommended for link 
verification by the Ethernet 802.3ba standard[9].   

Generating a PRBS at 100 Gb/s is a non-trivial task. Using a serial 
implementation, as depicted in Figure 2.6, which produces only one bit 
per clock cycle by means of a Linear Feedback Shift Register (LFSR), 
would require an internal clock frequency of 100GHz, which is not 
feasible in current FPGAs. A well-known approach for implementing very 
high speed PRBS generators is to utilize multiple serial PRBS generators 
in parallel. These are initialized in such a way that the resulting multiplexed 
output corresponds to the serial sequence [41]. In investigating this 
approach, a serial generator for a PRBS-31 has been synthesized to run at 
a clock speed of 908 MHz in the fastest Altera FPGA on the marked in 
2010 (EP4S100G2FA0I1) [40], [42]. Even at this very high frequency, a 
minimum of 111 PRBS generators must be running in parallel to produce 
100 Gb/s. The resulting resource usage for the PRBS generators alone, 
without any multiplexing, retiming and control logic, is listed in Table 2.3 
for a design using 128 serial generators running at 781.25MHz. In order 
to avoid the large resource consumption and high clock speed of such a 

Figure 2.5 - Bit Error Rate Tester (BERT).  
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system, the parallel PRBS circuit design depicted in Figure 2.7 has been 
selected instead. This system is based on a serial Fibonacci LFSR [41], but 
parallelized to generate 512 bits of the PRBS sequence in a single clock 
cycle. This reduces the clock speed requirement to 195.3125MHz, which 
is both resource and power efficient and can be relatively easily obtained 
in commercially available FPGAs, while keeping the system complexity to 
minimum. The circuit consists of three parts: A 31-bit register, which 
holds the current state of the PRBS generator, and two combinatorial 
circuits for calculating the next 512 output bits and the next state of the 
register based on the current register state. The combinatorial circuits have 
been designed by pre-calculating the exclusive-OR (XOR) relationships 
between the current register values and the next 512 outputs of the serial 
LFSR implementation as well as the next state of the registers 
corresponding to 512 serial shifts. The calculation of each output bit and 
each new register value can then be performed in parallel. The resulting 
parallel generator circuit is able to produce the desired PRBS-31 sequence 
[9] at 100 Gb/s while keeping both the resource and the power 
consumption to a minimum.  

As seen in Table 2.3, the number of combinational lookup tables (LUTs) 
and especially the number of registers is dramatically decreased compared 

 
Figure 2.6 - Serial Fibonacci PRBS generator for the polynomial 1 + x + x3. 

Figure 2.7 - Parallel PRBS generator. 
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to the approach using serial PRBS generators. The mathematical algorithm 
used to generate the parallel PRBS generator is described below.  

2.4.2.1. Calculating the parallel XOR equations  
The parallel equations for the 512bit wide PRBS generator have been auto 
generated in VHDL syntax using a Matlab program based on the approach 
described in [43]. The following example uses the simple LFSR depicted 
in Figure 2.6 with the polynomial x3+x+1 to illustrate how these equations 
can be mathematically derived by means of matrix multiplication. Based 
on the PRBS polynomial, it is possible to set up a transition matrix (T) 
describing the next state of the registers (i.e. the state after 1 clock cycle) 
based on their current state: 

 

By multiplying this matrix with itself modulo 2 (T2 mod 2), the equations 
for the register state after two clock available cycles are obtained: 

 

Generalizing this approach, it is possible to obtain the equations for the 
register values after an arbitrary number of clock cycles (q), corresponding 

 
Figure 2.8 - Transition Matrix: T1. 

 
Figure 2.9 - Transition Matrix: T2

 Serial PRBS 
generator array (a) 

Parallel PRBS 
generator (b) 

Available in the 
FPGA (c) [42] 

Combinational 
Adaptive LUTs 

11.904 (93*128) 564 182.400 

Registers 3.968(31*128) 31 182.400 

Required clock 
frequency 

781.25 MHz 195.3125 
MHz 

N/A 

Maximum clock 
frequency 

808 MHz 597 MHz N/A 

Table 2.3 - PRBS Generator Synthesis Results 
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to q register shifts. By implementing these equations directly in hardware, 
the register states can thus be advanced corresponding to 512 serial shifts 
in a single clock cycle. Since the output of the PRBS generator is always 
the value of the last register in the LFSR, in this case R(2), the parallel 
equations corresponding to the next 512 bits in the sequence can be 
obtained by simply running through all the transition matrixes Tq from 
q=1 to q=511 and extracting the 512 equations of the last register. In the 
example above, the equations for the first output bits would read: 
Output(0)=R(2), Output(1)=R(1), Output(2)=R(0), Output(3)=R(0) xor 
R(2), etc. . Using the same algorithm, the PRBS-31 polynomial x31+ x28 +1 
is converted into parallel equations for direct implementation in hardware.  

2.4.3. Framed BERT 
Since CGMII requires the data to be in an Ethernet frame format, the 
necessary preamble and inter frame gap (IFG) must be inserted at regular 
intervals, as depicted in Figure 2.10, to provide framing during transit. At 
the receiver, the same overhead must be removed to reproduce the 
original PRBS sequence (Figure 2.11). In order to get a bus width of 512 
bits, the native 64bit bus of the CGMII interface is extended eight times, 
i.e. eight 64bit CGMII words are transmitted over the interface in each 
clock cycle. The following section will describe the basic operation of the 
100Gbit framer/deframer, which communicates with the Ethernet PHY 
via this interface.   

The generated frames consist of a static Start-of-Frame (SOF) and 
Preamble sequence, a payload field, an End-of-Frame (EOF) character 
and an idle sequence of variable length. Hence, the PRBS sequence must 
be broken up into sub-sequences which fit into the payload part of the 
frames. After transmission, the fragmented sequences must be re-
assembled at the other end to reproduce the original stream. The 
challenging factor is that these functions must be performed on 512 bits 
(64B) in parallel to reach 100Gb/s.  

On the transmission (TX) side of the framed BERT, the framing is 
performed as depicted in Figure 2.10. In each clock cycle, a 64B vector is 
delivered from the PRBS generator. The overhead bytes between each 
frame payload (SOF, idle bytes, etc) are inserted by simply overwriting the 
generated PRBS bytes in the appropriate positions. The lost PRBS bytes 
are regained by reinitializing the PRBS generator with the first 31 bits of 
the overwritten sequence, which will cause the generator to repeat the 
overwritten bytes as the first part of the next payload. This behavior is 
inherent to the Fibonacci type LFSR [41], on which the parallel system is 
based, where the initial register state is always the first 31 bits to exit the 
generator.  
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Framing on the transmission side is simplified by always inserting the 
overhead bytes in the same positions. On the receiver side of the BERT, 
one cannot exercise the same control over the exact positioning of the 
control bytes on the 64B bus. The sequence may be shifted during 
transmission, and the idle period may be lengthened or shortened to 
compensate for deviations between the receivers’ and the transmitters’ 
local clock signals. As a result, more complex cases exist, like the one 
depicted in Figure 2.11, where a 64B vector contains PRBS data from two 
adjacent frames. In order to regenerate the original PRBS sequence, the 
frames are passed through a system, which deletes the overhead bytes and 
shifts the fragmented PRBS data together to close the resulting gap. The 
system takes advantage of the fact that only one sequence of overhead 
bytes can exist in a 64B vector due to the minimum size of Ethernet 
frames. This assumption reduces the extraction to a simple shift operation 
followed by a 2-to-1 multiplexing, a process which can be easily pipelined 
for higher clock speeds. The resulting PRBS stream is then fed to the bit 
error rate counter as if it was a serial unframed bit stream.  

2.4.4. Synthesis Results 
The described system has been synthesized to an Altera Stratix IV GT 
FPGA (EP4S40G2F40I2) [42]. The entire BERT circuit implementing 
both the transmitter and the receiver takes up 12,077 Combinational 

Figure 2.11 - Regenerating the original pseudo random bit sequence. 

Figure 2.10 - Framing of two adjacent minimum size frames. 
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Adaptive Look-Up Tables (CALUTs) and 10,572 registers with a 
maximum frequency of 257 MHz. This accounts for the two parallel PRBS 
generators, the CGMII framing/deframing circuitry and the overall 
control and glue logic. As anticipated, the deframing function is by far the 
most critical component in terms of critical path delay and logic utilization. 
Even so, the proposed design offers a very compact solution, which can 
be easily pipelined to support even greater throughput or implementation 
in more modest FPGAs. The system has been successfully and repeatedly 
verified as part of the first generation Xena 100GE tester, and used to 
debug other parts of the 100GE system as well as to verify interoperability 
between the Xena and the TPACK 100GE implementations.  

2.4.5. Conclusion on Framed BERT 
This section has presented an overview of a novel design for a Bit-Error-
Rate-Tester, which is compatible with 100 Gigabit Carrier Ethernet over 
a 100 Gigabit Media Independent Interface (CGMII). By means of 
parallelization of the PRBS and framing functions, the BERT has been 
efficiently synthesized to current FPGA technology with minimal resource 
and energy requirements. Running bit-error-rate tests over a CGMII 
interface provides an effective tool for testing both internal PCS/PMA 
functions as well as providing quality measurements of the logical 100 
Gigabit Ethernet links of future transport networks. 

2.5. Chapter Summary 
This chapter has given an overall introduction to the new 100 gigabit 
Ethernet standard as well as the challenges of implementing Ethernet 
equipment with this high line rate. As an example of an actual 100 gigabit 
Ethernet implementation, the 100G framed BERT is presented, which 
was a key component in the first proof of concept in the 100GE project. 
The important subjects of address lookup and scheduling, which have only 
been mentioned briefly in this chapter, will be elaborated further in 
chapters 3 and 4. 

 



Address Lookup 

 

29 

3. Address Lookup 
 

As mentioned in Section 2.1.3, the ability to find a data entry based on the 
address information of a datagram is a key feature of most network nodes. 
These data entries may contain forwarding information, QoS level, 
statistics etc. This chapter is mainly focused on finding the forwarding 
information from an address, but the techniques are transferable to the 
other data structures as well.  

When it comes to address lookup, there is a clear distinction between 
looking for an exact match or a partial match. Exact matches are used in 
network technologies where the network nodes are expected to know the 
forwarding port corresponding to each destination address in the network. 
This is the case for Ethernet switches, which automatically learns and 
maintains the connectivity information for each peer in the network by 
monitoring the Ethernet frames as they flow through the switch. A big 
advantage of exact matching is the relative simplicity of building a binary 
match/no-match lookup mechanism, compared to selecting the best 
match amongst several candidates. The disadvantage is that every address 
must be stored in the forwarding table. Hence, routing based on exact 
address matching is only viable when the number of possible endpoints is 
relatively small. Partial address matching is used in IP routers. Due to the 
sheer size of the Internet, IP routers do not have an entry for each 
reachable IP address in the network, but rather store the network topology 
in terms of IP sub-network addresses. Along with the common practice 
of route aggregation [24], this turns IP lookup into a task of finding the 
entry with the longest matching prefix. This is referred to as Longest 
Prefix Matching (LPM). As mentioned, this approach makes it possible to 
store the routing table in a very condensed fashion, which gives great 
scalability in terms of the number of supportable end nodes. The trade-
off is the high complexity of LPM, which makes standard IP routing 
difficult to scale to high speed core routers. Instead, it is common practice 
to simplify the lookup operation e.g. by adding a Multiprotocol Label 
Switching (MPLS) header to IP packets as it enters the core network. The 
MPLS label specifies the specific route a packet should take across the 
network and can be forwarded based on exact matching, thus alleviating 
the scalability issues in core routers.  The rest of the chapter is organized 
into three sections. The first section is focussed on MAC table lookup, i.e. 
the exact address matching performed in an Ethernet switch. The second 
and the third give a general introduction to IP address lookup and move 
on to describe a novel TCAM-based LPM mechanism developed during 
the course of the Ph. D. project.   



Address Lookup 

 

30 

3.1. MAC table lookup 
The MAC address table in an Ethernet switch is the data structure, which 
stores the physical port connection corresponding to all the known MAC 
addresses in the network. The forwarding engine of an Ethernet switch 
uses this table to determine, which outgoing port(s) an incoming frame 
should be forwarded to, based on the destination address field in the 
header. Consequently, the performance of the address table becomes a key 
factor in the overall forwarding speed of the switch, as well as the switch’s 
ability to forward traffic correctly between a large number of peers. This 
MAC table is generally formed and maintained dynamically by monitoring 
the source addresses of the traffic arriving at the input ports (so called 
MAC learning). Thus, the table must be structured in such a way that new 
entries are easily inserted as new end nodes are discovered, and stale 
entries can be removed to support end node mobility and to conserve 
table capacity. While there are many ways to implement MAC tables, a few 
of which will be described in sub-section 3.1.1, this chapter will focus 
primarily on hash tables as a mean of storing and retrieving the forwarding 
information. Specifically, the concept of chained hashing [44] and a variation 
using multiple hash tables [45] will be studied. Finally, based on this 
analysis, a design proposal to a 100GE MAC table with very low table 
overflow probability will be presented in 3.1.4.  

3.1.1. Background 
As described in the introduction to this chapter, the MAC table lookup is 
performed using exact matching on the MAC addresses. For this purpose, 
there are several workable data structures from simple RAM based search 
algorithms to fully parallel hardware search engines.  

3.1.1.1. Basic table data structures 
The simplest idea for implementing an address table would be to use direct 
addressing, i.e. using the address itself as a memory pointer to the relevant 
location. For small address spaces, this would be a fast and efficient way 
to locate an entry, but with the 248 possible MAC addresses, such a table 
would take up 256TB of memory, assuming 1 byte entries. Hence, it is 
clear that this approach is not practical for MAC tables. The polar opposite 
of direct addressing is a linear memory search, i.e. the memory is searched one 
address at the time until the relevant entry is found. While this offers 
excellent memory efficiency, it has an average search length of half the list 
size. Hence, it is only a viable solution if the number of peers is expected 
to be very low. This is rarely the case in Ethernet switches, where the 
capacity of the MAC table is usually measured in thousands of addresses. 
A possible alternative to linear search is a binary search approach, where the 
MAC addresses are stored in the table in ascending order of their 
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numerical value [23]. The search starts in the middle of the table and then 
excludes the top part of the table from the search if the MAC address is 
smaller than the stored value or the bottom part if it is larger. This process 
is continued until the search engine arrives at the correct address or finds 
that the address is unknown. The maximum number of memory accesses 
in this approach is ݈݃݋ଶ(ܰ) + 1, where ܰ is the number of entries in the 
table. For 4,096 addresses, this corresponds to 13 accesses. Assuming a 
memory speed of around 200MT/s (mega-transfers-per-second), this 
table structure will be able to support destination lookup and MAC 
learning for five 1Gbps ports receiving minimum sized packets at line 
speed. Unfortunately, the scheme only works if the table is perfectly 
sorted. Hence, the removal or insertion of new entries will require a 
resorting of the entire table, during which time the table will be inoperable. 
This problem can be mitigated by deferring updates to periods of low 
activity and/or using two copies of the table – one remains active while 
the other is being updated. Nonetheless, the strict address order remains 
a serious drawback of this table structure.  

3.1.1.2. Content Addressable Memories 
A workable alternative to the RAM-based table structures is Content 
Addressable Memories (CAM)[23]. A CAM is basically a memory array with 
a large parallel search structure attached to it. This allows the CAM to 
search for a specific pattern (e.g. a MAC address) in all memory locations 
simultaneously. The CAM will return the matching address if any, and/or 
any related information such as the forwarding information for a 
destination MAC address. Due to their parallel structure, CAMs are 
capable of extremely high search throughputs, usually one result per clock 
cycle. The updating procedure is likewise very fast and uncomplicated, 
since there is no particular structure to the list of entries. Inserting a new 
address thus reduces to finding a free position (a list of which could be 
held in a simple FIFO queue) and writing the relevant data to the CAM. 
Deletions are performed by simply marking the CAM entry as invalid (e.g. 
by inserting all zeros in the destination address field) and adding the 
memory address to the list of free position. The lack of structure in the 
list also means that the CAMs have perfect memory utilization, i.e. a CAM 
with 8k addresses will be able to store exactly 8k entries, regardless of the 
dataset. Unfortunately, the extra functionality and high performance does 
not come without a cost. The parallel search through ܰ memory locations 
requires ܰ comparator circuits working in concert, the outputs of which 
must be encoded to form a single match address. This represents a 
significant overhead in terms of both chip area as well as power 
consumption compared to regular SRAM memory, and prices have also 
traditionally been 4-5 times higher for the same amount of CAM memory 
compared to SRAM prices[23]. This extra overhead also means that the 
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available storage capacities are generally smaller for CAMs compared to 
SRAMs.  

3.1.1.3. Hash tables 
In order to reduce the address lookup time without resorting to CAMs, 
the solution of choice is often a hash table, a concept which was first 
described by Dumey in 1956 [46]. A hash table is basically a compromise 
between the speed of direct addressing and the memory efficiency of linear 
search. Since 248 memory locations is obviously unfeasible, these tables 
use hash functions to condense the 48-bit MAC addresses into a smaller 
pointer of for example 12-bits, which indicates the position of the relevant 
table entry in a standard RAM module. However, since 248 addresses 
cannot be mapped uniquely into the 4,096 addresses of a 12-bit address 
space, collisions will inevitably occur as the number of stored addresses 
increases. Hence, the entries must include the complete 48-bit MAC 
address to serve as validation. Furthermore, the issue of several MAC 
addresses competing for the same table space must be resolved as well.  

3.1.2. Related work on hash tables 
In research, much emphasis has been put on reducing the lookup time and 
minimizing the resources usage of hash-based lookup systems by means 
of Bloom filters, address compression etc. [47]–[49]. Another interesting 
scheme called Cuckoo Hashing [50] obtains a constant low lookup time at 
the cost of having a longer and much less predictable address insertion 
time. However, for address lookup tables in switches, the simpler and 
more predictable open addressed chained hashing scheme [44] is commonly 
used [51]. Even though several schemes have been proposed to improve 
the performance of these tables [47]–[49], the Achilles’ heel of chained 
hash tables, i.e. the significant probability of having multiple hash 
collisions for small hash sizes, still poses a problem, particularly if the table 
is poorly dimensioned. A 2006 paper by C. Huntley et al. focuses on this 
issue, particularly on the consequences of hash collisions in Ethernet 
switches [51]. The paper calculates the theoretical capacity of six 
commercial Ethernet switches which uses chained hash tables for MAC 
address lookup and compares the figures with empirical data from 
experimental tests on the switches. The theoretical and experimental data 
shows that the actual capacity of the MAC tables in question vary greatly 
depending on the address distribution of the network. For sequential 
addresses, all switches meet their specified MAC address capacity, but for 
random addresses, the tables of these six commercial switches started 
overflowing at just 6%-39% of their advertised capacities. For sequential 
MAC addresses, they all achieved 100% of the advertised capacity. The 
consequence of this is broadcasting of all frames destined to the addresses, 
which are not stored in the table.  
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In the following subsections, the hash collision problem will be 
investigated further by examining the distribution of random addresses 
over the tables using the popular chained hashing architecture [44]. The 
results are based on simulation studies using a random generator to 
produce the MAC addresses on the virtual network. In particular, the 
distribution of collisions, i.e. how many hash slots have exactly ܯ 
collisions, as the load factor (the number of stored addresses per total 
number of hash slots) increases is investigated. This is a key issue, since 
many chained hash tables have an upper limit on the number of addresses 
that can be stored at the same hash index. Hence, if the hash table is under-
dimensioned compared to the number of addresses it is supposed to store, 
as in the case in [51], the table will overflow and table entries will be lost. 
Depending on the physical implementation, long hash chains may also 
have a negative impact on the lookup speed of the forwarding engine. On 
the other hand, it is easy to over dimension a hash table in terms of the 
number of possible hash indexes and/or the number of addresses, which 
can be stored at each index. This leads to poor memory efficiency, which 
increases the cost and power consumption of the device without 
significantly improving the performance. By knowing the statistical 
distribution of addresses, it is possible to tailor the hash table specifically 
to the number of addresses it needs to support while balancing 
performance and cost. Following the statistical analysis, it is shown how a 
simple parallelization can dramatically increase the hash table throughput 
without increasing the memory requirements of the table, making chained 
hash tables a viable solution for the next generation 100 Gigabit Ethernet 
links.  
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3.1.1. Chained hash tables 
A commonly used way to remedy the problem of hash collisions is to 
simply allow for two or more MAC addresses to share the same hash key 
by adding a second layer of memory locations for collisions. This is known 
as chained hashing (CH). Resolving collisions by chaining outperforms 
simply increasing the size of the hash key from a memory efficiency 
standpoint, but may require several memory accesses to resolve a single 
table lookup. A popular approach for pure hardware implementation is to 
structure the table using open addressing, i.e. as a fixed ܰܯݔ matrix, as 
depicted in Figure 3.1, where	ܰ is the number of hash pointer values (e.g. 
4,096 for a 12-bit hash), and ܯ is the number of sub-addresses associated 
with each pointer. An advantage of this static table structure is that the 
search can be easily pipelined or parallelized in hardware to improve 
throughput, thus hiding the performance penalty for doing a linear search 
through up to ܯ addresses. The price of this fixed memory structure is 
the large amount of storage space, which is potentially wasted in the upper 
layers (1<ܯ). Also, if a slot has more than ܯ collided addresses (ܯ+݇), 
this must be resolved by either overwriting previously stored addresses or 
simply not learning the last ݇ addresses. For this reason, it is important 
that the selected hash function distributes the 48-bit address space fairly 
evenly over the ܰ hash buckets. Alternatively, an overflow memory such 
as a small CAM can be used to mitigate the problem, but for any hash 
function, it will always be possible to find a dataset of ܺ addresses, which 
will make the table overflow unless ܺ ≤  However, the practical .ܯ
implications of a small number of table overflows in a MAC table are not 
very severe. If the switch is unable to store a new MAC address, it is by 

 
Figure 3.1 – A basic 4096x2 (NxM) chained hash table. 
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definition unknown, and frames with unknown destination addresses are 
simply broadcast on all ports (except the port on which it was received). 
As such, there is no reason to optimize the system for the worst case, but 
rather the typical case. This can be approximated by means of probability 
theory or investigated through simulations of the actual hash function and 
table structure as described in subsections 3.1.2 and 3.1.3.1.  

3.1.1.1. Choosing a hash function 
When choosing a hash function for the table, there are basically two main 
criteria:  

1. It should distribute the 248 addresses evenly into the ܰ hash 
buckets to ensure optimal performance and table capacity.  

2. It should be efficient in terms of speed and resource 
consumption.  
 

In literature, there are an abundance of hash functions to choose from, 
from the very advanced cryptographic hashes, to simple truncation (i.e. 
using the lower bits as the pointer directly). For a more comprehensive 
study, the reader is referred to [52][53], which also provides plenty of 
helpful references. While it may be tempting to go for the very high 
complexity functions to ensure uniformity, much simpler hash functions 
will provide adequate performance while reducing both calculation time 
and hardware complexity. Research has shown, that the common 
functions used for Cyclic Redundancy Check (CRC), e.g. the CRC-32 used 
for the Ethernet checksum, are in fact excellent hash functions for the 
purpose of hash table lookup [49]. These functions can be implemented 
very efficiently in hardware using a simple Linear Feedback Shift Register 
implementation and easily parallelized to process a 48-bit MAC address in 
a single cycle using the same technique described in subsection 2.4.2.1 for 
the PRBS generator. However, even a simple bitwise XOR of the address 
bits (folded as ex. 12 by 12 bits or 8 by 8 bits, depending on the required 
hash size) is in fact an excellent hash function, which provides a perfectly 
uniform hash distribution [49]. For a 12-bit hash size the equation would 
be:  ܪଵଵି଴ = ସ଻ିଷ଺ܣ	 ଷହିଶସܣ	⊕	 	ଶଷିଵଶܣ	⊕	  ଵଵି଴ܣ	⊕

Aside from the low logic complexity, this hash function also has another 
advantage; that the table entries only have to store 48 −  bits of the ݓ
MAC address for verification, where ݓ is the width of the table address 
pointer. This comes from the simple relation between the pointer address 
and the MAC address bits, which allows the missing ݓ bits to be calculated 
from the following equation (for ݓ	12 = bits) : ܣସ଻ିଷ଺ = ଵଵି଴ܪ	 ଷହିଶସܣ	⊕	 	ଶଷିଵଶܣ	⊕	  ଵଵି଴ܣ	⊕



Address Lookup 

 

36 

 Hence, the overall memory footprint of e.g. an ܰܯݔ table is reduced by ܯ	 ⋅ ݓ ⋅ 	2௪ bits at the cost of an extra XOR circuit.  

When using the simpler hash functions such as the folded XOR or 
truncations, it is important to take the dynamics of the different MAC 
address bytes into account: the first 3 bytes contain a unicast/multicast 
indicator bit, which is only relevant to the hash function if the switch 
supports multicast, and 23-bits which are vendor specific [23]. Hence, in 
real life networks (and enterprise networks in particular), these bits will 
most likely be identical for many of the nodes in the network. Therefore, 
a hash function based primarily on this part of the MAC address will likely 
perform very poorly. The lower 3 bytes, on the other hand, are usually 
assigned sequentially by the vendor to each individual MAC unit. 
Consequently, they can be considered largely random in nature as 
demonstrated in [49]. In short, it is good practice to include the upper 3 
bytes of the MAC address in the hash function, but it is very important to 
mix them with the lower 3 bytes in such a way, that MACs from the same 
vendor will still hash uniformly across the hash address space.  

3.1.2. Hash Distribution and Performance of 
Chained Hash Tables 

As described in Section 3.1.1, the distribution of the hashed MAC 
addresses over the ܰ slots in the hash table has a profound impact on the 
performance of the table, both when it comes to table capacity and table 
lookup time. This subsection is dedicated to analysing this impact based 
on simulated hash distributions. The graphs are based on 10,000 
simulation runs with different random seeds. For better readability, the 
confidence intervals have been omitted from these graphs, but for all 
results, the 95% confidence interval is within ±0.1%. The exact table 
distribution is highly dependent on the MAC addresses in the network and 
the hash function, which is used to allocate them into hash slots. However, 
since the lower 24 bits of the MAC addresses found in real networks are 
largely random and since hash functions are selected based on their ability 
to distribute these addresses uniformly, uniform random distribution is 
assumed in the following analysis. The capacity and lookup time is shown 
as a function of the table’s load factor	ߙ = ܺ/ܰ, where ܺ is the number 
of stored addresses and ܰ is the number of hash buckets. This makes the 
figures generally applicable to tables and data sets of different sizes.  

3.1.2.1. Table Capacity  
Figure 3.2 shows how the addresses distribute themselves over the 
different memory levels 0ܯ  is the sixth entry in the linked search list. As 5ܯ is the first entry and 0ܯ as a function of the load factor, where 5ܯ−
seen from the graph, the MAC table quickly makes use of both the second 
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and the third memory level as the load factor approaches 100%. With a 
load factor of 200%, over 23% of the addresses need to be stored in level 
3 or higher. To illustrate how this can be a problem, let us investigate the 
scenario with an ܰܯݔ table, where ܰ = 4096 and 2= ܯ as described in 
[51]. The maximum capacity of this table given optimal conditions is 8,192 
addresses. But since this constitutes a load factor of 200%, less than 73% 
or approximately 5980 addresses are likely to be stored if there actually are 
8,192 peers on the network. The traffic from the remaining 2,212 
addresses will therefore have to be broadcasted on all ports. As seen in 
Figure 3.3, a small amount of flooding is likely to occur for load factors as 
low as 12.5% for this particular table structure The practical experiments 
on a device with this table structure in [51] actually showed even worse 
performance, which may indicate a poor choice of hash function.  

When aiming to improve the table capacity (given that the hash function 
is not the problem), the question is, which of the two table dimensions ܰ 
and ܯ should be increased to achieve the maximum capacity increase per 

 

Figure 3.2 – Simulation of the address distionbution as a function of the load factor α, 
assuming uniform hashing. 

 

Figure 3.3 – Simulation of the number of unlearned addresses as a function of the load factor 
and the number if available spaces in each hash bucket (ܯ), assuming uniform hashing.  
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extra bit of memory. Figure 3.4 shows the drop probability for different ܰܯݔ configurations (with the same total number of entries) when storing 
the same number of MAC addresses. As seen from the graph, the memory 
efficiency of the table increases for higher values of ܯ, but as described 
in the next chapter, this may have a negative impact on other performance 
parameters.  

3.1.2.2. Lookup Time  
Another important factor when designing a system for looking up MAC 
addresses is the average lookup time, as it directly affects the frames-per-
second (fps) throughput of the switch. Assuming that all the MAC 
addresses visible to the switch are equally likely to appear in the incoming 
Ethernet headers, the average lookup time ܮ ௔ܶ௩௚ is calculated as  ܮ ௔ܶ௩௚ = ଵ஺೟ ∑ ௜ܣ ∙ ௜ܶெ௜ୀ଴ , 

where ܣ௜ is the number of the stored addresses in each memory layer (0	 <݅ <  ௜ܶ is the time required for finding an address located at that ,(ܯ
particular layer (here just measured in number of memory reads) and ܣ௧ 
is the total number of visible addresses. Addresses which cannot be stored 
in the table due to collisions are added to the ݅ = ܯ − 1 contribution, 
since searching for these addresses (even though they are not found) will 
require searching through all ܯ sub-tables. The average lookup time 
determines, how many addresses can be resolved per second for this 
particular table load, and hence the number of frames per second the MAC 
table can handle. This again sets an upper bound for the aggregated speed 
of the ports which share the same table. For a 8-port gigabit switch with a 
single central MAC table, assuming minimum sized packets and a memory 

 

Figure 3.4 –Simulation of the drop probability when storing the same number of MAC 
addresses in tables with different values of M, but constant total memory size (the NxM 

product). The load factors for M=1..6  is 50%, 25%, 16.6%, 12.5%, 10% and 8.3%, 
respectively.   
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speed of 125MT/s (mega-transfers-per-second), the average lookup time 
must be less than 1258ݏ/ܶܯ ∙ 2 ∙ ݏ݌݂ܯ1.49 =  	.ݏݎ݂݁ݏ݊ܽݎܶ	5.28
Figure 3.5 shows the average lookup time as the load factor increases, 
based on the hash distribution in Figure 3.2. From the above calculations 
it is clear that large load factors will not create throughput bottlenecks in 
small consumer grade switches. In fact, the number of ports could be 
doubled to 16 in the example above and still meet the lookup time 
requirements with a load factor of 400%, having an average lookup time 
of 2.622 memory accesses, assuming homogeneous address distribution. 
However, this will not scale to enterprise and carrier switches, which will 
typically support much higher bandwidths and more ports. For these 
purposes, higher performance designs as the one described in Section 
3.1.4 are required.   

 

3.1.3. Multilevel Adaptive Hash Tables 
An enhancement to the chained hash table is Multilevel Adaptive Hash 
Tables (MAHT) (see Figure 3.6). These were first published and patented 
by Broder and Kalin in 1990 [45], [54]. The MAHT differs from the 
ordinary chained hash tables (CHT) on three points, each of which 
improves performance: 

 

Figure 3.5 – Average lookup time as a function of the load factor for a static NxM hash table.  
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1. Each ܯ sub-tables have their own independent hash function.  
2. The tables decrease in size (ܰ) for higher values of ܯ. The 

authors in [45] propose to use a size of ௜ܰ = ଴ܰ/2ெ௜ , i.e. to 
reduce the table size by a factor of 2 for each additional table.  

3. The hash functions are all dynamic, i.e. they can be changed in 
case they perform poorly.  

Point (1) gives two advantages over CHT. Firstly, it improves memory 
efficiency in the subsequent ܯ − 1 sub-tables since they are not limited 
to store entries in the same positions as ܯ଴. In the CHT case, the memory 
locations, which are not used in table ܯ଴ will be wasted in the rest of the 
sub-tables as well. Secondly, the use of multiple hash functions reduces 
the probability of encountering “bad” datasets which distributes very 
unevenly over the tables. This is because it is highly improbable (with a 
good choice of hash functions), that the same dataset will cause bad hash 
performance in multiple hash functions simultaneously. Point (2) further 
improves on memory efficiency by leveraging on the fact that the upper 
sub-tables are usually lightly loaded, and on the results presented in 3.1.2, 
which show that table capacity can be increased significantly by increasing ܯ at the cost of ܰ. By using progressively smaller sub-tables, the number 
of these tables can be increased without adding to the total memory 
footprint. Point (3) is a means of avoiding the case where a particular 
dataset hashes unevenly in the table (despite the use of multiple hash 
functions). In this case, the hash functions can be altered and the table 
rebuilt.  

Depending on the chosen platform, the MAHT structure can also have 
some drawbacks compared to CHT. Firstly, it requires the calculation of 
multiple hash values, which increases calculation time for software based 
solutions and chip area for hardware based solutions. Furthermore, where 

 

Figure 3.6 – Basic MAHT structure with two tables (memory banks). In event of a collision in 
table 0, the collided address is rehashed to table 1 using a different hash function. . The tables 

decrease in size (N) as M increases.    
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the sub-tables of CHT can be accessed using one single, very wide memory 
lookup, the MAHT requires either sequential access of each sub-table, or 
separate memory banks to be accessed in parallel. However, in case of a 
dedicated hardware solution, these drawbacks are not very severe. With a 
suitable choice of hash function, like CRC-16 or similar, the hash 
calculations circuits can be implemented very efficiently. Furthermore, the 
independent search through ܯ tables makes the scheme well suited for 
parallelization or pipelining using separate memory banks, preferably on-
chip.   

3.1.3.1. MAHT vs. CHT Performance  
To verify and quantify the expected performance increase when using 
MAHT instead of CHT, the two types of hash tables have been simulated 
for different values of ܰ and ܯ. Figure 3.7 shows the drop percentage 
(percentage of unlearned addresses) as a function of the table load. To 
make for a fair comparison, the schemes all use around 64k memory 
locations (MAHT generally use a little less, actual memory usage is listed 
in the legend). The load is relative to a maximum storage of 64k addresses 
(100%), corresponding to the maximum theoretical limit for the CHT 
tables. As seen in the figure, the MAHTs have a significantly lower drop 
percentages compared to the CHTs, even though they use slightly less 
memory and have shorter chains. For lower load percentages, the 
difference is especially significant. At 50% load, the MAHT 32k x 5 table 
has a drop percentage which is a factor 1,920 and 422 lower than CHT 
16k x 4 and CHT 8k x 8, respectively. The scheme also has the advantage 
of lower drop percentage for smaller values of ܯ, which reduces the 
number of comparison operations required to perform a lookup. In 
designs, which store the entire table in a single memory module, the 

 

Figure 3.7 – CHT vs. MAHT performance comparison: Simulation of the number of unlearned 
addresses as a function of the load percentage (100% load = 64k addresses attempted to be 

stored).   
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MAHT also has the advantage of lower average lookup times as depicted 
in Figure 3.8. This is due to the higher utilization of the ܯ > 0 memories 
caused by the rehashing procedure. Hence, more entries are placed in the 
beginning of the table, resulting in shorter lookup chains on average.  

3.1.4. Hash table for 100GE 
Due to the very high speed of the interfaces, it is not a viable solution to 
implement the hash table of a 100GE switch as a central (global) MAC 
table, but rather to keep distributed local hash tables on the individual line 
cards. In order to perform MAC address lookup at wire speed on a 100GE 
connection, the table must be able to perform 148,809,524 destination 
MAC lookups and source entry updates per second. Since the source 
updates will need to overwrite the entry information related to the source 
MAC address after finding the correct address, a regular hash table would 
require two table accesses for each source update operation. However, 
unless a completely new entry is added, or an existing one needs to be 
removed, the source update function never needs to read the entry 
information before updating, aside from validating the MAC address. 
Hence, the lookup table can be split into two parts as depicted in Figure 
3.9: a MAHT MAC table, which is used to find the correct entry address, 
and a corresponding entry information memory, which holds the relevant 
information such as port number and aging counters. These two data 
structures are accessed in a pipelined fashion, i.e. the forwarding engine 
first finds the correct entry address by performing a MAC search in the 
MAHT, and then accesses the corresponding address in the entry memory 
in the following clock cycle. This structure ensures that both the 
destination lookup and the source update mechanism can have a 
throughput of one operation for each clock cycle. Since no parallel 

 

Figure 3.8 – CHT vs. MAHT performance comparison: Simulation of the average number of 
memory accesses per lookup as a function of the load percentage (100% load = 64k addresses 

attempted to be stored). 
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operations are performed on the entry memory, the entry information for 
all MAHT sub-tables can be contained in only one memory bank with the 
same number of addresses as the combined MAHT sub-tables.  

To reduce the lookup time to a minimum, while conserving memory 
resources, a parallelized version of the MAHT scheme is used with N=64k 
and M=5 for support of up to 64k MAC addresses. Hence, the sub-table 
sizes will be 64k, 32k, 16k, 8k and 4k. Assuming good hash functions, the 
average drop percentage for a fully loaded table will be 0.0019% or 1.24 
addresses on average. The individual entries will have a size of 48bits for 
the MAC address, and 16bits for the entry information (port number, 
aging counters etc.). To further reduce the memory footprint, the biggest 
MAHT sub-table will use a simple folded XOR hash function described 
in 3.1.1.1 and only store 32-bits of the MAC address. The remaining 16-
bits will be derived by reverse hashing with the memory address as 
described. The total size of the table will then be 6.75Mbits, which is 
reasonable in a modern FPGA or ASIC. The five MAHT sub-tables are 
each stored in separate banks to allow for parallel access to support 100% 
throughput independently of the hash distribution. Depending on the 
available resources and the timing constraints, the memory banks could 
be run in either single-port mode (requiring a 298MHz clock speed to the 
memory) or in dual-port mode, where the source- and destination MAC 
processing can be performed simultaneously (running the memory clock 
at 149MHz). With this table structure, it is possible to perform MAC table 
lookup at 100GE line rate with minimum sized packets using just 
6.75Mbits of standard SRAM memory. A CAM implementation would 
require 3Mbits of CAM storage and 1Mbit of SRAM to achieve a similar 
performance. The design uses 5 or 10 parallel hash circuits (for single- and 
dual-ported memory access, respectively), which can be implemented 
efficiently in hardware using simple XOR-logic functions.   

 

Figure 3.9 – Pipelined memory access. The hash table (left) returns the entry address in cycle 1. 
The data is read/writte from/to the entry information table (EIT) in cycle 2.   
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3.1.5. Conclusions on MAC table lookup 
The MAC table is a core component of an Ethernet switch, and has a 
significant impact on the achievable packet forwarding rate. This section 
has investigated hash tables as an efficient and low cost way of 
implementing this critical address lookup function. However, the structure 
and dimensions of the hash table needs to be precisely tailored to the 
specifications of the individual switch in order to keep cost and 
performance in balance. Therefore, this section has investigated how two 
different types of open addressed chained hash tables perform for 
different configurations, in terms of overflow percentage and average 
number of required memory accesses, as the number of visible addresses 
increases. Furthermore, it is predicted how often the different parts of the 
hash table are accessed, which makes it easier to analyze table solutions, 
where the hash table is spread over several memory modules with varying 
characteristics (SRAM, SDRAM, CAM). Finally, a design example has 
been presented for a 100GE distributed lookup table using the Multilevel 
Adaptive Hash Table (MAHT) scheme, which delivers high performance 
and low overflow probability with a relatively modest memory footprint 
of 6.75Mbit per 100GE port. While Content Addressable Memory (CAM) 
is also a viable solution, offering simpler implementation, higher memory 
efficiency and dataset independent performance, this is offset by the 
significant area and power overhead of the parallel search structure. From 
a throughput perspective, the parallel MAHT can offer just as high 
performance as the more expensive CAM solution, making it possible to 
scale this design to 100G operation and beyond.  
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3.2. IP lookup 
Routing tables are the Internet Protocol equivalent of the Ethernet MAC 
tables. The increase in size of the networks and the lack of address space 
in IP version 4 (IPv4) requires these routers to maintain large routing 
tables, possibly with several hundreds of thousands entries [55]. This puts 
dramatic pressure on implementations for managing these routing tables 
in the form of insertion of new entries, removal of old entries and 
searching the tables. The increase in network speed, and thereby the 
number of packets being received per second, sets further requirements 
on fast processing. While there are several proposals on how to increase 
the processing speed of these routers from a software point of view [56], 
[57], the physical hardware architecture needs to be considered as well in 
order to ensure scalability and forward compatibility, especially with 
regards to IP version 6 (IPv6). 

IP routers use the routing tables to find the next hop of the packets 
arriving on the incoming interfaces. The routing table stores information 
about all the known networks that can be reached in the form of network 
prefixes. The table is constructed by the exchange of information with 
connected peers by using a routing protocol such as Open Shortest Path 
First (OSPF), Border Gateway Protocol (BGP) or similar. Along with each 
network prefix, the next hop address is stored, which is the interface port 
or IP address used by the router to forward the packets. The entries in the 
routing table used for forwarding are stored in a fast local memory in order 
to achieve as many lookups per second as possible. Traditionally, Dynamic 
Random Access Memories (DRAMs) have been used due to their low cost 
and energy consumption. However, the use of other types of memories, 
such as Static Random Access Memories (SRAMs) and Content 
Addressable Memories (CAMs), which have much higher performance, 
have gained more popularity in recent years with continuous increase in 
chip density and reduction in price [58]–[61].  

3.2.1. Common RAM-based data structures for 
IP lookup 

Like for the MAC tables, there are plenty of different data structures for 
IP forwarding tables. However, as mentioned in the introduction to this 
chapter, they differ from MAC tables because they have to support 
Longest Prefix Matching (LPM). One way to perform LPM is using a 
standard trie structure as depicted in Figure 3.10. It is a binary search trie, 
which is transversed bit-by-bit based on the destination IP address. Each 
node corresponding to a network prefix is marked with a flag (an * in the 
figure), and each time the search arrives at a marked node, the LPM is 
updated to this value. At the end of the trail corresponding to the 
particular IP address, the most recent LPM value is used for forwarding. 
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The issue with the binary trie is that the worst-case number of memory 
accesses is proportional to the number of address bits. This corresponds 
to 32 or 128 accesses for IP version 4 (IPv4) or IP version 6 (IPv6), 
respectively, which is much too slow for gigabit operation.  

To improve on this, routing tables often use Patricia tries as depicted in 
Figure 3.11. These are basically compressed versions of the binary tries, 
which allows the algorithm to skip over nodes, which do not contain a 
prefix, and which only has a single child. Still, for large and/or fragmented 
routing tables, the many memory lookups make them unsuitable for high 
performance routers[24]. To reduce the number of memory accesses, 
several approaches have been proposed. One such approach uses a 16-bit 
prefix table, which points to a position within the tree corresponding to 
each of the 65.536 possible 16-bit prefixes, hence providing a shortcut 
towards the correct entry. Unfortunately, this approach does not improve 
much on the IPv6 performance. Another, more realistic approach is to 
pipeline the search, using separate memory elements for each level of the 
trie. This is possible if the trie is small enough to fit in on-chip memory. 
An issue here is how the memory resources should be split between 

 
Figure 3.10 – 1-bit trie structure for IP lookup.  

 
Figure 3.11 – Patricia trie IP lookup.  



Address Lookup 

 

47 

different levels, as it is not feasible to scale the tree to the 2ଷଷ − 1  possible 
nodes in IPv4, not to mention the  2ଵଶଽ − 1 possible nodes for IPv6.  

To improve on the performance of IP lookup mechanisms, the next 
section investigates Ternary Content Addressable Memories (TCAMs) as 
a mean of providing throughputs of 100G and beyond in core routers. It 
further proposes novel enhancements of the standard TCAM design, 
which optimizes this parallel search engine for Longest Prefix Matching. 

3.3. TCAM-based High Speed Longest 

Prefix Matching 
As mentioned in Section 3.1, a Content Addressable Memory (CAM) is 
basically a large parallel search structure capable of searching through its 
entire content, generating one search result for each clock cycle. A Ternary 
CAM has the added feature of allowing wildcards or “don’t cares” in the 
stored patterns. This is a key feature for the LPM application, which works 
on partial matches as opposed to the exact matching used in e.g. MAC 
table lookups. The parallel structure of the TCAM allows it to search 
through very large data sets in only a few cycles yielding far superior 
performance compared to the RAM-based search structures. This 
performance comes at the cost of added chip area and power consumption 
but if performance is the main priority, TCAMs are a way to get there. 
Even so, TCAMs do have their drawbacks, as they are not specifically 
designed with LPM in mind but rather as generic search structures. This 
section aims to solve these issues by modifying and optimizing the 
standard TCAM specifically for LPM.  

3.3.1. Background 
In 1993, McAuley et al. [62] investigated the use of CAMs to increase the 
speed of the routing table lookups. Since then, a lot of research on how to 
best utilize CAMs, and especially Ternary Content Addressable Memories 
(TCAMs), has taken place [63]–[71]. With respect to lookup speed, 
TCAMs have much higher performance than conventional RAM-based 
approaches. Even state of the art RAM-based search mechanisms 
involving hash tables, search tries, bloom filters etc. require several 
memory accesses for each lookup [72]. When the routing table is stored in 
a TCAM on the other hand, only one memory access is needed to search 
through the entire routing table. The drawback however is that the routing 
table must be arranged in a certain order in the TCAM for correct Longest 
Prefix Matching. As a consequence, a single route update can trigger a 
domino effect where large portions of the TCAM need to be updated, 
during which the forwarding engine will be offline. With core routers 
receiving many updates per second this is a serious issue, causing latency 



Address Lookup 

 

48 

jitter and packet loss, and a lot of research has therefore focused on how 
to minimize the impact of having to store the routing table in this certain 
order [64]–[66], [68], [73]. At the same time, research has focused on how 
to make efficient memory structures that are most suitable for IP routing 
tables. Especially the power efficiency of TCAMs is an important topic, as 
this has traditionally been several times higher than for RAMs of equal 
size [64]. 

The required ordering of the routing table comes from the fact that a 
TCAM will produce multiple results when queried for an IP address, 
which belongs to multiple network prefixes. In order to distinguish 
between these results, they must each be given a priority, which is 
traditionally given implicitly by their location in the TCAM such that 
entries with lower addresses have higher priority. Unfortunately, this 
makes it more difficult to update the routing table, as correct ordering 
must be constantly maintained. The ordering of the forwarding tables 
implies that the prefixes in the table must be sorted according to the length 
of the prefixes, such that the longer prefixes appear prior to the shorter 
prefixes in the TCAM and thus take precedence. This is due to the Longest 
Prefix Match operation requiring the longer prefix to be used in case of 
multiple matches. Some methods have been published on how to 
completely avoid the ordering of the forwarding tables in TCAMs. These 
ideas typically rely on either separating the forwarding table into different 
blocks of TCAM based on prefix length [64]–[68], on multiple memory 
accesses to the same TCAM [62], [74], or on comparison of the lengths of 
the prefixes [71], [75]. There are advantages and disadvantages to all of 
these methods. Using several TCAMs may not be very efficient as some 
prefix lengths will have more entries than others, having to search the 
same TCAM multiple times reduces the throughput and increases the per 
packet power consumption while comparing the lengths of the prefixes 
requires additional logic. 

This section describes a novel method for completely avoiding the 
ordering of prefixes in a TCAM-based routing table by modifying the 
priority encoder used in the generic TCAM design [76] to perform 
position independent LPM as part of the match address encoding. The 
proposed scheme, the Comparator Network LPM (CN-LPM), adds a 
small area overhead for LPM, but also makes it possible to utilize the 
TCAM completely since no guard space or table separation is required to 
support incremental updates. Likewise, the CN-LPM only requires a single 
TCAM lookup to resolve the next-hop address, which improves both the 
throughput and the energy efficiency of the forwarding engine compared 
to schemes relying on multiple memory accesses. As with the generic 
TCAM design, the area and the power consumption of the proposed 
scheme scales linearly with the number prefixes (ܱ(ܰ)). The rest of the 
TCAM section is organized as follows. Subsection 3.3.2 describes the 
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typical design of a TCAM-based IP forwarding engine as well as the 
advantages and drawbacks of such a system. This forms the basis for 
subsection 3.3.3, which illustrates how the performance can be 
dramatically improved by modifying the TCAM to better suit the 
particular application of LPM. The section describes the CN-LPM 
solution proposed in this thesis and compares it to an existing design by 
Gamache et al. [75], which uses the same basic concept of enhancing the 
priority encoder to perform LPM. The Gamache LPM (G-LPM) is used 
as a benchmark for the CN-LPM design in terms of resource utilization, 
power efficiency, performance, scalability and ease of implementation. 
This is described in subsection 3.3.4, which also compares the two circuits 
to the standard priority encoder commonly used in TCAM designs to 
perform address encoding and multi-match resolution [76]. Subsection 
3.3.5 summarizes the results and concludes the TCAM section. 

3.3.2. TCAM-Based IP Forwarding Engine 
A TCAM-based IP forwarding engine can be designed as depicted in 
Figure 3.12. The main components are the TCAM which contains all the 
network prefixes known to the router, and a Random Access Memory 
(RAM) which contains the corresponding next hop addresses. Together 
these two components compose the routing table, which resolves the next 
hop addresses based on the IP address of incoming IP packets. A lookup 
operation is performed by scanning through the TCAM for the longest 
prefix that matches the incoming IP address. The resulting TCAM address 
is then used to access the RAM, which returns the next hop address for 
that particular prefix. A TCAM is used as opposed to the simpler CAM 
because TCAMs support wildcards or don’t-care values in the stored 
prefixes. Hence, a 24-bit network prefix for IP version 4 (IPv4) can be 
stored as a 24-bit binary string followed by 8 don’t-care bits. This way, any 
IP address which matches the 24-bit prefix will cause a match in that 
particular memory location, regardless of the last 8 bits in the address. 
However, as mentioned in Section 3.3.1, this property introduces the 
possibility of multiple matches to a single search of which only the one 
with the lowest address will be presented to the forwarding engine. This 
introduces the issue of keeping the table sorted based on prefix length. 
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3.3.3. LPM With Modified TCAM  
The generic TCAM can be divided into the matching circuit and the 
address encoder. The matching circuit consists of ܰ parallel comparators 
- one for each address in the memory. When a search is initiated, the input 
data is fed to all ܰ comparators. The output from each comparator is a 
single match line, which indicates if the input matches the data pattern 
stored in this particular memory location. Based on these ܰ matching 
results, the address of the match line with the highest priority is encoded 
using a simple priority encoder.  

The LPM circuits described in this section are based on a modified TCAM 
as depicted in Figure 3.13, where the basic priority encoder has been 
replaced by an address encoder, which resolves multiple matches based on 
the lengths of the stored IP prefixes as opposed to just their relative 
position in the TCAM. Depending on the IP version, the prefix length can 
be from 0 to 32 for IPv4 or from 0 to 128 for IPv6. The length 0, which 
will correspond to any address, is the default next hop for packets with 
prefixes that cannot be found in the routing table. In order to reduce the 
overhead of storing the prefix lengths, this special case can be 
implemented as a special exception outside the TCAM by means of a 
simple comparator and a multiplexer. Hence, in order to support LPM for 
IPv6, the LPM circuit needs a 7-bit vector associated with each address in 

Figure 3.12 - Example of a TCAM-based IP forwarding engine [76]. 
 



Address Lookup 

 

51 

the TCAM, corresponding to prefix lengths from 1 to 128. Using this 
information together with the output of the matching circuit, the address 
of the match with the longest prefix can be encoded independently of its 
relative position to similar prefixes in the TCAM and without querying the 
matching circuit multiple times. This has a significant impact on the 
throughput and the power consumption of the forwarding engine as well 
as the memory efficiency of the TCAM compared to the approaches 
described in subsection 3.3.1. Also, since the relative position of prefixes 
in the TCAM becomes irrelevant, new prefixes can be easily added or 
removed at any position in the TCAM without resorting the table or even 
considering where the information is stored. In the following subsections, 
the novel CN-LPM architecture proposed in this thesis will be compared 
to an existing architecture, both of which implements this overall concept 
in a different way.  

3.3.3.1. LPM circuit by Gamache et al.  
An existing in-line comparison of prefix lengths in a TCAM structure is 
proposed by Gamache et al. [75]. In the G-LPM, each TCAM row is 
followed by special LPM cells which filters out all matches except the one 
with the longest prefix in a step by step manner as depicted in Figure 3.14. 
For IPv6, seven LPM cells are used for storing and processing the length 
of a prefix corresponding to a binary encoding of the values 1-128. The 
enable signals are asserted one by one for each LPM cell (prefix bit). In 
each of the seven stages, the LPM circuit will only pass on TCAM matches 
with an active prefix bit, thus eliminating shorter prefix matches. In case 
none of the matches has an active prefix bit, all matches are passed on to 
the next level. After the seven steps corresponding to the binary length of 
an IPv6 prefix, there will only be a single match within these prefixes. In 
order to improve the clock speed of the circuit the entire TCAM is divided 
into 168 blocks of 128 entries each for a total of 21,504 prefixes and the 
process described above is performed independently within each 
individual block to produce 168 local winners. To find the longest prefix 

Figure 3.13 - Modified TCAM 
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match among the 168 blocks, the seven step comparison is repeated in a 
”winner’s circle” block, as depicted in Figure 3.15, which performs the 
same operation among the local winners to find the global longest prefix 
match. When a winner has been found, the single active match line feeding 
back to the originating row will trigger a readout of the next hop address 
stored in the corresponding SRAM cells. 

 

Figure 3.14 - Local LPM circuit for post-processing address mates from N TCAM rows.  

 
Figure 3.15 - Global LPM circuit with “winner’s circle”. 
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3.3.3.2. Comparator Network LPM circuit  
The basic concept of the Comparator Network LPM (CN-LPM) depicted 
in Figure 3.16 is to expand the individual elements of the priority encoder 
to take the prefix length into account. Like the basic priority encoder, these 
elements are placed in a tree structure. At the first level, each element takes 
the match lines and the lengths from two TCAM addresses as an input. 
Based on this information, the Least Significant Bit (LSB) of the address 
with the longest prefix which reports a match is encoded and passed on 
to the next level along with the length of the prefix.  

As the active match lines ripple through the levels of the tree, one 
additional bit is added to the encoded address at each level, until the 
complete address of the match with highest priority is presented at the 
output of the last level. Using this address, the corresponding next hop 
can be read from an SRAM as described in subsection 3.3.2 and depicted 
in Figure 3.12. The CN-LPM is in many aspects a much simpler design 
than the G-LPM circuit described in the previous subsection. It features a 
homogeneous tree structure, which can be easily expanded to support 
larger or smaller routing tables without changing the basic design. The 
system only needs log2 ܰ levels to support ܰ prefixes and is easily 
pipelined by inserting registers between the levels at regular intervals.  

While the comparator network of the CN-LPM is far superior to the 
simple location based priority encoder, this functionality comes at the cost 
of additional complexity in the individual encoding elements. The cost is 
an additional 7-bit comparator, a 7-bit 2-to-1 multiplexer and a few extra 
logic gates as illustrated in Figure 3.17 and Figure 3.18. This extra cost 
must of course be taken into account when evaluating the new design in 
the following sections.  

 

Figure 3.16 - Comparator Network 
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3.3.4. Resource Utilization and Performance 
Analysis 

In this subsection, the cost of the CN-LPM will be evaluated in terms of 
area, power consumption and processing speed compared to the G-LPM 
design proposed by Gamache et al. [75] as well as the priority encoder, 
which is part of the standard TCAM design. In order to do so, the three 
systems have been implemented in the hardware description language 
VHDL and synthesized for a Stratix IV Field Programmable Gate Array 
(FPGA) from Altera. The three solutions have been compared for 256, 
1,024 and 4,096 match lines with the following configurations: All 
comparators elements are 2x1 (thus comparing only two elements per 
clock cycle, though still in parallel for all input match lines) in order to 
achieve the highest possible operation frequency. For the Gamache 
implementation, the number of inputs per LPM block in both the first and 
second level is 32 for the results with 256 or 1,024 match lines, and 64 for 
the results with 4,096 match lines.  

 
Figure 3.17 - Priority Element 

 
Figure 3.18 - Comparator Element 
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3.3.4.1. Logic Cells  
The two designs have been compared with a traditional priority encoder 
in order to determine the ratio between the number of logic elements 
required for the LPM circuits compared to the priority encoder in an 
FPGA implementation. As expected, the increased functionality of the 
LPM circuits does not come for free. In fact, based on 1,024 match lines, 
the results in Table 3.1 show an increase of 771% and 789% in the number 
of Adaptive Look-up Tables (ALUTs) for the two LPM implementations, 
respectively, compared to the priority encoder for a similar number of 
match lines. The results also show an increase of 334% and 370%, 
respectively, in the number of registers used. This also includes the 
registers occupied by the prefix lengths, which are stored in a total of 1,024 
× 7 = 7,168 registers. Both the priority encoder and the LPM 
implementations scale linearly with the number of match lines, so the 
increase of approximately 770% ALUTs and 350% registers can be 
expected to remain fixed for larger TCAMs.  

 

 ALUTs Dedic.Logic Registers 

Priority Encoder 2,013 3,061 

CN-LPM 

Difference 

15,513 

771% 

10,223 

334% 

G-LPM 

Difference 

15,887 

789% 

11,318 

370% 

Table 3.1 - Resource utilization compared to priority encoder (PE) for 1,024 match lines. 

 

While the area increase may seem very significant compared to a standard 
priority encoder, they are in fact quite modest compared to the size of the 
TCAM’s matching circuitry, which for each prefix needs a total of 128 × 
2 = 256 SRAM cells just to store the prefix and the don’t-care indicators as 
well as a 128-bit comparator [76]. To ascertain the relation between the 
resource requirements for the matching circuit and the LPM circuits, the 
TCAM matching circuit has also been synthesized for FPGA 
implementation. Compared to the total lookup circuit, the resource 
requirements of the two multi-match resolution circuits only represent 
approximately 16% of the total ALUs and 4% of the total registers.  
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3.3.4.2. Power Consumption  
The power measurements were made with 256 match lines, and with a 
clock period of 2.776 ns (≈ 360 MHz). Using the same clock frequency 
ensures fair comparison of the power consumption of the different 
implementations, as the toggle rate of the signals depend on the clock 
frequency.  

Table 3.2 shows the dynamic power consumption of the two different 
implementations for 256 match lines compared to the priority encoder. 
The static thermal power dissipation (TPD) has not included since it varies 
very little for FPGA implementations using the same physical device. The 
table shows that the CN-LPM has a dynamic TPD which is three times 
higher than that of the priority encoder. For the G-LPM design from [75], 
the dynamic TPD is over four times higher. Hence, from a power 
consumption perspective the CN-LPM is significantly more efficient than 
the G-LPM implementation by Gamache et al. [75].  

 

 Prio. Enc CN-LPM G-LPM 

Dynamic 
TPD 

Difference 

37.57mW 

 

- 

112.43mW 

 

299% 

157.43mW 

 

419% 

Table 3.2 - Dynamic thermal power dissipation with 256 match lines. 
 

3.3.4.3. Performance  
Since all three circuits have a throughput of one address lookup per clock 
cycle, the individual performance comes down to the maximum clock 
frequency at which the circuits can operate. Hence, the maximum clock 
frequency and the address lookup rate in packets per second (pps) are 
interchangeable. The lookup rates are specified in Table 3.3 for both 1,024 
and 4,096 match lines in order to assess how well the system performance 
scales with increasing table size. The results in Table 3.3 show that there 
is an increase of over 110 Mpps between the two LPM implementations 
in favour of the CN-LPM for 1,024 match lines. For 4,096 match lines, 
the difference is 65.48 Mpps in favour of the CN-LPM. It can be seen that 
the G-LPM is generally the slower of the two implementations. A likely 
cause is the inherent dependence between the individual components in 
the first levels of the G-LPM, which makes it necessary to implement long 
and slow interconnection paths between the elements at the same level. 
Also, the design of the first levels has to be changed depending on the 
number of match lines which must be supported.  
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 1,024 4,096 

Priority Encoder 734.21Mpps 550.96Mpps 

CN-LPM 

Difference 

411.52Mpps 

56.0% 

311.24Mpps 

56.5% 

G-LPM 

Difference 

300.30Mpps 

40.9% 

245.76Mpps 

44.6% 

Table 3.3 - Processing rate in mullion packets per second compared to PE for 1,024 and 4,096 
match lines. 

The CN-LPM on the other hand does not suffer from any of these issues. 
It is a homogeneous tree structure of similar elements, each of which only 
depends on the aggregated results from the previous levels. This allows 
for a simpler design with shorter interconnection paths, which is easily 
expanded to support larger routing tables. As expected, the priority 
encoder is by far the fastest of the three designs, given that the contents 
of the TCAM have already been sorted based on prefix length.  

3.3.5. Conclusions on TCAM-based LPM 
Section 3.3 has proposed a novel method for performing Longest Prefix 
Matching in hardware and compared it with the G-LPM design proposal 
by Gamache et al. [75]. Both designs are built on a TCAM-based search 
engine which enables search operations in a single clock cycle. These 
implementations allow for pure hardware based IP lookup, and perform 
the LPM operation by comparing the lengths of the matching prefixes in 
the TCAM. The sorting of the prefixes in TCAM-based routing tables is 
thereby eliminated completely and updates to the TCAM can be 
performed in a single clock cycle for every update. The CN-LPM scheme 
presented in this thesis compares the prefix lengths two by two in a 
comparator network and is able to determine the LPM in log2 ܰ clock 
cycles, where ܰ is the number of match lines in the TCAM. To evaluate 
this method, a VHDL implementation has been made and synthesised for 
an FPGA. This has been compared with another VHDL implementation 
of the G-LPM scheme [75]. For an FPGA application, the proposed CN-
LPM method is shown to perform better than the implementation of the 
G-LPM scheme with less power and area consumption. Compared with 
the standard priority encoder usually used for multi-match resolving and 
address encoding in a TCAM, the number of ALUTs and registers 
required for an FPGA implementation of the comparator network is 
773% and 334% higher, respectively. However, when the resource 
requirements of the matching circuit of the TCAM are taken into account, 
the ALUT and register requirements of the CN-LPM multi-match resolver 
remain below 16% and 4% of the total TCAM circuit, respectively. 
Furthermore, the CN-LPM technique completely eliminates the need for 
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guard space, which would otherwise waste valuable TCAM resources. It 
has been shown that the CN-LPM is both significantly faster than the G-
LPM scheme, with a maximum packet forwarding rate of 411Mpps and 
300Mpps, respectively, for 1,024 match lines, and uses approximately 29% 
less power.  

3.4. Chapter Summary 
This chapter has shown how the address lookup function, which is a 
critical component of Ethernet switches, IP routers and other packet 
based network nodes, can be scaled to 100Gbps operation. Since Ethernet 
networks do not separate their address space into smaller sub-nets, 
forwarding is performed using exact matching. As described in Section 
3.1, hash tables are very well suited to perform this type of search as a low 
cost, low power alternative to more advanced search structures such as 
Content Addressable Memory. It is described how such a hash-based 
lookup table can be implemented for 100Gbps operation based on the 
Multilevel Adaptive Hash Table scheme. This table uses only 6.75Mbits of 
SRAM memory separated into five parallel memory banks to provide 
100% throughput with only an expected 0.002% overflow (roughly 1.24 
addresses on average) when the table is loaded with 64k MAC addresses. 
In order to scale to large switches, the table is envisioned as a distributed 
MAC table, where each 100GE port keeps a local MAC table, which is 
synchronized with the other port tables periodically.  

IP routing tables use the more complicated partial matching scheme called 
Longest Prefix Matching (LPM) to allow for route aggregation and 
separation of the IP address space into sub-networks. As a consequence, 
the concepts used for exact matching in Ethernet are not directly 
transferable to IP routers. To reach the ambitious goal of over 100Gbps 
throughput of minimum sized IP packets, the parallel search structure 
Ternary CAM (TCAM) is proposed for core routers. However, since the 
standard TCAMs have strict requirements on prefix length ordering in the 
TCAM memory in order to perform LPM, a modified TCAM design is 
proposed which removes this requirement altogether. The result is a 
TCAM with a much simpler and faster updating procedure and 100% 
memory utilization at the cost of around 16% extra logic compared to the 
standard TCAM. Trial implementations in an FPGA with 1,024 address 
entries has shown that this structure is capable of performing 411 million 
LPM lookups per second, corresponding to a forwarding rate of 411Mpps. 
If carried over standard Ethernet, this table would be able to handle a 
sustained line rate of approximately 275Gbps of using minimum sized IP 
packets.  
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4. Multicast Switch 
Fabric Scheduling 

 

This chapter looks into the subject of multicast switch fabric scheduling 
in input buffered switches. Switch fabric scheduling is the task of 
coordinating the transfer of packets between input- and output ports 
across the interconnecting switch fabric in the most efficient way. 
Efficiency is in this case measured in terms of throughput, delay, fairness, 
implementation complexity, and scalability. Multicast switch fabric 
scheduling is an extension for multicast enabled switch fabrics, which aims 
to utilize the multicast capabilities (i.e. transmitting from one input to 
multiple outputs simultaneously) as efficiently as possible. This is of 
increasingly importance as broadcast services, such as cable television, are 
moving into the IP networks as multicast IP data streams. The chapter 
first provides an overall introduction to switch fabric scheduling with 
special emphasis on input queued switches. It then moves on to the 
primary subject of this chapter, which is efficient scheduling of multicast 
cells. Specifically, the novel ERRMS multicast scheduling scheme, which 
has been developed as part of the Ph. D. project, is presented and 
evaluated through simulation and hardware synthesis.  

4.1. Introduction to Switch Fabric 

Scheduling  
The performance of the switch fabric is mainly determined by two 
parameters: the fabric architecture and the scheduling mechanism. In high 
performance switch fabrics, packets are often divided into fixed size cells 
for easier implementation and fairness. It is important that the scheduler 
is able to schedule enough cells per second to keep up with the line rate 
while assuring fair and efficient utilization of the fabric bandwidth. The 
fabric on the other hand must be fast enough to support this cell rate as 
well as to some extent absorb the performance penalty of non-optimal cell 
scheduling and filling, and unbalanced traffic distribution. A classical 
implementation of input queue switches is simple first in, first out (FIFO) 
buffering, where only the head-of-line (HOL) cell is considered for 
scheduling. Unfortunately, this strict FIFO architecture suffers from the 
well known HOL blocking problem, which limits the throughput of the 
switch to at most 58.6% for uniform traffic[77], regardless of the 
scheduling. The only way to alleviate this problem is by relaxing the FIFO 
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constraint to allow for more efficient scheduling and/or increasing the 
internal capacity of the system to compensate for the inefficiencies. 
Simulation studies have shown that speeding up the system by a factor of 
two results in 100% throughput, but only for uniform traffic  [78].  

For a more efficient design, it is necessary to relax the strict FIFO 
constraints, which opens up for more efficient scheduling of cells across 
the fabric. One solution is to allow for queue look-ahead, i.e. to base the 
scheduling decision on the first ݓ cells in each input queue instead of just 
the HOL cells. The ܮ cells of a queue contend for the next time slot in 
sequence until an output match has been found or all ܮ cells have been 
rejected. This approach has only limited impact on the hardware 
complexity of the fabric and buffering system, and improves the 
throughput as ܮ increases, but adds to the complexity of the scheduling 
mechanism, which has to run in an iterative manner. Furthermore, the 
effectiveness of this approach is reduced under bursty traffic distributions. 
A different approach is virtual output queuing (VOQ)[24]. Here, each of 
the ܰ inputs has a separate FIFO queue for each of the ܰ outputs. This 
completely eliminates the HOL blocking problem, but requires ܰଶ 
queues, which can be problematic for very large switch fabrics. 
Furthermore, the inputs can still only transfer one cell at the time, which 
can result in idle outputs. Hence, an efficient scheduling algorithm is 
required to reach optimal performance.  

The scheduling algorithm decides which cells should be transferred in each 
individual cell timeslot. This arbitration is often based on a round-robin 
principle, where the priorities are rotated amongst the ports in a circular 
manner. This assures fair and starvation-free scheduling and is relatively 
simple to implement in practice. To increase the utilization of each cell 
timeslot, the scheduling algorithm can run iteratively until an acceptable 
solution has been found. Popular iterative round-robin based scheduling 
algorithms include iterative round-robin with SLIP (iSLIP) and dual 
round-robin matching (DRRM)[24]. One issue with the iterative 
algorithms is their convergence time, which needs to be shorter than the 
cell time. Due to this time constraint, these algorithms will usually settle 
for a maximal matching solution, where no more input/output pairs can be 
added without modifying the existing matches, rather than attempt to find 
the optimal solution (maximum matching) through an exhaustive search. 
Even so, the iterative algorithms are difficult to scale to very high line rates 
such as 100G without increasing the cell size, and thus sacrificing fabric 
efficiency. To combat this problem, several schemes have been proposed 
to speed up the decision rate using pipelining and/or parallelization with 
promising results[79]–[81].  
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4.2. Efficient Round Robin Multicast 

Scheduling 
With the basics of general switch fabric scheduling covered by the 
previous section, the attention is now turned towards multicast 
scheduling. Multicast is considered an efficient technology for 
transmitting the same data traffic to a number of network nodes. This is 
becoming increasingly relevant due to the growing popularity of 
bandwidth-intensive services such as Internet Protocol television (IPTV), 
video conferencing and telepresence. In theory, most unicast switches will 
be able to support multicast traffic with the same general switch 
architecture and scheduling mechanisms by simply treating the multicast 
frames as either broadcast frames or multiple unicast frames. However, in 
order to support multicasting in an efficient manner, both the architecture 
and the scheduling algorithms of the switch must be designed with 
multicasting in mind. Much research has been carried out on scheduling 
multicast traffic in Input Queued (IQ) switches [82]–[90] because of their 
high scalability. This chapter proposes a new scheduling algorithm, 
ERRMS, which is designed to reduce the number of times multicast cells 
need to be retransmitted over the switch fabric in order to reach all output 
ports, thus reducing the overall load on the fabric. The algorithm is an 
extension of previous work, the multi-level round robin multicast 
scheduling (MLRRMS) algorithm described in [87], [89], [90] and has been 
optimized for more efficient hardware implementation and higher 
scheduling throughput. Using simulation, the performance of the new 
algorithm is compared with several other competing multicast algorithms 
including MLRRMS. In addition to the simulations, the ERRMS as well as 
the MLRRMS algorithms have been implemented in hardware for multiple 
port configurations and synthesized for a modern field programmable gate 
array (FPGA) in order to determine the chip area usage and the scheduling 
speed of the two algorithms as a function of the port count.  

The rest of this chapter is structured as follows. Subsection 4.2.1 
elaborates on other works in the related field. Subsection 4.2.2 describes a 
simplified system model. Subsection 4.2.3 first defines several terms used 
throughout the algorithm description and then elaborates on and 
compares the MLRRMS and ERRMS scheduling algorithms. Subsection 
0 describes the hardware implementations of the two algorithms. 
Subsection 4.2.5 shows the performance of the two algorithms in terms 
of multicast delay, while subsection 4.2.6 shows how the schedulers 
compare in terms of scheduling speed and resource utilization in an FPGA 
implementation. Finally, subsection 4.3 concludes on the results from the 
work on ERRMS and concludes the chapter.  
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4.2.1. Related Work 
The multicast algorithm, TATRA [83], focuses on the IQ architecture, 
where each input stores its multicast cells in a FIFO queue. After having 
decided which cells to send, the scheduler leaves a residue of cells to be 
scheduled in the next cell time. The residue of cells is scheduled based on 
the departure time, which is the number of cell times before a copy of the 
cell is served. The TATRA algorithm is strict in fairness and achieves low 
latency; however, it is high in implementation complexity. In order to 
reduce the complexity, the weight-based algorithm (WBA) was proposed 
in [83] as a replacement to TATRA due to its simplicity. The WBA works 
by allocating weights to input cells according to their age and fan-out 
before every cell time and choosing the HOL cells with the highest weights 
to send out. The WBA ensures fairness and has a low implementation 
complexity but it suffers from the HOL blocking problem [77]. The 
FIFO-based multicast scheduling (FIFOMS) [91] and the credit-based 
multicast fair (CMF) [92] scheduling algorithms leverage the virtual output 
queuing (VOQ) architecture for unicast to schedule multicast traffic in a ܰ	 × 	ܰ switch. ܰ queues are allocated for each input port to schedule 
multicast cells. Up to ܰ  address tokens are generated for each arriving cell, 
each of which is stored in the queue corresponding to a destination. Each 
incoming multicast cell is stored in a shared memory and is linked to its 
address tokens. Based on the scheduling decisions from the scheduling 
algorithms executed on the address tokens, a multicast cell is sent to the 
individual destinations and is removed from the memory when all 
destinations are reached. The FIFOMS and CMF are able to achieve low 
latency and high throughput, but the bottlenecks of the architecture, 
especially the token generator and the shared memory, hinder its 
scalability. The hardware complexity of the address token generator is ܱ(ܰ), since up to ܰ tokens are generated for each arriving cell. In 
addition, the number of token queues in total is ܰ2, which can be an 
obstacle for the switch to scale up in size. The ݇ multicast virtual output 
queuing (k-MC-VOQ) architecture was proposed in [85]. Each input port 
maintains k FIFO queues for multicast cells, where 1 < ݇ < 2N−1. The 
main issues for the k-MC-VOQ architecture are related to the scheduling 
algorithm and the queuing discipline that associates each multicast flow 
with a queue. A greedy min-split scheduler (GMSS) [85] was proposed to 
schedule multicast traffic for the k-MC-VOQ architecture. Each queue is 
associated with a weight, which is the product of the queue length and the 
fan-out of the multicast cell at the head of the queue. Queues are examined 
in descending order of the associated weights. The GMSS iterates with 
two phases until either all output ports are selected or no more non-empty 
queues exist at the unselected inputs. With an increase of k, throughput is 
improved only significantly for small ݇, i.e. ݇	 ≤ 	ܰ. Load balancing based 
on the queue length across multicast queues is required to distribute cells 
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to different queues for performance improvement. It has made the system 
too complex for efficient implementation.  

Another key component and potential bottleneck in the scheduler is the 
request arbiter and how this is implemented in hardware. The scheme 
proposed in this thesis is based on round-robin arbitration (RRA), and 
over the last decade, several hardware designs have been proposed to solve 
this problem. Shin et. al. [93] has proposed an architecture, where 4	 × 	4 
round robin arbitration is achieved by dynamically selecting the output of 
from one of four hardwired fixed priority encoders (FPEs), based on the 
round-robin (RR) pointer. These 4	 × 	4 round-robin priority encoders 
(RRPEs) are then combined in a hierarchical tree structure to form bigger 
RRPEs with more ports. While this approach has better performance than 
dynamically rewiring the in-and outputs using barrel shifters, the 
multiplexing logic as well as the extra three FPEs results in a significant 
area overhead. The programmable priority encoder (PPE) proposed in 
[94] uses only two FPEs in combination with thermometer encoding, a 
special mask calculated based on the RR pointer. This technique allows 
for a much more area efficient design, while still providing very good 
performance characteristics. Jou et al. proposes a more brute force 
approach to solving the RRA problem [95] by expressing each grant signal 
in a Sum Of Products form and leaving the rest of the design up to the 
synthesis tool. Studies in [96], which compares several RRA designs, show 
that this approach can yield competitive results in terms of timing, but not 
in terms of area. Furthermore, the long synthesis time is a problem and 
the authors of [96] were unable to synthesize for 128 ports or above due 
to the heavy CPU time and memory requirements of the synthesis.  

4.2.2. System Model 
The switching system is assumed to be an ܰ	 × 	ܰ switch, as described in 
Figure 4.1. Each input has one FIFO queue to store the incoming 
multicast cells. The switch fabric is assumed to be bufferless and have 
intrinsic non-blocking ability, which means that there can always be a 
connection between an idle input and an idle output. Within one cell time, 
only one cell can be received by an output. In case that there are multiple 
cells bound for the same output port, the scheduler must choose which 
one to serve prior to each cell time. Cells that fail the competition will be 
stored in the FIFO queue and be scheduled in the following time slots.  

It is also assumed that the switch is able to perform fan-out splitting [97], 
where copies of multicast cells can be delivered to output ports over any 
number of cell times. The cell will not be removed but remains in the 
queue, unless all the destinations in its fan-out set are reached. A multicast 
scheduler makes scheduling decisions prior to each cell time and grants 
cell transmissions accordingly.  
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4.2.3. Efficient Round-Robin Multicast 
Scheduling Algorithm  

In this section, the motivation of the invention of ERRMS and the detailed 
algorithm are presented. Several definitions are presented first. Then the 
MLRRMS on which ERRMS is based will be briefly reviewed and 
analyzed. Lastly, the new ERRMS algorithm is introduced to tackle the 
performance bottlenecks of MLRRMS.  

4.2.3.1. Definitions 
Several terms used in the algorithm are defined as follows:  

Definition 1 (Maximum Look-Ahead Depth): The maximum look-ahead depth, ܮ, 
is defined as the maximum number of cells that the scheduler is able to 
examine behind the HOL cell. Obviously, if the switch is capable of taking 
an infinite number of cells into consideration for each scheduling process, 
the multicast HOL blocking problem [89] will be eliminated. However, it 
is impractical to implement such a system due to the extremely high 
implementation complexity. To limit the complexity for possible hardware 
implementation, the maximum look-ahead depth, ܮ, is defined. ܮ = 0 
indicates that the switch only schedules on the HOL cells in the queues 
such as WBA [83], else the switch takes up to ܮ cells stored behind the 
HOL cell per input queue for each scheduling process.  

Definition 2 (Cell Position): The cell position, ݌, is defined as the position of a 
cell in the queue. The cell at the HOL of the queue has ݌ = 0.  

 
Figure 4.1 - Logical structure of an input-queued multicast cell switch. 
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Definition 3 (Fan-out Vector): A fan-out vector is used to indicate the fan-out 
set carried by a multicast cell in input ݅ at position ݌, and is denoted as ࢌ(௜,௣) ≜ 	 〈 ௝݂(௜,௣)〉, ݆ = 0,1, … , ܰ − 1, ݌ = 0,1, . . ,ܮ 	 ௝݂(௜,௣) ∈ {0,1}.	 ௝݂(௜,௣) = 0 indicates that output ݆ is not in the fan-out set of the cell and ௝݂(௜,௣) = 1 indicates the opposite.  

Definition 4 (Traffic Matrix): The Traffic Matrix is an ܰ	 × 	ܰ matrix 
constructed by the scheduler, based on the fan-out vectors of the cells in 
the position ݌ of each input ݅, before a cell transmission. It is denoted as ࢀ(௣) = ቀ ௜ܶ,௝(௣)ቁ. Hence, ௜ܶ,௝(௣) = ௝݂(௜,௣), ∀	݅, ݆, ௜ܶ,௝(௣) .݌ = 0, ∀	݆,  if input 	,݌

queue ݅ is empty.  

Definition 5 (Decision Matrix): The Decision Matrix is an ܰ	 × 	ܰ matrix 

denoted as ࡰ(௣) = ቀܦ௜,௝(௣)ቁ , ௜,௝(௣)ܦ 	 ∈ 	 {0, 1}. This matrix contains the 

scheduling decisions for each output ݆, with ܦ௜,௝(௣) = 1	indicating that a 

copy of the cell in input ݅ at position ݌ will be transmitted to output ݆ and ܦ௜,௝(௣) = 0	 meaning that no copy will be sent to output ݆.   
Definition 6 (Assistant Matrix): The Assistant Matrix is an ܰ	 × 	ܰ matrix 

denoted as	࡭(௣) 	= ቀܣ௜,௝(௣)ቁ 	 , ௜,௝(௣)ܣ 	 ∈ 	 {0, 1}. This matrix is used to help 

generate ࡰ(௣), ݌ > 	0 

 

4.2.3.2. The MLRRMS Algorithm  
MLRRMS is an iterative algorithm for multicast scheduling, which offers 
two major improvements over strictly IQ FIFO based schedulers such as 
WBA. Firstly, the scheduler uses queue look-ahead to increase output port 
utilization and lower the queuing delay. Hence, any inputs and outputs 
which are not occupied by the first scheduling round based on the HOL 
cells (݌	 = 	0) will take part in a second scheduling round based on the 
next cells in the input queues (݌	 = 	1). This iterative process will 
continue for ݌	 = 	0. . .  until all possible outputs have been occupied, all ܮ
inputs have been served or until the upper iteration limit ܮ has been 
reached. Secondly, the algorithm uses a special synchronization 
mechanism which coordinates the individual output schedulers to reduce 
the number of times individual multicast cells need to transverse the 
switch fabric. This is done by selecting a dictator amongst the output port 
schedulers in each round. The scheduling decision of the dictator port 
takes precedence over the decisions of the other ports. Hence, if the 
dictator grants a request to receive a multicast cell which is destined for 
other outputs as well, the other outputs will discard their own decisions 
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and follow the dictator. Consequently, the multicast cell will be delivered 
to all destinations in a single transmission. Simulations on the described 
system model have shown that this feature significantly improves the 
multicast performance of the switch in terms of latency and throughput 
[89]. The dictator is assigned in a round-robin fashion to guarantee 
fairness. The steps of the MLRRMS algorithm are described below, 
followed by a specific example.  

Initial condition: Before each cell transmission, the cell scheduling position 
is reset to ݌	 = 	0, i.e. pointing to the HOL cell. All the input and output 
ports are in unreserved status and are eligible of transmitting and receiving 
cells.  

Step 1) Request: Each unreserved input ݅ submits a request to the 
unreserved outputs that are contained in the fan-out vector ݂(௜,௣)  

of the 
cell at the current position pointer ݌, unless position ݌ is empty. Based on 
these requests, the traffic matrix ࢀ(௣)  

is formed.  

Step 2) Dictator Assignment: The dictator for this scheduling round is chosen 
between the outputs which have received requests in Step 1. Dictator 
assignment uses a round-robin schedule and chooses the first eligible 
output, starting from the highest priority one, to be the dictator over other 
outputs. The dictator pointer ܽ(௣), which indicates the current highest 
priority port of the dictator round-robin schedule is incremented (modulo 
N) to one position beyond the new dictator after the assignment.  

Step 3) Masking: Inputs, which have already been served in previous 
rounds, should not be taken into account and are cleared (masked) from ࢀ(௣)  

before scheduling. The resulting Assistant Matrix ࡭(௣), containing 
only requests between eligible inputs and outputs, is passed on to Step 4.  

Step 4) Individual output scheduling: All unreserved outputs will individually 
choose amongst the input requests received in Step 1. Like the dictator 
assignment, the decision is performed in a round-robin fashion based on 
the current RR pointers of the output schedulers. Each queue position (݌) 
for each output has its own RR schedule. Based on the combined 
scheduling decisions of all of the outputs, the decision matrix ࡰ(௣)  

is 

formed. The RR pointer ௝݀(௣)  
for the individual outputs, is incremented 

(modulo N) to one location beyond the selected input, if and only if, the 
individual output decision is not overruled by the dictator in Step 5.  

Step 5) Sync: The scheduling decision of the dictator, i.e. which input 
request it has granted, is relayed to the other outputs. Outputs which have 
received this same input request, but chosen to grant a different one, will 
change their scheduling decision to match that of the dictator. The ࡰ(௣)  

matrix is updated with the new scheduling decisions, thus reserving the 
granted input/output ports.  
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Step 6) Look-Ahead: If there are still unreserved input and output ports and 
if the position pointer has not reached its maximum value ܮ, the position 
pointer increases its value by 1, i.e. ݌	 = 	݌	 + 1, and the algorithm returns 
to Step 1 to perform the next scheduling round. Otherwise, the scheduling 
process is completed.  

After the scheduling process, each input copies and sends the cells to the 
corresponding outputs, according to the combined decision matrixes ࡰ(௣)  

from each scheduling round. If a cell has reached all the output ports in 
its fan-out set after transmission, it is removed from the queue. Otherwise, 
the cell remains in the queue and the newly reached outputs are removed 
from its fan-out set ݂(௜,௣).  
A practical example of the MLRRMS scheduling for a 5 x 5 switch with a 
maximum look-ahead depth of ܮ = 1 is depicted in Figure 4.2. In the first 
iteration, the five inputs (݅	 = 0. .4) are requesting to transmit to three of 
the outputs (݆	 = 1, 3, 4) based on the fan-out vector of their HOL cells 
(a). From these requests, the Traffic Matrix (0)ࢀ is formed (Step 1). 
Output ݆ = 4 is selected as the dictator for this round (Step 2). Since this 
is the first iteration, no masking is performed (Step 3), i.e. ࡭(଴) =  .(b) (଴)ࢀ
Based on their individual RR schedules, the outputs perform a scheduling 
decision (Step 4). The dictator grants the request for input 0. Since the ݌ = 0 fan-out vector for input 0 also includes outputs 1 and 3, the 
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Figure 4.2 - Example of the enhanced FIFO-based round-robin multicast scheduling algorithm 
(MLRRMS) for a 5 x 5 input-queued switch. 
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decision of these two outputs are overruled by the dictator in Step 5. 
Hence, the combined scheduling decision for the first round, ࡰ(଴), is that 
input 0 will be allowed to transmit its HOL cell to all outputs in its fan-
out vector during the upcoming timeslot (c). After this first iteration, there 
are still two output ports (0 and 2), which remain unreserved. In order to 
occupy these inputs, the scheduler will perform a second scheduling round 
by looking one cell into the input queues (Step 6). The new Traffic Matrix ࢀ(ଵ)  

depicted in Figure 4.2(d) is generated (Step 1) and a new dictator is 
selected (Step 2). Since input 0 and outputs 1, 3 and 4 are already reserved, 
the new first matrix ࢀ(ଵ)  will be masked to only include valid input/output 
pairs (Step 3). This generates the assistant matrix ࡭(ଵ)  (e). Based on this 
matrix, the two remaining outputs (0 and 2) perform individual RR 
scheduling with output 2 as the dictator (Step 4). Unlike the first round, 
the dictator selects an input request, which is not shared by output 0. 
Hence, output 0 will stick to its individual scheduling decision resulting in 
the decision matrix ࡰ(ଵ)  

depicted in (f) (Step 5). The final decision of the 
scheduler is the combination of ࡰ(଴)  

and	ࡰ(ଵ).  
4.2.3.3. Efficient Round-Robin Multicast Scheduling  
As described, the MLRRMS algorithm searches through each cell position 
in a sequential manner. This means that the required clock frequency of 
the scheduling circuit increases linearly with the number of look-ahead 
iterations for a given cell arrival rate. Furthermore, each iteration relies on 
results from previous iterations. This inherent data dependency of the 
algorithm makes physical hardware implementations of the scheduler 
difficult to scale to higher clock rates, since hardware parallelization or 
pipelining of the scheduling iterations is not possible. Hence, for hardware 
implementations, expanding the scheduling past the HOL cell results in a 
worst case reduction in the schedulings-per-second, which is linearly 
proportional to ܮ. To fit the algorithm into a high speed switching 
environment, e.g. 100 Gigabit Ethernet, the ERRMS algorithm tailors the 
MLRRMS for a faster, more efficient hardware design. The proposed 
ERRMS algorithm is designed to avoid the data dependencies of 
MLRRMS to allow for efficient hardware parallelization of the scheduling 
iterations. Since the resource utilization of the parallel circuit grows as the 
number of parallel iterations increases, selecting ܮ is a trade-off between 
scheduling performance and hardware complexity. Through simulations 
presented in subsection 4.2.5 as well as in related papers [89], [90], it has 
been verified that the switch is able to provide a maximum improvement-
to-complexity ratio on reducing the average multicast delay by allowing 
the scheduler to examine just one cell beyond the HOL in the input 
queues, i.e. ܮ = 1. Based on this trade-off, a static hardware-oriented 
algorithm is proposed, which limits its search to ݌ = 0, 1. However, the 
algorithm described here is easily expanded to higher values of ܮ at the 
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cost of more chip area. The new ERRMS algorithm is described below 
with respect to the original MLRRMS scheme:  

Step 1) Submission: Each input queue reads the fan-out information of the 
first two cells in parallel (݌ = 0 and ݌	 = 1), and submits this information 
to the corresponding outputs. ࢀ(଴)  

and ࢀ(ଵ)  
are then formed.  

Step 2) Dictator Assignment: Different from the MLRRMS, the dictator 
arbiter of ERRMS only exists for ࢀ(଴), which means the sync function is 
only carried out on the HOL cells.  

Step 3) Decision: Decisions for ݌ = 0 and ݌ = 1 are performed 
independently to allow for parallelization. Therefore, masking out 
previously reserved inputs and outputs is no longer required. To preserve 
the FIFO priority, cells with the lowest position pointer ݌ always have 
precedence. Hence, if an output receives fan-out information from both ݌ = 0 and ݌ = 1 cells, only the ݌ = 0 cells will be included in the 
scheduling. Based on the selected fan-out vectors, each output will 
individually choose the input request that appears next in its round-robin 
schedule, starting from the highest priority element. To reduce hardware 
complexity, the round-robin pointer ݀ is now shared by both levels (݌ =0, 1).  

Step 4) Sync: Since the dictator only exists for ࢀ(଴), i.e. the HOL cells, the 
outputs that only receive fan-out information for ݌ = 1 cells are exempt 
from the synchronization process. Otherwise, synchronization is 
performed in the same way as described in subsection 4.2.3.2.  

Unlike the MLRRMS which iterates through the FIFO queues until all 
eligible inputs and/or outputs are reserved or until the maximum look-
ahead depth is reached, the ERRMS executes the four steps described 
above in a single iteration. Similar to the MLRRMS, the inputs will 
transmit cells to the outputs after the scheduling process, according to the 
combined decision matrix ࡰ for ݌ = 0 and ݌ = 1, after which the fan-
out vectors will be updated. The independent scheduling of the two queue 
positions means that an input can potentially receive two grants with 
different ݌ values, which means that the input is scheduled to send two 
cells during one cell time, one from ݌ = 0 and one from ݌ = 1. Thus, the 
bandwidth of the buffer memory and the switch fabric must be able to 
support this to implement the ERRMS algorithm.  
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4.2.4. Hardware Implementation  
To determine the relative resource utilization and scheduling speed of the 
MLRRMS and ERRMS, the two algorithms have been implemented in 
hardware for an FPGA. Both circuits have been designed for a look-ahead 
depth of ܮ = 1, but are easily expanded to support higher values of ܮ. 
This section describes the hardware designs for the MLRRMS and the 
ERRMS. Furthermore, the design of the internal round-robin scheduler is 
also described since it is a critical common component of the two 
schedulers, both in terms of hardware complexity and scheduling speed.  

4.2.4.1. The MLRRMS implementation  
The MLRRMS depicted in Figure 4.3 is an iterative design, which 
alternates between scheduling cells from ݌ = 0 and ݌ = 1 with individual 
round-robin and dictator pointers for the two positions. In the first round 
݌) = 0), the mask ࡹ is empty and the Traffic Matrix ࢀ(଴)  

is therefore 
passed on unaltered to the round robin priority encoders (RRPE), ࡭(଴) (଴)࡭ From the .	(଴)ࢀ	=	  

matrix, the RRPE generates a preliminary decision 
matrix ࡰ´(଴)  

corresponding to the individual round-robin scheduling 
decisions of the outputs. Based on the decision of the current dictator, the 
Sync block modifies this matrix as described in subsection 4.2.3.2 to yield 
the final Decision Matrix ࡰ(଴)  

for the iteration. Based on the first 
scheduling iteration (݌	 = 0), the new mask ࡹ’ is generated to exclude 
the now occupied inputs and outputs from the next scheduling iteration. 
In iteration ݌ = 1, this mask is applied to ࢀ(ଵ)  

to generate the Assistant 
Matrix ࡭(ଵ), which is processed by the RRPE and the Sync in the same way 
as in the first iteration. Finally, the current Traffic Matrix T is updated to 

Figure 4.3 - MLRRMS hardware implementation. This scheduler performs look ahead using 
an iterative approach, where the fan-outs of the packets in the queues are scanned in a 

sequential manner, incrementing the position pointer p for each clock cycle. 
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represent the new state of the FIFO queues at the inputs after cell 
transmission (ࢀ’) and the new mask (ࡹ’) is reset so that all inputs and 
outputs will again be eligible for scheduling in the next run.  

4.2.4.2. The ERRMS implementation  
The ERRMS depicted in Figure 4.4 uses a parallel look-ahead mechanism 
to perform scheduling of both ݌ = 0 and ݌ = 1 in the same clock cycle, 
effectively doubling the scheduling speed of the multicast scheduler for a 
given clock rate. The main idea the proposed design approach is the 
realization, that an output will only have to search through ݌ = 1 if the 
request vector for ݌ = 0 is empty, i.e. if no HOL cells are destined for 
this output. Hence, by performing a simple OR operation on the HOL 
request row corresponding to the output (ࢀ(଴)), it is possible to determine 
if scheduling should be performed on ݌ = 0 or ݌ = 1. Hence, only one 
RRPE is required to process both queue positions. The RRPE look-ahead 
MUX performs this operation and passes on an aggregated version of ࢀ 
to the RRPE consisting of a mix of ݌ = 0 and ݌ = 1 requests. The rest 
of the circuit works in much the same way as the MLRRMS, with three 
major differences:  

• The mask generation logic is no longer required, since only one 
scheduling iteration is performed.  

• The dictator and round-robin pointers are now shared between 
the two cell positions, as opposed to the MLRRMS, which used 
separate pointers for ݌ = 0 and ݌ = 1  

• The Sync function works only on cells from ݌ = 0.  

 

Figure 4.4 - ERRMS hardware implementation. This scheduler scans the fan-out vectors of 
the packets in position 0 (HOL) and position 1 in the queue and performs scheduling of 

packets in both positions in parallel. Hence only one clock cycle is needed. 
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4.2.4.3. The Round-Robin Priority Encoder 
A key component of both of the schedulers is the round-robin priority 
encoder (RRPE). After considering several different implementations 
([93], [94], [96]), the design described in [94] was chosen and modified 
slightly to form the circuit depicted in Figure 4.5, which is replicated for 
each of the ܰ outputs. The main idea presented in [14] is to split up the 
priority encoding into two parts: The part from ݔ	 ∈ ,	௣௢௜௡௧௘௥ݎݎ} . . . , ܰ	 −	1} which is performed by PEtemp and ݔ	 ∈ 	 {0, . . . , ௣௢௜௡௧௘௥ݎݎ 	− 	1}, which 
is performed by PEsimpl. Both PEtemp and PEsimpl are simple priority 
encoders, each operating on their own subsection of the requests. The 
splitting is performed by first converting the rr-pointer to an N-bit mask 
such that the bits in position 0. . . ௣௢௜௡௧௘௥ݎݎ 	− 	1 = 0 and ݎݎ௣௢௜௡௧௘௥. . . ܰ	 − 	1 = 1. By performing a logical AND operation with 
the mask on the request vector, the result is a vector where all bits below 
the rr-pointer (0. . . ௣௢௜௡௧௘௥ݎݎ 	− 	1) are equal to 0 and the rest keep the 
value from the request vector. By feeding this modified vector into PEtemp, 
this priority encoding will only be performed on the bits from ݎݎ௣௢௜௡௧௘௥. . . ܰ	 − 	1. The input to PEsimpl is just the unaltered request 
vector. The output from the two priority encoders are finally fed into a 
multiplexer, which selects the output from PEtemp if this encoder has 
found a grant. If no grant is found in PEtemp (i.e. if all the inputs to PEtemp 
are zero), the output from PEsimpl is selected. By selecting the two encoders 
in this prioritized order, the result is a priority encoder, which encodes the 
request vector with the priorities descending from ݎݎ௣௢௜௡௧௘௥, . . . , ܰ	 −	1, 0, . . . , ௣௢௜௡௧௘௥ݎݎ 	− 	1 . 

4.2.5. Simulation Results 
Simulations are carried out in OPNET Modeler® [98] to evaluate the 
performance of ERRMS compared to other multicast scheduling designs. 
To determine the effect of increasing the look-ahead depth for MLRRMS 
and ERRMS beyond the recommended value of ܮ = 1, several values of 

 
Figure 4.5 - The chosen Round-Robin Priority Encoder design performs RR encoding by 
splitting up the request vector in two halves (above and below the round robin pointer) 

while applying a mask to the lower half. The two parts are processed in parallel by standard 
static priority encoders and merged to produce the final grant.
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 have been simulated. Independent multicast traffic is assumed to each ܮ73
input. To compare the performance of the algorithms in varying traffic 
conditions, Bernoulli traffic and bursty traffic with different fan-out 
schemes are considered.  

4.2.5.1. Traffic Model  

• Bernoulli traffic process: a cell arrives at an input with a 
probability of ρ. Thus the offered load can be calculated as ߣ	 	ߩ	= ·   .is the random variable of the cell fan-out ܨ where ,[ܨ]ܧ	

• Bursty traffic process (Correlated Arrival Process): the process has 
two states, Busy and Idle. Cells are generated only in the Busy state. 
The process stays in each state for a random number of cell times 
following the geometric distribution with mean values of [ܤ]ܧ 
and [ܫ]ܧ, respectively. The arrival rate is calculated as ߩ	 [ܤ]ܧ)/[ܤ]ܧ	= + 	ߣ and the offered load can be calculated as ,([ܫ]ܧ	 = 	ߩ	 ·  ,Since the traffic arrives at the switch in bursts .[ܨ]ܧ	
two modes of fan-out schemes can be applied, cell-based and 
burst-based.  

• Cell-based fan-out mode: the fan-out vector is independently 
generated for each cell.  

• Burst-based fan-out mode: the fan-out vector is independently 
generated for each burst of cells.  

 

4.2.5.2. Performance Comparisons  
Scheduling performances in terms of multicast delay are compared 
between WBA, FIFOMS, MLRRMS and ERRMS. Multicast delay is 
defined as the number of cell time periods that a multicast cell waits in the 
queue before being removed. A cell time period ܶ is defined by the cell 
size ݏ and the fabric byterate ܴܤ as ܶ =  Since fan-out splitting is 	.ܴܤ/ݏ	
applied, a multicast cell will not be removed from the queue until it is sent 
to all the destinations in the fan-out set.  

Comparisons on the average multicast delay under Bernoulli traffic 
applied are shown in Figure 4.6. Under high load, the FIFOMS, as a 
benchmark, outperforms the others because FIFOMS uses the VOQ 
architecture to schedule multicast traffic by creating up to ܰ  tokens (ܰ for 
the number of output ports) for each incoming packets and thus multicast 
HOL blocking is eliminated. The drawback of the FIFOMS is however 
the limited scalability as discussed. Since the WBA operates only on the 
HOL cells, it suffers from the HOL blocking and has the highest multicast 
delay as the output load increases. The ERRMS has better performance 
on the average multicast delay than the MLRRMS with ܮ = 1 when the 
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traffic load is heavy, and has the same performance as the MLRRMS with ܮ = 1 when the load is light. This indicates that the ERRMS is able to 
provide efficient multicast scheduling performance with reduced HOL 
blocking. As ERRMS is expanded to higher values of ܮ, its performance 
converges towards that of FIFOMS at the cost of extra hardware 
complexity. As such, ERRMS can be viewed as a more flexible and 
scalable alternative to the fully VOQ based FIFOMS system in terms of 
performance vs. cost. For higher values of ܮ, MLRRMS performs slightly 
better than ERRMS in terms of multicast delay, but has the before 
mentioned limitations in terms of scheduling speed.  

Having only Bernoulli traffic is not enough to evaluate switching 
scheduling algorithms since real-life traffic often comes in bursts. Thus 
the bursty traffic model is also applied. Comparisons on the average 
multicast delay under bursty traffic with cell-based and burst-based fan-
out schemes applied are shown in Figure 4.7 and Figure 4.8, respectively. 
Due to the more uneven traffic distribution, it is observed that the switch 
becomes more unstable as the traffic load increases under bursty traffic 
than under Bernoulli traffic.  

When a cell-based fan-out scheme is applied, as shown in Figure 4.7, the 
WBA is the first to become unstable because of the limited throughput 
caused by the HOL blocking. Since the FIFOMS eliminates the multicast 
HOL blocking, it results in the lowest average multicast delay. The 
ERRMS outperforms the MLRRMS with ܮ = 1 as the output load 
increases, and significantly reduces the multicast delay compared to the 
WBA. As with the Bernoulli traffic, increasing the look-ahead depth ܮ for 

 
Figure 4.6 - Average multicast delay vs. output load, Bernoulli traffic, 95% confidence 

interval calculated on 30 seeds. 
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ERRMS and MLRRMS offers only limited improvements to the multicast 
delay.  

When the burst-based fan-out distribution is applied, as shown in 
Figure 4.8, cells carrying the same fan-out vectors arrive in groups and it 
results in a higher delay due to the uneven fan-out distribution in the 
queues. The ERRMS has slightly better performance than the MLRRMS 
with ܮ = 1 as the output load approaches 0.85. Compared to the WBA, 
the ERRMS dramatically reduces the multicast delay. Increasing the look-
ahead beyond ܮ = 1 still only provides a small performance increase. 

 

 
Figure 4.8 - Average multicast delay vs. output load, bursty traffic with burst-based fan-out 

scheme, 95% confidence interval calculated on 30 seeds. 

 
Figure 4.7 - Average multicast delay vs. output load, bursty traffic with cell-based fan-out 

scheme, 95% confidence interval calculated on 30 seeds. 
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4.2.6. Hardware Synthesis Results 
In order to compare the performance and resource utilization of the two 
designs, they have both been implemented and synthesized for an Altera 
Stratix IV FPGA (EP4S40G2F40I2) [42]. Both are configured to have a 
look-ahead depth of ܮ = 1. As seen from the performance graph depicted 
in Figure 4.9, the ERRMS scheme outperforms the MLRRMS scheme 
with about a factor of two for all port configurations. Due to the efficient 
design of the ERRMS circuit, the maximum clock frequencies of the two 
designs are largely the same, even though the ERRMS processes two 
queue positions simultaneously. Consequently, the clock cycle count 
becomes the dominating factor in the processing speeds of the schedulers. 
Since the ERRMS needs only one cycle to perform a scheduling round, 
while the MLRRMS must process the two queue positions sequentially in 
two separate cycles, the ERRMS will perform approximately twice as many 
scheduling decisions per second as the MLRRMS.  

The required speed of the scheduler is directly proportional to the 
supportable throughput of the fabric in cells per second, and hence, to the 
throughput in Gbps for a give cell size. For a 32-port fabric, the scheduling 
performance of the FPGA implementation will be able to perform 63 
million scheduling decisions per second. This corresponds to sustaining a 
32Gbps traffic steam using a cell size of approximately 64B, given perfect 
cell utilization.  

 
Figure 4.9 - Hardware synthesis results for an FPGA implementation: Scheduling speed vs. 

switch size. 
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Looking at the resource utilization of the two different schemes 
(Figure 4.10), it is clear that the two designs have very similar logic 
utilization (Combinational Adaptive Look-Up-Tables (CALUTs)) and 
register utilization for schedulers with less than 20 ports. As the number 
of ports grows beyond 20 ports, the ERRMS start using more registers 
than the MLRRMS, but consumes correspondingly fewer logic cells. 
Hence, the ERRMS does not cause any significant overhead on the gate 
count of the schedulers compared to the MLRRMS implementation even 
though it performs scheduling on two levels in parallel.  

4.3. Chapter Summary and ERRMS 

Conclusion 
This chapter has looked into the subject of switch fabric scheduling for 
input queued switches. An overall introduction has been presented, 
followed by an in-depth description of the ERRMS algorithm, a novel 
multicast scheduling algorithm with look-ahead ability, for IQ switch 
architectures. Instead of using the iterative method as in MLRRMS to 
perform the look-ahead searching for cells that can be sent to otherwise 
idle outputs, the ERRMS performs look-ahead in parallel. Thus, only one 
cycle is needed to perform one scheduling round. This enables ERRMS to 
be used in a high-speed switching environment. The synthesis result 
achieved for the FPGA based implementation indicates that an 
implementation based on modern ASIC technology or future FPGAs will 

 
Figure 4.10 - Hardware synthesis results for an FPGA implementation: Scheduling speed vs. 

switch size. 
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likely be able to support the scheduling speeds required for e.g. 100 
Gigabit Ethernet. The trade-off compared to MLRRMS is that the switch 
fabric and input buffers must be able to support transmitting two cells 
from one input simultaneously for the ERRMS algorithm to work 
properly. By taking the fan-out information of the first two multicast cells 
into account when scheduling, instead of just considering the HOL cell, 
the ERRMS is able to increase the sustainable throughput significantly 
compared to WBA while providing much better scalability compared to 
FIFOMS. Simulation results show that increasing the look-ahead depth 
beyond these two cells will only provide marginal improvements to the 
throughput performance. The synthesis results have shown that the 
ERRMS is capable of providing much faster multicast scheduling than the 
iterative MLRRMS for the implemented look-ahead depth of two cells, 
about a factor of two for all port configurations. The speedup is expected 
to grow in the same approximately linear fashion if the look-ahead depth 
is increased. Even though ERRMS performs scheduling on multiple levels 
in parallel, the logic size of the ERRMS scheduler is reasonable for 
hardware implementation and scales well to even very large switch fabrics.  
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5. High Performance 
Forward Error 
Correction 

 

Forward error correcting (FEC) codes are an integral part of modern 
optical communication systems, as they allow for higher data throughput 
and longer reach (the so called bandwidth-distance product) for the same 
optical WDM channel width. As such, this was also a main research topic 
in the Celtic project “Elastic Optical Networks (EO-Net)” described in 
the introduction to this thesis[10]. This chapter presents the work done, 
as part of this project, to implement advanced FEC codes efficiently in 
parallel hardware to achieve high data throughput without sacrificing their 
error correction performance. The chapter first provides a short 
introduction to the two types of FEC codes used in the EO-Net project, 
with specific emphasis on the Low Density Parity Check Convolutional 
Codes (LDPC-CC). Furthermore, it introduces the concept of 
concatenating the two codes-types to enhance performance (Section 5.1). 
Secondly, it describes how implementations of these two types of FEC 
codes can be parallelized in hardware to improve throughput (Sections 5.2 
and 5.3, respectively). The work presented in this chapter is targeted 
towards incorporation into designs running the Optical Transport 
Network (OTN) standard as described in Chapter 6, but it is generally 
applicable to other configurations as well.  

5.1. Background 
The hard-decision Reed-Solomon (RS) (255,239) FEC code is used for a 
broad range of applications, ranging from data storage to optical 
transmission systems. It is also the default FEC used for data correction 
in the OTN standard [99][100]. As depicted in Figure 5.1, this FEC makes 
it possible to transmit data reliably, at much lower signal-to-noise ratios 
(SNR) than without FEC coding. The cost is a 7% parity overhead on top 
of the information bits, corresponding to a code rate (information-to-
transmission bitrate ratio) of approximately 0.9.  However, since it is an 
algebraic code based on hard decision bits, the code gain provided by 
RS(255,239) is relatively low compared to more complicated codes[101]. 
To improve the noise resilience of optical transmission systems even 
further, the more advanced Low Density Parity Check (LDPC) soft 
decision FEC codes have been suggested[101]. LDPC is a so called 
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capacity approaching code, which means that it is able to achieve an error 
correction performance very close to the Shannon limit[102]. The price 
for the high performance is added complexity, especially in the decoder, 
compared to the standard RS FEC.  

5.1.1. Low Density Parity Check Codes 
An LDPC code of rate ܴ = ݇/݊ is usually defined by its parity check 
matrix ࡴ, of size [(݊ −  where ݇ is the length of the information ,[݊	ܠ	(݇
sequence, and ݊ is the length of the transmitted coded sequence. A bit 
sequence ࢉ is a valid (error free) codeword if ࢀࡴࢉ = ૙, where ૙ is an all-
zero vector, and ࢀࡴ is called the syndrome former of the code. LDPC codes 
are usually decoded using an iterative message passing algorithm, e.g. sum-
product or min-sum, which work with soft bits. When soft bits are used, 
instead of simply using the received bit value (‘1’ or ‘0’), which may be in 
error due to channel noise, the decoder also includes information about 
the reliability of the bit. Soft decision decoding is shown to give a gain of 
up to 3 dB compared to hard decision decoding [100]. The reliability of 
the bit is usually represented by its log-likelihood ratio (LLR). The LLR ܮ௕ of 
a certain bit ܾ is given by the log of the ratio between the probabilities of 
that bit being a ‘1’ and a ‘0’: ܮ௕ = log ௣(௕ୀଵ)௣(௕ୀ଴). 
The hard decision is obtained by taking the sign of the LLR : ‘1’ if ܮ௕ > 0 
and ‘0’ if ܮ௕ < 0.    By including soft information in the FEC calculations, 
soft decision LDPC is able to achieve code gains, much higher than 
standard hard decision codes such as RS(255,239) and can reconstruct 
information at much lower SNR values. LDPC codes are iterative codes, 
which means that they process the same bit sequences multiple times to 
improve performance, increasing the certainty of the LLR values for each 

 
Figure 5.1 – Simulation showing the bit error rate before and after Reed-Solomon FEC decoding 

as a function of the SNR. 
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iteration. After a number of iterations, a hard decision is made based on 
the sign of the LLR, and the binary bits are passed on to the next 
processing step in the receiver.  

5.1.1.1. Convolutional LDPC Codes 
In [103] the authors proposed a new class of LDPC codes, called LDPC 
convolutional codes (LDPC-CC). LDPC-CC rely on the periodic structure of 
the parity-check matrix ࡴ to accommodate practical encoding and 
message-passing decoding of arbitrary block lengths. In this subsection, 
the properties of the LDPC-CC are described regarding practical 
implementation. For a more comprehensive description and analysis of 
the error-correction capabilities of the codes, the reader is referred to 
[104], [103]. Convolutional codes, and thus LDPC-CC can be described 
by their memory ܯ. The memory of the code shows how many previous 
bits the current encoded bit is dependent on. The work presented here is 
restricted to codes with rates ܴ = ܾ/(ܾ + 1), where ܾ is an integer, and 
memories ܯ = ܶ + 1, where ܶ is the parity-check matrix period. First a [(ܾ + 1)ܶ	x	ܶ] low-density matrix (i.e. consisting of mostly zeros) is 
constructed randomly [100], after which the unwrapping procedure described 
in [103] is used to obtain the syndrome former ࢀࡴ. It is shown in [103] 
that the encoding can be performed by a shift register with variable 
connections to an output ݎ݋ݔ function as depicted in Figure 5.2. These 
connections are given in each clock cycle by the syndrome former matrix, 
which is stored in a local memory block and accessed in a cyclic manner 
with a period of ܶ.  

The choice of the code memory is crucial for its performance, as well as 
for the hardware implementation complexity and scalability of the system. 
In [103] it is proven, that the minimum distance of the code, and therefore 
its error-correction capability, grows linearly with ܯ. However, increasing ܯ requires increasing ܶ, which leads to increased encoding and decoding 

 
Figure 5.2  - Block diagram for a LDPC encoder of rate ½ [107].   
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complexity. A long period ܶ means that the encoding circuit needs to be 
larger and the hardware memory requirements in the decoder is increased 
due to the necessity to store at least one period of the data in the system.  

5.1.1.2. Terminating the LDPC-CC 
Since OTN is a frame-based communication standard, each code block 
must be at most as long as the frame. This requires that the encoding 
process is stopped, once the desired length is reached, while ensuring that 
the encoded bit sequence ࢉ is still a part of the code space, i.e. ࢀࡴࢉ = ૙. 
This process of ensuring code integrity is known as termination. 
Termination of a convolutional code usually means feeding the encoder a 
certain bit-stream, which sets the shift register to the all-zero state. 
However, since the connections here are flexible, and since the encoder 
has a feedback loop, this is not as straight-forward as for conventional 
convolutional codes. In [104], the authors derive a termination circuit for 
the LDPC-CC. However, it is rather complex for hardware 
implementation. In this thesis, it has been chosen to terminate the encoder 
by zero-padding, i.e. by adding a tail of zeros to the information seqeuence 
processed by the encoder. The length of the zero-sequence is known to 
the receiver, and thus only the resulting parity bits are sent on the channel 
along with the original codeword. This does not bring the shift register to 
an all-zero state, but if the zero-sequence is long enough, the performance 
degradation due to the improper termination is negligible. The zero-
sequence used in this thesis is of length ܯ + 1, which has been found to 
result in less than 0.1dB loss compared to the code with proper 
termination from [104]. Termination also results in a reduced code rate. If 
the information word length is ݇, and the non-terminated code rate ܴ =ܾ/ܿ, the true code rate after zero-padding termination is ܴ௧௥௨௘ =௞೎್௞ା௖(ெାଵ) < ௕௖. 

 

5.1.2. Concatenated FEC Codes 
The LDPC codes have very good coding performance, approaching the 
Shannon limit. However, the LDPC codes generally show an error floor, 
which is too high compared to the common bit error rate target of optical 
transmission systems of at least 10-12. One way of reducing this problem 
is to improve the so called girth of the LDPC code by increasing the 
codeword length or increasing the FEC overhead of the code. However, 
increasing the codeword length or the FEC overhead comes at the cost of 
logic complexity or reduced effective throughput, respectively[105]. A 
more efficient option is to use the well known concept of concatenated 
codes, as described in [105] for RS and LDPC codes. In a concatenated 
RS/LDPC code, the errors which are left uncorrected by the inner LDPC 
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code are corrected by a second FEC layer employing the simpler Reed-
Solomon code mentioned above. A RS (255,239) code is much less 
complex to decode than LDPC codes. Hence, the combined cost of using 
two FEC systems is significantly smaller than expanding a single LDPC 
FEC  to achieve similar performance[105].  

Figure 5.3 shows the output BER of an RS decoder as a function of the 
input BER coming from the LDPC decoder. As seen, the hard decision 
RS code works very well for low error rates and is able to further reduce 
the combined BER multiple orders of magnitude, going below 10-14 for 
an input BER of 10-4. Hence, the goal output BER of the LDPC decoder 
will be around 10-4 to achieve practically error free transmission. This can 
be achieved by selecting an LDPC code appropriate to the SNR of the 
channel and by fine tuning the number of LDPC decoder iterations. These 
parameters should be selected such that the 10-4 BER target is met with 
the smallest possible resource requirements in terms of chip area, parity 
overhead and power consumption. This can be done either statically, 
based on worst case assumptions, or dynamically, as described later in 
Chapter 6, to continuously achieve an optimal trade off based on the 
current state of the system.  

  

 
Figure 5.3  - Bit error rate after Reed-Solomon FEC decoding as a function of the input bit error 

rate assuming the worst case scenario of uncorrelated (non-bursty) errors at the input.  
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5.2. Reed Solomon FEC for OTN4 
This section focuses on the Reed-Solomon (239/255) FEC algorithm 
specified by the earlier OTN standards [106]. It specifically examines and 
proposes solutions to the problem of scaling the algorithm to OTN4 line 
speed of 112Gbps, in an Altera Stratix IV FPGA. This FPGA family was 
state-of-the-art in 2010 when this research was performed [P4], and is also 
the FPGA type used in the demonstration platform for the EO-Net 
project[107]. The synthesis results included in this section show, that it is 
indeed possible to scale the algorithm to 112Gbps, using this FPGA 
technology with the proposed design approach.  

5.2.1. RS FEC operation in OTN 
The forward error correction (FEC) functionality is a key component, and 
one of the most logic resource consuming parts, of an OTN module. By 
means of the standard Reed-Solomon (239/255) FEC, the receiver is able 
to correct up to eight incorrectly received bytes in a 255B codeword, or to 
detect at least 16 incorrect bytes with no correction. The cost of this 
functionality is 16 extra bytes of data for each codeword. This means that 
for each 239B of user data, an additional 16B of FEC code needs to be 
transmitted, thereby totaling 255B. In order to improve the system's 
tolerance towards error bursts, the 16 codewords, which make up each 
row in the OTN frame, are byte-interleaved. This spreads error bursts over 
several codewords, thus decreasing the probability that any one codeword 
contains more than the eight byte errors, which are correctable by the 
algorithm. Since OTN frames consist of four rows, the total number of 
codewords in one frame is 64.  

5.2.2. Parallel RS FEC implementation 
The Reed-Solomon FEC algorithm in OTN is byte oriented [106]. 
Unfortunately, the standard 8-bit bus width is much too narrow to reach 
the 112Gb/s required for OTN4 using RS(239/255) FEC encoding. In 
order to reach this speed while working on 8-bits per clock cycle, the 
internal clock of the calculation circuit would have to run at 14GHz, which 
is highly unrealistic. To reduce the required maximum frequency to a 
reasonable level, a hardware based FEC solution has been designed and 
implemented, which processes 64B per clock cycle. The high throughput 
of the system is accomplished by processing each of the 64 individual FEC 
code words, which make up an OTN frame, in parallel. The 64 code 
words, each processed one byte at the time, add up to 512bits per clock 
cycle. This brings the required clock frequency down to 218.75MHz, 
which is a more realistic clock speed using current FPGA technology. The 
implementation is further facilitated by the practice of byte-interleaving 
code words, which makes it easier to distribute the data to the encoding 
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circuits on the transmit side and the error correcting FEC decoder circuits 
on the receive side.  

On the encoding side, the data for each of the four OTN rows is 
distributed to 16 individual encoding circuits (64 parallel encoders in total). 
After the encoders, the FEC data is multiplexed into the four byte-
interleaved FEC blocks, which are transmitted at the end of each row 
(each containing the data from 16 encoders) as defined in the OTN 
standard [106]. At the receiver, a similar system could be implemented, 
consisting of 64 individual FEC decoding circuits, each working on a 
separate sub-stream of bytes. These systems would all consist of a 
syndrome calculator, a polynomial division circuit and an error 
amplitude/position calculation circuit as depicted in Figure 5.4. 
Unfortunately, the combined circuitry of the correctors is far more 
complex than the simple encoding circuits, making this approach an 
unviable option from a resource utilization perspective.  

Luckily, the polynomial division circuit (PDC), which is the most complex 
and resource consuming part of these decoders, has a significantly higher 
throughput than the other components. The PDC only uses a maximum 
of 16 clock cycles to process an entire 255B codeword, whereas the other 
two components use 255 cycles for their operations. As a consequence, 
one PDC can handle the data from up to 16 parallel FEC calculations, if 
they are clocked at the same speed as the rest of the system. Hence, the 
number of PDC circuits in the system can be reduced to four, if a simple 
resource sharing system is implemented. The parallel decoding circuit is 
depicted in Figure 5.5. In order to reduce the clock constraints on the 
PDC to meet the limitations of the FPGA for which the design was 
targeted, the synthesized design uses five PDC circuits. This reduces the 
PDC clock to 164.5MHz at the cost of an additional PDC and some 
slightly more complex multiplexing and demultiplexing circuitry on each 
side of the PDCs. In modern FPGAs this would not be necessary due to 
their faster logic speed.  

 

Figure 5.4  - Serial Reed-Solomon decoding circuit.   
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5.2.3. Synthesis Results 
In order to verify that the FEC algorithm can be implemented to run fast 
enough in a single FPGA, the system has been synthesized to a medium 
sized Stratix IV GT FPGAs from Altera (EP4S100G2-F40I2), which is 
designed for 100Gbps applications [42]. The synthesis results for the 
individual components of the RS implementation are listed in Table 5.1. 
Using this FPGA, the proposed design takes up approximately 46% of the 
FPGA resources, which still leaves plenty of room for the surrounding 
control logic, which is necessary to complete the system. The resource 
consumption of the proposed system is relatively large, but significantly 
smaller than a fully parallelized design (using 64 separate decoders) which 
uses over 171% of the FPGA resource. The resource usage of the system 
is still relatively large, but not unexpected given the high throughput 
requirements. For comparison, a 10Gb/s circuit would take up around 
5.41% of the FPGA resources, while running at 208.33MHz using the 
same resource sharing approach. Using the FPGA from the EO-Net 
demo board, which has the highest number of logic elements available in 
the Stratix IV family, the proposed 112Gbps design would only take up 
approximately 20% of the logic resource. 

Figure 5.5 – Parallel Reed Solomon decoding circuit.  
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5.2.4. Reed Solomon Summary 
This section has outlined the research challenges of scaling the standard 
OTN RS(239/255) Forward Error Correction algorithm [106] to 
100Gb/s speed. Based on this, it has presented a viable solution to 
obtaining the required throughput using a Stratix IV FPGA. In particular, 
it is shown that the necessary processing speed can be obtained, at a 
realistic clock frequency, by means of parallelization. The results show that 
it is indeed possible to implement this algorithm for 100Gb/s operation, 
as part of a larger OTN-4 system, using only a fraction of the available 
FPGA resources. With modern FPGAs being both faster and larger (more 
than twice the number of logic elements is announced for Aria 10), the 
proposed design will even scale to 448Gbps if a future OTN-5 standard 
still uses Reed-Solomon (255,239).  

 

5.3. Parallel LDPC-CC for high speed 

connections 
As mentioned in Section 5.1, soft decision LDPC codes are much more 
complicated in terms of calculations per bit compared to hard decision 
algebraic codes like the Reed-Solomon (255,239) described above. As part 
of the EO-Net project it was thus investigated how best to implement an 
LDPC-FEC circuit, which was both fast enough to reach the 14Gbps 
speed of the FPGA-based proof of concept platform, while allowing for 
variable code rates[10]. The initial LDPC-CC encoder and decoder circuits 
built for the project were only capable of reaching 1200Mbps and 20Mbps 
respectively in a Xilinx Virtex 6 FPGA, and a trial synthesis for the Stratix 
IV FPGA used in the EO-Net prototype setup has shown similar results 

 64 Enc. 64 Syndr. 
Calc. 

5 Poly.
Div. 

64 A/P 
Calc. 

Total 

Logic Util. 6% 4% 11% 25% 46% 

Comb. 
ALUTs 10,761 8,193 19,440 44,736 83,130 

Registers 8,704 8,192 5,195 18,048 40,139 

Fmax 
(MHz) 

388.95 353.61 203 237.19  

Table 5.1 - Synthesis results for medium sized Stratix IV FPGA (182,400 Comb. ALUTs). 
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[107]. This section will show how these designs can reach gigabit speeds 
by parallelization.  

5.3.1. Encoder 
The serial encoder is by far the faster and the smaller of the two circuits. 
For this reason, the proposal here is to simply replicate the encoding 
circuit multiple times to form 16 encoded streams in parallel. These 
streams will then be multiplexed to form the high speed serial output 
stream. As will be described in the synthesis results section (5.3.3), the 
aggregated throughput of the encoders can reach over 21Gbps, while 
using only 2-3% of the logic resources available on the Stratix IV FPGA.  

5.3.1.1. Parity matrix compression  
It may be noticed from the synthesis results, that the encoders do not use 
any block memory resources, even though each encoder has an ்ܪ matrix 
of size [ܿܶ	x	ܶ]  attached to it (as described in subsection 5.1.1). This is 
because the matrixes are implemented as distributed memory, i.e. using 
logic elements. Because of the sparse nature of the parity matrixes (hence 
the name Low Density Parity Check Codes), it was found to be highly 
inefficient to use regular memory blocks to store the matrix, since most of 
the memory would be occupied by zeros. By specifying the memories as 
distributed memory, the synthesis tool is able to use Boolean optimization 
techniques to effectively compress the 64kbit of data (for one encoder) 
into only 403 ALUTs. For higher values of ܶ, the compression factor is 
even higher. To further optimize the circuit, one could consider using just 
a single ்ܪ matrix to drive all 16 encoders in unison. The extra path delay 
between the shared matrix and the encoders is easily reduced by pipelining 
the memory access.  

5.3.2. Decoder 
When it comes to the decoder, the lower speed and much higher memory 
requirements mean that it is impossible to reach multi-gigabit speeds in 
the Stratix IV FPGA by merely duplicating the circuit. The resulting design 
would simply be too large to fit in the FPGA. Here, it is absolutely 
necessary to perform internal parallelization of the decoding circuit, before 
it is replicated. Before moving onto the issue of parallelization in 
subsection 5.3.2.2, subsection 5.3.2.1 provides a condensed description of 
the decoding algorithm, and establishes the terminology used throughout 
the rest of this chapter.  
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5.3.2.1. Basic Implementation Aspects of LDPC-CC Decoding Circuits 
The LDPC decoding is performed by a number of processors, each 
performing one iteration of a message-passing algorithm (the min-sum 
algorithm in this case). As opposed to the LDPC Block Codes (LDPC-
BC), LDPC-CC decoders do not require each iteration to complete before 
the next one can start. The data in LDPC-CC decoders can flow 
continuously through a series of iteration processors, each working on a 
separate data window. This is possible because data dependencies within 
the algorithm can only reach ܯ bit positions back in time. The decoding 
within the processors is best illustrated using a Tanner Graph based on 
Check Nodes (CN) and Variable Nodes (VN) as depicted in Figure 5.6. 
The Tanner graph shows the ݎ݋ݔ relationship over time between the 
coded bit sequence, as defined by the encoder and the ܪ matrix for the 
code. Hence, compared to the encoding circuit depicted in subsection 
5.1.1, Figure 5.2, the VNs correspond to the shift registers (ܦ) and the 
CNs correspond to the right-most ݎ݋ݔ which generates the output parity 
bit. At each point in time, the algorithm checks the VNs against the 
original ݎ݋ݔ equations and updates the LLR values of the VNs 
correspondingly. Once a bit from the channel has been processed through 
the entire window, the LLR contents of the VNs corresponding to that 
particular bit are used to calculate an updated LLR value, which is passed 
on to the next processor. In hardware implementations, the algorithm can 
be split into a Check Node Unit (CNU), which compares and updates the 
LLRs of the current VNs, a Variable Node Unit (VNU), which updates 

 
Figure 5.6  - Tanner Graph for rate ½ (5, 3(2), 5) LDPC-CC time-variant decoder. Each processor 
deals with a specific ms+1 part of the graph. Black and grey nodes represents variable nodes with 
three (3) and two (2) variable degrees respectively and yellow nodes represent check node units 

with five (5) check degree. [107]. 
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the LLR of the next bit to exit the iteration, and some memory to store 
the values of the VNs as they are being processed. Furthermore, some 
control and switching circuitry is required to connect the CNU to the 
correct VN memory locations at each point in time. As described later, 
parallel implementations may use multiple instantiations of these 
components to increase throughput.   

5.3.2.2. Decoding in parallel 
The original decoder is already parallelized in the iteration domain by 
separating each iteration of the code into separate sub-processors, which 
can run in a pipelined fashion. However, the individual check node and 
variable node updates, corresponding to the processing of a single data 
word, are performed sequentially, as are the memory accesses. For the 
check degree of 12 used in this implementation, each CN is connected to 
12 VNs. Hence, 12 memory read and 12 memory write operations must 
be performed for each CNU calculation. The VNUs use one cycle to write 
the arriving word to memory and four cycles to read the four VNs, which 
produces the output word at the edge of the processor window. 
Consequently, each data word takes around 29 cycles to process [107]. By 
using dual-port memories for the Variable Nodes (VN) and parallelizing 
the Check Nodes Update (CNU) and VN Update to perform all 12 
calculations and updates in parallel, this can be reduced to just 2 cycles. 
To allow for this parallel operation, the circuit must distribute the VNs 
over 12 different memory banks and construct the code in such a way that 
the individual data banks are accessed exactly once per update. The 
modified circuit is depicted in Figure 5.7. These modifications bring the 

 
Figure 5.7 – Semi parallel processor architecture [107]. 
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throughput of the decoding circuit up to around 190Mbps in the Stratix 
IV FPGA.  

To further increase the throughput, the decoder has been modified to 
process multiple input words, i.e. steps in the Tanner graph, in parallel 
based on the approach described in [108]. Aside from the necessary 
hardware modifications, processing words in parallel also puts constraints 
on the construction of the LDPC-CC code itself. In the serial case adjacent 
words can be interdependent, i.e. the correction of one word may effect 
the correction of the neighbours. In the parallel case, the word 
interdependence must be restricted, such that words which are processed 
in parallel do not affect one another. When this constraint is fulfilled, the 
data can be processed in parallel. The parallel system for a parallelization 
factor of ܲ = 4 is depicted in Figure 5.8. As can be seen, the parallel 
system has ܲ CNU units, which each processes the 12 VN values 
corresponding to a single input word. To ease the hardware 
implementation, the code has been constructed in such a way that the 48 
VN values for the 4 adjacent steps in the Tanner graph are stored in the 
same 12 physical memory locations, each of which contain 4 values. The 
interconnection between the VNs and the CNUs are defined in a separate 
connection memory, which controls a switching network. The switching 

 
Figure 5.8 – Fully parallel decoder (only logic for one out of four variable nodes shown). Memory 

address calculation unit has been omitted for simplicity.  
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network divides the 48 values amongst the 4 CNUs, according to the 
current position in the Tanner graph, and makes sure that the outputs of 
the CNUs return to the corresponding VNU memory locations.  

5.3.2.3. Forming the parity matrix 
The parallel structure of the decoder puts several restrictions on the 
construction of the parity-check matrix:  

1. The 4 CNUs work on 4 data words in parallel in each update 
cycle. Hence, there can be no data dependencies between VNs 
updated by different CNUs within the same 4-word window. 

2. To reduce logic complexity, the distribution of LLRs over the 4 
CNUs is performed using 4x4 barrel shifters, so these 
connections can only be linear shifts. This structure also ensures 
that restriction (1) holds. The parity-check matrix must reflect this 
restricted VN-to-CN relationship.  

3. Furthermore, for the decoder to function the VNs must be 
distributed over 3 banks in the decoder. This distribution must be 
made such that the VNs corresponding to each 4-word window 
are stored in three different banks, with exactly 16 LLR values in 
each, to form 12 inputs to each of the CN. That way, no bank 
needs to be accessed more than once for each CN operation. The 
same restriction is applied for the VNUs, which also requires 48 
inputs from the three memory banks.  

The parity-check matrix is generated at random using Matlab with the 
above restrictions in mind. The rows and the columns correspond to the 
CNU and the VNU connections, respectively, and are assigned 4-by-4 
because the circuit processes 4 words in parallel. As the matrix is 
generated, the VNs are distributed over the three banks to allow for the 
parallel access described above. The parts of the parity-check matrix 
corresponding to each VN circuit are generated separately. Below follows 
the pseudo-code for generating the matrix:  

For each VN circuit 
For each column in ܪ௏ே்  
 While used banks <3 
  Select random unused row R 

Select random bank number B which is unused in this 
row and column (see 3 above) 

  Select random rotation Z (for restriction 2 above) 
  Insert the 4x4 Z rotated matrix with bank B in row R 

End While 
         End For   
End For 
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There is a chance that the algorithm may deadlock towards the end of the 
matrix, in which case the matrix construction (for this VN circuit) is 
redone from scratch. For a 16x16 matrix, corresponding to a period ܶ =16, the result for one VN can look like Table 5.2. Based on this matrix, 
the encoding matrix is easily generated by inserting a ‘1’ instead of the 
bank numbers. For the decoder, the information for each point in time 0]߳ݐ. . ܶ/4 − 1] in the period of the code is stored in separate memories 
controlling the 4x4 switches (rotation) and the memory access 
(address/bank pairs).  

5.3.3. Synthesis Results 
As seen in Table 5.3, the modified decoding circuit with the described 
parallelizations, has a significantly higher throughput than the serial 
version. The parallellized decoder reaches 664Mbps, while using only 5% 
of the available look-up tables (LUTs) and less than 1% of the available 
register and block memory (BM) resources. With this reduction it is now 
feasible to replicate the circuit to handle the 16 streams from the 16 
encoders. The aggregated throughput in the target FPGA is now 
10.624Gbps using 82% of the available logic resources and less than 5% 
of the internal SRAM memory. It should be noted, that both the speed 
and the logic density of FPGAs are significantly lower than competing 
platforms such as ASICs. It is therefore expected that the design will scale 
to 100Gbps in an ASIC implementation. Furthermore, as previously 
mentioned, current FPGAs are both larger and faster than their older 
siblings, which are used in this project.  

VNU  
t=0 

 
t=1 

 
t=2 

 
t=3 CNU 

 
t=0 

1000 
0100 
0010 
0001 

0000 
0000 
0000 
0000 

3000 
0300 
0030 
0003 

0002 
2000 
0200 
0020 

 
t=1 

0020 
0002 
2000 
0200 

3000 
0300 
0030 
0003 

0100 
0010 
0001 
1000 

0000 
0000 
0000 
0000 

 
t=2 

0000 
0000 
0000 
0000 

0100 
0010 
0001 
1000 

2000 
0200 
0020 
0002 

0003 
3000 
0300 
0030 

 
t=3 

0030 
0003 
3000 
0300 

0020 
0002 
2000 
0200 

0000 
0000 
0000 
0000 

1000 
0100 
0010 
0001 

Table 5.2 – Example of a 16x16 decoder party matrix. Numbers 1-3 corresponds to a connection in 
banks 1-3.  

Zero = no connection.  
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5.4. Chapter Summary 
This chapter has given an introduction to the two types of FEC codes 
used in the EO-Net project and shown how they can be implemented in 
parallel hardware for high throughput systems. The Reed-Solomon code 
is easily parallelized to reach over 100Gbps in a Stratix IV device using 
less than 20% of the available resources in the largest FPGA in the family. 
For the LDPC-CC code, parallelization is more complicated. Not only is 
the algorithm itself much more complex, but the parallelization opens up 
for memory access collisions and restrictions on data dependencies. This 
must be thought into the parity-check matrix when defining the code, as 
well as the hardware design. The proposed LDPC-CC design runs at 
10.624Gbps using 82% of the logic resources available in the Stratix IV 
FPGA. Combined with a RS 10Gbps encoder, the total resource usage 
becomes 87% for the concatenated FEC (not including control logic and 
interleaving circuitry between the two FECs). Consequently, it may be 
possible to implement a complete 10Gbps concatenated FEC on the 
prototype platform from the EO-Net project. This can be used for 
optimization and proof of concept, before the design is ported to a more 
high performance FPGA or ASIC platform.   

 Throughput(1) Resources % (1) Throughput(16) Resources % (16) 

  LUT Reg BM  LUT Reg BM 

Encoders 1.346 Gbps 0.14 0.2 0 21.536 Gbps 2.24 3.2 0 

Decoders 0.664 Gbps 5 0.6 0.3 10.624 Gbps 80 9 4.6 

Table 5.3 - Synthesis results for implementation in Stratix IV FPGA (EP4SGX530NF45C3).  
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6. Energy Efficient 
Optical Transport 
Networks 

 

While the previous chapter focused on enhancing Forward Error 
Correction (FEC) throughput and performance for next generation 
optical links, this chapter addresses the issue of improving energy 
efficiency. The chapter provides a general overview of how elastic optical 
networks, which are the focus of the EO-Net project, can reduce overall 
power consumption and moves on to examine adaptive FEC in greater 
detail, as a means of energy conservation.  

6.1. Overview of Elastic Optical 

Networks 
The concept of dynamic data rate adaptation is widely used in modern 
wireless transmission technologies, where spectral efficiency is traded off 
for higher reliability on low quality links by changing parameters such as 
the modulation format or the code rate of the FEC [109]. On optical links, 
on the other hand, the trend has commonly been to use fixed data rates 
due to the more static conditions of the underlying transmission medium. 
However, in recent years the concept of elastic optical networks has received 
increasing attention as a means of reducing the overall power 
consumption of optical networks[8], [110]–[112]. The main idea is to 
dynamically adjust the links depending on the current capacity demand to 
the most power efficient configuration which will still provide the required 
bandwidth. Of the several parameters which can be modified to reduce 
power consumption at the cost of throughput, the EO-Net project has 
primarily focused on the following:  

• Reducing the number of active channels: This is one of the more efficient 
ways of reducing power consumption as all the dedicated optical 
and electrical equipment for the deactivated channels can be put 
in low power mode or turned off completely. However, opening 
and closing a channel takes time and can cause disruption in the 
traffic running on the link.  
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• Reducing the per channel optical symbol rate: This method means less 
load on the electronic components, which needs to process the 
data such as the digital signal processors (DSP) and the FEC. The 
downside is a possible loss of synchronization in the receiver as 
the change is taking place.  
 

• Using less spectrum efficient modulation schemes: As known from general 
information theory, less spectrum efficient modulation schemes 
can function at lower signal to noise ratios (SNR) for a given bit 
error rate (BER)[113]. Hence, less regeneration, amplification and 
signal processing will be needed. As with the symbol rate, the 
digital electronics such as the FEC can also run at a lower rate 
thus saving power. Like the two previous techniques, changing 
the modulation will usually cause a temporary disruption to the 
link until the DSP algorithms converge to the new modulation 
format [114], [115]. Yet, recent work has shown that it is indeed 
possible to change modulation formats between optical packets 
without disruption at the cost of a small amount of extra overhead 
before each packet [114], [115]. It would also be possible to retain 
the same channel throughput with a less efficient modulation 
format if the spectrum was allowed to overlap adjacent (free) 
channels in the fiber. Thus, shutting down one active channel 
could not only save the energy for that channel, but for 
neighbouring channels as well, if they can utilize the released 
spectrum capacity. However, since the current ITU standard 
requires each channel to stay within a fixed 50GHz frequency 
band, this feature would require a more flexible channel grid as 
described in [8].  
 

• Adding more FEC overhead: Inserting extra parity bits at the cost of 
lower effective throughput will increase the FEC’s ability to 
correct errors and thus provide a coding gain corresponding to 
increasing the SNR. As a consequence, less regeneration, 
amplification, signal processing and FEC decoding iterations are 
needed to achieve the same BER. The FEC overhead can be 
changed without disrupting the traffic if the decoder knows exactly 
where in the bit stream this change is taking place – given that the 
FEC is designed with this functionality in mind.  
 

While all of these parameters are good candidates for saving power, there 
is a clear difference in how often the different parameters can be changed 
in practice as well as the potential power reduction from changing the 
parameters.  
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6.2. Adaptive forward error correction 
This section focuses on using the FEC overhead as a mean of dynamically 
trading off bandwidth for power reduction. The aim is to use the extra 
overhead to reduce the power consumption of the FEC circuitry itself. 
The scheme leverages the fact that modern iterative decoders will need 
fewer decoding iterations, and thus less power, to restore the data as the 
parity-to-information bit ratio increases. As mentioned in Section 6.1, an 
advantage of manipulating the FEC is that this can be done with no ill 
effect to the live traffic on the link, since the physical part of the 
transmissions system is independent of the FEC format. Also, with the 
right implementation, the rate resolution can be made very high with 
limited impact on the hardware complexity of the FEC. For these reasons, 
the code rate is an excellent parameter for utilizing small and brief traffic 
variations, i.e. the ripples in the capacity demand, to conserve energy. 
Even though the immediate power reduction will be relatively small 
compared to e.g. turning off an entire WDM channel, the effect will 
accumulate as it can run continuously on top of other power reduction 
measures. Hence, it would provide a small, but continuous reduction in 
power consumption. In order to facilitate seamless integration into 
existing systems, the proposed scheme is designed as a transparent add-
on to transceivers running the Optical Transmission Network (OTN) 
protocol [99] and is fully backwards compatible. Hence, this proposed 
extension can easily coexist with current OTN implementations in a 
network. The rest of the section is structured as follows: Subsection 6.2.1 
gives an overview of related work in the field of adaptive FEC for optical 
networks. Subsection 6.2.2 gives a brief introduction to the challenges 
related to building a rate adaptive FEC circuit. Subsection 6.2.3 describes 
how the OTN standard is modified to allow frame-by-frame rate 
adaptation and Subsection 6.2.4 describes how manipulating the rate can 
reduce the power consumption of the FEC decoder. Subsection 6.2.5 
presents simulation results, which indicate how this scheme will affect the 
power consumption of an optical transmission system for a specific subset 
of FEC codes with different code rates. Section 6.3 concludes on the work 
presented in this chapter.  

6.2.1. Related Work 
In recent years, there has been increasing interest in the idea of employing 
the familiar concepts from adaptive radio communication to optical links. 
In [111] an adaptive FEC for optical communication systems was 
proposed which was later expanded in [112] to include adaptive 
modulation. The FEC adaptation is done by using separate FEC 
algorithms for each rate, which give the optimal FEC performance, 
although it is more costly in terms of hardware complexity. The main goal 
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of the scheme is to automatically trade off transmission bandwidth for 
optical reach by using the measured BER at the receiver to select the 
appropriate FEC/modulation combination. The authors assume that 
there exists a feedback path to relay this information back to the 
transmitter. This scheme works well for finding the most efficient static 
parameters for an optical link, but lacks the capacity to perform fast 
adaptation without packet loss since it is not designed for dynamic power 
reduction. The work in [101] describes the benefit of using Soft- Decision 
(SD) FEC codes, specifically LDPC codes [116], to improve the reach of 
long haul optical networks, but also highlights the heavy complexity and 
high power consumption of the iterative soft decision decoding. To 
reduce the overall power consumption of the network, the authors suggest 
to adapt the number of decoding iterations based on the BER 
performance which comes from the quality and length of the individual 
links. Using fewer iterations results in lower coding gain but reduces the 
processing load on the FEC decoder. Using Dynamic Frequency and 
Voltage Scaling (DFVS) this translates to a corresponding reduction in the 
power consumption of the decoder. In a simulated US network, the 
authors show a power reduction of up to 82% in the FEC decoders 
compared to using the worst case number of iterations for all links. As 
with the rate adaptive FEC described in [111] and [112], this scheme is 
also focused on optimizing the FEC of a static link. However, the main 
idea of reducing the number of iterations based on the post-FEC BER is 
well suited for elastic transmission systems where the BER performance 
can be increased at the cost of decreased throughput. This is explained 
further in subsection 6.2.4.  

6.2.2. Rate Adaptive Channel Coding 
The system proposed for the adaptive FEC is a concatenated design, using 
a combination of the simple hard decision Reed-Solomon code (RS), 
combined with a soft decision LDPC-CC code as described in Chapter 5. 
The overall idea is to keep the RS system static, while manipulating the 
LDPC-CC code (or leaving it out altogether) to increase the overall code 
rate. The most straightforward approach to changing the code rate of the 
LDPC system is to use different codes for each required code rate as 
proposed in [112]. The benefit of this approach is that each code can be 
tailored to provide the optimal BER performance at the given rate. The 
drawback is that the hardware will need to support multiple different 
codes, potentially requiring a separate encoding/decoding circuit for each 
code, which increases the hardware complexity of the FEC. A different 
approach to support a large number of code rates with minimum hardware 
complexity, is to implement just one mother code of medium rate and then 
use puncturing and shortening to respectively increase and decrease the code 
rate at the output. Puncturing works by selectively removing parity bits 
from the encoded frame before transmission and inserting erasures, i.e. 
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bits with zero LLR values, before decoding at the receiver. Shortening, on 
the other hand, reduces the number of information bits included in the 
frame, replacing them with known “dummy bits” at the encoder and 
decoder with maximum LLR values. Since the min-sum is very sensitive 
to puncturing/shortening, this method would require very careful design 
of the puncturing and shortening patterns. 

To get the best possible variable code performance, while keeping the 
hardware overhead to a minimum, the design proposed and simulated in 
this thesis uses a system with an SRAM defined encoder/decoder circuit. 
Such a system would use the same basic logic blocks to dynamically change 
the syndrome former to the one for the desired code rate. This is done 
simply by manipulating the connections from the shift register, based on 
the content of the SRAM. In this way, the codes for each rate can be highly 
optimized since they do not have to rely on the same base matrix. The 
desired sub-code is selected by manipulating the upper address bits of the 
SRAM memory. The exact design and implementation of the dynamic 
encoder/decoder is out of the scope of this thesis.   

6.2.3. Frame-by-Frame Rate Adaptation 
In order to perform truly gapless code rate adaptation the receiver needs 
to know exactly where in the bit stream the new code rate starts. For this 
purpose out-of-band signalling such as it is described in [111] is 
insufficient. Instead the proposed system transmits this information along 
with each optical frame. Not only will this approach enable gapless code 
rate transitions over a single link. It also makes it possible to use this 
scheme in packet switched optical networks, where the incoming packets 
may originate from different sources and have travelled along different 
light paths, thus requiring different code rates to reliably reach the receiver. 
The following subsections describe how this extra information is encoded 
into the standard OTN frame format and how the system as a whole can 
be modified for rate adaptive soft decision codes, while retaining 
backwards compatibility with existing OTN equipment.  

6.2.3.1. Frame format 
Figure 6.1 shows the basic frame format used by the OTN standard. The 
first 6 bytes of the frame contain the Frame Alignment Sequence (FAS), a 
fixed pattern which is used to detect frame boundaries in the serial bit 
stream. To convey the code rate of the frame to the receiver, the rate 
adaptive system adds an additional Code Identifier (CI) field immediately 
after the FAS. The new frame format is depicted in Figure 6.2. It has the 
same overall format as the standard OTN frame, aside from the CI field 
and a variable amount of soft decision FEC bits, which can be placed at 
the end of the frame or distributed over the entire frame depending on 
the type of SD code used. Hence the size of the outer frame (inner frame 



Energy Efficient Optical Transport Networks  

 

100 

+ SD FEC bits) depends on the selected code rate. It has been decided to 
keep the outer frame size variable in order to ensure that each outer frame 
contains exactly one fixed size inner OTN frame, thus easing the 
demapping procedure at the receiver and eliminating the need for an 
internal frame alignment field. The downside to this approach is that the 
distance to the next FAS and CI fields must be derived from the current 
CI. As a consequence, an error in the CI field will not only affect the 
current frame, but may also cause the receiver to lose frame alignment. To 
avoid this problem it is imperative that the information in the CI field is 
interpreted correctly with overwhelmingly high probability, even at very 
high bit error rates. This is of special concern since the CI field is not 
covered by the FEC. This issue will be addressed in the following 
subsection.  

6.2.3.2. Rate header encoding 
In order to make the system resilient to bit errors, it is necessary to protect 
the CI from bit errors. This is done by means of a repeated coset of an 
extended (8,4) hamming code[100]. The hamming code is based on the 
standard OTN FAS, which is 0xF6F6F6282828 in hexadecimal notation. 
Based on this sequence, 15 other code words are found, with the 
maximum possible pair-wise hamming distance. These are listed in Table 
6.1. Like the OTN FAS, all code words are DC balanced (i.e. has equal 
number of zeros and ones) and have enough transitions to keep the clock 
recovery circuitry in the receiver in sync. The minimum hamming distance 
d between any two code words is 24. Hence, as long as the number of bit 
errors is below d/2 = 12, the receiver will still be able to obtain the correct 
codeword by maximum likelihood decoding[100]. The exact probability 
of decoding a wrong code word on a link with a certain BER can be 
calculated using Eq. 1, where k is the number of correctable errors, n is 

 

Figure 6.1  – Standard OTN Frame structure (not to scale) [99]. 

 

Figure 6.2   – Proposed variable rate frame structure. Here the FAS field is followed by a special 
code iden-tifier (CI) field. The length of the frame depends on the inner FEC code, which can be 

determined from the CI. 
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the number of bits in the codeword and P is the bit error rate.  For this 
specific case, k=11 and n=48.  
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Based on Eq. 1, the expected Codeword Error Rate (CER), i.e. the number 
of incorrectly decoded FAS/CI fields per received frame can be calculated.  
These calculations show that the error correction is sufficient to work at 
bit error rates as high as 10-2, corresponding to a SNR of around 4.5 dB, 
while retaining a CER below 10-13. However, the concatenated codes 
proposed here are able to function at an SNR approaching 0dB, at which 
point the CER will reach approximately 0.04 as depicted in Figure 6.3. 
Given the severe consequences of incorrect decoding, this level of 
protection is insufficient to ensure proper operation. Fortunately, since 
the outer FEC works on soft decision values, the CI error correction can 
be easily expanded to use soft decision bits instead of hard decision. The 
CER of the soft decision decoder will have an upper error bound of 

TABLE 6.1 

LIST OF FAS/CI CODE WORDS 

Code word # Code word (CI) 

0 (original) F6 F6 F6 28 28 28 

1 (discarded) F9 F9 F9 14 14 14 

2 CF CF CF 03 03 03 

3 C0 C0 C0 3F 3F 3F 

4 AC AC AC 4D 4D 4D 

 A3 A3 A3 5A 5A 5A 

6 9A 9A 9A 66 66 66 

7 95 95 95 71 71 71 

8 6A 6A 6A 8E 8E 8E 

 65 65 65 99 99 99 

10 5C 5C 5C A5 A5 A5 

11 53 53 53 B2 B2 B2 

12 3F 3F 3F C0 C0 C0 

13 30 30 30 D7 D7 D7 

14 09 09 09 EB EB EB 

15 06 06 06 FC FC FC 
 

The code identifier (CI) sequences are optimized for maximum pairwise
hamming distance to increase error resilience, thus decreasing the probability of
incorrect FEC decoding. To avoid false frame alignment this optimization is also
done with respect to the FAS. For the same reason, codeword 1 is discarded,
since a single bit shift brings it very close to code word 0.  
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where ܣ is the weight distribution of the code, ܳ() is the “Q-function” 
and ݅ signifies the hamming distance for each element in [100] ܣ. For the 
code used in this design, all codewords have the same weight and a 
minimum distance of 24. Hence, the equation simplifies to  

 

( )SNRQAP ddB ⋅≤ minmin 2  (3). 

 

As Figure 6.3 shows, using soft decision decoding will significantly 
improve the resilience of the CI field, allowing the CI to be decoded with 
an error rate below 10-10 at 0dB SNR. The cost of this extra resilience is 
additional hardware complexity in the CI decoder. To ensure the feasibility 
of using this decoder, a high performance proof of concept system has 
been implemented for an Altera Stratix IV FPGA (EP4S100G5F45I2). 
The hamming decoder takes up less than 1% of the available logic 
resources with a decoding latency of only 7 clock cycles at 77MHz. Since 
the decoding only needs to be performed once for each 16kB frame, an 
even smaller iterative circuit could be used at the cost of additional 
decoding latency.  

 
Figure 6.3 - Codeword Error Rate vs. SNR. The hard decision and the soft decision estimate curves 

are based on analytical calculations of the expected error rate. The 4-bit SD simulation shows the 
actual error correcting capabilities of the decoding algorithm simulated in Matlab using 4-bit soft 

decision resolution.   
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6.2.3.3. Frame Alignment 
The purpose of the OTN Frame Alignment Sequence (FAS) is to allow 
the receiver to align itself to the boundaries of the incoming frame. Once 
aligned, the following boundaries are implicitly given by the fixed frame 
length and hence, for subsequent frames the FAS only serves to validate 
the correct alignment. In the proposed design, the length of a frame is no 
longer fixed but rather a function of the CI value. Furthermore, the system 
is designed to function at bit error rates (BER) above 10-2 which is much 
higher than standard OTN. Therefore, the OTN practice of scanning for 
error free FAS sequences to achieve and maintain frame lock, as depicted 
in Figure 6.4, is not suitable for this enhanced system. In order to locate 
the frame boundaries in this proposal, the following changes are made to 
the standard OTN frame aligner. The same modifications apply to 
detecting loss of frame alignment as well:  

1) The FAS field is allowed to contain a small amount of errors 
e to facilitate alignment at higher bit error rates than standard 
OTN systems.  

2) To reduce the risk of aligning to a false FAS (e.g. in the 
payload), the system scans for the whole 6 byte FAS as 
opposed to standard OTN, which only scans for the middle 
4 bytes.  

3) The correctness of the immediately following CI field serves 
to further verify the frame alignment.  

 
Figure 6.4  - OTN frame alignment state diagram [99]. In the proposed scheme, 

“FAS correct” implies number of FAS bit errors < e. Otherwise, it is perceived as an 
incorrect FAS. 
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4) The detected FAS/CI candidate now determines the distance 
to the next expected FAS/CI positions, as opposed to the 
fixed distance employed by OTN. 
 

The number of allowed errors e in the FAS has a significant impact on 
how fast the system regains frame alignment after a service disruption has 
occurred. As depicted in Figure 6.4, two consecutive acceptable FAS 
sequences (errors <= e) are required to obtain a lock. If e is too low 
compared to the BER, the probability of receiving two such FAS 
sequences is correspondingly small. Hence, it will likely take several frames 
to obtain frame alignment. On the other hand, if e is too large, there will 
be a higher risk of false frame alignment, which is equally problematic. 
Due to the large FAS sequence used, and the fact that two sequences needs 
to be detected exactly one frame distance apart to obtain frame alignment, 
the issue of false frame alignment is only relevant for large values of e. To 
ascertain how the choice of e affects the frame alignment time of the 
system, the average number of frames to obtain alignment has been 
calculated as a function of the SNR for different values of e. The results 
are depicted in Figure 6.5. As seen, it is very important not to set e too 
low, as this may cause extremely long alignment times as well as a high risk 
of losing alignment during normal operation. For the very low SNR values, 
which are supported by the codes presented in this thesis, an e value of 5-
8 is recommended for optimal performance.  

 
Figure 6.5 - Average number of frames to obtain FA for different values of acceptable FAS errors 

(e). Best case is 2 frames as defined by the standard OTN frame alignment state machine. 
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The final system architecture is depicted in Figure 6.6. As seen, the 
adaptation circuit can be implemented as a simple add-on to the existing 
OTN system structure. On the transmitter side, the extension consists of 
a code selector, which chooses the codes for the individual frames based 
on the current operation parameters, and an adaptive LDPC-CC encoder. 
On the receiver side, the extension consists of an error tolerant Frame 
Aligner, a CI decoder and an adaptive LDPC-CC decoder.  

6.2.4. Power Reduction Through Adaptive 
Iteration Reduction 

As discussed in [101], it is possible to reduce the power consumption of 
an iterative FEC circuit by reducing the number of iterations performed 
on the data. This can be done if the SNR margin of the link is high enough 
to absorb the resulting loss in code gain. However, the SNR margin can 
also be artificially increased by selecting a FEC code with a lower rate, i.e. 
by sacrificing information throughput for additional parity bits. With more 
parity information to work with, the FEC decoder is able to achieve the 
same BER with less decoding iterations just as if the actual signal quality 
was increased. Hence, instead of operating a code of high rate with many 
iterations, it is possible to lower the rate and only use a couple of iterations 
to achieve the same BER. Since the receiver can see the code rate directly 
from the header of the incoming frames, the number of iterations 
performed by the iterative decoder could be configured accordingly based 
on predetermined BER estimates. However, to achieve maximum 
flexibility and performance, the proposal here is to let the FEC decoder 
itself determine the required number of iterations based on the estimated 
BER of its own output. The BER can be estimated for each bit based on 
its LLR value. It can be shown from the basic LLR equation in subsection 
5.1.1, that the probability of an erroneous hard decision is given by  

 
Figure 6.6 – Overall system schematic. Extra modules have been appended to a standard 

OTN system to allow for adaptive soft decision forward error correction (FEC).  
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Hence, the average estimated BER at the output of the LDPC decoder 
after each iteration can be used as a stopping criterion for the iterative 
process. The goal, as mentioned in subsection 5.1.2, is to iterate just 
enough to get below the 10-4 BER limit, after which the RS code is able to 
handle the residual errors.  Since the number of possible values of |ܮ| is 
usually quite small (e.g. 32 for a 6-bit LLR), the ݌௘ values can be easily 
precomputed and stored in lookup tables to ease hardware 
implementation. 

In order to save power in the decoder when running fewer iterations it is 
important that the actual decoder circuitry is designed with this feature in 
mind. The following section investigates how two different 
implementation strategies, using a serial or a parallel decoding approach, 
can be enhanced to support adaptive iteration reduction.  

6.2.4.1. Iteration reduction in a serial decoder 
In a serial iterative decoder, all iterations are performed by the same 
physical circuit. Hence, the required clock speed of the circuit is a function 
of the number of iterations and the desired decoder throughput. In order 
to convert this into reduced power consumption, the well known concept 
of Dynamic Frequency and Voltage Scaling (DFVS) can be used as 
suggested in [101] and described in [117]. The basic concept is to 
dynamically decrease the clock frequency driving the decoder to match the 
current load. Hence, if the maximum capacity of the iterative decoder is 8 
iterations but only 2 iterations are required, the circuit can be driven at 1/4 
of its maximum frequency. Since the power consumption of modern 
microchips increases approximately linearly with the clock frequency, this 
translates to a factor 4 reduction in the power consumption. In addition, 
when the clock frequency is reduced the circuit is able to run reliably at a 
lower core voltage, which reduces the power consumption even further. 
The approximate power consumption can be described by the equation ܲ = ݇ ∙ ܨ ∙ ܸଶ [117][28], where k is a constant of the circuit, ܨ is the clock 
frequency and ܸ  is the core voltage. A simulation of the normalized power 
consumption of the FEC as a function of the number of LDPC iterations 
is depicted in Figure 6.8. This figure is generated based on the same 
assumptions as described in [101]: The voltage range is ܸ ௠௜௡ ≤ ܸ ≤ ௠ܸ௔௫ , 
where ௠ܸ௜௡ = 0.4	 ∙ ௠ܸ௔௫; ܸ and ܨ have the linear relationship ܨ  ௠௔௫/16 at ௠ܸ௜௡. The RS decoder and the LDPC decoder are assumedܨ=
to contribute with 1/10th and 9/10th of the total decoder power 
consumption, respectively, when the maximum number of LDPC 
iterations is used (ܰ = 8). As seen from Figure 6.8, running the LDPC 
decoder at less than the maximum capacity significantly reduces the power 
consumption of the FEC.  
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6.2.4.2. Iteration reduction in a parallel decoder 
In order to enhance the throughput of the decoder, the iterations can be 
split into a pipeline structure of identical circuits, which are placed back-
to-back. In this case, simply lowering the clock frequency and voltage is 
not a feasible solution as this will reduce the throughput of the FEC 
decoder correspondingly. Instead, the redundant iteration circuits can be 
bypassed once the estimated BER of a frame is low enough. The basic 
principle of such a system is depicted in Figure 6.7. Based on an estimation 
of the signal quality, the input from the link will run though ܰ iteration 
elements to reduce the BER. Once the desired number of iterations has 
been reached, the processed data is then redirected through simple bypass 
elements instead of proceeding through the iteration chain. The bypass 
elements consist of a small multiplexer and a delay line and thus have 
minimal power consumption compared to the much more complex LDPC 
logic. By means of clock-gating [118], the remaining iteration circuits can 
be deactivated, thus eliminating the dynamic power dissipation and leaving 
only the much smaller static power dissipation (i.e. the leakage current) 

 
Figure 6.8 – Simulation of the normalized dynamic FEC power consumption. 

At zero LDPC iterations, only the hard decision RS FEC consumes power.   

 
Figure 6.7 - Pipelined iterative FEC with dynamic iteration reduction (control signals not shown).   
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[28]. In this fashion, a reduction in the number of decoding iterations for 
a frame can provide an approximately linear reduction in the power 
dissipation of the LDPC decoder.   

When calculating the power consumption of the FEC decoder at different 
code rates, the complexity in terms of number of computations per 
information bit (or in this case – per frame) of the LDPC decoder for each 
iteration also needs to be taken into account. For the family of LDPC 
codes investigated here, this complexity will be inversely proportional to 
the code rate when the information, i.e. the size of the inner OTN frame, 
is kept constant. Hence, even though the lower code rates allows for fewer 
decoding iterations, each iteration will consume more power. It is 
therefore important to balance these two contributions, when selecting 
the code rate. The codes analysed here are of rate R=b/(b+1), for 
b=1,2,…6. If the rate is reduced from Rhigh to Rlow, the complexity will be 
increased by Rhigh/Rlow. In the worst case, the rate will be reduced from 
Rhigh=6/7 to Rlow=1/2, with the complexity increasing by 12/7≈2. In 
order to reduce the complexity overall, the number of iterations will have 
to be decreased sufficiently enough to compensate for the complexity 
increase due to the lower code rate. This term will be taken into account 
when estimating the overall power consumption reduction on a per-frame 
basis.  

6.2.5. Simulation Results 
This section presents simulation results, showing the different trade-offs 
in a flexible system employing LDPC-CC. The model are implemented 
using Matlab[119] and assumes an Additive White Gaussian Noise 
(AWGN) channel and Binary Phase Shift Keying (BPSK) modulation. 
However, the results are directly extendable to higher orders of 
modulation. As discussed in Section 5.1, the choice of the code memory ܯ is crucial to performance, as well as to the hardware implementation 
complexity and scalability of the system. Preliminary studies using Matlab 
simulations have shown that ܯ = 257 is a good compromise between 
performance and complexity. Higher memories, e.g. ܯ = 1025 achieve 
an additional 0.5 dB gain, but since the goal is to estimate the relative 
power consumption reduction as a function of the code rate, ܯ = 257 is 
chosen to reduce the simulation time. Very large memories, as mentioned 
in Section 5.1, are also impractical from a hardware implementation point 
of view, and ܯ = 257 results are therefore also more relevant to real-life 
systems. The block length is ݇ = 240ܶ = 61440 bits.  

As discussed in subsection 5.1.2, a BER of around 10-4 is needed at the 
input of the RS code for practically error-free transmission. In order to 
assess the necessary number of iterations, and thus the relative power 
consumption, 10000 blocks have been simulated for a number of code 
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rates. Figure 6.9 reports the number of iterations after which a BER below 
the desired threshold is achieved for different code rates. The rate 
reduction due to termination is taken into account and the true rates as 
given in subsection 5.1.1.2 are shown in the legend. As can be seen, the 
number of iterations can be reduced by a factor of 2 to 4 by reducing the 
code rate, assuming a maximum iteration count of 8.   

In Figure 6.10, the normalized power consumption is given per rate, taking 
into account the necessary number of iterations from Figure 6.9 and the 
power curve from Figure 6.8. As mentioned in Section 6.2.4, reducing the 
code rate increases the complexity in terms of the number of calculations 
needed per block. This factor is taken into account by multiplying the 
actual power consumption by 1/R for each code rate. As seen from Figure 
6.10, the power consumption can be reduced by a factor of up to 4, by 
changing the code rate depending on the received SNR. For SNRs which 
allow successful decoding after just one iteration for all code rates, the 
complexity increase due to low code rate is dominating the power 
consumption. Hence, the power consumption per information bit in the 
high-SNR region (beginning at around 4dB) will actually increase for lower 
code rates. For SNR values above 8.5dB, the LDPC FEC can in fact be 
turned off all together, since the error rate of the link will already be low 
enough to be corrected by the outer RS code (see Figure 5.1, page 80). For 
lower SNR values, the simulation results show that the concatenated 
RS/LDPC code increases the code gain by up to 6.5dB (9dB on the 
physical link, before the FEC overhead is taken into account) compared 
to using just the RS code on its own. 

 
Figure 6.9 - Necessary number of iterations for achieving ܴܧܤ ≤ 10ିସ for each code rate. 
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Since the decoder will be designed to stop iterating based on the estimated 
reliability of the soft bits, it is also necessary to investigate the effects of 
BER estimation errors. As seen from Figure 6.10, operating the code with 
R=1/2 gives the least power consumption for the largest SNR region. 
Therefore, that code is chosen for the following analysis of the estimation 
errors. In Figure 6.11, the true (actual) BER is given, together with the 
estimated one. The results show that the estimated BER is in fact 
extremely close to the true BER. To investigate further, the worst case 
scenario is considered, where the decoder stops iterating, based on an 
underestimated BER. In Figure 6.12, the probability of an erroneous halt 
is given, together with the effective BER estimation error, for the ܴ = 1/2 
code after iterations 1 up to 5. The probability of an erroneous halt ݌௘௥௥_௛௔௟௧ is calculated from the number of blocks, for which the estimated 
BER is below the 10-4 threshold, but the actual BER is not. If the average 
absolute estimation error is given as 

௔௩ܧ  = ∑ |௧௥௨௘_஻ாோ೙ି௘௦௧_஻ாோ೙|೙ಿసభ ே ,   (4) 

 

where ܰ is the number of blocks, ܴܧܤ_݁ݑݎݐ௡ and ܴ݁ܧܤ_ݐݏ௡ are the 
actual BER and the estimated BER for each block, respectively, the 
effective BER estimation error is calculated as ݌௘௥௥_௛௔௟௧ ∙ ௔௩ܧ . Let us 
consider for example the case, where the decoder stops after the 2nd 
iteration. As seen from Figure 6.9, 2 iterations will usually be needed for 
an SNR between 2.4 and 4 dB if the code rate is 1/2. Figure 6.12 shows, 

 

Figure 6.10 - Normalized power consumption, taking into account frequency and voltage 
reduction, and complexity increase due to lower rate, for each rate, achieving the desired 

threshold of ܴܧܤ < 10ିସ. 
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that the BER estimation is perfect after 3 dB, and that the BER is 
underestimated for at most 10% of the blocks (dotted line) at around 
2.5dB. The corresponding effective BER estimation error is around 10-6, 
which for the desired BER threshold of 10-4 is negligibly small. This very 
precise estimation ensures that even if the LDPC decoder stops decoding 
prematurely, it will not affect the performance of the following RS code. 

 

 

Figure 6.12 - Probability of erroneous halt and effective BER estimation error for the R =1/2,M = 257, k = 61440 LDPC-CC. 

 

Figure 6.11 - True and estimated BER performance of a R = ଵଶ ,M = 257,	 k = 61440 LDPC-CC with zero-padding termination.  
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6.3. Chapter Summary 
This chapter has provided an introduction to elastic optical transport 
networks and demonstrated a new scheme for energy conservation on 
optical links through adaptive forward error correction. The chapter 
demonstrates how a rate adaptive OTN-based transmission system can be 
built with minor adjustments to the standard OTN transceiver, while 
retaining backwards compatibility with existing equipment. The proposed 
system can perform rate adjustments on a frame-by-frame basis with no 
disruption to the traffic on the link. While adaptive FEC has several 
applications, this chapter has focused on using FEC adaptation of 
concatenated Reed-Solomon and soft decision LDPC-CC FECs as a 
means to reduce power consumption in the FEC decoder itself during 
periods of low load. The presented studies show that the number of 
necessary decoding iterations to reach error free transmission can be 
significantly reduced by lowering the code rate R at the cost of decreased 
throughput. By lowering the code rate, and thus the number of decoding 
iterations, during periods of low capacity demand the power consumption 
of the investigated FEC can be reduced by up to 75% compared to its 
nominal value. Since the scheme presented in this chapter can perform 
FEC adjustments on a frame-by-frame basis, it is able to provide a 
continuous power reduction, adapting both to the static conditions of the 
connection, as well as to the dynamics of the network on a microsecond 
timescale. As such, excess SNR margin and unused data bandwidth are 
readily converted into fewer joules per information bit with no ill effect to 
the live data traffic on the physical link.  
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7. Conclusion 
 

The continuous growth in internet traffic is a constant driver for the 
development of higher link speeds and faster network nodes. As such, the 
demand for 40G and 100G links has been increasing over the course of 
this Ph.D. project, with new standards for 400G equipment under way. 
The work presented in this thesis aimed at aiding the evolution towards 
100Gbps and beyond by investigating how core network node 
functionalities can be scaled up to support these high throughputs.  

Since the start of the project “The Road to 100 Gigabit Ethernet”, there 
have been significant improvements in the low-level hardware, which 
facilitates the development of equipment for 100G and beyond. This is 
especially true for the ASIC and the FPGA technology, but interesting 
advances have been made within the field of external memory as well. The 
standards themselves have also evolved, making 100G Carrier Ethernet a 
viable and potentially more flexible alternative to traditional connection 
oriented transport technologies. Even with these advances in the 
underlying technology, there are still plenty of challenges when moving 
beyond the 100G boundary from an architectural, algorithmic and digital 
design point of view.  

One of the key components, which needs to scale linearly in performance 
with the link speed is the forwarding engine. In Chapter 3 of this thesis, 
this component has been investigated for both Ethernet switches (MAC 
tables) and IP routers (IP routing tables). The research within MAC tables 
has shown that the commonly used data structure known as a hash table 
is in fact able to scale to 100Gbps link speed using parallel memory access. 
The table design described in Chapter 3, using the Multilevel Adaptive 
Hash Table scheme, is thus able to process a frame in a single clock cycle, 
requiring a modest 150MHz clock frequency to processes 100GE traffic. 
This is done with the moderate memory requirement of 6.75Mbit of dual-
port SRAM for a 64k MAC table. Depending on the achievable internal 
clock speed, one such table will be able to serve one or a few 100G ports. 
For high port counts, the scheme will still be able to scale well using 
distributed forwarding engines. For the IP routing tables, the methods 
used in Ethernet forwarding tables are not directly transferable. Instead, 
this thesis has proposed a novel LPM search engine structure, using a 
Ternary CAM (TCAM), which has been specifically tailored to perform 
LPM. The result is a TCAM with a much simpler and faster updating 
procedure and 100% memory utilization at the cost of around 16% extra 
logic compared to the standard TCAM. Trial implementations in an 
FPGA with 1,024 address entries have shown that this structure is capable 
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of performing 411 million LPM lookups per second, corresponding to a 
forwarding rate of 411Mpps. If carried over standard Ethernet, this table 
would be able to handle a sustained line rate of approximately 275Gbps 
of using minimum sized IP packets. Hence, it is concluded that both the 
Ethernet and the IP forwarding engines can scale to 100G by means of 
these parallel search architectures, and also beyond 100G as the chip 
production technology improves.   

Once the forwarding engine has determined the correct output port for a 
datagram, it needs to be moved across the switch fabric as efficiently as 
possible. The novel ERRMS multicast scheduling algorithm, presented in 
Chapter 4, uses a combination of queue look-ahead and synchronized 
output scheduling to get optimal multicast performance within the switch 
fabric. As opposed to its predecessor, the iterative MLRRMS scheme, it is 
optimized for parallel hardware and thus only needs one clock cycle to 
schedule cells for each cell time. This enables ERRMS to be used in a high-
speed switching environment such as 100 Gigabit Ethernet switches. By 
taking the fan-out information of the first two multicast cells into account 
when scheduling, the ERRMS is able to increase the sustainable 
throughput significantly compared to the WBA while providing much 
better scalability compared to FIFOMS. Simulation results show that 
increasing the look-ahead depth beyond these two cells only provides 
marginal improvements to the throughput performance. The hardware 
complexity studies have shown that the ERRMS is capable of providing 
much faster multicast scheduling than the iterative MLRRMS for the 
implemented look-ahead depth of two cells, about a factor of two for all 
port configurations. The speedup is expected to grow in the same 
approximately linear fashion if the look-ahead depth is increased due to 
the parallel operation of ERRMS. Even though ERRMS performs 
scheduling on multiple levels in parallel, the logic size of the ERRMS 
scheduler has shown to be reasonable for hardware implementation and 
scales well to even very large switch fabrics. For a 32-port fabric, the 
scheduling performance of the FPGA implementation will be able to keep 
up with a 32Gbps traffic steam using a cell size of approximately 64B, 
given perfect cell utilization. This result indicates that an implementation 
based on modern ASIC technology or future FPGAs will be able to 
support the scheduling speeds required for 100G switching.   

In Chapters 5 and 6 it has been investigated how the forward error 
correcting (FEC) codes, which are commonly employed in com-
munication networks, can be enhanced to perform at higher speeds and 
provide increased bandwidth efficiency. The goal has been to provide 
better code gain, increased processing throughput and higher energy 
efficiency. Simulation results show that the standard Reed-Solomon (RS) 
(255,239) code can be concatenated with the more advanced Low Density 
Parity Check (LDPC) codes to increase the code gain by up to 6.5dB (9dB 
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on the physical link, before the FEC overhead is taken into account), 
compared to Reed-Solomon on its own. Furthermore, it is shown how the 
RS and the LDPC codes can be implemented in parallel hardware to 
achieve 100Gbps and 10Gbps, respectively, on a modern FPGA. From 
these results, it is expected that an ASIC implementation will be able to 
contain a concatenated RS/LDPC circuit with more than 100Gbps of 
throughput.  

To increase the energy efficiency of the physical links, a novel design for 
an energy effective, rate adaptive FEC system has been described in 
Chapter 6. The FEC is designed to be used both on its own, and in 
conjunction with other rate adaption parameters such as the symbol rate 
and the modulation format. The scheme opens up several opportunities 
for power conservation: Firstly, the adaptive FEC complements the 
overall adaptivity of the transmission system by allowing it to employ the 
most energy efficient combination of modulation format and FEC for a 
given capacity. Secondly, the internal processing inside the FEC decoder 
is fine-tuned based on the estimated output bit-error-rate (BER) to reach 
the BER goal with as little processing, and thus power consumption, as 
possible. Thirdly, by combining the properties of adaptive rate and 
adaptive processing effort, the transmitter is able to adjust the code rate 
of the individual frames based on the exact capacity demand on a 
microsecond time scale. Simulation results presented in this thesis have 
shown that reducing the code rate at the cost of lower effective throughput 
significantly reduces the amount of processing required in the FEC 
decoder for each frame. By employing simple techniques for 
performance/power tradeoff such as Dynamic Frequency and Voltage 
Scaling (DFVS), this reduced processing translates to an estimated 
reduction of the power consumption in the FEC decoder by up to 75%. 
Since the scheme presented in this thesis can perform FEC adjustments 
on a frame-by-frame basis, it is able to provide a constant power reduction, 
adapting both to the static conditions of the connection as well as to the 
dynamics of the network on a microsecond timescale. As such, excess 
SNR margin and unused data bandwidth are readily converted into fewer 
joules per information bit with no ill effect to the live data traffic on the 
physical link.  

At the beginning of this Ph. D. project in 2010, 40G and 100G equipment 
was still very much in the development phase. Now, multiple vendors have 
put 100G equipment on the marked, and work is underway for drafting 
next generation 400G standards. The research done as part of this thesis 
indicates, that while the next step to 400Gbps still is a significant challenge, 
it is realistic to expect preliminary 400Gbps systems to emerge within the 
next 4-5 years. The basic technology which made 100Gbps possible is still 
evolving, with denser and faster integrated circuits (ICs), new high 
performance memory designs, such as the Hybrid Memory Cube (HMC), 
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and increasing performance and availability of high speed serial links. 
Hence, advances in IC speed and density can be used to perform data 
processing faster and with even more parallelization. Combined with 
higher memory- and transceiver bandwidths to support 400Gbps of 
dataflow through the system, the techniques described in this thesis for 
100Gbps will likely be able to scale to 400Gbps in the near future.  
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