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ABSTRACT 
Plasmonics is one of the important fields in photonics which deals with studying and 
utilizing the collective oscillations of the free electrons’ gas in a conductive material. 
These oscillations, which are known as plasmons, can be excited by an external 
electromagnetic field, resulting in an enhanced field that is confined to the surface of 
the conductive material and propagates along it in form of a surface wave which is 
known as surface plasmon polariton (SPP). Due to the strong enhancement and 
subwavelength confinement of the electromagnetic field, SPPs have many applications 
such as SPP enhanced photovoltaics, sensing, Raman spectroscopy and subwavelength 
waveguiding. Noble metals such as gold and silver are considered as traditional 
plasmonic materials for the visible range due to their abundant free electrons, but they 
suffer from high losses and poor confinement to the surface in the infrared (IR) range. 
Highly doped semiconductors can be considered as alternative plasmonic materials for 
the IR range which benefit from lower losses and tunability of the optical properties via 
adjusting the free carrier concentration. InP is one of the most important materials for 
optoelectronics as a direct bandgap semiconductor, which can also be regarded as a low 
loss alternative plasmonic material for the mid-IR range. 

In this thesis silicon doped indium phosphide (InP:Si) is investigated as an 
alternative plasmonic material for the mid-IR range. The InP films are grown by metal-
organic vapor phase epitaxy (MOVPE). Effect of the growth conditions, namely the 
precursors’ fluxes ratio, on the electrical and optical properties of InP:Si in the 
wavelength range from 3 to 40 µm is studied. Carrier concentration of up to 3.9×1019 
cm-3 is achieved by optimizing the growth conditions. The dielectric function, effective 
mass of electrons and the plasma frequency are all determined by Fourier transform 
infrared spectroscopy (FTIR), for different carrier density levels. The plasma frequency 
can be tuned effectively via doping from 18.43 to 50.5 THz. Based on the experimental 
results, a semi-empirical formula for the plasma frequency is derived.  

The retrieved permittivity is then used to simulate SPPs propagation on flat and 
structured surfaces, and the simulation results are verified in direct experiments. SPPs at 
the top and bottom interfaces of the grown epilayer are excited by the prism coupling 
method. A high-index Ge hemispherical prism provides efficient coupling conditions of 
SPPs on flat surfaces and facilitates acquiring their dispersion diagrams. Diffraction into 
symmetry-prohibited diffraction orders stimulated by the excitation of SPPs is observed 
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in a periodically structured epilayer. Characterization shows good agreement between 
the theory and experimental results and confirms that highly doped InP is an effective 
plasmonic material aiming it for applications in the mid-IR wavelength range. 
Comparison to other semiconductors shows superior plasmonic performance of InP:Si 
in terms of the propagation length and confinement. 

In order to demonstrate one of the novel applications of semiconductors in the 
mid-IR range, optically induced forces exerted upon a semi-insulating InP waveguide 
suspended above a highly doped InP:Si substrate are investigated in three different 
regimes: in the epsilon-near-zero (ENZ) case, with excitation of SPPs and phonons. An 
order of magnitude amplification of the force is observed when light is coupled to SPPs, 
and three orders of magnitude amplification is achieved in the phonon excitation 
regime. In the ENZ regime, the force is found to be repulsive and higher than that in a 
dielectric waveguide. Low losses in InP:Si result in a big propagation length. The 
induced deflection can be detected by measuring the phase change of the light when 
passing through the waveguide, which enables all-optical functioning, and paves the 
way towards integration and miniaturization of micro-cantilevers. In addition, tunability 
of the ENZ and the SPP excitation wavelength ranges, via adjusting the carrier 
concentration, provides an extra degree of freedom for designing MEMS devices.  
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Resumé 
Plasmonics er et af de vigtige områder inden for fotonik, der beskæftiger sig 

med at studere og udnytte de kollektive oscillationer af fri elektron gas i et ledende 
materiale. Disse oscillationer, der er kendt som plasmoner, kan exciteres af et eksternt 
elektromagnetisk felt, hvilket resulterer i et forstærket felt, som er bundet til overfladen 
af det ledende materiale og udbredes i form af en overfladebølge, der er kendt som 
overflade plasmon polariton (SPP). På grund af den udtalte forstærkning og sub-
bølgelængde binding af det elektromagnetiske felt har SPP'er mange anvendelser, bland 
andet SPP forbedret fotovoltaik, sensing, Raman spektroskopi og sub-bølgelængde 
bølgeledning. Ædelmetaller som guld og sølv betragtes som traditionelle plasmoniske 
materialer til det synlige område på grund af mængden af deres frie elektroner, men de 
lider af store optiske tab og et dårligt bindeevne til overfladen i IR-området. Stærkt 
doterede halvledere kan betragtes som alternative plasmoniske materialer til IR-
området, der drager fordel af de lavere optiske tab og evnen til at tune de optiske 
egenskaber via en justering af den frie bærerkoncentration. InP er et af de vigtigste 
materialer til optoelektronik som en direkt båndgab halvleder, hvilken også kan 
betragtes som et alternativt plasmonisk materiale med de lave optiske tab i mid-IR 
området. 

I denne afhandling undersøges siliciumdoteret indiumphosphid (InP:Si) som et 
alternativt plasmonisk materiale til mid-IR området. InP tynde film dyrkes ved hjælp af 
metalorganisk dampfase epitaksi (MOVPE). Effekten af vækstbetingelser, nemlig 
precursor fluxforhold, på InP:Si's optiske og elektriske egenskaber i 
bølgelængdeområdet fra 3 til 40 μm undersøges. Bærerkoncentration på op til 3,9 × 
1019 cm-3 opnås ved at optimere vækstbetingelserne. Den dielektriske funktion, den 
effektive masse af elektroner og plasmafrekvensen er bestemt ved hjælp af Fourier 
transform-infrarødspektroskopi (FTIR) for forskellige bærertæthedsniveauer. 
Plasmafrekvensen kan indstilles effektivt via en dotering fra 18,43 til 50,5 THz. Baseret 
på eksperimentelle resultater udledes en semi-empirisk formel for plasmafrekvensen.  

Den rekonstruerede permittivitet bruges derefter til at simulere SPP'er 
udbredelse på flade og strukturerede overflader, og simuleringsresultaterne er verificeret 
i direkte eksperimenter. SPP'er ved top- og bundgrænsefladerne af det dyrkede epilayer 
exciteres af prismekoblingen. Et højt indeks Ge halvkugleformet prisme giver effektive 
bindingsbetingelser for SPP'er på flade overflader og letter at skaffe deres 
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dispersionsdiagrammer. Diffraktion i symmetriforbudte diffraktionsordrer som er 
stimuleret ved excitation af SPP'er, observeres i et periodisk struktureret epilayer. 
Karakterisering viser en god overensstemmelse mellem teorien og eksperimentelle 
resultater og bekræfter, at højdoteret InP er et effektivt plasmonisk materiale, der sigter 
mod applikationer i mid-IR bølgelængdeområdet. Sammenligning med andre halvledere 
viser en overlegen plasmonisk optræden af InP:Si med hensyn til udbredelseslængde og 
bindeevne. 

For at demonstrere en af de hidtil ukendte anvendelser af halvledere i mid-IR-
området, blev optisk inducerede kræfter, udøvet på en halvisolerende InP-bølgeleder 
suspenderet over et højt doteret InP:Si-substrat, undersøgt i tre forskellige regimer: i 
epsilon-nær-Zero (ENZ) tilfælde, med excitation af SPP'er og fononer. En kraft 
forstærkning af en størrelsesorden observeres, når lyset er bundet til SPP'er, og der 
opnås en forstærkning i tre størrelsesordener i phonon excitationsregimet. I ENZ-
regimet er kraften fundet at være frastødende og højere end den er i en dielektrisk 
bølgeleder. Lave optiske tab i InP:Si er årsagen til en stor udbredelseslængde. Den 
inducerede afbøjning kan detekteres ved at måle faseændringen af lyset, når den 
passerer gennem bølgelederen, hvilket muliggør all-optisk funktionalisering og baner 
vejen for integration og miniaturisering af mikro-cantilevers. Derudover, giver evnen til 
at tune ENZ og SPP excitations bølgelængder via justering af bærekoncentrationen, en 
ekstra grad af friheden til at designe MEMS-strukturer. 
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1. INTRODUCTION 

 

 
 

Human being has always tried to find (or make up) simple answers to complicated 
questions which either affect or do not have any direct impact on his daily life. The 
reason for finding (or making up) answers to the questions with no impact on the daily 
life is “peace of mind”. Ignorance makes us feel uncomfortable. That is why most of the 
people always make up simple stories to answer the most complicated (or 
unanswerable) questions and never challenge their own stories afterwards. This has led 
to “religion”; a collection of reasoning which is based on unexaminable “facts”. The 
reason for seeking answers to the questions which can affect our daily life is simple: we 
want to “predict” and “utilize” the nature, in order to facilitate our daily life. 

“Natural sciences” are indeed a collection of “models” which are usually based 
on examinable and observable facts. These models which are developed to answer both 
of the above mentioned types of questions are valid as long as they can explain the 
observations and can be replaced with alternative models whenever they fail to do so. 

Light is one of the most important constituents of life evolution on earth. 
Sunlight warms the planet to a proper-to-live temperature, makes weather patterns and 
helps plants to make food and oxygen for us. Besides, light is our primary tool for 
understanding the world around us. Human being has always tried to explain light-
related phenomena and find out about the nature of light. In other words, he has always 
been seeking for a proper model for light. Some ancient Greek philosophers believed 
that the light rays which come out of our eyes help us to see the objects around us, 
while some others believed that the light which comes from the objects enters our eyes. 
The first person who is known to study the light using a scientific method is Ibn al-
Haytham. He used carefully planned experiments to verify theories and believed that 
light is an independent part of the vision. He divided the objects into two groups: those 
which emit light and those which reflect it. This is one of the basics of modern optics. 
Isaac Newton believed that light is a stream of particles, and his experiments with a 
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prism revealed that the white light is a mixture of all of the rainbow colors. Thomas 
Young’s experiments on the interference of light in 1800 showed the wave nature of 
light. He also proposed that different colors of light have different wavelengths. James 
Clerk Maxwell’s studies on the electromagnetic waves predicted that these waves travel 
with a speed very close to the speed of light, which had already been measured. Based 
on this, he proposed that light must be an electromagnetic wave. Nevertheless, this 
could not explain the photoelectric effect, and Albert Einstein in 1905 proposed that the 
photoelectric effect is caused by absorption of quanta of light which are now known as 
“photons” [1]. 

Many of the electronic properties of materials can be described by free 
movement of single electrons in a periodic array of atoms. Another approach is to 
consider a gas of free electrons and a background of positive ions. In certain conditions, 
light can transfer its energy to the free electrons’ gas resulting in longitudinal density 
fluctuations of it. These fluctuations which can propagate inside the material are called 
plasma oscillations and a quantum of these oscillations is called “plasmon” [2]. 

 

1.1. Plasmonics 

Plasmonics is a growing field in photonics which deals with excitation of the collective 
oscillations of free charges, known as plasmons, in a conductive material, resulting in a 
drastically enhanced electromagnetic field in the vicinity of the material’s interface. 
Plasmons can be excited by exposing subwavelength conductive particles to an external 
electromagnetic field, resulting in localized plasmon-polaritons (LPP) or by coupling 
the external field to the oscillating charges near the surface of the material, resulting in a 
highly confined surface wave propagating along the interface between the conductive 
material and the dielectric media, known as surface plasmon-polaritons (SPP) [3]. High 
confinement of this enhanced field provides higher local optical density of states and 
leads to applications such as plasmon-enhanced photovoltaics [4], biosensing [5], 
Raman spectroscopy [6] and photocatalysis [7]. Furthermore, SPP’s enable 
subwavelength spatial confinement of the light, due to the fact that their dispersion 
curve lies on the right side of the light line. This very important property of SPP’s is 
used in many fields including subwavelength waveguiding [8] and optical superlenses 
[9]. 

Plasmons were first studied and utilized in the visible and near-infrared (near-
IR) ranges [10]. Similarly mid-IR plasmonics can contribute to many applications by 
means of intensely localized electric field at the interface and enhanced light-matter 
interactions. Plasmonics for the mid-IR wavelength region offers unique functionalities 
for thermal imaging, due to the peak emission wavelength for the temperatures ranging 
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from 200-1400 K and the atmospheric transmission window both lying in the mid-IR. 
There are perspective chemo-sensing applications [11-14] owing to the fact that many 
molecules have vibrational and rotational absorption bands which can serve as 
fingerprints to detect and determine molecular species in this wavelength range. This is 
likely to affect all fields from personalized health care to industrial quality control [10]. 
In addition, the fast growing field of graphene plasmonics and related 2D materials 
operates in this wavelength regime as well [15,16]. Moreover, mid-IR can be 
considered as a host for metamaterials as they move from terahertz to visible region, 
which benefits from easier fabrication of subwavelength structures [10]. 

 

1.2. Alternative plasmonic materials 

Metals such as Au, Ag and Cu are considered as traditional plasmonic materials for the 
visible range. However, when it comes to the mid- and far-IR ranges, metals suffer from 
high optical losses and poor spatial confinement of SPP’s. In addition, CMOS 
incompatibility of metals is a challenge in the fabrication process of the nanophotonic 
devices. 

Alternative plasmonic materials such as graphene, ceramics, conductive oxides 
and semiconductors are introduced to address these shortcomings [17,18]. 
Semiconductors play a key role in this context, owing to their high mobilities and low 
optical losses [19]. In addition, tunability of their optical and plasmonic properties via 
doping or charge depletion [20] adds an additional degree of freedom for engineering 
photonic device elements. Indium phosphide (InP) as a direct bandgap III-V 
semiconductor is one of the most common materials in optoelectronic applications and 
telecom photonics. Highly doped InP can be considered as a plasmonic material with 
superior plasmonic properties compared to most other semiconductors in the mid-IR 
range [21]. Furthermore, easy integration and compatibility with conventional III-V 
optoelectronic devices and their fabrication processes makes InP a promising candidate 
as a plasmonic material aiming it for mid-IR. 

 

1.3. Structure of the dissertation 

In this thesis, effect of the growth conditions on the free carrier concentration of silicon 
doped InP is experimentally investigated. Optical and electrical properties of the grown 
InP:Si is determined and used to simulate the excitation of SPP’s on the surface of 
highly doped InP:Si. Simulations are verified in direct experiments, confirming the 
existence of SPP’s and the accuracy of the retrieved optical properties. Finally, the 
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retrieved optical properties of InP:Si are used to simulate gigantic optical forces in InP-
based waveguides with applications in microelectromechanical systems (MEMS). 

 The thesis is organized as follows: 

Chapter 1 presents the motivation of this work and a short general overview on 
plasmonics and alternative plasmonic materials. 

Chapter 2 starts with a technical review on metal-organic vapor phase epitaxy 
(MOVPE) technology, and continues to investigation of MOVPE growth of highly 
doped InP:Si and the effect of growth conditions on the free carrier concentration. 

Chapter 3 starts with a technical introduction and literature review on the optical 
properties of InP from the ultraviolet (UV) to the IR frequency range, and continues 
with describing the procedure which is used in this work to retrieve the optical 
properties of InP:Si. Optical properties of the grown samples with different carrier 
concentrations are presented and the performance of InP:Si as a plasmonic material  is 
compared with other semiconductors. 

Chapter 4 starts with a technical introduction and literature review on SPPs and 
different materials which are studied in this context. Afterwards the excitation of SPPs 
on InP:Si surface is theoretically studied and the experimental results are presented and 
compared to the theory. 

Chapter 5 starts with a technical introduction to optomechanics and continues with 
calculating the optically induced forces which are exerted on waveguides adjacent to a 
substrate. Afterwards, optical properties of InP:Si which are experimentally retrieved in 
the previous chapters are used to calculate the optically induced forces in InP-based 
waveguides in different frequency regimes. 

Chapter 6 presents a summary of the thesis and gives an outlook on possible directions 
for further research, based on the results of this dissertation. 

Appendix A presents the computer program which is developed to calculate the 
reflectance spectra of multilayer structures under normal incidence. 

Appendix B presents the computer program which is developed to calculate the 
reflectance spectra of multilayer structures under oblique incidence. 

Appendix C presents the computer program which is developed to find the permittivity 
of InP:Si by fitting the calculated reflectance spectra of the samples to the measured 
ones. 

Appendix D presents the results of optical characterization of hyperbolic metamaterials 
which is done using the methods which are developed in the previous chapters. 
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2. MOVPE GROWTH OF HIGHLY 
DOPED InP:Si 

 

 

 
2.1. Introduction to MOVPE 

Metal-organic vapor phase epitaxy (MOVPE) is a powerful and flexible 
technology for epitaxial growth of compound semiconductors. In this method, substrate 
wafers are placed on a heated carrier disk which, in most of the cases, rotates inside the 
growth reactor chamber. Precursor gasses are injected into the growth chamber, 
chemically react on the surface of the substrate and afterwards the byproducts are 
dragged towards the outlet exhaust (Fig. 2.1). MOVPE was introduced at the beginning 
of 1970s [1] dealing primarily with the deposition of GaAs on insulating substrates and 
subsequently evolved for deposition of all of the III-V compounds [2]. The term metal-
organic (or organo-metallic) is included in the name, since at least one of the constituent 
materials of the epilayer is transported using room temperature vapors of 
organometallic compounds. MOVPE has the capability of growing the widest variety of 
III-V semiconductors among all of the epitaxial growth techniques, including molecular 
beam epitaxy (MBE), liquid and vapor phase epitaxy (LPE and VPE) [2]. One of the 
most important features of this technique is the ability of growing different compounds 
in the same run. MOVPE is now widely used in fabrication of electronic and photonic 
devices due to the ability of instantaneous control over the partial pressure and flow 
rates of the precursor gasses which results in well-defined growth of a wide variety of 
semiconductor materials [3]. 

Alkyls of group III metals and hydrides of group V elements are used as the 
precursors for growing III-V semiconductors. A carrier gas (usually H2 or N2) 
containing dilute vapors of these chemicals in near room temperature is injected into the 
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chamber through the inlet flanges and reacts near the hot surface of the substrate. The 
general form of the reaction for III-V semiconductors is described by [2] 

R3M + EH3 → ME + 3RH (2.1) 
in which M is the group III metal, R is the alkyl and E is the group V element. If more 
than one group III alkyls are present in the chamber, for example R3M´, the deposited 
solid becomes an alloy of the type M1−𝑥𝑥M𝑥𝑥

´ E. Composition of the alloy (value of x) is 
determined by the relative reaction rates for the two alkyls. 

 

Fig. 2.1 Schematic of the MOVPE growth chamber 

 The growth process starts with the mass transfer of the precursors towards the 
growth surface, and proceeds with their reaction on or close to the hot surface, 
incorporation of the new material on the growth front and removal of the byproducts 
[4]. There is normally an excess amount of the group V hydride in the growth chamber, 
therefore the growth rate is mainly dominated by the partial pressure of the group III 
alkyls and can be expressed by a linear relation as [3] 

𝑔𝑔 = 𝐴𝐴1𝑝𝑝R3M + 𝐴𝐴2𝑝𝑝R3M´ (2.2) 
where 𝑝𝑝R3M and 𝑝𝑝R3M´ are the partial pressures of the group III precursors. 

 One of the problems that may occur during the growth is the reaction between 
the precursors in the cold gas, before arriving at the substrate. In this case, the reaction 
(2.1) will proceed as [2] 

R3M + EH3 → R3M − EH3 (2.3) 
in which M and E elements have made bonds before dissociation of the precursors. If 
reaction (2.3) proceeds to form non-volatile compounds, the precursors can be depleted 
from the reactants which may result in decreasing the growth rate or changing the 
composition of the deposited alloy [2]. 
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 Figure 2.2 shows a schematic of the gas handling system in MOVPE machine. 
Metal-organic precursors are kept in temperature controlled bubblers. The carrier gas 
(here Pd-purified hydrogen) is introduced into the precursor’s container and leaves it 
saturated with the precursor’s vapor. Mass flow controllers are used to enable 
instantaneous and continuous control over the flow of the saturated vapor which will be 
diluted and carried towards the reactor by an H2 push flow. Hydrides are introduced as 
pure gasses or as a mixture with H2. The susceptor can be heated by radio frequency 
(RF) induction or resistance heating. 

Mathematical modelling of the growth process in MOVPE is a very complicated 
task which involves deep understanding of the interplay between fluid dynamics, heat 
and mass transfer, chemical kinetics and crystal growth, and is a subject of ongoing 
research [5-8]. The carrier disk rotates inside the growth reactor chamber, transforming 
a laminar flow pattern of supplied precursor gasses into the circumferential flows and 
forms the so called boundary layer on top of the wafer surface. This boundary layer 
provides diffusion driven transport of precursors to the growing surface which results in 
uniform growth with a predictable rate. In addition the flow dynamics in a rotating disk 
reactor (RDR) prevents material from being deposited on the optical access windows of 
the chamber [3]. 

 

Fig. 2.2 Schematic of the gas handling system in MOVPE [9] 

 

2.2. MOVPE growth of InP:Si 

InP is a direct bandgap semiconductor with a face-centered cubic (zincblende) structure 
(Fig. 2.3), which is widely used in optoelectronic devices, as a platform for photonic 
integrated circuits [10], novel distributed feedback laser arrays [11], photodetectors 
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[12], vertical cavity surface emitting lasers (VCSELs) [13,14], and InP-based mid-
infrared (mid-IR) light emitting diodes (LEDs) [15]. InP-based quantum well lasers 
offer spontaneous emission in the range from 2 to 3.9 μm and laser operation up to 2.7 
μm [15]. Recently InP is used to fabricate novel single crystal phase nanowire quantum 
dots for single photon applications and quantum optics [16]. Apart from the above 
mentioned applications in optoelectronic devices, highly doped InP is recently 
investigated as an alternative plasmonic material for the mid-IR range, which has 
superior performance in comparison to traditional plasmonic metals and other 
semiconductors, owing to its lower losses [17]. 

 

Fig. 2.3 Crystal structure of InP [By Ben Mills, www.wikipedia.org] 

The first demonstration of MOVPE grown InP was by Manasevit and Simpson 
[2] in the early years of the development of this method. Trimethylindium (TMIn) and 
phosphine (PH3) are usually used as the precursor gasses with their reaction on the hot 
surface of the substrate described by 

In(CH3)3 + PH3 → InP + 3CH4 . (2.4) 
 Existence of the parasitic reaction (2.3) for InP is reported by several authors but 
not observed by some others. In his review paper published in 1985, Ludowise 
concluded that this reaction may not be noticeable under the right growth conditions 
including the proper reactor geometry [2].  

Free carrier concentration in the grown semiconductors is an important 
parameter which needs to be carefully controlled by choosing proper growth conditions 
such as ratio of the precursor gasses, growth temperature and the overall pressure of the 
growth chamber. Silicon is commonly used as a donor in MOVPE grown InP and effect 
of the growth conditions on its incorporation efficiency has been investigated [18-25]. 
In this regard, to the authors’ knowledge, the highest reported carrier concentration in 
MOVPE grown InP:Si is 2.6×1019 cm-3 [26]. 

Nine InP:Si samples are grown on single-side polished (1 0 0) semi-insulating 
(SI) InP:Fe substrates and two samples are grown on single-side polished (1 0 0) n-
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doped InP:S substrates. Low pressure MOVPE is used to grow the samples, with 
hydrogen (H2) as the carrier gas, using PH3, TMIn and disilane (Si2H6) as the 
precursors for phosphorus, indium and silicon respectively. The carrier disk rotates with 
1000 rpm inside the growth reactor chamber. The growth conditions, namely the 
phosphorus to indium precursors’ molar ratio and the disilane flux are adjusted, 
resulting in different free carrier concentrations. 

Disilane is commonly used as the precursor for Si doping of MOVPE grown InP 
whose dissociation is described by a two-step process as 

Si2H6 → SiH2 + SiH4 (2.5) 
SiH4 → SiH2 + H2 (2.6) 

where Si in SiH2 will react on the surface of the epilayer and contribute to doping. In 
temperatures below 700 °C, the decomposition efficiency of silane (SiH4) is very low 
and therefore the Si incorporation rate is mainly determined by Eq. (2.5) [22]. The 
decomposition efficiency of disilane [Eq. (2.5)] is proportional to the temperature up to 
610 °C (reported 625 °C in [19]) and mass transport limited above that. At this point 
increasing the disilane flux will increase the carrier concentration up to a threshold 
point above which the layer morphology will be deteriorated. The doping efficiency 
also slightly depends on the phosphine to TMIn molar ratio (V/III ratio). This 
proportional dependence is assumed to be a consequence of the reaction [22] 

PH3 + SiH2 ⇆ SiH3PH2 (2.7) 
which is dependent on the group V supply and can contribute to doping by 
incorporation of Si from SiH3PH2 into the growing epilayer. 

Flux of TMIn, which is supplied from a solid source through a bubbler, is 
calculated as [3] 

𝐹𝐹TMIn =
𝜖𝜖 𝐹𝐹hydrogen 𝑝𝑝TMIn

(𝑝𝑝bubbbler total − 𝑝𝑝TMIn) (2.8) 

where 𝐹𝐹hydrogen is the hydrogen flux, 𝑝𝑝bubbbler total is the total overpressure within the 
bubbler (500 mbar), ϵ is the efficiency of the bubbler which can be assumed to be unity 
with a good accuracy and 𝑝𝑝TMIn is the saturated vapor pressure of TMIn in the bubbler 
which can be calculated from [27] 

𝑝𝑝TMIn = 10�10.52−3014𝑇𝑇 � [Torr] (2.9) 
in which T is the bubbler temperature in kelvin (291 K for TMIn). Molar flux of TMIn 
can readily be calculated using 𝐹𝐹TMIn and the ideal gas law. 

Molar flux of PH3, which is supplied directly from a gas source, is calculated 
from 
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𝐹𝐹𝑀𝑀
PH3 = 𝐹𝐹PH3

𝜌𝜌PH3
𝑀𝑀PH3

 (2.10) 

where 𝐹𝐹PH3, 𝜌𝜌PH3 and 𝑀𝑀PH3 are the volume flux, density (in the standard temperature 
and pressure condition) and the molar mass of PH3 respectively. 

Using the appropriate values for the density and molar mass, Eq. (2.10) can also 
be used to calculate the molar flux of disilane, which is supplied as a 200 ppm diluted 
gas in hydrogen.  

Free carrier concentration of the samples which are grown on a SI substrate 
(samples 1-9) is determined by Hall-effect measurement which is carried out at room 
temperature using the van der Pauw method with a variable magnet field (measured up 
to 1.5 T). 

Hall-effect measurement cannot determine the free carrier concentration of an 
epilayer which is grown on a doped substrate (samples 10 and 11). Therefore for these 
two samples electrochemical capacitance-voltage (ECV) measurement method is used, 
in which a small area of the sample (a circle of around 0.5 mm diameter) is exposed to 
an electrolyte that slowly dissolves the sample by an electrochemical reaction. The free 
carrier concentration of the sample is consequently measured in different depths. More 
theoretical details about ECV measurement method can be found in [28]. 

All the samples are grown at 610 °C and an overall chamber pressure of 60 Torr. 
Table 2.1 summarizes the growth conditions and the resulting carrier concentration and 
mobility of the samples 1-9.  Figure 2.4 shows the carrier concentration versus disilane 
to TMIn molar flux ratio for two groups of samples with different V/III molar ratios. 
Carrier concentration is proportional to disilane to TMIn molar flux ratio up to a 
threshold point where the excess Si precipitates on the surface of the sample and 
deteriorates it (Fig. 2.5). As explained above, higher V/III ratio results in slightly higher 
carrier concentration. 

Table 2.2 summarizes the growth conditions and the free carrier concentration 
for samples 10 and 11. These results are presented separately from the results of 
samples 1-9 because of the different measurement techniques used. 
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Table 2.1 Growth parameters and the electrical properties of the samples 1-9 

Sample 
PH3 flux 
[SCCM] 

PH3 flux 
×10-2 

[mol/min] 

TMIn flux 
[SCCM] 

TMIn flux 
×10-5 

[mol/min] 

Disilane flux 
×10-9 

[mol/min] 

Thickness 
[nm] 

Free carrier 
concentration 
[×1019 cm-3] 

Mobility 
[cm2/V.s] 

1 350 1.534 355 6.163 0.769 485 0.35 1490 

2 250 1.096 407 7.066 2.696 570 0.86 723 

3 250 1.096 407 7.066 4.623 533 1.71 893 

4 250 1.096 407 7.066 5.392 531 1.94 901 

5 250 1.096 407 7.066 6.164 536 2.35 480 

6 350 1.534 347 6.024 5.253 475 2.7 821 

7 350 1.534 347 6.024 6.935 651 3.09 689 

8 350 1.534 355 6.163 7.319 516 3.39 749 

9 350 1.534 347 6.024 7.319 503 3.87 671 

 

 

Fig. 2.4 Carrier concentration versus Si2H6/TMIn molar ratio for two different V/III molar ratios 
(samples 1-9) 
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Fig. 2.5 Differential interference contrast (DIC) optical microscope image of the deteriorated surface of a 
sample with Si2H6/TMIn molar ratio equal to 15.27×10-5  

Table 2.2 Growth parameters and the electrical properties of the samples 10 and 11 

Sample PH3 flux 
[SCCM] 

PH3 flux 
×10-2 

[mol/min] 

TMIn flux 
[SCCM] 

TMIn flux 
×10-5 

[mol/min] 

Disilane flux 
×10-9 

[mol/min] 

Thickness 
[nm] 

N (ECV) 
×1019  

[1/cm3] 
10 200 0.87 350 6.076 6.935 397 3.15 

11 200 0.87 407 7.066 3.852 3080 2.7 

 

 

2.2.1. Self-compensation in InP:Si 

In order for the Si atoms to contribute as donors they should be incorporated into sub-
lattice of the IIIrd group, but in some cases, Si atoms may be incorporated to sub-lattice 
of the Vth group and work as acceptors, or sit in the interstitial sites of the crystal. This 
phenomenon which is one of the barriers against high doping of InP is known as self-
compensation [29]. 

The concentration of Si atoms is determined using time-of-flight secondary ion 
mass spectrometry (TOF-SIMS) and subsequently compared to the free carrier 
concentration in the grown samples. A reference sample with a known amount of 28Si is 
required to calibrate the TOF-SIMS response to the concentration. In this regard 
“stopping and range of ions in matter” (SRIM) simulations are done to find the 
appropriate dose, energy and the resulting concentration profile for implantation of Si 
ions in an InP:S wafer consisting of 49.992% In, 49.992% P and 0.016% S. Atomic 
mass of Si is considered to be 27.977 amu. Figure 2.6(a) shows the simulated ions paths 
for 500 Si ions with 380 KeV energy and 7° tilt angle. Figures 2.6(b) and (c) show the 
ions range and atoms distribution respectively for 10000 ions considered in the 
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simulation. According to Fig. 2.6(b), a dose of 2×1015 Si atoms/cm2 will result in the 
maximum Si concentration of 5.4×1019 cm-3 at 450 nm depth. An ion implanted sample 
with the above mentioned parameters is ordered from a commercial supplier, to be used 
as the reference sample for TOF-SIMS measurements. TOF-SIMS depth profiling 
analyses are performed on the grown InP:Si samples. The erosion rate is calculated to 
be 15.6 nm/min by measuring the resulting crater depth for the thickest epilayer using a 
Dektak 3030 surface profile measuring system (Sloan Technology Corp.) and relating 
the depth to the sputter time. The Si concentrations are extracted from depth profiles 
through the entire epilayer and the error bars are typically based on 50–100 in-depth 
measuring points. 

 

Fig. 2.6 SRIM simulation results for Si implantation in InP:S, (a) Ions paths  for 500 ions, (b) ions range 
for 10000 ions, and (c) atoms distribution for 10000 ions 

Figure 2.7 presents the TOF-SIMS depth profiles for all of the grown samples 
together with the ion implanted reference sample. Figure 2.8 shows the free carrier 
concentration measured by Hall-effect method versus the disilane to TMIn molar flux 
ratio, together with the Si concentration measured by TOF-SIMS analysis for samples 
1-9. In all cases, the difference between the Si concentration measured by TOF-SIMS 
and the donors concentration measured by Hall-effect method is smaller than the error 
bars, which shows that the compensation ratio (ratio of the ionized acceptors to the 
ionized donor concentration) is smaller than the measurement limit. 
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Fig. 2.7 Depth profile of the Si concentration in the samples measured by TOF-SIMS. 

 

Fig. 2.8 Carrier concentration versus Si2H6/TMIn molar ratio together with the TOF-SIMS measurement 
results (samples 1-9) 
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2.3. Summary 

In this chapter, basics of the MOVPE of III-V semiconductors were explained and 
afterwards the discussion was narrowed down to the growth of Si doped InP. The 
growth procedure for 11 InP:Si samples was described and the effect of the growth 
conditions, namely the dopant flux and the V/III precursors ratio, on the free carrier 
concentration was studied. The resulting free carrier concentration range of the samples 
was 0.35-3.87×1019 cm-3 which shows an almost linear proportionality with the dopant 
flux up to a threshold above which the morphology of the sample’s surface will be 
deteriorated. It was observed that higher V/III ratio results in a slightly higher free 
carrier concentration. Si concentration in the samples was measured by TOF-SIMS 
analysis and compared with the donors’ concentration measured by Hall-effect method 
in order to find the compensation ratio. It was found that in all cases the difference 
between TOF-SIMS analysis and Hall-effect measurement results is smaller than the 
measurement error bars which is an indication of negligible self-compensation. 
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3. OPTICAL PROPERTIES OF InP:Si 
 

 

 

3.1. Introduction to optical properties of InP:Si 

Light, as an electromagnetic wave, interacts with matter in different ways that result in 
different phenomena including reflection, transmission, absorption, scattering and 
emission. Considering electrons as oscillators and light as the external driving force, 
their mutual interaction depends on the frequency of light and the resonance frequency 
of the electrons inside the atom. In metals and doped semiconductors, where there are 
plenty of free electrons in the conduction band, the free electrons will vibrate with the 
same frequency as the incoming light but in the opposite phase. In this case no refracted 
light can propagate inside the material if the density of free electrons is above a certain 
limit. When the energy of the incoming photons is equal to the energy difference 
between the valence band and the conduction band of a semiconductor, photons can be 
absorbed and move the electrons from the valence band to the conduction band. This is 
called interband transition. In addition, if the frequency of the incoming photons is 
equal to the resonance frequency of a mechanical vibration mode of the periodic 
arrangement of atoms, photons can be absorbed and excite a collective mechanical 
excitation in the crystal, known as phonon. All these phenomena can be summarized in 
the permittivity of the material which describes its response to an external 
electromagnetic field. Since each of these phenomena happens in a particular frequency, 
permittivity will be a function of the frequency and usually defined for a certain 
frequency range and referred to as the “dielectric function”. Dielectric function of a 
material is the key information to understand its optical and in particular plasmonic 
behavior. 

Figures 3.1(a) and (b) show the band structure of InP and the energy gap 
narrowing versus carrier concentration respectively. The interband transition energies of 
InP are 1.344 eV (E0), 1.45 eV (E0+Δ0), 3.10 eV (E1), 3.25 eV (E1+Δ1) and 4.7 eV 
(E2) [1]. Optical properties of undoped InP near its interband transition energies in 
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ultra-violet (UV), visible and near-infrared (near-IR) ranges are investigated by 
different researchers considering its energy band structure [1-6]. Figure 3.2 shows the 
dielectric function of InP from near-IR to UV. 

 

Fig. 3.1 (a) Band structure of InP [7] (b) energy gap narrowing vs carrier concentration for InP [7-9] 

 

Fig. 3.2 Real and imaginary parts of the permittivity of InP from UV to near-IR [1] 

According to Fig. 3.1(b), for an electron concentration of around 4×1019 cm-3 
band gap energy of InP will be around 1.26 eV which corresponds to 984 nm 
wavelength. Therefore effect of the interband transitions is negligible in the mid-IR 
range and the free electrons gas oscillations together with the phonon absorptions will 
be the dominant dispersion phenomena. In this case optical properties of InP can be 
described by the “plasma model” in which the details of the electron-electron 
interactions and electron-lattice interactions are neglected. The free electrons gas is 
assumed to oscillate around the fixed positive ions background. The equation of motion 
for one electron of effective mass m* under the influence of the external electric field E 
is given by [10]: 

𝑚𝑚∗�̈�𝐗 + 𝑚𝑚∗𝛾𝛾�̇�𝐗 = −𝑒𝑒𝐄𝐄  (3.1) 
where 𝛾𝛾 is the free electron’s damping and e is the charge of the electron. Assuming a 
harmonic time dependence for the electric field in form of 𝐄𝐄(𝑡𝑡) = 𝐄𝐄0𝑒𝑒−𝑖𝑖 𝜔𝜔𝜔𝜔, the 
electron’s displacement will also be harmonic, 𝐗𝐗(𝑡𝑡) = 𝐗𝐗0𝑒𝑒−𝑖𝑖 𝜔𝜔𝜔𝜔, which leads to: 
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𝐗𝐗0 =
𝑒𝑒

𝑚𝑚∗(𝜔𝜔2 + 𝑖𝑖𝛾𝛾𝜔𝜔)𝐄𝐄0 . (3.2) 

The dielectric displacement field D, which accounts for the effect of both free 
and bound charges inside the material, is related to the external electric field E, and the 
polarization P which is the density of electric dipole moments, by 

𝐃𝐃 = 𝜀𝜀0𝐄𝐄 + 𝐏𝐏 (3.3) 
in which 𝜀𝜀0 is the electric permittivity of vacuum. For a gas of electrons of density N 

𝐏𝐏 = −𝑁𝑁𝑒𝑒𝐗𝐗 . (3.4) 
Substitution of (3.2) into (3.4) and (3.4) into (3.3) yields 

𝐃𝐃 = 𝜀𝜀0 �1 −
𝜔𝜔𝑝𝑝2

𝜔𝜔2 + 𝑖𝑖𝛾𝛾𝜔𝜔
�𝐄𝐄  (3.5) 

where 𝜔𝜔𝑝𝑝 is the “plasma frequency”, defined as 

𝜔𝜔𝑝𝑝 = �
𝑁𝑁𝑒𝑒2

𝜀𝜀0𝑚𝑚∗ . (3.6) 

On the other hand P and D can be related to each other, via electric 
susceptibility χ, by 

𝐏𝐏 = 𝜀𝜀0𝜒𝜒𝐄𝐄 . (3.7) 
Using (3.7) in (3.3) and defining the relative permittivity as 𝜀𝜀 = 1 + 𝜒𝜒, one will 

get to the constitutive relation 

𝐃𝐃 = 𝜀𝜀0𝜀𝜀𝐄𝐄 . (3.8) 
Comparison with Eq. (3.5) will give the dielectric function of the free electron 

gas in form of the “Drude model” [10] 

ε(𝜔𝜔) = 1 −
𝜔𝜔𝑝𝑝2

𝜔𝜔2 + 𝑖𝑖𝛾𝛾𝜔𝜔
 . (3.9) 

In the free electron model ε(𝜔𝜔) → 1 for 𝜔𝜔 ≫ 𝜔𝜔𝑝𝑝. This is not true for real metals 
and doped semiconductors in which the positive background of the ions affects the 
polarization. This effect is taken into account by introducing a high frequency 
permittivity 𝜀𝜀∞ in the Drude model 

ε(𝜔𝜔) = 𝜀𝜀∞ �1 −
𝜔𝜔𝑝𝑝2

𝜔𝜔2 + 𝑖𝑖𝛾𝛾𝜔𝜔
�  (3.10) 

and adjusting the plasma frequency accordingly: 

𝜔𝜔𝑝𝑝 = �
𝑁𝑁𝑒𝑒2

𝜀𝜀∞𝜀𝜀0𝑚𝑚∗ . (3.11) 



24 
 

In order to account for the contribution of the phonons to the optical dispersion 
of the material, Drude model is extended to the “Drude-Lorentz” model:  

𝜀𝜀(𝜔𝜔) = 𝜀𝜀∞ �1 −
𝜔𝜔𝑝𝑝2

𝜔𝜔2 + 𝑖𝑖 𝜔𝜔𝛾𝛾
� + �

𝑆𝑆𝑗𝑗𝜔𝜔𝑓𝑓,𝑗𝑗
2

𝜔𝜔𝑓𝑓,𝑗𝑗
2 − 𝜔𝜔2 − 𝑖𝑖 𝜔𝜔Г𝑗𝑗𝑗𝑗

 . (3.12) 

Here 𝑆𝑆𝑗𝑗, 𝜔𝜔𝑓𝑓,𝑗𝑗 and Г𝑗𝑗 are the strength, resonance frequency and damping for the jth 
Lorentzian oscillator respectively, describing a phonon absorption at frequency 𝜔𝜔𝑓𝑓,𝑗𝑗. 

Optical properties of doped InP in the IR range have been investigated by 
different research groups. Jayasinghe et al. studied dielectric function and plasma 
frequency of p-doped InP in the IR range. The maximum carrier concentration 
considered was 2.4×1019 cm-3 pertaining to a plasma wavelength equal to 15.4 µm [11]. 
The large plasma wavelength in this case is due to the high effective mass of holes. 
Zheng et al. were able to achieve free electron concentrations as high as 1.1×1020 cm-3 
in InP, using molecular beam epitaxy (MBE) and Si as the dopant. They discussed 
photoluminescence measurement data for samples with different carrier concentrations 
[12]. El-Nahass et al. measured transmittance and reflectance of sulfur doped InP with a 
carrier concentration of 3×1018 cm-3 in the wavelength range of 200-2500 nm in order to 
derive the absorption coefficient and refractive index [13]. Hua et al. measured the IR 
reflectance of bulk sulfur and tin doped InP samples with a maximum carrier 
concentration of 1.2×1019  cm-3, and studied the position of the reflectance minima for 
different carrier concentrations [14]. Very recently, Cada et al. have used Fourier 
transform infrared (FTIR) spectroscopy together with Raman scattering measurements 
to determine the plasma frequency of heavily doped InP [15].  

In this chapter reflectance from the samples with an n-doped InP epilayer will be 
calculated and fitted to the experimentally determined reflectance spectra, in order to 
restore the dielectric function of n-doped InP for different carrier concentrations. Using 
the restored dielectric function, plasmonic properties of n-doped InP in the mid-IR 
range will be compared to other semiconductors. 

 

3.2. Reflectance calculation 

3.2.1. Normal incidence 

In this section the reflectance spectra from the samples with an InP:Si epilayer on top of 
a semi-insulating (SI) InP:Fe or InP:S substrate will be calculated. 

 Consider an electric field linearly polarized in the x direction and propagating in 
an isotropic medium along the z direction, defined as 𝐄𝐄(𝑧𝑧) = 𝐱𝐱�𝐸𝐸𝑥𝑥(𝑧𝑧) = 𝐱𝐱�𝐸𝐸(𝑧𝑧), together 
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with the pertaining magnetic field defined as 𝐇𝐇(𝑧𝑧) = 𝐲𝐲�𝐻𝐻𝑦𝑦(𝑧𝑧) = 𝐲𝐲�𝐻𝐻(𝑧𝑧). The total 
electric and magnetic fields will be [16] 

𝐸𝐸(𝑧𝑧) = 𝐸𝐸0+𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖 + 𝐸𝐸0−𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖 = 𝐸𝐸+(𝑧𝑧) + 𝐸𝐸−(𝑧𝑧) 
(3.13) 𝐻𝐻(𝑧𝑧) =

1
𝜂𝜂
�𝐸𝐸0+𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖 − 𝐸𝐸0−𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖� =

1
𝜂𝜂

[𝐸𝐸+(𝑧𝑧) − 𝐸𝐸−(𝑧𝑧)] 

in which the subscripts + and – denote the forward and backward travelling waves 

respectively, k is the wavevector and 𝜂𝜂 = �𝜇𝜇
𝜀𝜀
 is the impedance of the medium, where 𝜇𝜇 

denotes the relative permeability of the medium. 

The reflection coefficient at position z is defined as: 

Г(𝑧𝑧) =
𝐸𝐸−(𝑧𝑧)
𝐸𝐸+(𝑧𝑧) =

𝐸𝐸0−𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖

𝐸𝐸0+𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖
 . (3.14) 

Figure 3.3 shows the electric and magnetic fields at positions z1 and z2, which 
can be defined, using Eq. (3.13), as 

𝐸𝐸2+ = 𝐸𝐸0+𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖2 (3.15) 
𝐸𝐸1+ = 𝐸𝐸0+𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖1 = 𝐸𝐸0+𝑒𝑒𝑖𝑖𝑖𝑖(𝑖𝑖2−𝑙𝑙) = 𝑒𝑒−𝑖𝑖𝑖𝑖𝑙𝑙𝐸𝐸2+ . 

Similarly 𝐸𝐸1− = 𝑒𝑒𝑖𝑖𝑖𝑖𝑙𝑙𝐸𝐸2−. Therefore in matrix form 

�𝐸𝐸1+𝐸𝐸1−
� = �𝑒𝑒

−𝑖𝑖𝑖𝑖𝑙𝑙 0
0 𝑒𝑒𝑖𝑖𝑖𝑖𝑙𝑙

� �𝐸𝐸2+𝐸𝐸2−
� . (3.16) 

The two by two matrix in Eq. (3.16) is referred to as the propagation matrix, 
which describes the relation between the electric fields on the left and right sides of the 
space between z1 and z2. 

 

 

 

 

Fig. 3.3 Electric and magnetic fields propagated between points z1 and z2 [16] 

Consider a planar interface in the xy plane at position z between two different 
media with impedances 𝜂𝜂  and 𝜂𝜂′ (Fig. 3.4). 

 

 

 

Fig. 3.4 Electric fields across an interface 
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In case of normal incidence, electric and magnetic fields are tangential to the 
interface, therefore the boundary conditions require that the total fields be continuous 
across the interface, which means: 

𝐸𝐸 = 𝐸𝐸′ (3.17) 𝐻𝐻 = 𝐻𝐻′. 
According to (3.13) 

𝐸𝐸+ + 𝐸𝐸− = 𝐸𝐸+′ + 𝐸𝐸−′  
(3.18) 1

𝜂𝜂
(𝐸𝐸+ − 𝐸𝐸−) =

1
𝜂𝜂′

(𝐸𝐸+′ − 𝐸𝐸−′ ) . 

Equation (3.18) can be rewritten in matrix form: 

�𝐸𝐸+𝐸𝐸−
� =

1
𝜏𝜏
�1 𝜌𝜌
𝜌𝜌 1� �

𝐸𝐸+′
𝐸𝐸−′
� 

(3.19) 
�𝐸𝐸+

′

𝐸𝐸−′
� =

1
𝜏𝜏′
�1 𝜌𝜌′
𝜌𝜌′ 1 � �

𝐸𝐸+
𝐸𝐸−
� 

where 𝜏𝜏 and 𝜌𝜌 are transmission and reflection coefficients from the left side and 𝜏𝜏′ and 
𝜌𝜌′ are transmission and reflection coefficients from the right side defined as 

𝜌𝜌 =
𝜂𝜂′ − 𝜂𝜂
𝜂𝜂′ + 𝜂𝜂

 ,     𝜏𝜏 =
2𝜂𝜂′

𝜂𝜂′ + 𝜂𝜂
 

(3.20) 
𝜌𝜌′ =

𝜂𝜂 − 𝜂𝜂′

𝜂𝜂′ + 𝜂𝜂
 ,     𝜏𝜏′ =

2𝜂𝜂
𝜂𝜂′ + 𝜂𝜂

 . 

The two by two matrices in Eq. (3.19) are referred to as the matching matrices, 
which describe the relation between the electric fields on the left and right sides of the 
interface between the two media. 

Regarding that 𝜂𝜂 = 𝜂𝜂0/𝑛𝑛 and 𝜂𝜂′ = 𝜂𝜂0/𝑛𝑛′, with 𝑛𝑛 and 𝑛𝑛′ being the refractive 
indices of the left and right media respectively, Eqs. (3.20) can be rewritten in terms of 
the refractive indices: 

𝜌𝜌 =
𝑛𝑛 − 𝑛𝑛′
𝑛𝑛 + 𝑛𝑛′

 ,     𝜏𝜏 =
2𝑛𝑛

𝑛𝑛 + 𝑛𝑛′
 

(3.21) 
𝜌𝜌′ =

𝑛𝑛′ − 𝑛𝑛
𝑛𝑛′ + 𝑛𝑛

 ,     𝜏𝜏′ =
2𝑛𝑛′

𝑛𝑛′ + 𝑛𝑛
 . 

 The relation between the electric fields on the left (A1 and B1) and right sides 
(A2 and B2) of a slab (Fig. 3.5) is given by the combination of the matching matrix for 
the left interface, propagation matrix, and the matching matrix for the right interface of 
the slab as 

�𝐴𝐴1𝐵𝐵1
� =

1
𝜏𝜏1
� 1 𝜌𝜌1
𝜌𝜌1 1 � �

𝑒𝑒−𝑖𝑖𝑖𝑖𝑙𝑙 0
0 𝑒𝑒𝑖𝑖𝑖𝑖𝑙𝑙

�
1
𝜏𝜏2
� 1 𝜌𝜌2
𝜌𝜌2 1 � �

𝐴𝐴2
𝐵𝐵2
� = 𝐓𝐓 �𝐴𝐴2𝐵𝐵2

� (3.22) 

in which k is the wavevector inside the slab defined as 𝑘𝑘 = 𝑛𝑛𝑘𝑘0, where n is the 
refractive index of the material inside the slab and 𝑘𝑘0 is the wavevector of the light in 
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vacuum. 𝐓𝐓 is known as the “transfer matrix” of the slab. Same procedure can be applied 
in order to find the transfer matrix for a cascade of optical elements. 

 

 

 

 

 

Fig. 3.5 Electric fields across a slab 

Using transfer matrix approach, transmission T defined as the ratio of the 
transmitted optical power to the incident optical power, and reflection R defined as the 
ratio between the reflected optical power and the incident optical power are given by 
[17] 

𝑅𝑅 = �
𝑻𝑻21
𝑻𝑻11

�
2

 
(3.23) 

𝑇𝑇 = �
1
𝑻𝑻11

�
2

 

 For a lossless medium where there is no absorption 𝑅𝑅 + 𝑇𝑇 = 1. 

Using the transfer matrix method and the Drude-Lorentz dielectric function with 
its parameters listed in Table 3.1 and 3.2, reflectance spectrum of a 350 µm thick SI 
InP:Fe wafer is calculated. Figure 3.6 shows the calculated reflectance spectrum 
together with the reflectance spectrum measured by FTIR. The details of FTIR 
measurements will be given in section 3.4. 

Table 3.1 Parameters of the Lorentzian terms for the dielectric function of SI InP:Fe 

j 1 2 3 4 5 6 
𝑆𝑆𝑗𝑗 1.7×10-4 1.19×10-4 6.13×10-5 1.78×10-3 1.56 2.85 

Г𝑗𝑗[THz] 0.51 0.4 0.28 1.33 1282.89 4.63×10-3 
𝜔𝜔𝑓𝑓,𝑗𝑗[THz] 18.73 19.76 20.49 14.74 14.82 9.08 

 

Table 3.2 Parameters of the Drude term for the dielectric function of SI InP:Fe 

𝜔𝜔𝑝𝑝[THz] 𝛾𝛾[THz] 𝜀𝜀∞ 
3.77×10-5 3 9.55 

 

A1 A2 

B2 B1 

n1 n2 n3 

ρ1 
τ1 
 

ρ2 
τ2 
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Fig. 3.6 Reflectance spectrum of a 350 µm thick InP:Fe slab, measured using FTIR and calculated using 
the transfer matrix method 

 As it can be seen in Fig. 3.6, there are oscillations in the calculated reflectance 
spectrum which originate from constructive and destructive interferences in the InP:Fe 
slab. These oscillations which are known as Fabry-Perot fringes, are not observed in the 
measured reflectance spectrum due to the deviations from the ideal conditions. These 
deviations can be attributed to the light source, method of observation or small 
misalignments between the interfaces [18,19]. Fabry-Perot fringes will be suppressed 
more in case of thicker layers, therefore in order to calculate the reflectance spectra of 
our samples comprising a thin epilayer on top of a thick substrate, an alternative method 
called “intensity transfer matrix” is used which eliminates the Fabry-Perot fringes from 
the thick substrate but retains the fringes from the thin epilayers [18]. Figure 3.7 depicts 
a schematic of a thin film on top of a thick substrate together with light beams reflected 
from and transmitted through different interfaces. 𝑅𝑅𝑎𝑎 and 𝑇𝑇𝑎𝑎 are the reflectance and 
transmittance of the light coming from the left side, considering an infinitely thick 
substrate. 𝑅𝑅𝑎𝑎′  and 𝑇𝑇𝑎𝑎′ are the reflectance and transmittance of the light coming from the 
right side, considering an infinitely thick substrate.  𝑅𝑅𝑏𝑏 and 𝑇𝑇𝑏𝑏 are the reflectance and 
transmittance of the light from the interface at the right side of the substrate. The total 
reflectance of the epilayer/substrate system will be obtained by adding the intensity of 
light travelling in different paths [18]: 

ℛ = 𝑅𝑅𝑎𝑎 + 𝑇𝑇𝑎𝑎𝑇𝑇𝑎𝑎′𝑅𝑅𝑏𝑏𝑒𝑒−2𝛼𝛼𝛼𝛼 + 𝑇𝑇𝑎𝑎𝑇𝑇𝑎𝑎′𝑅𝑅𝑎𝑎′ 𝑅𝑅𝑏𝑏2𝑒𝑒−4𝛼𝛼𝛼𝛼 + ⋯ = 𝑅𝑅𝑎𝑎 +
𝑇𝑇𝑎𝑎𝑇𝑇𝑎𝑎′𝑅𝑅𝑏𝑏𝑒𝑒−2𝛼𝛼𝛼𝛼

1 − 𝑅𝑅𝑎𝑎′ 𝑅𝑅𝑏𝑏𝑒𝑒−2𝛼𝛼𝛼𝛼
 (3.24) 

where d is the thickness of the substrate and 𝛼𝛼 = 4𝜋𝜋 𝜔𝜔
𝑐𝑐

Im��𝜀𝜀𝑠𝑠�, in which c is the speed 
of light and 𝜀𝜀𝑠𝑠 is the permittivity of the substrate. 

 Transmittance through the epilayer/substrate system can also be calculated in a 
similar way: 
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𝒯𝒯 =
𝑇𝑇𝑎𝑎𝑇𝑇𝑏𝑏𝑒𝑒−𝛼𝛼𝛼𝛼

1 − 𝑅𝑅𝑎𝑎′ 𝑅𝑅𝑏𝑏𝑒𝑒−2𝛼𝛼𝛼𝛼
 (3.25) 

More detailed derivation of transmittance and reflectance is given in [18]. 

 

 

 

 

 

Fig. 3.7 Schematic of the reflectance and transmittance from different interfaces, used in the intensity 
transfer matrix method 

 Figure 3.8 shows the reflectance spectrum calculated for the InP:Fe slab using 
the intensity transfer matrix method, which shows a good agreement with the 
experimentally determined reflectance.  

 

Fig. 3.8 Reflectance spectrum of a 350 µm thick InP:Fe slab, measured using FTIR and calculated using 
intensity transfer matrix method 

 The computer program developed for calculation of the reflectance spectra of a 
multilayer structure, using the intensity transfer matrix method, is presented in 
Appendix A. 

 

 

 

𝑇𝑇𝑎𝑎 
𝑇𝑇𝑎𝑎′ 

𝑇𝑇𝑏𝑏 

𝑅𝑅𝑎𝑎 𝑅𝑅𝑏𝑏 𝑅𝑅𝑎𝑎′  
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3.2.2. Oblique incidence 

Polarization of the incoming light becomes important in the case of oblique incidence, 
and waves with different polarizations will have different reflection and transmission 
coefficients. Figure 3.9 shows a schematic of the transverse electric (TE) and transverse 
magnetic (TM) polarized light obliquely incident on the interface between two 
materials. In TM polarization, the magnetic field is perpendicular and the electric field 
is parallel to the plane of incidence. In TE polarization, the electric field is 
perpendicular and the magnetic field is parallel to the plane of incidence. 

 

 

 

 

 

 

 

 

Fig. 3.9 TM (left) and TE (right) polarized waves in oblique incidence [16] 

The electric and magnetic fields can be separated into transverse and 
longitudinal components with respect to the direction that the layers are stacked i.e. z 
direction. The transfer matrix relations for normal incidence, that were explained in 
section 3.2.1, also apply for the transverse component provided that proper reflection 
and transmission coefficients are used.  

The incident and reflected electric fields at the two sides will have the form [16] 

𝐄𝐄+𝑒𝑒𝑖𝑖𝐤𝐤+.𝐫𝐫 ,𝐄𝐄−𝑒𝑒𝑖𝑖𝐤𝐤−.𝐫𝐫 ,𝐄𝐄+′ 𝑒𝑒𝑖𝑖𝐤𝐤+
′ .𝐫𝐫 ,𝐄𝐄−′ 𝑒𝑒𝑖𝑖𝐤𝐤−

′ .𝐫𝐫 (3.26) 
where the wavevector is 

𝐤𝐤± = 𝐱𝐱�𝑘𝑘𝑥𝑥± + 𝐲𝐲�𝑘𝑘𝑦𝑦± + 𝐳𝐳�𝑘𝑘𝒙𝒙± . (3.27) 
𝐤𝐤±
′  is also defined in a similar way. 

 According to the boundary condition, the net transverse component of the 
electric field must be continuous across the interface: 

𝐄𝐄𝑇𝑇+𝑒𝑒𝑖𝑖𝐤𝐤+.𝐫𝐫 + 𝐄𝐄𝑇𝑇−𝑒𝑒𝑖𝑖𝐤𝐤−.𝐫𝐫 = 𝐄𝐄𝑇𝑇+′ 𝑒𝑒𝑖𝑖𝐤𝐤+′ .𝐫𝐫 + 𝐄𝐄𝑇𝑇−′ 𝑒𝑒𝑖𝑖𝐤𝐤−′ .𝐫𝐫   at z=0 (3.28) 

x 

z 

𝐄𝐄− 

𝐤𝐤− 

𝐄𝐄+ k 
𝐤𝐤−′  

𝐸𝐸𝑥𝑥+ 

𝐸𝐸𝑖𝑖+ 𝑘𝑘𝑖𝑖 
𝑘𝑘𝑥𝑥 

θ 
θ θ' 

θ' 
𝑘𝑘𝑥𝑥′  

𝑘𝑘𝑖𝑖′  

𝐄𝐄+′  
𝐤𝐤′ 

𝐄𝐄−′  

x 

z 

𝐇𝐇− 

𝐤𝐤− 

𝐇𝐇+ 

k 
𝐤𝐤−′  

𝐻𝐻𝑥𝑥+ 

𝐻𝐻𝑖𝑖+ 

θ 
θ θ' 

θ' 
𝐇𝐇+
′  𝐤𝐤′ 

𝐇𝐇−
′  
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where the subscript T denotes the transverse part of a vector with respect to z direction. 
Setting 𝑧𝑧 = 0, Eq. (3.28) yields 

𝐄𝐄𝑇𝑇+𝑒𝑒𝑖𝑖�𝑖𝑖𝑥𝑥+𝑥𝑥+𝑖𝑖𝑦𝑦+𝑦𝑦� + 𝐄𝐄𝑇𝑇−𝑒𝑒𝑖𝑖�𝑖𝑖𝑥𝑥−𝑥𝑥+𝑖𝑖𝑦𝑦−𝑦𝑦�

= 𝐄𝐄𝑇𝑇+′ 𝑒𝑒𝑖𝑖�𝑖𝑖𝑥𝑥+
′ 𝑥𝑥+𝑖𝑖𝑦𝑦+′ 𝑦𝑦� + 𝐄𝐄𝑇𝑇−′ 𝑒𝑒𝑖𝑖�𝑖𝑖𝑥𝑥−′ 𝑥𝑥+𝑖𝑖𝑦𝑦−′ 𝑦𝑦�. 

(3.29) 

For the two sides of Eq. (3.29) to match at all points on the interface, the 
exponential phase factors in this equation must be equal for all x and y. Therefore 

𝑘𝑘𝑥𝑥+ = 𝑘𝑘𝑥𝑥− = 𝑘𝑘𝑥𝑥+′ = 𝑘𝑘𝑥𝑥−′  (3.30) 𝑘𝑘𝑦𝑦+ = 𝑘𝑘𝑦𝑦− = 𝑘𝑘𝑦𝑦+′ = 𝑘𝑘𝑦𝑦−′  . 
If the plane of incidence lies in the xz plane, then all of the wavevector 

components in the y direction will be zero. Equation (3.30) for the x components gives 

𝑘𝑘 sin𝜃𝜃+ = 𝑘𝑘 sin𝜃𝜃− = 𝑘𝑘′ sin𝜃𝜃+′ = 𝑘𝑘′ sin𝜃𝜃−′   , (3.31) 
which implies the Snel’s law of reflection: 

𝜃𝜃+ = 𝜃𝜃− = 𝜃𝜃 (3.32) 𝜃𝜃+′ = 𝜃𝜃−′ = 𝜃𝜃′ , 
and the Snel’s law of refraction, regarding that 𝑘𝑘 = 𝑛𝑛𝑘𝑘0 and 𝑘𝑘′ = 𝑛𝑛′𝑘𝑘0: 

sin𝜃𝜃
sin𝜃𝜃′

=
𝑛𝑛′

𝑛𝑛
 . (3.33) 

 If 𝐴𝐴+ and 𝐵𝐵+represent the TM and TE components of the electromagnetic field 
respectively, the total electric and magnetic fields incident from the left side will be 

𝐄𝐄+(𝐫𝐫) = [(𝐱𝐱� cos 𝜃𝜃 − 𝐳𝐳� sin𝜃𝜃)𝐴𝐴+ + 𝐲𝐲�𝐵𝐵+]𝑒𝑒𝑖𝑖𝐤𝐤+.𝐫𝐫 
(3.34) 𝐇𝐇+(𝐫𝐫) =

1
𝜂𝜂

[𝐲𝐲�𝐴𝐴+ − (𝐱𝐱� cos𝜃𝜃 − 𝐳𝐳� sin𝜃𝜃)𝐵𝐵+]𝑒𝑒𝑖𝑖𝐤𝐤+.𝐫𝐫 . 

The total reflected electric and magnetic fields will be 

𝐄𝐄−(𝐫𝐫) = [(𝐱𝐱� cos 𝜃𝜃 + 𝐳𝐳� sin𝜃𝜃)𝐴𝐴− + 𝐲𝐲�𝐵𝐵−]𝑒𝑒𝑖𝑖𝐤𝐤−.𝐫𝐫 
(3.35) 𝐇𝐇−(𝐫𝐫) =

1
𝜂𝜂

[−𝐲𝐲�𝐴𝐴− + (𝐱𝐱� cos 𝜃𝜃 + 𝐳𝐳� sin𝜃𝜃)𝐵𝐵−]𝑒𝑒𝑖𝑖𝐤𝐤−.𝐫𝐫 . 

The transverse amplitudes and the transverse impedances are defined as 

𝐴𝐴𝑇𝑇± = 𝐴𝐴± cos𝜃𝜃  ,𝐵𝐵𝑇𝑇± = 𝐵𝐵± 
(3.36) 𝜂𝜂𝑇𝑇𝑀𝑀 = 𝜂𝜂 cos 𝜃𝜃  , 𝜂𝜂𝑇𝑇𝑇𝑇 =

𝜂𝜂
cos 𝜃𝜃

 
Using (3.36), the transverse components of the electric and magnetic fields are 

given by 
𝐄𝐄𝑇𝑇+(𝑥𝑥, 𝑧𝑧) = [𝐱𝐱�𝐴𝐴𝑇𝑇+ + 𝐲𝐲�𝐵𝐵𝑇𝑇+]𝑒𝑒𝑖𝑖(𝑖𝑖𝑥𝑥𝑥𝑥+𝑖𝑖𝑧𝑧𝑖𝑖) 

(3.37) 
𝐇𝐇𝑇𝑇+(𝑥𝑥, 𝑧𝑧) = �𝐲𝐲�

𝐴𝐴𝑇𝑇+
𝜂𝜂𝑇𝑇𝑀𝑀

− 𝐱𝐱�
𝐵𝐵𝑇𝑇+
𝜂𝜂𝑇𝑇𝑇𝑇

� 𝑒𝑒𝑖𝑖(𝑖𝑖𝑥𝑥𝑥𝑥+𝑖𝑖𝑧𝑧𝑖𝑖) 

𝐄𝐄𝑇𝑇−(𝑥𝑥, 𝑧𝑧) = [𝐱𝐱�𝐴𝐴𝑇𝑇− + 𝐲𝐲�𝐵𝐵𝑇𝑇−]𝑒𝑒𝑖𝑖(𝑖𝑖𝑥𝑥𝑥𝑥−𝑖𝑖𝑧𝑧𝑖𝑖) 

𝐇𝐇𝑇𝑇−(𝑥𝑥, 𝑧𝑧) = �−𝐲𝐲�
𝐴𝐴𝑇𝑇−
𝜂𝜂𝑇𝑇𝑀𝑀

+ 𝐱𝐱�
𝐵𝐵𝑇𝑇−
𝜂𝜂𝑇𝑇𝑇𝑇

� 𝑒𝑒𝑖𝑖(𝑖𝑖𝑥𝑥𝑥𝑥−𝑖𝑖𝑧𝑧𝑖𝑖) . 
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Adding the relations for the incident and reflected waves and ignoring the factor 
𝑒𝑒𝑖𝑖𝑖𝑖𝑥𝑥𝑥𝑥 which is equal on both sides of the interface we will get 

𝐄𝐄𝑇𝑇(𝑧𝑧) = 𝐱𝐱�𝐸𝐸𝑇𝑇𝑀𝑀(𝑧𝑧) + 𝐲𝐲�𝐸𝐸𝑇𝑇𝑇𝑇(𝑧𝑧) (3.38) 𝐇𝐇𝑇𝑇(𝑧𝑧) = 𝐲𝐲�𝐻𝐻𝑇𝑇𝑀𝑀(𝑧𝑧) − 𝐱𝐱�𝐻𝐻𝑇𝑇𝑇𝑇(𝑧𝑧) . 
Using the transverse impedance: 

𝐸𝐸𝑇𝑇𝑀𝑀(𝑧𝑧) = 𝐴𝐴𝑇𝑇+𝑒𝑒𝑖𝑖𝑖𝑖𝑧𝑧𝑖𝑖 + 𝐴𝐴𝑇𝑇−𝑒𝑒−𝑖𝑖𝑖𝑖𝑧𝑧𝑖𝑖 

(3.39) 
𝐻𝐻𝑇𝑇𝑀𝑀(𝑧𝑧) =

1
𝜂𝜂𝑇𝑇𝑀𝑀

�𝐴𝐴𝑇𝑇+𝑒𝑒𝑖𝑖𝑖𝑖𝑧𝑧𝑖𝑖 − 𝐴𝐴𝑇𝑇−𝑒𝑒−𝑖𝑖𝑖𝑖𝑧𝑧𝑖𝑖� 

𝐸𝐸𝑇𝑇𝑇𝑇(𝑧𝑧) = 𝐵𝐵𝑇𝑇+𝑒𝑒𝑖𝑖𝑖𝑖𝑧𝑧𝑖𝑖 + 𝐵𝐵𝑇𝑇−𝑒𝑒−𝑖𝑖𝑖𝑖𝑧𝑧𝑖𝑖 

𝐻𝐻𝑇𝑇𝑇𝑇(𝑧𝑧) =
1
𝜂𝜂𝑇𝑇𝑇𝑇

�𝐵𝐵𝑇𝑇+𝑒𝑒𝑖𝑖𝑖𝑖𝑧𝑧𝑖𝑖 − 𝐵𝐵𝑇𝑇−𝑒𝑒−𝑖𝑖𝑖𝑖𝑧𝑧𝑖𝑖� . 

 The above equations can be written in compact form: 

𝐸𝐸𝑇𝑇(𝑧𝑧) = 𝐸𝐸𝑇𝑇+𝑒𝑒𝑖𝑖𝑖𝑖𝑧𝑧𝑖𝑖 + 𝐸𝐸𝑇𝑇−𝑒𝑒−𝑖𝑖𝑖𝑖𝑧𝑧𝑖𝑖 
(3.40) 𝐻𝐻𝑇𝑇(𝑧𝑧) =

1
𝜂𝜂𝑇𝑇
�𝐸𝐸𝑇𝑇+𝑒𝑒𝑖𝑖𝑖𝑖𝑧𝑧𝑖𝑖 − 𝐸𝐸𝑇𝑇−𝑒𝑒−𝑖𝑖𝑖𝑖𝑧𝑧𝑖𝑖� 

where 𝐸𝐸𝑇𝑇 stands for both 𝐸𝐸𝑇𝑇𝑀𝑀 or 𝐸𝐸𝑇𝑇𝑇𝑇. 

 Equation (3.40) will be similar to Eq. (3.13) if we substitute 

𝜂𝜂 → 𝜂𝜂𝑇𝑇 , 𝑒𝑒±𝑖𝑖𝑖𝑖𝑖𝑖 → 𝑒𝑒±𝑖𝑖𝑖𝑖𝑧𝑧𝑖𝑖 = 𝑒𝑒±𝑖𝑖𝑖𝑖𝑖𝑖 cos𝜃𝜃 . (3.41) 
 The transverse reflection coefficient reads 

Г𝑇𝑇(𝑧𝑧) =
𝐸𝐸𝑇𝑇−(𝑧𝑧)
𝐸𝐸𝑇𝑇+(𝑧𝑧) =

𝐸𝐸𝑇𝑇−𝑒𝑒−𝑖𝑖𝑖𝑖𝑧𝑧𝑖𝑖

𝐸𝐸𝑇𝑇+𝑒𝑒𝑖𝑖𝑖𝑖𝑧𝑧𝑖𝑖
= Г𝑇𝑇(0)𝑒𝑒−2𝑖𝑖𝑖𝑖𝑧𝑧𝑖𝑖 . (3.42) 

 Hence, the propagation matrix will be 

�𝐸𝐸𝑇𝑇1+𝐸𝐸𝑇𝑇1−
� = �𝑒𝑒

−𝑖𝑖𝑖𝑖𝑧𝑧𝑙𝑙 0
0 𝑒𝑒𝑖𝑖𝑖𝑖𝑧𝑧𝑙𝑙

� �𝐸𝐸𝑇𝑇2+𝐸𝐸𝑇𝑇2−
� (3.43) 

where 𝑘𝑘𝑖𝑖 = 𝑘𝑘 cos 𝜃𝜃 and 𝑙𝑙 = 𝑧𝑧2 − 𝑧𝑧1 (Fig. 3.3). 

 The matching matrix will be 

�𝐸𝐸𝑇𝑇+𝐸𝐸𝑇𝑇−
� =

1
𝜏𝜏𝑇𝑇
� 1 𝜌𝜌𝑇𝑇
𝜌𝜌𝑇𝑇 1 � �

𝐸𝐸𝑇𝑇+′
𝐸𝐸𝑇𝑇−′

� . (3.44) 

 Using the Snel’s law together with the second equation of (3.36), the reflection 
coefficients for TM and TE polarizations are found to be [16] 
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𝜌𝜌𝑇𝑇𝑀𝑀 =
��𝑛𝑛

′

𝑛𝑛 �
2
− sin2 𝜃𝜃 − �𝑛𝑛

′

𝑛𝑛 �
2

cos 𝜃𝜃

��𝑛𝑛
′

𝑛𝑛 �
2
− sin2 𝜃𝜃 + �𝑛𝑛

′

𝑛𝑛 �
2

cos 𝜃𝜃
 

(3.45) 

𝜌𝜌𝑇𝑇𝑇𝑇 =
cos 𝜃𝜃 − ��𝑛𝑛

′

𝑛𝑛 �
2
− sin2 𝜃𝜃

cos 𝜃𝜃 + ��𝑛𝑛
′

𝑛𝑛 �
2
− sin2 𝜃𝜃

 . 

 The transmission coefficients can be found from (3.45), using the relation 
𝜏𝜏 = �1 − 𝜌𝜌2. 

 For a multilayer structure under oblique incidence, first the angle of incidence 
for each layer should be calculated using Snel’s law. The calculated angle of incidence 
should then be used in Eqs. (3.43), (3.44) and (3.45) to find the transfer matrix. Finally, 
the reflectance for both polarizations should be added in order to find the total 
reflectance. In case of multilayers on top of a thick substrate, in order to eliminate 
Fabry-Perot fringes originating from the substrate, the transfer matrix should be used in 
conjunction with the Eq. (3.24). 

 The computer program developed for calculation of the oblique reflectance 
spectra of a multilayer structure, using the intensity transfer matrix method, is presented 
in Appendix B. 

 

3.3. Levenberg-Marquardt method 

In order to find the dielectric function of InP:Si with different carrier concentrations, 
reflectance spectra of the epilayer/substrate system are calculated using the intensity 
transfer matrix method and the Drude-Lorentz dielectric function for InP. The 
calculated reflectance spectra are then fitted to the experimentally determined one to 
find the parameters of the Drude-Lorentz function for InP with different carrier 
concentrations. In this section, details of the used nonlinear curve fitting algorithm, 
known as the Levenberg-Marquardt method, will be explained. 

 Consider a nonlinear function of x which depends on the set of unknown 
parameters 𝑎𝑎𝑖𝑖 ,𝑘𝑘 = 1, 2, … ,𝑀𝑀: 

𝑦𝑦 = 𝑦𝑦(𝑥𝑥; 𝐚𝐚) (3.46) 
in which a is the set of 𝑎𝑎𝑖𝑖 in vector form. The goal is to fit y to a set of experimental 
points 𝑦𝑦𝑖𝑖 , 𝑖𝑖 = 1, 2, … ,𝑁𝑁, and minimize an error function 𝜒𝜒2, defined as 
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𝜒𝜒2(𝐚𝐚) = ��
𝑦𝑦𝑖𝑖 − 𝑦𝑦(𝑥𝑥𝑖𝑖; 𝐚𝐚)

𝜎𝜎𝑖𝑖
�
2𝑁𝑁

𝑖𝑖=1

 (3.47) 

where 𝜎𝜎𝑖𝑖 is the standard deviation corresponding to a number of measurements at 𝑥𝑥𝑖𝑖. 

Taylor expansion of the function 𝜒𝜒2(𝐚𝐚) at 𝐚𝐚 = 𝐚𝐚0 gives 

𝜒𝜒2(𝐚𝐚) = 𝜒𝜒2(𝐚𝐚0) + �
𝜕𝜕𝜒𝜒2

𝜕𝜕𝑎𝑎𝑖𝑖
𝑎𝑎𝑖𝑖

𝑖𝑖

+
1
2
�

𝜕𝜕2𝜒𝜒2

𝜕𝜕𝑎𝑎𝑖𝑖𝜕𝜕𝑎𝑎𝑗𝑗
𝑎𝑎𝑖𝑖𝑎𝑎𝑗𝑗

𝑖𝑖,𝑗𝑗

+ ⋯

≅ 𝜒𝜒2(𝐚𝐚0) − 𝐝𝐝.𝐚𝐚 +
1
2
𝐚𝐚.𝐃𝐃.𝐚𝐚 

(3.48) 

in which 𝐝𝐝 and 𝐃𝐃 are the M-vector gradient and M×M Hessian matrix of 𝜒𝜒2 at 𝐚𝐚0 
respectively, defined as 

𝐝𝐝 = −𝛻𝛻𝜒𝜒2|𝐚𝐚0 

(3.49) 
𝐃𝐃 =

𝜕𝜕2𝜒𝜒2

𝜕𝜕𝑎𝑎𝑖𝑖𝜕𝜕𝑎𝑎𝑗𝑗
�
𝐚𝐚0

. 

 Using (3.48), gradient of 𝜒𝜒2 is found to be 

∇𝜒𝜒2 = 𝐃𝐃.𝐚𝐚 − 𝐝𝐝 . (3.50) 
 If 𝐚𝐚𝑚𝑚𝑖𝑖𝑚𝑚 corresponds to a minimizing set of parameters for 𝜒𝜒2 

𝐃𝐃.𝐚𝐚𝑚𝑚𝑖𝑖𝑚𝑚 = 𝐝𝐝 . (3.51) 
On the other hand, at the current trial set of parameters 𝐚𝐚𝑐𝑐𝑐𝑐𝑐𝑐 

𝐃𝐃.𝐚𝐚𝑐𝑐𝑐𝑐𝑐𝑐 = ∇𝜒𝜒2 + 𝐝𝐝 . (3.52) 
 If the approximation (3.48) is good enough, subtracting (3.52) from (3.51) gives 
us the step that we need to take in order to jump from 𝐚𝐚𝑐𝑐𝑐𝑐𝑐𝑐 to 𝐚𝐚𝑚𝑚𝑖𝑖𝑚𝑚, namely 

𝐚𝐚𝑚𝑚𝑖𝑖𝑚𝑚 − 𝐚𝐚𝑐𝑐𝑐𝑐𝑐𝑐 = 𝐃𝐃−1. [−∇𝜒𝜒2(𝐚𝐚𝑐𝑐𝑐𝑐𝑐𝑐)] . (3.53) 
Otherwise, if we are far from the minimum of 𝜒𝜒2 and (3.48) is not a good 

approximation, we should take a step down the gradient according to the steepest 
descent method [20]. In other words 

𝐚𝐚𝑚𝑚𝑛𝑛𝑥𝑥𝜔𝜔 = 𝐚𝐚𝑐𝑐𝑐𝑐𝑐𝑐 − constant × ∇𝜒𝜒2(𝐚𝐚𝑐𝑐𝑐𝑐𝑐𝑐) (3.54) 
where the constant should be small enough not to spoil the downhill direction. 

 The gradient of 𝜒𝜒2 with respect to 𝐚𝐚 is 

𝜕𝜕𝜒𝜒2

𝜕𝜕𝑎𝑎𝑖𝑖
= −2�

𝑦𝑦𝑖𝑖 − 𝑦𝑦(𝑥𝑥𝑖𝑖; 𝐚𝐚)
𝜎𝜎𝑖𝑖2

𝜕𝜕𝑦𝑦(𝑥𝑥𝑖𝑖; 𝐚𝐚)
𝜕𝜕𝑎𝑎𝑖𝑖

𝑁𝑁

𝑖𝑖=1

   , 𝑘𝑘 = 1, 2, … ,𝑀𝑀 (3.55) 

 The Hessian matrix of 𝜒𝜒2 with respect to 𝐚𝐚 is  
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[𝐃𝐃]𝑖𝑖𝑙𝑙 =
𝜕𝜕2𝜒𝜒2

𝜕𝜕𝑎𝑎𝑖𝑖𝜕𝜕𝑎𝑎𝑙𝑙
= 2�

1
𝜎𝜎𝑖𝑖2

�
𝜕𝜕𝑦𝑦(𝑥𝑥𝑖𝑖; 𝐚𝐚)
𝜕𝜕𝑎𝑎𝑖𝑖

𝜕𝜕𝑦𝑦(𝑥𝑥𝑖𝑖; 𝐚𝐚)
𝜕𝜕𝑎𝑎𝑙𝑙

− [𝑦𝑦𝑖𝑖 − 𝑦𝑦(𝑥𝑥𝑖𝑖; 𝐚𝐚)]
𝜕𝜕2𝑦𝑦(𝑥𝑥𝑖𝑖; 𝐚𝐚)
𝜕𝜕𝑎𝑎𝑙𝑙𝜕𝜕𝑎𝑎𝑖𝑖

�
𝑁𝑁

𝑖𝑖=1

 . (3.56) 

 Defining 

𝛽𝛽𝑖𝑖 = −
1
2
𝜕𝜕𝜒𝜒2

𝜕𝜕𝑎𝑎𝑖𝑖
 

(3.57) 
𝛼𝛼𝑖𝑖𝑙𝑙 =

1
2
𝜕𝜕2𝜒𝜒2

𝜕𝜕𝑎𝑎𝑖𝑖𝜕𝜕𝑎𝑎𝑙𝑙
 

𝛿𝛿𝑎𝑎𝑙𝑙 = 𝐚𝐚𝑚𝑚𝑖𝑖𝑚𝑚 − 𝐚𝐚𝑐𝑐𝑐𝑐𝑐𝑐  , 
one can rewrite (3.53) as a set of linear equations 

�𝛼𝛼𝑖𝑖𝑙𝑙𝛿𝛿𝑎𝑎𝑙𝑙

𝑀𝑀

𝑙𝑙=1

= 𝛽𝛽𝑖𝑖 . (3.58) 

 Solving the set of equations for 𝛿𝛿𝑎𝑎𝑙𝑙 in (3.58), we will find the value that added 
to the current approximation, gives the next approximation. 

 Equation (3.54) can be written as 

𝛿𝛿𝑎𝑎𝑙𝑙 = constant × 𝛽𝛽𝑙𝑙 . (3.59) 
 The second order derivatives in Eq. (3.56) can be neglected if they are very 
small in comparison to the term involving the first derivative. In fact, inclusion of the 
second derivative terms may destabilize the iterative fitting process [20]. Therefore, the 
second equation in (3.57) can be written as 

𝛼𝛼𝑖𝑖𝑙𝑙 = �
1
𝜎𝜎𝑖𝑖2

�
𝜕𝜕𝑦𝑦(𝑥𝑥𝑖𝑖; 𝐚𝐚)
𝜕𝜕𝑎𝑎𝑖𝑖

𝜕𝜕𝑦𝑦(𝑥𝑥𝑖𝑖; 𝐚𝐚)
𝜕𝜕𝑎𝑎𝑙𝑙

�
𝑁𝑁

𝑖𝑖=1

 . (3.60) 

 In order for the iterative fitting process to proceed, one needs to know the 
“constant” value in Eq. (3.59). 𝜒𝜒2 is nondimensional and 𝛽𝛽𝑙𝑙 has the dimension 1

𝑎𝑎𝑘𝑘
. 

Hence, the “constant” in (3.59) should have the dimension 𝑎𝑎𝑖𝑖2. The reciprocal of the 
diagonal elements of [𝛼𝛼]𝑖𝑖𝑙𝑙 also have the dimension 𝑎𝑎𝑖𝑖2. This information helps to define 
the “constant” value in (3.59), using a nondimensional fudge factor λ which can adjust 
the iteration step. Equation (3.59) now reads [20] 

𝛿𝛿𝑎𝑎𝑙𝑙 =
1
𝜆𝜆𝛼𝛼𝑙𝑙𝑙𝑙

𝛽𝛽𝑙𝑙  . (3.61) 

Equations (3.58) and (3.61) can be combined as 

�𝛼𝛼𝑖𝑖𝑙𝑙′ 𝛿𝛿𝑎𝑎𝑙𝑙

𝑀𝑀

𝑙𝑙=1

= 𝛽𝛽𝑖𝑖 (3.62) 

in which the new matrix 𝛼𝛼′ is defined by 
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𝛼𝛼𝑗𝑗𝑗𝑗′ = 𝛼𝛼𝑗𝑗𝑗𝑗(1 + 𝜆𝜆) 
(3.63)      𝛼𝛼𝑗𝑗𝑖𝑖′ = 𝛼𝛼𝑗𝑗𝑖𝑖      (𝑗𝑗 ≠ 𝑘𝑘) 

 When the fudge factor λ is very large, α becomes diagonally dominant and the 
Eq. (3.62) will become almost identical to the Eq. (3.61). When λ approaches zero, Eq. 
(3.62) will become almost identical to the Eq. (3.58). Therefore, the equation which 
determines the next iterative step will be smoothly varying between (3.58) and (3.62), 
depending on how close we are to the minimum value of 𝜒𝜒2. The iteration continues 
until the error function becomes smaller than a minimum value 𝜒𝜒𝑚𝑚𝑖𝑖𝑚𝑚 in the last few 
iterations. 𝜒𝜒𝑚𝑚𝑖𝑖𝑚𝑚 can be chosen differently for different problems, depending on the order 
of the standard deviation of the experimental data 𝜎𝜎𝑖𝑖. Figure 3.10 shows the flowchart 
for the Levenberg-Marquardt method [20]. 

 The computer program developed for fitting the reflectance spectra of the 
epilayer/substrate system, based on the Levenberg-Marquardt method, is presented in 
Appendix C. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.10 Flowchart of the Levenberg-Marquardt algorithm for nonlinear curve fitting 

𝜒𝜒2(𝐚𝐚 + 𝛿𝛿𝐚𝐚) ≥ 𝜒𝜒2(𝐚𝐚) 

𝜒𝜒2(𝐚𝐚 + 𝛿𝛿𝐚𝐚) ≤ 𝜒𝜒𝑚𝑚𝑖𝑖𝑚𝑚 
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3.4. Dielectric function of InP:Si in the mid-infrared range 

In this section, details of the FTIR reflectance measurements will be explained. The 
measured reflectance spectra will be used to restore the dielectric function of InP:Si for 
samples with different free carrier concentrations. 

 Reflectance spectra of the grown InP:Si samples and their substrates are 
measured in the wavelength range of 3-40 µm, using a VERTEX 70 FTIR spectrometer 
from Bruker. Figure 3.11 shows the top view of the beam path inside the spectrometer. 
A reflection measurement accessory can be placed and fixed in the sample 
compartment. Figure 3.12 shows a schematic of the side view of the beam path through 
the reflection accessory. After passing through a wire-grid polarizer and being guided 
by the flat mirrors of the reflection accessory, incident light will be focused on the 
sample by a curved mirror (input mirror). The reflected light from the sample will be 
collected and sent towards the detector by another curved mirror (output mirror). The 
angle of incidence can be adjusted from 12° to 86° by rotating the curved mirrors. The 
input aperture’s diameter can be controlled by computer. Decreasing the aperture’s 
diameter will decrease the angular variation of the focused light, in expense of 
increasing the measurement’s noise. 

 Measurement is performed on five different points for each sample, using an 
aperture diameter of 6 mm, 12° angle of incidence, and without using a polarizer. 
Measured reflectance spectra are normalized to the reflection from the aluminum mirror 
of the reflection accessory. 

 

Fig. 3.11 Schematic top view of the beam path in VERTEX 70 spectrometer [21] 
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Fig. 3.12 Schematic side view of the beam path in the reflection accessory 

 The normal incidence reflectance spectra of the samples are calculated using the 
intensity transfer matrix method. Drude-Lorentz model (3.12) is used as the dielectric 
function of both doped and SI InP. Afterwards, in order to find the parameters of the 
Drude-Lorentz function for samples with different carrier concentrations, the calculated 
reflectance spectra are fitted to the measured ones using the Levenberg-Marquardt 
algorithm weighted with the inverse of the standard deviation of the measurements. In 
this regard, the measurement and the fitting process are first performed for the SI InP:Fe 
or n-doped InP:S substrates. The retrieved dielectric functions of the substrates are then 
used in the reflectance calculations and the fitting process for the epilayer/substrate 
system. 

 In all of the cases, the high frequency permittivity 𝜀𝜀∞ is considered to have a 
constant value equal to 9.55 [22]. Figure 3.8, which is repeated below for convenience, 
shows the measured and the fitted reflectance spectra of the SI InP:Fe substrate which is 
used to grow samples 1-9. Six Lorentzian terms, which account for the contribution of 
phonons to the optical dispersion, are considered for this case. The retrieved parameters 
of the dielectric function for SI InP:Fe are given in Tables 3.1 and 3.2, which are 
repeated below for convenience.  

 

Fig. 3.8 (repeated) Measured and fitted reflectance spectra of SI InP:Fe substrate of samples 1-9 
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Table 3.1 (repeated) Parameters of the Lorentzian terms for the dielectric function of SI InP:Fe substrate 
of samples 1-9 

j 1 2 3 4 5 6 
𝑆𝑆𝑗𝑗 1.7×10-4 1.19×10-4 6.13×10-5 1.78×10-3 1.56 2.85 

Г𝑗𝑗[THz] 0.51 0.4 0.28 1.33 1282.89 4.63×10-3 
𝜔𝜔𝑓𝑓,𝑗𝑗[THz] 18.73 19.76 20.49 14.74 14.82 9.08 

 

Table 3.2 (repeated) Parameters of the Drude term for the dielectric function of SI InP:Fe substrate of 
samples 1-9 

𝜔𝜔𝑝𝑝[THz] 𝛾𝛾[THz] 𝜀𝜀∞ 
3.77×10-5 3 9.55 

Figure 3.13 shows the measured and the fitted reflectance spectra of the InP:S 
substrates which are used to grow samples 10 and 11. As it can be observed in the 
figure, only one Lorentzian dip at around 33 µm, which corresponds to a transverse 
optical (TO) phonon absorption [23], remains effective for these two cases where we 
have moderately n-doped InP. The retrieved dielectric function parameters together 
with the free carrier concentration measured by electrochemical capacitance voltage 
(ECV) measurements and also Hall method are given in Table 3.3. 

 

Fig. 3.13 Measured and fitted reflectance spectra of InP:S substrates of samples 10 and 11 

Table 3.3 Parameters of the Drude-Lorentz dielectric function of InP:S substrate of samples 10 and 11 

Substrate 
of 

sample 

N (ECV) 
×1018 [cm-3] 

N (Hall) ×1018 
[cm-3] 

𝜔𝜔𝑝𝑝[THz] 𝛾𝛾[THz] 𝜔𝜔𝑓𝑓,1[THz] Г1[THz] 𝑆𝑆1 

10 5.4 5.48 17.3 2.17 9.09 0.05 2.62 
11 1.5 1.428 11.49 2.16 9.15 0.01 2.8 
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 Using the parameters from Tables 3.1 and 3.2 for the SI InP:Fe substrate, the 
normal incidence reflectance spectra are calculated and fitted to the experimentally 
determined reflectance spectra for samples 1 to 9 as it is shown in Fig. 3.14. Similar to 
the case of moderately doped InP:S (substrates of samples 10 and 11), only one phonon 
absorption at around 33 µm remains effective and the others are overshadowed by the 
plasma resonance. Therefore, for the case of highly doped InP:Si only one Lorentzian 
term is considered in the Drude-Lorentz dielectric function. The thickness of the 
epilayer is also fitted for these samples in order to have more accurate results. The 
retrieved parameters for samples 1 to 9 are given in Table 3.4. 

 The reflectance spectra measurement and the fitting process are also done for 
samples 10 and 11 using the parameters given in Table 3.3 for their substrates. The 
measured and fitted reflectance spectra are shown in Fig. 3.15 and the retrieved 
parameters are given in Table 3.5. Since these two samples are grown on a doped 
substrate, their results are shown in a separate figure from samples 1 to 9 which are 
grown on a SI substrate. Fabry-Perot oscillations from the 3 µm thick epilayer of 
sample 11 can be observed below the plasma wavelength at 7.4 µm. 

Figure 3.16 depicts real and imaginary parts of the permittivity of all the 
samples. As it can be seen in the figure, the crossover wavelength of InP:Si, where the 
permittivity becomes negative, can be tuned from 5.93 µm to 16.26 µm by changing the 
carrier concentration. 

Figure 3.17 shows the retrieved plasma frequency versus the carrier 
concentration for samples 1 to 9. It includes the results from both Hall-effect and time-
of-flight secondary ion mass spectrometry (TOF-SIMS) measurements together with 
their error bars. For all samples, the difference between the Si concentration measured 
by TOF-SIMS and the donors concentration measured by Hall-effect method is smaller 
than the error bars, which shows that the compensation ratio (ratio of the ionized 
acceptors to the ionized donor concentration) is smaller than the measurement limit. 
The theoretical plasma frequency is calculated from (3.11). The theoretical value of 𝑚𝑚∗ 
for n-type InP proposed in [24] is used to calculate 𝜔𝜔𝑝𝑝. 

Based on the experimental results, a semi-empirical formula is derived for the 
plasma frequency of InP:Si as a function of the free carrier concentration (N) in the 
range between 0.35-4×1019 cm-3: 

𝜔𝜔𝑝𝑝 = �𝐴𝐴𝑁𝑁�1 −
𝐵𝐵

1.344 − 𝐶𝐶𝑁𝑁
1
3
� (3.64) 

in which 𝐴𝐴 = 918.43 m3/s2, 𝐵𝐵 = 3.7 × 1014, 𝐶𝐶 = 6.6 × 105 m and the units for N and 
the resulting 𝜔𝜔𝑝𝑝 are in m-3 and rad/s respectively. Here the term in the parenthesis 
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accounts for the changes in the band structure of InP when it is highly doped with Si. 
𝜔𝜔𝑝𝑝 calculated from the Eq. (3.64) is also presented in Fig. 3.17. 

 

Fig. 3.14 Measured and fitted reflectance spectra of samples 1-9 

Figure 3.18 shows the effective mass of electrons as a function of the carrier 
concentration calculated from Eq. (3.11) using the fitted values for 𝜔𝜔𝑝𝑝, versus the 
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theoretically calculated effective mass from [24]. The discrepancy between the fitted 
and the theoretical values for 𝜔𝜔𝑝𝑝 in Fig. 3.17 can be attributed to the flaws in the 
theoretical formula for 𝑚𝑚∗, for example the effect of non-parabolicity of the conduction 
band [24], together with the fitting errors and also the errors in the Hall-effect 
measurements. These sources of error also explain the discrepancies in Fig. 3.18. Free 
electrons plasma damping (𝛾𝛾) is related to the mobility (µ) by 

𝛾𝛾 =
𝑒𝑒

𝑚𝑚∗𝜇𝜇
 . (3.65) 

Therefore, fluctuations in the values of 𝛾𝛾 with respect to the free carrier concentration 
(Table 3.4) are correlated with the fluctuations in the mobility values measured by the 
Hall-effect (Table 2.1). 

The above mentioned method is also used to restore the ordinary and 
extraordinary permittivities of metamaterials which is presented in Appendix D. 

Table 3.4 Parameters of the Drude-Lorentz dielectric function for samples 1-9 

Sample 
N (Hall) 

×1019 
[cm-3] 

𝜔𝜔𝑝𝑝[THz] 𝛾𝛾[THz] 𝜔𝜔𝑓𝑓,1[THz] Г1[THz] 𝑆𝑆1 
Fitted 

thickness [nm] 

1 0.35 18.43 1.45 9.09 0.081 2.18 485 
2 0.858 28 1.91 9.09 0.032 1.52 570 
3 1.71 37.12 2.85 9.08 0.04 1.91 533 
4 1.94 38.17 2.36 9.12 0.07 3.66 531 
5 2.35 39.87 3.45 9.07 0.056 1.89 536 
6 2.7 41.41 1.38 9.08 0.036 1.52 475 
7 3.09 43.57 1.71 9.11 0.082 2.86 651 
8 3.39 45.6 1.09 9.08 0.045 1.72 516 
9 3.87 50.5 3.49 9.12 0.082 2.52 503 

 

Fig. 3.15 Measured and fitted reflectance spectra of samples 10 and 11 
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Table 3.5 Parameters of the Drude-Lorentz dielectric function for samples 10 and 11 

Sample 
N (ECV) 

×1019  
[1/cm3] 

𝜔𝜔𝑝𝑝[THz] 𝛾𝛾[THz] 𝜔𝜔𝑓𝑓,1[THz] Г1[THz] 𝑆𝑆1 
Thickness 

[nm] 

10 3.15 39.27 2.76 9.13 0.036 3.83 400 
11 2.7 40.47 2.82 9.09 0.048 1.91 3000 

 

 

Fig. 3.16 Real and imaginary parts of the permittivity of all the samples 

 

 

Fig. 3.17 𝜔𝜔𝑝𝑝 versus carrier concentration from Hall and TOF-SIMS measurements and theoretical 
calculation for samples 1-9 
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Fig. 3.18 Effective mass of electrons in InP:Si as a function of the carrier concentration 

 

3.5. Comparison to other semiconductors 

Having studied the optical properties of InP:Si in the mid-IR, we can compare its 
performance to other semiconductors, from plasmonic applications point of view. One 
of the unique properties of surface plasmon polaritons (SPPs) is the subwavelength 
spatial confinement of the electromagnetic field, which has led to many applications 
such as subwavelength waveguiding [25] and superlensing [26]. However, there is a 
tradeoff between spatial confinement and propagation length of SPPs: the better the 
confinement, the higher the losses and therefore the lower the propagation length. A 
good plasmonic material is the one with lower losses, better spatial confinement and 
longer propagation length. 

 According to the Drude model, even if two materials have the same plasma 
damping, the imaginary part of the permittivity, and consequently the optical losses, 
will be larger for the one with a shorter plasma wavelength. Therefore in order to be 
able to compare the plasmonic properties of two different materials, they need to have 
the same working range i.e. almost the same crossover wavelength. In this regard, four 
different semiconductor materials, whose data were available in the literature, namely 
n-doped Si (λp=5.54 µm), p-doped Si (λp=5.90 µm) [27], n-doped InSb (λp=6.84 µm) 
[28] and n-doped InAs (λp=6.3 µm) [29] are compared with sample 9 (λp=5.93 µm). 
Figure 3.19 shows real and imaginary parts of the permittivity for the above mentioned 
materials. Re[𝜀𝜀] for InP:Si is very close to that of n-InSb and in the same order with n-
InAs, but Im[𝜀𝜀] for InP:Si is lower than the other semiconductors, thanks to the lower 
plasma damping and higher mobility of InP:Si. 
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Fig. 3.19 Real and imaginary parts of the permittivity of the selected semiconductors together with 
sample 9 

 The dispersion relation for SPPs propagating at the interface between two media 
with opposite signs of the real parts of the dielectric functions 𝜀𝜀𝑚𝑚 and 𝜀𝜀𝛼𝛼 (e.g. a highly 
doped semiconductor and air) is given by 

𝑘𝑘𝑠𝑠𝑝𝑝𝑝𝑝 = 𝑘𝑘0�
𝜀𝜀𝑚𝑚𝜀𝜀𝛼𝛼
𝜀𝜀𝑚𝑚 + 𝜀𝜀𝛼𝛼

 (3.66) 

where 𝑘𝑘0 = 𝜔𝜔
𝑐𝑐
 is the wavevector of light in air [10]. 

 Propagation length of surface plasmons 𝐿𝐿𝑝𝑝, is given by 

𝐿𝐿𝑝𝑝 = �2 Im�𝑘𝑘𝑠𝑠𝑝𝑝𝑝𝑝��
−1 . (3.67) 

Localization (confinement factor) in air 𝛿𝛿𝛼𝛼 and in doped semiconductor 𝛿𝛿𝑚𝑚 are 
given by 

𝛿𝛿𝛼𝛼/𝑚𝑚 = Re ��2𝜋𝜋�𝑘𝑘𝑠𝑠𝑝𝑝𝑝𝑝2 − 𝜀𝜀𝛼𝛼/𝑚𝑚𝑘𝑘02�
−1

� . (3.68) 

The total SPP localization is defined as 𝛿𝛿𝑠𝑠𝑝𝑝𝑝𝑝 = 𝛿𝛿𝑚𝑚 + 𝛿𝛿𝛼𝛼. Figure 3.20 shows the 
propagation lengths of surface plasmons, their localization, and figures of merit (FOMs) 
for sample 9 compared to other semiconductors. We use two figures of merits defined 
as [30] 

FOM1 = 𝐿𝐿𝑝𝑝/𝛿𝛿𝑠𝑠𝑝𝑝𝑝𝑝 (3.69) 
FOM2 = Re[𝜀𝜀]2/Im[𝜀𝜀] (3.70) 

in order to quantify the tradeoff between the confinement and the propagation loss. 
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Fig. 3.20 (a) Propagation length, 𝐿𝐿𝑝𝑝, (b) localization, 𝛿𝛿𝑠𝑠𝑝𝑝𝑝𝑝, (c) figure of merit, 𝐿𝐿𝑝𝑝/𝛿𝛿𝑠𝑠𝑝𝑝𝑝𝑝 and (d) figure of 
merit Re[𝜀𝜀]2/Im[𝜀𝜀], for InP:Si in comparison with other selected semiconductors 

From Figs. 3.20(a) and (b), we can see that the SPP propagation length in InP:Si 
is higher than the other semiconductors presented here thanks to the lower losses, and 
the localization of SPP’s is among  the others and very close to n-InSb. Both FOM1 and 
FOM2 which quantify the tradeoffs between localization and propagation length, 
strength and loss of SPP’s respectively are higher for InP:Si. 

In comparison to noble metals, in the mid-IR range, both real and imaginary 
parts of the permittivity of InP:Si are two orders of magnitude smaller which leads to 
better confinement of SPP’s in expense of shorter propagation length. Nevertheless, 
tuanability of the plasma wavelength and damping is a very important feature of 
semiconductors which cannot be achieved in metals. 

 

3.6. Summary 

In this chapter, first a short literature review about the UV, visible and near-IR optical 
properties of InP is presented. Afterwards the Drude-Lorentz dielectric function is 
introduced as a suitable model for permittivity of InP in the mid-IR range. Transfer 
matrix of a slab for both normal and oblique incidence is derived and used to calculate 
the reflectance spectra of the samples with a highly doped InP:Si epilayer and a SI (or 
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low doped) InP substrate. The calculated reflectance spectra are then fitted to the 
measured ones in order to retrieve the parameters of the Drude-Lorentz dielectric 
function for samples with different free carrier concentrations. Experimentally 
determined plasma frequency and the effective mass of electrons are presented versus 
the free carrier concentration, and a semi-empirical formula for calculating the plasma 
frequency of InP:Si is derived. In comparison to other semiconductors, InP:Si is found 
to have superior plasmonic properties, in terms of surface confinement and propagation 
length, owing to the lower losses, which makes it a promising candidate for mid-IR 
plasmonics where noble metals suffer from high losses. 

 

References 
1. S. Adachi, “Model dielectric constants of GaP, GaAs, GaSb, InP, InAs, and Insb,” Phys. 

Rev. B. 35(14), 7454-7463 (1987). 
2. D. E. Aspnes, and A. A. Studna, “Dielectric functions and optical parameters of Si, Ge, 

GaP, GaAs, GaSb, InP, InAs, and InSb from 1.5 to 6.0 eV,” Phys. Rev. B. 27(2), 985-1009 
(1982). 

3. H. Burkhard, H. W. Dinges, and E. Kuphal, “Optical properties of In1-xGaxP1-yAsy, InP, 
GaAs, and GaP determined by ellipsometry,” J. Appl. Phys. 53(1), 655-662 (1982). 

4. A. De, and C. E. Pryor, “Optical dielectric functions of III-V semiconductors in wurtzite 
phase,” https://arxiv.org/abs/1011.3081. 

5. A. B. Djurišić, Y. Chan, and E. H. Li, “The model dielectric function: application to GaSb 
and InP,” Semicond. Sci. Technol. 16, 902-908 (2001). 

6. S. M. Kelso, D. E. Aspnes, M. A. Pollack, and R. E. Nahory, “Optical properties of In1-

xGaxAsyP1-y from 1.5 to 6.0 eV determined by spectroscopic ellipsometry,” Phys. Rev. B 
26(12), 6669-6681 (1982). 

7. www.ioffe.ru. 
8. M. Bugajski, and W. Lewandowski, "Concentration-dependent absorption and 

photoluminescence of n-type InP," J. Appl. Phys. 57(2), 521-530 (1985). 
9. S. C. Jain, J. M. M. Gregor, and D. J. Roulston, "Band‐gap narrowing in novel III‐V 

semiconductors," J. Appl. Phys. 68(7), 3747-3749 (1990). 
10. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007). 
11. R. C. Jayasinghe, Y. F. Lao, A. G. U. Perera, M. Hammar, C. F. Cao, and H. Z. Wu, 

“Plasma frequency and dielectric function dependence on doping and temperature for p-
type indium phosphide epitaxial films,” J. Phys.: Condens. Matter 24(43), 435803 (2012). 

12. H. Q. Zheng, K. Radahakrishnan, S. F. Yoon, and G. I. Ng, “Electrical and optical 
properties of Si-doped InP grown by solid source molecular beam epitaxy using a valved 
phosphorus cracker cell,” J. Appl. Phys. 87(11), 7988-7993 (2000). 

13. M. M. El-Nahass, S. B. Youssef, and H. A. M. Ali, “Optical properties of sulfur doped InP 
single crystals,” Physica A:  Statistical Mechanics and its Applications 402, 216–223 
(2014). 

https://arxiv.org/abs/1011.3081
http://www.ioffe.ru/


48 
 

14. Q. H. Hua, G. P. Li, X. K. He, Q. Wang, and T.N. Sun, “Infrared reflectance study of n-type 
InP grown by the LEC method,” Mater. Lett. 3(3), 93-97 (1985). 

15. M. Cada, D. Blazek, J. Pistora, K. Postava, and P. Siroky, “Theoretical and experimental 
study of plasmonic effects in heavily doped gallium arsenide and indium phosphide,” Opt. 
Mater. Express 5(2), 340-352 (2015). 

16. S. J. Orfanidis, Electromagnetic Waves and Antennas (Rutgers University, 2014). 
17. L. A. Coldren, S. W. Corzine, and M. L. Mašanović, Diode Lasers and Photonic Integrated 

Circuits (John Wiley & Sons, 2012). 
18. C. J. Gabriel, and A. Nedoluha, “Transmittance and Reflectance of Systems of Thin and 

Thick Layers,” Opt. Acta, 18(6), 415-423 (1971). 
19. T. W. Noh, P. H. Song, S. Lee, D. C. Harris, J. R. Gaines, and J. C. Garland, “Far-infrared 

studies of two-dimensional random metal-insulator composites”, Phys. Rev. B 46(7), 4212-
4222. 

20. W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, Numerical Recipes 
(Cambridge University, 1986). 

21. www.bruker.com 
22. W. Walukiewicz, J. Lagowski, L. Jastrzebski, P. Rava, M. Lichtensteiger, C. H. Gatos, and 

H. C. Gatos, “Electron mobility and free‐carrier absorption in InP; determination of the 
compensation ratio,” J. Appl. Phys. 51(5), 2659-2668 (1980). 

23. G. F. Alfrey, and P. H. Borcherds, “Phonon frequencies from the Raman spectrum of 
indium phosphide,” J. Phys. C: Solid State Phys. 5, L275-L278 (1972). 

24. M. Cardona, “Temperature dependence of the refractive index and the polarizability of free 
carriers in some III-V semiconductors,” in proceedings of the international conference on 
semiconductor physics (1960), pp. 388-394. 

25. J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Planar metal plasmon 
waveguides: frequency-dependent dispersion, propagation, localization, and loss beyond the 
free electron model,” Phys. Rev. B 72(7), 075405 (2005). 

26. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966 
(2000). 

27. J. C. Ginn, R. L. Jarecki Jr., E. A. Shaner, and P. S. Davids, “Infrared plasmons on heavily-
doped silicon,” J. Appl. Phys. 110(4), 043110 (2011). 

28. S. Law, R. Liu, and D. Wasserman, “Doped semiconductors with band-edge plasma 
frequencies,” J. Vac. Sci. Technol. B 32(5), 052601 (2014). 

29. S. Law, D. C. Adams, A. M. Taylor, and D. Wasserman, “Mid-infrared designer metals,” 
Opt. Express 20(11), 12155-12165 (2012). 

30. G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative Plasmonic Materials: Beyond 
Gold and Silver,” Adv. Mater. 25(24), 3264-3294 (2013). 

 

  

http://www.bruker.com/


49 
 

 

 

4. SURFACE PLASMON POLARITONS 
ON InP:Si SURFACE 

 

 

 
4.1. Introduction to surface plasmon polaritons 

Surface plasmon polaritons (SPPs) are surface waves confined to the interface between 
a dielectric and conductive materials as a result of coupling of an external 
electromagnetic field with the collective oscillation of free conduction electrons. 
Mathematical descriptions of these phenomena date back to early 1900’s, but it was not 
until the middle of the 20th century when the experimental observations were linked to 
the theory [1]. Boosted by advances in nanofabrication techniques, the field of 
plasmonics was reborn in the second half of the 20th century [2]. Publication of Ebbesen 
et al. [3] in 1998 on extraordinary optical transmission propelled the interest to this 
field, and plasmonics quickly became one of the main research topics in nanophotonics 
due to broad potential applications. Unique properties of SPPs such as the 
subwavelength spatial confinement and high sensitivity of the dispersion to the 
surrounding dielectric material are exploited in subwavelength waveguides [4], surface 
plasmon lasers (spasers) [5], photovoltaics [6], optical superlenses [7] and plasmonic 
sensors [8]. 

Traditionally noble metals are used as plasmonic materials due to their abundant 
free electrons in the conduction band. However, their large real and imaginary parts of 
the permittivity, especially in the infrared (IR) range, result in high loss and weak 
confinement to the surface (see section 3.5). Apart from these material shortcomings, 
technological limitations pose an obstacle to integrating metals in conventional CMOS 
fabrication processes. During the last several years, alternative plasmonic materials such 
as conductive oxides, polar materials, graphene and doped semiconductors have become 
an emerging research field [9-13]. Each group of alternatives has its own preferential 
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wavelength range due to the available free carrier concentrations and mobilities. 
Semiconductors benefit from lower optical losses resulting from their high mobilities 
[14], drastic tunability of plasmonic properties via doping, the possibility of active 
control of the carrier concentration by charge depletion [15] and full CMOS 
compatibility. In this regard doped Si [16,17], Ge [18], InAs:Si [19], InGaAsBi:Si [20] 
and InAsSb:Si [21] have been challenged for plasmonic properties. 

InP as a direct bandgap III-V semiconductor is one of the most common 
materials in optoelectronic applications which has the advantages of easy integration 
and being compatible with conventional III-V optoelectronic devices and their 
fabrication processes. The InP based material system is conventionally used for telecom 
applications at 1300 and 1550 nm wavelengths. However, in spite of being the 
workhorse of the telecom photonics, literature on plasmonic properties of InP is scarce.  

Mid-IR optical properties of InP:Si for different carrier concentrations, which 
are retrieved in the previous chapter, will be used in this chapter to simulate the 
excitation of SPPs. Simulation results will be verified by experiments. 

Maxwell equations of macroscopic electromagnetism should be used to study 
SPP’s at the interface between a dielectric and a conductive material. These equations 
describe how the electric and magnetic fields are related to the charges and currents and 
the changes in each other [2]: 

∇.𝐃𝐃 = 𝜌𝜌𝑛𝑛𝑥𝑥𝜔𝜔 (4.1a) 
∇.𝐁𝐁 = 0 (4.1b) 

∇ × 𝐄𝐄 = −
𝜕𝜕𝐁𝐁
𝜕𝜕𝑡𝑡

 (4.1c) 

∇ × 𝐇𝐇 = 𝐉𝐉𝑛𝑛𝑥𝑥𝜔𝜔 +
𝜕𝜕𝐃𝐃
𝜕𝜕𝑡𝑡

 (4.1d) 

in which E and H are the electric and the magnetic fields respectively, D is the 
dielectric displacement, B is the magnetic flux density, 𝜌𝜌𝑛𝑛𝑥𝑥𝜔𝜔 and 𝐉𝐉𝑛𝑛𝑥𝑥𝜔𝜔 are the external 
charge and current densities respectively. 

 The constitutive relations are also defined as: 

𝐃𝐃 = 𝜀𝜀0𝜀𝜀𝐄𝐄 (4.2a) 
𝐁𝐁 = 𝜇𝜇0𝜇𝜇𝐇𝐇 (4.2b) 

where 𝜀𝜀0 and 𝜇𝜇0 are the electric permittivity and the magnetic permeability of vacuum 
respectively and 𝜀𝜀 and 𝜇𝜇 are the relative permittivity and permeability of the material 
respectively. 

 In the absence of external current and charge densities, (4.1c) and (4.1d) can be 
combined to give 
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∇ × ∇ × 𝐄𝐄 = −𝜇𝜇0
𝜕𝜕2𝐃𝐃
𝜕𝜕𝑡𝑡2

 . (4.3) 

 Using the “curl of the curl” identity, ∇ × ∇ × 𝐄𝐄 ≡ ∇(∇.𝐄𝐄) − ∇2𝐄𝐄, in (4.3) 
together with ∇. (𝜀𝜀𝐄𝐄) ≡ 𝐄𝐄.∇ε + ε∇.𝐄𝐄, keeping in mind that in the absence of external 
charges ∇.𝐃𝐃 = 0, one will get to 

∇ �−
1
𝜀𝜀
𝐄𝐄.∇𝜀𝜀� − ∇2𝐄𝐄 = −𝜇𝜇0𝜀𝜀0𝜀𝜀

𝜕𝜕2𝐄𝐄
𝜕𝜕𝑡𝑡2

 . (4.4) 

 If the relative permittivity of the material be spatially constant over a 
wavelength, ∇𝜀𝜀 = 0 and (4.4) reduces to the wave equation 

∇2𝐄𝐄 −
𝜀𝜀
𝑐𝑐2
𝜕𝜕2𝐄𝐄
𝜕𝜕𝑡𝑡2

= 0 (4.5) 

in which c is the speed of light defined as 𝑐𝑐2 = 1
𝜇𝜇0𝜀𝜀0

. 

 Assuming a harmonic time dependence in form of 𝑒𝑒−𝑖𝑖𝜔𝜔𝜔𝜔 for the electric field, 
equation (4.5) can be written in form of a Helmholtz equation [2] 

∇2𝐄𝐄 + 𝑘𝑘02𝜀𝜀𝐄𝐄 = 0 (4.6) 
in which 𝑘𝑘0 = 𝜔𝜔

𝑐𝑐
 is the wavevector of light in vacuum. 

 Consider the interface between a dielectric material with permittivity 𝜀𝜀𝛼𝛼 and a 
conductive material with permittivity 𝜀𝜀𝑚𝑚 as in Fig. 4.1. An electric field propagating in 
the x direction, with no spatial variation in the y direction will have the form 
𝐄𝐄(𝑥𝑥,𝑦𝑦, 𝑧𝑧) = 𝐄𝐄(𝑧𝑧)𝑒𝑒𝑖𝑖𝑖𝑖𝑥𝑥, with the complex 𝛽𝛽 = 𝑘𝑘𝑥𝑥 called the propagation constant or the 
wavenumber in the x direction. Using this expression in (4.6) yields 

𝜕𝜕2𝐄𝐄(𝑧𝑧)
𝜕𝜕𝑧𝑧2

+ (𝑘𝑘02𝜀𝜀 − 𝛽𝛽2)𝐄𝐄 = 0 . (4.7) 

 

 

 

 

Fig. 4.1 Geometry of the SPP propagation problem 

 Regarding the harmonic time dependence of the electric field ( 𝜕𝜕
𝜕𝜕𝜔𝜔

= −𝑖𝑖𝜔𝜔) and 

the homogeneity in the y direction ( 𝜕𝜕
𝜕𝜕𝑦𝑦

= 0), for propagation along the x direction 

( 𝜕𝜕
𝜕𝜕𝑥𝑥

= 𝑖𝑖𝛽𝛽), the Maxwell curl equations (4.1c) and (4.1d) read 

x 

z 

𝜀𝜀𝛼𝛼 

𝜀𝜀𝑚𝑚 
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𝜕𝜕𝐸𝐸𝑦𝑦
𝜕𝜕𝑧𝑧

= −𝜇𝜇0𝑖𝑖𝜔𝜔𝐻𝐻𝑥𝑥 (4.8a) 

𝜕𝜕𝐸𝐸𝑥𝑥
𝜕𝜕𝑧𝑧

− 𝑖𝑖𝛽𝛽𝐸𝐸𝑖𝑖 = 𝜇𝜇0𝑖𝑖𝜔𝜔𝐻𝐻𝑦𝑦 (4.8b) 

𝑖𝑖𝛽𝛽𝐸𝐸𝑦𝑦 = 𝜇𝜇0𝑖𝑖𝜔𝜔𝐻𝐻𝑖𝑖 (4.8c) 

𝜕𝜕𝐻𝐻𝑦𝑦
𝜕𝜕𝑧𝑧

= 𝜀𝜀0𝜀𝜀𝑖𝑖𝜔𝜔𝐸𝐸𝑥𝑥 (4.8d) 

𝜕𝜕𝐻𝐻𝑥𝑥
𝜕𝜕𝑧𝑧

− 𝑖𝑖𝛽𝛽𝐻𝐻𝑖𝑖 = −𝜀𝜀0𝜀𝜀𝑖𝑖𝜔𝜔𝐸𝐸𝑦𝑦 (4.8e) 

𝑖𝑖𝛽𝛽𝐻𝐻𝑦𝑦 = −𝜀𝜀0𝜀𝜀𝑖𝑖𝜔𝜔𝐸𝐸𝑖𝑖 . (4.8f) 

 Equations (4.8b), (4.8d) and (4.8f) correspond to the transverse magnetic (TM) 
polarization in which only the field components 𝐸𝐸𝑥𝑥, 𝐸𝐸𝑖𝑖 and 𝐻𝐻𝑦𝑦 are nonzero, and the 
other three equations correspond to the transverse electric (TE) polarization where only 
the field components 𝐻𝐻𝑥𝑥, 𝐻𝐻𝑖𝑖 and 𝐸𝐸𝑦𝑦 are nonzero. Starting from TM modes and 
rearranging (4.8d) and (4.8f) as 

𝐸𝐸𝑥𝑥 = −𝑖𝑖
1

𝜔𝜔𝜀𝜀0𝜀𝜀
𝜕𝜕𝐻𝐻𝑦𝑦
𝜕𝜕𝑧𝑧

 
(4.9) 

𝐸𝐸𝑖𝑖 = −
𝛽𝛽

𝜔𝜔𝜀𝜀0𝜀𝜀
𝐻𝐻𝑦𝑦 

and using them in (4.8b) yields the wave equation for the TM modes 

𝜕𝜕2𝐻𝐻𝑦𝑦
𝜕𝜕𝑧𝑧2

+ (𝑘𝑘02𝜀𝜀 − 𝛽𝛽2)𝐻𝐻𝑦𝑦 = 0 . (4.10) 

 Rearranging (4.8a) and (4.8c) for TE modes as 

𝐻𝐻𝑥𝑥 = 𝑖𝑖
1
𝜔𝜔𝜇𝜇0

𝜕𝜕𝐸𝐸𝑦𝑦
𝜕𝜕𝑧𝑧

 
(4.11) 

𝐻𝐻𝑖𝑖 =
𝛽𝛽
𝜔𝜔𝜇𝜇0

𝐸𝐸𝑦𝑦 

and using them in (4.8e) yields the wave equation for TE modes 

𝜕𝜕2𝐸𝐸𝑦𝑦
𝜕𝜕𝑧𝑧2

+ (𝑘𝑘02𝜀𝜀 − 𝛽𝛽2)𝐸𝐸𝑦𝑦 = 0 . (4.12) 

 As it is implied in the definition of the SPP’s as surface waves, we are looking 
for solutions that correspond to propagating waves in the x direction which are confined 
to the interface, or in other words, solutions with evanescent decay in the z direction. 
Therefore, for TM modes, solution of (4.9) and (4.10) for z>0 will be 
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𝐻𝐻𝑦𝑦(𝑧𝑧) = 𝐴𝐴2𝑒𝑒𝑖𝑖𝑖𝑖𝑥𝑥𝑒𝑒−𝑖𝑖2𝑖𝑖 

(4.13) 𝐸𝐸𝑥𝑥(𝑧𝑧) = 𝑖𝑖𝐴𝐴2
1

𝜔𝜔𝜀𝜀0𝜀𝜀𝛼𝛼
𝑘𝑘2𝑒𝑒𝑖𝑖𝑖𝑖𝑥𝑥𝑒𝑒−𝑖𝑖2𝑖𝑖 

𝐸𝐸𝑖𝑖(𝑧𝑧) = −𝐴𝐴1
𝛽𝛽

𝜔𝜔𝜀𝜀0𝜀𝜀𝛼𝛼
𝑒𝑒𝑖𝑖𝑖𝑖𝑥𝑥𝑒𝑒−𝑖𝑖2𝑖𝑖 

and for z<0 

𝐻𝐻𝑦𝑦(𝑧𝑧) = 𝐴𝐴1𝑒𝑒𝑖𝑖𝑖𝑖𝑥𝑥𝑒𝑒𝑖𝑖1𝑖𝑖 

(4.14) 𝐸𝐸𝑥𝑥(𝑧𝑧) = −𝑖𝑖𝐴𝐴1
1

𝜔𝜔𝜀𝜀0𝜀𝜀𝑚𝑚
𝑘𝑘1𝑒𝑒𝑖𝑖𝑖𝑖𝑥𝑥𝑒𝑒𝑖𝑖1𝑖𝑖 

𝐸𝐸𝑖𝑖(𝑧𝑧) = −𝐴𝐴1
𝛽𝛽

𝜔𝜔𝜀𝜀0𝜀𝜀𝑚𝑚
𝑒𝑒𝑖𝑖𝑖𝑖𝑥𝑥𝑒𝑒𝑖𝑖1𝑖𝑖 . 

 𝑘𝑘𝑖𝑖 (i=1,2) is the component of the wavevector in the z direction. Continuity of 
𝐻𝐻𝑦𝑦 and 𝜀𝜀𝑖𝑖𝐸𝐸𝑖𝑖 at the interface requires that 𝐴𝐴1 = 𝐴𝐴2 and [2] 

𝑘𝑘2
𝑘𝑘1

= −
𝜀𝜀𝛼𝛼
𝜀𝜀𝑚𝑚

 . (4.15) 

 According to (4.13) and (4.14), considering the requirement for evanescent 
decay of the surface waves in the z direction, both 𝑘𝑘1 and 𝑘𝑘2 should have positive signs 
which implies that Re[𝜀𝜀𝑚𝑚] and 𝜀𝜀𝛼𝛼 should have opposite signs. This is the basic 
condition for existence of SPP’s at the interface between two materials. Inserting 𝐻𝐻𝑦𝑦 
from (4.13) and (4.14) in (4.10) yields 

𝑘𝑘12 = 𝛽𝛽2 − 𝑘𝑘02𝜀𝜀𝑚𝑚 (4.16) 𝑘𝑘22 = 𝛽𝛽2 − 𝑘𝑘02𝜀𝜀𝛼𝛼  . 
 Using (4.15) and (4.16), we get to the “dispersion” relation for SPP’s: 

𝛽𝛽 = 𝑘𝑘𝑆𝑆𝑆𝑆𝑆𝑆 = 𝑘𝑘0�
𝜀𝜀𝑚𝑚𝜀𝜀𝛼𝛼
𝜀𝜀𝑚𝑚 + 𝜀𝜀𝛼𝛼

 . (4.17) 

 For TE modes, solution of (4.11) and (4.12) for z>0 will be 

𝐸𝐸𝑦𝑦(𝑧𝑧) = 𝐴𝐴2𝑒𝑒𝑖𝑖𝑖𝑖𝑥𝑥𝑒𝑒−𝑖𝑖2𝑖𝑖 

(4.18) 𝐻𝐻𝑥𝑥(𝑧𝑧) = −𝑖𝑖𝐴𝐴2
1
𝜔𝜔𝜇𝜇0

𝑘𝑘2𝑒𝑒𝑖𝑖𝑖𝑖𝑥𝑥𝑒𝑒−𝑖𝑖2𝑖𝑖 

𝐻𝐻𝑖𝑖(𝑧𝑧) = 𝐴𝐴2
𝛽𝛽
𝜔𝜔𝜇𝜇0

𝑒𝑒𝑖𝑖𝑖𝑖𝑥𝑥𝑒𝑒−𝑖𝑖2𝑖𝑖 

and for z<0 

𝐸𝐸𝑦𝑦(𝑧𝑧) = 𝐴𝐴1𝑒𝑒𝑖𝑖𝑖𝑖𝑥𝑥𝑒𝑒𝑖𝑖1𝑖𝑖 

(4.19) 𝐻𝐻𝑥𝑥(𝑧𝑧) = 𝑖𝑖𝐴𝐴1
1
𝜔𝜔𝜇𝜇0

𝑘𝑘1𝑒𝑒𝑖𝑖𝑖𝑖𝑥𝑥𝑒𝑒𝑖𝑖1𝑖𝑖 

𝐻𝐻𝑖𝑖(𝑧𝑧) = 𝐴𝐴1
𝛽𝛽
𝜔𝜔𝜇𝜇0

𝑒𝑒𝑖𝑖𝑖𝑖𝑥𝑥𝑒𝑒𝑖𝑖1𝑖𝑖 . 
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 Continuity of 𝐸𝐸𝑦𝑦 and 𝐻𝐻𝑥𝑥 at the interface yields 

𝐴𝐴1(𝑘𝑘1 + 𝑘𝑘2) = 0 . (4.20) 
 Requirement for the evanescent decay of the surface waves in the z direction 
implies that both 𝑘𝑘1 and 𝑘𝑘2 be positive. Therefore (4.20) holds only if 𝐴𝐴1 = 𝐴𝐴2 = 0, 
which means that no SPP exist for TE polarization. 

Figure 4.2 shows the dispersion graph for SPP’s on the interface between highly 
doped InP:Si (sample 7: Chapter 3) and air, together with the dispersion graph for the 
same sample when the free carrier and phonon damping mechanisms are ignored. In the 
transparency regime where the frequency is higher than the plasma frequency of the 
conductive material, light can pass through the material and the dispersion curve lies on 
the left side of the light line of air. In lower frequencies, the dispersion curve lies on the 
right side of the light line which shows the bound nature of SPPs. In order to couple 
photons to SPPs, both need to have the same frequency and momentum, but according 
to the dispersion relation, for a given frequency, momentum of photons is smaller than 
that for SPPs. Consequently, light cannot directly couple to SPPs and special phase-
matching techniques are required to excite them.  

 

Fig. 4.2 SPP dispersion curves on the interface between InP:Si and air together with the light line 
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4.2. Prism coupling 

4.2.1. Theory 

One of the techniques that can be used to match the momentum of light and SPPs is 
prism coupling. In this method a prism with refractive index 𝑛𝑛𝑝𝑝 is placed above the 
surface of the conductive sample, separated with an airgap smaller than the wavelength 
of light [Fig. 4.3(a)].  Light that passes through the prism with an angle of incidence 𝜑𝜑𝑖𝑖 
larger than the critical angle between air and the prism (𝜑𝜑𝑐𝑐 = arcsin 𝑚𝑚𝑎𝑎𝑎𝑎𝑎𝑎

𝑚𝑚𝑝𝑝
) undergoes 

total internal reflection. The evanescent tail of the reflected light leaks through the 
airgap and reaches to the surface of the sample, with its parallel to the surface 
component of the wavevector given by 

𝑘𝑘𝑥𝑥 = 𝑛𝑛𝑝𝑝𝑘𝑘0 sin𝜑𝜑𝑖𝑖 , (4.21) 
which is able to excite SPPs. The above mentioned method is called Otto configuration 
[22] and its drawback is the difficulty in maintaining a subwavelength airgap between 
the sample and the prism. There is another geometry, called Kretschmann configuration 
[23], in which a thin film of the conductive material is directly deposited on the bottom 
of the prism. Evanescent tail of the light passes through the film and couples to SPPs on 
the interface between air and the conductive material. 

4.2.2. Experiment 

Sample 10 (see Chapter 3) with a 400 nm thick highly doped InP:Si epilayer 
(N=3.15×1019  cm-3) on top of low doped InP:S substrate (N=5.4×1018  cm-3) is used for 
this experiment. To elucidate the excitation of plasmons on the highly doped layer of 
InP:Si, we employ a high refractive index hemi-spherical germanium prism (𝑛𝑛𝑝𝑝 = 4). 
The reflection spectra in such configuration are theoretically analyzed using the 
transfer-matrix formalism [24]. In the analyzed configuration, a four-layer structure of 
Ge prism/Air gap/InP:Si/InP:S substrate is assumed as illustrated in Fig. 4.3(a). The 
Drude-Lorentz model (3.12) with the sample 10 parameters for the epilayer and its 
substrate is exploited. 

In Fig. 4.3(b), numerical results are shown for TM-polarized incident light. The 
dispersion of SPPs on air/InP:Si and InP:Si/InP:S substrate interfaces is calculated by 
using Eq. (4.17). These dispersions are also plotted in Fig. 4.3(b) to give an insight into 
two kinds of plasmons existing in our system, namely one supported at the air/InP:Si 
interface (blue diamonds) and another at the InP:Si/InP:S (red circles) interface. From 
the dispersion of a semi-infinite arrangement and the simulation of reflectance, we can 
deduce that for λ > 8 µm a SPP on the air/InP:Si interface emerges until around λ = 14 
µm, and from λ = 11 µm another SPP supported at the InP:Si/InP:S substrate interface 
appears. Note that the second plasmon mode disappears around λ = 15 µm because the 
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permittivity of the InP:S substrate also becomes negative at λ = 16.6 µm and plasmons 
at the InP:Si/InP:S interface cannot be supported anymore.  

In our experimental setup based on the Otto-Kretschmann configuration [Fig. 
4.3(a)], a hemi-spherical Ge prism is placed on the sample with some air gap between 
the prism and InP:Si layer. The thickness of the air gap 𝑑𝑑𝑐𝑐 = 400 nm is evaluated by 
fitting the experimental results with the simulated reflection spectra. The hemi-spherical 
Ge prism is adopted for its high refractive index and transparency in the mid-IR region. 
A wire-grid polarizer is used in the Fourier transform infrared spectrometer (FTIR) 
setup (See Section 3.4 for details of the setup) in order to provide TM-polarized 
incident light, which is focused on the structure through a parabolic mirror and the Ge 
prism. Incident light is directed onto the surface with angle of incidence 𝜑𝜑𝑖𝑖𝑚𝑚 which is 
manually controlled by using a goniometer with the increment of 2°. Series of reflection 
spectra are joined to form a reflectance map as shown in Fig. 4.3(c). Note that the 
critical angle between the Ge prism and air is 14.47°, therefore the simulation and 
experiment are conducted well above this angle. 

 

 

Fig. 4.3 Illustration of Ge prism/Air gap/InP:Si/InP:S substrate structure with air gap of 400 nm and 400 
nm thick InP:Si layer. (b) Simulated and (c) measured reflectance from the structure under consideration. 
In (b), the dispersion of plasmons supported at the air gap/InP:Si interface (blue diamond) and those at 
the InP:Si/InP:S substrate interface (red circle) are shown to clarify the origin of two plasmons. 

The acquired reflection data as shown in Fig. 4.3(c) reproduces the theoretical 
predictions for plasmons on two different interfaces, showing two corresponding 
reflection bands. All measured reflection dips agree with the theoretical expectations in 
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the wavelength range of λ = 8 – 15 µm. Importantly, the agreement between the 
observed and theoretical expectations demonstrates that the highly doped InP is an 
effective plasmonics material for the mid-IR region, as well as the validity of our fitting 
method to determine the permittivity of the plasmonic layer. The difference between 
simulations and experiment in Figs. 4.3(b) and 4.3(c) is mainly due to the measurement 
uncertainties in the FTIR setup including inherent noise of the system, angular 
uncertainty and polarization mixture at high angles of incidence. Calculation of the 
beam path in the FTIR setup shows that there is an angular variation of around ±1.75° 
in the incident light beam which can widen the observed SPP coupling dips in the 
reflectance spectra. In addition, even though only TM polarized light passes through the 
polarizer at the input, a small portion of it will be converted to TE polarized light after 
focusing by the parabolic mirrors of the FTIR reflection accessory. This effect, which is 
more pronounced at bigger incident angles, will decrease the intensity of the SPP 
coupling dips in the reflectance spectra. 

 

4.3. Grating coupling 

4.3.1. Theory 

Diffraction of light from a periodic grating is governed by Bragg’s law 

𝑘𝑘𝑜𝑜𝑐𝑐𝜔𝜔 = 𝑚𝑚𝑘𝑘𝑔𝑔 − 𝑘𝑘𝑖𝑖𝑚𝑚 , (4.22) 

where 𝑘𝑘𝑜𝑜𝑐𝑐𝜔𝜔 = 𝑘𝑘0 sin𝜃𝜃𝑜𝑜𝑐𝑐𝜔𝜔, 𝑘𝑘𝑖𝑖𝑚𝑚 = 𝑘𝑘0 sin𝜃𝜃𝑖𝑖𝑚𝑚 and 𝑘𝑘𝑔𝑔 = 2𝜋𝜋
𝛬𝛬

 are the wave vectors of the 
diffracted wave, incident wave and grating respectively, 𝛬𝛬 is the grating period and m is 
the diffraction order.  

Efficiency of the diffraction orders which is defined as the ratio of the intensity 
of diffracted light to the intensity of the incident light is given by [25] 

𝐼𝐼 =
sin2(𝑚𝑚𝜋𝜋𝑚𝑚)
𝑚𝑚2𝜋𝜋2

 (4.23) 

in which D is the duty cycle of the grating. Figure 4.4 shows the efficiency of 
diffraction orders as a function of the duty cycle. 
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Fig. 4.4 Efficiency of the diffraction orders as a function of the duty cycle 

According to the efficiency of the diffraction orders, for a grating with a duty 
cycle of 50% all even diffraction orders must vanish and m will be an odd integer. 

On the other hand, light can couple to SPPs by the grating if the momentum 
matching condition is satisfied [2] 

𝑘𝑘𝑆𝑆𝑆𝑆𝑆𝑆 = 𝑛𝑛𝑘𝑘𝑔𝑔 + 𝑘𝑘𝑖𝑖𝑚𝑚 . (4.24) 

As explained above, for a grating with a duty cycle of 50%, n will also be an odd 
integer. 

The excited SPP wave can reversely be diffracted by the grating into free space, 
with a wave vector given by 

𝑘𝑘𝑜𝑜𝑐𝑐𝜔𝜔 = 𝑚𝑚𝑘𝑘𝑔𝑔 − 𝑘𝑘𝑆𝑆𝑆𝑆𝑆𝑆 . (4.25) 

Applying Eq. (4.24) in Eq. (4.25) yields a modified diffraction law [26] 

𝑘𝑘𝑜𝑜𝑐𝑐𝜔𝜔 = (𝑚𝑚− 𝑛𝑛)𝑘𝑘𝑔𝑔 − 𝑘𝑘𝑖𝑖𝑚𝑚 , (4.26) 

where (𝑚𝑚− 𝑛𝑛) is now an even integer. This manifests the emerging of even diffraction 
orders banned by Bragg’s law. Such process, when prohibited diffraction orders are 
facilitated by assistance of SPPs is currently considered as a very promising direction in 
sensing and new grating functionalities [27,28]. Figure 4.5 shows the coupling 
condition in terms of the wavelength and the angle of incidence for different modes of 
SPPs, plotted using (4.24) and the Drude-Lorentz model with material parameters of 
sample 11 (see Chapter 3). 
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Fig. 4.5 Grating coupling condition for different modes 

The reflectance spectra from the grating are simulated by the “Radio frequency: 
Electromagnetic wave, frequency domain” module of COMSOL [29] using the Drude-
Lorentz dielectric function (3.12) and parameters found in the previous chapter for 
sample 11 and its substrate together with the periodic boundary conditions in direction 
of the periods. The minimum and maximum mesh element sizes in the simulations are 
set to 30 nm and 1 µm respectively. The simulated electric field norm for 𝜃𝜃𝑖𝑖𝑚𝑚 = 32° is 
shown in the inset of Fig. 4.7. Simulation and experimental results are compared in 
section 4.3.3. 

4.3.2. Fabrication of the grating 

Sample 11 (see Chapter 3) with a 3 µm thick highly doped InP:Si epilayer (N=2.7×1019  
cm-3) on top of low doped InP:S substrate (N=1.5×1018  cm-3) is used to fabricate a 
diffraction grating with a period of 50 µm and duty cycle of 50%. In this regard a SiO2 
layer with a thickness of 187 nm is deposited on top of the sample using plasma-
enhanced chemical vapor deposition (PECVD) [Fig. 4.6(b)]. The exact thickness of the 
glass layer is measured by ellipsometry. Afterwards the sample is prebaked at 120 °C 
on a hot plate for 30 minutes in order to remove the moisture. To increase the adhesion 
between the sample and the photoresist, which will be spin-coated in the next step, 
AP3000 adhesion promoter is spin-coated on the sample and baked at 160 °C for one 
minute. Afterwards 1.4 µm of the negative photoresist nLOF2020 is spin-coated on the 
sample and baked at 110 °C for one minute [Fig. 4.6(c)]. The sample with the 
photoresist on top is exposed to UV light with the wavelength 365 nm for 11 seconds 
through a chromium mask with the grating pattern. The exposure is done using the 
“hard contact” program of the mask aligner, followed by a post-exposure bake at 110 
°C for 1 minute. Afterwards the sample is immersed in AZ726MIF developer for 50 
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seconds in order to dissolve the unexposed parts of the photoresist followed by 75 
seconds plasma exposure in plasma asher machine with 40% power in order to remove 
any polymer contamination from surface of the sample [Fig. 4.6(d)]. In this step surface 
profile of the sample is measured by Dektak 8 stylus profiler in order to make sure that 
the depth of the developed photoresist is 1.4 µm and all of the unexposed parts of the 
resist are removed. After post-baking the sample at 110 °C for 2 minutes, III-V reactive 
ion etching (RIE) machine is used to dry-etch parts of the glass layer with no 
photoresist on top [Fig. 4.6(e)]. According to the selected program for etching SiO2, 4 
minutes of etching is enough to etch 187 nm of glass. Afterwards the remaining 
photoresist is removed by immersing the sample in a 70 °C 5% KOH solution for 5 
minutes. Sample is cleaned in the plasma asher machine for 90 seconds with 100% 
power and afterwards 2 µm of the highly doped InP:Si epilayer is dry-etched using 21 
etch cycles in the III-V RIE machine [Fig. 4.6(f)]. In this step remaining glass on top of 
the sample works as a mask for dry etching of InP:Si. Finally the glass mask is removed 
by immersing the sample in buffered hydrofluoric acid (BHF) for four minutes [Fig. 
4.6(g)]. In this way a 1 µm thick highly doped InP:Si layer is kept under the 2 µm high 
grating in order to support SPPs. The height of the grating is checked by Dektak 8 
stylus profiler and scanning electron microscope (SEM). Figure 4.7 shows the SEM 
image of the fabricated grating structure. 

 

Fig. 4.6 Fabrication steps of the plasmonic grating 
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Fig. 4.7 SEM image of the fabricated grating structure, inset: simulated electric field map for 𝜃𝜃𝑖𝑖𝑚𝑚 = 32°. 

4.3.3. Experiment 

The FTIR setup with a wire grid polarizer is used to measure TM polarized light 
reflected from the grating. The reflectance is normalized to the reflectance from plain 
sample 11, and an aperture with 2 mm diameter is used to constrain the angular 
variation of the focused incident beam. Measurements are repeated three times and then 
averaged for each incidence angle in order to suppress the noise. Figure 4.8(a) shows 
the specular (mode 0) reflectance map where the angle of incidence on the grating is 
swept from 14° to 46° with an increment of 2°. 

The reflectance spectra from the grating are simulated by the finite element 
method (COMSOL Multiphysics 5.0 [29]) using the Drude-Lorentz dielectric function 
and parameters found in chapter 3 for sample 11 and its substrate together with periodic 
boundary conditions in direction of the periods. The simulated reflection spectrum for 
each incidence angle 𝜃𝜃𝑖𝑖𝑚𝑚 is actually the averaged reflection spectra from 𝜃𝜃𝑖𝑖𝑚𝑚 − 1.75° to 
𝜃𝜃𝑖𝑖𝑚𝑚 + 1.75° with increments of 0.25° in order to imitate the angle uncertainty in the 
FTIR setup. As it is shown in Fig. 4.8, the results exhibit good agreement between the 
simulations and the experiment. The dip starting from around 13 µm at 𝜃𝜃𝑖𝑖𝑚𝑚 = 14° and 
continuing up to around 17.5 µm at 𝜃𝜃𝑖𝑖𝑚𝑚 = 46° shows the SPP coupling corresponding to 
𝑛𝑛 = 5 [(Eq. (4.24)] which is anti-crossed by SPP coupling dips corresponding to 𝑛𝑛 = 3, 
𝑛𝑛 = 2 and 𝑛𝑛 = 1 at 13 µm, 15 µm and 17 µm respectively (Fig. 4.5). The dip starting 
from around 11 µm at 𝜃𝜃𝑖𝑖𝑚𝑚 = 14° and continuing up to around 13 µm at 𝜃𝜃𝑖𝑖𝑚𝑚 = 46° 
shows the SPP coupling corresponding to 𝑛𝑛 = 6 [Eq. (4.24)] which is anti-crossed by 
SPP coupling dips corresponding to 𝑛𝑛 = 3 and 𝑛𝑛 = 2 at 11.5 µm and 12 µm 
respectively (Fig. 4.5). SPP coupling dips which happen at lower wavelengths are less 
pronounced due to the fact that the real part of the permittivity has less contrast with the 
permittivity of air on these wavelengths. 
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Fig. 4.8 (a) Experimental and (b) simulated reflectance map from the grating 

Figure 4.9(a) shows the simulated and measured specular reflectance spectra for 
the angle of incidence 𝜃𝜃𝑖𝑖𝑚𝑚 = 32°. According to Eq. (4.24), at this angle, light couples to 
SPPs at 𝜆𝜆 = 15.45 µm for 𝑛𝑛 = 5 and according to Eq. (4.26), when the incident light 
couples to the SPP, the previously vanishing mode 𝑚𝑚 − 𝑛𝑛 = −2 emerges as a reflected 
beam with 𝜃𝜃𝑜𝑜𝑐𝑐𝜔𝜔 = 5°. Figure 4.9(b) shows the simulated and measured reflected light at 
the output angle of 5°, apparently as mode -2. The slight deviation between the SPP 
coupling wavelength predicted by Eq. (4.24) and observed in the simulation and 
experiment is believed to be mainly due to the uncertainties in the FTIR setup as 
explained in section 4.2.2, namely inherent noise of the system, angular uncertainty and 
polarization conversion. These uncertainties which are an inseparable part of FTIR 
diffraction experiments tend to diminish the SPP coupling features in the reflection 
spectra from the grating as was observed before [28]. This also explains visible 
deviations in the resonances parameters in simulations and characterization in Figs. 
4.9(a) and 4.9(b).  The sharp peak observed at around 15 µm, also visible as a vertical 
line in Fig. 4.8(a) for all angles is attributed to the measurement system’s noise and thus 
should be ignored.  

 

Fig. 4.9 (a) Mode 0 reflection from the grating. 𝜃𝜃𝑖𝑖𝑚𝑚 = −𝜃𝜃𝑜𝑜𝑐𝑐𝜔𝜔 = 32° (b) mode -2 reflection from the 
grating. 𝜃𝜃𝑖𝑖𝑚𝑚 = 32° and 𝜃𝜃𝑜𝑜𝑐𝑐𝜔𝜔 = 5°. 



63 
 

4.4. Summary 

In this chapter we first solved Maxwell equations in order to find solutions in form of a 
surface wave which propagates at the interface between a dielectric and a conductive 
material. It was shown that these surface waves which are confined to the interface, and 
are called surface plasmon polaritons, only exist for TM polarization and cannot be 
directly excited by free-space light. Drude-Lorentz dielectric function with the 
parameters found in chapter 3 for InP:Si was used to simulate excitation of SPPs by 
both prism coupling and grating coupling techniques. Using a Ge hemispherical prism, 
we experimentally confirmed existence of mid-IR SPPs at highly doped InP:Si/air and 
highly doped InP:Si/low doped InP:S interfaces. Measured SPPs dispersion is in a good 
agreement with simulations. We fabricated an InP:Si grating and characterized 
diffraction of light in different orders. Appearance of the orders prohibited by the 
conventional Bragg law manifests the efficient SPPs assistance in light diffraction on 
plasmonic gratings. 

 Good agreement between the experiments and the simulations confirms the 
validity of our fitting method to determine the permittivity of the plasmonic layer and 
demonstrates that highly doped InP is an effective plasmonics material for the mid-
infrared region. 
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5. OPTICAL FORCES IN InP-BASED 
WAVEGUIDES 

 

 

 
5.1. Introduction to optomechanics 

Microelectromechanical systems (MEMS) are microscopic devices with moving parts 
which deflect or vibrate upon applying a force. They have been studied and utilized 
during the last three decades for commercial applications such as controlling fluid jets 
in inkjet printers, acceleration sensors for deploying car airbags [1], fine-pointing 
mirrors for intersatellite optical links [2] and tunable vertical-cavity surface-emitting 
lasers (VCSELs) [3]. Among various MEMS devices, cantilever sensors have attracted 
considerable attention due to their applications in ultra-sensitive mass sensing [4, 5] and 
label-free detection of biological molecules [6]. Adsorption of molecules on the surface 
of a deformable micro-cantilever beam will change its mass and stiffness and 
consequently its mechanical resonance frequency. Selective detection of different 
molecules can be realized by functionalizing the surface of the cantilever with specific 
receptors. MEMS systems are evolving with improvements in fabrication processes in 
order to shrink the size and reduce the mass and increase the resonance frequency. Most 
of the currently available MEMS devices are actuated by electrostatic forces, 
piezoelectric elements or bilayers of different thermal expansions. The induced motion 
in micro-cantilevers is usually detected by optical interference or deflection of a laser 
beam reflected from their surface [1].  

Well-developed microfabrication techniques for silicon have made it the key 
material for making MEMS devices, while other materials such as InP can potentially 
be useful for MEMS technology due to their special properties. In this chapter we 
investigate the optically induced forces in an InP waveguide which lies above an InP:Si 
substrate in different frequency ranges, namely the epsilon-near-zero (ENZ) regime, the 
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surface plasmon polariton (SPP) resonance regime, and the phonon resonance regime. It 
is shown that the induced attractive forces can be drastically increased upon coupling to 
the surface plasmons or phonons. The working wavelength range for the ENZ regime 
and SPP coupling regime can be effectively tuned by changing the carrier concentration 
of InP (Chapter 3).  Deflection of the waveguide can be determined by measuring the 
phase change of the light when travelling through the deflected waveguide [7]. 
Simultaneous on-chip optical actuation and detection paves the way towards 
miniaturization and integration of cantilever sensing devices, which are of great interest 
for industrial applications. 

Light-induced forces were first mentioned by Johannes Kepler in 1619 when he 
explained the observation that the tail of a comet always points away from the sun.  

In his famous paper, published in 1862, James Clerk Maxwell mentioned that 
electromagnetic radiation can exert pressure upon any surface that it is exerted upon [8]. 
If the wave is completely absorbed by the surface, the pressure will be equal to 

𝑃𝑃 =
⟨𝑺𝑺⟩
𝑐𝑐

=
𝐸𝐸𝑓𝑓
𝑐𝑐

 (5.1) 

where S is the Poynting vector which denotes the electromagnetic energy flux density, c 
is the speed of light and 𝐸𝐸𝑓𝑓 is the energy flux. 

If the wave is perfectly reflected from the surface, the pressure will be given by 

𝑃𝑃 =
2 𝐸𝐸𝑓𝑓
𝑐𝑐

cos2 𝛼𝛼  (5.2) 

in which 𝛼𝛼 is the angle of incidence. 

This phenomenon can also be explained by the quantum theory of light, 
according to which, each photon carries a momentum equal to ℏω/c that can be 
transferred to an object when it is hit by the photon. 

In 1967 Braginskii and Manukin published a paper and claimed that the 
radiation force exerted on a mechanical body when it is absorbing or reflecting the light, 
can be amplified in a Fabry-Perot cavity when the mechanical body serves as one of the 
mirrors of the cavity [9]. According to their formulation, the radiation pressure of light 
on a highly absorbing body depends on the velocity of its motion with respect to the 
light source: 

𝐹𝐹𝑛𝑛𝑚𝑚 =
𝑊𝑊
𝑐𝑐
�1 +

𝑣𝑣
𝑐𝑐
� =

𝑊𝑊
𝑐𝑐

+
𝑊𝑊𝑣𝑣
𝑐𝑐2

 (5.3) 

where 𝐹𝐹𝑛𝑛𝑚𝑚 is the electromagnetc force, W is the power incident on the stationary body 
and v is the velocity of the body relative to the source and in the radiation direction. 
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∆𝐹𝐹𝑛𝑛𝑚𝑚 = 𝑊𝑊𝑣𝑣/𝑐𝑐2, therefore the radiation pressure acts as an additional mechanical 
damping force on the body with the damping constant equal to: 

𝐻𝐻𝑛𝑛𝑚𝑚 =
𝑊𝑊
𝑐𝑐2

 . (5.4) 

If the body is perfectly reflecting, 𝐻𝐻𝑛𝑛𝑚𝑚 will be twice as large. 

To explain the physics behind this phenomenon, let us imagine that a perfectly 
reflecting plate on which the power 𝑊𝑊0 = 𝑁𝑁ℏ𝜔𝜔0 is incident, vibrates in the direction of 
source with velocity v in a half cycle of the vibration. Then the frequency of the 
reflected photons during this half cycle will be modified as 

𝜔𝜔 = 𝜔𝜔0(1 + 𝑣𝑣/𝑐𝑐)(1 − 𝑣𝑣/𝑐𝑐)−1 (5.5) 
Consequently, the power of the light reflected from the plate, averaged over a 

cycle (considering that 𝑣𝑣 ≪ 𝑐𝑐) will be 

𝑊𝑊𝑐𝑐𝑛𝑛𝑓𝑓 =
1
2

[𝑁𝑁ℏ𝜔𝜔0(1 + 𝑣𝑣/𝑐𝑐)(1 − 𝑣𝑣/𝑐𝑐)−1 + 𝑁𝑁ℏ𝜔𝜔0(1 − 𝑣𝑣/𝑐𝑐)(1 + 𝑣𝑣/𝑐𝑐)−1]

≅ 𝑊𝑊0 +
2𝑊𝑊0𝑣𝑣2

𝑐𝑐2
 . 

(5.6) 

The additional power 2𝑊𝑊0𝑣𝑣2

𝑐𝑐2
 is actually taken from the vibrating mechanical body. 

In case of a Fabry-Perot optical resonator with quality factor equal to 

𝑄𝑄 ≅ 2𝜋𝜋𝑙𝑙/𝑓𝑓𝜆𝜆 (5.7) 
where l is the length of the cavity, 𝜆𝜆 is the wavelength and (1-f) is the reflection 
coefficient, the radiation pressure exerted on the mirrors is given by 

𝐹𝐹𝑚𝑚𝑖𝑖𝑐𝑐 = 2𝑊𝑊/𝑓𝑓 (5.8) 
in which W is the power fed to the resonator. If Q is high enough, 𝐹𝐹𝑚𝑚𝑖𝑖𝑐𝑐 changes when 
one of the mirrors is displaced. Therefore the presence of the electric field in the cavity 
acts like an additional stiffness, which can be negative or positive, to the mechanical 
stiffness of the moving mirror. The maximum value of this additional stiffness is given 
by [9] 

(𝐾𝐾𝑛𝑛𝑚𝑚)𝑚𝑚𝑎𝑎𝑥𝑥 = 𝑀𝑀𝑎𝑎𝑥𝑥 �
𝜕𝜕𝐹𝐹𝑚𝑚𝑖𝑖𝑐𝑐

𝜕𝜕𝑙𝑙
� ≅ ±

4𝜋𝜋𝑊𝑊
𝑐𝑐𝑓𝑓2𝜆𝜆

 . (5.9) 

The important point is that when the mirror moves, the light pressure changes 
with a delay equal to 𝜏𝜏 = 𝑙𝑙/𝑐𝑐𝑓𝑓. Consequently 𝐾𝐾𝑛𝑛𝑚𝑚 will also change with the same 
delay. This time dependent change in the stiffness is equivalent to a damping force 
given by [9] 

(𝐻𝐻𝑛𝑛𝑚𝑚)𝑚𝑚𝑎𝑎𝑥𝑥 = ±(𝐾𝐾𝑛𝑛𝑚𝑚)𝑚𝑚𝑎𝑎𝑥𝑥 𝜏𝜏 = ±
𝑊𝑊
𝑐𝑐2

4𝜋𝜋𝑙𝑙
𝑓𝑓3𝜆𝜆

 . (5.10) 
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Therefore in an optical cavity, the damping force if magnified with a factor of 
4𝜋𝜋𝑙𝑙
𝑓𝑓3𝜆𝜆

 in comparison to a single mirror exposed to radiation pressure. 

 

5.2. Waveguide optomechanics 

During the past decade optical forces which arise due to the coupling between the 
evanescent tail of a guided wave in a waveguide and a substrate or another waveguide 
have become an interesting subject of research. In 2005 Povinelli et al. theoretically 
investigated the evanescent wave-bonding between dielectric optical waveguides. They 
reported forces with piconewtons orders of magnitude which are enough to make a 
deflection around 20 nm in a 30 µm long beam [10]. Afterwards a series of papers were 
published which experimentally proved this concept. Li et al. in 2008 detected the 
displacement in a silicon waveguide above a SiO2 substrate due to the optical forces. 
They used the phase shift of the light when it passes through a deflected waveguide to 
detect the deflection [7]. The same group in 2009 published a paper in which they 
investigated the deflection induced in two evanescently coupled micro-cantilevers [11]. 
They used the change in the transmission through the waveguide system upon 
deflection of the cantilevers for detecting the deflection. 

 In order to find the optically induced forces between a waveguide and an 
adjacent substrate, the first step is to solve the Maxwell equations and determine the 
electric and magnetic fields around and inside the waveguide and the substrate. 

5.2.1. Slab waveguide  

Figure 5.1 shows a slab waveguide with refractive index 𝑛𝑛2 inside a cladding material 
with refractive index 𝑛𝑛1. The Maxwell curl equations read 

∇ × 𝐄𝐄 = −
𝜕𝜕𝐁𝐁
𝜕𝜕𝑡𝑡

 (5.11a) 

∇ × 𝐇𝐇 = 𝐉𝐉𝑛𝑛𝑥𝑥𝜔𝜔 +
𝜕𝜕𝐃𝐃
𝜕𝜕𝑡𝑡

 (5.11b) 

in which E, B, H, 𝐉𝐉𝑛𝑛𝑥𝑥𝜔𝜔 and D are the electric field, magnetic flux density, magnetic 
field, external current density and the dielectric displacement field respectively. 

 The constitutive equations read 

𝐃𝐃 = 𝜀𝜀0𝜀𝜀𝐄𝐄 (5.12a) 
𝐁𝐁 = 𝜇𝜇0𝜇𝜇𝐇𝐇 (5.12b) 
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in which 𝜀𝜀0 and 𝜇𝜇0 are the permittivity and the permeability of vacuum, and 𝜀𝜀 and 𝜇𝜇 are 
the relative permittivity and permeability of the material respectively. 

 

 

Fig. 5.1 Slab waveguide 

 Regarding that in the absence of any external current 𝐉𝐉𝑛𝑛𝑥𝑥𝜔𝜔 = 0, and for a non-
magnetic medium 𝜇𝜇 = 1, considering a harmonic time dependence in form of 𝑒𝑒𝑖𝑖𝜔𝜔𝜔𝜔 for 
the fields, expanding the Eqs. (5.11) yields 

�
𝜕𝜕𝐸𝐸𝑖𝑖
𝜕𝜕𝑦𝑦

−
𝜕𝜕𝐸𝐸𝑦𝑦
𝜕𝜕𝑧𝑧

� = −𝜇𝜇0𝑖𝑖𝜔𝜔𝐻𝐻𝑥𝑥 

(5.13) 

�
𝜕𝜕𝐸𝐸𝑥𝑥
𝜕𝜕𝑧𝑧

−
𝜕𝜕𝐸𝐸𝑖𝑖
𝜕𝜕𝑥𝑥 �

= −𝜇𝜇0𝑖𝑖𝜔𝜔𝐻𝐻𝑦𝑦 

�
𝜕𝜕𝐸𝐸𝑦𝑦
𝜕𝜕𝑥𝑥

−
𝜕𝜕𝐸𝐸𝑥𝑥
𝜕𝜕𝑦𝑦

� = −𝜇𝜇0𝑖𝑖𝜔𝜔𝐻𝐻𝑖𝑖 

�
𝜕𝜕𝐻𝐻𝑖𝑖
𝜕𝜕𝑦𝑦

−
𝜕𝜕𝐻𝐻𝑦𝑦
𝜕𝜕𝑧𝑧

� = 𝜀𝜀0𝜀𝜀𝑖𝑖𝜔𝜔𝐸𝐸𝑥𝑥 

�
𝜕𝜕𝐻𝐻𝑥𝑥
𝜕𝜕𝑧𝑧

−
𝜕𝜕𝐻𝐻𝑖𝑖
𝜕𝜕𝑥𝑥 �

= 𝜀𝜀0𝜀𝜀𝑖𝑖𝜔𝜔𝐸𝐸𝑦𝑦 

�
𝜕𝜕𝐻𝐻𝑦𝑦
𝜕𝜕𝑥𝑥

−
𝜕𝜕𝐻𝐻𝑥𝑥
𝜕𝜕𝑦𝑦

� = 𝜀𝜀0𝜀𝜀𝑖𝑖𝜔𝜔𝐸𝐸𝑖𝑖 . 

 Since the waveguide is infinitely extended along the x direction 𝜕𝜕
𝜕𝜕𝑥𝑥

= 0, and for 

a propagating wave along the z direction 𝜕𝜕
𝜕𝜕𝑖𝑖

= −𝑖𝑖𝛽𝛽, where 𝛽𝛽 is the wavenumber. 
Therefore the electric and magnetic fields are given by 

𝐄𝐄(𝐫𝐫, 𝑡𝑡) = 𝐄𝐄(𝑦𝑦)𝑒𝑒𝑖𝑖(𝜔𝜔𝜔𝜔−𝑖𝑖𝑖𝑖) (5.14) 
𝐇𝐇(𝐫𝐫, 𝑡𝑡) = 𝐇𝐇(𝑦𝑦)𝑒𝑒𝑖𝑖(𝜔𝜔𝜔𝜔−𝑖𝑖𝑖𝑖) . 

 Using Eqs. (5.14), Eqs. (5.13) read 

𝜕𝜕𝐸𝐸𝑖𝑖
𝜕𝜕𝑦𝑦

+ 𝑖𝑖𝛽𝛽𝐸𝐸𝑦𝑦 = −𝜇𝜇0𝑖𝑖𝜔𝜔𝐻𝐻𝑥𝑥 

(5.15) 

𝑖𝑖𝛽𝛽𝐸𝐸𝑥𝑥 = 𝜇𝜇0𝑖𝑖𝜔𝜔𝐻𝐻𝑦𝑦 
𝜕𝜕𝐸𝐸𝑥𝑥
𝜕𝜕𝑦𝑦

= 𝜇𝜇0𝑖𝑖𝜔𝜔𝐻𝐻𝑖𝑖 

𝜕𝜕𝐻𝐻𝑖𝑖
𝜕𝜕𝑦𝑦

+ 𝑖𝑖𝛽𝛽𝐻𝐻𝑦𝑦 = 𝜀𝜀0𝜀𝜀𝑖𝑖𝜔𝜔𝐸𝐸𝑥𝑥 

𝑖𝑖𝛽𝛽𝐻𝐻𝑥𝑥 = −𝜀𝜀0𝜀𝜀𝑖𝑖𝜔𝜔𝐸𝐸𝑦𝑦 
𝜕𝜕𝐻𝐻𝑥𝑥
𝜕𝜕𝑦𝑦

= −𝜀𝜀0𝜀𝜀𝑖𝑖𝜔𝜔𝐸𝐸𝑖𝑖 . 

d 

n1 

n2 

n1 

y 

x 
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 For TE polarization, the electric field is in the x direction and the magnetic field 
has both y and z components. Therefore 

𝐸𝐸𝑦𝑦 = 𝐸𝐸𝑖𝑖 = 𝐻𝐻𝑥𝑥 = 0       (For TE polarization), (5.16) 
and Eqs. (5.15) reduce to 

𝐸𝐸𝑥𝑥 =
𝜇𝜇0𝜔𝜔
𝛽𝛽

𝐻𝐻𝑦𝑦 

(5.17) 
𝜕𝜕𝐸𝐸𝑥𝑥
𝜕𝜕𝑦𝑦

= 𝜇𝜇0𝑖𝑖𝜔𝜔𝐻𝐻𝑖𝑖 

𝜕𝜕𝐻𝐻𝑖𝑖
𝜕𝜕𝑦𝑦

+ 𝑖𝑖𝛽𝛽𝐻𝐻𝑦𝑦 = 𝜀𝜀𝜀𝜀0𝑖𝑖𝜔𝜔𝐸𝐸𝑥𝑥 

 Substituting the first two equations of (5.17) in the third one and using the 
relation 𝑐𝑐2 = 1

𝜇𝜇0𝜀𝜀0
, where c is the speed of light, one will get to the wave equation [12] 

𝜕𝜕2𝐸𝐸𝑥𝑥
𝜕𝜕𝑦𝑦2

+ (𝑘𝑘02𝑛𝑛𝑖𝑖2 − 𝛽𝛽2)𝐸𝐸𝑥𝑥 = 0 (5.18) 

in which 𝑘𝑘0 = 𝜔𝜔
𝑐𝑐
 is the wavenumber of light in vacuum. 

 Inside the waveguide, we seek for standing waves in the y direction which 
propagate along the z direction: 

𝐸𝐸𝑥𝑥(𝑦𝑦) = 𝐴𝐴𝑒𝑒𝑖𝑖𝑖𝑖𝑐𝑐𝑦𝑦 + 𝐵𝐵𝑒𝑒−𝑖𝑖𝑖𝑖𝑐𝑐𝑦𝑦 = 𝐴𝐴 sin(𝑘𝑘𝑐𝑐𝑦𝑦) + 𝐵𝐵 cos(𝑘𝑘𝑐𝑐𝑦𝑦) (5.19) 
where 𝑘𝑘𝑐𝑐 is the wavenumber inside the waveguide (core), given by 

𝑘𝑘𝑐𝑐 = �𝑘𝑘02𝑛𝑛22 − 𝛽𝛽2 . (5.20) 

 Defining the effective mode index 𝑛𝑛𝑛𝑛𝑓𝑓𝑓𝑓 as 

𝛽𝛽 = 𝑘𝑘0𝑛𝑛𝑛𝑛𝑓𝑓𝑓𝑓 , (5.21) 
knowing that 𝑛𝑛1 < 𝑛𝑛𝑛𝑛𝑓𝑓𝑓𝑓 < 𝑛𝑛2, regarding that we are looking for evanescent wave 
solutions in the y direction outside the core 

𝐸𝐸𝑥𝑥(𝑦𝑦) = 𝐶𝐶𝑒𝑒−𝑖𝑖𝑎𝑎𝑦𝑦 (5.22) 
where 𝑘𝑘𝑎𝑎, the wavenumber outside the waveguide, is real and positive and defined as 

𝑘𝑘𝑎𝑎 = �𝛽𝛽2 − 𝑘𝑘02𝑛𝑛12 . (5.23) 

 Therefore, the solution of the wave equation for the electric field takes the form 

𝐸𝐸𝑥𝑥(𝑦𝑦) = �
𝐴𝐴 sin(𝑘𝑘𝑐𝑐𝑦𝑦) + 𝐵𝐵 cos(𝑘𝑘𝑐𝑐𝑦𝑦)

𝐶𝐶𝑒𝑒−𝑖𝑖𝑎𝑎𝑦𝑦
𝑚𝑚𝑒𝑒𝑖𝑖𝑎𝑎𝑦𝑦

 
|𝑦𝑦| < 𝑑𝑑/2 

(5.24) 𝑦𝑦 > 𝑑𝑑/2 
𝑦𝑦 < −𝑑𝑑/2 

 The unknowns in Eqs. (5.24) are A, B, C, D, 𝑘𝑘𝑐𝑐 and 𝑘𝑘𝑎𝑎. The complete form of 
solutions for the electric and the magnetic fields will be 
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𝐸𝐸𝑥𝑥(𝐫𝐫) = �
(𝐴𝐴 sin(𝑘𝑘𝑐𝑐𝑦𝑦) + 𝐵𝐵 cos(𝑘𝑘𝑐𝑐𝑦𝑦))𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖

𝐶𝐶𝑒𝑒(−𝑖𝑖𝑎𝑎𝑦𝑦−𝑖𝑖𝑖𝑖𝑖𝑖)

𝑚𝑚𝑒𝑒(𝑖𝑖𝑎𝑎𝑦𝑦−𝑖𝑖𝑖𝑖𝑖𝑖)
 

|𝑦𝑦| < 𝑑𝑑/2 

(5.25) 

𝑦𝑦 > 𝑑𝑑/2 
𝑦𝑦 < −𝑑𝑑/2 

 

𝐻𝐻𝑖𝑖(𝐫𝐫) =
−𝑖𝑖
𝜇𝜇0𝜔𝜔

𝜕𝜕𝐸𝐸𝑥𝑥(𝐫𝐫)
𝜕𝜕𝑦𝑦

 

 

 In order to find the unknowns, we use the continuity of the tangential 
components of the electric and the magnetic fields across the interfaces as the boundary 
conditions. For 𝐸𝐸𝑥𝑥 

@ 𝑦𝑦 = 𝑑𝑑/2: 𝐴𝐴 sin(𝑘𝑘𝑐𝑐  𝑑𝑑/2) + 𝐵𝐵 cos(𝑘𝑘𝑐𝑐  𝑑𝑑/2) = 𝐶𝐶𝑒𝑒(−𝑖𝑖𝑎𝑎 𝛼𝛼/2) (5.26) @ 𝑦𝑦 = −𝑑𝑑/2: −𝐴𝐴 sin(𝑘𝑘𝑐𝑐  𝑑𝑑/2) + 𝐵𝐵 cos(𝑘𝑘𝑐𝑐  𝑑𝑑/2) = 𝑚𝑚𝑒𝑒(−𝑖𝑖𝑎𝑎 𝛼𝛼/2) 
 For 𝐻𝐻𝑖𝑖 

@ 𝑦𝑦 = 𝑑𝑑/2: 𝑘𝑘𝑐𝑐𝐴𝐴 cos(𝑘𝑘𝑐𝑐  𝑑𝑑/2) − 𝑘𝑘𝑐𝑐𝐵𝐵 sin(𝑘𝑘𝑐𝑐  𝑑𝑑/2) = −𝑘𝑘𝑎𝑎𝐶𝐶𝑒𝑒(−𝑖𝑖𝑎𝑎 𝛼𝛼/2) (5.27) @ 𝑦𝑦 = −𝑑𝑑/2: 𝑘𝑘𝑐𝑐𝐴𝐴 cos(𝑘𝑘𝑐𝑐  𝑑𝑑/2) + 𝑘𝑘𝑐𝑐𝐵𝐵 sin(𝑘𝑘𝑐𝑐  𝑑𝑑/2) = 𝑘𝑘𝑎𝑎𝑚𝑚𝑒𝑒(−𝑖𝑖𝑎𝑎 𝛼𝛼/2) 
 Rearranging the above equations yield 

2𝐴𝐴 sin(𝑘𝑘𝑐𝑐  𝑑𝑑/2) = (𝐶𝐶 − 𝑚𝑚)𝑒𝑒(−𝑖𝑖𝑎𝑎 𝛼𝛼/2) 

(5.28) 2𝑘𝑘𝑐𝑐𝐴𝐴 cos(𝑘𝑘𝑐𝑐  𝑑𝑑/2) = 𝑘𝑘𝑎𝑎(𝑚𝑚 − 𝐶𝐶)𝑒𝑒(−𝑖𝑖𝑎𝑎 𝛼𝛼/2) 
2𝐵𝐵 cos(𝑘𝑘𝑐𝑐  𝑑𝑑/2) = (𝑚𝑚 + 𝐶𝐶)𝑒𝑒(−𝑖𝑖𝑎𝑎 𝛼𝛼/2) 

2𝑘𝑘𝑐𝑐𝐵𝐵 sin(𝑘𝑘𝑐𝑐  𝑑𝑑/2) = 𝑘𝑘𝑎𝑎(𝐶𝐶 + 𝑚𝑚)𝑒𝑒(−𝑖𝑖𝑎𝑎 𝛼𝛼/2) 
 Solutions of the above equations can be grouped into two types: symmetric 
solutions in which 𝐶𝐶 = 𝑚𝑚 and 𝐴𝐴 = 0, and anti-symmetric solutions in which 𝐶𝐶 = −𝑚𝑚 
and 𝐵𝐵 = 0. For symmetric solutions, the boundary condition equations (5.28) yield 

𝑘𝑘𝑐𝑐 tan �
1
2
𝑘𝑘𝑐𝑐𝑑𝑑� = 𝑘𝑘𝑎𝑎 . (5.29) 

 For anti-symmetric solutions 

𝑘𝑘𝑐𝑐 cot �
1
2
𝑘𝑘𝑐𝑐𝑑𝑑� = −𝑘𝑘𝑎𝑎 . (5.30) 

 𝑘𝑘𝑐𝑐 and 𝑘𝑘𝑎𝑎 are both related to 𝛽𝛽, therefore the unknowns are C, 𝛽𝛽 and A or B. A 
(or B), and C are indeed amplitudes of the modes and will be denoted by 𝐸𝐸0 and 𝐸𝐸1. 
Combining the solutions for symmetric and anti-symmetric modes, Eqs. (5.25) read 

𝐸𝐸𝑥𝑥(𝑦𝑦) =

⎩
⎪
⎨

⎪
⎧ 𝐸𝐸1𝑒𝑒−𝑖𝑖𝑎𝑎𝑦𝑦𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖

𝐸𝐸0 �
sin𝑘𝑘𝑐𝑐𝑦𝑦
cos 𝑘𝑘𝑐𝑐𝑦𝑦

� 𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖

�
−
+� 𝐸𝐸1𝑒𝑒

𝑖𝑖𝑎𝑎𝑦𝑦𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖
 

𝑦𝑦 > 𝑑𝑑/2 
For 

�Anti − symmetric
Symmetric � (5.31) |𝑦𝑦| ≤ 𝑑𝑑/2 

𝑦𝑦 < −𝑑𝑑/2 

 Solving the boundary condition at 𝑦𝑦 = 𝑑𝑑/2 for 𝐸𝐸1 yields 

𝐸𝐸1𝑒𝑒−𝑖𝑖𝑎𝑎 𝛼𝛼/2 = 𝐸𝐸0 �
sin(𝑘𝑘𝑐𝑐  𝑑𝑑/2)
cos(𝑘𝑘𝑐𝑐  𝑑𝑑/2)�, (5.32) 
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therefore 

𝐸𝐸1 = 𝐸𝐸0𝑒𝑒𝑖𝑖𝑎𝑎 𝛼𝛼/2 �sin(𝑘𝑘𝑐𝑐  𝑑𝑑/2)
cos(𝑘𝑘𝑐𝑐  𝑑𝑑/2)� (5.33) 

 Now, the only unknown is 𝛽𝛽 which will be found by solving the two coupled 
equations: 

𝑘𝑘𝑐𝑐2 + 𝑘𝑘𝑎𝑎2 = 𝑘𝑘02(𝑛𝑛22 − 𝑛𝑛12) (5.34a) 
𝑘𝑘𝑐𝑐 tan �1

2
𝑘𝑘𝑐𝑐𝑑𝑑� = 𝑘𝑘𝑎𝑎 or 𝑘𝑘𝑐𝑐 cot �1

2
𝑘𝑘𝑐𝑐𝑑𝑑� = −𝑘𝑘𝑎𝑎 (5.34b) 

 These equations are transcendental equations and can only be solved 
numerically [12]. Figure 5.2 graphically shows the solutions of Eqs. (5.34) as the 
intersections of the circle corresponding to the Eq. (5.34a) and the curves corresponding 
to Eq. (5.34b), for 𝜆𝜆0 = 1.55 µm, 𝑑𝑑 = 1 µm, 𝑛𝑛1 = 1 and 𝑛𝑛2 = 3.5. A particular 𝛽𝛽 and 
𝑛𝑛𝑛𝑛𝑓𝑓𝑓𝑓 can be found from (5.21) and (5.23), for each solution of Eqs. (5.34). 

  
Fig. 5.2 Graphical representation of the solutions of the Eqs. (5.34), for symmetric (left) and anti-

symmetric guided modes in a slab waveguide. Values for 𝑛𝑛𝑛𝑛𝑓𝑓𝑓𝑓 is shown for each solution. 
 For TM polarization, the magnetic field is in the x direction and the electric field 
has both y and z components. Therefore 

𝐻𝐻𝑦𝑦 = 𝐻𝐻𝑖𝑖 = 𝐸𝐸𝑥𝑥 = 0       (For TM polarization), (5.35) 
and Eqs. (5.15) reduce to 

𝐻𝐻𝑥𝑥 =
𝜀𝜀𝜀𝜀0𝜔𝜔
𝛽𝛽

𝐸𝐸𝑦𝑦 

(5.36) 
𝜕𝜕𝐻𝐻𝑥𝑥
𝜕𝜕𝑦𝑦

= −𝜀𝜀𝜀𝜀0𝑖𝑖𝜔𝜔𝐸𝐸𝑖𝑖 

𝜕𝜕𝐸𝐸𝑖𝑖
𝜕𝜕𝑦𝑦

+ 𝑖𝑖𝛽𝛽𝐸𝐸𝑦𝑦 = −𝜇𝜇0𝑖𝑖𝜔𝜔𝐻𝐻𝑥𝑥 

 Therefore, the solution of the wave equation for the magnetic field takes the 
form 
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𝐻𝐻𝑥𝑥(𝑦𝑦) = �
𝐴𝐴 sin(𝑘𝑘𝑐𝑐𝑦𝑦) + 𝐵𝐵 cos(𝑘𝑘𝑐𝑐𝑦𝑦)

𝐶𝐶𝑒𝑒−𝑖𝑖𝑎𝑎𝑦𝑦
𝑚𝑚𝑒𝑒𝑖𝑖𝑎𝑎𝑦𝑦

 
|𝑦𝑦| < 𝑑𝑑/2 

(5.37) 𝑦𝑦 > 𝑑𝑑/2 
𝑦𝑦 < −𝑑𝑑/2 

and the eigen equations become 

𝑘𝑘𝑐𝑐 tan �
1
2
𝑘𝑘𝑐𝑐𝑑𝑑� =

𝑛𝑛22

𝑛𝑛12
𝑘𝑘𝑎𝑎 

(5.38) 
𝑘𝑘𝑐𝑐 cot �

1
2
𝑘𝑘𝑐𝑐𝑑𝑑� = −

𝑛𝑛22

𝑛𝑛12
𝑘𝑘𝑎𝑎 . 

5.2.2. Slab waveguide near a substrate 

When a slab waveguide lies above a substrate, the evanescent tail of the guided modes 
can couple to the substrate and this will change the effective index of the mode. Figure 
5.3 shows a slab waveguide with refractive index 𝑛𝑛𝑐𝑐, inside a cladding material with 
refractive index 𝑛𝑛𝑎𝑎, separated from a substrate with refractive index 𝑛𝑛𝑠𝑠, where 𝑛𝑛𝑎𝑎 <
𝑛𝑛𝑠𝑠 < 𝑛𝑛𝑐𝑐. 

 

 

 

Fig. 5.3 Slab waveguide near a substrate 

Starting from Eq. (5.18), for three different material regions we have 

𝑘𝑘𝑠𝑠 = �𝛽𝛽2 − 𝑘𝑘02𝑛𝑛𝑠𝑠2 

(5.39) 𝑘𝑘𝑎𝑎 = �𝛽𝛽2 − 𝑘𝑘02𝑛𝑛𝑎𝑎2 

𝑘𝑘𝑐𝑐 = �𝑘𝑘02𝑛𝑛𝑐𝑐2 − 𝛽𝛽2 . 

 For TE polarization, the electric field takes the form [12] 

𝐸𝐸𝑥𝑥(𝑦𝑦) = 𝐴𝐴

⎩
⎪
⎨

⎪
⎧ 𝑎𝑎1𝑒𝑒𝑖𝑖𝑠𝑠𝑦𝑦

𝑎𝑎2𝑒𝑒−𝑖𝑖𝑎𝑎𝑦𝑦 + 𝑎𝑎3𝑒𝑒𝑖𝑖𝑎𝑎𝑦𝑦
cos(𝑘𝑘𝑐𝑐(𝑦𝑦 − 𝑔𝑔) + 𝜙𝜙)
𝑎𝑎4𝑒𝑒−𝑖𝑖𝑎𝑎(𝑦𝑦−𝑔𝑔−ℎ)

 

𝑦𝑦 < 0 

(5.40) 0 ≤ 𝑦𝑦 < 𝑔𝑔 
𝑔𝑔 ≤ 𝑦𝑦 < 𝑔𝑔 + ℎ 
𝑦𝑦 ≥ 𝑔𝑔 + ℎ 

 Continuity of 𝐸𝐸𝑥𝑥 and 𝐻𝐻𝑖𝑖 at the boundaries gives 

 

 

 

h 

na 
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@ 𝑦𝑦 = 0 
𝑎𝑎1 = 𝑎𝑎2 + 𝑎𝑎3 

(5.41) 

𝑎𝑎1𝑘𝑘𝑠𝑠 =
𝑘𝑘𝑎𝑎
𝑘𝑘𝑠𝑠

(𝑎𝑎3 − 𝑎𝑎2) 

@ 𝑦𝑦 = 𝑔𝑔 𝑎𝑎2𝑒𝑒−𝑖𝑖𝑎𝑎𝑔𝑔 + 𝑎𝑎3𝑒𝑒𝑖𝑖𝑎𝑎𝑔𝑔 = cos𝜙𝜙 
−𝑘𝑘𝑎𝑎𝑎𝑎2𝑒𝑒−𝑖𝑖𝑎𝑎𝑔𝑔 + 𝑘𝑘𝑎𝑎𝑎𝑎3𝑒𝑒𝑖𝑖𝑎𝑎𝑔𝑔 = −𝑘𝑘𝑐𝑐 sin𝜙𝜙 

@ 𝑦𝑦 = 𝑔𝑔 + ℎ cos(𝑘𝑘𝑐𝑐ℎ + 𝜙𝜙) = 𝑎𝑎4 
−𝑘𝑘𝑐𝑐 sin(𝑘𝑘𝑐𝑐ℎ + 𝜙𝜙) = −𝑘𝑘𝑎𝑎𝑎𝑎4 

 After some manipulations Eqs. (5.41) yield 

𝑎𝑎1 = 2𝑎𝑎3
𝑘𝑘𝑎𝑎

𝑘𝑘𝑎𝑎 + 𝑘𝑘𝑠𝑠
 

(5.42) 
𝑎𝑎2 =

𝑎𝑎3(𝑘𝑘𝑎𝑎 − 𝑘𝑘𝑠𝑠)
𝑘𝑘𝑎𝑎 + 𝑘𝑘𝑠𝑠

 

𝑎𝑎4 =
𝑘𝑘𝑐𝑐

�𝑘𝑘𝑎𝑎2 + 𝑘𝑘𝑐𝑐2
 

𝜙𝜙 = −Arccot �
𝑘𝑘𝑐𝑐(𝑘𝑘𝑎𝑎 + 𝑒𝑒2𝑔𝑔𝑖𝑖𝑎𝑎𝑘𝑘𝑎𝑎 − 𝑘𝑘𝑠𝑠 + 𝑒𝑒2𝑔𝑔𝑖𝑖𝑎𝑎𝑘𝑘𝑠𝑠)
𝑘𝑘𝑎𝑎(−𝑘𝑘𝑎𝑎 + 𝑒𝑒2𝑔𝑔𝑖𝑖𝑎𝑎𝑘𝑘𝑎𝑎 + 𝑘𝑘𝑠𝑠 + 𝑒𝑒2𝑔𝑔𝑖𝑖𝑎𝑎𝑘𝑘𝑠𝑠)� 

 Substituting 𝜙𝜙 from the last equation of (5.42) in the first boundary condition at 
𝑦𝑦 = 𝑔𝑔 + ℎ, one can eliminate 𝜙𝜙 and find the transcendental equation as [12] 

𝑘𝑘𝑐𝑐ℎ = Arctan �
𝑘𝑘𝑎𝑎
𝑘𝑘𝑐𝑐
�

+ Arctan �
𝑘𝑘𝑎𝑎
𝑘𝑘𝑐𝑐

tanh �Arctan �
𝑘𝑘𝑠𝑠
𝑘𝑘𝑎𝑎
� + 𝑔𝑔𝑘𝑘𝑎𝑎��

+ 𝑁𝑁𝜋𝜋 

𝑁𝑁 = 0,1,2, … (5.43) 

 Using the first boundary condition at 𝑦𝑦 = 𝑔𝑔, substituting 𝜙𝜙 from (5.42), and 
writing 𝑎𝑎2 in terms of 𝑎𝑎3, one will find the relation for 𝑎𝑎3 as 

𝑎𝑎3 =
𝑘𝑘𝑎𝑎 + 𝑘𝑘𝑠𝑠

2𝑀𝑀
 (5.44) 

where 

𝑀𝑀 = ��
𝑘𝑘𝑎𝑎
𝑘𝑘𝑐𝑐
�
2

[𝑘𝑘𝑎𝑎 sinh(𝑘𝑘𝑎𝑎𝑔𝑔) + 𝑘𝑘𝑠𝑠 cosh(𝑘𝑘𝑎𝑎𝑔𝑔)]2 + [𝑘𝑘𝑠𝑠 sinh(𝑘𝑘𝑎𝑎𝑔𝑔) + 𝑘𝑘𝑎𝑎 cosh(𝑘𝑘𝑎𝑎𝑔𝑔)]2 (5.45) 

 Figure 5.4 shows 𝑛𝑛𝑛𝑛𝑓𝑓𝑓𝑓 as a function of the gap size, calculated using Eq. 5.43, 
for a 110 nm thick slab waveguide for 𝜆𝜆0 = 1.55 µm, 𝑛𝑛𝑎𝑎 = 1, 𝑛𝑛𝑐𝑐 = 3.5, and 𝑛𝑛𝑐𝑐 = 1.5. 
The effective mode index approaches to the value for a free waveguide as the gap size 
increases. The inset of the Fig. 5.4 shows the electric field map calculated by finite 
element method (FEM), using COMSOL [13]. A very good agreement between the 
calculations (dotted line) and the FEM simulation results (solid line) can be observed. 
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Fig. 5.4 𝑛𝑛𝑛𝑛𝑓𝑓𝑓𝑓 as a function of the gap size for a slab waveguide above a substrate. Inset: FEM simulated 
electric field map 

5.2.3. Waveguide with a rectangular cross section near a substrate 

In order to generalize the one dimensional problem of the slab waveguide to the two 
dimensional problem of a waveguide with a rectangular cross section, one can use 
approximations such as the effective index method [12]. Consider the waveguide in Fig. 
5.5(a). The effective mode index of this waveguide can be found by calculating the 
effective mode index of the slab waveguide in Fig. 5.5(b) 𝑛𝑛𝑛𝑛𝑓𝑓𝑓𝑓1 , and then using it to 
calculate the effective mode index of the vertical slab waveguide in Fig. 5.5(c). The 
vertical slab waveguide is equivalent to a horizontal slab waveguide in the opposite 
polarization. 

 

 

 

 

 

Fig. 5.5 (a) Rectangular cross section waveguide; (b) and (c), its components according to the effective 
index method. 

 Figure 5.6 and 5.7 show 𝑛𝑛𝑛𝑛𝑓𝑓𝑓𝑓 of a waveguide with a rectangular cross section, 
corresponding to the first and second symmetric modes respectively, calculated using 
the effective index method together with the FEM simulation result, for a waveguide 
with ℎ = 110 nm, 𝑤𝑤 = 2 µm, 𝜆𝜆0 = 1.55 µm, 𝑛𝑛𝑎𝑎 = 1, 𝑛𝑛𝑐𝑐 = 3.5, and 𝑛𝑛𝑠𝑠 = 1.5. 
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Fig. 5.6 𝑛𝑛𝑛𝑛𝑓𝑓𝑓𝑓 as a function of the gap size for the first symmetric mode of a waveguide with a rectangular 
cross section above a substrate with 𝑤𝑤 = 2 µm. Inset: FEM simulated electric field map 

 

Fig. 5.7 𝑛𝑛𝑛𝑛𝑓𝑓𝑓𝑓 as a function of the gap size for the second symmetric mode of a waveguide with a 
rectangular cross section above a substrate with 𝑤𝑤 = 2 µm. Inset: FEM simulated electric field map 

 Figure 5.8 shows 𝑛𝑛𝑛𝑛𝑓𝑓𝑓𝑓 of the above mentioned waveguide when 𝑤𝑤 = 0.5 µm, 
for the first symmetric mode which becomes the only existing guided mode when w is 
decreased to 0.5 µm. As the width of the waveguide becomes smaller than the 
wavelength, the effective index method breaks down, and its results significantly 
deviate from the FEM simulation results. 
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Fig. 5.8 𝑛𝑛𝑛𝑛𝑓𝑓𝑓𝑓 as a function of the gap size for the first symmetric mode of a waveguide with a rectangular 
cross section above a substrate with 𝑤𝑤 = 0.5 µm 

5.2.4. Optical forces due to evanescent-wave bonding 

Maxwell stress tensor, which is derived by substituting Maxwell equations in the 
Lorentz force law, can be used to calculate the optically induced forces which arise due 
to the coupling of the evanescent tail of the guided waves to the substrate. 

 The Lorentz force law defines the force F, that is exerted on a particle with 
charge q as it moves with velocity V in presence of the electric and magnetic fields E 
and B: 

𝐅𝐅 = 𝑞𝑞(𝐄𝐄 + 𝐕𝐕 × 𝐁𝐁) . (5.46) 
 Using the relations for E and B from Maxwell equations, after some 
mathematical manipulations [14], the force per unit volume will be found as 

𝐟𝐟 = 𝜀𝜀0[(∇.𝐄𝐄)𝐄𝐄 + (𝐄𝐄.∇)𝐄𝐄] +
1
𝜇𝜇0

[(∇.𝐁𝐁)𝐁𝐁 + (𝐁𝐁.∇)𝐁𝐁] −
1
2
∇ �𝜀𝜀0𝐸𝐸2 +

1
𝜇𝜇0
𝐵𝐵2�

− 𝜀𝜀0
𝜕𝜕
𝜕𝜕𝑡𝑡

(𝐄𝐄 × 𝐁𝐁) 
(5.47) 

which can be written in compact form as 

𝜎𝜎𝑖𝑖𝑗𝑗 = 𝜀𝜀0 �𝐸𝐸𝑖𝑖𝐸𝐸𝑗𝑗 −
1
2
𝛿𝛿𝑖𝑖𝑗𝑗𝐸𝐸2� +

1
𝜇𝜇0
�𝐵𝐵𝑖𝑖𝐵𝐵𝑗𝑗 −

1
2
𝛿𝛿𝑖𝑖𝑗𝑗𝐵𝐵2� (5.48) 

where 𝛿𝛿𝑖𝑖𝑗𝑗 is the Kronecker delta defined as 

𝛿𝛿𝑖𝑖𝑗𝑗 = �1   for   𝑖𝑖 = 𝑗𝑗
0   for   𝑖𝑖 ≠ 𝑗𝑗  (5.49) 
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 For TE  polarization 𝐸𝐸𝑦𝑦 = 𝐸𝐸𝑖𝑖 = 𝐻𝐻𝑥𝑥 = 0, and 𝜎𝜎𝑦𝑦𝑦𝑦 is found to be 

𝜎𝜎𝑦𝑦𝑦𝑦 = −
𝜀𝜀0
2
�|𝐸𝐸𝑥𝑥|2 + 𝑐𝑐2𝜇𝜇02 �|𝐻𝐻𝑖𝑖|2 − �𝐻𝐻𝑦𝑦�

2�� . (5.50) 

 Since both the electric and the magnetic fields have time dependence in form of 

cos(𝜔𝜔𝑡𝑡), |𝐸𝐸𝑥𝑥|2, |𝐻𝐻𝑖𝑖|2 and �𝐻𝐻𝑦𝑦�
2
 have time dependence in form of cos2(𝜔𝜔𝑡𝑡). The 

average of cos2(𝜔𝜔𝑡𝑡) over a cycle is 1
2
, therefore the time averaged yy component of the 

stress tensor will be 

𝜎𝜎�𝑦𝑦𝑦𝑦 = −
𝜀𝜀0
4
�|𝐸𝐸𝑥𝑥|2 + 𝑐𝑐2𝜇𝜇02 �|𝐻𝐻𝑖𝑖|2 − �𝐻𝐻𝑦𝑦�

2��

= −
𝜀𝜀0
4 �|𝐸𝐸𝑥𝑥|2 �1 −

𝛽𝛽2

𝑘𝑘02
� +

1
𝑘𝑘02
�
𝜕𝜕𝐸𝐸𝑥𝑥
𝜕𝜕𝑦𝑦

�
2

� . 
(5.51) 

 For 𝑦𝑦 ≥ 𝑔𝑔 + ℎ (Fig. 5.5) 

𝐸𝐸𝑥𝑥 = 𝐴𝐴𝑎𝑎4𝑒𝑒−𝑖𝑖𝑎𝑎(𝑦𝑦−𝑔𝑔−ℎ) , (5.52) 
therefore 

𝜎𝜎�𝑦𝑦𝑦𝑦 = −
𝜀𝜀0
4 �(𝐴𝐴𝑎𝑎4)2 �1 −

𝛽𝛽2

𝑘𝑘02
� +

1
𝑘𝑘02

(𝐴𝐴𝑎𝑎4𝑘𝑘𝑎𝑎)2� 𝑒𝑒−2𝑖𝑖𝑎𝑎(𝑦𝑦−𝑔𝑔−ℎ) . (5.53) 

 Regarding that 𝑘𝑘𝑎𝑎2 = 𝛽𝛽2 − 𝑘𝑘02𝑛𝑛𝑎𝑎2 

𝜎𝜎�𝑦𝑦𝑦𝑦 = −
𝜀𝜀0
4 �(𝐴𝐴𝑎𝑎4)2 �1 −

𝛽𝛽2

𝑘𝑘02
+
𝛽𝛽2 − 𝑘𝑘02𝑛𝑛𝑎𝑎2

𝑘𝑘02
�� 𝑒𝑒−2𝑖𝑖𝑎𝑎(𝑦𝑦−𝑔𝑔−ℎ)

= −
𝜀𝜀0
4

[|𝐸𝐸𝑥𝑥|2(1 − 𝑛𝑛𝑎𝑎2)] . 
(5.54) 

 For the waveguide in air 𝑛𝑛𝑎𝑎 = 1, hence for 𝑦𝑦 ≥ 𝑔𝑔 + ℎ,  𝜎𝜎�𝑦𝑦𝑦𝑦 = 0 which is the 
result of the evanescent nature of the field above the waveguide [15]. 

 For 0 ≤ 𝑦𝑦 ≤ 𝑔𝑔 (Fig. 5.5) 

𝐸𝐸𝑥𝑥 = 𝐴𝐴𝑎𝑎2𝑒𝑒−𝑖𝑖𝑎𝑎𝑦𝑦 + 𝐴𝐴𝑎𝑎3𝑒𝑒𝑖𝑖𝑎𝑎𝑦𝑦 (5.55) 
therefore 

𝜎𝜎�𝑦𝑦𝑦𝑦 = −
𝜀𝜀0
4 �𝐴𝐴2(𝑎𝑎22𝑒𝑒−2𝑖𝑖𝑎𝑎𝑦𝑦 + 𝑎𝑎32𝑒𝑒2𝑖𝑖𝑎𝑎𝑦𝑦 + 2𝑎𝑎2𝑎𝑎3)�1 −

𝛽𝛽2

𝑘𝑘02
�

+
1
𝑘𝑘02
𝐴𝐴2𝑘𝑘𝑎𝑎2(𝑎𝑎22𝑒𝑒−2𝑖𝑖𝑎𝑎𝑦𝑦 + 𝑎𝑎32𝑒𝑒2𝑖𝑖𝑎𝑎𝑦𝑦 − 2𝑎𝑎2𝑎𝑎3)� . 

(5.56) 

 Regarding that (𝑛𝑛𝑎𝑎2 − 1) = 0 and (𝑛𝑛𝑎𝑎2 + 1) = 2 [15] 

𝜎𝜎�𝑦𝑦𝑦𝑦 = −
𝜀𝜀0𝐴𝐴2

4𝑀𝑀2 (𝑛𝑛𝑠𝑠2 − 𝑛𝑛𝑎𝑎2)(𝑘𝑘02 − 𝛽𝛽2) (5.57) 

where M is given by (5.45). 

The force is given by 
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𝐹𝐹𝑖𝑖 = �𝑓𝑓𝑖𝑖𝑑𝑑𝑑𝑑
 

𝑉𝑉

= �
𝜕𝜕𝜎𝜎𝑖𝑖𝑗𝑗
𝜕𝜕𝑥𝑥𝑗𝑗

𝑑𝑑𝑑𝑑
 

𝑉𝑉

= ��∇.𝜎𝜎𝑖𝑖𝑗𝑗�𝑑𝑑𝑑𝑑
 

𝑉𝑉
 . (5.58) 

 According to the divergence theorem [16] 

𝐹𝐹𝑖𝑖 = �𝜎𝜎𝑖𝑖𝑗𝑗 .𝑛𝑛�𝑗𝑗𝑑𝑑𝑎𝑎
 

𝑆𝑆

 . (5.59) 

 Therefore the time-averaged force per unit area on the bottom surface of the 
beam in y direction will be equal to [15] 

ℱ𝑦𝑦 = 𝜎𝜎�𝑦𝑦𝑦𝑦 . (5.60) 
 According to (5.57), if the field amplitude A has the unit newtons per coulomb 
(𝑁𝑁
𝐶𝐶

), ℱ𝑦𝑦’s unit will be 𝑁𝑁
𝑚𝑚2. Figure 5.9 shows the force exerted upon a waveguide with 

ℎ = 110 nm, 𝑤𝑤 = 0.5 µm, 𝜆𝜆0 = 1.55 µm, 𝑛𝑛𝑎𝑎 = 1, 𝑛𝑛𝑐𝑐 = 3.5, and 𝑛𝑛𝑠𝑠 = 1.5. The result 
agrees well with Fig. 2(b) of [15]. The resulting negative sign of the force indicates that 
the force is attractive. 

 

Fig. 5.9 Transverse optical force as a function of the gap size between the waveguide and the substrate 

 There is another method to calculate the optical force exerted upon a waveguide 
which is suspended above a substrate, without using the Maxwell stress tensor. 
Consider the waveguide in Fig. 5.5(a). An adiabatic change in the gap size g will shift 
the eigen mode frequency of the system by an amount ∆𝜔𝜔. The total energy 
conservation implies that the change in the electromagnetic field energy 𝑑𝑑𝑑𝑑 is given by 

𝑑𝑑𝑑𝑑 = −𝐹𝐹 𝑑𝑑𝑔𝑔 (5.61) 
where 
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𝑑𝑑 = 𝑁𝑁ℏ𝜔𝜔 (5.62) 
in which 𝑁𝑁 is the number of photons and ℏ is the reduced Planck constant. 

Therefore 

𝐹𝐹 = −
𝑑𝑑(𝑁𝑁ℏ𝜔𝜔)
𝑑𝑑𝑔𝑔

= −𝑁𝑁ℏ
𝑑𝑑𝜔𝜔
𝑑𝑑𝑔𝑔

= −
1
𝜔𝜔
𝑑𝑑𝜔𝜔
𝑑𝑑𝑔𝑔

𝑑𝑑 . (5.63) 

The frequency 𝜔𝜔 is related to the effective mode index of the waveguide by 

𝜔𝜔 =
𝜔𝜔0

𝑛𝑛𝑛𝑛𝑓𝑓𝑓𝑓
 (5.64) 

where 𝜔𝜔0 is the frequency of the incoming light. 

Therefore [10] 

𝐹𝐹 =
1

𝑛𝑛𝑛𝑛𝑓𝑓𝑓𝑓
𝜕𝜕𝑛𝑛𝑛𝑛𝑓𝑓𝑓𝑓
𝜕𝜕𝑔𝑔

𝑑𝑑 (5.65) 

where 

𝑑𝑑 = 𝑃𝑃𝐿𝐿𝑛𝑛𝑔𝑔/𝑐𝑐 (5.66) 
in which 𝑃𝑃 is the total optical power, 𝐿𝐿 is the length of the waveguide, 𝑐𝑐 is the speed of 
light and 𝑛𝑛𝑔𝑔 is the group index defined as 

𝑛𝑛𝑔𝑔 =
𝑐𝑐
𝑣𝑣𝑔𝑔

= 𝑐𝑐
𝜕𝜕𝑘𝑘
𝜕𝜕𝜔𝜔

=
𝜕𝜕
𝜕𝜕𝜔𝜔

�𝜔𝜔 𝑛𝑛𝑛𝑛𝑓𝑓𝑓𝑓(𝜔𝜔)� = 𝑛𝑛𝑛𝑛𝑓𝑓𝑓𝑓(𝜔𝜔) + 𝜔𝜔
𝜕𝜕𝑛𝑛𝑛𝑛𝑓𝑓𝑓𝑓
𝜕𝜕𝜔𝜔

 . (5.67) 

 In this way, using FEM, one can find 𝑛𝑛𝑛𝑛𝑓𝑓𝑓𝑓for a range of gap sizes and also for a 

range of different input wavelengths and calculate 𝜕𝜕𝑚𝑚𝑒𝑒𝑒𝑒𝑒𝑒
𝜕𝜕𝑔𝑔

 and 𝜕𝜕𝑚𝑚𝑒𝑒𝑒𝑒𝑒𝑒
𝜕𝜕𝜔𝜔

 numerically and 

finally calculate the force. 

 Figure 5.10 shows the experimentally determined real and imaginary parts of the 
permittivity and the refractive index for semi-insulating (SI) InP (sample 7 substrate: 
Chapter 3). These values are used in the “Radio frequency: Electromagnetic wave, 
frequency domain” module of COMSOL to calculate the effective mode index of a 
waveguide with a circular cross section, made of SI InP above a glass substrate 
(𝑛𝑛𝑠𝑠 = 1.5) for a range of gap sizes and frequencies around 𝜆𝜆0 = 20 µm, using the 
“Mode analysis study”. The mesh size is chosen so that it is between 𝜆𝜆0/10 and 𝜆𝜆0/8 in 
each simulation domain. Figure 5.11(a) shows the simulated electric field at the cross 
section of the waveguide. Figure 5.12(a) shows the optical force in piconewtons per µm 
length of the waveguide per milliwatt input power (pN. µm−1mW−1) on the waveguide, 
calculated using the above mentioned method. Figure 5.12(b) shows the optical forces 
when the SI InP waveguide is substituted with a silicon waveguide (𝑛𝑛𝑐𝑐 = 3.5). No 
guided mode exists for the waveguide diameters below 5.75 µm and 4.25 µm for the SI 
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InP and the Si waveguides respectively. Figure 5.13 shows the propagation length of 
light in the SI InP waveguide calculated from 

𝐿𝐿𝑚𝑚 =
1

2Im �𝑛𝑛𝑛𝑛𝑓𝑓𝑓𝑓
𝜔𝜔
𝑐𝑐 �

 . (5.68) 

 

Fig. 5.10 Real and imaginary parts of the (a) permittivity and (b) refractive index of SI InP 

 

Fig. 5.11 Simulated electric field [V/m] for (a) SI InP waveguide above a glass substrate (b) Si 
waveguide above a glass substrate at 𝜆𝜆0 = 20 µm. Spatial dimensions are in µm. 

 

Fig. 5.12 Optical force versus waveguide’s diameter for different gap sizes for SI InP waveguide on top 
of a glass substrate (a) and Si waveguide on top of a glass substrate (b) at 𝜆𝜆0 = 20 µm. 
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Fig. 5.13 Propagation length versus waveguide’s diameter for different gap sizes for SI InP waveguide on 
top of a glass substrate at 𝜆𝜆0 = 20 µm. Legend is the same as Fig. 5.12. 

 In smaller gap sizes, increased field overlap with the lossless substrate will 
result in lower loss and higher propagation length. In addition, when the waveguide 
diameter is increased, most of the field will be confined inside the waveguide and 
affected by losses in SI InP which results in lower propagation length. 

 

5.3. SPP enhanced optical forces 

Figure 5.14 shows the experimentally determined real and imaginary parts of the 
permittivity and the refractive index for highly doped InP:Si (sample 7: Chapter 3). 
These values are used to calculate the effective mode index of a waveguide with a 
circular cross section made of SI InP above a InP:Si substrate, using COMSOL, for a 
range of gap sizes and frequencies around 𝜆𝜆0 = 20 µm.

 

Fig. 5.14 Real and imaginary parts of the (a) permittivity and (b) refractive index of highly doped InP:Si 
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 Figure 5.15 shows the simulated electric field at the cross section of the 
waveguide. Most of the electric field is confined inside the gap due to the excitation of 
SPPs. 𝑛𝑛𝑆𝑆𝑆𝑆𝑆𝑆 for SPPs propagating along the interface between air and the substrate, is 
given by [17] 

𝑛𝑛𝑆𝑆𝑆𝑆𝑆𝑆 = Re ��
𝜀𝜀𝑠𝑠𝑐𝑐𝑏𝑏𝑠𝑠𝜔𝜔𝑐𝑐𝑎𝑎𝜔𝜔𝑛𝑛

𝜀𝜀𝑠𝑠𝑐𝑐𝑏𝑏𝑠𝑠𝜔𝜔𝑐𝑐𝑎𝑎𝜔𝜔𝑛𝑛 + 1
� . (5.69) 

 When 𝑛𝑛𝑛𝑛𝑓𝑓𝑓𝑓 is close to 𝑛𝑛𝑠𝑠𝑝𝑝𝑝𝑝, the TM polarized input light can excite SPPs on the 
surface of highly doped InP:Si and this will result in subwavelength confinement of 
light to the gap between the waveguide and the substrate which gives rise to a hybrid 
plasmonic guided mode. Figure 5.16 shows 𝑛𝑛𝑛𝑛𝑓𝑓𝑓𝑓 as a function of the gap size (𝑔𝑔) for 
different waveguide diameters at 𝜆𝜆0 = 20 µm. The exerted optical force on the 
waveguide at 𝜆𝜆0 = 20 µm is calculated using (5.65) and shown in Fig. 5.17 and the 
propagation length is shown in Fig. 5.18. In this case, the maximum force of -23.8 
𝑝𝑝𝑁𝑁. 𝜇𝜇𝑚𝑚−1𝑚𝑚𝑊𝑊−1 occurs for 𝑑𝑑 = 3.5 µm and 𝑔𝑔 = 50 nm with a propagation length of 
292.86 µm. As the gap size is decreased, high losses in the InP:Si substrate will 
decrease the propagation length. Decreasing the gap size below 50 nm will increase the 
force, but this may not be feasible from the fabrication point of view. 

 Upon coupling to surface plasmons, the force will increase an order of 
magnitude in comparison to the waveguide above a dielectric substrate in Fig. 5.11, 
which is the result of the amplified electric field below the waveguide [11]. 

 

Fig. 5.15 Simulated electric field [V/m] for SI InP waveguide above an InP:Si substrate at 𝜆𝜆0 = 20 µm. 
Spatial dimensions are in µm. 
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Fig. 5.16 𝑛𝑛𝑛𝑛𝑓𝑓𝑓𝑓 as a function of the gap size for SI InP waveguide above InP:Si substrate with different 
waveguide diameters at 𝜆𝜆0 = 20 µm 

 

Fig. 5.17 SPP enhanced optical force versus waveguide’s diameter for SI InP waveguide above InP:Si 
substrate with different gap sizes at 𝜆𝜆0 = 20 µm 

 

Fig. 5.18 Propagation length vs waveguide’s diameter for SI InP waveguide above InP:Si substrate with 
different gap sizes at 𝜆𝜆0 = 20 µm 
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5.4. Phonon enhanced optical forces 

According to (5.67), optical forces between the waveguide and the substrate are 

proportional to 𝜕𝜕𝑚𝑚𝑒𝑒𝑒𝑒𝑒𝑒
𝜕𝜕𝜔𝜔

. InP has a strong phonon absorption resonance at around 33 µm 

(Fig. 5.14) that results in very large 𝜕𝜕𝑚𝑚𝑒𝑒𝑒𝑒𝑒𝑒
𝜕𝜕𝜔𝜔

 which can be used to amplify the optical 
forces. The physical origin of this amplification is the strong enhancement of the optical 
near-field coupling by lattice vibrations (phonons) of InP [18]. The optical force is 
calculated for the SI InP waveguide on top of InP:Si substrate at 𝜆𝜆0 = 32.56 µm in 
order to proof this concept. Figure 5.19 shows the simulated electric field at the cross 
section of the waveguides. Figure 5.20 shows the optical force and figure 5.21 shows 
the propagation length for this case. A maximum force of -1685 𝑝𝑝𝑁𝑁. 𝜇𝜇𝑚𝑚−1𝑚𝑚𝑊𝑊−1 
occurs for 𝑑𝑑 = 6 µm and 𝑔𝑔 = 50 nm with a propagation length of 466 µm in this case. 
The force is about three orders of magnitude higher than that for the waveguide above a 
dielectric substrate, whereas the propagation length is also increased by a factor of two. 
High propagation length in this case is a result of lower damping in phonon polaritons 
in comparison to SPPs [18] and also confinement of the field in the air gap instead of 
the waveguide or the substrate. 

 

Fig. 5.19 Simulated electric field [V/m] for SI InP waveguide above an InP:Si substrate at 𝜆𝜆0 = 32.56 
µm. Spatial dimensions are in µm. 

 

Fig. 5.20 Phonon enhanced optical forces for the SI InP waveguide on top of a InP:Si substrate at 
𝜆𝜆0 = 32.56 µm 
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Fig. 5.21 Propagation length for the SI InP waveguide on top of a InP:Si substrate at 𝜆𝜆0 = 32.56 µm 

 

5.5. Optical forces in the epsilon-near-zero regime 

It is intriguing to estimate optomechanical interactions in the ENZ regime, which is 
appealing for strongly facilitated nonlinear optical effects [19-21]. Forces exerted on 
electric dipole sources and polarized particles suspended above metamaterials are 
investigated before, and found to be repulsive in the ENZ regime [22-24]. This effect, 
which is similar to diamagnetic repulsion, can be used for levitation of particles which 
is of interest in optofluidics and low friction devices. 

The optical forces between a SI InP waveguide and a InP:Si substrate are 
calculated at 𝜆𝜆0 = 6.8 µm where the real part of the permittivity of the InP:Si substrate 
is close to zero (Re[𝜀𝜀𝑠𝑠𝑐𝑐𝑏𝑏𝑠𝑠𝜔𝜔𝑐𝑐𝑎𝑎𝜔𝜔𝑛𝑛] = 0.12). Figure 5.22 shows the simulated electric field 
at the cross section of the waveguide. Figure 5.23 shows the force versus the waveguide 
diameter for different gap sizes, and Fig. 5.24 shows the propagation length. In this 
case, the resulting positive sign of the force indicates that the force is repulsive, which 

is a consequence of the positive sign of 𝜕𝜕𝑚𝑚𝑒𝑒𝑒𝑒𝑒𝑒
𝜕𝜕𝑔𝑔

 in the epsilon-near-zero (ENZ) regime. 

This repulsive force can be used to prevent adhesion and stiction in MEMS devices. 
Another interesting phenomenon which happens in the ENZ regime is that the 
maximum force of 6.12 𝑝𝑝𝑁𝑁. 𝜇𝜇𝑚𝑚−1𝑚𝑚𝑊𝑊−1 occurs for 𝑔𝑔 = 100 nm, and afterwards 
decreasing the gap size will slightly decrease the force. In this case, unlike all of the 
former cases, there exists an optimum gap size which results in the maximum repulsive 
force between the waveguide and the substrate. No guided mode exists for waveguide 
diameters below 1600 nm when the gap size becomes smaller than 200 nm. In the ENZ 
regime, InP:Si substrate has higher losses than the SI InP waveguide which results in 
lower propagation length as the gap size is decreased. 
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Fig. 5.22 Simulated electric field [V/m] for SI InP waveguide above a InP:Si substrate at 𝜆𝜆0 = 6.8 µm. 
Spatial dimensions are in µm. 

 

Fig. 5.23 Optical forces for the SI InP waveguide on top of a InP:Si substrate at 𝜆𝜆0 = 6.8 µm 

 

Fig. 5.24 Propagation length for the SI InP waveguide on top of a InP:Si substrate at 𝜆𝜆0 = 6.8 µm 
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5.6. Summary 

In this chapter we first solved Maxwell equations for a slab waveguide and then 
generalized the solution to a slab waveguide above a substrate. Afterwards the 
calculated effective mode indices (𝑛𝑛𝑛𝑛𝑓𝑓𝑓𝑓) of the slab waveguides were used to find 𝑛𝑛𝑛𝑛𝑓𝑓𝑓𝑓 
of a waveguide with rectangular cross section above a substrate, using an approximation 
known as the “effective index method”. It was observed that when the dimensions of 
the waveguide’s cross section become smaller than the wavelength of the light, the 
effective index method fails to comply with the FEM simulation results. Afterwards, 
Maxwell stress tensor was derived for the waveguide with rectangular cross section 
above a substrate, in order to find the forces that are exerted upon the waveguide as a 
result of the coupling of the evanescent tail of the guided modes to the substrate. An 
alternative method for calculating the force was introduced and used to calculate the 
force for a Si waveguide and a SI InP waveguide above a glass substrate. Afterwards, 
the glass substrate was replaced with a highly doped InP:Si substrate and the force was 
calculated in the SPP excitation wavelength range, in the phonon absorption wavelength 
and in the ENZ regime. An order of magnitude amplification of the force was observed 
upon coupling to SPPs and three orders of magnitude amplification was observed when 
phonons are excited. The force in the ENZ regime was observed to be repulsive and 
larger than the force for the waveguide above a dielectric substrate. This repulsive force 
can be applied to prevent stiction of the micro-cantilever to the substrate. The 
propagation length of the light in the waveguide in all of the above mentioned cases is 
greater than 15 times the input light’s wavelength which is a result of low losses in 
InP:Si. 

 Transverse deflection in the middle of a fixed-fixed beam under a line force F is 
given by 

𝑤𝑤 =
𝐹𝐹 �𝐿𝐿2�

4

24𝐸𝐸𝐼𝐼
 (5.70) 

where L is the length of the beam, E is the Young modulus of the beam’s material 
which is equal to 71 GPa [25] for InP, and I is the second moment of area for the 

beam’s cross section which is given by 𝜋𝜋
4
�𝛼𝛼
2
�
4
 for a circular cross section. Using the 

above equation and the forces found in the previous sections, the maximum static 
deflection of a waveguide with 𝑑𝑑 = 3.5 µm and 𝐿𝐿 = 200 µm for the SPP enhanced case 
and the phonon enhanced case are found to be equal to 0.19 and 12.08 nm/mW 
respectively. Deflection will be much larger for the waveguides with rectangular cross 
section (e.g. considering the width and the height of the rectangular cross section equal 
to d and d/3) due to the larger effective mode area under the waveguide and also smaller 
second moment of area of the rectangular cross section. In addition, applying a periodic 
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force using a pulsed input with a frequency close to one of the natural mechanical 
frequencies of the waveguide will drastically increase the deflection amplitude. 

 In conclusion, this chapter can be regarded as a proof of concept, showing that 
InP and similar semiconductors, considering the tunability of their optical properties, 
can play a key role in optical actuation of MEMS devices. 
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6. CONCLUSION AND OUTLOOK 

 

 
 

6.1. Conclusion 

In this work silicon doped indium phosphide (InP:Si) is introduced as an alternative 
plasmonic material for the mid-infrared (mid-IR) range. InP:Si is grown by metal-
organic vapor phase epitaxy (MOVPE) using phosphine (PH3), trimethylindium (TMIn) 
and disilane (Si2H6) as the precursors for phosphorus, indium and silicon respectively. 
Effect of the growth conditions, namely PH3 to TMIn (V/III) ratio and disilane flux, on 
the free carrier concentration is studied. Direct proportionality between the disilane flux 
and the carrier concentration is observed, up to a threshold point above which the layer 
morphology will be deteriorated. The doping efficiency is also found to slightly depend 
on the phosphine to TMIn molar ratio (V/III ratio). A maximum free carrier 
concentration of 3.87×1019 cm-3 is achieved and the compensation ratio (ratio of the 
ionized acceptors to the ionized donor concentration) in all of the grown samples is 
found to be smaller than the measurement limits. 

 Reflectance spectra of the samples are measured by Fourier transform infrared 
spectroscopy (FTIR) and also calculated using the intensity transfer matrix method and 
the Drude-Lorentz model for the dielectric function of InP:Si. The calculated 
reflectance spectra are then fitted to the measured ones, using a curve fitting algorithm 
based on the Levenberg-Marquardt method, in order to find the parameters of the 
Drude-Lorentz model including the free carriers’ plasma frequency and damping. The 
minimum plasma wavelength of 5.93 µm is achieved. Effective mass of the free 
electrons in highly doped InP:Si is consequently determined and a semi-empirical 
formula for the plasma frequency of InP:Si as a function of the free carrier 
concentration (N) in the range between 0.35-4×1019 cm-3 is presented.  

The retrieved dielectric function is used to simulate surface plasmon polaritons 
(SPPs) propagation on flat and structured surfaces, and the simulation results are 
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verified in direct experiments. SPPs at the top and bottom interfaces of the grown 
epilayer are excited by the prism coupling technique. Measured SPPs dispersion is in a 
good agreement with simulations which indicates the accuracy of the fitted dielectric 
function. An InP:Si grating is fabricated and diffraction of light in different orders is 
studied. Appearance of the orders prohibited by the conventional Bragg law manifests 
the efficient SPPs assistance in light diffraction on plasmonic gratings. 

In order to demonstrate one of the novel applications of semiconductors in the 
mid-IR range, optically induced forces exerted upon a semi-insulating InP waveguide 
suspended above a highly doped InP:Si substrate are investigated, in three different 
regimes: in the epsilon-near-zero (ENZ) case, with excitation of surface plasmon 
polaritons (SPPs) and phonons. The above mentioned experimentally determined 
dielectric function of InP is used in simulations. An order of magnitude amplification of 
the force is observed when light is coupled to SPPs, and three orders of magnitude 
amplification is achieved in the phonon excitation regime. In the ENZ regime, the force 
is found to be repulsive and higher than that in a waveguide above a dielectric substrate. 
This repulsive force can be used prevent unwanted adhesion of the waveguide to the 
substrate. Low losses in InP:Si result in a big propagation length. The induced 
deflection can be detected by measuring the phase change of the light when passing 
through the waveguide, which enables all-optical functioning, and paves the way 
towards integration and miniaturization of micro-cantilevers. In addition, tunability of 
the ENZ and the SPP excitation wavelength ranges, via adjusting the carrier 
concentration, provides an extra degree of freedom for designing MEMS devices. 

Owing to its lower losses, InP:Si shows better performance as a plasmonic 
material, in terms of the propagation length and localization, in comparison to the other 
doped semiconductors with a similar plasma frequency. In comparison to noble metals, 
in the mid-IR range, both real and imaginary parts of the permittivity of InP:Si are two 
orders of magnitude smaller which leads to better confinement of SPPs in expense of 
shorter propagation length. Nevertheless, tuanability of the plasma wavelength and 
damping is a very important feature of semiconductors which cannot be achieved in 
metals. 

 

6.2. Future works 

There may still be room for more investigation of the effect of the growth conditions on 
the free carrier concentration in InP:Si and possibly increasing it. For example, 
increasing the growth temperature may slightly increase the free carrier concentration 
due to improving the cracking efficiency of silane (SiH4) which is produced by the 
reaction (2.5). In addition, using other precursors, for example tributyl phosphate (TBP) 
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for phosphorus, may affect the resulting free carrier concentration. Furthermore, 
annealing the samples after the growth can affect the doping efficiency and the 
mobility. 

 Although the model that is used to calculate the reflectance spectra of the 
samples, which includes the epilayer and the substrate (epilayer, substrate, air gap and 
the mirror in case of AZO metamaterials) is enough to retrieve the optical properties of 
InP (or AZO metamaterials) accurately, but using a more precise model which includes 
the roughness of the backside of the substrate and the thin carrier diffusion layer 
between the epilayer and the substrate, will result in more accurate results for other 
cases to be investigated in future. 

The provided library of the electrical and the mid-IR optical properties of InP:Si 
together with the growth recipes can be useful for design and fabrication of 
optoelectronic and mid-IR plasmonic devices, including plasmonic waveguides and 
sensors, which benefit from low losses in InP. In addition, they can be used to design 
and fabricate single-material low loss metamaterials for mid-IR made of multilayers of 
doped and undoped InP. One of the advantages of these metamaterials is that they can 
be grown in a single run using MOVPE and also the fabrication process, for example 
wet or dry etching, will be facilitated due to the fact that the above mentioned 
metamaterials consist of a single material. 

The optical forces in InP-based waveguides that are theoretically investigated in 
chapter 5 can be used as a novel actuation method for MEMS devices which enables all 
optical actuation and detection and paves the way towards miniaturization and 
integration of these devices. 
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APPENDIX A 
In this section, the computer program which is used to calculate the reflectance spectra 
of multilayer structures under normal incidence is presented. Wolfram Mathematica 9 is 
used to develop the program. 

 

 

 

 

 

 

 

 

 



98 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



99 
 

APPENDIX B 
In this section, the computer program which is used to calculate the reflectance spectra 
of multilayer structures under oblique incidence is presented. Wolfram Mathematica 9 
is used to develop the program. 
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APPENDIX C 
In this section, the computer program which is used to perform the curve fittings, based 
on the Levenberg-Marquardt algorithm, is presented. Wolfram Mathematica 9 is used to 
develop the program. 
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APPENDIX D 
Optical characterization of hyperbolic metamaterials 

In this section the method that was explained in chapter 3 is used to find the optical 
properties of trench structures made of aluminum doped zinc oxide (AZO) slabs in Si or 
air (Fig. A2). It is shown that the AZO trench structure works as a hyperbolic 
metamaterial in the mid-infrared (mid-IR) range. 

The effective uniaxial permittivity tensor can be defined by εx = εe, εy = εz = εo 
where εo and εe are the effective ordinary and extraordinary permittivities, respectively. 
Dielectric function of a 100 nm thick AZO film as well as the ordinary and 
extraordinary permittivities (εo and εe) for the trench structures in air and silicon are 
determined experimentally. In this regard, the intensity transfer matrix method, by 
which the Fabry-Perot interference fringes from the metamaterial structure or the AZO 
film will be retained whereas the fringes from the substrate will vanish, is used to 
calculate the normal incidence reflectance spectra of the metamaterial/substrate system. 
Drude-Lorentz dielectric function (Eq. 3.12) is used to model the ordinary permittivity 
of the trench structures. In case of the plain AZO film only the Drude part, and in case 
of the extraordinary permittivity of the trench structures, as well as the Si substrate, only 
the Lorentzian terms of the dielectric function are used.   

The calculated reflectance spectra are then fitted to the reflectance spectra 
measured by VERTEX 70 Fourier transform infrared (FTIR) spectrometer from Bruker 
in order to retrieve the parameters of the dielectric functions. Measurements are done at 
five different points on each sample and the error bars are considered in the curve fitting 
algorithm which is based on the Levenberg-Marquardt method. 

AZO film 

In order to find the optical properties of the AZO film we first need to characterize the 
500 µm thick double side polished (DSP) silicon substrate on top of which the films are 
deposited. Since the IR transmission measurements showed that the DSP Si wafers are 
transparent in this wavelength range, the spectrometer sample holder’s mirror and the 
airgap below the samples have to be considered in the fitting. Five Lorentzian terms 
together with ε∞ are used as the dielectric function of the Si.  Fig. A1 (a) shows the 
measured reflectance spectrum together with the fitted curve and Table A1 shows the 
fitted parameters for Si. The fitted value for ε∞ is 12.04.  Figure A1 (b) summarizes the 
real and imaginary parts of the Si permittivity. Although the dispersion of Si is very 
minute in this wavelength range, it affects the reflectance spectra from samples in some 
cases. The thickness of the airgap is also fitted and found to be around 8 µm. 
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Using the retrieved permittivity for the substrate, the curve fitting procedure is 
done for the 100 nm thick AZO film, considering Drude dielectric function for AZO.  
Figure A1 (c) shows the measured reflectance spectrum together with the fitted curve 
for the AZO films and Table A2 summarizes the retrieved parameters of the Drude 
model. The dips at around 11 and 16.5 µm originate from the absorption in the Si 
substrate, and 9 and 13.5 µm from SiO2 on the Si surface.  Figure A1 (d) shows the 
permittivity of the AZO film. 

Table A1 Retrieved dielectric function parameters for Si 

j 1 2 3 4 5 

Sj 0.000389 0.000618 9.81 E-5 0.000136 2.72 E-5 

Γ j [THz] 3.07 1.468 1.37 2.97 0.72 

ω f,j [THz] 15.24 18.32 22.396 26.69 33.18 

 

Table A2 Retrieved dielectric function parameters for AZO. 

γ [THz] ωp [THz] ε∞ 

35 147.8 3.45 

 

 

Fig. A1 (a) Measured and fitted reflectance spectra from the Si substrate. (b) Real and imaginary parts of 
the permittivity of the Si substrate. (c) Measured and fitted reflectance spectra from 100 nm AZO film on 
DSP Si substrate. (d) Real and imaginary parts of the permittivity of the AZO film. 
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AZO trench structures 

In order to find εo and εe, reflectance spectra from the samples are measured at 12° 
angle of incidence using a TE-polarized light with the sample placed such that the 
electric field is parallel or perpendicular to the trench layers, respectively (Fig. A2).  

 

Fig. A2 Orientation of the electric field with respect to the trench layers for measuring εo and εe. 

Drude-Lorentz dielectric function with two Lorentzian terms is used to model 
the ordinary permittivity of the AZO trench structure in Si (AZO/Si).  Figure A3 (a) 
shows the measured and fitted reflectance spectra for this case. Figure A3 (b) shows the 
real and imaginary parts of εo for AZO/Si structure. 

Two Lorentzian terms together with ε∞ are considered for the extraordinary 
permittivity of the AZO/Si trench structure. The measured reflectance spectrum 
together with the fitted curve are shown in Fig. A3 (c). In this case Fabry-Perot 
oscillations start from 10 µm onwards. 

The above-mentioned fitted dielectric functions are used as the permittivity of 
the 100 nm thick AZO/Si layer underneath the AZO/air trench structure in order to 
calculate the reflectance spectra and fit them with the measured ones. Drude-Lorentz 
dielectric function with one Lorentzian term is used to describe the ordinary permittivity 
of the AZO/air trench structure. Figure A3 (e) shows the measured and fitted reflectance 
spectra for this case. 

Two Lorentzians together with ε∞ are used to describe the extraordinary 
permittivity of the AZO/air trench structure. The measured and the fitted reflectance 
spectra for this case are shown in Fig. A3 (g). The absorption dips originating from the 
Si substrate are observed at around 9, 11, 13.5, and 16.5 µm and the features below 3  
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Table A3 Retrieved dielectric function parameters for trench structures. 

 S1 S2 Γ1 Γ2 ω f,1 ω f,2 γ ωp  ε∞ 

AZO/Si: εo 0.23 50.2 4.44 2.87 32.43 7.24 66.02 67.81 8.88 

AZO/Si: εe 16.74 5.74 76.79 15.84 69.93 31.43 - - 4.63 

AZO/air: εo 7.18 - 103.51 - 47.2 - 16.06 84.24 1.6 

AZO/air: εe 0.283 0.0136 40 9.05 134.63 43.17 - - 1.24 

 

 

Fig. A3 Measured and fitted reflectance spectra for (a) AZO/Si trench ordinary εo, (c) AZO/Si trench 
extraordinary εe, (e) AZO/air trench ordinary εo and (g) AZO/air trench extraordinary εe together with 
(b), (d), (f), and (h) their pertaining fitted permittivities. 
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µm are attributed to Fabry-Perot oscillations. Table A3 summarizes the fitted 
parameters of the dielectric function of the trench structures. 

 

 


