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Abstract

A numerical tool is developed to calculate the exciton energy and oscilla-

tor strength in newly emerged type-II nanowire quantum-dots. For a single-

quantum-dot, the poor overlap of the electron part and the weakly confined

hole part of the exciton wavefunction leads to a small oscillator strength com-

pared to type-I systems. To increase the oscillator strength, we propose a

double-quantum-dot structure featuring a strongly localized exciton wave-

function and a corresponding four-fold relative enhancement of the oscillator

strength, paving the way towards efficient optically controlled quantum gate

applications in the type-II nanowire system.

Next, an optical gating scheme for quantum computing based on type-II

double-quantum-dots is proposed. The qubit is encoded on the electron spin

and the gate operations are performed by stimulated Raman adiabatic passage

(STIRAP) using the position degree of freedom in double-quantum-dots to

form an auxiliary ground-state. Successful STIRAP gating processes require

an efficient coupling of both qubit ground-states of the double-quantum-dot

to the gating auxiliary state and we demonstrate that this can be achieved

using a charged exciton state. Crucially, by using type-II quantum-dots, the

hole is localized between the two spatially separated electrons in the charged-

exciton complex, thereby efficiently coupling the electron states orbitals. We

subsequently exploit the scheme to realize single- and two-qubit gates for quan-

tum computation. The conditional operation is performed by using Coulomb

coupling to induce a shift of the STIRAP transition frequencies leading to a

conditional violation of the STIRAP two-photon resonance. We calculate the

fidelity of gates and show their performance is robust against the spin and

charge noises.
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CHAPTER 1
Introduction

In this introductory chapter, we briefly describe the perspectives, structures,

and methods covered in this thesis. Literature surveys on specific topics are

presented in the next chapter.

Quantum information processing

The advent of quantum information processing, as an abstract concept, has

given birth to a great deal of new thinking, in a very concrete form, about how

to create physical computing devices that operate in the formerly unexplored

quantum mechanical regime [1]. The non-classical correlations of quantum

mechanics recently has been exploited in a wide range of applications with

impact outside the laboratories. Quantum cryptography [2] guarantees se-

cure exchange of information and quantum computation [3] brings algorithms

which outshine their classical counterparts. The initial concern that quantum

coherence may be too fragile to be exploited has been dispelled by theoretical

works showing that noise and decoherence are not fundamental obstacles to

the implementation of quantum information processing [4, 5]. Consequently,

increasing effort is being devoted towards physically realizing quantum com-

puters and there are many proposals, including those based on atomic or

molecular systems [6, 7] and others based on solid state approaches [8].
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2 Chapter 1. Introduction

In this thesis, we use type-II quantum-dots (QDs) in nanowires as a plat-

form for realizing a quantum computer. The work to be reported here is

focused on the modeling and simulating these systems by developing a fast

and efficient numerical tool based on the configuration-interaction method.

We aim to design optical quantum gates for quantum computation based on

the studied nanostructures.

In the following section, we provide a brief overview of quantum compu-

tation. The reader can refer to [3] for a thorough review on the subject.

Qubits and quantum gates

The fundamental unit of information in a classical computer, the bit, is a

binary variable, whose value is commonly indicated by 0 or 1. In a quantum

computer, bits are called qubits and encode the superposition of two states,

usually indicated by |0〉 and |1〉, which for instance could be different energy

levels in an atom or QD. A qubit can therefore be expressed as |ψ〉 = α |0〉+

β |1〉, where the coefficients are complex numbers that fulfill the relation |α|2+

|β|2 = 1. Qubits offer an exponential increase in computaional power with

respect to classical computations. While a qubit exists in a superposition of

the states |0〉 and |1〉, whenever we make a measurement, we will find that it

is in either |0〉 or |1〉 with probability |α|2 or |β|2, respectively, and the system

collapses onto the measured state.

As in classical computation, quantum algorithms can be decomposed into

gates acting on either one or two qubits. A set of gates, from which all

algorithms can be created, is called universal. It has been shown that a

complete set of single-qubit gates, plus a two-qubit gate called the controlled

NOT gate (CNOT) form a universal set for quantum computation [3]. There

is an infinite number of single-qubit gates possible on the state vector |ψ〉.
The single-qubit gate can be visualized as a rotation of the state vector from

one position on the Bloch sphere to another arbitrary point.

Although many different two-qubit gates exist, quantum computing the-

orists often work in terms of the CNOT gate. This gate has two inputs and

two outputs, as shown in Fig. 1.1. The top qubit of the CNOT gate is called

the control qubit and it is unaffected by the gate. The bottom qubit is called
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c

t

c

t′

Figure 1.1: Notation for a
CNOT gate, with input qubits
c and t and output qubits c
and t′.

Inputs Outputs

c t c t′

0 0 0 0
0 1 0 1
1 0 1 1
1 1 1 0

Figure 1.2: Truth table
for the CNOT gate

the target qubit and it is flipped if the control qubit is 1 while unaffected if

the control qubit is 0. The CNOT gate’s truth table is shown in Fig. 1.2.

Physical implementation of a quantum computer

Several quantum systems are being explored as qubits, each with their specific

advantages and challenges. Examples include single atoms in ion traps [9],

nitrogen vacancy (NV) defect centers in diamond [10], semiconductor QDs

[11, 12] and superconducting circuits [13]. Among these, semiconductor-based

qubits are attractive due to their electrical tunability and ease of integration

with the electronics industry. However, a perfect semiconductor platform

that simultaneously satisfies the requirements of fast quantum control, long

coherence time, and scalability to thousands of coupled qubits has not been

developed, yet. A prominent semiconductor system in which single- and two-

qubit operations were demonstrated is a two-dimensional electron gas (2DEG)

at the interface between GaAs and AlGaAs [14, 15]. By using metallic gates on

top of the heterostructure to isolate small regions of 2DEG, QDs containing

single electrons have been electrostatically defined. While two-dimensional

systems currently lead the race among semiconductors, there is still a long

way to a practical quantum computer. Among challenges going forward is

the need to simultaneously carve zero-dimensional QDs out of a 2D sheet of

electrons, and couple thousands of these dots while only being able to place

control electrodes on top of a heterostructure [16]. Another drawback of two-

dimensional systems is the limited design freedom of the material. In fact, in

order to avoid strain and consequent incorporation of dislocations, high quality

2DEGs can only be fabricated with (nearly) lattice matched materials; this is
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possible only for a small set of material combinations [17].

Another solid-state platform that has demonstrated promise for quantum

computing is a semiconductor self-assembeled QD which has been widely stud-

ied since the 1990s because of its appealing electronic and photonic properties

[18, 19]. However, the standard fabrication methods adopted to fabricate self-

assembled QDs involve a degree of dispersity which limits exact reproducibility

within an ensemble of dots [20, 21, 22]. This, in turn, poses a challenge for

the scalability of many technological applications demonstrated at a single QD

level. Crystal-phase QDs in nanowires [23] are likely to mitigate this prob-

lem. Nanowires are the one dimensional nanostructures grown perpendicular

to the surface of the substrate, as shown in Fig. 1.3 (a) [24], usually adopting

the vapor-liquid-solid (VLS) method. By controlling the temperature and the

diameter of the nanowire during the growth process, it is possible to create

along the nanowire different regions of zinc-blende (ZB) and wurtzite (WZ)

crystal phases [23], as it is shown in Fig. 1.3 (b). Since these crystal phases of

a single material have different band gaps at Γ point [25], the alternating ZB

and WZ phases can define a QD in the nanowire which is called crystal-phase

QD. The ZB and WZ regions do not intermix within a monolayer and thus

always have atomically sharp interfaces, as depicted in Fig. 1.3 (c), allowing

for the geometry control with the precision of a single atomic layer. This is

not possible in self-assembled QDs because alloying blurs the interfaces. From

the qubit scalability point of view, an important advantage of using nanowire

is that they allow for multiple local metallic or superconducting contacts and

electrostatic gates on top, beneath, and next to the wire [26, 27]. Furthermore,

due to the small transverse dimension of nanowires, strain can be relieved at

their surface. This allows an almost unlimited material design freedom in

terms of the chemical composition.

The WZ-ZB interface is well known to exhibit a type-II band alignment,

with conduction and valence bands in WZ phase being higher than in the

ZB phase. In crystal-phase QDs this type-II band alignment entails that

the electron and hole are confined on different crystal phases, whereas in

conventional type-I QDs the electron and hole are confined on the same site

[28, 29]. While extensive studies of optical properties in type-I QDs are already

available in the literature (e.g., [30, 31, 32]), studies of the optical properties
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Figure 1.3: (a) Scanning electron microscope image of the InP nanowire sample. (b)
Transmission electron microscopy of the InP nanowires showing short segments of the
zinc-blende (red) in a wurtzite (blue) nanowire. (c) A high resolution-transmission
electron microscopy image of the zinc-blende segment in the otherwise wurtzite lattice
[24].

of type-II QDs have only recently been initiated [33, 34]. For this reason

we study the novel crystal-phase type-II QDs in nanowires and use them as

platform for designing optical quantum gates for quantum computation.

Computational framework

In this thesis, we develop a numerical tool for simulating and modeling of type-

II QDs in nanowires. An introduction to the description of single-particle en-

ergies and wavefunctions of carriers in crystal-phase QDs in nanowires is given

in Chapter 2. Consecutive derivation of many-particle states of an interacting

electron and hole in a configuration-interaction scheme is presented in Chap-

ter 3 by usage of the previously calculated single-particle wave functions and

energies. Configuration-interaction is a numerical method with which one may

solve the Schrödinger equation for a system with a few interacting particles

[35]. This method has many advantages, but its main drawback is that it

can only handle very small systems, say five particles or so [36]. For larger

systems, the workload becomes much too large for nowadays computers.

The calculation procedure of the interacting electron-hole system in this

thesis by means of the configuration-interaction method can be summarized

as follows:

1. The single-particle states in a QD in a nanowire with specific geometrical
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and material parameters are calculated by solving the single-particle

Schrödinger equation using finite difference equations (Chapter 2).

2. The configuration-interaction Hamiltonian for interacting electron and

hole systems is generated (Chapter 3).

3. The configuration-interaction Hamiltonian for each interacting electron-

hole system is diagonalized (Chapter 3).

The details of the method and also its strengths and weaknesses are dis-

cussed in Chapter 2 and 3. The convergence of the configuration-interaction

method is studied and the calculation results are compared to that of a semi-

analytical solution of the exciton problem, solved by using COMSOL finite el-

ement method (FEM). Based on the structure studied in Chapter 3, universal,

addressable and scalable single- and two-qubit gates for quantum computation

are proposed in Chapter 4.

Scope of the thesis

Two overall goals of the project reported in this thesis are: (1) developing

a numerical tool to study the optical properties of the novel type-II crystal-

phase QDs and (2) to use the results and the framework for designing optical

quantum gates.

The thesis is done in the Quantum and Laser Photonics group where we

work theoretically and experimentally to explore the fundamentals of light-

matter interactions in nanostructures. The initial motivation to work on this

new subject in the group was to provide the essential theory for analyzing the

experimental results of our experimentalist collaborators at DTU Photonics.

qLab at DTU Photonics founded in 2015, has started to operate recently in

2018 due to some technical challenges. Because of this delay, the work reported

here is restricted to the theoretical modeling and investigation.

Structure of the thesis

The thesis is divided into five chapters and below we provide short summaries

of structures and methods.
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Chapter 1, Introduction: The main motivations of the work are re-

viewed.

Chapter 2, Background and theory: The preliminaries of theory and

structures that we use and build on in the following chapters are presented.

The methods of calculating single-particle states and exciton states are re-

viewed. Single-particle states in type-II QDs are calculated. The theory of

the stimulated Raman adiabatic passage (STIRAP) for quantum gating is

outlined and its main features are explained.

Chapter 3, Coulomb interaction: Using an efficient method based

on a configuration-interaction description, the main properties of excitons in

type-II single and double quantum dots in nanowires is investigated. Energy

spectra, oscillator strengths, and electron and hole exciton sizes are calculated

as a function of the all relevant geometrical parameters. We propose a double

quantum dot (DQD) structure for which the exciton oscillator strength can

be increased to more than four times its value compared to that of a single

quantum dot (SQD) nanowire while the exciton remains well-confined to the

DQD region. The convergence of the method is studied and its accuracy is

validated.

Chapter 4, Quantum gates: We demonstrate the less explored type-II

DQD system performs significantly better than the traditional type-I DQD

for optical quantum gating by using the STIRAP. We develop a multi-band

formalism and show that a charged exciton state with a mixed hole provides

efficient coupling in the STIRAP scheme without involving additional external

fields. The Coulomb interaction leading to a conditional violation of the STI-

RAP two-photon resonance condition is used to implement two-qubit CNOT

gate. The robustness of the scheme against charge and spin noises is investi-

gated.

Chapter 5, Conclusion and Outlook: The major results of this the-

sis are summarized and the possible future extension of the work are also

discussed.





CHAPTER 2
Background and theory

In this chapter, the relevant background to the rest of the thesis will be set

out. The chapter doesn’t include any new work which we are contributing

and we just outline here the framework we are working in. The chapter is

organized as follows. First, the difference between type-I and type-II QDs is

discussed. Then, details of the single-particle energy and wavefuction calcu-

lation is presented. The Hamiltonian of the interacting electron-hole system

is written and the method to solve it, is introduced. Finally, the stimulated

Raman adiabatic passage is outlined and its main features will be discussed.

2.1 Type-II versus type-I quantum-dot

We distinguish between two types of QDs. In type-I QDs, the band gap of

one material is contained entirely within that of another. In this case, both

the electron and hole are confined in the material with the narrower band gap

as shown in Fig. 2.1 (a) for a SQD configuration. However, in the recently

emerging type-II QD systems [37, 38, 39], both the conduction band (CB)

and the valence band (VB) edges of one material lie above the corresponding

edges of the neighboring material, which typically results in the electron and

hole being confined in different regions as shown in Fig. 2.1 (b). In general,

type-II QDs have shown interesting physics, such as the Aharanov-Bohm effect

[40], excitonic Mott transitions [41], and applications to solar cells and photon-

9



10 Chapter 2. Background and theory

detectors [42]. In this work we show that they have also promising features

for application in quantum computation. When encoding the qubits on the

excitons (bound electron-hole pair) of neighboring QDs, two-qubit operations

can be performed using controlled interaction of the excitons in the QDs [43].

In a type-I DQD configuration, the interaction between two excitons confined

inside the QDs as shown in Fig. 2.2 (a) is weak even when two QDs are in a

close proximity to each other, and an external electric field is needed in these

systems to make the excitons interact with each other [44]. In contrast, in

a type-II DQD structure, since the hole state is confined between two QDs

as illustrated in Fig. 2.2 (b), interaction is possible even in the absence of

an external electric field or when the QDs are far from each other. This

feature makes type-II QDs a promising structure for implementing quantum

gates [33]. Extensive studies of exciton properties in type-I QDs have been

(a) (b)
Type-I Type-II

Conduction
band

Conduction
band

Valence
band

Valence
band

e e

h hh

Figure 2.1: The conduction and valence band potential profiles of a (a) type-I and
(b) type-II quantum dot.

conducted [30, 31], and exploitation of type-I QD structures for quantum gate

operations have been proposed [45, 46, 47]. However, studies of the optical

properties of type-II QDs have only recently been initiated, and a detailed

scheme for using type-II QDs for implementing quantum gates has not yet

been proposed to the best of our knowledge.

For this reason, we study optical properties of the type-II QDs in this

thesis. We consider type-II InP crystal-phase QDs in a nanowire, as is shown
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(a) (b)Type-I Type-II

Figure 2.2: The conduction and valence band potential profiles of a (a) type-I and
(b) type-II double-quantum-dot with electron (red) and hole (blue) wave functions
schematically illustrated in both configurations.

schematically in Fig. 2.3 (a). The conduction and valence band potential pro-

files of this structure along the nanowire z axis are shown in Fig. 2.3 (b). The

material parameters used in this thesis for InP are listed in Table 2.1. The

electron is confined in the ZB region and the hole in the WZ region. This

leads to indirect transitions between different crystal structures featuring a

small emission intensity or brightness which is proportional to the overlap of

the electron and the hole wavefunctions. This overlap is much smaller in the

type-II configuration in comparison to that of the type-I configuration as it

can also be observed by comparing of the electron and the hole overlap in

Fig. 2.1 (a) and Fig. 2.1 (b). We overcome this weakness by designing a DQD

structure in Chapter 3 and demonstrate that the structure has excellent prop-

erties in terms of the brightness. We also design quantum gates and show

that quantum gating is much more efficient in these structures in comparison

to the type-I structures.

2.2 Modeling of the quantum-dots

The electronic and optical properties are often calculated using different meth-

ods to try to capture the essential features. The theoretical frameworks typ-

ically used to calculate band structures or single-particle energies and wave

functions of semiconductor QDs are [48]: the effective-mass single-band ap-
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(a) (b)

∆Ec

∆Ev

lNW

dQD
hQD

z

hQD

x
y

z

lNW

WZ

ZB

WZ

WZ ZB WZ

Figure 2.3: (a) A single-quantum-dot in a nanowire. (b) The conduction and valence
band potential profiles along the nanowire z axis.

Parameters value

electron mass m∗e 0.068m0

heavy-hole mass m∗h 0.64m0

∆Ec 128.6 meV

∆Ev 64.6 meV

ε 12.5

Eg of WZ crystalline phase 1.474 eV

Eg of ZB crystalline phase 1.410 eV

m0 free electron mass 9.1× 10−31 Kg

Table 2.1: InP crystal-phase QD material parameters [24].

proach, the k.p formalism, the empirical pseudopotential theory and the tight-

binding theory [49], each of which being advantageous in certain respects. All

methods generally predict similar qualitative features, however some persist-

ing discrepancies include the number of confined levels and the energies of

those levels for a particular QD morphology.

The effective-mass single-band theory is a very well established method

to obtain the band structure in the case of weak perturbing inhomogeneous

semiconductor potentials [50]. The basic idea behind the effective mass theory

is actually rather simple: Near the band edges the electrons can be described



2.2. Modeling of the quantum-dots 13

to behave as if they are in free space except their masses taking some effective

value m∗. Therefore, in this method, the electron states are described by

a single Schrödinger equation around the given point of the Brillouin zone,

assuming the (conduction) band parabolic. The physical accuracy of this

simple effective-mass approach decreases as one wanders away from the Γ

point since the band non-parabolicity originating from band mixing, or inter-

valley mixing, starts to be important.

In the framework of the effective-mass approach, this limitation was over-

come by employing the model referred to as k.p theory [51, 52, 53]. It is based

on selecting a few 3D-periodic Bloch orbitals taken from the Brillouin zone

center which single-particle wavefunctions are expanded in. The multiband

k.p accounts for the proper structure of the valence band, including heavy,

light and spin split-off hole bands. It is however limited to the top of the

valence band, and it also does not account for the atomistic character of the

interfaces between the dot and barrier material, and is expected to break down

as the size of the nanostructure decreases.

The atomistic structure of the nanostructure is captured in either the

tight-binding or pseudopotential approaches. Empirical tight-binding, as for-

mulated in the 1980s [54], is a common method to calculate single-particle

electronic properties of solids which is both accurate and efficient. Tight-

binding models use atomistic scale wavefunctions but involve a large number

of parameters which are determined using complicated fitting procedures [55]

such as genetic algorithms [56, 57]. Pseudopotentials also require a large num-

ber of form factors and must rely on complex fitting procedures [58, 59]. The

electronic structure calculation for different crystal polytypes is still an active

field of research.

2.2.1 Our modeling method

In this thesis, we study the crystal-phase type-II QDs in a nanowire and

design quantum devices based on them, so we need to perform geometrical

parameter sweeps to analyze and optimize the device performance. For this

reason, we prefer to use a less computationally demanding two-band effective-

mass model where only the heavy-hole valence band and the conduction band
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are included. Fortunately, under the conditions relevant for quantum-optics

experiments, i.e., QDs with a large aspect ratio at low temperatures and small

carrier populations, many features of QDs can be described remarkably well

with this method [60, 61].

The relevant physical effects in crystal-phase QDs include the strain and

piezoelectric effects as well as polarization fields in the wurtzite phase. How-

ever, it was shown by Faria Jr. et al. [62] using k.p method that the strain

and polarization fields do not have strong influence on the optical properties of

type-II InP crystal-phase QDs, and these effects were for this reason neglected

in their later work [63]. Similarly, we exclude also these physical effects from

the model to keep it as simple as possible for our device design purposes.

We use effective-mass and envelop function approximations in our model.

In semiconductors, the electron or hole wave functions Ψk(r) are Bloch states

that are written as the product of a slowly-varying envelope function Φk(r),

which matches the boundary conditions of the confining potential, and a pe-

riodic Bloch function uk(r) that captures the periodicity of the underlying

atomic potential as [64]:

Ψk(r) = uk(r)Φk(r) (2.1)

where k ∈ e, h is a subscript denoting the electron or hole, respectively. This

description of the localized states is known as the envelope function approxi-

mation. The key assumption here is that within a given energy band, the Bloch

function is not a strong function of k (at least in the proximity of the band

edge) and can thus be approximately represented by the band edge (k = 0)

Bloch function, u(k, r) = u(r). The Bloch function u(r) is a complex periodic

function that satisfies Schrödinger’s equation using the atomic-scale potential.

Each energy band in the crystal has its own Bloch function. Fortunately, one

never really needs to determine u(r) precisely. Only the symmetry properties

of these functions are necessary for most calculations. Thus, we can concen-

trate our attention on the envelope function Φk(r) which is a slowly varying

function satisfying Schrödinger’s equation using the macroscopic potential and

an appropriate effective mass:

ĤkΦk =
[ p̂2

k

2m∗k
+ V k

]
Φk (2.2)
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where m∗k is the effective mass that we assume to be constant in the whole

system for the electron (hole); p̂k is the three-dimensional momentum opera-

tor; the first term of Eq. (2.3) is the kinetic energy of the electron (hole); V k

is the QD confinement potentials for the electron (hole). In the following we

show how to solve this equation for a QD in a nanowire.

Electron and hole single-particle states in a QD in a nanowire

In a QD in a nanowire as is shown in the Fig. 2.3 (a), the diameter of the dot

is usually several times larger than its height then, the vertical confinement

energies are almost one order of magnitude larger than the lateral confinement

ones. For this reason, the confinement potential in cylindrical coordinate

can be separated into the transverse (R, θ) plane and in the perpendicular z

direction:.

V k(r) = V k(R, θ, z) = V k
T (R, θ) + V k

QW (z) (2.3)

where V k
QW (z) and V k

T (R, θ) are the decoupled confinement potentials for the

electron (hole) along the nanowire z axis and in the transverse plane, respec-

tively. We approximate the transverse confinement potential by a hard wall

potential:

V k
T (R, θ) =

0 R ≤ dQD/2

∞ R ≥ dQD/2
(2.4)

It might also be assumed that the transverse confinement potential to be

parabolic as:

V k
T (R, θ) =

1

2
mkω

2
kR

2 (2.5)

here, ωk is the in-plane parabolic potential for the electron (hole). Such

parabolic lateral confinement is also known to mimic the most important fea-

tures of various kinds of QDs and to give results in a good agreement with

the experiment [65, 66].

The solutions of the non-interacting Hamiltonian (2.2) are, using the method

of the separation of variables, separated wavefunctions in the z and in the

transverse direction as:

Φ(R, θ, z) = ΦQW (z) φT (R, θ) (2.6)
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The wave function along the z axis φQW (z) with the potential V k
QW (z) being

the single-well band structure shown in Fig. 2.3 (b), is a piecewise function

defined differently in each region of the nanowire. For the electron in the

conduction band of the type-II SQD nanowire, by considering the center of

the coordinate system in the middle of the SQD along the z axis, φQW (z)

becomes:

φQW (z) =


Aekez −lNW /2 ≤ z < −hQD/2

Be−ilez + Ceilez −hQD/2 ≤ z ≤ hQD/2

De−kez hQD/2 < z ≤ lNW /2

(2.7)

where le =
√

2m∗eEze/~, ke =
√

2m∗e(∆Ec − Eze)/~ and Eze is the electron

energy because of the confinement along the z axis. The constants A, B,

C and D are calculated from the boundary conditions. In Appendix A, we

explain how to implement these boundary conditions. The electron ground-

state in the conduction band of a type-II SQD nanowire φ1
QW (z) is shown in

Fig. 2.4. This eigenstate is the only confined state in the z direction in this

configuration. While Schrödinger equation for the electron in the z direction

in the conduction band has only one solution, there are many solutions for

holes in the valence band of the type-II SQD nanowire in the form of:

φQW (z) =


Ae−ilhz +Beilhz −lNW /2 ≤ z < −hQD/2

Ce−khz +Dekhz −hQD/2 ≤ z ≤ hQD/2

Ee−ilhz + Feilhz hQD/2 < z ≤ lNW /2

(2.8)

where ll =
√

2m∗hEzh/~, kh =
√

2m∗h(∆Ev − Ezh)/~ and Ezh is the hole

energy because of the confinement along the z axis. The constants A, B, C,

D, E and F are calculated from the boundary conditions which we explain

in the Appendix A. The twelve lowest energy eigenstates are shown in the

Fig. 2.5. As it can be seen in this figure, unlike the electron state which was

confined inside the QD, the hole states are not confined inside the QD and

the wavefunctions are spread all over the nanowire outside of the QD.

The transverse part of the wavefunction φT (R, θ) by considering the parabolic

confinement (2.5) becomes the Fock-Darwin state with the analytical expres-
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E1
ze = 72.7 (meV)

φ1
QW (z)

Figure 2.4: Normalized ground-state electron wavefunction φ1QW (z) in the z direction
in the conduction band of an InP crystal-phase SQD in a nanowire. The geometrical
parameters of the structure are: hQD = 4 nm, lNW = 60 nm.

sion for the wavefunction:

φlmT (R, θ) = R|m|e

(
−R2

2

)
L|m|l (R2)eimθ (2.9)

where L is the Laguerre polynomial. l = 0, 1, .. and m = 0,±1, ... are the

quantum numbers which come up in the solution of the Schrödinger equa-

tion in the transverse direction. The single-particle energy in the transverse

direction is:

ET = (2l + |m|+ 1)~ωk (2.10)

The ten lowest-energy transverse eigenstates of an electron in a SQD nanowire

are shown in the Fig. 2.6.

By considering an infinite potential well in the transverse direction as in

Eq. (2.4), the solution is given by the Bessel functions:

φlmT (R, θ) = Jm(λlR)eimθ (2.11)

and the energy of the single-particle electron or hole states is calculated as:

ET =
~2λ2

2m∗k
(2.12)

here λ is calculated from the boundary condition where the transverse eigen-

state in (2.11) need to be zero at the nanowire boundary: Jm(λldQD/2) = 0.

The transverse solution in Eq. (2.11) is expected to be a closesr resemblance
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E1
zh = 0.700 (meV)

φQW (z)

φQW (z)

φQW (z)

φQW (z)

E4
zh = 2.814 (meV)

E7
zh = 11.18 (meV)

E10
zh = 17.55 (meV)

E2
zh = 0.703 (meV)

E5
zh = 6.29 (meV)

E8
zh = 11.24 (meV)

E11
zh = 25.05 (meV)

E3
zh = 2.801 (meV)

E6
zh = 6.32 (meV)

E9
zh = 17.44 (meV)

E12
zh = 25.24 (meV)

Figure 2.5: Lowest-energy normalized single-particle hole wavefunctions in the z di-
rection φQW (z) in the valence band of an InP crystal-phase type-II SQD in a nanowire.
The geometrical parameters of the structure are: hQD = 4 nm, lNW = 60 nm.

with the real wavefunctions in nanowires in comparison to the solution in

Eq. (2.9), since for nanowires we suspect the potential to be flat throughout

the transverse part of the nanowire as in Eq. (2.4). The ten lowest energy

transverse eigenstates are shown in the Fig. 2.7. The details of the single-

particle Schrödinger equation calculation is carried out in the Appendix A.
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Figure 2.6: Lowest-energy normalized transverse wavefunctions φml
R (R) of the single-

particle electron in a type-I GaAs/AlGaAs SQD in a nanowire with geometrical
parameters of dQD = 80 nm, hQD = 4 nm, lNW = 100 nm. By considering
~ωe = 20 meV, the corresponding energies in the transverse direction are calculated
as: ET = 20, 40, 60, 60, 80, 80, 100, 100, 100, 120 meV.

Figure 2.7: Lowest-energy normalized transverse wavefunctions φml
R (R) of the single-

particle electron in a crystal-phase InP SQD in a nanowire with geometrical param-
eters of dQD = 32 nm, hQD = 4 nm, lNW = 60 nm. The corresponding transverse
energies are calculated as: ET = 12.68, 32.21, 57.86, 66.85, 89.30, 107.97, 126.32,
155.43, 164.29, 168.77 meV.
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2.3 Modeling the exciton state

In the previous section, a single-particle model of the QD has been described.

Two kinds of non-interacting particles are considered: electrons and heavy-

holes, distinguished by their opposing charges and differing masses. In order

to describe the system realistically, however, the strong Coulomb interaction

among and between the species must be taken into account. An electron-

hole pair attracted to each other by Coulomb interaction form a bound-state

which is called an exciton. In type-II QDs where the single-particle hole is not

confined inside the QD and instead it is spread all over the nanowire outside

of the QD [cf. Fig. 2.5 ], the Coulomb interaction effect becomes significantly

important since it is the only confining potential which make the hole bound

to the electron. For this reason, we need to develop a method capable of

describing a system of interacting particles with a sufficient accuracy.

The Hamiltonian of a system consisting of an interacting electron and hole

can be written as:

Ĥ = Ĥh + Ĥe + ĤC (2.13)

here, Ĥe/h is the single-particle Hamiltonian for the electron/hole in Eq. (2.2)

which we explained how to solve it in the previous section and ĤC is the

Coulomb interaction between the electron and hole. In working with a system

of interacting particles, it is much more convenient to use the second quan-

tization representation. Its a method for representing wave functions and

operators in a compact and convenient way in comparison to the rather cum-

bersome task of constructing linear combination of all possible many-particle

Slater determinants. The Coulomb operator in the second quantization rep-

resentation is written as [67]:

ĤC =
1

2

∑
σσ′

∫ ∫
dr dr′ ψ̂†σ(r)ψ̂†σ′(r

′)
q1q2

4πε|r − r′|
ψ̂σ′(r

′)ψ̂σ(r) (2.14)

here ψ̂†σ(r) and ψ̂σ(r) are field operators that respectively create and annihilate

a particle of the spin σ at the position r : (R, θ, z). The anti-symmetry of the
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exciton state is guaranteed by the fermionic anti-commutation rules:

{ψ̂σ(r), ψ̂†σ′(r
′)} = δσσ′δ(r − r′) {ψ̂σ(r), ψ̂σ′(r

′)} = {ψ̂†σ(r), ψ̂†σ′(r
′)} = 0

(2.15)

where {A,B} = AB + BA. The field operators maybe expanded in terms of

a set of single-particle wavefunctions Φi(r) independent of the spin:

ψ†σ(r) =
∑
i

Φ∗i (r)C†iσ, ψσ(r) =
∑
i

Φi(r)Ciσ (2.16)

here, C†iσ(Ciσ) is either an operator on the electron or the hole subspace cre-

ating (annihilating) an electron or a hole in the single-particle state i with

spin σ whose wavefunction is Φi(r). Even though Φi(r)’s are independent of

the spin but the expansion (2.16) is exact since Φi(r)s span the single-particle

Hilbert space, i.e. they form a complete set. Inserting the expansion (2.16)

into (2.14) yields:

ĤC =
1

2

∑
ijkl

∑
σσ′

∫ ∫
dr dr′Φ∗i (r)Φ∗j (r

′)
q1q2

4πε|r − r′|
Φk(r

′)Φl(r)︸ ︷︷ ︸
Vij,kl

C†iσ C
†
jσ′ Ckσ′ Clσ

(2.17)

or:

HC =
1

2

∑
ijkl

∑
σσ′

Vij,kl C
†
iσ C

†
jσ′ Ckσ′ Clσ (2.18)

Here, Vij,kl is called the Coulomb matrix element (CME) between particles in

the states i, j, k and l. Depending on the operator sequence two categories of

the Coulomb matrix elements can be identified [68]:

1- Electron-hole direct interaction elements: C†iσC
†
jσ′Ckσ′Clσ = Ce†iσC

h†
jσ′C

h
kσ′C

e
lσ

or Ch†iσ C
e†
jσ′ C

e
kσ′ C

h
lσ.

2- Electron-hole exchange interaction elements: C†iσC
†
jσ′Ckσ′Clσ = Ce†iσC

h†
jσ′C

e
kσ′C

h
lσ

or Ch†iσ C
e†
jσ′ C

h
kσ′ C

e
lσ.

The first category describes the direct attraction of the electron and the

hole, where for example an electron in the state k and a hole in the state l are

annihilated and an electron in the state i and a hole in the state j are cre-

ated. The second category corresponds to the process of the electron and the

hole exchanging their status during the interaction. This interaction process

occurs because of the undistingushibality due to the quantum nature of these
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particles. Although the electron and the hole can be distinguished by their

respective masses, these processes occur and therefore the matrix elements

exist. Usually these interactions are neglected because they have considerably

smaller amplitude in comparison to the direct terms. These matrix elements

are partly responsible for the excitonic fine-structure splitting. Refs. [69] and

[70] showed the electron-hole exchange interaction of type-I InGaAs/GaAs

QDs is enhanced with respect to its bulk value because of the confinement-

induced increased overlap of the electron and the hole wavefunctions; Ref. [71]

has reported an exciton exchange-interaction of 200 µeV as compared to the

20 µeV of bulk GaAs value, i.e., an enhancement by a factor of ten [70]. In

type-II QDs, confinement reduces the exchange interaction [72, 73] since the

overlap of the electron and the hole wavefunctions decreases in these struc-

tures in comparison to the bulk one. For this reason, we neglect the exchange

interaction in our calculations in this thesis.

2.3.1 Configuration-interaction method

The configuration-interaction method is a way to find approximate solutions

of the Schrödinger equation for a system with interacting particles. The name

configuration-interaction is the one most commonly used in the field of quan-

tum chemistry, see e.g. reference [74]. In condensed matter physics, one more

often uses the name exact diagonalization, which may be misleading since

the obtained solution is always a numerical approximation. Nuclear physi-

cists typically use the name shell model calculations, or no-core shell model

calculations [75].

In configuration-interaction method, the exciton wavefunction -a priori

unknown wavefunction- is expanded as a linear combination of several many-

particle basis states (configurations), and the states are then allowed to mix

(interact) with each other to minimize the energy. In theory, the method

provides solutions to the Schröodinger equation to an arbitrary numerical

precision. In practice, however, the numerical complexity limits the usage

to systems with very few particles. Even if the capabilities of our comput-

ers continue to increase at a similar rate to that of the last decades, the

configuration-interaction method will most likely not become an all-purpose
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method for quantum many-particle physics. But it has some advantages com-

pared to other methods. It is very general, as it is applicable for both fermions

and bosons and is not limited to a single type of interaction. It gives both the

ground-state as well as the excited-states. It typically also makes it possible

to obtain an estimate of the associated numerical error. For a chosen basis

space, the actual ground-state within that space is obtained. This is in sharp

contrast to many variational procedures for energy minimization, which may

be hindered by the presence of a local minima in the energy functional.

There are several other quantum many-particle methods; for example the

so-called coupled-cluster method may allow for the treatment of larger particle

numbers. Recent studies have applied this method to e.g. QD systems [76] and

trapped bosonic gases [77], demonstrating that the coupled-cluster method can

be a powerful alternative to the configuration-interaction method, at least for

the considered systems. Quantum Monte Carlo methods may treat much

larger particle numbers (see e.g. references [78, 79]). However, a disadvantage

is that they in general do not give excited states of a system.

We use configuration-interaction method to calculate the exciton states

in this thesis. In Chapter 3, we present the calculation results and also the

convergence study of the configuration-interaction calculations to examine the

exciton state in type-II crystal-phase QDs in nanowires.

2.4 Stimulated Raman adiabatic passage

(STIRAP)

In our scheme for quantum computing, we use the spin of an electron in a

QD as a qubit. For manipulating the spin qubits, we use the all-optical STI-

RAP technique. STIRAP is an efficient method for transferring population

adiabatically between two discrete quantum states by coupling them using

two radiation fields via an intermediate state which is usually a radiatively

decaying state [80, 81]. The use of two lasers coupling three states, rather

than a single laser coupling two states, offers many advantages: the excitation

efficiency can be made relatively insensitive to many of the experimental de-

tails of the pulses such as the laser intensity, the pulse timing and the pulse
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shape. In addition, with the three-state system, one can produce excitation

between states of the same parity, for which single-photon transitions are for-

bidden. These features have made STIRAP a popular tool in optical quantum

information processing [82, 83, 84, 85].

In this section, we present the basic of the STIRAP process and the equa-

tions that govern the time dependence of the probability amplitudes used in

the mathematical description of the STIRAP process. Further details of the

STIRAP process which are important in designing quantum gates are also

discussed.

2.4.1 STIRAP theory

The STIRAP scheme involves a three-state, two-photon Raman process, in

which an interaction with a pump pulse P links the initial state |1〉 with an

intermediate state |e〉, which in turn interacts via a Stokes pulse S with a final,

target state |2〉. Figure 2.8 illustrates the connections. Typically the states

|1〉 and |2〉 are metastable states of a quantum system such that their lifetimes

is long in comparison to the length of the laser pulse. On the other hand, the

intermediate state will undergo spontaneous emissions not only to the states

|1〉 and |2〉, but also to other states. The objective is to transfer all of the

population from the state |1〉 into the state |2〉, losing none by spontaneous

emission from the state |e〉. At the first glance, the possibility of radiative

decay from the intermediate level to states other than the desired final state

seems to be detrimental to the implementation of an efficient transfer to a

single quantum state. However, as we shall see, the STIRAP process has the

remarkable property of placing almost no population into the intermediate

state |e〉, and thus it is insensitive to any possible decay from that state.

The instantaneous Hamiltonian of the Λ three-state system shown in Fig. 2.8,

in the Rotating Wave Approximation (RWA) [37, 38] is written in the |1〉 , |e〉 , |2〉
basis as:

H(t) =
~
2


0 ΩP (t)eiψP 0

ΩP (t)∗eiψP 2∆P ΩS(t)eiψS

0 ΩS(t)∗eiψS 2(∆P −∆S)

 (2.19)

The details of this derivation is presented in Appendix B. Here, the Rabi

frequencies ΩS(t) and ΩP (t) describe the coupling strength between the states
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which are defined as:

ΩP (t) = dPEP (t)/~ , ΩS(t) = dSES(t)/~ (2.20)

dP and dS are respectively the |1〉−|e〉 and |2〉−|e〉 transitions’ dipole moment.

EP (t) and ES(t) are respectively the electric field amplitudes of the Stokes and

pump lasers at a fixed point. The diagonal elements of Eq. (2.19): ∆P is

the detuning of the pump laser from the |1〉-|e〉 transition such that ~∆P =

Ee − E1 − ~ωP and ~∆S is the detuning of the Stokes laser from the |e〉-|2〉
transition such that ~∆S = Ee − E2 − ~ωS . We define the single-photon

detuning as ∆ ≡ ∆P and the two-photon detuning as δ ≡ ∆P − ∆S . With

these definitions of the ∆ and δ, the equivalent three-level Λ system is shown

in Fig. 2.8 (b).

(a) (b)

|1〉

|2〉

|e〉
∆S∆P∆P

ΩP

Pump pulse

ΩS

Stokes pulse

|1〉

|2〉

|e〉

δ

∆

ΩP

ΩS

Figure 2.8: (a) STIRAP scheme in a three-level Λ system. (b) The scheme is equiva-
lent to (a) by defining the single-photon detuning ∆ = ∆P and two-photon detuning
δ = ∆P −∆S .

The principal observables of a multistate quantum system, e.g. the three-

level Λ system; are the probabilities Pn(t) that the system be found in the state

n at time t. These probabilities, known also as populations, are expressible as

the absolute squares of the complex-valued probability amplitudes Cn(t):

Pn(t) = |Cn(t)|2 (2.21)

Probability amplitudes Cn(t) are calculated from the time dependent Schrödinger
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equation:
d

dt
C(t) = − i

~
H(t)C(t) (2.22)

where C(t) is a vector of time-dependent probability amplitudes C1(t), C2(t),

and C3(t). In transferring population from |1〉 to |2〉, the population transfer

efficiency at the end of the process is defined as:

TE =
P2(t)

P1(t)

∣∣∣
t=tend

(2.23)

For transferring the population, first the Stokes laser couples the two empty

states |e〉 and |2〉 and thus it does not change the population of the state |1〉.
However, this does not mean that the Stokes laser has no effect. In fact, this

laser creates a coherent superposition of the two initially unpopulated states

|e〉 and |2〉. When this coherent superposition state is subsequently coupled to

the populated state |1〉 by the pump laser, a so-called dark state is formed - a

state from which the pump laser cannot transfer population to the radiatively

decaying intermediate state. Rather, the population is directly channeled into

state |2〉, as the following discussion and the equations reveal.

Diagonalising H(t) in (2.19) analytically is not straight forward. Here

for showing analytical solution, we will only consider two-photon resonance

δ = ∆P −∆S = 0. In this case we find eigenvalues as:∣∣a+
〉

= sin(Θ) sin(Φ) |1〉+ cos(Φ) |e〉+ cos(Θ) sin(Φ) |2〉∣∣a0
〉

= cos(Θ) |1〉 − sin(Θ) |2〉∣∣a−〉 = sin(Θ) cos(Φ) |1〉 − sin(Φ) |e〉+ cos(Θ) cos(Φ) |2〉

(2.24)

where the (time-varying) mixing angle Θ is defined by the relationship

tan(Θ) =
ΩP (t)

ΩS(t)
(2.25)

and the angle Φ is a function of the Rabi frequencies and the single photon

detuning:

tan(2Φ) =

√
Ω2
P + Ω2

S

∆
(2.26)

The adiabatic energies corresponding to these eigenstates, the eigenvalues of

the Hamiltonian (2.19) are:

ω± = ∆P ±
√

∆2
P + Ω2

P + Ω2
S

ω0 = 0
(2.27)
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The objective is to control the system state vector |Ψ〉 thereby controlling

the distribution of the population among the three states. At very early times,

|Ψ〉 will be identical to |1〉. At very late times, we require that |Ψ〉 be parallel

to |2〉. We wish to avoid even transient placement of the population into |e〉,
which will radiatively decay to other states that are not connected by the

coherent radiation fields.

The eigenstates |a+〉 and |a+〉 are represented by a linear combination of

all three bare states. They include, in particular, a component of the bare

state |e〉, which is the leaky state. We therefore wish to avoid population in

either of these two dressed states, whether produced directly or by nonadia-

batic coupling during the process. The state
∣∣a0
〉

is, at all times, free of any

contribution from the leaky state |e〉, thus it will be the appropriate vehicle

for transferring population from state |1〉 to state |2〉 without populating state

|e〉. The mixing angle Θ can be experimentally controlled through the ratio

of the Rabi frequencies.

If the Stokes laser precedes the pump laser, as shown in Fig. 2.9, we iden-

tify three distinctly different intervals I, II, and III. The lasers’ envelopes are

considered to be Gaussian shaped as:

EP (t) = AP e
− t2

2τ2

ES(t) = ASe
− (t+∆T )2

2τ2

(2.28)

with the pulses width of τ . The maxima of the EP (t) and ES(t) are separated

by ∆T in time. In region I, only the Stokes laser is present; the Rabi frequency

due to the pump laser is zero, i.e., the mixing angle Θ is zero. Therefore, as

the system is only exposed to the Stokes laser, the state
∣∣a0
〉

is identical to

the state |1〉 as well as to the state vector |Ψ〉. Thus as is shown in Fig. 2.10,

in region I, three vectors are aligned: the vector representing the bare state

|1〉, the vector
∣∣a0
〉

of the strongly coupled system, and the state vector |Ψ〉.
In the interval II, as is shown in Fig. 2.9 (a), the Stokes laser Rabi fre-

quency is smoothly reduced while the pump laser Rabi frequency increases to

its maximum value, changing the mixing angle smoothly from 0◦ to 90◦. As

shown in Fig. 2.10, the vector
∣∣a0
〉

is rotated into a position parallel to the

bare state |2〉 in a plane perpendicular to the bare state |e〉. Therefore, during

this motion, the vector never acquires a component of the leaky state |2〉. The
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+
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P2
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II
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(d)

(c)
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Figure 2.9: Time evolution of (a) the Rabi frequencies of the pump and the Stokes
laser [see Fig. 2.8]; (b) the mixing angle [see Fig. 2.10]; (c) the dressed-state eigenval-
ues [see Eq. (2.27)]; and (d) the population of the initial level (starting at unity) and
the final level (reaching unity). In this calculation dP = dS = 1 is been considered.

crucial question is whether or not the coupling of the states by the radiation

fields is strong enough that the flow of population (or the state vector |Ψ〉)
follows the motion of the vector

∣∣a0
〉

adiabatically. The STIRAP process au-

thenticity condition is addressed later in this section. The evolution of the

system can also bee understood by looking at the dressed-state eigenvalues

[see Fig. 2.9 (c)]. At very early times, when both Rabi frequencies are zero,
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|1〉

|e〉

|2〉

∣∣a0
〉

|Ψ〉

∣∣a0
〉
|a−〉 |a+〉

Θ

Figure 2.10: Graphic representation of the Hilbert space for the three-level system in
the basis of the bare states |1〉 , |e〉 , |2〉 and in the basis of the dressed states

∣∣a0〉,|a+〉,
and |a−〉. Since the population is initially in state |1〉, the state vector |Ψ〉 is also
aligned parallel to |1〉. At later times, the components of the state vector |Ψ〉 along
the three dressed or bare states give the population in these states.

all three eigenvalues are degenerate. During interval I, the Stokes laser couples

states |e〉 and |2〉 while state |1〉 is not involved in the interaction. At this

time, therefore, the splitting of the eigenvalues is due to the coupling of states

|e〉 and |2〉 alone. The eigenvalue that remains unchanged is associated with∣∣a0
〉

(which is identical to state |1〉 at this early time). The vector
∣∣a0
〉

still

remains in its original position [cf. Fig. 2.10], but the degeneracy with the

eigenvalues of states |a+〉 and |a−〉 is lifted. During interval II, the splitting

of the eigenvalues ω+,ω−, and ω0 is largest, i.e. the coupling is strongest and

both radiation fields contribute to it, as the vector moves from its position

parallel to state |1〉 into the position parallel to state |2〉. This motion results

in a complete population transfer if the state vector |Ψ〉 evolves adiabatically.

If the coupling is insufficient (i.e., if the Rabi frequencies are too small), the

motion of the state vector |Ψ〉 will lag behind the motion of the dressed states;

it will precess around
∣∣a0
〉
. It is qualitatively obvious that the state vector

then acquires a component along |a+〉 or |a−〉 (by nonadiabatic coupling).

This implies that some population reaches the leaky state |e〉 and the transfer

process will be incomplete.

Here, we neglected the spontaneous emission from the decaying state |e〉
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out of the system in our calculations. The description of this process requires

equations for the density matrix [86, 87]. Radiative decay is important because

it serves as a leak responsible for the loss of the population from the three-level

system. The population lost by the spontaneous emission might reach states

that one wishes would remain unpopulated. The consequence of spontaneous

emission within the Λ system, from state |e〉 to states |1〉 and |2〉, was studied

in [88, 89]. For small-to-moderate decay rates STIRAP is not significantly

affected by spontaneous emission because the middle state is unpopulated.

For strong decay rates, STIRAP degenerates into incoherent optical pumping.

Ref. [90] studied this problem by using an effective Hamiltonian derived from

a microscopic model.

2.4.2 Condition for the adiabatic following

As was pointed out in the previous section, insufficient coupling by the coher-

ent radiation fields may prevent the state vector |Ψ〉 from adiabatically fol-

lowing the evolution of the trapped state
∣∣a0
〉
, and the loss of the population

due to the nonadiabatic transfer to the states |a+〉 and |a−〉 may occur. The

condition for adiabatic following can be derived from general considerations

in quantum mechanics which need to be invoked whenever the Hamiltonian is

explicitly time dependent. The Hamiltonian matrix element for nonadiabatic

coupling between state
∣∣a0
〉

which carries the population and evolves in time,

and either one of the states |a+〉 or |a−〉 is given by 〈a±|ȧ0〉. Nonadiabatic

coupling is small if this matrix element is small compared to the field induced

splitting |ω± − ω0| of the energies of these states, i.e.,

〈a±|ȧ0〉 � |ω± − ω0| (2.29)

Using Eqs. (2.24)-(2.27) we find 〈a±|ȧ0〉 = −Θ̇ sin Φ, and therefore the adia-

baticity constraint, by considering sin Φ = 1, reads

Θ̇� |ω± − ω0| (2.30)

It is straightforward to show that Eq. (2.30) can be written in the form [91]:

|ω± − ω0| = Ωrms(t)� |Θ̇(t)| = ΩS(t)Ω̇P (t)− ΩP (t)Ω̇S(t)

ΩP (t)2 + ΩS(t)2 (2.31)
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where Ωrms =
√

Ω2
P + Ω2

S . This condition quantifies the smoothness required

for the pulses: the relationship must hold at any time during the transfer

process (hence a local condition). When the adiabatic condition is fulfilled,

the completeness of STIRAP is insensitive to small variations of the laser

intensity, the duration, and the delay of the pulses as well as to variations in

the transition dipole moments.

A useful global condition is derived by integrating Eq. (2.31) over the inter-

action duration which we denote by T . The integral of the rms Rabi frequency

is the rms pulse area

A =

∫
T

Ωrms(t)dt =

∫
T

√
Ω2
P + Ω2

S dt (2.32)

and because the integral over Θ̇(t) produces the value π/2, the inequality

(2.31) reduces to

A � π/2 (2.33)

Because the integral in (2.32) is proportional to the peak Rabi frequency Ωmax

(assuming, for simplicity, it is the same for both pulses) and the pulses’ overlap

time T , Eq. (2.33) demands that the intensities and the pulses’ overlap time

must be large enough. We can write Eq. (2.33) as

ΩmaxT > Amin (2.34)

where Amin is some minimum pulse area, dependent on the pulse shape and

the required population transfer efficiency TE. By considering minimum 95%

efficiency, usually, pulse areas of Amin ≥ 3π have sufficed to provide efficient

population transfer. Obviously, the global condition (2.34) is simpler to eval-

uate (and less restrictive) than the local condition (2.31). For smooth pulses

the global condition (2.34) usually also guarantees the fulfillment of the local

condition.

2.4.3 Further aspects of the three-level STIRAP

This section examines the basic properties, requirements, and restrictions for

STIRAP.
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Optimal pulse delay and width

The pulse delay ∆T between the P and S pulses affects the efficiency of

STIRAP through (i) the adiabatic condition, and (ii) the completeness of the

projection of the state vector |Ψ(t)〉 onto the dark state
∣∣a0
〉

at the initial

and final times ti and tf . The optimum delay is determined by the following

arguments.

Coincident pulses: In this case, and for identical pulse shapes, the mixing

angle Θ is constant; then the nonadiabatic coupling vanishes (Θ̇ = 0) and the

evolution is perfectly adiabatic according to (2.31). However, the state vector

Ψ(t) is not initially aligned with the dark state a0(t), but instead Ψ(t) =

[a0(t) + a−(t)]/
√

2, and a similar relation applies at the end time tf . The

interference between different evolution paths a0(t) and a−(t) from the state

|1〉 to the state |2〉 leads to oscillations in the final population of the state |2〉
instead of complete population transfer as shown in Fig. 2.11 (a).

Small delay, very large overlap: For small delay, the overlap is large and

the mixing angle Θ(t) is nearly constant during most of the overlap Θ(t) = Θ;

hence Θ̇(t) = 0 and adiabaticity is good there. However, due to the small

delay, Θ(t) rises too quickly from 0 to about Θ0 before the overlap, and then

again from about Θ0 to π/2 after the overlap. These rapid rises generate large

nonadiabatic couplings Θ̇(t) at early and late times, which cause nonadiabatic

transitions from the dark state to the other two adiabatic states. These two

nonadiabatic zones lead again to interference and oscillations in P2 as it can

be observed in Fig. 2.11 (b).

Large delay, very small overlap: The initial state vector is Ψ(ti) = a0(ti).

Because for most of the time only one pulse is present, the mixing angle Θ(t)

stays nearly constant for most of the excitation: Θ(t) ≈ 0 early and Θ(t) = π/2

late as we can see in the in Fig. 2.11 (c). However, Θ(t) rises from 0 to π/2

during the very short period when the pulses overlap, thereby generating a

large nonadiabatic coupling Θ̇(t), which ruins the population transfer.

Optimum delay : For maximal adiabaticity, the mixing angle Θ(t) must

change slowly and smoothly in time [cf. Fig. 2.9], so the nonadiabatic coupling

Θ̇(t) remains small. The optimal value of ∆T depends on the pulse shapes:

for Gaussian pulses, the optimum delay is slightly larger than the pulse width
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∆T ≥ τ .

(a) ∆T = 0 (b) ∆T = 0.25 µs (c) ∆T = 2.4 µs

(1)

(2)

(3)

(4)

Figure 2.11: (a) Coincident pump and Stokes pulses ∆T = 0. (b) Pump and Stokes
pulses are separated in time by of ∆T = 0.25 µs. (c) Pump and Stokes pulses are
separated in time by ∆T = 2.4 µs. Time evolution of (1) the Rabi frequencies of the
pump and Stokes lasers; (2) the mixig angle Θ; (3) the dressed-state eigenvalues ω
and (4) the probability amplitudes of the states. In this calculation: dP = dS = 1,
τ = 0.6 µs have been considered.

Single- and two-photon linewidths

A characterizing feature of the STIRAP is the variation of the single- and

two-photon linewidths with the detunings ∆P and ∆S . Variation of either

carrier frequency, while keeping the other fixed, will change the two-photon

detuning δ. Variation of both the P and S frequencies, while maintaining the

two-photon resonance condition, will produce the single-photon detuning. The

dependencies of the transfer efficiency TE on δ and ∆ are different. STIRAP

is very sensitive to the two-photon detuning δ because the formation of the

dark state |a0〉 requires two-photon resonance δ = 0. On the other hand, the
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formation of the dark state |a0〉 is not prevented by a non-zero single-photon

detuning ∆. As it can be seen in the Fig. 2.12, increasing the single-photon

detuning ∆ does not limit the transfer efficiency as long as we are close to the

two-photon resonance, δ = 0. This criterion gets stricter as we increase the

single-photon detuning.

Fig. 2.13 shows that considerable population transfer from the state |1〉
to |2〉 can occur if the nonadiabatic couplings arising from non-zero δ are

suppressed by increasing Rabi frequency, which leads to the estimate of the full

width at half maximum (FWHM) of the two-photon resonance δ1/2 ∝ Ωmax

[92]. Hence the two-photon linewidth is proportional to the square root of the

peak intensity of the laser light.

Figure 2.12: Transfer efficiency from the state |1〉 to |2〉 in the three-level Λ system
shown in Fig. 2.8 (b). In this calculation AP = AS = 100 MHz, dP = dS = 1,
τ = 0.5 µs, and ∆T = 2.5 µs are considered.

2.5 Summary

In this chapter, we first introduced the difference between the conventional

type-I QDs and the newly emerged type-II QDs. Then, we explained the

numerical tools for calculating the single-particle states of the QDs and also the

method that we have chosen to use in this work. For calculating exciton state



2.5. Summary 35

A=50  MHz
A=100 MHz
A=150 MHz
A=200 MHz

Figure 2.13: Transfer efficiency TE as a function of the two-photon detuning δ for
different values of the lasers’ peak amplitude: A = AP = AS = 50, 100, 150, 200
MHz. In this calculation, we considered dP = dS = 1, τ = 0.5 µs, ∆T = 1.2 µs,
∆ = 0.

we need to include Coulomb interaction in the model since it is the dominant

effect in comparison to the QD confinement effect in the type-II configuration.

Including Coulomb interaction makes the Schrödinger equation difficult to

solve. For this reason, we presented the basic theory of the configuration-

interaction method for solving the exciton problem.

Quantum gates are going to be designed based on the studied model of

the type-II QDs by using the stimulated Raman adiabatic passage. Thus, we

also presented the essential basic theory of this process in the last section of

this chapter. In Chapter 4, we will explain the novel scheme we develop for

implementing scalable and addressable single- and two-qubit gates based on

type-II QDs in a nanowire.





CHAPTER 3
Coulomb interaction

This chapter is organized as follows. After a short introduction on the exciton

problem, I develop the formalism to calculate the Coulomb matrix elements

for the exciton problem in a QD nanowire in a cylindrical coordinate. Then,

the formula to calculate the exciton oscillator strength is presented. The

convergence of the configuration-interaction method to calculate the exciton

states is explored. Next, a thorough investigation of the exciton properties

in the novel type-II SDQ and DQD nanowires is presented. We also bring

some important features of the type-I QD exciton properties to compare with

those of the type-II QDs. Finaly we develop a semi-analytical formalism of

the exciton problem and solve it with FEM COMSOL to verify the developed

numerical tool based on the configuration-interaction method.

Our contribution here is developing a formalism to calculate the exciton

properties in a QD nanowire and carry out all the research, development and

implementation of the numerical code, convergence check and validation of

the computational method, interpretation and discussion of the computation

results.

3.1 Exciton

The simplest excitation in a semiconductor occurs when an electron from the

valence band jumps across the band gap into the conduction band. In this

37
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case, an empty positively charged hole state is created within the valence

band. Charges of the opposite signs, the electron and the hole are bound

by the Coulomb interaction between them. This bound electron-hole state

is known as the exciton. Since the hole mass is generally much larger than

the electron mass, the exciton is similar to a hydrogen atom such that the

electron orbits the hole. The exciton moves, as a free particle with mass M =

m∗e +m∗h, whereas the mass of the exciton’s relative motion is µ = m∗em
∗
h/M .

The difference in energy between an electron-hole pair interacting by their

mutual Coulomb attraction and an uncorrelated electron-hole pair known as

exciton binding energy, in the bulk semiconductor by the hydrogen-like analog

becomes [93]:

EB = − µe4

2ε2~2
= − e2

2εaex
(3.1)

where ε is the dielectric constant and aex = ε~2/µe2 is the effective Bohr

radius characterizing the spatial extent of the exciton in the semiconductor

after which the exciton wavefunction rapidly goes to zero. Using the typical

values for the bulk InP, one can obtain the exciton binding energy of −5.4

meV and the Bohr radius of 11 nm. The total energy of the exciton in the

bulk is simply the energy of the band gap plus the exciton binding energy

(since the Coulomb potential energy is negative, the excitonic levels will be

below the conduction band in the bulk), whereas in a nanostructure like a QD

there are additional components due to the electron and the hole confinement:

Eex = Eg + EB (bulk) Eex = Eg + Ee + Eh + EB (QD) (3.2)

here Ee and Eh are the single-particle energies which I described and calcu-

lated in Chapter 2. They depend on the shape and size of the QD. The exciton

binding energy in a QD is also a function of the dimension of the QD. In fact,

both the electron and the hole, which are bound by the Coulomb interaction

are also confined by the conduction and valence band offsets, ∆Ec and ∆Ev,

respectively. It has been shown in type-I QDs that confining an exciton in-

creases its binding energy through increasing the spatial overlap between the

electron and the hole [94, 93, 30]. In this chapter, we study how the QD size

affects the excitonic properties in the novel type-II QD structures.

To calculate the exciton energy and wave function, the Hamiltonian of

(2.13) has to be diagonalized. In Sec. 2.3, I showed how the Hamiltonian
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matrix elements (the Coulomb matrix elements) in the basis of the single-

particle states are calculated from the following integral:

Vij,kl = 〈ij| ĤC |kl〉 =

∫ ∫
dr dr′Φ∗i (r)Φ∗j (r

′)
q1q2

4πε|r − r′|
Φk(r

′)Φl(r) (3.3)

This integral is problematic to evaluate due to the divergence at r = r′. In the

following, I show how to calculate the Coulomb matrix elements in Eq. (3.3).

Calculating Coulomb Integral

We can write 1
|r−r′| based on the generating function of the circular cylindrical

harmonics as [95]:

1

|r − r′|
=

+∞∑
s=−∞

eis(θ−θ
′)

∫ ∞
0

Js(kR)Js(kR
′)e−k|z−z

′|dk (3.4)

By assuming that ε is constant in Eq. (3.3), which is a good approximation in

crystal-phase QDs, and by substituting Eqs. (3.4) and (A.17) into Eq. (3.3):

Vij,kl = − e2

4πε

∫ ∫ +∞∑
s=−∞

eis(θ−θ
′)

∫ ∞
0

Js(kR)Js(kR
′)e−k|z−z

′|dk

× Rke(R)Θk
e(θ)Zke (z)Rlh(R′)Θl

h(θ′)Z lh(z′)

× Ri∗e (R)Θi∗
e (θ)Z i∗e (z)Rj∗h (R′)Θj∗

h (θ′)Zj∗h (z′)

× RdRdθ dz R′ dR′ dθ′ dz′

(3.5)

For simplicity of notations in this section, I use φQW (z) ≡ Z(z), φR(R) ≡
R(R) and φθ(θ) ≡ Θ(θ) for single-particle wavefunctions. For calculating the

integral in (3.5), I first integrate over θ, then make the summation over s.

Therefore, I need to calculate the following expression first:

+∞∑
s=−∞

Js(kR)Js(kR
′)

∫ ∫
eis(θ−θ

′)Θk
e(θ)Θ

l
h(θ′)Θi∗

e (θ)Θj∗
h (θ′)dθ dθ′ (3.6)

By using the normalized Θ(θ) = 1√
2π
eimθ [from Eq. (2.11)] Eq. (3.6) becomes:

(
1√
2π

)4
+∞∑
s=−∞

Js(kR)Js(kR
′)

∫ ∫
eis(θ−θ

′)eimkθeimlθ
′
e−imiθe−imjθ

′
dθ dθ′

(3.7)
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Since
∫ 2π

0
ein
′θeinθdθ

2π = δn,n′ , the above expression is simplified as:

+∞∑
s=−∞

δs,mk−miδs,mj−mlJs(kR)Js(kR
′) = Js(kR)Js(kR

′) (3.8)

where s = mk −mi = mj −ml in the right-hand side of the above equation.

By substituting the right-hand side of Eq. (3.8) in Eq. (3.5):

Vij,kl = − e2

4πε

∫ ∫
k,z,z′

dk dz dz′ e−k|z−z
′|Znke (z)Znlh (z′)Zni∗e (z)Znj∗h (z′)

×
∫
R
RJs(kR)Rlk,mke (R)Rli,mi∗e (R) dR

∫
R
R′Js(kR

′)Rll,mlh (R′)Rlj ,mj∗h (R′) dR′

(3.9)

By replacing the single-particle states described in Chapter 2 in Eq. (3.9)

and integrating over dR, dR′, dz, dz′, and dk, the Coulomb matrix elements

are calculated. By adding the single-particle electron and hole energies to

the diagonal elements of the Coulomb matrix, according to Eq. (2.13), the

total Hamiltonian of the interacting electron and hole system is constructed.

Then, the Hamiltonian is diagonalized. The eigenenergies of the Hamiltonian

correspond to the exciton energies and the eigenstates are the exciton states

in the basis of the single-particle configurations, such that the µth excitonic

eigenstate is given by:

Ψµ
exc(re, rh) =

∑
i,j

CµijΦ
i
e(re)Φ

j
h(rh), (3.10)

here, Cij are the elements of the µth eigenvector of the Hamiltonian matrix

and i and j are indices summarizing the quantum numbers (nlm) of the single-

particle electron and hole states, respectively.

3.2 Oscillator strength

Enhancement of the light-matter interaction is very important for many opti-

cal devices [96], such as semiconductor lasers, single-photon sources, detectors,

light-emitting diodes, and also for quantum information processing devices.

The relevant figure-of-merit in the dipole approximation is the exciton oscil-

lator strength, which is a dimensionless quantity. The oscillator strength of
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the excitonic transition is defined by [30]:

OS =
2

m0~ωexc

∣∣∣ 〈G| e · d̂ |X〉 ∣∣∣2 (3.11)

Here, |G〉 stands for the ground state, |X〉 is the exciton state, e is the unit

vector of the light polarization, d̂ is the dipole moment operator, and ωexc is

the exciton transition frequency. To evaluate the expression (3.11), we write

the states in the electron picture rather than in the equivalent electron-hole

picture. The ground-state is:

|G〉 = A
{ ∣∣uv,Φ1

h

〉
, ..., |uv,Φn

h〉
}

(3.12)

where A is the anti-symmetrization operator. Each state vector in (3.12)

contains two parts: the valence band Bloch function part uv and the hole

envelope function part Φh. There is also a spin part which we have dropped

here, since it does not affect the result if we assume that the spin of the electron

doesn’t change when it moves from the valence band to the conduction band.

In the ground state of the structure |G〉, the valance band is full of electrons.

They occupy all allowed single-particle states of the hole. The conduction

band is empty as there are no electrons there. If an electron is excited from

the valence band to the conduction band, an exciton state will form. We write

the µth exciton state of Eq. (3.10) in the electron picture as:

|Xµ〉 =
∑
i,j

CµijA
{ ∣∣uc,Φi

e

〉∏
k 6=j

∣∣∣uv,Φk
h

〉}
(3.13)

This implies that, all the allowed single-particle states in the valence band are

occupied by electrons, except one, which is moved to an allowed single-particle

electron state in the conduction band. We drop the anti-symmetrization op-

erator A henceforth for simplicity. Now, by substituting (3.13) and (3.12) in

(3.11) we have:

OSµ =
2

m0~ωµex

∣∣∣ 〈G| e · d̂ |Xµ〉
∣∣∣2

=
2

m0~ωµex
∣∣ 〈uv| e · d̂ |uc〉 ∣∣2 ∣∣∣ ∫ dr

∑
i,j

CµijΦ
j∗
h (r)Φi

e(r)
∣∣∣2 (3.14)

In Appendix C, we have derived how 〈uv,Φh| e · d̂ |uc,Φe〉 reduces to 〈uv| e ·
d̂ |uc〉 〈Φh|Φe〉 used in the above equation. 〈uv| e · d̂ |uc〉 is measured from the
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experiments and denoted by M [64], then Eq. (3.14) simplifies to:

OSµ =
2|M |2

m0~ωµexc

∣∣∣ ∫ dr
∑
i,j

CµijΦ
j∗
h (r)Φi

e(r)
∣∣∣2 (3.15)

Thus, for calculating the OS of the µth exciton transition, we need to know the

Cµ
(

the µth eigenvector of the Hamiltonian H
)
, Φe and Φh the single-particle

wavefunctions.

3.3 Convergence study of the

configuration-interaction method

The Coulomb integral in (3.9) need to be evaluated numerically. The integrals

over R, R′, z and z′ are straightforward. For the remaining one-dimensional

integral over k, we need to first truncate the integral using a cut-off kcut and

subsequently discretizing it with a discretization step ∆k. When introducing

the truncation and the discretization, careful convergence studies are required.

Typical convergence studies for the cut-off kcut and the discretization step ∆k

are presented in Fig. 3.1. Here, we study the ground-state exciton energy

which is the lowest eigenvalue of the Hamiltonian matrix and its normal-

ized oscillator strength. Oscillator strength is calculated from (3.15), and the

normalized exciton oscillator strength is defined as OSN = OS/OS0 where

OS0 = 2|M |2/m0~ωexc. We have excluded the band gap energy in the fig-

ures such that we define Eex = ~ωexc − Eg. As it can be seen in this figure

considering kcut = 1 nm−1 and discretization ∆k = 0.01 nm−1 result in a

good convergence for both the OS and the exciton energy in the considered

geometry.

We need to truncate the Hilbert space of the single-particle electron and

hole states in our calculation while ensuring that enough states are included to

achieve convergence. For larger structures, the energy spacing of the single-

particle states decreases, and an increasing number of higher-order single-

particle electron and hole states are needed to correctly represent the ground-

state exciton wave function and energy.

Fig. 3.2 shows the convergence study of the exciton oscillator strength and

energy as a function of the number NT which is equal to NTe (NTh) of the
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(a)

(b)

Figure 3.1: Convergence study of the ground-state exciton OSN and Eex as function
of (a) ∆k with kcut = 1 nm−1 and as function of (b) kcut with ∆k = 0.01 nm−1.
The SQD nanowire geometrical parameters are lNW = 70 nm and hQD = 4 nm. We
consider two cases with dQD = 32 nm (crosses) and dQD = 40 nm (plusses).

in-plane transverse electron (hole) single-particle states φlmT (R, θ) for two di-

ameters dQD = 32 nm and dQD = 40 nm. The figure reveals that the ground-

state exciton energy Eex converges much faster than the OSN : The variation

of the exciton OSN is around 200 % in the total interval considered, whereas

the variation for the exciton energy is less than 2 %. As the QD diameter

increases, the energy spacing between the single-particle electron and hole

states in the transverse in-plane direction become comparable or smaller than

the ground-state exciton binding energy and we need to include more in-plane

single-particle states in the calculation: Closer inspection of Fig. 3.2 reveals

convergence is slower for the dQD = 40 nm diameter than for the dQD = 32
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Figure 3.2: Convergence study of the ground-state exciton OSN and Eex as a function
of the number NT = NTe = NTh which is the in-plane transverse single-particle
electron (hole) states for two diameters dQD = 32 nm (crosses) and dQD = 40 nm
(plusses). The SQD nanowire structure parameters are lNW = 70 nm and hQD = 4
nm. In this calculation we considered Nze = 1 and Nzh = 20 for the single-particle
electron and hole states along z axis, respectively, and we have ∆k = 0.01 nm−1 and
kcut = 1 nm−1.

nm case.

The same argument also applies for other geometrical parameters like the

nanowire length. Since in the type-II structure the hole is spread all over

the nanowire outside of the QD, as the nanowire length increases, the energy

spacing of the single-particle hole states along the z axis is reduced and addi-

tional higher single-particle hole states contribute to the ground-state exciton

wavefunction and energy. Then for longer nanowires we need to include more

single-particle hole states to achieve convergence. The electron is confined

inside the QD and increasing the length of the nanowire doesn’t affect the

number of the confined single-particle electron states. On the other hand, by

increasing the QD height, the energy separation of the single-particle electron

states is reduced and more single-particle electron states are needed in the

calculation to obtain convergence.

3.4 Exciton states in type-II QDs in nanowires

The exciton properties of the type-II QDs are studied in this section. First, we

present the results for the SQD configuration. The DQD exciton properties are
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different from the SQD exciton properties. Because of the delocalized electron

and hole states in the SQD, the exciton oscillator strength has a smalle value

in this structure in comparison to that of the type-I SQD structure. We show

by confining the hole part of the exciton between two QDs in a type-II DQD

structure a large oscillator strength can be achieved.

3.4.1 Single-quantum-dot in a nanowire

The ground-state exciton probability density |Ψexc(rh, re)|2 at Re = Rh = 0

for the SQD geometry is shown in Fig. 3.3 (a) and (b) in the presence and

the absence of the Coulomb interaction, respectively. We observe that with-

out Coulomb interaction, the hole part of the exciton wavefunction is spread

all over the nanowire. In the presence of the Coulomb interaction, the hole

is attracted to the electron leading to a hole confined to the surroundings

of the QD. Fig. 3.3 (c) and (d) present the wavefunction |Ψexc(rh, re)|2 at

ze = zh = θe = θh = 0 which corresponds to the radial distribution of the

exciton wavefunction with and without the Coulomb interaction, respectively.

The figures indicate that the Coulomb interaction has made the exciton state

more confined toward the center of the nanowire which makes the exciton less

affected by the unwanted surface potentials. Because the electron mass and

the hole mass are not the equal, the radial wavefunction is not equally squeezed

by the Coulomb effect along the hole and the electron radial coordinates, as

it can also be seen in the Fig. 3.3 (c).

Fig. 3.4 (a) and (b) show the normalized oscillator strength OSN versus

the exciton energy Eex in the case of including and neglecting the Coulomb

interaction, respectively. A closer comparison of the figures reveals that the

Coulomb interaction is important and should not be neglected: The notable

effects are:

(1) The attractive Coulomb interaction causes a red shift of the exciton

transition energies of around 10 meV, which is the exciton binding energy.

The binding energy in the type-II QD has been enhanced in comparison to

the exciton binding energy in the bulk InP which was calculated 5.4 (meV) in

Sec. 3.1.

(2) The Coulomb interaction results in an increase of the ground-state
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Figure 3.3: Ground-state exciton probability density |Ψexc(rh, re)|2 for Re = Rh = 0
in the (a) presence and (b) absence of Coulomb interaction. Exciton probability for
ze = zh = θe = θh = 0 in the (c) presence and (d) absence of Coulomb interaction.
The geometrical parameters of the SQD nanowire are: dQD = 40 nm, hQD = 4 nm
and lNW = 60 nm.

exciton OSN value of about a factor of 20 compared to the case without the

Coulomb interaction.

(3) While the expansion of the ground-state exciton in the absence of the

Coulomb interaction only includes the Φ100
e ,Φ100

h single-particle components,

in the presence of the Coulomb interaction other components than the ground

single-particle states are also contribute. For example Table. 3.1 shows some

of the single-particle components which are contributing to the ground-state

exciton oscillator strength. For quantifying this contribution, we define the

parameter R as:

Rij =
∣∣∣ ∫

CijΦ
i
e(re)Φ

j
h(rh)dr∫

Σi,jCijΦi
e(re)Φ

j
h(rh)dr

∣∣∣2 (3.16)

which is the ratio of a specific single-particle electron and hole component in
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the oscillator strength overlap integral to the total amount of the oscillator

strength. In Table 3.1, we number the single-particle components from the

lowest energy states such that N0 corresponds to the single-particle electron

and hole components which have the lowest total energy (Ee + Eh). It can

be seen, the contribution of the components Φ100
e ,Φ200

h and Φ100
e ,Φ300

h is more

than Φ100
e ,Φ100

h . Table. D.1 shows the forty lowest energy single-particle states

contributing to the ground-state exciton oscillator strength which you can

see for more detail about the single-particle components contributing to the

oscillator strength.

(4) The energy difference between the ground exciton state and the first-

excited exciton state considerably increases in the presence of Coulomb inter-

action. It is important because it means there will be less pure dephasing of

the ground-state due to the virtual phonon decoherence processes [97].

I’ve brought more details about the exciton states in Appendix D. The

exciton wavefunctions correspond to the exciton states of the Fig. 3.4 (a) are

shown in Fig. D.1. Table. D.2 also provides the exact values of the oscillator

strength and the energy of the exciton states.

(a) (b)

Figure 3.4: Normalized oscillator strength in the lowest-energy part (a) when includ-
ing Coulomb interaction and (b) in the absence of Coulomb interaction. The SQD
nanowire geometrical parameters are dQD = 36 nm, hQD = 4 nm and lNW = 70 nm.

To investigate the influence of the nanowire boundaries on the excitonic

properties, we vary the length of the nanowire and study the spatial extent of
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i := (n, l,m)e j := (n, l,m)h R %

N0 1,0,0 1,0,0 13.1 %

N1 1,0,0 2,0,0 23.76 %

N6 1,0,0 3,0,0 18.26 %

N15 1,0,0 4,0,0 10 %

N31 1,0,0 5,0,0 4.91 %

Table 3.1: Some of the single-particle components which are contributing to the
ground-state exciton oscillator strength. The geometrical parameters of the SQD in
a nanowire are lNW = 70 nm, dQD = 36 nm, hQD = 4 nm.

the electron and hole parts of the wavefunction. We define the exciton sizes

Sze/Szh such that the electron/hole part of the exciton probability is 0.001 of

its maximum value along the ze/zh axis when Re = Rh = 0, see Fig. 3.3 (a).

Fig. 3.5 (a) reveals that Szh is increasing linearly with the nanowire length lNW

up to ≈ 60 nm after which the size assumes a constant value independent of

the nanowire length. Whereas for smaller nanowires the hole confinement is

defined by the nanowire boundary, for lNW > 60 nm the confinement mech-

anism along the nanowire axis is thus dominated by Coulomb attraction to

the localized electron. The dependence of the normalized oscillator strength

OSN and energy Eex of the ground-state exciton as a function of the nanowire

length is presented in Fig. 3.5 (b). We observe that these parameters also as-

sume length-independent values for nanowire lengths above ≈ 60 nm similarly

to the exciton size in Fig. 3.5 (a). We conclude that when the nanowire length

is larger than the exciton hole size along the z axis, the exciton properties

become independent of lNW .

The dependence of the ground-state exciton OSN as a function of the

nanowire diameter is shown in Fig. 3.6. When increasing the QD diameter,

the electron and the hole have more space to move around and the lateral

extension of the exciton increases, which means that the overlap integral in

(3.15) increases and, in turn, the oscillator strength. While a large diameter

initially appears attractive, on the other hand, by increasing the QD diameter

the energy separation ∆E between the ground-state exciton and first-excited

state decreases, as is shown in Fig. 3.6. For a nanowire of diameter above

≈ 60 nm (with hQD = 4 nm), the difference ∆E becomes smaller than 1 meV,

which makes it more challenging to experimentally address the ground-state
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(a)

(b)

Figure 3.5: (a) Hole part of the exciton size Szh, and (b) exciton energy Eex and
normalized oscillator strength OSN as a function of the nanowire length lNW for the
ground-state exciton. The SQD nanowire geometrical parameters are dQD = 40 nm
and hQD = 4 nm.

exciton . This is a first reason that we here are only considering nanowires with

diameters up to 60 nm. Furthermore, for sufficiently large diameters, where

the exciton size is no longer small compared to the optical wavelength, the

dipole approximation breaks down leading to a stabilization of the oscillator

strength for increasing diameter. [98]. However for the nanowires with dQD <

60 nm considered in this paper, the dipole approximation is valid and the

oscillator strength increases with diameter as also observed in [98].

The dependence of the exciton sizes Sze and Szh along the electron and hole

z axes as function of QD height hQD is presented in Fig. 3.7 (a). When hQD

decreases, the electron is pushed out of the QD and the exciton electron size

Sze increases. In the limit when hQD → 0, the electron is strongly delocalized

from the QD. This explains why, by decreasing hQD, the excitonOSN increases
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Figure 3.6: Ground-state exciton normalized oscillator strength OSN and energy
separation between the ground-state exciton and first-excited state ∆E as function
of the QD diameter dQD. The SQD nanowire geometrical parameters are lNW = 90
nm and hQD = 4 nm.

as observed in Fig. 3.7 (b): By decreasing hQD, the probability of finding the

electron and hole on the same site increases, leading to a larger overlap integral

in Eq. (3.15) and, in turn, an improved oscillator strength.

While a large exciton oscillator strength can clearly be obtained using a

large diameter dQD or a small QD height hQD, we note that in both cases

a spatially large exciton is obtained with small energy separation to the first

higher-order state. We thus conclude that the SQD geometry is not ideal for

quantum gating applications. In the next section, I show that by engineering

a DQD nanowire structure, it is possible to improve the exciton oscillator

strength while maintaining a spatially well-confined profile.

Finally, while a symmetric nanowire geometry in which the QD is placed

in the center of the nanowire was considered for all the SQD calculations

presented in this section, for realistic SQD nanowires the QD may not be

positioned exactly in the center. However, we have demonstrated that the

exciton is confined by the Coulomb interaction for nanowire lengths above

≈ 60 nm. Thus, for a QD separated by more than 30 nm from the closest

nanowire termination, the asymmetry is not expected to play any role.
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(a)

(b)

Figure 3.7: (a) Hole and electron part of the exciton sizes Szh and Sze and (b)
normalized oscillator strength OSN as a function of the QD height hQD for the
ground-state exciton. The SQD nanowire geometrical parameters are lNW = 90 nm
and dQD = 20 nm.

3.4.2 Double-quantum-dot in a nanowire

While excitons in isolated QDs are generally limited to one or two qubit op-

erations, the need for scalable qubit arrays has led to proposals of few-QD

nanostructures like DQDs for physical realization of universal quantum logic

gates [99, 100]. Additionally, pairs of vertically aligned type-I QDs for opti-

cally driven solid state quantum gates [101, 102, 103] have been suggested.

We will now show that type-II DQDs in nanowires are also promising for

implementing optically controlled quantum gates.

In the DQD nanowire structure shown in Fig. 3.8 (a), the single-particle

electron states are confined to the QDs as for the SQD configuration. Fig. (3.9)

shows the single-particle electron states in the z direction in a DQD struc-

ture. Fig. (3.10) shows the lowest energy single-particle hole states for a DQD
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structure. As we can see in this figure, most single-particle hole states are

predominantly localized in the outer nanowire regions surrounding the QDs.

However, there are a few single-particle hole states which mainly are localized

in the barrier region between two QDs, which we in the following refer to as

bound-state holes. As we see in this figure, in all of the twelve lowest energy

states, there is one single-particle hole state which is confined between the

QDs whereas all other states are spread in the outside region of the DQD.

Due to the strong localization of both the electron and the bound-state hole

wavefunctions to the inner DQD region, it is possible in the DQD configu-

ration to significantly improve the electron-hole overlap as compared to the

SQD configuration.

(a) (b) z

Eg

h

∆Ec

∆Ev

hQD1

I

hQD2

dQD

x
y

z

e1e2

Figure 3.8: (a) A DQD in a nanowire. (b) The conduction and the valence band
potential energy profiles along the z axis for the InP type-II DQD.

We first study the influence of the inner dot separation distance I on the

exciton properties. The normalized oscillator strength of the lowest-energy

bound-state exciton OSN as function of I is presented in Fig. 3.11 (a). We

observe an optimum value of I where the best trade-off between bound-hole

leakage through the QD barriers and electron state penetration into the central

barrier is obtained. Here, the OSN value of the exciton transition is maximized

and is more than 4 times larger than that of the ground-state exciton in a SQD

nanowire for the same values of hQD and dQD. Fig. 3.11 (b) shows the exciton
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E1
ze = 58.65 (meV)

|φQW (z)|2

E2
ze = 92.82 (meV)

Figure 3.9: Probability density of the ground- and the first-excited states in the z
direction |φQW (z)|2 of the electron in the conduction band of a type-II DQD nanowire.
Geometrical parameters of the structure are lNW = 90 nm, I = 2.8 nm, hQD1 =
hQD2 = 4 nm.

electron and hole sizes along the ze and zh axes. We observe that the exciton is

significantly more localized along the zh axis compared to the SQD nanowire

[cf. Fig. 3.7 (a)]. This feature of the DQD nanowire is a main asset making it

highly suitable as a platform for optically controlled quantum gates.

The dependence of the bound exciton normalized oscillator strength OSN

and energy Eex on the QD diameter dQD is depicted in Fig. 3.12. As for the

SQD geometry, we observe that OSN increases with diameter within the dipole

approximation. By choosing a DQD nanowire of ≈ 50 nm, we can achieve a

large oscillator strength, which is a key parameter in quantum gates. Again,

the diameter should be chosen as a trade-off between large oscillator stength

and sufficient energy level difference between the exciton and the first higher

order excitonic state as discussed in Sec. 3.4.1.

The exciton normalized oscillator strength in the lowest energy part for the

DQD configuration is presented in Fig. 3.13. We observe a dominating peak

at ≈ 78 meV, which corresponds to the lowest-energy bound-state exciton.

The oscillator strength of the bound exciton is thus much stronger than other

excitonic transitions in the lowest-energy part of the excitonic spectrum for

the DQD structure. This feature makes selective excitation of the bound-state

exciton feasible in experiments. Also since the real-space overlap between the

interesting bound-state exciton and close-in-energy unbound-state excitons is

small, phonon decay processes can be neglected [97].

Table (3.2) shows the most important components contributing to the OS
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E1
zh = 0.357 (meV) E2

zh = 1.43 (meV) E3
zh = 3.22 (meV)

E4
zh = 5.72 (meV) E5

zh = 8.93 (meV) E6
zh = 12.86 (meV)

E7
zh = 17.49 (meV) E8

zh = 22.80 (meV) E9
zh = 24.81 (meV)

E10
zh = 28.89 (meV) E11

zh = 35.60 (meV)

Figure 3.10: Probability density of the lowest-energy single-particle hole states in the
z direction |φQW (z)|2 in the valence band of a type-II DQD nanowire. Geometrical
parameters of the structure are lNW = 90 nm, I = 2.8 nm, hQD1 = hQD2 = 4 nm.

of the bound-state exciton. We see that the bound single-particle hole state

Φ900
h is the most contributing hole component, i.e, more than 90% of the

total amount. For this reason, we consider a simplified single-particle basis

which only includes the bound Φ900
h component for the single-particle hole

state. Fig. (3.14) shows the calculated OS by using the simplified basis in

comparison to the regular complete basis. As it can be seen in the figure
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(a)

(b)

Figure 3.11: (a) Normalized oscillator strength OSN for the lowest-energy bound-
state exciton, and (b) size Szh along the zh axis and Sze along the ze axis as a
function of inner dot separation I. The DQD nanowire geometrical parameters are
lNW = 90 nm, dQD = 52 nm and hQD1 = hQD2 = 4 nm.

i := (n, l,m)e j := (n, l,m)h R %

N123 1,0,0 8,0,0 3.92 %

N132 1,0,0 9,0,0 64.27 %

N398 1,0,-1 9,0,1 10.1 %

N650 1,0,1 9,0,1 10.1 %

Table 3.2: Some of the single-particle components which are contributing to the
ground-state exciton oscillator strength. The geometrical parameters of the type-II
DQD in a nanowire lNW = 90 nm, dQD = 36 nm, hQD1 = hQD2 = 4 nm, I = 2.8 nm.

there is a small difference between them while the computation time is quite

different. While for the simplified basis the calculation is carried out in a few

minutes using a typical personal computer, for the regular basis it takes 30

hours using ten paralleled cluster computers. Then using the simplified basis

in the DQD configuration is a good approximation in the calculations.
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Figure 3.12: Normalized oscillator strength OSN and energy Eex as a function of
the nanowire diameter dQD for the lowest-energy bound-state exciton. The DQD
nanowire geometrical parameters are lNW = 90 nm, hQD1 = hQD2 = 4 nm and
I = 2.8 nm.

Figure 3.13: The exciton normalized oscillator strength in the lowest-energy part.
The DQD nanowire geometrical parameters are lNW = 90 nm, hQD1 = hQD2 = 4
nm, I = 2.8 nm and dQD = 36 nm.

For realistic structures, asymmetry of the DQD geometry can occur due

to a non-ideal fabrication process. We study in Fig. 3.15 the influence of

the QDs height difference ∆hQD = hQD2 − hQD1 on the oscillator strength

of the lowest energy bound-state exciton for a fixed QD1 height of hQD1 =

4 nm. We observe that upon increasing the height of QD2 by 0.5 nm the
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Figure 3.14: The bound-state exciton normalized oscillator strength OSN as a func-
tion of the QD diameter dQD when the regular complete basis (blue) and the sim-
plified basis (red) are considered in the calculation. The DQD nanowire geometrical
parameters are lNW = 90 nm, I = 2.8 nm, and hQD1 = hQD1 = 4 nm.

Figure 3.15: The bound-state exciton normalized oscillator strength OSN as a func-
tion of the difference between the height of the two quantum dots in the DQD
structure ∆hQD = hQD2 − hQD1. The DQD nanowire geometrical parameters are
lNW = 90 nm, I = 2.8 nm, dQD = 36 nm and hQD1 = 4 nm.

oscillator strength decreases by 6 %, while a height decrease by 0.5nm leads

to an increase of the oscillator strength by 2 %.
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Parameters value

electron mass m∗e 0.067m0

heavy-hole mass m∗h 0.38m0

∆Ec 400 meV

∆Ev 215 meV

ε 12.9

Eg of GaAs 1.42 eV

electron in-plane parabolic potential ~ωe
for a nanowire of 80 nm diameter

20 meV

hole in-plane parabolic potential ~ωh for
a nanowire of 80 nm diameter

3.5 meV

Table 3.3: Type-I GaAs/AlGaAs QD material parameters [32].

3.5 Exciton states in type-I QDs in nanowires

Here, we consider type-I QDs in a nanowire. Computation is less demanding

in this configuration in comparison to the type-II structure where there are

many single-particle hole states in the valance band close in the energy which

are contributing to the excitonic effects. In type-I QDs there are few single-

particle electron and hole states confined inside the QD in the conduction and

the valence band, respectively. We consider GaAs/AlGaAs type-I QDs in the

calculation for which the material properties are listed in the Table. 3.3.

Figure 3.16 shows the OSN versus the QD height. If we compare this

figure to Fig. 3.7, we see significantly larger oscillator strength can be achieved

in type-I SQD in comparison to the type-II SQD. We showed in Sec. 3.4.2

large oscillator strength comparable to the type-I structure can be achieved

by engineering a type-II DQD nanowire.

As it is shown in Fig. 3.16, by increasing the QD height both the electron

and the hole become more confined inside the dot and the wavefunctions’

overlap becomes bigger and subsequently the OS will increase. On the other

hand, by reducing the QD height, the electron and the hole wavefunction

penetrate outside of the QD where the wavefunctions exponentially decreases

and the overlap of the wavefunctions becomes smaller and as a result the

oscillator strength reduces.

By increasing the QD height, the electron and the hole will get more space
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to move around and get less attracted to each other. For this reason the

binding energy (EB) of the exciton as is shown in the Fig. 3.16 (b) reduces

by increasing the QD height. When the QD height is much bigger then the

exciton size in the z direction, the exciton is like an bulk exciton and its

binding energy will be similar to the bulk exciton binding energy. Then in the

limit where the QD height is big enough, we expect the binding energy reduces

to the bulk exciton binding energy which is around 5 (meV) for the bulk GaAS

exciton. Fig. (3.16) also shows that the EB is reducing by increasing the QD

height.

(a)

(b)

Figure 3.16: (a) Normalize ground-state exciton oscillator strength OSN , (b) exciton
energy Eex and binding energy EB as a function of the QD height hQD. The geo-
metrical parameters of the type-I SQD in a nanowire are: lNW = 60 nm, dQD = 20
nm.

Changing the length of the nanowire doesn’t change the exciton properties

of the type-I QD structure since it doesn’t affect the single-particle electron

and hole states which both are confined inside of the QD. The behavior of the

exciton properties in type-I structure by increasing the QD diameter is similar
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to the type-II QDs. By increasing the QD diameter, the exciton size increases

in both cases, then the overlap integral in Eq. (3.15) has bigger value which

results in a larger OS.

Fig. (3.17) shows the normalized oscillator strength OSN in the lowest

energy part in the presence and absence of the Coulomb interaction. As it

can be seen, the Coulomb interaction has increased the ground-state exciton

OSN more than two times form 89.6% to 215%. As it was expected, this

difference is not as big as the type-II configuration case which was discussed

in Sec. 3.4.1, since the electron and the hole in the type-I configuration are

confined also by the band structure potential profile and the Coulomb at-

traction makes them more confined. While in the type-II configuration the

Coulomb attraction is the only potential which attaches the hole to the elec-

tron and it has more profound affect in this configuration in comparison to

the type-I configuration. Including Coulomb interaction has also increased the

energy difference between the ground-state exciton and the first excited-state

exciton. Table 3.4 shows the important single-particle elements responsible

for the ground-state exciton oscillator strength. We see unlike type-II QDs,

here the ground-state exciton oscillator strength is mainly comes from the

lowest-energy single-particle electron and hole states Φ100
e and Φ100

h . Table

D.3 presents the forty lowest contributing single-particle elements which you

can see for more detail about the single-particle components responsible for

the ground-state exciton oscillator strength.

We also investigate the Coulomb effect in the type-I DQD nanowire. The

exciton state in this structure depends on the I the distance between the QDs.

The left column of the Fig. 3.18 shows the wavefunction of the ground-state

uncorrelated electron-hole pair in the type-I DQD structure for four different

values of I. We see in the all cases there is the same probability to find (1)

both the electron and the hole in the right QD, (2) both the electron and

the hole in the left QD, (3) the electron in the left QD and the hole in the

right dot, and (4) the electron in the right QD and the hole in the left QD.

The right column of the Fig. 3.18 shows the results when we have included

the Coulomb interaction to calculate the ground-state exciton. We observe

its more probable to find the correlated electron-hole pair (exciton) both in

either the left QD or in the right QD (called direct exciton) than the electron
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(a) (b)
Coulomb No Coulomb

Figure 3.17: Normalized oscillator strength OSN in the lowest-energy part (a) when
the Coulomb interaction is been included and (b) in the absence of the Coulomb
interaction. Type-I SQD in nanowire geometrical parameters are lNW = 60 nm,
dQD = 30 nm, hQD = 2 nm. After including CI: Eex1 − Eex0 = 6.12 (meV), before
including CI: Eex1 − Eex0 = 3.97 (meV).

i := (n, l,m)e j := (n, l,m)h R %

N0 1,0,0 1,0,0 60.1 %

N17 1,0,-1 1,0,1 10.1 %

N31 1,0,1 1,0,-1 10.1 %

N49 1,0,-2 1,0,2 2.9 %

N63 1,0,2 1,0,-2 2.9 %

Table 3.4: Some of the single-particle states which are contributing to the ground-
state exciton oscillator strength of a type-I SQD nanowire. The geometrical param-
eters of the structure are lNW = 60 nm, dQD = 30 nm, hQD = 2 nm.

part of the exciton in the left QD and the hole part of the exciton in the right

QD (called indirect exciton) or the other way around. It can also be seen

in the Fig. 3.18, this probability increases by increasing the distance between

the QDs such that in the last raw of the figure for which I = 4 (nm) the

probability of finding indirect exciton is almost zero.

3.6 Validation of the results

There are very limited available theoretical and experimental works on type-II

crystal-phase InP QDs [38, 28, 29]. Hence, our ability to validate our method
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No Coulomb Coulomb

(a)

(b)

(c)

(d)

Figure 3.18: Ground-state exciton probability densities |Ψ(re, rh)|2 when Re = Rh =
0 in a type-I GaAs/AlGaAs DQD nanowire. The geometerical parameters of the
DQD are: dQD = 20 nm, hQD1 = hQD2 = 4 nm and (a) I = 1 nm, (b) I = 2 nm, (c)
I = 3 nm, (d) I = 4 nm.
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by comparison with available data is very limited. To overcome this problem,

we have developed a formalization that can be used to verify some of our

simulated results. Let us rewrite the exciton Hamiltonian:

H =
∑
k=e,h

( p2
k

2m∗k
+

1

2
mkω

2
kR

2
k + Vk(z)

)
− e2

ε
√

(Re −Rh)2 + (ze − zh)2
(3.17)

As discussed in Sec. 2.3, the first part of the right-hand side of Eq. (3.17)

corresponds to the single-particle electron and hole Hamiltonian and the last

term is the Coulomb Hamiltonian. Here, we consider the parabolic transverse

potential as in Eq. (2.5). To simplify the above Hamiltonian, we use the center

of mass and the relative motion coordinates as:

R =
m∗eRe +m∗hRh

M
, ρ = Re −Rh (3.18)

where M = m∗e +m∗h is the total mass of the exciton, and µ = m∗em
∗
h/M the

exciton reduced mass. Now, we define the relative momentum and the center

of mass momentum as:

p =
~
i
∇ρ , P =

~
i
∇R (3.19)

by replacing (3.18) in (3.19) we have:

pe = p+ P
me

M
ph = −p+ P

mh

M
(3.20)

By substituting (3.20) and (3.18) in (3.17) and by considering ωh = αωe (α is

constant):

H =
P 2

2M
+

1

2
(me + α2mh)ω2

eR
2 +

p2

2µ
+

1

2

µ(mh + α2me)

M
ω2
eρ

2

+ 2µ(1− α2)ω2
eρR+

p2
ze

2me
+

p2
zh

2mh
+ Ve(ze) + Vh(zh)− e2

ε
√
ρ2 + (ze − zh)2

(3.21)

We assume that α = 1 in the above equation which means ωh = ωe = ω.

This is a rough approximation as ωe is a few times bigger than the ωh [32].

However, this assumption is adopted here to find a solution to (3.21). It’s

the main reason that why this method is not a general method to solve the

exciton problem. By this assumption, the above Hamiltonian simplifies to:

H =
P 2

2M
+

1

2
Mω2R2+

p2

2µ
+

1

2
µω2ρ2+

p2
ze

2me
+
p2
zh

2mh
+Ve(ze)+Vh(zh)− e2

ε
√
ρ2 + (ze − zh)2

(3.22)
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Now, the center of mass part and electron-hole relative motion part are sep-

arable such that H = HR + Hze,zh,ρ and the exciton wavefunction can be

written as:

Ψ(ze, zh, R, ρ) = φ(R)φ(ze, zh, ρ) (3.23)

where φ(R) is the wavefunction of a harmonic oscillator of Hamiltonian

HR =
P 2

2M
+

1

2
Mω2R2 (3.24)

with eigenenergies of ER = ~ω(n + 1
2). φ(ze, zh, ρ) in (3.23) is the eigenstate

of the Hamiltonian

Hze,zh,ρ =
p2

2µ
+

1

2
µω2ρ2 +

p2
ze

2me
+
p2
zh

2mh
+Ve(ze)++Vh(zh)− e2

ε
√
ρ2 + (ze − zh)2

(3.25)

This three-variable partial differential equation can be solved with different

tools. We used COMSOL finite-element-method. By solving this equation we

find the exciton energy and wavefunction in SQD and DQD type-I and type-II

structures.

In this method of solving Schrödinger equation, we assumed a parabolic

potential in the transverse direction but, as we discussed in Sec. 2.2.1, it is not

a realistic assumption, whereas the infinite potential well is a more realistic

description of the structures. However, we cannot solve the Hamiltonian (3.17)

by considering an infinite well in the transverse direction. For this reason,

the method developed here is restricted to the parabolic transverse potential,

which limits the practicability of this method for calculating the exciton state.

For a type-II InP crystal-phase SQD nanowire, we calculate the ground-

state exciton energy corresponding to the relative motion of the electron-

hole pair to be 119.2 meV which is the lowest eigenvalue of the Hamiltonian

(3.25). By adding the center of mass energy of 60 meV, corresponding to the

lowest eigenvalue of (3.24), the total energy of the exciton (excluding band gap

energy) is 179 meV which perfectly matches the result obtained by using the

configuration-interaction method. In both methods, we considered the equal

in-plane parabolic potentials for the electron and hole as ~ωe = ~ωh = ~ω =

60 meV. Figs. 3.19 (a) and (b) show the exciton wavefunction in the z and

in the relative motion ρ coordinates, respectively. Here, we observe the same

effect of the Coulomb interaction which we had seen previously by using the



3.7. Summary 65

configuration-interaction method. The Coulomb interaction makes the hole

state attached to the electron around the QD.

20 400-20-40

zh (nm)

ze (nm)0

20

40

-20

-40

zh (nm)

ρ
40

20

40200-20-40

(a) (b)

Figure 3.19: Ground-state exciton wave function in a type-II InP crystal-phase QD
nanowire when (a) ρ = 0 and (b) ze = 0. The geometrical parameters of the structure
are: hQD = 4 nm, lNW = 80 nm, dQD = 50 nm. In this calculation we considered a
parabolic transverse potential with ~ωe = ~ωh = 60 meV.

3.7 Summary

By using an efficient method based on the configuration-interaction description

of the exciton state, we analyzed the main properties of excitons in type-I and

type-II single and double quantum dots in nanowires.

First, we examined the convergence of the method. For calculating the 5-

variable Coulomb integral, we need to discretize the variables which should be

done very carefully. Also, the exciton state is expanded on the single-particle

states. We need to consider enough single-particle states to represent exci-

ton state with a good accuracy. This depends on the QD and the nanowire

size. We calculated and analyzed the energy spectra, oscillator strengths, and

electron and hole exciton sizes as a function of the all relevant geometrical

parameters. In type-II SQD nanowire, we showed the Coulomb interaction is

sufficient to bind the hole part of the exciton to the QD in a single-quantum dot

geometry, such that the exciton properties become insensitive to the length for

nanowire lengths larger than the exciton size. However, in the single-quantum



66 Chapter 3. Coulomb interaction

dot geometry the oscillator strength of the ground-state exciton is significantly

reduced compared to a type-I system. While the oscillator strength of the exci-

ton transition in a single-quantum dot in the limit of infinitely small QD height

increases, the exciton is not spatially confined to the QD and thus not suitable

for quantum gate applications. We have then proposed a double-quantum dot

structure for which the exciton oscillator strength can be increased to more

than four times its value compared to that of a single-quantum dot nanowire

while the exciton remains well-confined to the double-quantum dot region.

This structure featuring a combination of separated electron and hole local-

ization and a large exciton oscillator strength represents a promising platform

for implementing two-qubit quantum gates.

Although the type-I QDs are studied extensively, but there is still some

interesting new features which we brought in this chapter.

In the last section, we validated the calculation results of the configuration-

interaction method. By assuming an equal transverse parabolic potential

for the electron and the hole, we could reduce the 6-dimensional exciton

Schrödinger equation to a 3-dimensional equation. Then, we solved the 3-

dimensional partial differential equation by using finite-element-method in

COMSOL. The result was perfectly matching with the results from the configuration-

interaction method.
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Troiani et al. [19] proposed to use the spin of an excess electron in a type-I

DQD as a qubit realization. In their laterally arranged DQD array, qubits are

manipulated by means of the all-optical STIRAP technique. As I explained

in Chapter 2, STIRAP is an efficient method for transferring populations adi-

abatically between two discrete quantum states by coupling them using two

radiation fields via an intermediate state which is usually a radiatively de-

caying state [81, 80]. When the adiabatic condition is fully satisfied, the

evolution of the system is robust with respect to control parameter varia-

tions such as the laser intensity, the pulse timing and the pulse shape. This

property has made STIRAP a popular tool in optical quantum information

processing [104, 105, 106]. The coupling can be optically turned on and off,

so that single- and two-qubit operations can be selectively chosen as required

in a scalable quantum computation scheme [1]. However, the charged exci-

ton state of the type-I DQD, used as the intermediate state in the proposed

scheme in Ref. [19], does not allow for good overlap between the hole and both

electron wave functions simultaneously. This simultaneous coupling is essen-

tial for implementing high-fidelity quantum gates by means of the STIRAP

gating technique.

On the other hand, the type-II band structure allows for the possibility

of good overlap between electrons of neighboring QDs with a common hole

state. We showed in the previous chapter that the otherwise weak transition

67
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strength of the exciton of a crystal-phase type-II QD in an InP nanowire can

be increased by implementing a DQD structure leading to an improved overlap

between the electron and hole parts confined inside the QD and the barrier,

respectively.

The single-qubit rotation by using STIRAP technique [107] (briefly pre-

sented in Sec. 4.2) was developed in 2002. Type-I DQD configurations to

implement single- and two- qubit rotations by using STIRAP have also been

introduced before [19]. Our contribution here is that we show how to overcome

the limitations of the scheme in Ref. [19] by using the novel type-II DQD-in-

a-nanowire system instead of the conventional type-I configuration. By cal-

culating the transition dipole moments, we quantitatively illustrate type-II

QDs are significantly better than type-I QDs for quantum gating by STI-

RAP. By developing a multiband formalism we show that a charged-exciton

featuring a mixed-hole part acting as an intermediate state provides essential

coupling with three ground-states of a DQD to perform qubit rotations by

STIRAP. We then introduce a system consisting of two neighboring DQDs in

a nanowire each encoding one qubit. By using the configuration-interaction

method, we show that the strong Coulomb interaction between the charges,

which causes a significant shift of the STIRAP transition frequencies, can be

exploited to efficiently perform high fidelity conditional two-qubit CNOT op-

eration on the two qubits. Importantly, we also show that the implementation

is robust against the decoherence posed by spin and charge fluctuations in the

environment.

The chapter is organized as follows. First, we compare the STIRAP gating

in a three-level system of a type-I DQD with a type-II DQD. The basic theory

of the single-qubit rotation is presented. Then, we show how to provide a

four-level scheme in a type-II DQD necessary for single-qubit rotations. Next,

we illustrate the scheme for implementing CNOT gate in a two-DQD system.

We calculate the fidelity of the single- and two-qubit gates and evaluate their

robustness against the charge and spin noises.
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4.1 Physical implementation of the three-state

STIRAP in type-II double-quantum-dot

We consider ultra-clean crystal-phase type-II DQD nanowire shown schemat-

ically in Fig. 3.8 (a) as a platform for the optical quantum gating scheme. As

we explained in the previous chapter, in these structures, the single-particle

electron states reside inside the QDs. We consider the QDs with different

heights such that hQD1 6= hQD1 to have two localized electron states in the

QDs with different energy levels, as it is shown in Fig. 4.1. The spatial over-

lap of the electron ground-states of the individual QDs must be negligible

to suppress tunneling between electron states during gate operations. I also

described in Chapter 3, most single-particle hole states are predominantly lo-

calized in the outer nanowire regions surrounding the DQD. However, there

are a few single-particle hole states which are mainly localized inside the bar-

rier region between two QDs [cf. Fig. 3.10]. We are particularly interested

in this hole state confined inside the barrier since the corresponding exciton

has promising features for application in quantum computing by means of the

STIRAP process.

E1
ze = 50.08 (meV)

|φQW (z)|2

E2
ze = 60.20 (meV)

ze (nm) ze (nm)

Figure 4.1: Single-particle electron probability densities |φQW (z)|2 in an asymmetric
type-II DQD nanowire. The geometrical parameters of the structure are: hQD1 = 6
nm, hQD2 = 5 nm, lNW = 60 nm, dQD = 20 nm and I = 10 nm.

Figure 4.2 shows the STIRAP scheme between two electron states |e1〉 and

|e2〉 of a DQD in a type-I and in a type-II configurations. The interconnecting

state in both cases is a charged exciton state |X−〉, i.e., an electron-hole
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complex consisting of one electron in each QD and a single hole. Initially,

the entire population is in the single-electron ground-state |e1〉 of QD1. The

pump pulse induces the transition between the states |e1〉 and |X−〉, and the

Stokes pulse enables the transition between the states |X−〉 and |e2〉, where

|e2〉 is the single-electron ground-state of QD2. The coupling strengths of

the pump P and Stokes S transitions are defined by the Rabi frequencies

ΩP (t) = dPEP (t)/~ and ΩS(t) = dSES(t)/~ with transition dipole moments

dP,S and electric field of the lasers EP,S(t).

(a)

Type-I DQD

|e1〉
|e2〉

|X−〉

(b)

|e1〉
|e2〉

|X−〉

ΩP ΩS

ΩP
ΩS

Type-II DQD

Figure 4.2: The STIRAP level scheme and electron/hole wave functions in (a) type-I
and (b) type-II DQDs.
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(a)
Type-I

(b)

Type-II

Figure 4.3: Transition dipole mements dP and dS in (a) type-I GaAs/AlGaAs DQD
in a nanowire (b) type-II crystal-phase InP DQD in a nanowire. Geometerical pa-
rameters of the structure: hQD1 = 5 nm, hQD2 = 3 nm, dQD = 40 nm, and lNW = 70
nm..

As illustrated in the Fig. 4.2 (a), while the overlap between the hole and

electron wave functions in the left dot is large in the type-I configuration,

the overlap between the electron in the right dot and the hole in the left

dot is very small. Figure 4.3 (a) shows the calculated dP and dS for a type-I

GaAs/AlGaAs DQD in a nanowire as a function of I the distance between

the QDs [cf. Fig 3.8 (a)]. The dipole moments calculation detail is presented

later in this chapter and the material parameters used in the calculation are

listed in Table 3.3. As we observe in this figure, the dipole moment dP which

is proportional to the overlap between |e1〉 and |X−〉 is nearly zero and the

intermediate state |X−〉 couples very weakly to |e1〉. For this reason, the STI-

RAP gating scheme in the type-I DQD configuration is highly inefficient. On

the other hand, as shown in Fig. 4.2 (b), the hole in the type-II configuration
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is localized in the barrier region between the QDs and thus overlaps with the

electrons of both QDs. Figure 4.3 (b) shows the calculated dP and dS in a

type-II crystal-phase InP DQD in a nanowire as a function of the distance

between the QDs I. As we see in this figure, while the dipole moment dS is

not as large as that of the type-I configuration, the magnitudes of the overlaps

between the hole and the right electron proportional to dP and the hole and

the left electron proportional to dS are similar. This property leads to Rabi

frequencies ΩP and ΩS of similar magnitudes and represents a major asset of

the type-II configuration.

4.2 Single-qubit rotation by stimulated Raman

adiabatic passage

Here, we shortly present the basic theory of the single-qubit rotation. This is

developed by Z. Kis, and F. Renzoni [107] in 2002. They showed in a four-

level system shown in Fig. 4.4 any arbitrary rotation with the axis and angle

of the rotation being uniquely defined by the parameters of the laser pulses is

possible. In their scheme three ground-states |1〉, |2〉, and |3〉 are coupled via a

single excited-state |e〉 by different laser fields. Each laser field drives only one

transition, due to their polarizations and/or frequencies. The ground-states

|1〉 and |2〉 define the qubit, while the state |3〉 is an auxiliary state that will be

occupied only in the intermediate phase of the rotation procedure. In [107], it

has been assumed that the detunings of the three laser fields are the same, i.e.

the system is in a multi-photon resonance such that ∆0 = ∆1 = ∆2 = 0. They

have also assumed d0 = d1 = d2 = 1, and the pump pulses E0(t) = EP (t) cosχ

and E1(t) = EP (t) sinχ exp(iη), couple |0〉 and |1〉 to |e〉, respectively. Here,

EP (t) = AP exp(−t/τ)2 and χ and η are phase factors defined by the desired

gate operation. The Stokes pulse E2(t) = A2 exp(−(t+ ∆T )/τ)2 couples |2〉
to |e〉. EP (t) and E2(t) are Gaussian shaped laser pulse envelops with ∆T time

separation between the maxima of the pulses and the pulse width of τ/
√

2.

The Hamiltonian H(t) of this four-state system in the rotating-wave ap-
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|e〉

|0〉 |1〉 |2〉

Ω0 Ω1 Ω2

Figure 4.4: Interaction scheme for the rotation of a qubit by STIRAP. The three
ground-states |0〉, |1〉, and |2〉 are coupled to the excited state |e〉 by three different
laser fields. The qubit is defined by the ground states |0〉 and |1〉. State |2〉 is an
auxiliary state occupied only in the intermediate phase of the rotation procedure.

proximation RWA is given by:

H(t) = ~∆ |e〉 〈e|+ ~
2

(
Ω0(t) |0〉 〈e|+ Ω1(t) |1〉 〈e|+ Ω2(t) |2〉 〈e|+H.c.

)
(4.1)

The qubit rotation procedure in this four-level system is implemented by

using two STIRAP process as follows:

Step1 In the first STIRAP, the fields 0 and 1 are the pump fields, whereas

the field 2 plays the role of the Stokes field. The pulses are applied in the

counter-intuitive order, i.e., the Stokes pulse arrives before the pump ones.

The pump fields 0 and 1 define a dark (or non-coupled) state:

|D〉 = − sinχ |0〉+ eiη cosχ |1〉 (4.2)

in the subspace spanned by the states |0〉, |1〉. The orthogonal state (the

coupled or bright state) |C〉 is:

|C〉 = cosχ |0〉+ e−iη sinχ |1〉 (4.3)

from which the population can be transferred to the state |2〉 if all the three

fields are on. By decomposing the initial superposition |i〉 onto |D〉 and |C〉:

|i〉 = 〈D|i〉 |D〉+ 〈C|i〉 |C〉 (4.4)
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with

〈D|i〉 = −α sinχ+ βe−iη cosχ

〈C|i〉 = α cosχ+ βe−iη sinχ
(4.5)

The Hamiltonian operator of Eq. (4.1) is written as:

Ĥ(t) = ~∆ |e〉 〈e|+ ~
2

(
ΩP (t) |C〉 〈e|+ Ω2(t) |2〉 〈e|+H.c.

)
(4.6)

In fact the Hamiltonian (4.6) describes an ordinary STIRAP process in a

three-level system. It can be easily shown that in the adiabatic limit the

system is left, after the first pulse sequence, in the superposition of the three

ground-states:

|ψ〉 = 〈D|i〉 |D〉 − 〈C|i〉 |2〉 (4.7)

without populating the excited state during the evolution. We recognize in

Eq. (4.7) that the component of |i〉 along the noncoupled state |D〉 is un-

touched, whereas the orthogonal bright component is transferred to the target

state |2〉.
Step2 The second step of the rotation procedure is a reverse STIRAP

process that maps the state |2〉 back to the qubit subspace. The phase of the

field 2 is shifted by ζ in comparison to the field 2 in the first STIRAP. The

pulses are applied in the reverse order with respect to the first step of the

rotation procedure: the pulses 0 and 1 which play now the role of the Stokes

pulses! arrive before the pulse 2 the pump. The fields 0 and 1 have the same

Rabi frequencies and the same phases as in the first step of the procedure.

In this way, the state |ψ〉 prepared by the first STIRAP process, Eq. (4.7),

is initially a dark state for the three laser pulses because: (1) the state |2〉
is initially not coupled (counter-intuitive pulse order); (2) the state |ψ〉 has

no component along |C〉, therefore it is decoupled from the fields 0 and 1.

The darkness of |ψ〉 allows the implementation of the second STIRAP process

although all the ground-states are initially populated. In this process, the

state |2〉 is transferred back to the qubit subspace. More precisely, it will be

mapped on the coupled state |C〉 because the state |D〉 is a decoupled state

also in this second STIRAP process. The component of the initial qubit |i〉
along the non-coupled state |D〉 and the new component obtained by mapping
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back the state |2〉 will differ by a phase of ζ. Clearly, for ζ = 0 the system goes

back to the initial state |i〉. In a similar calculation that yielded Eq. (4.7), it

can be shown that in the adiabatic limit the component of |ψ〉 along |2〉 is

mapped back onto the input subspace such that:

〈2|ψ〉 |2〉 → e−iζ〈2|ψ〉 |C〉 (4.8)

so the final state becomes:

|f〉 = 〈D|i〉 |D〉+ e−iζ〈C|i〉 |C〉 (4.9)

By substituting the expressions (4.5) for the coefficients in Eq. (4.9) we ob-

tain the single-qubit rotation around the n = (sin 2χ cos η, sin 2χ sin η, cos 2χ)

axis by an angle ζ:

|f〉 = e−iζ/2Rn(ζ) |i〉 , (4.10)

where Rn = e−i
ζ
2n.σ̂ is the rotation operator and σ̂ = (σx, σy, σz) are the Pauli

operators. In the single-qubit rotation (4.10), −ζ/2 appears in the output as a

global phase which may be incorporated into the algorithm being implemented

on the quantum computer [107].

Fig. 4.5 shows the time evolution of the laser fields and the populations

of the four-level states of the STIRAP scheme for implementing a single-

qubit NOT operation around the x axis which mathematically is a rotation

around n = (1, 0, 0) axis by an angle π. Here, the initial state of the system is

0.5 |0〉+0.866 |1〉, as an example. By choosing appropriate values for χ, η, and

ζ which control the pump and the Stokes laser pulses relative amplitude and

phase, any arbitrary single-qubit rotation can be performed. Other STIRAP

parameters ∆T , τ , and EP,S are chosen such that the adiabatic condition

Eq. (2.34) is met. Also, in this example I chose laser pulses of a few hundreds

of GHz amplitude to perform the operation in a few tenths of nanosecond.

The operation time can be reduced or increased by respectively increasing

and decreasing the laser pulses intensity.

In the next section, we explain our proposed type-II DQD nanowire as a

hardware to implement the single-qubit rotation discussed in this section.
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(a)

(b)

Figure 4.5: The time evolution of the (a) laser fields and (b) the four-level states’
population in a single-qubit NOT operation around the x axis. The initial state is
0.5 |0〉 + 0.866 |1〉 and the parameters used in this calculation: χ = −π/4, η = 0,
ζ = π, τ = 33.5 ps, ∆T = 27 ps, ∆0 = ∆1 = ∆2 = 0, dP = dS = 1, AP = 282 and
A2 = 200 GHz.

4.2.1 Physical implementation of the four-state system in a

type-II double-quantum-dot

We initially consider a single electron in QD1 of the DQD structure. By

applying a uniform magnetic field B in the Voigt configuration along the x

axis, the electron spin states
∣∣Sx = ±1

2

〉
are split by µBgeB the Zeeman effect

as shown in Fig. 4.6. Here, µB is the Bohr magneton and ge is the electron

spin g factor. The electron eigenstates used to encode the logical qubit of the

DQD are then direct products of the electron position and the spin degrees of

freedom given by:

|0〉 = |fe1〉 ⊗
∣∣∣∣Sx = +

1

2

〉
, |1〉 = |fe1〉 ⊗

∣∣∣∣Sx = −1

2

〉
, (4.11)

where |fe1〉 is the ground-state electron envelope function in QD1.

As it was discussed in the previous section, in a system featuring three

ground-states coupled to an excited-state, an arbitrary single-qubit rotation



4.2. Single-qubit rotation by stimulated Raman adiabatic passage 77

can be performed using two STIRAP processes. In the DQD configuration,

we use the state |2〉 defined as:

|2〉 = |fe2〉 ⊗
∣∣∣∣Sx = −1

2

〉
, (4.12)

together with the states |0〉 and |1〉 defined in Eq. (4.11) as the three ground-

states of the single-qubit rotation scheme. |fe2〉 in Eq. (4.12) is the ground-

state electron envelope function in QD2 of the DQD.

The excited state allowing optical coupling between the input space α |0〉+
β |1〉 and the state |2〉 is a negatively charged-exciton state |X−〉 as shown in

Fig. 4.6. Band mixing is heavy in QDs and the effective k point is located at

a finite Γ point, substantially away from the Γ point, such that the charged

exciton’s hole part is a mixed-state. Due to this mixing, as we show in the

next section, the charged exciton state couples with all the electron states |0〉
and |1〉 in QD1 and |2〉 in QD2. The coupling strength of the charged exciton

state to |0〉, |1〉, |2〉 depends on the bulk transition matrix elements M and

the overlap of the envelope functions as explained in Sec. 3.2.

The differences between the laser frequencies and the corresponding tran-

sition frequencies, we denote by ∆0, ∆1 and ∆2, then defining the single-

photon detuning as ∆ ≡ ∆0 and two-photon detunings as δ1 ≡ ∆1 − ∆0,

δ2 ≡ ∆2 −∆0 [cf. Fig. 4.6]. The Hamiltonian describing the coupling of the

four states
{
|0〉 , |1〉 , |X−〉 , |2〉

}
using three coherent radiation fields within

the rotating wave approximation is then given by:

H(t) =
~
2


0 0 Ω0 0

0 2δ1 Ω1 0

Ω∗0 Ω∗1 2∆ Ω∗2

0 0 Ω2 2δ2

 , (4.13)

The derivation of this Hamiltonian is similar to the Hamiltonian in Eq. (2.19)

explained in Appendix B. As discussed in the Sec. 2.4.3, the STIRAP transfer

efficiency depends differently on δ1, δ2 and ∆: STIRAP in a four-level system

is sensitive to the magnitude of the two-photon detunings δ1 and δ2 as the

formation of the dark state requires two-photon resonances δ1 = δ2 = 0. On

the other hand, the formation of the dark state is not prevented by a non-zero

single-photon detuning ∆.
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One of the interesting aspects of the STIRAP in the four-level scheme of

the Fig. 4.6 is that with a specific choice of the laser parameters (χ = −π/2
and η = 0), the information stored in the electron spin is mapped to the

position degree of the freedom. Fig. 4.7 shows that the initial spin qubit

1/
√

2{|0〉 + |1〉} is mapped to the position qubit 1/
√

2{|0〉 + |2〉} at the end

of the first STIRAP (t = 0.25 ns). By considering ζ = 0 and the same values

as the first STIRAP for the χ and η the position qubit maps back to the spin

qubit at the end of the second STIRAP (t = 0.5 ns) as we see in Fig. 4.7.

|0〉
|1〉

|2〉

|X−〉

∆

µBgeB
δ1

δ2

Ω0 Ω1 Ω2

Figure 4.6: The interaction scheme for manipulating the spin of an electron by STI-
RAP in the DQD structure. The qubit is defined by the ground states |0〉 and |1〉.
The states |2〉 and |X−〉 are auxiliary states occupied only in the intermediate phase
of the gating procedure. Ω0, Ω1, and Ω2 are the Rabi frequencies of the transitions, ∆
and δ1,2 are respectively single- and two-photon detunings defined in the main text.

4.2.2 Charged-exciton state

Here, to evaluate the transitions dipole moment of the charged-exciton state

to the ground states, we introduce a full multi-band formalism taking into

account band-mixing effects. This formalism is compatible with methods such

as k.p theory, empirical tight-binding, and ab-initio which allow for accurate

modeling of the many-particle states in QDs by taking into account detailed

electronic band structures.
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(a)

(b)

Figure 4.7: Time evolution of the (a) pulse sequences and the (b) four-level Λ system
populations during two STIRAPs. The first STIRAP maps the spin qubit to the
position qubit. The second STIRAP maps the position qubit back to the spin qubit.
In this calculation, I considered χ = −π/2, η = 0, ζ = 0, ∆ = 10 GHz, δ1 = δ2 = 0,
dP = dS = 1, AP = 194 GHz, A2 = 200 GHz, ∆T = 31 ps, τ = 33 ps.

First we write the charged-exciton state |X−〉 which couples the input

state α |0〉 + β |1〉 to |2〉 in the electron picture as a Slater determinant of a

set of single-particle wave functions:∣∣X−〉 = A
{
α |↑, us, fe1〉+ β |↓, us, fe1〉 , |↑, us, fe2〉 ,

|ψv1〉 , ...,
∣∣ψv(m−1)

〉
,
∣∣ψv(m+1)

〉
, ..., |ψvn〉

}
,

(4.14)

where |α|2 + |β|2 = 1 and A is the anti-symmetrization operator which we

drop henceforth for simplicity. Each state vector in (4.14) contains three

parts: a spin part, a Bloch function part and an envelope function part. The

conduction band envelope function is denoted by fe. Since the conduction

band has a s-like atomic function symmetry, its Bloch function is denoted

by us. |ψvi〉 is the ith valence subband; where i = 1, .., n with n 6= m such

that the valence band is occupied by all electron states except the mth state.

The three upper valence bands are written as a linear combination of Bloch
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functions ux, uy, uz of the atomic p-like symmetry x, y and z, respectively

[52]. A general valence state |ψv〉 can then be written as

|ψv〉 = C1

∣∣↑, ux, f1
h

〉
+ C2

∣∣↓, ux, f2
h

〉
+ C3

∣∣↑, uy, f3
h

〉
+C4

∣∣↓, uy, f4
h

〉
+ C5

∣∣↑, uz, f5
h

〉
+ C6

∣∣↓, uz, f6
h

〉
,

(4.15)

where Ci are the expansion coefficients and f ih with i = 1, .., 6 are the hole

envelope functions which form a complete orthonormal set and can be consid-

ered approximately constant over a unit cell. The states |0〉, |1〉 and |2〉 of the

STIRAP scheme in the electron picture are written as

|0〉 = |↑, us, fe1〉 , |ψv1〉 , |ψv2〉 , ..., |ψvn〉

|1〉 = |↓, us, fe1〉 , |ψv1〉 , |ψv2〉 , ..., |ψvn〉

|2〉 = |↑, us, fe2〉 , |ψv1〉 , |ψv2〉 , ..., |ψvn〉 ,

(4.16)

where the valence band is fully occupied by electrons. The transition matrix

element between the input state α |0〉+ β |1〉 and |X−〉 is now given by:(
α 〈0|+ β 〈1|

)
e · d̂

∣∣X−〉 = 〈ψvm| e · d̂ |↑, us, fe2〉

= C1exMx〈f1
h |fe2〉+ C3eyMy〈f3

h |fe2〉+ C5ezMz〈f5
h |fe2〉,

(4.17)

where Mi = 〈ui| d̂i |us〉 ; (i = x, y, z) is the bulk matrix element, e = (ex, ey, ez)

is the unit vector of the laser light and d̂ is the momentum operator. In

the ZB region 〈ux| d̂x |us〉 = 〈uy| d̂y |us〉 = 〈uz| d̂z |us〉 and in the WZ region

〈ux| d̂x |us〉 = 〈uy| d̂y |us〉 6= 〈uz| d̂z |us〉. Since the electron and hole states

spread over the ZB and the WZ region we write

Mi〈fh|fe〉 = MZB
i 〈fh|fe〉ZB +MWZ

i 〈fh|fe〉WZ

(i = x, y, z).
(4.18)

By considering (4.18) and assuming that the light propagates along the z axis,

i.e. along the nanowire with a polarization vector normal to the nanowire axis

such that ez = 0, Eq. (4.17) is written as(
α 〈0|+ β 〈1|

)
e · d̂

∣∣X−〉
= MZB

{
C1ex〈f1

h |fe2〉+ C3ey〈f3
h |fe2〉

}ZB
+MWZ

{
C1ex〈f1

h |fe2〉+ C3ey〈f3
h |fe2〉

}WZ
.

(4.19)
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Furthermore, the matrix element of the momentum operator between |2〉
and |X−〉 is calculated as

〈2| e · d̂
∣∣X−〉 = 〈ψvm| e · d̂ |α ↑ +β ↓, us, fe1〉

= α
{
C1exMx〈f1

h |fe1〉+ C3eyMy〈f3
h |fe1〉

}
+β
{
C2exMx〈f2

h |fe1〉+ C4eyMy〈f4
h |fe1〉

}
= MZB

{
α
(
C1ex〈f1

h |fe1〉+ C3ey〈f3
h |fe1〉

)
+

β
(
C2ex〈f2

h |fe1〉+ C4ey〈f4
h |fe1〉

)}ZB
+MWZ

{
α
(
C1ex〈f1

h |fe1〉+ C3ey〈f3
h |fe1〉

)
+

β
(
C2ex〈f2

h |fe1〉+ C4ey〈f4
h |fe1〉

)}WZ
.

(4.20)

Eqs. (4.19) and (4.20) show that the charged-exciton with a mixed-hole

part couples simultaneously to both the input spin qubits in QD1 as well as

to the electron state in QD2. In the following, we consider some pure states

and show that they cannot provide the simultaneous coupling between ground

states |0〉, |1〉, and |2〉 and the charged exciton state |X−〉:

• By considering a charged-exciton with a spin-up heavy-hole for which

C2 = C4 = 0 then (4.20) will be:

〈2| e · d̂
∣∣X−〉

= αMZB
{
C1ex〈f2

h |fe1〉+ C3ey〈f4
h |fe1〉

}ZB
+ αMWZ

{
C1ex〈f2

h |fe1〉+ C3ey〈f4
h |fe1〉

}WZ

(4.21)

for α = 0 then 〈2| e · d̂ |X−〉 = 0.

• By considering a charged-exciton with a spin-down heavy-hole for which

C1 = C3 = 0, then (4.19) will be:

(
α 〈0|+ β 〈1|

)
e · d̂

∣∣X−〉 = 0 (4.22)

We summarized these cases in the Fig. 4.8. As we see, for a charged-exciton

with pure spin hole state in Fig. 4.8 (a) and (b), the simultaneous coupling

to all three ground-states is not provided. Eq. (4.20) shows that the dipole

moment of the transition |2〉 to |X−〉 depends on the input coefficients α and

β. This might be seen as a problem at the first glance, but fortunately as
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long as the adiabatic condition Eq. (2.34) is satisfied, this uncertainty does

not affect the STIRAP efficiency.

For the numerical calculation, we do not perform a detailed bandstructure

calculation, we simply assume the envelope functions f ih with i = 1...6 are

the same in the valence subbands with equal expansion coefficients Ci. For

example, in calculating dP and dS shown in Fig. 4.3, we have assumed equal Ci

coefficients and equal fi envelops. Since the calculation for this figure are for a

three-level STIRAP scheme, we put α = 1, β = 0 such that dP = 〈0| e ·d̂ |X−〉
and dS = 〈2| e · d̂ |X−〉. We also assumed a circular polarization light with

ex = ey = 1/
√

2 and also M = MZB = MWZ . We point to that the general

conclusions are the same for other combinations of Ci values. Evaluation of

the precise values of these quantities requires a more detailed bandstructure

calculation, e.g. in the framework of a multiband k.p model or using atomistic

methods [24, 108, 63].

In fact, our assumption that Ci coefficients and fi envelops to be equal, is

not actually a significant limitation, since the dipole moments for unqual quan-

tities of Ci and fi (subject to the requirements
∑

i |Ci|2 = 1 and 〈ψv|ψv〉 = 1)

can always be maximized by rotating the polarization of the laser light ac-

cording to (4.19) and (4.20) by adjusting ex and ey. Thus, we don’t expect

the dipole moments to be drastically affected by this choice.

(a) (b) (c)

Charged-exciton with a

spin-up heavy-hole

α |0〉+ β |1〉
|2〉

dS = 0
for α = 0

dS 6= 0
dP = 0dP 6= 0

α |0〉+ β |1〉
|2〉

α |0〉+ β |1〉
|2〉

Charged-exciton with a
spin-down heavy-hole

Charged-exciton with a
Mixed spin hole

dP 6= 0
dS 6= 0

Figure 4.8: Coupling of the charged-exciton to the ground-states in the STIRAP
scheme with a (a) pure state spin-up heavy-hole part; (b) pure state spin-down heavy-
hole part and (c) mixed-spin hole part.
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4.3 Two-qubit gate

To demonstrate two-qubit operations, we will implement a CNOT gate based

on two-DQD in a nanowire as shown in Fig. 4.9, where the control and target

qubits are encoded on DQDc and DQDt, respectively. In each DQD, the height

of the QDs and their separation should be chosen as a trade-off between a

good confinement of the electron states and a good overlap with the charged-

exciton state featuring a hole inside the barrier. By making the height of the

QDs smaller, the confinement of the single-particle electron states decreases

and they diffuse more inside the barrier. This results in a bigger overlap

with the hole inside the barrier which in turn increases the transition dipole

moment. On the other hand, as the height of the QDs decreases below 2 nm

[cf. Fig 3.7], the electron states will have a significant overlap with each other

and the tunneling probability of the electron states which is not desirable will

increase. The same argument also applies to the distance between the QDs.

The diameter of the QD should also be chosen as a trade-off between a large

dipole moment and sufficient energy level difference between the ground-state

charged-exciton and the first higher order charged-exciton [109].

In the following, we consider a specific two-DQD with geometrical param-

eters mentioned in the caption of Fig. 4.9. Fig. 4.10 shows the single-particle

electron ground-states and the lowest-energy bound-state hole in DQDc and

DQDt. The barrier between the QDs of DQDc is smaller in comparison to

that of DQDt, while the QDs heights in DQDc are bigger than that of DQDt.

In fact, we cannot reduce both the barrier width and the heights of the QDs

at the same time, because it makes the electron wavefunctions to overlap

significantly.

The initial configuration consists of an electron in QD1 in each DQD of

the full system as illustrated in Fig. 4.11 (a). The details of the initialization

of this configuration using a sequence of STIRAP processes are presented in

Sec. 4.4.2. The conditional two-qubit CNOT operation then takes place as

follows:

Step 1: The first STIRAP process acts on the control qubit in DQDc

and maps the initial spin qubit α |0〉+ β |1〉 to the position degree of freedom

α |0〉+β |2〉 as depicted in Fig. 4.11 (b). This is accomplished by choosing the
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hQD1c

DQDc

hQD2c

hQD1t

DQDt

hQD2t

Ic

S

It

z y

x

It

Figure 4.9: Two DQDs in a nanowire. The geometrical parameters of DQDc are
hQD1c = 11 nm, hQD2c = 10 nm, Ic = 8 nm, and the parameters of DQDt are
hQD1t = 5 nm, hQD2t = 3 nm, It = 10 nm. The nanowire diameter is dNW = 40 nm.

|φQW (z)|2

z (nm) z (nm)

(a) (b)

Figure 4.10: Normalized single-particle electrons (red) and hole (blue) probability
densities |φQW (z)|2 in the (a) DQDc and (b) DQDt of the two-DQD system of Fig. 4.9.
The single-particle energies of DQDc are: Ee1 = 31.7 meV, Ee2 = 35.1 meV, Eh = 6.8
meV and DQDt are Ee1 = 68.2 meV, Ee2 = 96.6 meV, Eh = 5 meV.

STIRAP parameters χ = −π/2 and η = 0 as it was discussed in the previous

section.

The transfer of an electron from the |1〉 to the |2〉 state leads to a new
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DQDc

DQDt

(a) (b) (c) (d)

Figure 4.11: Illustration of the CNOT gate operation for a nanowire containing two
DQDs. (a) The initial state of the structure which includes the control qubit in DQDc

and target qubit in DQDt. (b) The first STIRAP process maps the spin state of the
control qubit in DQDc to the position state. (c) The second and third STIRAP
processes act on the target qubit and flip its spin depending on the control qubit
state. (d) The fourth STIRAP process returns the control qubit to its initial spin
state.

charge distribution of DQDc which via the Coulomb interaction exerts a po-

tential change on the target qubit in DQDt leading to modified DQDt transi-

tion frequencies. The laser fields detunings ∆0, ∆1, and ∆2 of the STIRAP

in DQDt is written as:

∆0 = EX− − Ee0 − ω0

∆1 = EX− − Ee1 − ω1

∆2 = EX− − Ee2 − ω2

(4.23)

where EX− is the charged-exciton energy; Ee0 and Ee1 are the single-particle

energies of the spin-up and down electron in QD1; Ee2 is the single-particle

energy of the spin-up electron in QD2; ω0, ω1 and ω2 are respectively the laser

fields 0, 1 and 2 frequencies. After the first STIRAP which affects the charge

distribution of the DQDc, the laser field detunings of the STIRAP in DQDt
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are changed to:

∆′0 = E′X− − E
′
0 − ω0

∆′1 = E′X− − E
′
1 − ω1

∆′2 = E′X− − E
′
2 − ω2

(4.24)

Now, from (4.24), we calculate the new two-photon detunings of the STIRAP

in DQDt as:

δ′2 = ∆′2 −∆′0 = −E′2 + E′0 − ω2 + ω0 (4.25)

From (4.23), we write

δ2 = ∆2 −∆0 = −E2 + E0 − ω2 + ω0 (4.26)

Then, by substracting (4.26) from (4.25):

δ′2 − δ2 = ∆E0 −∆E2 (4.27)

Here, ∆E0 = E′0−E0 and ∆E2 = E′2−E2 are respectively the target qubit e1

and e2 energy changes due to the relocation of the electron in DQDc (control

qubit) form QD1c to QD2c. In a same way we obtain the following expression

for δ′1 − δ1:

δ′1 − δ1 = ∆E0 −∆E1 (4.28)

We calculate E0, E1, E2, E′0, E′1, and E′2 using the configuration interaction

method discussed in Chapter 3. Our system is a two-DQD shown in Fig. 4.9

with two electrons in each DQD. We calculate the single-particle electron

states by solving the non-interacting Schrödinger equation (2.2). Then, ex-

panding the Hamiltonian on the basis of the single-particle electron states, the

eigenvalues of the Hamiltonian specify the energies E0, E1, E2, E′0, E′1, and

E′2.

Fig. 4.12 shows δ′2 for DQDt as function of the separation distance S be-

tween the two DQDs. Without loss of generality, we chose δ2 = 0 since it

can be adjusted by laser lights to the corresponding transitions in DQDt. We

consider a separation S between the DQDs of at least 8 nm in order to prevent

single-particle tunneling and at the same time to allow for significant Coulomb
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Figure 4.12: Shift in two-photon detuning, δ′2, in DQDt as a function of the separation,
S, between DQDc and DQDt after step 1 for a control qubit initially in the state |1〉c.

coupling. Even for fairly large separations S > 8 nm between the two DQDs,

we observe that the strong Coulomb interaction leads to the detuning δ′2 of

several hundreds of GHz. The two-photon detuning δ′1 of the STIRAP in

DQDt will change less than 1 GHz for a magnetic field B of a few Tesla [110]

which is much smaller in comparison to the changes of the δ′2.

Step 2: A second and third STIRAP process act on the target qubit in

DQDt performing a single-qubit NOT gate with χ = −π/4, η = 0 and ζ = π

as shown in Fig. 4.11 (c) discussed in the previous section. The effect of this

single-qubit rotation is strongly dependent on the charge state of the control

qubit due to the influence of the Coulomb interaction, which affect δ′2.

Step 3: The final STIRAP process with χ = −π/2, η = 0 and ζ = 0 acts

on the control qubit in DQDc by mapping back the position degree of freedom

to the spin qubit as shown in Fig. 4.11 (d) thus returning DQDc to its initial

state.

The final result of the STIRAP processes is the rotation of the target qubit

alone conditional on the state of the control qubit as required for the two-qubit

CNOT operation.
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4.4 Fidelity

The unitary evolution within the four-level single-DQD Hilbert space gener-

ated by the Hamiltonian, H(t), in Eq. (4.13), over an entire operation, can

formally be written as the map U = T exp
[
−i
∫∞
−∞ dt′H(t′)

]
, where T is the

time-ordering operator. In practice, we construct the map through numerical

solutions of the time-dependent Schrödinger equations described in Sec. 2.4.1

in Eq. (2.22). More specifically, given a set of physical parameters, P, we can

calculate the evolution of the two linearly independent initial states |0〉 and

|1〉,

U(P) |0〉 =
∑
i

ui0(P) |i〉 , (4.29)

U(P) |1〉 =
∑
i

ui1(P) |i〉 , (4.30)

where the argument P signifies that the map is a function of the parameters.

These two evolved states can be used for constructing a 2 × 2 matrix repre-

sentation, U(P), of U(P) within the qubit subspace, Hq = span(|0〉 , |1〉), of

the DQD, such that Uij(P) := uij(P), with i, j ∈ {0, 1}. For single qubit

operation, we consider a reference qubit-gate operator, G, with 2 × 2 matrix

representation G, which is normalized such that Tr
[
G2
]

= 1. The fidelity of

the operation with respect to the reference gate is then calculated as

F [U(P), G] = |Tr[U(P)G]|2. (4.31)

As an example, we can calculate the fidelity of the evolution with respect to

the NOT-gate, X, which is represented by the normalized gate matrix

X =
1√
2

[
0 1

1 0

]
. (4.32)

This fidelity is plotted as a function of the detunings δ1 and δ2 in Fig. 4.13.

To evaluate the two-qubit gate fidelity, we take a mean-field approach, where

the influence of the control DQD is a change of the effective parameters seen

by the target DQD. In particular, the target DQD will see a set of parameters

Pi when the control qubit is in state |i〉c, where we take the only change

in parameters to be the two-photon detuning, δ2, induced by the shift in
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the effective Coulomb potential seen by DQDt [see Fig. 4.12]. We write the

effective two-qubit evolution operator, U (2), in the control-target qubit Hilbert

space, Hc ⊗Ht, as

U (2)(P0,P1) =
1√
2

(|0〉〈0| ⊗ U(P0) + |1〉〈1| ⊗ U(P1)), (4.33)

To calculate the performance of the system as a CNOT gate, we use the

reference gate, J ,

J =
1

2
(|0〉〈0| ⊗X + |1〉〈1| ⊗ I), (4.34)

where I is the normalized identity operator with matrix representation

I =
1√
2

[
1 0

0 1

]
. (4.35)

The fidelity of U (2) with respect to J is then

F [U (2)(P0,P1), J ] =
∣∣∣Tr
[
U (2)(P0,P1)J

]∣∣∣2
=

1

4
|Tr[U(P0)X] + Tr[U(P1)I]|2

(4.36)

This two-qubit gate fidelity is plotted in Fig. 4.14, showing that high fidelities

can be reached either by inducing a sufficiently large Coulomb shift above

∼ 400 GHz, corresponding to a DQD separation of less than ∼ 16 nm, or by

hitting one of the interference fringes appearing around δ2 = 100 GHz.

4.4.1 Effects of decoherence

A quantum system is always surrounded by an environment that is a source

of decoherence. Here we review the detrimental effects of various types of

decoherence on STIRAP. STIRAP is robust against some causes of decoher-

ence, e.g., irreversible population loss from the middle state and spontaneous

emission within the system. It is more sensitive to others, such as decoherence.

Of primary concern is the slow fluctuations of the charge environment

and the nuclear spins of the host material. Such noise sources influence the

system by driving fluctuations of the various energy levels. The time scale of

the fluctuations is typically longer than microseconds and the magnitude is

on the order of a few GHz [111, 112]. In order for the gate operations to be
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Figure 4.13: The fidelity of the single-qubit NOT gate as a function of two-photon
detunings δ1 and δ2. The STIRAP parameters in this calculation are: χ = −π/2,
η = 0, τ = 9 ps, ∆T = 5 ps, ∆ = 20 GHz, and the peak amplitude of Ω0, Ω1 and Ω2

are considered 282, 282 and 400 GHz, respectively.

Figure 4.14: The fidelity of the two-qubit CNOT gate as a function of the shift
in two-photon detuning δ′2. Calculation parameters are the same as Fig. 4.13, with
δ1 = δ2 = 0.

robust against these noise sources, we must ensure that the bandwidth of the

STIRAP processes is larger than the magnitude of the fluctuations, ensuring a

high gate fidelity [113]. Furthermore, the time scale of the STIRAP processes

should be shorter than the T ∗2 decoherence times to allow for the application of

dynamical decoupling schemes to protect the coherence of the qubit [112]. The

bandwidth of the two-photon resonances used in the STIRAP-induced gates
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depends on the power and duration of the applied laser fields, the overlap time

between the two optical pulses, the transition dipole moments and the ground

state Zeeman splitting. We choose these parameters within a realistic range

such that the NOT gate fidelity is more than 0.94 when two-photon detunings

δ1 and δ2 are varied over ranges of 10 and 5 GHz, respectively, as is shown in

Fig. 4.13, thus ensuring robustness against variations in the detunings posed

by the environment. With these parameters, the STIRAP rotations can be

implemented on a time scale of tens of picoseconds, which is much longer than

the typical electron T ∗2 coherence time of a few nanoseconds [114, 115, 116].

The time required to execute a gate by a conventional STIRAP process

considered in this work is inversely proportional to the Rabi frequencies. Thus,

for faster operations we need to increase the input power. However, several

strategies have been proposed to speed up the adiabatic passage, and these

can straightforwardly be combined with the proposed scheme to achieve higher

gate fidelities in a shorter time scale without increasing the laser lights inten-

sity [117, 118, 119]. Reducing the gate operation time also results in a wider

bandwidth over δ1 and δ2 in comparison to what we achieved in the Figs. 4.13

and 4.14 by a conventional STIRAP.

In this work, we used the electron spin states in ZB QDs in a WZ nanowire

for the qubit realization as shown in Fig. 4.15 (a). However, by controlling the

crystallographic phase of the InP nanowire during the fabrication process it is

also possible to fabricate WZ QDs in a ZB nanowire [120]. In this case the spin

of the hole confined in the WZ QDs is used as the spin qubit, and a charged

exciton state composed of two holes and one electron acts as the intermediate

state as shown in Fig. 4.15 (b) . Because of the p-like symmetry of the hole

state at the atomic scale, the hyperfine interaction with the nuclear spins

is suppressed, and the hole spin has a longer coherence time in comparison

to the electron spin [121]. While the long coherence time of this scheme is

attractive, the electron is not a mixed spin state, and thus the charged exciton

state cannot couple efficiently to all of the three lowest energy hole states of

the DQD [cf. Sec 4.2.2] as required for single-qubit operations.



92 Chapter 4. Quantum gates
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Figure 4.15: (a) ZB QDs inside a WZ nanowire (b) WZ QDs inside a ZB nanowire.

DQDc DQDt

Step 1

Step 2
Step 3

Figure 4.16: Scheme for initializing the electrons in a two-DQD. The electron is
transferred from QD1 of DQDc to QD1 of DQDt using two STIRAP processes.

4.4.2 Initializing electrons in DQDs in a nanowire

The two-electron configuration illustrated in the Fig. 4.11 (a) can be initialized

using the procedure schematically illustrated in Fig. 4.16.

Step 1: By applying an external electric field in the z direction, an electron

from the nearby reservoir is transferred to QD1 of DQDc. Further charging is

suppressed because of the Coulomb blockade.

Step 2: This electron is moved to QD2 of DQDc using one STIRAP

operation as shown in Fig. 4.16.
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Step 3: The electron is transferred to the QD1 of DQDt using another

STIRAP operation as shown in Fig. 4.16.

Now that QD1 of DQDc is empty, another electron from the reservoir is

transferred to it.

The spin of these electrons are initialized by applying a magnetic field.

4.5 Summary

We have proposed a novel scheme for all-optical quantum gating based on

qubits encoded in ultraclean crystal-phase type-II double QDs (DQDs) in a

nanowire, which are manipulated using stimulated Raman adiabatic passage

(STIRAP). The key feature of the scheme is the exploitation of a charged exci-

ton state with a mixed hole which couples with three lowest electron states of

the double-quantum-dot in the type II configuration without involving addi-

tional external fields. This coupling is essential for high-fidelity qubit rotations

by means of the STIRAP process. The high-fidelity two-qubit CNOT opera-

tion is performed using Coulomb coupling to cause a shift of the target DQD

transition frequencies leading to a conditional violation of the STIRAP two-

photon resonance condition in the target DQD. The two DQD structure and

also STIRAP parameters are designed such that the CNOT gate is robust

against the charge and spin noises. This robustness is largely attributed to

the flexibility of the scheme with respect to bandwidths and dynamical time

scales ensured by using STIRAP for rapid control operations.





CHAPTER 5
Conclusion and outlook

5.1 Summary

The main goal of this work was to understand the physics of the novel type-II

QDs. This understanding guides us to design universal, scalable, and address-

able quantum gates for quantum information.

To model the exciton properties of the QDs in a nanowire, a numerical tool

based on the configuration-interaction method, to solve the Schrödinger equa-

tion governing the system, has been implemented. The exciton Hamiltonian

in this method is expanded on the single-particle electron and hole states. We

studied the convergence of this numerical method. Since the single-particle

hole in the type-II QD is not confined inside the QD, and it’s spread all over

the nanowire, then there are many single-particle hole states close in the en-

ergy in this structure which contribute to the exciton states and need to be

included in the calculation. For this reason the computation of the exciton

states is more demanding in type-II QDs in comparison to that in the type-I

QDs. For example in GaAs/AlGaAs type-I QDs both the electron and the hole

are confined inside the QD and there are very few bound single-particle states

which are contributing to the exciton state. As the structure size increases,

the energy spacing of the single-particle states decreases. Consequently, a

larger number of single-particle states needs to be included in the expansion

of the exciton Hamiltonian. We used the configuration-interaction method to
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calculate the exciton states in both small and large geometries. For instance,

structures ranging from 10 to 60 nm in diameter and 40 to 100 nm in length.

For calculation of the exciton states in large structures we needed to use 10

paralleled cluster computers working for 30 hours. We observed that, while the

method converges very fast when calculating the exciton energy, more compu-

tational effort is needed to achieve convergence of the oscillator strength. In

fact, in order to calculate the exciton oscillator strength with a 95% accuracy,

more single-particle states need to be considered, compared to the amount

needed to calculate the exciton energy with the same accuracy. To calculate

the charged-exciton state and multi-exciton state which are consist of more

than two particles, the computational effort is remarkably larger in type-II

QDs in comparison to the exciton state in these structures. Consequently, we

have discarded the use of the configuration-interaction method for calculating

these states in type-II QDs.

We observed that, in the both type-I and type-II QDs, the emission in-

tensity quantified by the oscillator strength increases when the diameter of

the structure becomes larger. We calculated the oscillator strength in struc-

tures with diameters up to 60 nm. While a large diameter initially appears

attractive, on the other hand, by increasing the QD diameter, the energy

separation between the ground-state and first-excited exciton state decreases.

This makes more challenging to experimentally address the ground-state ex-

citon. Furthermore, for sufficiently large diameters, where the exciton size is

no longer small compared to the optical wavelength, the dipole approximation

breaks down leading to a stabilization of the oscillator strength for increasing

diameter.

For a nanowire with a short length, the exciton size is affected by the

nanowire boundaries. While it increases linearly with the nanowire length up

to 60 nm, after that the size assumes a constant value independent of the

nanowire length such that the exciton properties become independent of the

nanowire length.

We showed a large exciton oscillator strength can clearly be obtained using

a large diameter dQD or a small QD height hQD. We also observed that, in

both cases, a spatially large exciton is obtained with small energy separation

to the first higher-order state. We thus concluded that the single-quantum-
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dot geometry is not ideal for quantum gating applications. We showed that,

by engineering a double-quantum-dot nanowire structure, it is possible to

improve the exciton oscillator strength while maintaining a spatially well-

confined profile. The type-II single-quantum-dot has much smaller oscillator

strength in comparison to that in type-I single-quantum-dot. However, os-

cillator strengths close to those of a type-I QD can be achieved in type-II

structures by using a double-quantum-dot, instead of a single-quantum-dot.

Including the Coulomb interaction is very important in calculating the ex-

citon properties in the type-II single-quantum-dots such that in some geome-

tries, the ground-state exciton oscillator strength becomes at least 20 times

bigger by including Coulomb interaction and obviously it cannot be neglected.

On the other hand, the Coulomb interaction is not the dominant effect for

the exciton properties of the bound-exciton states in the double-quantum-dot

structures because the hole is confined by the band structure potential profile.

We used the electron spin in a type-II double-quantum-dots as a qubit for

the quantum computation. For optical manipulation of the qubits we used

the STIRAP technique which is robust against the laser lights parameters [81,

122, 123]. Combination of the electron spin and position degrees of freedom

can provide a four-level scheme in a double-quantum-dot, necessary for single-

qubit rotation in STIRAP gating. A charged-exciton state is used to couple

three-ground electron states. The novelty showed here is that this coupling

is significantly more efficient in the type-II QDs in comparison to what is

calculated in the type-I QDs.

For calculating the charged-exciton featuring a hole confined between two

QDs, we did not include the Coulomb interaction because its negligable com-

pared to the band edge confinement effect. Unlike most papers in the field

(e.g., [124] and [125]) presenting phenomenological models with hand-picked

parameters, we considered a specific type-II system, the crystal-phase InP

nanowire, with specific realistic geometrical parameters, and we compared its

performance with a realistic type-I GaAs/AlGaAs system.

We also showed that a charged-exciton with a pure spin hole part can-

not provide simultaneous coupling to all three ground states in the STIRAP

scheme. Conversely, a mixed hole configuration allows for efficient coupling of

the full two-dimensional spin-qubit space localized in one of the QDs of the
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DQD structure to an electron state in the other QD as required for single-

qubit gate operations. To show this coupling we developed a multi-band

formalism compatible with sophisticated methods for calculating the semi-

conductor bandstructure, such as k.p theory, tight-binding, or DFT (density

functional theory). However, for design and optimization purposes, in order

to achieve a lower computational cost, we have thus chosen to perform the

calculations of the dipole moments using a single-band model. We stress that

our objective is not to calculate exact dipole moments but simply show that

the performance of the type-II system is superior to that of the type-I system.

While we acknowledge that more advanced calculation methods may produce

different values of the dipole moments, we believe that our conclusion, that

the type-II system performs significantly better than the type-I system, will

not be altered by repeating the calculations using such advanced method.

We deigned a CNOT gate in a two-double-quantum-dot in a nanowire.

We used two electrons in the system, one in each double-quantum-dot, to

encode the target and control spin qubit. The position of the control qubit in

the double-quantum-dot determines the conditional operation on the target

qubit. We showed that the Coulomb interaction, which is in an order of a few

hundreds of GHz, is strong enough to induce a shift in the STIRAP frequencies

of the target qubit in the neighboring double-quantum-dots. We showed that

the operation is robust against the spin and charge noises.

5.2 Future work

In this section, we list several possible extensions and outlooks of this work,

and we believe this list can be extended.

• We studied the exciton properties of the type-II QDs in this work. How-

ever, for extracting the optical properties of these quantum dots, the

charged-exciton state and multi-exciton states are also needed to be cal-

culated. This has not been done, yet, to the best of our knowledge.

Due to the computational complexity of the configuration-interaction

method, we did not use it for calculating charged-exciton and multi-

exciton states. Therefore, developing a fast and efficient numerical tool
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to calculate many-particle states in type-II quantum-dots is seen as the

next step for developing a complete tool to study these structures.

• We calculated the exciton states by including the Coulomb interaction.

We did not consider other details of the electronic band structure such as

the strain and polarization fields. There are already some works which

have studied single-particle states by including these effects in crystal-

phase type-II QDs[62, 63]. However, those works do not consider the

Coulomb interaction. Developing a comprehensive numerical tool to

calculate exciton states with involving all of the aforementioned effects

(Coulomb interaction, strain, polarization fields) will help to model the

structure more accurately.

• From the experimental point of view, only a few crystal-phase type-II

QDs in a nanowire are fabricated, mainly for demonstrating the ground-

state exciton emission intensity. However, many of the interesting phe-

nomena introduced in this thesis have not been observed experimentally,

yet. Therefore, fabrication and measurement of the proposed devices are

essential for validating the theory provided here, such as the large oscil-

lator strength of the double-quantum-dot configuration and single- and

two-qubit gates based on these structures by using stimulated Raman

adiabatic passage.

• We are using the spin of the electron for storing information and the

position of the electron for quantum gating. Spin qubit is widely used

for storing the information due to its long coherence time in comparison

to the charge qubit which always has been subjected to the electric field

fluctuations from impurities and defects in the semiconductor environ-

ment leading to very short coherence times. Nevertheless, in recently

fabricated ultra-clean quantum dots, it has been shown that the charge

noise has been significantly reduced, reaching levels close to dephasing-

free qubit operations [111]. For this reason, designing a STIRAP scheme

in which the position or charge degree of freedom is used to encode the

qubit instead of the spin degree of freedom simplifies the experimen-

tal setup since there is no need to use a magnetic field to apply to the
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structure for defining the initial spin state of the qubits. Since the elec-

tron can be moved through a type-II QD-chain by applying sequences

of the STIRAP, initializing the qubits could be done optically without

using the external electric or magnetic fields. Therefore, designing STI-

RAP gating scheme based on the position qubits is seen as a possible

improvement to the scheme designed in this work.



APPENDIX A
Single-particle solutions

In this Appendix, we solve the Schrödinger equation for the single-particle

electron and the hole in a QD in a nanowire. In Sec. 2.2.1, we showed that the

wavefunction in this structure can be separated in z direction and in transverse

plane as:

Φ(R, θ, z) = φT (R, θ)φQW (z) (A.1)

By replacing (A.1) in the Schrödinger equation ĤΨ = EΨ:[
− ~2

2m
∇2 + VQW (z) + VT (R, θ)

]
φT (R, θ)φQW (z) = EφT (R, θ)φQW (z)

(A.2)

where the confinement potential also is been written as V = VT (R, θ)+VQW (z)

according to (2.3) and ∇2 is the Laplacian operator in three dimension which

can be written as: ∇2 = ∇2
T + ∇2

z. By dividing the both sides of the above

equation by φT (R, θ)φQW (z):

− ~2

2m

1

φT (R, θ)
∇2
TφT (R, θ)− ~2

2m

1

φQW (z)

∂2φQW (z)

∂z2
+ VQW (z) + VT (R, θ) = E

(A.3)

The variables in the transverse and in the z directions are separated as:

− ~2

2m

1

φQW (z)

d2φQW (z)

dz2
+ Vz(z) = E +

~2

2m

1

φT (R, θ)
∇2
TφT (R, θ)− VT (R, θ)

(A.4)

Then, we have two equations which can be solved independently.
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A.1 Solution in the z-direction

The equation (A.4) must be equal to a constant we call it Ez. The reasoning

for this will be clear that:

− ~2

2m

1

φQW (z)

d2φQW (z)

dz2
+ VQW (z) = Ez (A.5)

By solving this equation for electrons in the conduction band of a type-I

GaAs/AlGaAs SQD in a nanowire we find:

φQW (z) =


Aekz z ≤ −hQD/2

Be−ilz + Ceilz −hQD/2 ≤ z ≤ hQD/2

De−kz z ≥ hQD/2

(A.6)

Where k =
√

2me(∆Ec − Ez)/~ and l =
√

2meEz/~ . Boundary conditions is

used for determining A, B, C, and D such that the wavefunction φQW (z) and

its derivative should be continuous everywhere. By applying this condition at

z = −hQD/2 and z = +hQD/2 we have a homogeneous system of four linear

equations with a zero determinant A = 0 which gives us infinite number of non-

trivial solutions. But we have another restriction such that the wavefunction

need to be normalized
∫ +∞
−∞ |φQW (z)|2dz = 1. By applying this condition we

find a finite number of the non-trivial solutions of the problem.

A.2 Solution in the transverse direction

By assuming parabolic potential in the transverse direction as in Eq. (2.5),

Eq. (A.4) is written as:

− ~2

2m
∇2
TφT (R, θ) +

1

2
mω2(x2 + y2)φT (R, θ) = (E − Ez)φT (R, θ) (A.7)

For solving this equation, we introduce the dimensionless scaling factors:

b =
( ~
mω

)2
W =

E − Ez
~ω

(A.8)

and

x = bR cos(θ) y = bR sin(θ) (A.9)
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By this definition, then the relation between Cartesian and cylindrical coor-

dinates is:

R =

√
x2 + y2

b
θ = cos−1 x√

x2 + y2
or θ = sin−1 y√

x2 + y2
(A.10)

By some mathematical calculation it can be shown that:

∇2
T =

d2

dx2
+

d2

dy2
=

1

b2
d2

dR2
+

1

b2R

d

dR
+

1

b2R2

d2

dθ2
(A.11)

By replacing (A.11) in (A.7):( d2

dR2
+

1

R

d

dR
+

1

R2

d2

dθ2

)
φT (R, θ) +

(
2W −R2

)
φT (R, θ) = 0 (A.12)

whereW = (E−Ez)/~ω. By variable separation method φT (R, θ) = φR(R)φΘ(θ)

we obtain:

φΘ(θ) = eimθ (A.13)

where m = 0,±1,±2, ... is the angular quantum number. And for the radial

part we have:

d2

dR2
φR(R) +

1

R

d

dR
φR(R) +

(
2W − m2

R2
−R2

)
= 0 (A.14)

This type of equation is already solved in Schrödinger’s article, and the so-

lution is also found in Abramowitz and Stegun [126]. The eigen function is

given by:

φlmT (R, θ) = R|m|e

(
−R2

2

)
L|m|l (R2)eimθ (A.15)

where L is the Laguerre polynomial. The eigenvalues correspond to these

eigenfunctions are also can be found from Eq. (A.14) as W = 2l+ |m|+ 1 or:

2l + |m|+ 1 =
E − Ez
~ω

(A.16)

where l = 0, 1, 2, ... is the radial quantum number. Now by substituting

φQW (z) from Eq. (A.6) and φT (R, θ) from Eq. (A.15), the three-dimensional

wavefunction of the single-particle electron in the conduction band or the

single-particle hole in the valence band is written as:

Φnlm(R, θ, z) = φnQW (z)φlmT (R, θ) (A.17)
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By assuming hard-wall potential in the surface of the nanowire as in the

Eq. (2.4), the transverse part of the Eq. (A.4) in the nanowire is:

− ~2

2m

1

φT (R, θ)
∇2
TφT (R, θ) = (E − Ez)φT (R, θ) (A.18)

The transverse Laplace operator is given by:

∇2
T =

d

dR2
+

1

R

d

dR
+

1

R2

d

d2θ2
(A.19)

Since the potential is assumed to be rotationally symmetric, we can write the

wavefunction as φT (R, θ) = φR(R)eimθ and thus the separated equation will

be:

− ~2

2m

( d2

dR2
φR(R)+

1

R

d

dR
φR(R)+

φR(R)

R2

d

d2θ2

)
−(E−Ez)φR(R) = 0 (A.20)

which simplifies to:

R2 d2

dR2
φR(R)+R

d

dR
φR(R)+

(2m

~2
(E−Ez)R2φR(R)−m2φR(R)

)
= 0 (A.21)

The solution of this equation can be found in [126] and gives the following

solution:

φR(R) = Jm(λR) + Ym(λR) +H(1)
m (λR) +H(2)

m (λR) (A.22)

Since Yn(x), H
(1)
n (x), and H

(2)
n (x) → ∞ when x → 0 we are left with Bessel

function Jn(x), so the solution ends up being:

φR(R) = Jm(λR) (A.23)

where λ is given by:

λ =

√
2m

~2
(E − Ez) (A.24)

ET = E − Ez is the single-particle energy in the transverse direction. λ

is determined from the boundary condition such that the transverse wave

function should be zero at the boundary of the nanowire because of the infinite

potential at the surface of the nanowire:

φlmT (R =
dQD

2 ) = Jm(λ
dQD

2 ) = 0 (A.25)

The Bessel function is equal to zero for arguments which are determined nu-

merically. The lowest energy is at the first Bessel function zero for J0(x)
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when x = 2.4048, then the ground state energy can be found from solving the

Eq. (A.24):

2.4048 =

√
2m

~2
(E − Ez)

dQD
2

(A.26)

The first excited energy can be found from the first zero of the function J1(x)

and so on. Then, the transverse eigenfunctions are written as:

φlmT (R, θ) = Jm(λlR)eimθ (A.27)





APPENDIX B
Basic differential equations of

the STIRAP

STIRAP is an efficient method for transferring populations adiabatically be-

tween two discrete quantum states by coupling them using radiation fields

via an intermediate state which is usually a radiatively decaying state. Be-

fore describing the STIRAP scheme which is a three-level system interaction

with two laser lights, we first briefly describe a two-level system interaction

with a laser light to review some concepts which we need in illustration of the

STIRAP scheme.

B.1 Interaction of a two-state system with a

classical field

We want to calculate the time evolution of the two-level system when it inter-

acts with light, so the problem we need to solve is the Schrödinger equation

where the Hamiltonian of the combined system-light is given by the sum of

the bare Hamiltonian Ĥ0 and the Hamiltonian due to the interaction with the

light field Ĥint:

Ĥ = Ĥ0 + Ĥint (B.1)
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Ĥ0 in the energy representation can be written as:

Ĥ0 = E1 |ψ1〉 〈ψ1|+ E2 |ψ2〉 〈ψ2| (B.2)

The eigenvalues E1 and E2 are the observable energies of the undisturbed

system and |ψ1〉 and |ψ2〉 are the corresponding eigenvectors. Thus, by con-

struction, the matrix H0 is diagonal, in the basis of the physical states |ψ1〉
and |ψ2〉, and the diagonal elements of H0 are E1 and E2. In the dipole ap-

proximation, the interaction of a two-level system with the laser light is the

projection of the electric dipole moment d̂ onto the light electric field E:

Ĥint(t) = −d̂.E(t) (B.3)

For a single laser beam, a traveling-wave with the linear polarization, the

electric field at a fixed point is written as E(t) = e E0(t) cos(ωt− ψ), where

e is the unit polarization vector, ω is the light frequency and E0 is the time-

varying amplitude of the laser light. By replacing this field in (B.3), the

interaction Hamiltonian will be:

Ĥint(t) = V̂0 E0(t) cos(ωt− ψ) (B.4)

Where V̂0 = −d̂.e. For a two-state system of:

|Ψ(t)〉 = C1(t) |ψ1〉+ C2(t) |ψ2〉 (B.5)

The system does not have a dipole moment when it is in an energy eigen-

state, so 〈ψ1| V̂0 |ψ1〉 = 〈ψ2| V̂0 |ψ2〉 = 0. This means that by defining V0 =

〈ψ1| V̂0 |ψ2〉, the dipole operator can be written as

V̂0 = −d̂.e = V0 |ψ1〉 〈ψ2|+ V ∗0 |ψ2〉 〈ψ1| (B.6)

By substitution of (B.5) and (B.6) in the Schrödinger equation:

d

dt
|Ψ(t)〉 = − i

~
Ĥ(t) |Ψ(t)〉 (B.7)

The resulting pair of the coupled ordinary differential equations (ODEs) read,

in the vector and matrix form as:[
Ċ1(t)

Ċ2(t)

]
= −i

[
ω1 Ω(t) cos(ωt− ψ)

Ω∗(t) cos(ωt− ψ) ω2

][
C1(t)

C2(t)

]
(B.8)
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where Ω(t) = V0E0(t)/~ is the so-called Rabi frequency and ωi = Ei/~ (i =

1, 2). To eliminate the relatively uninteresting small variations at the car-

rier frequency ω induced by the incoming laser light, we introduce a rotating

Hilbert-space coordinate, ∣∣ψ′2(t)
〉

= e−iωt |ψ2〉 (B.9)

Then the state vector of the system is:

|Ψ(t)〉 = C1(t) |ψ1〉+ C2(t)
∣∣ψ′2(t)

〉
(B.10)

By replacing (B.9), (B.10) and (B.6) in the Schrödinger equation (B.7), the

ODEs of Eq. (B.8) will change to:[
Ċ1(t)

Ċ2(t)

]
= −i

[
ω1 Ω(t)e−iωt cos(ωt− ψ)

Ω∗(t)eiωt cos(ωt− ψ) ω2 − ω

][
C1(t)

C2(t)

]
(B.11)

Rotating wave approximation (RWA)

For optical radiation of commonly used laser pulses, the peak value of the

Rabi frequency Ω is typically 4 or 5 orders of magnitude smaller than the

carrier frequency ω. That is, the photon energy ~ω is much larger than the

interaction energy ~Ω. Therefore the small carrier-frequency oscillations hold

no interest; we are instead concerned with activity that takes place only over

many optical cycles. We therefore consider probability amplitudes that are

averaged over many optical cycles:

cos(ωt− ψ)e−iωt =
1

2

(
e−iψ + e−2iωt+iψ

)
→ 1

2
e−iψ (B.12)

By setting E1 = 0 as the ground state of the system without loss of generality,

the two-state RWA Schrödinger equation (B.11) will be:[
Ċ1(t)

Ċ2(t)

]
= −i

[
0 1

2Ω(t)e−iψ

1
2Ω∗(t)eiψ ∆

][
C1(t)

C2(t)

]
(B.13)

where

~∆ = ω2 − ω1 − ~ω (B.14)
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Then the basic controls appearing here are the time-dependent Rabi frequency

Ω(t) and the detuning ∆. It is through manipulation of these quantities that

we control the time evolution of the statevector.

Written more compactly in matrix form, the Schrödinger equation reads

d

dt
C(t) = − i

~
H(t)C(t) (B.15)

where H(t) is the RWA Hamiltonian in frequency units,

C(t) =

[
C1(t)

C2(t)

]
, H(t) = ~

[
0 1

2Ω(t)e−iψ

1
2Ω∗(t)eiψ ∆

]
(B.16)

B.2 Interaction of a three-state system with a

classical field

In three-state Λ system shown in Fig. 2.8 (a) the carrier frequencies of the two

fields are each assumed to be close to resonance with one of the transitions,

so that each field can be uniquely identified with a particular transition. The

pump field P is (near) resonant only with the 1-e transition, while the Stokes

field S is (near) resonant only with the e-2 transition. Thus the nonzero

interactions, for linearly polarized fields, are:

ĤintP = V̂PEP (t) cos(ωP t− ψP ) (B.17)

ĤintS = V̂SES(t) cos(ωSt− ψS) (B.18)

where VP = 〈1| V̂P |e〉 and VS = 〈2| V̂S |e〉.
We write the state vector of the three-level system as:

|Ψ(t)〉 = C1(t)
∣∣ψ′1(t)

〉
+ Ce(t)

∣∣ψ′e(t)〉+ C2(t)
∣∣ψ′2(t)

〉
(B.19)

where, anticipating the removal of the Hamiltonian matrix elements that vary

at the carrier frequencies, we choose the rotating coordinates to be:∣∣ψ′1(t)
〉

= |ψ1〉 (B.20)∣∣ψ′e(t)〉 = e−iωP t |ψe〉 (B.21)∣∣ψ′2(t)
〉

= e−i(ωP−ωS)t |ψ2〉 (B.22)
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By replacing the state-vector (B.19) in the Schrödinger equation (B.15), the

ODEs governing the three-level system within RWA will be:
Ċ1(t)

Ċe(t)

Ċ2(t)

 = −i


0 1

2ΩP e
iψP 0

1
2Ω∗P e

iψP ∆P
1
2ΩSe

iψS

0 1
2Ω∗Se

iψS ∆P −∆S



C1(t)

Ce(t)

C2(t)

 (B.23)

where

ΩP (t) = VPEP (t)/~ , ΩS(t) = VSES(t)/~ (B.24)

The coupling strength between the states is determined by the Rabi fre-

quencies ΩS(t) and ΩP (t), while the detuning from the intermediate state

or from the two-photon resonance appears as the elements on the diagonal:

~∆P = Ee − E1 − ~ωP is the detuning (energy) of the pump laser from res-

onance with the |1〉-|e〉 transition and ~∆S = Ee − E2 − ~ωS is the detuning

of the Stokes laser from the |e〉-|2〉 transition. We define the single-photon

detuning as ∆ ≡ ∆P and two-photon detuning as δ ≡ ∆P −∆S .





APPENDIX C
Dipole moment in a periodic

potential

Here, we show that how the expression D = 〈uv,Φh| e · d |uc,Φe〉 reduces to

〈uv| e · d |uc〉 〈Φh|Φe〉. First, we replace the dipole moment operator by q r,

where q is the electric charge.

D = q 〈uv,Φh| e · r |uc,Φe〉 = q e · 〈uv,Φh| r |uc,Φe〉 (C.1)

The Bloch function u is periodic and fulfills u(r +R) = u(r), here R is an

arbitrary lattice vector. We write 〈uv,Φh| r |uc,Φe〉 as:

D1 = 〈uv,Φh| r |uc,Φe〉 =

∫
u∗v(r)Φ∗h(r) r uc(r)Φe(r) dr (C.2)

We now split the integral (C.2) into a sum of integrals over the various atomic

unit cells of index i and we assume that the envelop function Φ(r) varies

slowly, so that it may be approximated to a constant Φi within the atomic

unit cell i. This leads to:

D1 =
∑
i

Φ∗h,iΦe,i

∫
unit celli

u∗v(r) r uc(r) dr (C.3)

where the integration is performed within the unit cell i. Defining r′ as an

arbitrary lattice vector within the unit cell we have r = ri + r′. Thus by
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changing variables (C.3) is split into two separate terms:

D1 =
∑
i

Φ∗h,iΦe,i ri

∫
unit celli

u∗v(ri + r′) uc(ri + r′) dr′+

∑
i

Φ∗h,iΦe,i

∫
unit celli

u∗v(ri + r′) r′ uc(ri + r′) dr′
(C.4)

Since the Bloch function is periodic, we have u(ri + r′) = u(r′) and the

integrals are thus identical for all the unit cells. Then we can put them outside

the sums and we obtain:

D1 =
1

Vuc

∫
unit celli

u∗v(r
′) uc(r

′) dr′
∑
i

Φ∗h,iΦe,i ri Vuc+

1

Vuc

∫
unit celli

u∗v(r
′) r′ uc(r

′) dr′
∑
i

Φ∗h,iΦe,i Vuc

∼= 〈uv|uc〉
∫

Φ∗v(r)Φc(r)rdr + 〈uv|r′|uc〉
∫

Φ∗v(r)Φc(r)dr

(C.5)

where we also converted the Riemann sums for the envelop functions to inte-

grals. In a transition between the conduction band and the valence band which

is called an interband transition even without knowledge of the exact form of

the Bloch function, the following relation hold due to symmetry arguments

〈uv|uc〉 = 0 Interband (C.6)

Then, for interband transition, the dipole moment becomes

D1 = 〈uv|r|uc〉
∫

Φ∗h(r)Φe(r) r dr (C.7)

Then we can write:

D = q e ·D1 = 〈uv| e · d |uc〉 〈Φh|Φe〉 (C.8)



APPENDIX D
Complementary results on

exciton states

In this chapter, we bring some results which provide more detail about the

exciton states. we have considered a crystal-phase type-II QD in a nanowire

with geometrical parameters as: lNW = 90 nm, hQD = 4 nm, and dQD = 36

nm. For calculating the exciton states in this structure, we first calculated

the single-particle states. There is one single-particle electron bound state

in the z direction (ne = 1) and there are many single-particle hole states in

the valence band in the z direction. We considered ten lowest-energy hole

states in the calculation (nh = 1...10). There are also many single-particle

electron and hole states in the transverse plane, we consider 19 lowest-energy

single-particle states in the transverse plane for both the electron and hole as:

(l m)e/h = (0 0), (0 1), (0 − 1), (0 2), (0 − 2), (1 0), (0 3), (0 − 3), (1 1), (1 −
1), (0 4), (0 − 4), (1 2), (1 − 2), (2 0), (0 5), (0 − 5), (1 3), (1 − 3). By this

consideration the Coulomb matrix has 13,032,100 elements but we don’t

need to calculate all of them. Since the Hamiltonian is Hermitian and it is

equal to its own conjugate transpose Hij = Hji. Then, we just need to cal-

culate the diagonal elements and either the elements above the diagonal or

below the diagonal. By considering this fact, we need to calculate 6,517,855

matrix elements. The condition in (3.8) also computationally simplifies the

calculation such that we just calculate elements which meet this condition.
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By considering this, the number of elements which we need to calculate will

be 600,896 which is less than 5% of the initial number. The main exciton

properties of the mentioned structure has been discussed in Chapter 3. Here,

we bring some complementary results. Table. D.1 shows the lowest-energy

contributing single-particle elements to the ground-state exciton. Figure D.1

shows |Ψexc(re, rh)|2 the lowest energy exciton states probability density cal-

culated from Eq. (3.10). Table. D.2 provides the oscillator strength and the

energy correspond to these exciton states.

i :=
(n, l,m)e

j :=
(n, l,m)h

R %
i :=

(n, l,m)e

j :=
(n, l,m)h

R %

N0 1,0,0 1,0,0 13.1 N21 1,0,0 2,0,3 0

N1 1,0,0 2,0,0 23.76 N22 1,0,0 4,0,-1 0

N2 1,0,0 1,0,-1 0 N23 1,0,0 4,0,1 0

N3 1,0,0 1,0,1 0 N24 1,0,0 3,1,0 0

N4 1,0,0 2,0,-1 0 N25 1,0,0 1,1,-1 0

N5 1,0,0 2,0,1 0 N26 1,0,0 1,1,1 0

N6 1,0,0 3,0,0 18.26 N27 1,0,0 2,1,-1 0

N7 1,0,0 1,0,-2 0 N28 1,0,0 2,1,1 0

N8 1,0,0 1,0,2 0 N29 1,0,0 1,0,-4 0

N9 1,0,0 1,1,0 0 N30 1,0,0 1,0,4 0

N10 1,0,0 3,0,-1 0 N31 1,0,0 5,0,0 4.91

N11 1,0,0 3,0,1 0 N32 1,0,0 3,0,-3 0

N12 1,0,0 2,0,-2 0 N33 1,0,0 3,0,3 0

N13 1,0,0 2,0,2 0 N34 1,0,0 4,0,-2 0

N14 1,0,0 2,1,0 0 N35 1,0,0 4,0,2 0

N15 1,0,0 4,0,0 10 N36 1,0,0 4,1,0 0

N16 1,0,0 1,0,-3 0 N37 1,0,1 2,0,-4 0

N17 1,0,0 1,0,3 0 N38 1,0,0 2,0,4 0

N18 1,0,0 3,0,-2 0 N39 1,0,0 3,1,-1 0

N19 1,0,0 3,0,2 0 N40 1,0,0 3,1,1 0

N20 1,0,0 2,0,-3 0 N41 1,0,0 5,0,-1 0

Table D.1: The lowest-energy single-particle components which are contributing to
the ground-state exciton oscillator strength of a type-II SQD in a nanowire with
geometrical parameters of lNW = 70 nm, dQD = 36 nm, hQD = 4 nm.
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|Ψ0|2 |Ψ1|2 |Ψ2|2 |Ψ3|2

|Ψ4|2 |Ψ5|2 |Ψ6|2 |Ψ7|2

|Ψ8|2 |Ψ9|2 |Ψ10|2 |Ψ11|2

|Ψ12|2 |Ψ13|2 |Ψ14|2 |Ψ15|2

|Ψ16|2 |Ψ17|2 |Ψ18|2 |Ψ19|2

Figure D.1: The lowest-energy exciton states probability densities |Ψexc(rh, re)|2 for
Re = Rh = 0 in a type-II SQD with geometrical parameters: lNW = 70 nm, hQD = 4
nm, dQD = 36 nm.
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Exciton state Eex (meV) OSN%

Ψ0 77.02 35.82

Ψ1 79.92 0

Ψ2 79.92 0

Ψ3 81.03 7.89

Ψ4 83.15 0

Ψ5 83.15 0

Ψ6 83.35 1.34

Ψ7 83.44 0

Ψ8 83.44 0

Ψ9 83.79 9.89

Ψ10 85.84 0

Ψ11 85.84 0

Ψ12 86.37 0

Ψ13 86.37 0

Ψ14 86.72 6.22

Ψ15 86.84 0

Ψ16 86.84 0

Ψ17 87.20 5.12

Ψ18 88.10 0

Ψ19 88.10 0

Table D.2: The exciton states oscillator strength and energy of a type-II SQD in a
nanowire with geometrical parameters of lNW = 70 nm, dQD = 36 nm, hQD = 4 nm.
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i :=
(n, l,m)e

j :=
(n, l,m)h

R %
i :=

(n, l,m)e

j :=
(n, l,m)h

R %

N0 1,0,0 1,0,0 60.1 % N21 1,0,-1 1,0,-3 0 %

N1 1,0,0 1,0,-1 0 % N22 1,0,-1 1,0,3 0 %

N2 1,0,0 1,0,1 0 % N23 1,0,-1 1,1,-1 0 %

N3 1,0,0 1,0,-2 0 % N24 1,0,-1 1,1,1 0 %

N4 1,0,0 1,0,2 0 % N25 1,0,-1 1,0,-4 0 %

N5 1,0,0 1,1,0 0 % N26 1,0,-1 1,0,4 0 %

N6 1,0,0 1,0,-3 0 % N27 1,0,-1 1,1,-2 0 %

N7 1,0,0 1,0,3 0 % N28 1,0,-1 1,1,2 0 %

N8 1,0,0 1,1,-1 0 % N29 1,0,-1 1,2,0 0 %

N9 1,0,0 1,1,1 0 % N30 1,0,1 1,0,0 0 %

N10 1,0,0 1,1,1 0 % N31 1,0,1 1,0,-1 10.1 %

N11 1,0,0 1,0,-4 0 % N32 1,0,1 1,0,1 0 %

N12 1,0,0 1,0,4 0 % N33 1,0,1 1,0,-2 0 %

N13 1,0,0 1,1,-2 0 % N34 1,0,1 1,0,2 0 %

N14 1,0,0 1,2,0 0 % N35 1,0,1 1,1,0 0 %

N15 1,0,-1 1,0,0 0 % N36 1,0,1 1,0,-3 0 %

N16 1,0,-1 1,0,-1 0 % N37 1,0,1 1,0,3 0 %

N17 1,0,-1 1,0,1 10.1 % N38 1,0,1 1,1,-1 0 %

N18 1,0,-1 1,0,-2 0 % N39 1,0,1 1,1,1 0 %

N19 1,0,-1 1,0,2 0 % N40 1,0,1 1,0,-4 0 %

N20 1,0,-1 1,1,0 0 % N41 1,0,1 1,0,4 0 %

Table D.3: The lowest-energy single-particle components which are contributing to
the ground-state exciton oscillator strength of a type-I SQD in a nanowire with geo-
metrical parameters of lNW = 60 nm, dQD = 30 nm, hQD = 2 nm.
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