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Eldorado

Gaily bedight,
A gallant knight,
In sunshine and in shadow,
Had journeyed long,
Singing a song,
In search of Eldorado.

But he grew old -
This knight so bold -
And o’er his heart a shadow
Fell as he found
No spot of ground
That looked like Eldorado.

And, as his strength
Failed him at length,
He met a pilgrim shadow -
“Shadow,” said he,
“Where can it be -
This land of Eldorado?”

“Over the Mountains
Of the Moon,
Down the Valley of the Shadow,
Ride, boldly ride,”
The shade replied -
“If you seek for Eldorado!”

Edgar Allan Poe, 1849



Abstract

Quality of digital image and video signals on TV screens is affected by
many factors, including the display technology and compression stan-
dards. An accurate knowledge of the characteristics of the display and
of the video signals can be used to develop advanced algorithms that im-
prove the visual rendition of the signals, particularly in the case of LCDs
with dynamic local backlight. This thesis shows that it is possible to
model LCDs with dynamic backlight to design algorithms that improve
the visual quality of 2D and 3D content, and that digital video coding
artifacts like blocking or ringing can be reduced with post-processing.

LCD screens with dynamic local backlight are modeled in their main
aspects, like pixel luminance, light diffusion and light perception. Fol-
lowing the model, novel algorithms based on optimization are presented
and extended, then reduced in complexity, to produce backlights that
find optimal balance between image quality and power consumption.
The algorithms are tested in several experiments in comparison with
other State of the Art approaches.

Based on the model of backlight dimming, another model of backlight
scanning for crosstalk reduction in time-sequential stereoscopic visual-
ization on LCD is introduced. Crosstalk at a given luminance level is
minimized by properly adjusting the signals controlling the backlight.
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Resumé

Kvaliteten af digitale billed- og videosignaler p̊a TV skærme er p̊avirket
af mange faktorer, herunder display-teknologi og kompressions-standard.
Præcist kendskab til skærmens og videosignalernes egenskaber kan bru-
ges til at udvikle avancerede algoritmer til at forbedre den visuelle gen-
givelse af signalerne, særligt i tilfælde af LCD med dynamisk lokal bag-
belysning. Denne afhandling viser, at det er muligt at modellere LCD
med dynamisk baglys til at udvikle algoritmer, der forbedrer den visuelle
kvalitet af 2D og 3D billede, og at videokodnings-artefakter som blokke
eller ringinger kan reduceres ved hjælp af post-processing.

LCD-skærme med dynamisk lokal bagbelysning modelleres med hen-
syn til deres vigtigste aspekter, s̊asom pixel luminans, lysdiffusion og per-
ception. Nye algoritmer baseret p̊a optimering efter modellen præsen-
teres, udvides og simplificeres for at producere bagbelysning, der har en
optimal balance mellem billedkvalitet og strømforbrug. Algoritmerne
testes i flere eksperimenter i sammenligning med andre avancerede me-
toder.

En anden model af bagbelyst scanning indføres for at reducere cross-
talk i tid-sekventiel stereoskopisk visualisering p̊a LCD skærme. Cross-
talk p̊a et givet luminansniveau minimeres ved at justere de signaler,
der styrer bagbelysningen.
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of Markov random fields and of Pickard random fields are considered.
Pickard random fields are bi-dimensional finite rectangular fields where
each line and each row is a Markov chain. Pickard random fields are used
to construct fields with spacial contraints, like the hard-square contraint
and the no uniform 2× 2 square constraint. The entropy of these fields
is estimated or bounded and compared to other estimations.

How to Evaluate Objective Video Quality
Metrics Reliably [4]

Image and video quality can be measured objectively using a large set
of metrics, the most famous probably being Peak Signal to Noise Ra-
tio (PSNR) and Structural Similarity (SSIM) [12]. However subjective
quality is ultimately the most important, to the point that an objec-
tive metric is considered better than others if it can predict subjective
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tors can affect the reliability of the subjective data. By taking them into
account it is possible to make more precise studies, or at least to know
the degree of uncertainty of the conclusions that can be drawn from the
analysis of such data.

Adaptive Local Backlight Dimming Algorithm
Based on Local Histogram and Image
Characteristics [6]

This paper introduces a local backlight dimming algorithm using local
histograms to determine the backlight level. The algorithm consists of
three steps detailed. In the first step, segments are categorized in three
groups depending on the average luminance. In the second step, the
local histograms are built on the max RGB value of each pixel, then the
initial intensity of each backlight segment is set according to a percentile
of the histogram. Finally, the intensity of the segment is adjusted based
on the classification done in the first step.
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Enhancing Perceived Quality of Compressed
Images and Video with Anisotropic Diffusion
and Fuzzy Filtering [7]

This paper presents two techniques to remove blocking and ringing ar-
tifacts through the combined use of anisotropic diffusion equations and
fuzzy filtering. The first proposed method is designed for still images,
the second for video sequences. Fuzzy filtering has proven effective in
deblocking and deringing, while anisotropic diffusion is commonly used
for image enhancement as it follows the directional nature of blocking
and clipping artifacts. The filters have been designed to be adaptive to
the image and video content.

The performance of the proposed approaches has been compared
against other methods by using different objective quality metrics and
a subjective comparison study. The results indicate that the proposed
algorithms achieve better artifact reduction than other methods, on both
still images and video sequences, also for H.264/AVC compressed video.

Adaptive Deblocking and Deringing of
H.264-AVC Video Sequences [8]

This paper presents a method to reduce blocking and ringing artifacts
in H.264/AVC coded video. Deblocking is done with a decision mode-
based algorithm using local block characteristics and a quality metric
for I, P and B frames. Deringing is then obtained through an adaptive
bilateral filter. Objective and subjective measurements show that the
proposed algorithm effectively reduces artifacts and outperforms other
methods.



Contents

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Dynamic Backlight Dimming in LCD . . . . . . . 2

1.1.2 Backlight Scanning for 3D Crosstalk Reduction . . 2

1.2 Main Contributions . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Goals and Structure of the Thesis . . . . . . . . . . . . . . 4

2 LCD Backlight Dimming 5

2.1 Light and Color . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 LCD Technology . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.1 The Backlight . . . . . . . . . . . . . . . . . . . . . 14

2.2.2 LEDs and Other Light Sources . . . . . . . . . . . 16

2.3 Backlight Dimming . . . . . . . . . . . . . . . . . . . . . . 18

2.3.1 State of the Art . . . . . . . . . . . . . . . . . . . 19

2.3.2 Modeling . . . . . . . . . . . . . . . . . . . . . . . 23

2.3.3 Optimization Based Algorithms . . . . . . . . . . . 34

2.3.4 Gradient Descent . . . . . . . . . . . . . . . . . . . 47

2.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3 LCD Backlight Scanning for 3D Crosstalk Reduction 63

3.1 Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.1.1 Timing of Scanning and Strobing . . . . . . . . . . 65

3.1.2 Backlight . . . . . . . . . . . . . . . . . . . . . . . 66

3.1.3 Frames . . . . . . . . . . . . . . . . . . . . . . . . 68

3.1.4 Pixel Transition and State . . . . . . . . . . . . . . 68

3.1.5 Luminance . . . . . . . . . . . . . . . . . . . . . . 69

3.2 Optimal Backlight Scanning . . . . . . . . . . . . . . . . . 71

xi



xii CONTENTS

3.2.1 Crosstalk . . . . . . . . . . . . . . . . . . . . . . . 72
3.2.2 Constraints . . . . . . . . . . . . . . . . . . . . . . 72
3.2.3 The Optimization Problem . . . . . . . . . . . . . 73

3.3 Experiments and Results . . . . . . . . . . . . . . . . . . . 73
3.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4 Conclusion and Future Work 79

Appendix A Ph. D. Publications 83
A.1 Modeling LCD Displays with Local Backlight Dimming

for Image Quality Assessment . . . . . . . . . . . . . . . . 85
A.2 Speedup of Optimization-based Approach to Local Back-

light Dimming of HDR Displays . . . . . . . . . . . . . . . 97
A.3 Image Dependent Energy-constrained Local Backlight Dim-

ming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
A.4 Enhancing Perceived Quality of Compressed Images and

Video With Anisotropic and Fuzzy Filtering . . . . . . . . 119
A.5 Adaptive deblocking and deringing of H.264/AVC video

sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
A.6 Optimal backlight scanning for 3D crosstalk reduction in

LCD TV . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
A.7 Modeling power-constrained optimal backlight dimming

for color displays . . . . . . . . . . . . . . . . . . . . . . . 157

Appendix B Testsets 169



List of Figures

2.1 Illustration of photometric concepts . . . . . . . . . . . . 7
2.2 Wavelength sensitivity for rods and cones in the Human

Visual System (HVS) (CC BY-SA 3.0 License by Maxim
Razin, via Wikimedia Commons) . . . . . . . . . . . . . . 8

2.3 Color matching functions of the CIE 1931 color space (CC
BY-SA 3.0 License, via Wikimedia Commons) . . . . . . . 8

2.4 CIE 1931 chromaticity diagram (CC BY-SA 3.0 License,
by Sakuranbo via Wikimedia Commons) . . . . . . . . . . 10

2.5 Basic LCD structure and RGB sub-pixels (CC BY-SA 3.0
License, by Peter Halasz via Wikimedia Commons) . . . . 11

2.6 Twisted Nematic LCD pixel (CC BY-SA 3.0 License, via
Wikimedia Commons, courtesy of M. Schadt) . . . . . . . 12

2.7 Backlight classification . . . . . . . . . . . . . . . . . . . . 16
2.8 Basic structure of LCD with local backlight . . . . . . . . 24
2.9 Linear modeling of leakage . . . . . . . . . . . . . . . . . . 26
2.10 Example of PSF based light diffusion . . . . . . . . . . . . 27
2.11 Example of modeled and measured backlight . . . . . . . 28
2.12 Brightnessompensation . . . . . . . . . . . . . . . . . . . . 29
2.13 Perceptually uniform luminance . . . . . . . . . . . . . . . 32
2.14 Performance of perceptual weighting of the error . . . . . 39
2.15 �1 optimization with power penalization . . . . . . . . . . 40
2.16 �2 color optimization on direct-lit screen . . . . . . . . . . 41
2.17 Impact of downscaling . . . . . . . . . . . . . . . . . . . . 42
2.18 MSE comparison for gradient descent . . . . . . . . . . . 50
2.19 LabPSNR comparison for gradient descent . . . . . . . . . 51
2.20 Leakage comparison . . . . . . . . . . . . . . . . . . . . . 52
2.21 Example of pixel error function . . . . . . . . . . . . . . . 55

xiii



xiv LIST OF FIGURES

2.22 MSE performance of block-based gradient descent . . . . 57
2.23 MSE performance of block-based gradient descent (Zoom) 58
2.24 PSNR performance of block-based gradient descent . . . . 59
2.25 PSNR performance of block-based gradient descent (Zoom) 60

3.1 Time chart of backlight scanning and strobing . . . . . . . 67
3.2 Pixel state function . . . . . . . . . . . . . . . . . . . . . . 70
3.3 Average pixel state . . . . . . . . . . . . . . . . . . . . . . 70
3.4 Backlight scanning experiment . . . . . . . . . . . . . . . 76
3.5 Backlight scanning control signals . . . . . . . . . . . . . . 77

B.1 “ICIP” testset . . . . . . . . . . . . . . . . . . . . . . . . . 170
B.2 “ICIP” testset, grayscale . . . . . . . . . . . . . . . . . . . 171
B.3 Kodak True Color testset . . . . . . . . . . . . . . . . . . 172
B.4 Kodak True Color testset, grayscale . . . . . . . . . . . . 173
B.5 Four images for experiments . . . . . . . . . . . . . . . . . 174
B.6 Video testset . . . . . . . . . . . . . . . . . . . . . . . . . 175



List of Tables

2.1 Performance physical optimization . . . . . . . . . . . . . 36
2.2 Physical optimization with power penalty . . . . . . . . . 38
2.3 Physical optimization, color . . . . . . . . . . . . . . . . . 40
2.4 Subset optimization . . . . . . . . . . . . . . . . . . . . . 45
2.5 Min-Max sub-pixel optimization . . . . . . . . . . . . . . 47
2.6 MSE, leakage and clipping . . . . . . . . . . . . . . . . . . 52
2.7 Comparison of backlight dimming algorithms . . . . . . . 53
2.8 Time performance of the block-based gradient descent . . 59

xv





Chapter 1

Introduction

1.1 Motivation

The recent developments in information and telecommunication technol-
ogy have favored the ubiquitous adoption of digital imaging and video.
Anywhere, anytime, digital images and videos are being captured, coded,
stored, transmitted, decoded and displayed. From capture to display,
many factors affect the final visual quality. Compression of visual sig-
nals, particularly video, has become a common activity, often necessary
to keep up to the growing requirements of visual content consumers,
who demand higher resolution, lower bitrates and higher visual quality.
Examples are digital Television (TV) broadcasting or video streaming
from the Web using video codecs like MPEG-2 or H.264/AVC. While re-
ducing the amount of bits necessary to store or transmit a visual signal,
compression can introduce artifacts that negatively affect the perceived
quality. The final visual quality is also significantly affected by the dis-
play technology. Several kind of displays exists, each with advantages
and flaws, and they can have different sizes and different contexts of
use, e.g. a mobile phone or a TV. The peculiar characteristics of every
display technology can be exploited to yield a better rendition of the
visual signals.

Nowadays, digital TV sets are very advanced and include systems
and algorithms to improve the visual quality by processing the coded
signals input to the system. In the case of Liquid Crystal Display (LCD),
LED backlights can be varied adaptively to improve contrast and reduce

1



2 Introduction

power consumption.

1.1.1 Dynamic Backlight Dimming in LCD

LCD is today the most common display technology in the TV sector. It
has gradually eroded the market share of Plasma Display Panels (PDPs)
and will remain the main player until other promising technologies (e.g.
Organic Light Emitting Diode (OLED) displays) become more mature.
LCDs are relatively cheap, bright and thin, but competing technologies
(e.g. PDP) tend to render deeper blacks. The black level affects the
display contrast ratio, an important aspect of display quality. The low
contrast of LCD can be improved thanks to backlight dimming. The
backlight is the part of the LCD that emits light and is the responsible
of the poor black level; recent backlights commonly use Light Emit-
ting Diodes (LEDs) as light sources. By adaptively dimming it to the
image content, the black level can be reduced and the contrast ratio in-
creased. Dimming the backlight also reduces the power consumption of
the display, which is very important considering that modern screens are
required to be more and more energy efficient by national regulations.

Local dynamic backlight dimming gives the opportunity to increase
contrast and reduce power consumption, but it can introduce visual arti-
facts (i.e. clipping, haloes, flickering) that can negate the advantages of
the technique if not taken care of. By modeling LCD systems with local
backlight, it is possible to design advanced algorithms that find optimal
tradeoffs between image quality, power consumption and complexity.

1.1.2 Backlight Scanning for 3D Crosstalk Reduction

Typically, LCDs are used to display Two Dimensional (2D) content,
but it is possible to use them to deliver stereo vision of Three Dimen-
sional (3D) content, for example using active shutter glasses. However,
this setup can produce high levels of crosstalk, that is the imperfect iso-
lation of the left and right view that generate the impression of stereo
vision. This is caused by two aspects of a typical LCD: the backlight is
conventionally always turned on and the pixels are refreshed one by one
in sequence, causing previous and current frame to be partly displayed
simultaneously. An intelligent use of the backlight, as in the case of local
backlight dimming, can reduce the crosstalk level. This is done by scan-
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ning the local backlight to follow the pixel refresh. However, backlight
scanning reduces luminance, which is typically scarce when LCDs are
used for stereo 3D vision. It is therefore very important to find a way
to scan the backlight to reduce crosstalk but keeping the luminance at
reasonable levels.

1.2 Main Contributions

This Ph. D. thesis focuses on the visual quality of digital video signals
displayed on TV. In particular, the main interest is directed to LCD
with local dynamic backlight. The goal of the thesis is to show that
visual quality is also affected by the display; that the use of backlight
dimming can effectively improve image quality and energy efficiency;
and that backlight scanning can be used to reduce crosstalk in stereo
3D LCD with active shutter glasses.

The main focus of the Ph. D. project has been on local back-
light dimming. An initial model of backlight dimming systems and an
optimization-based backlight dimming algorithm built on it [13] have
been extended by introducing the possibility to penalize power consump-
tion, to reduce perceptual errors [5], and to optimize color images [10].
We have shown that it is possible to obtain optimal results using only
a subset of the image pixels [3]. We have also developed an alternative
approach, based on Gradient Descent (GD) search, which takes an ini-
tial backlight as input and improves it iteratively given a cost function.
This algorithm allows to directly optimize the perceptual result and de-
termine the backlight giving the best visual result. It is versatile, since
the number of iterations can be adapted to the context of utilization.
It is possible to reduce the complexity of the approach by assuming
block-wise uniform backlight in the screen; nearly optimal results can
be achieved with a greatly reduced execution time.

Modeling backlight dimming made it simple to model backlight scan-
ning for stereo 3D crosstalk minimization, which is partly based on simi-
lar principles [9]. Temporal variation of the backlight and the pixels was
added to the model, to characterize the scanning process of the Liquid
Crystal (LC) pixels, which is the main cause for crosstalk in the display.
We have then formulated an optimization problem to minimize crosstalk
at a given luminance level. The final results indicate that this can be



4 Introduction

achieved by properly offsetting the signals controlling the scanning of
the backlight.

1.3 Goals and Structure of the Thesis

This Ph. D. project has resulted in 10 peer-reviewed publications, in-
cluding 2 journal publications and 8 conference contributions [1]–[10].
The publications are in the fields of display technology, mathematical
modeling, image processing, video coding, visual quality assessment and
information theory. Of these publications, 5 are part of this thesis [2],
[3], [5], [9], [10] and are reported in Appendix A. Two papers on post-
processing for artifact removal in image and video [7], [8] are reported
in Appendix Aas well.

Chapter 2 presents local backlight dimming. After a brief introduc-
tion to photo/colorimetry and LCD, the benefits and challenges of the
technique are discussed, followed by the description of State of the Art
algorithms. A model of LCD with local backlight dimming, including
important aspects like light diffusion and perception, is introduced and
used as foundation to design optimization-based algorithms. Many such
algorithms are presented, starting from a simpler version and gradually
extending to improve the final result or allow new solutions like ad-
justable power consumption. To conclude, an algorithm based on GD
search and another one using local histograms are described.

Chapter 3 deals with backlight scanning for crosstalk reduction when
stereo 3D content is shown using an LCD and active shutter glasses. A
mathematical model of the system is introduced, followed by the formu-
lation of an optimization problem that minimized crosstalk at a given
luminance level.

Finally, Chapter 4 draws the conclusion of the thesis work.



Chapter 2

LCD Backlight Dimming

This Chapter is dedicated to backlight dimming techniques, which allow
to reduce the power consumption of Liquid Crystal Displays (LCDs) and
to increase their contrast at the same time. The Chapter is based on
[2], [3], [5], [10].

After a brief overview photometry and colorimetry principles and an
introduction to LCD technology, backlight dimming will be discussed.
The discussion will include the description of algorithms which consti-
tute the State of the Art, followed by the proposal of a model of back-
light dimming enabled LCDs. This model serves as framework to design
backlight dimming algorithms based on optimization techniques.

2.1 Light and Color

Light is an electromagnetic radiation that can produce a visual sensa-
tion. This section will consider light which can be perceived by the Hu-
man Visual System (HVS), also called ”visible light”. The wavelengths
of visible light range approximately from 400 nm to 700 nm. Other
definitions include ultra-violet (below 400 nm) and infra-red (above 700
nm) light.

There are several units of measure related to light. They can be
classified in radiometric units, which consider radiation in one part of
the spectrum, and photometric units, which consider visible radiation
relatively to the sensitivity of the HVS. The major photometric units
of measure are:

5
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Luminous flux visible power or light energy per unit of time; it is
measured in lumens (lm).

Luminous intensity luminous flux per solid angle emitted or reflected
from a point; it is measured in candelas (cd = lm

sr ).

Luminance luminous intensity per unit of area projected in a given
direction; it is measured in candelas per square meter or nits (nit =
cd
m2 ). It can be seen as the amount of light emitted by a surface
and falling in a specific solid angle. It is often used to measure the
light emitted by flat surfaces, like displays. For example, an LCD
TV can have a peak luminance of 500 cd

m2 .

Illuminance luminous flux per unit area incident on a defined surface;
it is measured in lux (lux = lm

m2 ).

The concepts of these measurements are illustrated in Figure 2.1.
The term brightness, often misused [14], refers to the subjective per-
ception of luminance by humans. Observers can perceive that objects
are more or less bright, but brightness cannot be measured.

As mentioned, the HVS is sensible to electromagnetic waves with
wavelengths ranging approximately from 400 nm to 700 nm. These
waves generate the sensation of color. The retina has four kind of sen-
sors: one type of ”rods” and three types of ”cones”. Rods sense in
presence of less then 100 nits and their peak sensitivity is at 498 nm.
Cones sense color when luminance is above 0.001 nits; their peak sen-
sitivities are about 437 nm (S or ”blue” cones), 533 nm (M or ”green”
cones) and 564 nm (L or ”red” cones). Figure 2.2 shows the sensitivity
of all sensors as a function of wavelength.

When only rods are sensing, the vision regime is called scotopic and
only shades of gray are perceived. When rods and cones are both active
the regime is mesopic and there is limited color perception. When only
the cones are active the regime is photopic.

Colorimetry is the science of describing in physical terms the human
perception of color. One of the most important color spaces is the CIE
1931 color space, which is based on tristimulus values derived from the
sensitivity to colors of the HVS. The tristimulus values are called X, Y
and Z and are functions of the spectral distribution of the colored light
and of the color matching functions. These functions map the response
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1m

1cd

1m2

1cd/m2

Ø = 1lm

Figure 2.1: Illustration of photometric concepts; a point light source emits a lu-
minous flux of 1 lumen (lm) in all directions; the luminous intensity is the luminous
flux per solid angle and it is 1 candela (cd); luminance is the luminous intensity in a
square meter and is 1 candela per square meter (cd/m2).

of the observer against the spectrum of the emission. The tristimulus
values are so calculated:

X =

∫ ∞

0
I(λ)x̄(λ)dλ (2.1)

Y =

∫ ∞

0
I(λ)ȳ(λ)dλ (2.2)

Z =

∫ ∞

0
I(λ)z̄(λ)dλ (2.3)

where λ is the wavelength, I(λ) is the spectral distribution and x̄(λ) ,
ȳ(λ) and z̄(λ) are the three color matching functions (shown in Figure
2.3).
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Figure 2.2: Wavelength sensitivity for rods (dashed line) and cones in the HVS.

Figure 2.3: Color matching functions of the CIE 1931 color space.

It is possible to distinguish, in a color, luminance and chromaticity.
Luminance is represented by Y , while chromaticity describes the hue
and saturation of the color. Chromaticity is described by the derived
values x and y and can be plotted in a diagram:

x =
X

X + Y + Z
(2.4)
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y =
Z

X + Y + Z
(2.5)

z = 1− x− y (2.6)

The diagram is called the CIE 1931 chromaticity diagram (Figure 2.4)
and contains all the colors averagely perceivable by a the HVS (or gamut
of human vision). The curved border is called monochromatic locus
and corresponds to pure (fully saturated) colors, which are composed
of just one wavelength. The point (x=0.33, y=0.33) is called the equal
energy point, which is taken as a reference to define the purity of a color
C. Purity is determined by drawing a segment between from the equal
energy point to the border crossing the color point and by calculating the
ratio of the distances. The color on the border is also called dominant
color of C.

When dealing with displays, one of the most significant metrics is the
contrast ratio, also simply called contrast. Contrast is a measure of the
difference between two luminance levels. The most common definitions
of contrast are Weber’s:

C =
ΔL

L
, (2.7)

where L is the absolute luminance and ΔL is the luminance variation,
and Michelson’s:

C =
Lmax − Lmin

Lmax + Lmin
, (2.8)

where Lmax and Lmin are the maximum and minimum luminance, re-
spectively. When concerning display, contrast is often measured as the
ratio between the luminance of the brightest and the darkest emissions
of the screen. In general terms, display contrast depends on what im-
age is displayed and is the ratio between the brightest and the darkest
pixel. The highest contrast can therefore be obtained when measured
over black and white pixels. In some kind of displays, like some LCDs,
the luminance of white and black pixels is not fixed. This leads to two
definitions of contrast:

Dynamic contrast is the contrast between the highest and the lowest
pixel brightness in a range of frames.

Static contrast is the contrast between the highest and the lowest
pixel brightness in a single frame.
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Figure 2.4: CIE 1931 chromaticity diagram. The numbers on the curve edge indicate
the frequencies of pure colors.

In some vendor specifications, dynamic contrast can easily be infinite
since it is sufficient to turn off the backlight to achieve such result (see
the following Section). Static contrast is a more meaningful parameter
and has a higher impact on image quality. In this thesis, the term
contrast refers to static contrast, unless otherwise noted.

2.2 LCD Technology

This section presents the main characteristics and basic functioning of
LCD technology, with particular focus on the backlight and on Light
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Backlight

Pixels

Figure 2.5: Basic structure of a LCD where the LCs are modulating and coloring
the backlight (left) and detail of RGB LC sub-pixels (right).

Emitting Diodes (LEDs) as light source. LCDs are one of the most
widespread display technologies, used on a large group of devices, from
digital watches to mobile phones and Television (TV) screens. In this
thesis, we will mainly consider the case of LCD TV.

In LCDs, the pixels are based on Liquid Crystals (LCs). The LC
grid is placed in front of the backlight, which is the light source of the
display. The LCs do not emit light themselves, but instead act as light
filters with adjustable transmittance (the fraction of light which is let
through), modulating the intensity of the backlight for each pixel. Each
LC pixel is usually composed of three sub-pixels, each one with a primary
color filter. The primary colors are usually Red, Green and Blue (RGB),
but screens with four or more primary colors exist as well [15]. The LCs
and the color filters allow each pixel of the LCD to render a wide range
of colors and luminance values. Figure 2.5 includes a representation of
sub-pixels.

The transmittance of the pixels of the LCD can be controlled with
an electric signal. The LCs are placed between light polarizers oriented
perpendicular to each other. If properly polarized, the light generated by
the backlight goes through the first polarizer. When no voltage is applied
on them, the LCs assume an helix-shaped structure, which “twists” the
polarization of the light and lets it through the second polarizers. The
result is a bright pixel. If instead a voltage is applied, the helix-shaped
structure starts to lose its form and the light is twisted to a lesser extent.
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Figure 2.6: Example of TN pixel in two states: OFF/white (left) and ON/black
(right).

This results in less light going through the second polarizer and in a
dimmer pixel. At a sufficiently high voltage, no twisting happens and
no light goes through the second polarized, resulting in a dark pixel
[16]. What has just been described is the type of LCDs based on
Twisted Nematic (TN). Alternative technologies have been invented,
like In-Plane Switching (IPS) and others.

However, the LCs cannot block all the light when this is intended.
This goes under the name of light leakage. For simplicity, in this thesis
light leakage is just called leakage.

The signal controlling the transmittance of LCD pixels do not have
a linear behavior. In order to make a more efficient use of their limited
bit depth, the signals are typically coded with a power function with γ
at the exponent. The function is called Gamma and a common value of
γ is 2.2, although others can be used [17].

Other popular display technologies exist. Before LCDs had taken
over, the most popular kind of consumer TV displays were Cathode Ray
Tubes (CRTs). Compared to them, LCDs are thinner, lighter, brighter
and consume less power. However, CRTs have lower black level (the
black level is the brightness of the black color when displayed, and it
should be as low as possible). Today, the main competitor for the TV
market are Plasma Display Panels (PDPs). Compared to LCD they
have better black level and a larger potential screen size. LCDs are



2.2 LCD Technology 13

however cheaper, brighter and consume less power. Over the years,
manufacturers have managed to make LCDs with large diagonals less
and less expensive, gradually eroding the PDPs market share. As for
emerging technologies, Organic Light Emitting Diodes (OLEDs) are ex-
pected to take over the TV market some time in the future. OLEDs
overcome many of the weak points of LCD, but are currently too expen-
sive and with some limitations that make their use for large displays like
TVs still inconvenient. They are however already present in the mobile
screen sector.

The LCD technology is very attractive and has been very success-
ful. There are however some flaws that make it inferior to competing
technologies in some aspects. One of these is the poor black level, that
is the excessively high brightness of the color black rendered on the dis-
play. This is caused by the LC leakage, which lets some unintended
light through because of imperfections in the material and the design of
the LCD pixels. Therefore, dark pixels look brighter than they should,
causing a high black level. LCDs are also affected by motion blur, which
is caused by the hold-type nature of the displays [18]. One more prob-
lem is that the time it takes to change the transmittance of a LC is
generally not negligible. This, together with the fact that the pixels in
a LCD are usually updated one-by-one sequentially and not simultane-
ously, increases crosstalk when LCDs are used to display stereo Three
Dimensional (3D) content (see Chapter 3).

The LCD module in a TV was specified to consume about 150 watts
of power in 2006 and about 70 in 2010 for a diagonal of 40 inch; the
main LCD component responsible for power consumption is the back-
light, which can account for up to 90% of the total energy usage [19].
LCD technology suffers from an intrinsic energy waste problem, since
the light emitted by the light sources is dissipated by several compo-
nents (light guides, diffusers, polarizers, filter, etc.) before it reaches the
viewer. The waste is maximum for black pixels: the light is generated,
but then it is blocked by the liquid crystals (except for a fraction of it,
which leaks through undesirably). In order for the viewer to perceive a
sufficient brightness, it is necessary for the light sources to be very pow-
erful. One consequence of this is a significant generation of heat, which
might affect the performance of the LCD and deteriorate image quality
in the long term. Reducing power consumption is therefore beneficial in
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many ways to LCDs. One more reason to save power is the recent en-
forcement of regulations limiting the allowed power consumption for TV
sets in several countries [20]. Labeling systems favoring energy-efficient
products have also been introduced, pushing TV manufacturers to make
their TV sets less power hungry.

One solution to counter balance the flaws of LCDs is backlight dim-
ming. The main principle of backlight dimming is that not all images
require the same level of brightness, depending on their content, and
that therefore it is possible to adaptively dim the backlight, when ap-
propriate. This helps lowering the LCD black level and consequently the
contrast ratio. Backlight dimming can also mitigate motion blur and re-
duce 3D crosstalk. Clearly, dimming the backlight will reduce its power
consumption and consequently heating. There are of course challenges
connected to this technique, like visual artifacts generated by changing
the backlight intensity. Backlight dimming is extensively discussed in
Section 2.3.

2.2.1 The Backlight

The backlight is the LCD component that provides light to the LCs. The
light is generated by one or more light sources, which can be of several
kinds (see Section 2.2.2); this work mainly considers the case of LED
backlight. The light sources can be placed directly behind the LC pixels
or at one or more of the sides. This allows to distinguish direct-lit and
edge-lit backlights, respectively. Edge-lit backlight need a light guide to
spread the light coming from the sides on the whole screen. This is not
the case for direct-lit backlights. The light distribution is then made
more uniform across the screen by using light diffusers. After this, the
light reaches the LC pixels and finally the viewer.

Besides the classification by light-source and by direct-lit/edge-lit,
backlights can be divided into local and global. Local backlights are
divided in segments, each one including one or more light sources and
each one independently controllable. In global backlights, a change in
light intensity concerns the whole screen. This can happen with one
single light source or with many light sources controlled by a single
signal. They can be modeled as having a single segment as large as the
display. Conventional Cold Cathode Fluorescent Lamp (CCFL) based
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backlights are usually global and edge-lit, with the lamp placed at the
lower side. More recent high-end LED based backlights are direct-lit and
local. Manufacturers are also producing edge-lit LED backlight where
the LEDs are places on the left and right side, to contain costs by using
less light sources.

Local backlights allow to vary the light intensity spatially, which
enables local backlight dimming (see Section 2.3). Depending on the
layout of the segments, local backlight can be classified by the number
of dimensions. When the segments span across one of the dimensions
of the screen, the backlight is One Dimensional (1D) (either vertical or
horizontal). When the segments are placed in a more grid-like struc-
ture (usually square or hexagonal), the backlight is classified as Two
Dimensional (2D). Some 2D backlights can also change the local light
color, thanks to RGB light sources; these are called RGB 2D backlights
or 3D backlights (color is considered a dimension). Figure 2.7 shows
examples of different kinds of backlights. The following list summarizes
the classification between global and local backlights.

Global backlight: a change in light intensity regards the whole screen;
in other words, there is only one backlight segment as big as the
screen.

Local backlight: the backlight is divided in separate segments that can
be dimmed independently; local backlight can be further classified
in

1D backlight: has horizontal or vertical segments that span across
the whole screen.

2D backlight: backlight segments are arranged in a grid, usually
square or hexagonal.

RGB 2D backlight: also known as 3D backlight, is an extension
of 2D backlights where regions are not illuminated by a single
white LED but by three RGB LEDs that spread out colored
light.

When using backlight dimming, more dimensions usually bring bet-
ter contrast and save more energy. The number of segments is also
influential, as in general the more the better. However, the price for this
is a higher production and driving cost [21].
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Figure 2.7: Examples of backlights depending on the type and position of backlight
segments. From top to bottom, left to right: input image, global (0D) backlight, hori-
zontal (1D) backlight, vertical (1D) backlight, 2D backlight, 3D (2D+color) backlight.
The two bottom displays are examples of the backlight generated from the input im-
age in case the backlight is 2D direct-lit (left) or edge-lit (right).

2.2.2 LEDs and Other Light Sources

For a long time, the most convenient light source for LCD backlight
were CCFLs, which are built with glass tubes containing two electrodes
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at the ends and filled with mercury (Hg) vapor. The internal side of
the glass tube is covered with fluorescent substances. When a voltage
is applied to the electrodes, electrons in the tube are accelerated and
ionize the Hg atoms; this leads to more atoms being hit by electrons
and by energy radiating from the impacts. This energy activates the
fluorescent materials in the glass tube, consequently emitting visible ra-
diation. Other kinds of light sources have been used for backlights, in
particular External Electrode Fluorescent Lamps (EEFLs), Flat Fluo-
rescent Lamps (FFLs), Hot Cathode Fluorescent Lamps (HCFLs) and
Field Emission Lamps (FELs) [19]. In the recent years, LEDs have
been used more and more as light source for backlights, replacing the
competing technologies which have been listed, particularly CCFLs [22].

LEDs are semiconductors devices that can emit light and have several
advantages. LEDs response time is less than a microsecond, while that
of CCFLs is in the order of milliseconds [22]. This short response time
enables techniques which would otherwise be impossible, like backlight
scanning and strobing/blinking, used to mitigate motion blur in LCDs
[18] or to reduce crosstalk in field-sequential 3D LCD TV (see Chapter
3). The lifespan of a LED exceeds 50000 hours in average, that is 4
or 5 times more than CCFLs [22]. CCFLs contain mercury, which is
intoxicating and whose usage has been restricted in several countries;
LEDs do not contain mercury. Being semiconductors, LEDs driving
circuits are easier to design and generally simpler. Moreover, they are
more shock resistant and generally more versatile. For instance, it is
simpler to design local backlights using LEDs. Additionally, in the case
of RGB LEDs, the spectrum of the backlight is sharper compared to
that of CCFLs, resulting in purer colors and larger gamut [22].

Thanks to recent research efforts, LEDs have become one of the most
efficient lighting technology. Furthermore, research on LEDs is still in
a relatively early stage compared to the mature CCFL technology, so
it is expected that their advantages will improve even further and their
price will decrease. This thesis focuses on LED backlight, therefore we
assume the light sources to be LEDs.
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2.3 Backlight Dimming

This section discusses backlight dimming, a technique that allows to
reduce power consumption and improve image quality on LCDs. As
a reminder to what was mentioned in Section 2.2.1, the main idea is
to match the intensity of the backlight to the image that is displayed.
The reason for this is that not all images require the same amount of
light, since some are darker than others. With local backlights, it is
even possible to vary the light intensity spatially according to the image
content, e.g. if the image contains both dark and bright areas, the
backlight can be dimmed only in the dark ones. Local backlights often
use LEDs as light sources; for this reason, in this thesis the term LED
is often used to refer to a backlight segment. The reduced backlight
emission can be compensated by increasing the LC pixel transmittance
accordingly, in order to obtain the same output luminance.

One clear benefit from backlight dimming is reduced power consump-
tion, as the backlight is not kept at full power all the time. This is very
important for the energy efficiency of LCD TV, because normally the
backlight is the component requiring the most power. The reason for
this is that, before reaching the viewer, up to 90% of the light is dissi-
pated by several components, like light guides, diffusers, polarizers, LCs,
filters, etc. [19]. The light sources must therefore emit very intense light,
consequently consuming a large amount of power. Energy efficiency is
very important for TV manufacturers because new regulations tighten-
ing the allowed power consumption for TV screens and monitors have
been enforced in several parts of the world, including the EU [20]. An
additional benefit of lower light emission is the reduction of heat gen-
eration, which decreases mechanical distortions of the screen caused by
high temperatures [23].

Backlight dimming also helps to reduce a typical problem of LCD:
light leakage. Leakage is caused by imperfections in the LCs preventing
a complete obstruction of light when this is required, i.e. black pixels,
and is particularly visible from wide viewing angles. This raises the
black level of the screen, making dark pixels brighter than desired. This
is the reason for the relatively poor contrast ratio of LCD, compared
to competing display technologies. When the backlight is dimmed, the
amount of light leaking through dark pixels is reduced and consequently
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the contrast ratio is increased. Varying the intensity of the backlight also
allows to raise the number of distinct luminance levels that the display
can emit, and therefore enable High Dynamic Range (HDR) rendering.

While backlight dimming can deliver undeniable benefits, it has some
problems. If the backlight is dimmed to an excessive degree, some pixels
might not be able to increase their transmittance enough to compen-
sate for the reduced emission of light, causing them to appear darker
than intended. This creates an artifact called clipping ; the pixels that
suffer from it are called clipped. If the backlight intensity changes too
frantically, for example when displaying a sequence of frames part of
a video, the user might experience the annoying artifact of flickering
over time. In local backlights, the light generated by several LEDs typ-
ically mixes in the light guides, if any, and the diffuser. The results
is a many-to-many relationship between LEDs and pixels, where each
LED contributes to the luminance of many pixels and where each pixel
receives light from many LEDs. Because of this, bright and dark pixels
are often in conflict, particularly when in the same region: it might not
be possible to obtain a backlight intensity which is optimal for both,
because the high luminance required by the former would cause leakage
in the latter; conversely the low luminance that would avoid leakage in
the latter would clip the former. In particular, the presence of a group
or cluster of bright pixels surrounded by dark pixels would induce a halo
artifact, caused by leakage being more evident in the dark pixels close
to the bright cluster.

Several algorithms have been proposed to calculate dynamic back-
lights. All of them need to find trade-offs between image quality, power
saving and complexity. Some favor one aspect, some another. Many
State of the Art algorithms are described in Section 2.3.1. These in-
clude proposals that have been developed during the Ph. D. project
which is the object of this thesis; they are presented in Sections 2.3.3
and 2.3.4. The model of backlight dimming enabled LCDs used to design
these algorithms is presented in Section 2.3.2

2.3.1 State of the Art

This section presents a selection of backlight dimming algorithms that
define the State of the Art. These algorithms have been used for compar-
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ison against the algorithms developed during the Ph. D. project object
of this thesis. For simplicity, after having been presented, the algorithms
are referred to with the name of the first author of the corresponding
publication.

The simplest backlight dimming algorithms use simple global or local
image characteristics, for example the maximum or average pixel value,
to determine the backlight. The Max algorithm sets the intensity of each
LED to the maximum pixel value of the corresponding segment, while
the Average (Avg) algorithm uses the mean value [24]. The Square-
root (Sqrt) algorithm uses the square root of the normalized average
pixel value, i.e. valued between 0 and 1 [25]. These algorithms are the
most simple, but are not reliable because the Max might not bring any
energy saving, especially for large segments, and is very sensitive to noise
and prone to flickering, while the Avg tends to produce excessively dim
backlights. The Sqrt is a trade-off between the two, but still too basic.

Other algorithms, like the one by Cho et al. [26] and the one by
Zhang et al. [27] attempt to use more advanced image statistics to
obtain better results. Both algorithms adopt the strategy of adding a
correction term to the average luminance required by each segment:

rk = gavg,k + corr, (2.9)

where rk is the intensity of LED k and gavg,k is the average luma value
of the pixels of the target image (y) in segment k. The two algorithms
differ in the calculation of the correction term corr: in Cho [26] it is
calculated as

corr =
1

2
×

(
d+

d2

2n

)
, (2.10)

where d = (gmax,k − gavg,k), gmax,k is the maximum luma value of the
pixels in segment k and n is the bit depth of y; in Zhang [27] corr is
calculated as

corr =

⎧⎨
⎩
0 if σk = 0(
1− σ2

avg

σ2
k

)
× d if σk �= 0

, (2.11)

where σ2
k is the luminance variance of segment k and σ2

avg is the vari-
ance when the maximum backlight luminance is equal to the average
luminance of segment k. The Cho algorithm corrects the backlight by
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considering the local difference between maximum and average lumi-
nance, while the Zhang algorithm tries to compensate the loss of detail
that an excessively low luminance would cause. The values of corr can
be stored in a Look-Up Table (LUT) to make the algorithms faster.

Another algorithm, introduced by Nam [28], uses a combination of
global and local image characteristics. Depending on the local and global
maximum and average luma values, the LEDs are set as follows:

rk =

⎧⎪⎪⎨
⎪⎪⎩

(
gm,k

2n−1

)γ
if gm,k ≥ gm(

gmax,k

2n−1

)γ
if (gm,k < gm) ∧ (gmax,k ≤ gavg)(gavg

b

)γ
if (gm,k < gm) ∧ (gmax,k > gavg)

, (2.12)

where gm,k =
gmax,k+gavg,k

2 , γ is the gamma of the display, gmax is the
maximum luma value of image, gavg is its average luma value, gm =
gmax+gavg

2 and

b = (2n − 1)×
(
1−

1− gavg
gm

gmax − gavg
(gmax,k − gavg)

)
. (2.13)

The author also describes an algorithm-specific way to compensate the
LCs for the light loss due to dimming [28].

Kim et al. [29] proposed an iterative local backlight dimming algo-
rithm considering the characteristics of neighboring image segments to
set the intensity of each LED. The authors define two measures of the
severity of leakage and clipping artifacts in each block. The algorithm
iteratively calculates the LED duty cycle that achieves a certain ratio
between the two artifacts. This ratio is defined by a segment-specific
weight, which is calculated using the maximum pixel value of the seg-
ment and the average pixel value of the neighboring segments.

Several algorithms set the backlight using global or local histograms.
Kang presented two global dimming algorithms that use the global his-
togram in one case and multiple local histograms in the other [30], [31].
Both methods take a target Peak Signal to Noise Ratio (PSNR) as in-
put and return a result with equal or higher value. In [30], the global
backlight is gradually dimmed (starting from full power) as long as the
PSNR is above the target. The method in [31] is very similar, but in this
case the image is divided in a certain number of blocks; the backlight
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is gradually dimmed as long as the PSNR of each image block is above
the target. Consequently, at the end each block has a PSNR higher or
equal to the target, and so does the whole image.

In [32], Chen et al. initially set the LED intensities using local
weighted histograms. The intensities are increased if the image is aver-
agely dark but contains some bright pixels, to avoid clipping. Flickering
is reduced by applying an adaptive Infinite Impulse Response (IIR) tem-
poral filter. The adaptive term depends on the average gray value of the
image and attempts to match the speed at which the scene changes. All
the LED are then dimmed in a final global step to reduce light leakage.

Lai et al. [33] build local histograms from the maximum RGB value
of each segment and use the gray level below which 75% of the pixels
of the segment are to set the LED. The algorithm presented by Cho
et al. in [34] calculates separate RGB histograms for each backlight
segment. These histograms are used to reduce the intensity of each
LED as longs as the overall and maximum pixel luminance remain above
a threshold value. Another histogram-based algorithm was presented
by Lin et al. in [35]. This algorithm considers the global histogram
as a Probability Density Function (PDF) and calculates a Cumulative
Distribution Function (CDF) from it. The CDF is then inverted and
used to map a weighted mean of the maximum and average pixel value
of each backlight segment to the resulting LED intensity.

Other algorithms use knowledge of the light diffusion in the back-
light to improve the precision of the calculations, typically at the cost
of higher complexity [13], [36], [37]. The information of light diffusion
is represented by the Point Spreading Function (PSF), also called light
spreading function [35], which is how the light spreads on the diffuser
plate from a light source. Each backlight segment has a characteristic
PSF. The algorithm by Albrecht et al. [36] is a three-step iterative
method that produces clipper-free results while reducing the power con-
sumption of the backlight. During the first step, each LED is set to a
lower bound determined by the image data and by the PSF of the LED.
The second step is optional and iterative: for each iteration, the pixel
requiring the most additional luminance to reach its target is found and
the intensity of the most influential LED not already at full power is
increased to reduce the gap. Iterations can continue for a defined num-
ber of steps or until all pixels receive enough light. In the third step,



2.3 Backlight Dimming 23

each segment is scanned to find clipped pixels and the luminance of the
corresponding LED is increased if any is found.

The algorithm presented by Hong et al. [37] determines, for each
backlight segment, the uniform luminance level which would keep a clip-
ping measure below a certain threshold. Then it finds the combination
of LED intensities that keeps power consumption to a minimum, while
keeping clipping below the threshold in all segments. To do this, the
algorithm uses a block-based coarse PSF, which assumes uniform back-
light inside one segment. This reduces accuracy as well as complexity.

Somehow similarly to [31] and [37], Cho et al. [38] use histograms to
determine the clipping error in each segment and set the LED luminance
to match a target PSNR in each block. Because of the light diffusion
from other LEDs, the luminance in each block is actually higher than
required. To reduce power consumption further, the LED intensity of
each segment is reduced if the amount of light coming from the neighbors
is high enough.

Shu et al. [13] presented an optimization-based dimming algorithm
that finds the best trade-off between clipping and leakage. This ap-
proach is at the foundation of those presented in Section 2.3.3 and will
be discussed later.

2.3.2 Modeling

This section presents a model for LCDs capable of local backlight dim-
ming that has been used to develop the algorithms presented in Section
2.3.3. Initial elements were first presented in [2] and [13], then extended
and formalized in [5], [3] and [10]. The modeling needs to include im-
portant factors like the transmittance of the LC pixels, the backlight
intensity for all pixels, light diffusion by PSF, leakage and human per-
ception of luminance. Although LCDs with more primary colors exists,
our model considers the common case of RGB LCD.

Figure 2.8 shows the simplified structure of an LCD with local back-
light dimming. Generally, backlight dimming algorithms take the digital
image to be displayed as input, together with other input parameters
specifying the characteristics of the display (as light diffusion or leakage),
and returns LED values and new pixel transmittances as output. The
model assumes the input images to be in the sRGB color format [39].
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Figure 2.8: Basic structure of a simplified LCD with local backlight. A backlight
dimming algorithm takes a digital image and display parameters (like light diffusion
or leakage) as input to deliver LED values and compensated pixel transmittances.

Some algorithms use the RGB values directly, while others first linearize
them by applying a power function to the normalized RGB values, with
an exponent of 2.2 which coincides almost perfectly with the gamma of
the color space.

Backlight dimming algorithms define some sort of target luminance
for each pixel or for a group of pixels; the groups usually coincide with
the backlight segments. Some algorithms set the target luminance for
each RGB sub-pixel, while others use only one value for the pixel, often
based on its luma. Some algorithms calculate the target luminance from
the linearized RGB values, others use the values directly.

Luminance, Transmittance and Leakage

The physical luminance l of one pixel in a LCD with local backlight can
be expressed as

l = bt, (2.14)

where b is the intensity of the backlight behind the pixel and t is the
transmittance of the pixel. Both b and t are normalized between 0 and
1. When b = 0 there is no light behind the pixel, while b = 1 means
that it is at maximum intensity. In traditional LCDs without backlight
dimming, b is set to 1 and the pixel luminance is determined by t only.
Similarly to b, t = 0 means that the pixel transmittance is null and,
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ideally, no light is let through, while when t = 1 no light is blocked.
However, because of the typical LCD leakage problem, t cannot be 0
in practice [13]. Leakage is modeled introducing the leakage factor ε,
defined as the ratio of light leaking through the LCs when t = 0 and
b = 1; ε is therefore the maximum physical leakage that can occur in a
pixel. Considering leakage, the output pixel luminance equation acquires
a second term proportional to ε, b and (1− t):

l = bt+ εb(1− t). (2.15)

Leakage is proportional to (1 − t) because it is maximum when t = 0
and is not present when t = 1. An alternative formulation of Eq. 2.15
is

l = bto, (2.16)

where to is the observed transmittance, as opposed to the ideal trans-
mittance t, and is defined as

to = (1− ε)t+ ε. (2.17)

Figure 2.9 shows the linear model of leakage.

The leakage factor is dependent of the horizontal and vertical viewing
angles θH and θV . Larger θH and θV mean larger ε. Typically, the
leakage increase is different for the horizontal and vertical directions.
This means that pixels have different ε for the viewer, depending on
their position. For simplicity, unless differently stated, the value of ε is
assumed to be constant across all the screen. The perception of leakage
also depends on the ambient light: it can be seen more clearly in dark
environments.

It should be noted that, in presence of multiple color components in
the images or of multiple primary colors in the display, Eqs. 2.14- 2.17
apply to each of them separately.

Backlight Diffusion

The LEDs in the backlight are normally driven by Pulse Width Modu-
lation (PWM) signals. The response time of LEDs is in the order of mi-
croseconds, making it negligible in the case we consider. Consequently,
the light intensity emitted by LED k is proportional to the duty-cycle
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Figure 2.9: Linear modeling of leakage, which is proportional to the leakage factor
ε, to the backlight intensity b and to (1 − t), where t is the pixel transmittance (see
Eq. 2.15).

of the driving signal rk. It is therefore possible to estimate the backlight
power consumption p by averaging the duty-cycles:

p =

∑M
k=1 rk
M

, (2.18)

where M is the number of LEDs / backlight segments.
The local luminance of the backlight results from the combination

of the PSFs of all LEDs, each multiplied by the duty-cycle of the LED.
The backlight b at a certain pixel is determined by

b =

M∑
k=1

hkrk, (2.19)
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Figure 2.10: Example of PSF based light diffusion (section). The black bars repre-
sent the intensities of the LEDs, the dashed lines are the corresponding PSF (multi-
plied by the intensities) and the solid curve is the sum of all contributions.

where rk is the duty-cycle, or intensity, of LED k and hk is the value
of the PSF of segment k at the pixel position. The values of rk are
normalized between 0 and 1, with 0 meaning that the LED is turned
off and with 1 meaning that its light output is maximal. Each LED
k contributes to b to the extent defined by the PSF, multiplied by the
LED intensity rk. The shape of the PSFs depends on the characteristics
of the light source, light guide and light diffuser. Considering all pixels
in the screen, Eq. 2.19 can be put in matrix form:

b = Hr, (2.20)

where the column vector b contains backlight values b for all pixels, the
influence matrix H (M columns and N rows, where N is the number of
pixels in the screen) represents the PSFs, expressed by all the h values
for all segments, and r is a column vector with M LED values. A one-
dimensional example of light diffusion based on PSF is shown in Figure
2.10.

In real displays, the light distribution in the backlight when all LEDs
are at full power is typically non uniform, as shown in the bottom part
of Figure 2.11. Because of this, the maximum luminance achievable
by different pixels might be different. This problem can be tackled by
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Figure 2.11: Example of modeled (top) and measured (bottom) backlight. Here, the
modeled backlight is obtained by applying a single PSF on many segments, causing
dim edges and non-accurate representation of the actual backlight, one example of
which is showed in the bottom part.

setting the target peak luminance to be some value below the maximum
peak luminance achievable by the screen. The target peak luminance
defines the luminance of the color white. By lowering it, more pixels
can reach it in presence of non-uniformity. However, the level should
not be set too low to avoid excessive reductions of brightness.

In the presence of many backlight segments, it might be impossible
or unpractical to store precise measures of all the PSFs. To reduce
the number of measurements on the screen or the amount of memory
required for storage, it is possible to apply the same PSF on more than
one segment. Particularly, this can be done for direct-lit backlights with
many segments, which tend to have similar, although not equal, PSFs.
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Figure 2.12: Example of brightness compensation; the full backlight (left) is dimmed
to half power (right) and the RGB transmittances are correspondingly doubled. The
lower backlight intensity has the positive effect of reducing light leakage. Excessive
dimming can however cause clipping.

Edge-lit displays tend to have a lower number of segments and storing
PSF data is less of a problem. The problem with using one PSF for
many segments is that the segments close to the edges of the screen will
trim it, resulting in a modeled backlight dimmer than the actual one
because part of the PSF is actually neglected. Accuracy will generally
be lower, as shown in Figure 2.11, where the modeled backlight resulting
from one single PSF applied to a large number of segments (top) is
compared to the real measured backlight (bottom). Reducing the target
peak luminance can help to reduce differences between modeled and
measured backlight.

Brightness Compensation

Backlight dimming generally reduces the intensity of the backlight. The
output luminance of the pixels is kept identical to that of the target lu-
minance with the step of brightness compensation, also called brightness
preservation [40] or pixel compensation [41]. The concept is illustrated
in Figure 2.12.

Ideally, it is possible to calculate the compensated transmittance tC
from Eq. 2.14 by replacing the general luminance l with the target
luminance ly, as in

tC =
ly
b
. (2.21)

In the practical case, the values of the observed physical luminance are
restricted between ε, because of leakage, and 1, because higher values
would mean that the LCs can amplify light, which is not true. Equation
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2.21 is therefore so modified:

tC =

⎧⎪⎪⎨
⎪⎪⎩
1 if

ly
b > 1 (Condition I)

0 if
ly
b < ε (Condition II)

ly
b
−ε

1−ε otherwise

. (2.22)

If Condition I is verified, clipping occurs in the pixel, meaning that it is
dimmer than desired. Condition II defines pixels that suffer from leakage
and output a luminance higher than the target. Using Eq. 2.17 it is
possible to calculate the observed physical compensated transmittance
tCo, if t is replaced with tC :

tCo =

⎧⎪⎨
⎪⎩
1 if

ly
b > 1 (Condition I)

ε if
ly
b < ε (Condition II)

ly
b otherwise

. (2.23)

An alternative notation for Eq. 2.23 is the following:

tCo =

[
ly
b

]�1

⊥ε

, (2.24)

where ⊥ε means that tCo = ε if ly/b < ε and �1 means that tCo = 1 if
ly/b > 1. The kind of compensation in Eq. 2.22 is called hard clipping.
Hard clipping compensates the loss of luminance as much as possible
and minimizes the physical luminance error. However, it can cause an-
noying posterization artifacts by flattening some areas of the image.
Soft clipping is an alternative approach that operates a less aggressive
compensation for high target luminance, with the effect of reducing pos-
terization and potentially improving the perceptual appearance [40].

Equations 2.14-2.22, which have been presented in the previous sec-
tions, apply to monochrome signals. In presence of more color compo-
nents, e.g. RGB, they are to be applied on each of them. This may
introduce a new artifact caused by hard clipping, that is color distortion
occurring when one of the RGB sub-pixels clips but not the others. A
way to combat this problem could be to compensate the three channels
together and maintain the transmittance ratios. This will result in lower
luminance but less color shifts. In this thesis, unless otherwise noted,
hard clipping with independent RGB compensation is assumed.
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Human Perception of Luminance

The HVS has a non-linear response to luminance, roughly logarithmic.
As absolute luminance increases, the sensitivity to variations of lumi-
nance in the HVS decreases. In general, the perceptual response can be
expressed as

lU = g(l), (2.25)

where g is a non-decreasing function of the physical luminance l; lU
is called the perceived luminance and is said to be in the perceptual
domain, as opposed to the physical domain where l is expressed. In
general, equal steps of lU correspond to varying steps in l and vice versa.
For luminance in the range of 1-100 cd/m2, g can be approximated with
a gamma function [42]:

lU = l
1
γ , (2.26)

Values of γ between 2.2 and 3.0 have been reported to obtain excellent
perceptual performance [17]. A γ of 2.2 approximates very closely the
gamma of the sRGB color space [39], which makes it coincide with the
perceptual domain.

For displays with higher luminance, other functions should be used
to model the perceptual response. Aydın et. al. have defined experimen-
tally a function mapping physical and perceived luminance in the range
1-106 cd/m2. The subjective data has been fitted with a logarithmic
function in [2], resulting in the following equation,

lU = 66.25× loge(0.56× l0.88 + 1), (2.27)

which is plotted in Figure 2.13. Unless differently stated, in this work
lU is modeled using Eq. 2.26 with γ = 2.2.

Quality Assessment

The objective quality of images produced by backlight dimming algo-
rithms can be measured inside the model, for example in terms of the
difference between the target image y and the output x of the algorithm
in the physical or in the perceptual domain. Common measures include
the Mean Absolute Error (MAE):

MAE =

∑N
i=1 |yi − xi|

N
, (2.28)
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Figure 2.13: Function mapping physical luminance for high peak luminance displays
to PU luminance. The experimental data is taken from [42].

the Mean Squared Error (MSE):

MAE =

∑N
i=1(yi − xi)

2

N
, (2.29)

and the PSNR, which is built on MSE:

PSNR = 10× log10

(
MAX2

MSE

)
, (2.30)

where N is the number of pixels in the screen and MAX is the maximum
pixel value. For non-normalized 8-bit sRGB values, MAX = 255. In this
work normalized pixel values are normally used, therefore MAX = 1
unless differently stated. Other quality metrics can of course be used.

LabPSNR LabPSNR is a quality metric based on PSNR using the
CIE 1976 L*a*b* color space (from here on referred as “Lab” for brevity)
instead of sRGB. The reason is that Lab was designed to be perceptually
uniform regarding color distortion, while sRGB was not. This means
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that a change of magnitude in Lab approximates an equivalent change
in the perceived color. Conversion from linearized RGB values to Lab
is done through the intermediate XYZ color space as follows [39], [43]:

⎡
⎣ X

Y
Z

⎤
⎦ =

⎡
⎣0.412 0.358 0.180
0.213 0.715 0.072
0.019 0.119 0.950

⎤
⎦
⎡
⎣ R

G
B

⎤
⎦ (2.31)

L∗ = 116 · f(Y/Yn)− 16
a∗ = 500 · [f(X/Xn)− f(Y/Yn)]
b∗ = 200 · [f(Y/Yn)− f(Z/Zn)]

where f(k) =

{
k1/3 if k > 0.008856

7.787 · k + 16
116 otherwise

, (2.32)

where Xn, Yn and Zn are the X, Y and Z values for the reference white,
respectively. The color difference ΔE, considering both luminance and
chrominance difference, is defined as

ΔE =
√
ΔL∗2 +Δa∗2 +Δb∗2, (2.33)

where ΔL∗, Δa∗ and Δb∗ define the differences between the target and
output pixel measured for L∗, a∗ and b∗ components. LabPSNR is
defined by taking the definition of PSNR (Eq. 2.30) and replacing MSE
with mean squared ΔE:

LabPSNR = 10 · log10

⎛
⎜⎜⎜⎝ (ΔEmax)

2

1
N

N∑
i=1

ΔE2
i

⎞
⎟⎟⎟⎠ , (2.34)

where ΔEi is the color difference at pixel i, determined by Eq. 2.33 and
ΔEmax is the difference between black and white (normalized sRGB
triplets (0,0,0) and (1,1,1)) in the Lab color space: its value is 100.

Equipment

This section presents three LCDs with local backlight that have been
modeled and used in experiments.
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The first screen is a direct-lit panel with 221 backlight segments,
organized in 13 rows and 17 columns. The PSF, equal for all segments,
is modeled with a bi-dimensional Gaussian function.

The second screen is the model of a real 47 inch Full High Defini-
tion (HD) display manufactured by SIM2 [44]. The backlight has 2202
segments placed in a hexagonal grid. As in the previous screen, all seg-
ments use the same PSF, provided by the manufacturer. This was done
for practical reasons, however the model allows to assign a different PSF
to each segment. An example of backlight generated by this screen is
shown in the bottom-left corner of Figure 2.7.

The third screen is edge-lit and has 16 segments, placed in 8 rows
and 2 columns. As the previous display, this one is also modeled on a
real device. However, this display uses a specific PSF for each LED,
obtained through measurements. An example of backlight generated by
this screen is shown in the bottom-right corner of Figure 2.7

All screens have a default resolution of 1920× 1080 pixels, but it is
possible to define a downscaling factor that resizes the displays and the
PSFs accordingly. Different factors can be specified for the horizontal
and for the vertical dimension.

2.3.3 Optimization Based Algorithms

This section presents backlight dimming algorithms based on optimiza-
tion that have been developed during the Ph. D. project object of this
thesis. The target of optimization is to find the best trade-off between
clipping and leakage and to reduce the power consumption in local dim-
ming systems. The first algorithm was presented in [13] and was ex-
tended in [3], [5], [10]. Proposals for reducing the complexity of the
method have been brought forward in [3], [10], [13]. All sections report
experimental results assessing the performance of the algorithms.

Original Formulation

In [13], backlight dimming is modeled as an optimization problem. The
goal is the minimization of a cost function defined by the norm of the
difference between the target physical luminance y and the actual phys-
ical luminance x emitted by the display pixels to obtain the maximum
quality. The reduction of power consumption is a by-product of quality
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optimization, due to the fact that leakage is included in the optimiza-
tion, which pushes to reduce the backlight intensity. The output x is
determined by the backlight b and by the pixel transmittances t (Eq.
2.16). The backlight b, calculated as in Eq. 2.20, depends on the influ-
ence matrix H and on the LED values r. The values of t are within the
leakage factor ε and 1, while those of r are limited between 0 and 1.

The formulation of the problem is the following:

minimize ‖(y − x)‖
subject to x = b ◦ t

b = Hr
ε ≤ ti ≤ 1, k = 1, . . . , N
0 ≤ rk ≤ 1, k = 1, . . . ,M

, (2.35)

where the ◦ operator defines element-wise multiplication. The norm
to be minimized can be any norm, for example �1 or �2. The optimal
rk can be found using software solvers taking the problem and data as
input [45], [46]. After optimization, the values of r result in the optimal
backlight. Problem 2.35 can be reformulated in convex form as follows:

minimize ‖λ‖
subject to b = Hr

λ ≥ (ε ◦ b)− y
λ ≥ y − b
λ ≥ 0
0 ≤ rk ≤ 1, k = 1, . . . ,M

, (2.36)

where λ is an auxiliary vector containing bounds for the difference be-
tween target and output pixels. The reader may consult [13] to find
more information about the conversion from Problem 2.35 to Problem
2.36.

To make a simple assessment of its performance, the optimization-
based method has been compared against the clipper-free and generally
good quality algorithm from [36]. The norm was minimized in �2. The
algorithms have calculated the backlight for the edge-lit screen described
in Section 2.3.2 with ε = 0.0002. The display has been downsampled
by a factor of 8, horizontally and vertically. Both algorithms have been
implemented in Matlab. The solver used for the optimization based
approach is provided by the CVX package [45], [46].
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Optimal �2 Albrecht et al. [36]

MSE 7.319 E-9 8.420 E-9
Power 0.7376 0.7506

Table 2.1: Comparison of the basic optimization approach minimizing �2 norm
against another algorithm.

Eight grayscale images were used in the experiment, shown in Figure
B.2 in Appendix B. The set of chosen images includes several image
types like synthetic graphics, natural images and compressed pictures.
The MSE has been measured on the luma channel in the physical domain
at the downscaled resolution. Table 2.1 reports the average MSE and
power consumption.

The optimization algorithm can achieve at the same time lower phys-
ical MSE and lower power consumption. The reason for this is that leak-
age is included in the optimization, while it is neglected in [36]. Further
results can be found in [13].

Extensions

Optimization Problem 2.35 has two limits. One limit is that the opti-
mization is done in the physical domain, not in the perceptual, which
results in sub-optimal perceived results. The other limit is that the cost
function only considers the norm and, while power savings result from
including leakage in the optimization, it is not possible to find the opti-
mal backlight level for lower levels of energy. To address these problems,
two extensions to Problem 2.35 have been proposed in [3] and [5]. The
first extensions is the introduction of an error weighting matrix w that
can assign specific weights to the pixel differences between y and x. The
second extension is the inclusion of an adjustable term penalizing power
consumption in the cost function.

The weighting matrix can be used to approximate a better perceptual
result from the optimization. In the physical domain, the luminance
error at pixel i between yi and xi is only determined by the difference
yi − xi. However, in the perceptual domain this difference might be
more or less noticeable due to the non-linear response to luminance
of the HVS. As discussed in Section 2.3.2, the perceptual sensitivity
to luminance variations decreases as the absolute luminance increases.
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Following this, leakage errors are more evident than clipping errors of
the same physical intensity. The pixel-specific error weights can be used
to give more emphasis to errors in the low luminance range, following
the perceptual response. If this is g (as in Eq. 2.25), the proposal is
to use, as a weight wi for pixel i, the slope of the curve at the target
luminance yi:

wi = g′(yi). (2.37)

If g is modeled using a gamma function as in Eq. 2.26, then Eq. 2.37
becomes

wi =
1

γ
× y

1− 1
γ . (2.38)

Power consumption can be penalized by including a penalty term
in the cost function to be minimized. Power consumption p can be
estimated from the LED values rk as in Eq. 2.18. The impact of p
can be adjusted by multiplying it by the coefficient q, called the power
weight or power penalty. Larger values of q favor backlights with lower
intensity.

To include these two extensions, Problem 2.35 is modified as follows:

minimize ‖(y − x) ◦w‖+ q × p
subject to x = b ◦ t

b = Hr
ε ≤ ti ≤ 1, i = 1, . . . , N
0 ≤ rk ≤ 1, k = 1, . . . ,M

. (2.39)

The linear reformulation consequently becomes:

minimize ‖λ‖+ q × p
subject to b = Hr

λ ≥ ((ε ◦ b)− y) ◦w
λ ≥ (y − b) ◦w
λ ≥ 0
0 ≤ rk ≤ 1, k = 1, . . . ,M

. (2.40)

It can be noticed that if w is set as a vector of ones and q is set equal
to zero, Problem 2.39 is equivalent to Problem 2.35 and Problem 2.40
to Problem 2.36.

Table 2.2 shows how the MSE increases and power consumption de-
creases when q is increased. The data is generated from simulations
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q 0 1 5

MSE 7.319 E-9 9.293 E-8 6.284 E-6
Power 0.7376 0.6535 0.5395

Table 2.2: Increase of physical MSE and reduction of power consumption as q
increases in �2 optimization with no perceptual error weighting (Problem 2.39).

having the same parameters as that of the previous section (physical �2
optimization, edge-lit screen with ε = 0.0002 and downscaled by a fac-
tor 8, over 8 grayscale images), except that they are based on Problem
2.39 with no perceptual weighting and varying values of q. Power con-
sumption is clearly reduced, but at the same time the error increases.
In general, it appears that higher quality solutions require more energy.
The exception to this is leakage, which is reduced by dimmer backlights.

If MSE is measured in the perceptual domain, the error is larger than
in Table 2.2, as shown in Figure 2.14. Interestingly, however, increasing
the value of q reduces the error, because leakage error is reduced by
the lower backlight intensity. Enabling perceptual error weighting (as
described previously) brings MSE even lower; the penalization of leakage
over clipping also helps reducing power consumption further.

In [5], the power penalization mechanism has been tested more ex-
tensively. Figure 2.15 compares the results of solving 2.39 for �1 opti-
mization with perceptual error weighting for the SIM2 display described
in Section 2.3.2, with ε = 0.001 and a downscaling factor of 4. Eight
grayscale images were used, shown in Figure B.2 in Appendix B. Results
for the backlight dimming algorithms presented in [36], [28], [26] and the
Max algorithm (see Section 2.3.1) are reported for comparison. PSNR is
measured in the perceptual domain. The optimization based approach
achieves higher average PSNR than other algorithms at a given power
level. Further results can be found in [5] and [3], available in Appendinx
A.

Color

Optimization Problem 2.39 only minimizes the cost function over one
color channel. The formulation has been generalized in [10] to allow
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Figure 2.14: Performance of perceptual weighting (PW) of the error; when enabled,
MSE can be reduced in the perceptual domain.

optimization in multiple color channel:

minimize
∥∥∥∑j=R,G,B (yj − xj) ◦wj

∥∥∥+ q × p

subject to xj = b ◦ tj ; j = R,G,B
b = Hr
ε ≤ tij ≤ 1; i = 1, . . . , N ; j = R,G,B
0 ≤ rk ≤ 1; k = 1, . . . ,M

. (2.41)

Including color improves the quality of the result but also increases
complexity, since the number of variables and constraints is tripled.
While RGB components are assumed, the generalized formulation can
be adapted to a different set of primaries. The three RGB sub-pixels
have different transmittances but share the same backlight intensity. A
specific error weight vector can be assigned to each color channel.

Table 2.3 compares single-channel optimization (Problem 2.39) to
the color aware formulation (Problem 2.41). The single-channel results
are the same as in the previous section (without perceptual weighting of
the error), but this time the backlight is applied on the color image and
MSE is measured on it. Although is increases complexity, optimizing
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Figure 2.15: Comparison of the optimization based approach with �1 minimization,
perceptual error weighting and penalization of power consumption against other al-
gorithms. References are: Max [25], Nam [28], Cho [26], Albrecht [36].

q 0 1 5

Luma
MSE 1.027 E-3 2.636 E-3 2.964 E-3
Power 0.7376 0.6535 0.5395

q 0 1 5

RGB
MSE 7.671 E-9 2.877 E-8 1.306 E-6
Power 0.8440 0.7798 0.6837

Table 2.3: Optimization over the luma component only (top) compared to that over
RGB components (bottom).

over color helps to reduce the error significantly.

Another simulation, reported in [10], compares the optimization of
Problem 2.41 against other algorithms: [26], [27], [29], [31], [35], [36], the
Max, Avg and Sqrt algorithms. Optimization is done on the direct-lit
display and on the 8 color images shown in Figure B.1 in Appendix B,
with ε = 0.001 at downscaling 5. The resulting backlight is applied at
the original Full HD resolution (1920x1080) and the MSE is measured
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Figure 2.16: Comparison of the optimization based approach with �2 minimization,
perceptual error weighting and penalization of power consumption against other al-
gorithms. Results are for a direct-lit screen with 2202 segments, with ε = 0.001 and
downscaling factor 5. Labels indicate power penalty. References are: Max and Sqrt
[25], Cho [26], Zhang [27], Albrecht [36], Kang [31], Kim [29], Lin [35].

on all color components in the perceptual domain. Again, this approach
achieves the lowest error at a given power level.

Reduction of Complexity

The optimization-based algorithms presented in Section 2.3.3 can ob-
tain high quality results but suffers from high complexity. For instance,
Problems 2.35 and 2.39 have millions of variables and constraints in the
case of a Full HD image. For Problem 2.41 the amount is three times
as much. The following paragraphs discuss strategies aimed at reducing
the complexity of these algorithms.

Downscaling One solution is to downscale the input image and down-
scale by the same factor the screen and the PSFs in the model, minimize
the cost function on the downscaled image and then apply the result on
the original full resolution image. It was shown, in [5], that downscaling
reduces quality and power consumption. In that case, bicubic downscal-
ing was performed on the image and bilinear downscaling to the PSFs.
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Figure 2.17: Impact of downscaling on PSNR and power consumption for two
screens. The labels indicate the downscaling factors.

Figure 2.17 shows the impact of the downscaling factor over the Gaus-
sian screen and the SIM2 screen presented in Section 2.3.2; the factor is
varied from 1 to 10 for the first screen and from 4 to 10 for the second
one. Optimization was done with Problem 2.39 for �1 with perceptual
error weighting and ε = 0.001. The average PSNR, measured on the
8 images were shown in Figure B.2 in Appendix B, is measured in the
perceptual domain.

The Gaussian screen seems to have better performance compared to
the other screen. While it is worth noting that this screen is idealized
and not modeled on a real display, while the other is, the reason for this
is due to the PSFs, which are smaller than those of the direct-lit screen
and therefore need to compromise less in case leaking and clipped pixels
are in the same area.

The problem with downscaling is that it applies a low pass filter to
the target image, blurring very bright or very dark pixels, and therefore
causing a larger number of pixels to be clipped or leaking.
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Block-wise Uniform Backlight Complexity can also be reduced by
introducing in the model approximations that decrease the amount of
calculations. In [13], the authors suggest to divide the backlight in
blocks and assume that the intensity inside them is constant. This is
a reasonable assumption as long as the blocks have a relatively small
size, since the backlight resolution is much lower than pixel resolution
and since light diffuses smoothly. This allows to reduce the number of
variables needed to represent the backlight, e.g. if the block size is 10x10,
the number of variables is reduced 100 times. It is still necessary to have
one variable for each pixel transmittance; however, since the backlight is
constant inside the block, pixels with the same value will have the same
error. These pixels with the same value can be represented with a single
variable, but with a larger weight in the error, equal to the number of
pixels having the same value. Constraints λi ≥ yi − bi from Problem
2.36, where i refers to a pixel in the backlight block, becomes

λ′
v ≥ nv(v − bB), (2.42)

where nv is the number of pixels with value v inside the block, and
bB is the backlight intensity inside the block. Constraint λi ≥ εbi − yi
similarly becomes

λ′
v ≥ nv(εbB − v). (2.43)

The authors suggest that, for this second constraint, the backlight blocks
can be even larger because ε values are usually very small, making the
variation of εb very smooth.

In the worst case, that is when all possible pixel values appear at
least once inside the backlight block, the number of constraints for the
block will be equal to the number of values (e.g. 256 in a 8-bit image).

Sub-sampling Using Only Distorted Pixels Another approach
that can reduce complexity is sub-sampling the target image and finding
the optimal solution on the pixel subset only. It was shown that it
is possible to obtain nearly-optimal results by using about 10-25% of
the input pixels [3]. It should be noted that sub-sampling differs from
downscaling, because the sub-sampling takes a subset of the original
pixels (samples) without processing them.

In [3], it is noted that the error between the target y and the display
output x is due to distorted pixels, that is clipped and leaking pixels.
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The rest of the pixels do not contribute to the error because this trans-
mittance can compensate the dimmed backlight. This indicates that
distorted pixels are those that influence the optimal result the most.
Therefore, solving the optimization problem on these pixels should only
result in a backlight reasonably close to the optimum.

In order to validate this proposal, it is necessary to find a subset
of the target pixels to optimize on. This is done by applying an initial
backlight (calculated with any algorithm) on the full set of pixels and
selecting the subset of pixels that are distorted. Optimization is then
performed on this subset and the resulting backlight is applied to the full
set. If new pixels are distorted, and were not distorted with the previous
backlight, they are added to the subset. This process is re-iterated until
no new pixel is distorted.

Optimizing on a subset requires less time that optimizing on the
complete set, but implies many iterations, which might result in a longer
overall time. However, the goal is to show that optimal or nearly optimal
solutions can be found by optimizing on a subset of the target pixels.
Processing time is therefore not critical at this stage.

The cost function based on the distorted pixels only can be expressed,
in the case of �1 norm, as

f =
∑
i∈DC

(yi − bi) +
∑
i∈DL

(εbi − yi), (2.44)

where DC is the set of clipped pixels and DL is the set of leaking pixels.

This approach has been tested on two displays (the edge-lit and SIM2
screen described in Section 2.3.2), with downscaling 4 and 10. Optimiza-
tion was done in �1 and �2 with ε = 0.001 on the luma component of
the 24 images of the Kodak dataset, shown in Figure B.4 in Appendix
B. Table 2.4 reports the comparison with optimization done on the
full set. MAE and MSE have been measured in the physical domain at
the downscaled resolution; power consumption is reported as well. The
initial solution was calculated using the Max algorithm [25].

In all cases, the subset strategy is successful and provides results
virtually identical to those of full set optimization, using only between
9% and 26% of the original pixels, depending on the screen. It should
be noted that power consumption tends to increase. More results can
be found in [3], available in Appendix A.
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Edge SIM2
Original Subset Original Subset

Avg. LED value 82.36% 82.89% 73.36% 67.12%
Avg. MAE 3.78 E-5 3.78 E-5 1.05 E-5 1.05 E-5
Avg. iterations - 2.59 - 2.67
Sub-sampling %
in last iteration

- 9.70% - 25.70%

�1 optimization, downscaled by 10
Edge SIM2

Original Subset Original Subset
Avg. LED value 87.91% 89.30% 81.21% 75.77%
Avg. MAE 4.62 E-5 4.62 E-5 1.81 E-5 1.81 E-5
Avg. iterations - 2.69 - 2.91
Sub-sampling %
in last iteration

- 9.55% - 17.73%

�1 optimization, downscaled by 4
Edge SIM2

Original Subset Original Subset
Avg. LED value 76.50% 84.66% 48.80% 61.03%
Avg. MSE 4.04 E-8 4.04 E-8 8.70 E-9 8.70 E-9
Avg. iterations - 2.59 - 2.59
Sub-sampling %
in last iteration

- 9.70% - 25.86%

�2 optimization, downscaled by 10
Edge SIM2

Original Subset Original Subset
Avg. LED value 87.82% 92.62% 57.72% 67.51%
Avg. MSE 5.73 E-8 5.73 E-8 1.48 E-7 1.48 E-7
Avg. iterations - 2.72 - 2.97
Sub-sampling %
in last iteration

- 9.48% - 17.95%

�2 optimization, downscaled by 4

Table 2.4: Optimization on a subset of pixels can still achieve optimal results.

Min-Max Color Optimization A method to reduce the complexity
of Problem 2.41 has been proposed in [10]. The proposal approximates
the optimal backlight for color images by using only a third of the vari-
ables.

In a RGB pixels, there are three sub-pixels which can contribute to
the error. In general, the three values are different and it is possible to
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find the maximum and the minimum of the three. The linear formulation
of the single color channel optimization (Problem 2.36) specifies an upper
and a lower threshold for the variables λi to be minimized. In a RGB
pixel, the sub-pixel with the minimum value is the first one that could
present leakage, while the sub-pixel with the maximum value is the first
that could be hit by clipping. The idea is that a backlight intensity that
minimizes the error considering only the minimum and maximum sub-
pixels, then the median sub-pixel is probably able to compensate this
intensity and produce no error. The constraints in Problem 2.36 can be
modified by replacing y with ymin or ymax, where ymin contains the
minimum sub-pixel values and ymax the maximum sub-pixel values:

minimize ‖λ‖+ q × p
subject to b = Hr

λ ≥ ((ε ◦ b)− ymin) ◦wmin

λ ≥ (ymax − b) ◦wmax

λ ≥ 0
0 ≤ rk ≤ 1, k = 1, . . . ,M

. (2.45)

This reduces the λi variables to one third of its original size.

The effectiveness of this approach has been tested against optimiza-
tion for the full color Problem 2.41. Optimization was done on the
edge-lit and direct-lit SIM2 displays, on 32 color images (shown in Fig-
ures B.1 and B.3 in Appendix B), with ε = 0.001 and ε = 0.0002 for
both �1 and �2; power penalty q was set to zero and several downscaling
factors were used (8 and 10 for the SIM2, 4, 5, 6 and 8 for the edge-lit).

Table 2.5 shows the results for the edge-lit screen (downscaling fac-
tor 4) and the SIM2 screen(downscaling factor 10). In �2 minimization,
MSE increases at most by 7.84%. Power consumption increases slightly
increases with values between 0.68 and 2.56. Results for other downscal-
ing factors and for �1 minimization are similar and not reported here.
These results support the statement that optimization done using only
the minimum and maximum sub-pixels as constraints can achieve good
results, close to the optimum, while reducing variables to a third. For
more data consult [10].
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ε = 0.0002 ε = 0.001
Power MSE Power MSE

Full color 74.47 2.731 E-4 57.28 9.202 E-4
Color Min-Max 76.87 2.820 E-4 59.84 9.574 E-4
Variation 2.40 3.26% 2.56 4.04%

ε = 0.0002 ε = 0.001
Power MSE Power MSE

Full color 38.55 4.584 E-5 31.78 1.247 E-4
Color Min-Max 39.30 4.807 E-5 32.46 1.345 E-4
Variation 0.75 4.86% 0.68 7.84%

Table 2.5: Comparison of full and reduced complexity color �2 minimization on
edge-lit (top) and direct-lit (bottom) panels.

2.3.4 Gradient Descent

This section presents another backlight dimming algorithm based on
iterative search by Gradient Descent (GD), originally presented in [3]
and improved in [10]. An approach to reduce its complexity is also
presented.

Background

Given a display with M local backlight segments, the set of LED inten-
sities rk (with k = 1, . . . ,M) can be considered as the coordinate of a
specific backlight in the solution space. The solution space has M di-
mensions and, for all possible backlights on the screen, the cost function
f associates a cost to each of them. Considering a point/backlight in
the solution space, it is possible to calculate the gradient of the cost
function, that is the set of its partial derivatives over all dimensions,
or to estimate it numerically if there is no closed form. The gradient
indicates in which direction the cost increases the most from the current
solution, in terms of variation of each LED value rk. Moving in the op-
posite direction will instead produce the fastest cost decrease. If a step
is taken in that direction, it is possible to find a new set of LED values
having a lower cost. This new solution can be used to calculate a new
gradient and so on, iterating as desired. At iteration j + 1, the solution
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is calculated by

rj+1 = rj − s∇f(rj), (2.46)

where rj is the solution for iteration j, f is the cost function for y,
∇ is the gradient operator and s the step size. The minus sign is due
to the fact that the goal is cost minimization, therefore the step should
be taken in the direction opposite to the gradient. The size of s can be
chosen adaptively and be different in each iteration. Short steps guar-
antee a decrease in cost but require more iterations before the optimum
is reached, while large steps can speed up the process but risk to deviate
from the optimum. Finding the best or a good enough step size can be
an optimization problem inside the optimization problem, and several
approaches can be used. In general, it can be acceptable to find a step
that yields a sufficient decrease in cost; in other cases it might be neces-
sary to find the step that produces the maximum cost reduction, at the
cost of higher complexity.

Compared to the optimization based approached from the previous
section, this method allows to find minimum points for all cost differen-
tiable functions, even in the perceptual domain. It is also very flexible,
because it can generally improve any solution. In presence of a low num-
ber of segments, gradient can be calculated rather quickly, resulting in
fast iterations.

Experiments

The GD algorithm was tested in a series of experiments reported in [10].
The optimal backlight for �1 and �2 is calculated on the edge-lit screen
with ε = 0.001 for 32 color images (shown in Figures B.1 and B.3 in
Appendix B). The starting solution is provided by the Min-Max sub-
pixel approach detailed in Section 2.3.3, minimizing the same norm at
a downscaling factor of 5, but the GD runs at full resolution. The cost
function is the same as that of Problem 2.41 but in the perceptual do-
main and without perceptual weighting of the error. The power penalty
q was set to several values in order to obtain solutions at several levels of
power consumption to enable a fair comparison with other algorithms.

In each iteration of the GD, the step s was found through golden sec-
tion search, a bisection method that allows to find a bracketed minimum
of a function iteratively and with a given precision, ensuring fast con-
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vergence and reducing the number of function evaluations [47]. Given
the current solution (ri) and its gradient, the cost of the next solution
(ri+1) is a function of s. Golden ratio search is applied on this function,
and the initial bracketing is given by s = 0 and the largest value of s
ensuring that ri+1 lies within the solution space. The resulting s is the
step minimizing the cost function in the gradient direction.

Figure 2.18 plots the perceptual MSE of this approach with �2 mini-
mization in comparison with other algorithms. The results are averaged
over the 32 images and at the same q when applicable. Figure 2.19
shows the same comparison for LabPSNR, defined in Section 2.3.2. The
LED and LC values have been quantized to 8 and 10 bits, since real
displays can only handle values with a limited bit depth. The effect
of quantization is very small on MSE and is omitted from Figure 2.18.
The plots show that the approach based on gradient descent always has
higher perceptual quality than other algorithms, at the same or lower
power level.

Table 2.6 reports the MSE values from Figure 2.18 split into leakage
and clipping contributions, with additional data for ε = 0.0002. Clipping
values are for ε = 0.001. The ε value affects the LED values output by
the proposed approach but not the other algorithms, for which clipping
is the same for both ε. Clipping for the proposed approach is 2.68 E-6
(13.01%) at q = 0 and 3.60 E-5 (74.01%) at q = 100 if optimizing for ε =
0.0002. The dotted line in Figure 2.18 draws the clipping contribution
for each q of the algorithm based on gradient descent.

These results altogether show that high power algorithms tend to
render with higher fidelity but neglect leakage, which is the main cause
of distortion when the backlight is intense, while low power algorithms
suffer mainly from clipping. Optimizing with GD in the perceptual do-
main finds in all cases the best trade-off between quality and power
consumption. This limits color distortion, as shown by the LabPSNR
data in Figure 2.19. The same figure shows that the quantization er-
ror tends to dominate leakage and clipping error at high power levels,
as revealed by the tendency of the curves to saturate, while it is less
important at lower power.

In order to assess the performance of the GD approach and gener-
ally verify the validity of the backlight dimming LCD model, the visual
quality of the results was tested in a subjective image quality experi-
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Figure 2.18: Distortion (MSE) vs. power trade-off of the gradient descent approach
(curve) compared with other algorithms on edge-lit 16 segments backlight. Labels
indicate power penalty. The dotted line plots the contribution of clipping to MSE for
optimal �2. References are: Max and Sqrt [25], Cho [26], Zhang [27], Albrecht [36],
Kang [31], Kim [29], Lin [35].

ment. The backlight of the edge-lit display was simulated and shown on
the direct-lit SIM2 screen. The borders of the screen, about 30 pixels
on each side, were covered to focus the attention of the subjects to the
center of the display.

Sixteen test subjects (12 men and 4 women of age ranging from 22 to
30) performed the test, all ignoring its goal and not experts in backlight
dimming. The subjects sit in front of the display at a distance equal to
three times its height (58.53 cm). The viewing point was perpendicular
with the screen. The subjects were asked to express a preference between
two versions of the same image displayed with two different backlight
dimming algorithms. They were allowed to freely switch between the
two images before making their choice. To limit the duration of the
experiments, a set of seven images was used, three among those used in
the objective evaluation (Stars image from Figure B.1, Beach (k12) and
Parrot (k23) from the Kodak dataset B.3), and other four images shown
in Figure B.5. All figures are in Appendix B.

The preferences of the subjects were transformed into a subjective
rank order, which was then used to study the correlation between the
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Figure 2.19: Quality (LabPSNR) vs. power trade-off of the gradient descent ap-
proach (curve) compared with other algorithms on edge-lit 16 segments backlight.
Labels indicate power penalty. The smaller markers indicate quantized results for 10
bits (middle size) and 8 bits (smallest); power levels and symbols are the same as the
non-quantized result. References are: Max, Avg and Sqrt [25], Cho [26], Zhang [27],
Albrecht [36], Kang [31], Kim [29], Lin [35].

objective rank order based average LabPSNR and the subjective prefer-
ence. The results are summarized in Table 2.7. The data show a fairly
good match between subjective and objective results in terms of Spear-
man rank order correlation coefficient (SROCC), except for one outlier
case (Stars). The average SROCC is 0.80. Gradient descent with low
power weight (q=0 or q=1) outperforms all the other algorithms in terms
of subjective preference in all cases except one (Volcano), where Albrecht
[36] is preferred (however with significantly higher power consumption).

Both subjective and objective results show the GD algorithm out-
performing all the other algorithms with the same or lower power con-
sumption. Figure 2.20 shows two pictures of the displayed results of
the Albrecht and GD algorithms for the Stars image. For the gradient
descent, leakage is less annoying.

Block-based Gradient Descent

This section presents a technique to accelerate the GD based backlight
dimming algorithm. The proposal exploits the fact that the backlight
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ε = 0.0002 ε = 0.001
Leakage % Leakage % Clipping

Avg 2.70 E-6 0.14 1.32 E-5 0.66 1.97 E-3
Cho 1.66 E-5 11.26 7.54 E-5 36.57 1.31 E-4
Full 3.51 E-5 100 1.60 E-4 100 0
Max 2.91 E-5 98.88 1.33 E-4 99.75 3.31 E-7
Sqrt 7.33 E-6 2.15 3.46 E-5 9.38 3.34 E-4
Zhang 2.88 E-5 77.86 1.31 E-4 94.11 8.18 E-6
Albrecht 3.36 E-5 100 1.52 E-4 100 0
Kang 1.66 E-5 1.99 7.46 E-5 8.35 8.19 E-4
Kim 1.97 E-5 14.93 8.93 E-5 44.26 1.12 E-4
Lin 3.41 E-5 97.38 1.55 E-4 99.41 9.18 E-7
Opt q=0 1.79 E-5 86.99 6.03 E-5 98.48 1.28 E-5
Opt q=100 1.21 E-5 25.09 4.57 E-5 45.09 5.56 E-5

Table 2.6: Contribution of leakage and clipping to MSE (edge-lit).

Figure 2.20: Displayed results of the Stars image (as in Table 2.7) for backlight
algorithm Albrecht [36] (left) and gradient descent with no power penalty (GDq0,
right) [10].

has a smooth diffusion, in comparison to the pixel resolution.

GD search can improve an existing backlight by reducing the cost
defined by function f (Eq. 2.46). The cost is always dependent on the
error measured at pixel level (Problem 2.35) but can include also a term
dependent on power consumption (Problem 2.39). Focusing initially on
the image quality term, the physical error at pixel i is defined as

Ei = yi − xi, (2.47)
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Exotic (SROCC 0.96)

GDq0 45.17 0.948
Albrecht 45.78 0.985
Zhang 38.01 0.932
GDq200 33.52 0.763
Kang 29.32 0.752

GDq400 23.86 0.578
Cho 22.76 0.635

Parrot (SROCC 0.96)

GDq0 51.42 0.813
Albrecht 51.74 0.840
Zhang 50.00 0.811
GDq100 44.92 0.648
Cho 38.50 0.660

GDq600 25.37 0.440
Kang 25.02 0.447

Volcano (SROCC 0.83)

Albrecht 38.98 0.660
GDq0 38.19 0.513
Zhang 38.04 0.767
Cho 25.48 0.439
Kang 22.62 0.388

GDq400 26.39 0.324

Lizard (SROCC 0.89)

GDq1 46.46 0.870
Albrecht 47.35 0.981
Zhang 36.28 0.904
GDq400 37.06 0.644
Cho 25.35 0.684
Kang 24.57 0.658

Beach (SROCC 0.89)

GDq1 51.91 0.730
Albrecht 52.92 0.855
Cho 39.11 0.767
Zhang 45.25 0.800
GDq800 23.17 0.483
Kang 20.42 0.448

Diver (SROCC 0.70)

GDq0 46.90 0.702
GDq400 30.12 0.546
Albrecht 44.11 0.825
Zhang 32.54 0.740
Cho 23.66 0.560

Stars (SROCC 0.40)

GDq0 39.29 0.304
Albrecht 36.89 0.982
Kang 38.58 0.504
Cho 38.34 0.499

Table 2.7: Performance comparison of backlight dimming algorithms. Algorithms
are listed in subjective preference order for each image; GDqX refers to the gradient
descent algorithm with power penalty q=X; central columns are LabPSNR, right
columns are normalized power consumption [10].

where yi is the target luminance for pixel i and xi is the actual luminance
output on the display by pixel i. Both variables are normalized between
0 and 1. If the error is measured in the perceptual domain, Eq. 2.47
becomes

Ei = g(yi)− g(xi), (2.48)

where g (Eq. 2.25) simulates perception of luminance by the HVS. The
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actual output xi is defined by

xi = bi × fC(yi, bi), (2.49)

where fC(yi, bi) is the pixel compensation function. If hard clipping is
used, then fC(yi, bi) is equal to the observed compensated transmittance
tCo from Eq. 2.24:

xi = bi ×
[
ly
b

]�1

⊥ε

, (2.50)

where the values of tCo are between ε and 1. Combining Eqs. 2.47-2.50,
the pixel error Ei is generally expressed as

Ei =

{
yi − bi × fC(yi, bi) if physical

g(yi)− g (bi × fC(yi, bi)) if perceptual
, (2.51)

which becomes the following if using hard clipping and using Eq. 2.26
(Gamma) as g:

Ei =

⎧⎪⎪⎨
⎪⎪⎩
yi − bi ×

[
yi
bi

]�1

⊥ε
if physical

y
1/γ
i −

(
bi ×

[
yi
bi

]�1

⊥ε

)1/γ

if perceptual
. (2.52)

Equation 2.52 shows that the Ei is function of yi, bi and of ε. For
simplicity, we assume ε to be constant for all pixels. Pixels with equal
yi have the same error function, therefore Eq. 2.51 can be generalized
as a function of the target luminance y:

Ey =

{
y − b× fC(y, b) if physical

g(y)− g (b× fC(y, b)) if perceptual
, (2.53)

and Eq. 2.52 becomes

Ey =

⎧⎨
⎩
y − b× [y

b

]�1

⊥ε
if physical

y1/γ −
(
b× [y

b

]�1

⊥ε

)1/γ
if perceptual

. (2.54)

For each target luminance y, it is possible to calculate the error as a
function of b only: Ey(b). The absolute or the squared error can easily
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Figure 2.21: Example of perceptual error Ey(b)
2 as a function of the backlight

intensity b for ε = 0.0002 and for target luminance y = 0.75.

be calculated as |Ey(b)| and Ey(b)
2, respectively. Figure 2.21 shows an

example of Ey(b)
2 with ε = 0.0002 and yi = 0.75. The values of the

function can be stored in a LUT for a set of values of b, for example
going from 0 to 1 with a fixed step. Missing values can be approximated
with interpolation. The LUT would help to speed up calculations that
involve the pixel error.

It can be assumed that the backlight is constant within a certain
block B of pixels. The error in this block is given by the sum of the
errors of the pixels it contains:

EB(bB) =
∑
i∈B

Ei(bB), (2.55)

where EB(bB) is the total block error for pixel block B and bB is the
backlight intensity within the block. If the number of occurrences of
each pixel value inside the image block (its histogram) is known, then
Eq. 2.55 can be expressed as

EB(bB) =
∑
y∈H

HyEy(bB), (2.56)

where H is the set of all the values included in the histogram and Hy is
the number of occurrences of value y in the block.
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The size of B determines how precisely EB approximates the error
within it. The larger B, the less accurate the estimation. Considering
the PSF and the LED values, the block luminance bB can be expressed
by modifying Eq. 2.19:

bB =

M∑
k=1

rkhBk, (2.57)

where hBk is the luminance contribution to block B from LED k. This
contribution depends on the pixel-level PSF of LED k (e.g. it can be the
average pixel-contribution in the block) and defines a block-level PSF.

It is finally possible to calculate the image error E as the sum of the
block errors:

E =
∑
B∈I

EB(bB), (2.58)

where I is the set of blocks composing the image.

The assumption of block-wise uniform backlight allows to approxi-
mate the image error with fewer elements, as if the image were down-
scaled. If the block size is 10×10 pixels, then the number of elements to
sum in Eq. 2.58 would be 100 times less than the number of all pixels.
This is particularly interesting for an approach based on GD to find the
optimal backlight, because it needs to calculate the image error many
times to estimate the gradient and to select the step size. The values of
EB(bB) for each block can be stored for quick access, making the GD
iterations faster. The cost function for the GD approach can include a
power penalty term, similarly to that of problem 2.41.

Large pixel blocks mean faster iterations and lower usage of memory
(to store the block error functions), but also means lower precision.
Depending on the available resources, it is possible to find an acceptable
compromise between the two.

This block-based GD was implemented in Matlab and tested on the
edge-lit display, having 16 segments, on the dataset shown in Figure B.1
in Appendix A. The epsilon value was set to 0.0002. The block size
was set to 16 × 16 pixels, 16 × 120 pixels, 32 × 240 pixels, 64 × 240
pixels and 135× 960 (this last one matches the size of the 16 backlight
segments in the screen); the maximum numbers of iterations was set
to 200. The initial solution was determined as follows: for each uni-
form backlight block, the backlight intensity minimizing the error in the
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Figure 2.22: Average MSE performance, over 8 images, of the block-based gradi-
ent descent with several block sizes and the full resolution gradient descent. Labels
indicate power penalty.

block was found; then, for each segment, the corresponding LED value
was set to the maximum of these block backlight intensities within the
segment. The original GD algorithm was used for comparison, with
a maximum number of iterations of 40; the starting solution is pro-
vided by the Min-Max sub-pixel approach (Section 2.3.3), minimizing
the same norm at a downscaling factor of 8. Both algorithms used step
search based on the golden ratio. Several power penalties q were used
to calculate the optimum at different power levels. Average MSE and
PSNR have been measured in the perceptual domain. Figures 2.22 and
2.24 plot the results; Figures 2.23 and 2.25 zoom to the low error, high
power consumption region. The higher MSE / lower PSNR peak for the
135× 960 block sizes at power consumption about 0.73 is caused by one
image (Pedestrian), which appears to suffer more than the others from
the assumption of uniform backlight with large blocks.

For both MSE and PSNR, the block-based GD gets very close to the
full resolution GD, with little decrease in quality and small variations
in power consumption. For larger blocks, it deviates more from the
optimum. However, results are still high quality (in the high power range
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Figure 2.23: Average MSE performance, over 8 images, of the block-based gradi-
ent descent with several block sizes and the full resolution gradient descent (Zoom).
Labels indicate power penalty.

PSNR is always above 45 dB) and the complexity is strongly reduced.
Table 2.8 shows the execution times of the block-based GD for different
block sizes and q = 0. It can be seen that larger blocks mean less time
required to calculate all the block error functions and averagely faster
iterations. The average number of iterations is also reduced, probably
due to the fact that the image error is defined by less elements (the
blocks of uniform backlight). These results are also dependent on the
software implementation, however they give a clear indication of how
the block size affects execution time.

Overall, these preliminary results show that the block-based gradi-
ent descent approach can calculate nearly optimal backlights in a shorter
time, if compared to the full resolution GD. Execution time and preci-
sion decrease as the block size increases.

Algorithm Based on Block Error The performance of the block-
based GD for 16 blocks is reasonably good, considering that it is based
on the assumption that the backlight is constant within a 135 × 960
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Figure 2.24: Average PSNR performance, over 8 images, of the block-based gradi-
ent descent with several block sizes and the full resolution gradient descent. Labels
indicate power penalty.

Time err. (s) Avg. iter. time (s) # Iter.

GD - 97.85 39.38*
16× 16 2.9803 0.1248 102.50
16× 120 0.5480 0.0385 60.38
32× 240 0.3175 0.0255 60.88
64× 480 0.2342 0.0223 70.25
135× 960 0.2330 0.0219 22.25

Table 2.8: Comparison of execution time of the block-based GD approach for several
block sizes (with q = 0) against the regular GD, in terms of the time required to
calculate the block error curves (Time err.), the average iteration time and the average
number of iterations per image. * The max number of iterations for the GD approach
was set to 40, whereas for the block-based GD it was set to 200.

pixels large block, which is not accurate. If the block size coincides
with the backlight segments, as in this case, it is possible to design a
dimming algorithm exploiting the block error (Eq. 2.55). The algorithm
simply sets the LED intensity of each segment to the backlight intensity
minimizing the error of the corresponding block. The performance of
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Figure 2.25: Average PSNR performance, over 8 images, of the block-based gradi-
ent descent with several block sizes and the full resolution gradient descent (Zoom).
Labels indicate power penalty.

this approach is shown by the square markers in Figures 2.22 and 2.24.
These preliminary results show that this algorithm can get rather close to
the optimal MSE and PSNR curves obtained with the full GD approach,
which is particularly interesting given its relatively low complexity.

2.4 Conclusion

Backlight dimming is a technique that has the potential to overcome two
flaws on LCD technology, that is low contrast ratio due to leakage and
power waste intrinsically caused by its functioning. However, artifacts
like clipping, haloes or flickering are introduced and image quality and
energy efficiency are generally in conflict. It is not a simple problem to
determine what light diffusion can yield an energy efficient, high con-
trast and consistently pleasant image rendering. Many algorithms have
attempted that, with different aims and outcomes.

This chapter presented a model of backlight dimming systems. Based
on it, some algorithms with the goal of the finding optimal trade-off
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between leakage and clipping, and penalizing power consumption to a
certain degree, were introduced. The resulting backlights can achieve
better results in both objective and subjective comparison with other
approaches. In particular, the method based on gradient descent search
can find the perceptual optimum and is highly flexible. It was also
shown that it is possible to obtain nearly optimal results even with a
considerable complexity reduction.



Chapter 3

LCD Backlight Scanning
for 3D Crosstalk Reduction

This Chapter presents a model of backlight scanning for time-sequential
stereo visualization on Liquid Crystal Display (LCD) and an algorithm
to minimize crosstalk using the backlight. The Chapter is based on [9].

The previous Chapter presented LCD technology and the advantages
that can be obtained using local dimming to reduce power consumption
and increase the contrast ratio. Local backlight dimming would not be
easily possible without local Light Emitting Diode (LED) backlights.
As a matter of fact, local LED backlights can be used to improve image
quality in many ways.

While LCDs are more often used to display Two Dimensional (2D)
content, they can also be used to display stereo Three Dimensional (3D)
content [48]. The illusion of stereo vision is obtained by showing two
different views of the same scene to the left and the right eye; this is
possible with either passive or active glasses. In the first case, left and
right frame are displayed simultaneously but on different partitions of
the screen (e.g. even and odd lines); the partitions emit light with
polarizations perpendicular to each other and the use of glasses with
properly polarized filters allows the right frame to reach only the right
eye and the left frame to reach only the left eye. In the second case,
left and right frames alternate on the screen sequentially; the frames are
delivered to the intended eye using active shutter glasses based on Liquid
Crystals (LCs), which become transparent to let only the intended frame
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through and opaque to block the other. To maintain the input frame
rate, the refresh rate of the display must be double (e.g. a 60Hz video
requires a 120Hz refresh rate). This second method is also called time-
sequential stereoscopic visualization.

When experiencing 3D video content, many aspects impact on the
visual quality. One of these is the presence and intensity of crosstalk.
Crosstalk is the incomplete isolation of the left and right frames so that
one leaks into the other; the term is often confused with ghosting, which
is the perception of crosstalk [49]. In time-sequential stereoscopic visu-
alization on LCDs, crosstalk is caused by several factors, including the
quality of the shutter glasses, their synchronization with the display, the
viewing angle, the response time of the display pixels and the image up-
date method of the screen [48]. The last two aspects are display depen-
dent. In LCDs, frames are updated with a progressive scanning process
where pixels are addressed in sequence, e.g. starting from the top-left
pixel then proceeding left-to-right and top-to-bottom. After being ad-
dressed, each pixel completes the transition to its new state and becomes
stable after a finite response time. This implies that, during the update
process, there is more than one frame shown on the display. Depending
on the characteristics of the display, this might happen constantly This
is one of the causes of crosstalk due to the display, independent from
other factors like shutter glasses.

Crosstalk in time-sequential stereoscopic 3D LCD visualization can
be reduced using local LED backlights, through the techniques of back-
light strobing (also called blinking [50]) and backlight scanning. In back-
light strobing the whole backlight is turned on only when all the pix-
els are stable, otherwise is turned off. Each frame is therefore shown
only when all its pixels have been completely updated, assuring that no
residue of the previous one is left. Unfortunately this might not be pos-
sible if the update process is too long. Conversely, backlight scanning is
done during the update process. The backlight segments are turned on
and off following the LC scanning to highlight the stable pixels against
the others. Backlight strobing and scanning can be combined, by do-
ing the first while the pixels are updated and the second while they
are all stable. It is important to highlight that display luminance is a
scarce resource when dealing with 3D LCD Television (TV) with passive
glasses, because the LCs in the glasses always absorbe part of the light
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that goes through them, even at maximum transmittance. Both strob-
ing and scanning reduce the emission of light, so it is very important to
maximize it at acceptable crosstalk levels.

Backlight strobing is overall a simple problem that only requires to
know when all pixels are stable. Backlight scanning, however, is more
complex. A very simple way to scan the backlight is to turn on only
one segment at a time, in sequence, following the pixel scanning. This
approach has been used in [51] and in this work it is referred to as
“basic backlight scanning”. Although simple, basic backlight scanning
ignores display characteristics and can reduce luminance dramatically
if the number of backlight segments is large. This chapter proposes a
model for backlight scanning used to minimize crosstalk at a given lumi-
nance level. The model shares some aspect with the backlight dimming
model of Chapter 2, like light diffusion in the backlight, and includes
new aspects like pixel response time. The model is used to determine
the variables and constraints of an optimization problem having a metric
for crosstalk as cost function to be minimized. The constraints include
conditions to ensure visual uniformity of the backlight and to set the
luminance level.

3.1 Modeling

This section presents a model for backlight scanning including aspects
such as timing, light diffusion, pixel transitions and luminance. The
model is defined image-independent to avoid difficulties connected to
variable luminance levels.

3.1.1 Timing of Scanning and Strobing

We consider the case of LCD screens which start drawing a new frame
from the top-left pixel, going left-to-right and top-to-bottom. The frame
time tf is defined as the time between the start of two consecutive
frames. On a display with a refresh rate of 120Hz, tf = 1

120s. One
after the other, the pixels are addressed at time ti; in other words, ti is
the time when the pixel transition starts. The time required to address
all pixels is called addressing time (ta). After being addressed, each pixel
completes the transition after the response time tr has passed.
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The scanning time ts is defined as the time during tf when backlight
scanning is performed:

ts =

{
ta + tr if ta + tr < tf

tf if ta + tr ≥ tf
. (3.1)

By definition, ts cannot be longer than tf . When all the pixels are stable,
there is no need to scan the backlight; strobing can be done instead by
turning all segments on. Strobing lasts for a tf−ts long time. Therefore,
it is not performed if ts = tf , because there is never an instant when
all pixels are stable. Figure 3.1 includes a visualization of these timing
concepts. In general, during ts at least two frames are partially shown
on the screen; the frames can be three or more, depending on ta and
tr. In this work it is assumed that ta < tf , which guarantees that the
frames are at most two, and that tr < tf , which ensures that each pixel
becomes stable before being addressed again.

During one loop of backlight scanning lasting ts, the backlight is
updated Q times at regular intervals. The updates happen at time tj ,
where j = 0, . . . , Q− 1, so that

tj+1 = tj +
ts
Q
. (3.2)

During the time interval [tj , tj+1), or equivalently during [tj , tj +
ts
Q ),

the backlight does not change. For simplicity, t0 is assumed to coincide
with the beginning of the new frame, that is when the top-left pixel is
adressed.

3.1.2 Backlight

Light diffusion in local LCD backlights has been discussed in Section
2.3.2. For backlight scanning, the modeling must be extended to include
the fact that the signals rk controlling the duty cycles of the LEDs in
the backlight vary in time. The backlight intensity bi(t) at pixel i at
time t is defined as follows, based on Eq. 2.19:

bi(t) =

M∑
k=1

hikrk(t), (3.3)
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ta tr tf − ts
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Figure 3.1: Backlight scanning/strobing timeline for ts < tf with short ta and tr
(top) and for ts = tf with larger ta and tr (bottom); in the latter case strobing does
not occur; the vertical axis of Frames represent vertical screen position; the shading
indicates pixel transition to the new frame; the red and green overlays show when the
frames are considered correct (C) or ghost (G); the square waves are the LED control
signals.

where hik is the contribution of LED k to pixel i; rk(t) and bi(t) are
valued between 0 and 1. Uniform backlight is assumed, therefore all hij
for pixel i sum up to 1 and consequently all hij sum up to the number
of pixels, defined as N .
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During [tj , tj +
ts
Q ), the LED values rk(t) do not change. Conse-

quently, bi(t) does not change either. The backlight luminance for pixel
i and the value of LED k during this time are indicated as rkj and bij ,
respectively:

bij =
M∑
j=1

hik · rkj . (3.4)

3.1.3 Frames

To model crosstalk, the definitions of correct frame and ghost frame (so
called because it causes ghosting) are introduced. The correct frame is
the frame that is being shown on more than N

2 pixels; the ghost frame
is the frame shown on the remaining pixels.

When two frames are displayed on the screen, previous/current frame
and correct/ghost frame have a relation. The current frame starts to be
updated at t0 and, at that time, it is the ghost frame; clearly, the previ-
ous frame is the correct frame. When half of the pixels have changed to
the current frame, the previous frames switches from correct to ghost,
while conversely the current frame becomes the correct one. The rigor-
ous definition of the moment when the switch happens depends on the
pixel transition function (modeled in the next Section). For simplicity,
this work defines this instant to be t0 +

ta+tr
2 . Figure 3.1 includes an

illustration of these concepts.

3.1.4 Pixel Transition and State

In a LCD, the luminance emitted by pixel i is proportional to the inten-
sity of the backlight and to the pixel transmittance. To keep the model
image-independent, transmittance is ignored. However, it is necessary
to know the state of the pixel in its transition from one frame to the
other, because backlight scanning and strobing are defined depending on
this state. This transition is expressed with function f(t). This function
is characterized by the response time tr, which depends on the LC char-
acteristics and on the initial and final gray values. The model considers
only one response time representative of all the gray-to-gray transitions,
to keep the model image-independent. This time could be, for instance,
the largest response time or another time which approximates the re-
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sponse time of a significant selection of gray-to-gray transitions. The
function f(t) is real, valued between 0 and 1 and is increasing in [0, tr];
its value is 0 if t < 0 and 1 if t > tr. The LC transitions have been
studied and modeled in many previous works [52]–[54]. For simplicity,
we assume a linear transition from 0 to 1 in [0, tr].

In relation to the correct and ghost frame, the state of pixel i can
be expressed with the periodical function si(t), which is based on f(t)
and has real values between 0 and 1. When si(t) is 1, the pixel is in the
correct frame; when si(t) is 0, it is part of the ghost frame; intermediate
values mean that the pixel is transitioning from one frame to the other.
The function si(t) is periodical with period tf , because the pixels are
refreshed over the same period. Its complete definition of is

si(t) =

⎧⎪⎨
⎪⎩
1− f((t− ti)mod tf ) if t ∈ [ti,

ta+tr
2 ]

or if t ∈ [ ta+tr
2 , ti]

f((t− ti)mod tf ) otherwise

(3.5)

During the time interval [ti,
ta+tr

2 ] (or [ ta+tr
2 , ti] if ti >

ta+tr
2 ), the value of

f(t) is inverted to model the fact that the transition is from the correct
frame to the ghost frame. Figure 3.2 shows examples of si(t).

The state function can be averaged over the time interval [tj , tj +
ts
Q )

to define sij , the average state of pixel i during this time interval:

sik =
Q

ts

∫ tk+
ts
Q

tk

si(t)dt. (3.6)

Figure 3.3 illustrates the concept of average pixel state.

3.1.5 Luminance

The contribution of pixel i to the luminance of the correct frame and
the ghost frame are defined as lC,i(t) and lG,i(t), respectively:

lC,i(t) = si(t)bi(t), (3.7)

lG,i(t) = (1− si(t))bi(t). (3.8)

Equation 3.8 reflects the fact that the light not going through the correct
frame must go through the ghost frame. The average lC,i during [t0, t0+
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t0 +tf+ ta+tr
2

t0 +tf+ ta+tr
2

t0 +tf+ ta+tr
2

+ti

+ti

+ti

Figure 3.2: Three examples of pixel state transitions si(t) with different ti (pixel
addressing time).

Figure 3.3: Example of average pixel state (top) and backlight diffusion (bottom)
during scanning time with 4 segments and 4 updates; green color corresponds to an
average state mostly in the correct frame, while red corresponds to the ghost frame.

ts) can be calculated by integration:

lC,i =
1

ts

∫ t0+ts

t0

si(t)bi(t)dt. (3.9)

During [t0, t0 + ts), the backlight is updated Q times and it is constant
during [tj , tj +

ts
Q ) with j = 0, 1, . . . , Q − 1. Combining Eq. 3.9 with

Eqs. 3.4 and 3.6 the result is

lC,i =
1

Q

Q−1∑
j=0

bijsij . (3.10)
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Assuming a uniform backlight, the luminance LC of the correct frame
can be expressed as the average of all the pixel luminances:

LC =
1

N

N∑
i=1

lC,i. (3.11)

Combining Eq. 3.11 with Eqs. 3.10 and 3.4 gives

LC =
1

NQ

N∑
i=1

Q−1∑
j=0

M∑
k=1

hiksijrkj . (3.12)

Equation 3.12 can be rewritten as

LC =
1

NQ

M∑
k=1

Q−1∑
j=0

gkjrkj . (3.13)

where gkj =
∑N

i=1 hiksij . As clear from Eq. 3.13, LC is a linear combi-
nation of the LED values rkj with the values gkj as coefficients.

The luminance of the ghost frame LG can be calculated in the same
way as LC , but using lG,i instead of lC,i. It can be shown that

LG =
1

NQ

N∑
i=1

Q−1∑
k=0

bik − LC , (3.14)

which shows again that the backlight flows through either the correct or
the ghost frame. From the central term of Eq. 3.14 the frame luminance
L can be defined:

L =
1

NQ

N∑
i=1

Q−1∑
k=0

bik, (3.15)

from which follows that
L = LG + LC . (3.16)

3.2 Optimal Backlight Scanning

The model that has just been presented has been used to formulate an
optimization problem, the goal of which is to minimize crosstalk at a
given luminance level using backlight scanning. The problem includes a
cost function for crosstalk and a constraint to assure light uniformity.
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3.2.1 Crosstalk

In [51], the authors measure crosstalk with a metric using black and
white frames and following international standards (Section 17.1, Eq. 27
of [55]). This metric, however, is designed for measurements with a
light-meter and takes in to account the impact of shutter glasses. To
measure crosstalk as a function of the display only and to avoid image
dependency, the following metric is used instead:

Crosstalk =
LG

LC
, (3.17)

which combined with Eq. 3.16 gives

Crosstalk =
L

LC
− 1. (3.18)

Minimizing Eq. 3.18 is equivalent to minimizing Eq. 3.17 which, for fixed
L, is equivalent to maximizing LC .

3.2.2 Constraints

It is necessary to enforce a constraint on rkj ensuring a uniform back-
light. It is assumed that the Q updates of the backlight during ts are fast
enough to avoid visible flickering and to produce a sensation of constant
backlight. It is then required that the average value of LED j during
the time interval [t0, ts) is constant and equal for all LEDs:

1

Q

Q−1∑
j=0

rkj = d k = 1, . . . ,M. (3.19)

The constant d is valued within 0 and 1. Remembering that the sum
of all the hik elements is N (see Section 3.1.2) and combining Eqs. 3.4,
3.15 and 3.19, the result is

L = d, (3.20)

which means that the frame luminance is equivalent to the average LED
value during scanning time.
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3.2.3 The Optimization Problem

The goal of optimization is the minimization of crosstalk. This is equiva-
lent to maximizing LC , if d is fixed. The variables of the problem are the
M × Q LED values rkj . The constraints are the uniformity constraint
(Eq. 3.19) and the range of valid values of rkj . The problem is thus:

maximize

M∑
k=1

Q−1∑
j=0

gkjrkj

subject to

Q−1∑
j=0

rkj = Qd k = 1, . . . ,M

0 ≤ rkj ≤ 1

(3.21)

Realistic values of M are in the order of tens, while Q should not go
beyond the thousands. The number of variables rkj is therefore in the
order of tens of thousands. The value function to maximize is a linear
combination of these variables. Overall, the complexity of the problem
can be considered low. It might be more computationally demanding
to calculate the gjk coefficients, depending on f(t). Nevertheless, the
solution to the problem (for all the luminance levels of interest) needs
to be solved only once per display. After the optimal scanning control
signals are known, they can be used to control the scanning backlight of
the LCD without any additional cost.

3.3 Experiments and Results

The optimization based optimal backlight scanning has been tested
and compared against basic backlight scanning, where the segments are
turned on at full power (rkj = 1) in sequence and only one at a time.
This means that the constraint given by Eq. 3.19 is respected and that
d = 1

M , which is also the frame luminance L.
The Full High Definition (HD) edge-lit display with 16 segments de-

scribed in Section 2.3.2 was used for the simulations. The segments,
placed in 8 rows and 2 columns, were grouped to emulate coarser back-
lights (e.g. 4 rows and 1 column). We considered the cases of 2, 4 and
8 rows and 1 column and additionally that of global backlight where all
rij are set to d.
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The optimization approach was implemented in Matlab using the
CVX package. The frame time tf was set to 1

120s = 8.33ms. The address-
ing time ta was set to 0.75×tf . Three response times tr were considered:
0ms (ideal, instantaneous response), 2ms and 4ms. The pixel response
f(t) was modeled linearly, for simplicity. The number of backlight up-
dates Q was set equal to the number of pixel lines (1080); this is justified
by the very fast response time of LEDs, which is in the order of few mi-
croseconds, or less. The minimum crosstalk was calculated for different
values of d ranging from 0 to 1 with a step of 0.01.

Figure 3.4 shows the results for tr = 0ms, tr = 2ms and tr = 4ms.
The plots account for backlight scrolling and strobing combined. While
strobing, the backlight is fully turned on and all pixels are stable, there-
fore the frame luminance is 1 and the crosstalk is 0. The luminance
and crosstalk measures combined for scrolling and strobing are obtained
from a weighted average where the weight are ts

tf
for scrolling and

tf−ts
tf

for strobing. Combined luminance over tf is therefore ts
tf
LC +

tf−ts
tf

,

while average crosstalk is equal to ts
tf

LG
LC

.

It can be seen that optimal backlight scanning always improves the
tradeoff between luminance and crosstalk compared to basic scanning.
For instance, with tr = 4ms and 2 segments, basic scanning has 50%
luminance and 1.335× 10−1 crosstalk. Optimal scanning can either re-
duce crosstalk to 2.895 × 10−2 at the same luminance level or increase
luminance to 83% with the same crosstalk. The relative improvement
is even larger for 4 and 8 segments. At the same luminance level, hav-
ing more backlight segments allows to reduce crosstalk further. This
is expected as, in these experiments, segments are grouped together to
simulate coarser backlights, which limits the degrees of freedom of the
optimization. It can also be seen that the size of the improvement varies
with the luminance level, and that the improvement from 2 to 4 seg-
ments is rather large if compared to that from 4 to 8 segments. This
suggests that 4 backlight segments could be “good enough” to obtain
acceptable results.

Figure 3.5 shows how the backlight control signals have changed af-
ter optimization in comparisoin to basic scanning, for the tr = 4ms case.
The figure suggests that the crosstalk reduction is achieved by turning
on more LEDs simultaneously and by concentrating the light output
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when it is most convenient to increase LC . This causes the backlight
to be turned off for part of the scanning time, creating a sort of com-
plementary strobing that turns the backlight off when doing otherwise
would increase crosstalk. The figure also shows that the shape of the
square waves controlling the LEDs is the same. This indicates that op-
timal backlight scanning is obtained by properly “shifting” the waves to
the most convenient time intervals.

These results, obtained from simulations, are illustrative of the im-
provements that can be obtained by optimizing backlight scanning, even
if some simplifications have been used (i.e. linear transition function). In
any case, the model is general enough to allow more precise simulations.

As a final note, the same experiments have been run on the same
screen but downscaled by a factor of 10, both at backlight and at pixel
level. The results were nearly identical, showing that it is acceptable to
reduce the complexity of the problem by downsampling without signifi-
cant loss of precision.

3.4 Conclusion

LCDs, when used to display 3D content using time-sequential visual-
ization with active shutter glasses, can have high stereo crosstalk and
consequently provide a poor perceptual performance. However, dynamic
backlight can can limit crosstalk with the technique of backlight scan-
ning. This chapter presented a model for backlight scanning which was
used to formulate an optimization problem, where the cost function to
minimize is a measure of crosstalk and the constraints include the lu-
minance level. Simulation results show that the best tradeoffs between
crosstalk and luminance can be obtained by concentrating the emission
of light when this can reduce crosstalk. It was also shown that more
backlight segments yield better results, however 4 segments appear to
be enough for acceptable performance, as the improvement associated
to additional segments is decreasing. The optimization problem has a
relatively low complexity, because the cost function is linear and the
number of variables is in the range of tens of thousands. Moreover, the
optimal scanning signals controlling the backlight need to be determined
only once per screen, and downsampling the display in the model does
not affect the final result significantly.
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Figure 3.4: Results of the experiment for response time tr = 0ms (top), tr = 2ms
(middle) and tr = 4ms (bottom). The lines indicate the optimal crosstalk at different
luminance levels for a different number of backlight segments. The markers indicate
the performace of basic backlight scanning. The measures account for both phases of
backlight scanning and backlight strobing.
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Figure 3.5: LED control signals before (top, basic backlight scanning) and after
optimization (bottom) with 4 backlight segments.



Chapter 4

Conclusion and Future
Work

The presence of images and video has pervasively spread in modern so-
ciety. Huge amounts of information, particularly for entertainment pur-
poses, are coded, transmitted and displayed continuously. Visual quality
clearly plays a major role in this context, particularly for Television (TV)
screens. Modern Liquid Crystal Displays (LCDs) allow to dynamically
dim the backlight. This can improve the typically low contrast ratio of
this display technology and generally improve image quality. Dimming
the backlight also reduces power consumption, which is particularly im-
portant given the growing attention on energy efficiency and sustainable
development.

This thesis presented several techniques to improve image quality
through the use of dynamic local backlights or through post-processing.
A model of backlight dimming systems, including aspects as light diffu-
sion and light perception, was established and used to develop advanced
dimming algorithms. It was shown that is it possible to determine the
optimal backlight for an image, given the characteristics of the display
and a cost function. By penalizing power consumption, it was possible to
draw the curve of optimal tradeoffs between image quality and energy
efficiency. This was done thanks to the backlight dimming algorithm
based on gradient descent, presented in this work, which outperforms
competing algorithms in both objective and subjective assessment. Ef-
forts have been made to reduce its high complexity and bring it closer
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to a real-time implementation.
Dynamic local backlights can also be used to improve the visual qual-

ity of Three Dimensional (3D) video content is displayed using LCDs and
active shutter glasses. Stemming from the model of backlight dimming
systems, backlight scanning for crosstalk reduction was formulated as
an optimization problem where the cost to minimize is a measure of
crosstalk and the constraints include a fixed luminance level. It was
shown that it is possible to preserve luminance and reduce crosstalk (or
conversely increase luminance while keeping crosstalk below a thresh-
old) by properly shifting the signals controlling the light sources in the
backlight.

The main part of the Ph. D. project, local backlight dimming, can
continue in future work. The gradient descent algorithm needs to be
refined to be applied to video signals: the backlight of a given frame can
be used as starting solution to calculate the backlight of the next frame.
The assumption is that the optimal backlights of consecutive frames
should be relatively close. One of the main problems with temporal
backlight dimming is the annoying flickering artifact, where the global or
local backlight intensity fluctuates rapidly between different luminance
levels. It is necessary to design a perceptual model of flickering, in order
to determine when flicker occurs in the simulated backlight system. The
model can be used to develop flickering metrics or to design flicker-
free algorithms. For instance, the step selection of the gradient descent
approach could include a flickering metric in the criteria. Alternatively,
advanced de-flickering filters can be implemented. Finally, complexity
should always be considered. To bring advanced dimming algorithms on
actual TV sets, it is necessary to introduce approximations that make
them suitable for real-time implementations. This is again a question of
making trade-offs between quality and complexity.
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ABSTRACT  

Traditionally, algorithm-based (objective) image and video quality assessment methods operate with the numerical 
presentation of the signal, and they do not take the characteristics of the actual output device into account. This is a 
reasonable approach, when quality assessment is needed for evaluating the signal quality distortion related directly to 
digital signal processing, such as compression. However, the physical characteristics of the display device also pose a 
significant impact on the overall perception. In order to facilitate image quality assessment on modern liquid crystal 
displays (LCD) using light emitting diode (LED) backlight with local dimming, we present the essential considerations 
and guidelines for modeling the characteristics of displays with high dynamic range (HDR) and locally adjustable 
backlight segments. The representation of the image generated by the model can be assessed using the traditional 
objective metrics, and therefore the proposed approach is useful for assessing the performance of different backlight 
dimming algorithms in terms of resulting quality and power consumption in a simulated environment. We have 
implemented the proposed model in C++ and compared the visual results produced by the model against respective 
images displayed on a real display with locally controlled backlight units. 

Keywords: Liquid crystal display, LED backlight, Local backlight dimming, Image quality assessment 

1. INTRODUCTION

In this paper, we focus on a specific class of displays, namely LCDs using locally adjustable LED backlight segments. 
LC displays require a backlight, since liquid crystal (LC) layer acts as a “shutter”, blocking part of the backlight in order 
to obtain the desired intensity. In color screens, pixels are normally formed by three sub-pixels, one for each of the RGB 
color components. The transmittance of each sub-pixel can be controlled by an independent signal. The backlight can be 
based on various technologies, like fluorescent lamps or LEDs. Recently, LEDs have become more and more popular, 
thanks to their longer lifetime, wider color gamut, faster response and easy control. The efficiency of LEDs has been 
doubling every third year since 1960s, and recently LEDs have bypassed fluorescent lamps in terms of power efficiency. 

Backlight dimming is motivated primarily by two factors: energy saving and improved contrast. Global backlight 
dimming of a uniform backlight is the simplest solution adopted in some early LC displays. With local dimming the 
energy savings and contrast may be further improved. Assuming that the image shown on the display contains both dark 
and bright regions, significant amount of energy can be saved without loss of quality by using lower backlight level in 
the dark regions. This is why the original intended luminance of the dark pixels can be maintained by adjusting the LC 
transmittance level upwards accordingly, when backlight intensity is reduced. This procedure is referred as brightness 
preservation. Contrast can be improved, since some backlight is normally leaking through the LC layer in the dark 
regions, and the perceptual impact of light leakage can obviously be alleviated by using lower backlight level. Local 
backlight dimming also reduces the production of heat, consequently decreasing mechanical distortions of the panel due 
by high temperature [1].  

In the literature, several different approaches have been proposed for backlight dimming and brightness preservation [2-
4]. However, less effort has been invested on evaluating and comparing these approaches. Basically, an optimal scheme 
would consume as little energy as possible, while preserving the image quality as well as possible. Energy saving is easy 
to estimate, since energy consumption of a LED is assumed to be linearly dependent on its intensity [2]. Quality 
assessment is not that straightforward, since subjective image quality assessment typically requires significant workload 
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and resources, and the known objective (ie. algorithm based) image and video quality metrics have not been designed 
with backlight dimming in mind. 

Different objective image and video quality metrics have been studied extensively during the past years. To name a 
couple, Peak signal-to-noise ratio (PSNR) is computed from the mean squared error (MSE) between the original 
reference signal and the assessed test signal, and it is still widely used and gives relatively meaningful comparative 
results with fixed content and distortion type. Structural similarity (SSIM) index is another well-known objective metric 
for image quality assessment. Compared to PSNR, SSIM is more complex, but SSIM index typically match better to the 
subjective perception than PSNR [2]. 

PSNR, SSIM and other similar metrics are typically computed from the luma values representing the brightness of each 
pixel in the reference image and test image. For example, when the raw image data is stored in YUV format, the luma 
component Y can be used as input signal for objective quality measurements. Sometimes chroma components (U,V) are 
also involved. Since the relationship between perceived brightness and luminance is not linear, luma values are usually 
gamma corrected to make the quantization steps represent perceptually uniform differences in the brightness levels. 
Gamma correction is not just useful for quality assessment, but it also allows more efficient packing of luma information 
without loss of perceived quality. 

In this paper, we attempt to address the issue of quality assessment in the context of HDR displays employing local 
backlight dimming, and propose a conceptual framework for reconstructing an image from pixel values and backlight 
values that can be used as input for objective image quality metrics. The rest of this paper is organized as follows. In 
Section 2, we review the related work and open issues in local backlight dimming in more detail. In Section 3, we 
describe our approach for modeling a display with locally adjustable backlight units. In Section 4, we present some 
experimental results with a real display. In Section 5, the results and open issues are discussed, and finally, the 
concluding remarks are given in Section 6. 

2. LOCAL BACKLIGHT DIMMING 
The basic concept of local backlight dimming is illustrated in Fig. 1. The digital image signal is first sent to the backlight 
dimming module in either RGB or YUV format. Then, the backlight dimming module generates two signals: one is the 
traditional video signal that is controlling the transmittance of the R, G, and B subpixels in the LC layer. The second 
signal is steering the backlight segments, either individual LEDs, or segments consisting of a group of LEDs. Between 
backlight elements and the LC layer there is a diffuser plate. 

In the simplest form of the concept, the backlight comprises one segment only; instead of local dimming, this would be 
referred as global dimming, or 0-D dimming. Multiple segments can span across the screen in different forms; segments 
forming columns or rows would allow 1-D dimming, and grids 2-D dimming, respectively. Some backlights can 
generate colored light for R, G, and B components separately and perform 3-D dimming, since color is considered as a 
dimension. It is also possible to classify backlights as direct and edge backlight. In direct backlight, the light sources are 
placed behind the LC panel, while in edge backlight they are placed on one or more sides of the panel, allowing only 1-D 
dimming. On the one hand, direct backlight is more efficient and allows finer segmentation compared to edge backlight, 
but on the other hand, edge backlight allows the construction of thinner screens. 

Figure 1. Concept of local backlight dimming illustrated.
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2.1 Modeling backlight diffusion 

Traditionally, the function of the diffuser plate is to spread the light from individual light sources as smoothly as possibly 
over the whole display surface, in order to guarantee the best achievable homogeneity of luminance in different parts of 
the screen. However, the idea of local dimming has challenged this design target, since the differentiation in local 
brightness levels is in fact the goal. Finding the optimal compromise between smooth spreading of light and capability of 
brightness differentiation is an interesting challenge in physical design in diffuser plates in the future. Nevertheless, in 
this paper we still rely on assuming that diffuser plates have homogeneous light diffusion properties, ie. the observed 
diffusion of light does not depend on the position of the light source behind the diffuser. 

If the brightness of the backlight on the diffuser plate at each specific pixel (i,j) is known, the perceived brightness of 
that pixel denoted with I(i,j), can be expressed as a product of backlight brightness A(i,j) and LCD transmittance T(i,j), as 
given in Eq. 1. In color displays, the intensities are computed separately for R, G and B components, using the respective 
transmittance levels TR, TG and TB.

),(),(),( jiTjiAjiI       (1) 

The backlight resolution is usually significantly lower than LCD resolution, and the brightness of each pixel is typically 
contributed by light arriving from several LEDs, mixed on the diffuser plate. This is why a diffusion model is needed to 
estimate the backlight intensity at certain pixel position. A common assumption in the literature is that the luminance of a 
pixel on the diffuser plate is the sum of the attenuated luminance intensities of the contributing LEDs [2,3]. The 
attenuation factor is dependent on the distance to the LED. The basic assumption is that the point spread function of the 
luminance on the diffusion plate follows roughly Gaussian distribution, centered around the midpoint of the light source. 
Therefore, we have constructed a diffusion model given in Eq. (2), where n is the number of contributing LEDs, Lk is the 
luminance intensity of LED k, dk(i,j) is the distance between LED k and pixel (i,j), and  is a parameter that is specific for 
the display. It is worth noting that n does not need to cover all the LEDs in the display, but only those that are close 
enough to contribute the luminance of the pixel in question. Fig. 2. shows a one-dimensional illustration how the overall 
luminance is formed from contributing luminance intensities.  

                       
n
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Figure 2. Diffusion model based on additive local light intensities. 

Unfortunately, the practical light distribution is influenced several factors, such as the reflecting characteristics and 
potential seams on the background plate, optical properties of the diffuser plate and even the properties of the LEDs. 
This is why the basic assumption of purely Gaussian light distribution is usually not realistic. In addition, many practical 
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displays have local backlight segments consisting of several LEDs adjusted simultaneously, and in this case it could be 
reasonable to use a combined spread function. More realistic models would require accurate luminance measurements on 
the real display. If this is not feasible, improved models can also be developed by visual analysis of the practical light 
distributions and heuristic adjustment of model parameters. 

2.2 Perceptually uniform coding  

Aydın et. al. have reported that even though the commonly used transform functions for gamma correction provide 
perceptually uniformly scaled pixel values for darker displays, this is no longer true for brighter HDR displays [6]. The 
authors have defined experimentally a mapping function between luminance and perceptually uniform (PU) coding that 
extends the usable range of luminance levels from regular 1-100 cd/m2 up to 106 cd/m2. Since HDR displays are 
concerned in our study, the pixel luminance values should be converted into PU coding before applying any objective 
quality metric. Experimentally derived lookup table for mapping between luminance and PU luma values has been 
provided in [7]. The PU luma values have been scaled so that they provide close match with sRGB non-linearity in the 
range between 0.1-80 cd/m2.

The authors in [6] did not try to fit the PU mapping to an analytical function. However, such a function would be useful 
for conceptualizing the relationship between physical and perceptual luminance. This is why we are proposing an 
analytical function with three parameters, where the values of the parameters have been derived by fitting the function to 
the values in the lookup table with minimum least squares method. The resulting transfer function from luminance L to 
PU coding is given in Eq. (3), and the relationship curve is depicted in Fig. 3. For the purpose of comparison, traditional 
gamma correction function with =1/2.2 is also shown. 

           )156.0ln(25.66)PU( 88.0LL                (3)
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Figure 3. Mapping from luminance to perceptually uniform luma values. 

Since PU luma extends the range of sRGB luma values beyond the original maximum, PU luma values need to be 
normalized in respect to the actual peak luminance for practical use. For this purpose, we define maximum target 
luminance LMAX, that would respect to the maximum PU luma value PUMAX (for example, when 8 bit coding of pixel 
values is used, PUMAX=255). The resulting scaled mapping is given in Eq. (4). The inverse function for converting PU 
luma values into physical luminance domain is given in Eq. (5). The experimentally derived values for the constants are 
a=0.56 and b=0.88, respectively. 
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3. MODELING BACKLIGHT DIMMING SYSTEM 
To evaluate the performance of different backlight dimming algorithms in terms of perceived image quality and power 
consumption without implementing the whole system in a real hardware and performing time consuming subjective 
quality assessment and power measurements, a software simulation modeling the physical characteristics of a display 
with local backlight dimming capability would be necessary. A block diagram of the proposed simulation environment is 
illustrated in Figure 4. The proposed model has some similarities with the model for global backlight dimming by 
Bartolini et. al. [8], the main difference being that we focus on local backlight dimming. Optimization of backlight 
dimming algorithms is out of the scope of this paper, and this is why backlight dimming is considered as a black box, 
subject to evaluation. However, for verification purposes, the basic algorithms and approaches for backlight dimming 
will be discussed in Section 3.2. 

Figure 4. Model of a display with local backlight dimming capability.  

3.1 Functionality of the model 

In the proposed model, the backlight dimming block takes raw video in conventional digital format (either YUV or 
RGB) as input, and gives RGB signal for LC and backlight LED intensities L as output1. The relative energy 
consumption can be estimated directly from signal L, since the luminance intensity of a LED is supposed to be dependent 
on the energy consumption. The exact energy model depends on the physical characteristics of the LEDs and their 
control units, but in the sake of clarity, linear relationship between luminance and power consumption can be assumed 
with a reasonable accuracy. The diffusion model explained in Section 2. operates in the luminance domain and therefore 
takes the LED intensities as such as input. The output signal A contains the luminance domain brightness values of each 
pixel on the diffuser plate. 

In the combination model, the luminance values A are converted to PU coded luma values A’PU using the transfer 
function given in Eq. (4). Basically, the perceived luma intensities of R, G, and B components of each pixel can be 
computed by multiplying A’PU values by the respective input R, G and B values that have been normalized to range 0-1. 
Some adjustments may be necessary, depending on the characteristics of the modeled display. Most notably, 
straightforward multiplication does not take light leakage into consideration. This is why we propose a combination rule 
given in Eq. (6), where  is a light leakage factor that defines the proportion of light that leaks through an entirely black 
pixel (ie. R=G=B=0).

1 Note that apostrophe refers to gamma corrected luma values, ie. L’ is the luma domain value respective to physical luminance L.
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In practice, the observed light leakage depends on the viewing angle. This is why different values of  could be used to 
model the distortion related to viewing position. Even if the viewer is positioned accurately in the front of the screen, the 
viewing angle would be slightly different to different parts of the screen. Therefore, the actual  would also be slightly 
higher in the edges than in the middle of the screen. However, this aspect is omitted in our study, and a constant  for the 
whole screen is assumed. 

In the quality assessment phase, the combined signal representing the video perceived on the display is compared against 
the received video signal used as input to the backlight dimming algorithm. Naturally, if the original signal is in YUV 
format, the combined signal needs to be converted back to the same format, as well. In theory, any well established 
objective quality metric, such as PSNR or SSMI, could be used as a quality metric. However, the existing metrics have 
not been verified with test signals containing artifacts generated by backlight dimming, and this is why some subjective 
analysis would be needed to find out the most reliable metrics in this context. 

3.2 Backlight dimming algorithms 

In short, the goal of backlight dimming is to preserve the original intended brightness of each pixel with as low average 
luminance level of the backlight elements as possible. For this purpose, the first task is to compute a target luminance 
map, where each pixel is represented by the maximum pixel value of the R, G, and B components, converted into 
physical luminance by Eq. (5). It is usually not feasible to physically measure the luminance of each pixel during the 
backlight dimming procedure, and this is why the algorithm must rely on the simulated actual luminance map created by 
applying the backlight LED signal to the diffusion model. The luminance map has the same resolution as the display, and 
each element in the map describes the physical luminance of the respective pixel.   

We have implemented a baseline algorithm for clipper-free backlight dimming, based on the basic idea described in [2]. 
The algorithm works iteratively. In the beginning, all the LEDs and the actual luminance map are initialized with zeros. 
For each iteration round, the most unsatisfied pixel (the pixel with the lowest luminance in respect to the target 
luminance) is identified. Then, the intensity of the closest LED to the pixel is increased to reduce the gap, and the actual 
luminance map is updated accordingly, using the diffusion model. If the maximum intensity of the LED is reached and 
the pixel is still unsatisfied, the algorithm searches the next closest LED and increases its intensity. This is repeated until
the pixel becomes satisfied. Once all the pixels are satisfied, the algorithm terminates. 

Optimally, the difference between the target luminance map and the actual luminance map should be as small as 
possible. In practice, there are almost always a lot of oversatisfied pixels, since each LED contributes a large amount of 
pixels in the vicinity and the pixels in a region may have very different target intensities. However, in most cases there 
will be clearly distinguishable darker and brighter areas in the luminance map. Since the original RGB signal assumes 
homogeneous luminance distribution on the diffuser, brightness preservation is needed to regain the original target 
intensities at each pixel. This is done by first converting the luminance map into normalized PU luma domain with range 
0-1 using Eq. (4) and dividing by PUMAX, and then computing the new pixel values T by dividing the intended pixel value 
I by the respective normalized backlight PU luma value A (see Eq. (1)). 

In practice, the algorithm described above is computationally too complex and slow for real-time applications, such as 
frame-wise local backlight dimming for video sequences. This is why practical algorithms for local backlight dimming 
used for TV displays available in the consumer markets are based on suboptimal approaches, such as computing the 
histogram of pixel brightness levels in different regions and then dimming the respective backlight segments 
heuristically [9,10]. This kind of algorithms may give satisfactory results for images consisting of clearly distinctive 
bright and dark areas, but with more demanding images the result is typically suboptimal in respect to the quality, power 
saving, or both.  

SPIE-IS&T/ Vol. 7866  786607-6

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 01/10/2013 Terms of Use: http://spiedl.org/terms

92 Ph. D. Publications



4. PRACTICAL EXPERIMENTS 
In order to verify our conceptual approach of modeling a local backlight dimming system, we have run a range of 
experiments using a real display allowing local backlight dimming, manufactured by SIM2 [11]. The display has a 47 
inch panel with full HD resolution (1920x1080 pixels). The backlight is composed of 2202 high power LEDs, arranged 
in a hexagonal grid. The LEDs can be controlled independently using the test program we have implemented for our 
experiments in C++. 

In the first set of experiments, we studied the relationship between the actual light diffusion and the modeled light 
diffusion. The point spread function of an individual LED may be obtained by measuring the luminance at different 
points on the display when only one individual LED is turned on. We have used the point spread function provided by 
the display manufacturer instead of performing our own measurements. The point spread function can be converted to 
pixel values by transforming the luminance at each pixel into PU domain by Eq. (4). The real and the simulated light 
diffusion can be compared by displaying one illuminated LED in transparent LCD mode, and then displaying the 
normalized point spread function on LCD with all the backlight LEDs set to level that produces as uniform light 
distribution as possible, with luminance respective to the peak luminance of an individual LED. 

In the following phase, we have validated the additive model for multiple point spread functions by comparing the actual 
co-impact of two closely located LEDs against simulated light diffusion generated by summing two point spread 
functions in respective positions in the luminance domain and then converting the resulting pixel values into PU domain. 
The visual analysis showed a reasonably accurate resemblance between simulated point spread functions. 

In the third phase, we have used the baseline backlight dimming algorithm described in Section 3.2 to validate the full 
simulation model presented in Fig. 4. The resulting actual light diffusion pattern, simulated light diffusion pattern, image 
displayed on globally dimmed backlight and the same image displayed after local backlight dimming and brightness 
preservation are shown in Fig. 5. The images have been taken of the display with a digital camera.  

a) Actual light diffusion b) Modeled light diffusion

c) Image with global backlight dimming d) Image with local backlight dimming and brightness preservation

Figure 5. Comparison of actual (a) and modeled (b) light diffusion, and original picture on global backlight (c) and with local backlight dimming and 
brightness preservation (d). 
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We have repeated the backlight dimming procedure with different test images, representing different average brightness 
levels and visual characteristics. ‘Sunflower’ has a relatively complex texture and large contrast between the bright area 
in the upper right part and the darker left part of the image. ‘Pedestrian’ is a relatively dark image with some brighter 
areas. ‘Blue Sky’ has a large smooth bright blue surface partially shadowed by leaves of trees, producing a strong local 
contrast in those areas. ‘Riverbed’ is an image with small bright and dark areas forming a rather complex texture. The 
images with the average pixel value indicating the overall brightness are shown in Figure 6. 

Image: Sunflower 

Average pixel value: 65.3 

Image: Pedestrian 

Average pixel value: 64.4 

Image: Blue Sky 

Average pixel value: 144.1 

Image: Riverbed 

Average pixel value: 87.7 

Figure 6. Test images and the respective average pixel values (in range 0-255) describing the average brightness.

According to the visual examination of the resulting images, the visual appearance with local backlight dimming and 
brightness preservation is close. The average LED intensities with the local backlight dimming in respect to the global 
backlight intensity (scaled to the same maximum luminance) are 40.3% (Sunflower), 25.7% (Pedestrian), 86.4% (Blue 
Sky) and 45.9% (Riverbed). Since a linear relationship between LED intensity and power consumption is assumed, the 
values describe the relative power consumption obtained by using local backlight dimming in respect to global dimming. 
As the results show, the relative power saving depends heavily on the content of the picture in question. The potential 
power saving cannot be predicted straightforwardly from the average pixel value, since the distribution of bright pixels in 
the image plays an even more significant role. The best power saving can be obtained for relatively dark images, where 
the bright pixels are strongly clustered in certain areas. 

The practical experiments showed that even if the pre-computed map for the spreading function is used in the diffusion 
model, the process of updating the luminance map iteratively in our baseline backlight dimming algorithm is rather slow. 
Finding the optimal LED intensities takes up to several minutes for one image with the display used in our experiments. 
Of course, the display has an exceptionally large number of individually adjustable backlight LEDs (2202). This may be 
used for high quality image display, but in any case, it is probable that even with smaller amount of backlight segments 
the speed of the algorithm is not acceptable for real-time video applications. Optimization of backlight dimming is out of 
the scope of this paper, but the results obtained by the algorithm are conjectured to be close to optimal, and therefore 
they can be used as a comparison point when fast suboptimal backlight dimming algorithms are evaluated and 
developed. 

5. CONCLUSIONS 
In this paper, we have proposed a framework for assessing the performance of local backlight dimming algorithms in a 
simulated environment. The design target is to model the diffusion of backlight on the diffuser plate and the 
transmittance of pixel elements on the LC layer as accurately as possible, in order to create a numerical presentation of 
the displayed image that closely resembles the physical image on the screen as perceived by the viewer. Having 
established this, the traditional objective quality metrics can be used to evaluate the quality distortion between the 
original digital image and the displayed image created by the model, as well as comparison of different display solutions, 
e.g. different local backlight dimming algorithms. The major design challenges lie in accurate modeling of backlight 
diffusion and light leakage through LCs, since these properties are highly dependent on the actual display hardware. 
However, we have shown via practical experiments that the proposed approach can be successfully used to approximate 
the physical properties of a real display implementing local backlight dimming. 
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In order to validate our approach, we have implemented a model for backlight diffusion and an iterative baseline local 
backlight dimming algorithm to analyze the model offline. The visual analysis of the obtained images and light diffusion 
patterns shows that the model can be used for realistic simulation of light diffusion, which in turn can be used to evaluate 
the image quality and power consumption. The baseline algorithm used in this study is slow, but it produces results that 
are close to optimal in terms of image quality and power consumption, and therefore it can be used as a benchmark when 
suboptimal real-time algorithms are evaluated offline. In the future, our intention is to use the proposed framework in the 
research of backlight dimming algorithms suitable for practical applications.  
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ABSTRACT  

Local backlight dimming in Liquid Crystal Displays (LCD) is a technique for reducing power consumption and 
simultaneously increasing contrast ratio to provide a High Dynamic Range (HDR) image reproduction. Several backlight 
dimming algorithms exist with focus on reducing power consumption, while other algorithms aim at enhancing contrast, 
with power savings as a side effect. In our earlier work, we have modeled backlight dimming as a linear programming 
problem, where the target is to minimize the cost function measuring the distance between ideal and actual output. In this 
paper, we propose a version of the abovementioned algorithm, speeding up execution by decreasing the number of input 
variables. This is done by using a subset of the input pixels, selected among the ones experiencing leakage or clipping
distortions. The optimization problem is then solved on this subset. Sample reduction can also be beneficial in 
conjunction with other approaches, such as an algorithm based on gradient descent, also presented here. All the proposals 
have been compared against other known approaches on simulated edge- and direct-lit displays, and the results show that 
the optimal distortion level can be reached using a subset of pixels, with significantly reduced computational load 
compared to the optimal algorithm with the full image. 

Keywords: Local backlight dimming, liquid crystal display, light emitting diode backlight, linear programming, 
optimization, high dynamic range display, gradient descent 

1. INTRODUCTION 
In this paper, we present techniques to reduce the complexity of optimization based algorithms for local backlight 
dimming in Liquid Crystal Displays (LCD). LCD is nowadays the most widespread display type, used for several kinds 
of devices, from mobile phones to 3D TV. In this study, we focus on Full High Definition (HD) LCD television using 
Light Emitting Diode (LED) backlight, displaying images and video. Since Liquid Crystals (LC) are basically voltage 
controlled light filters, an LCD requires a light source in addition to LCs. Certain types of LCDs, such as those used in 
digital watches, may rely on ambient light, but TV and computer displays usually contain a built-in backlight, located 
behind the LC layer. 

Traditionally, the backlight designs aim to provide even distribution of light over the whole display area. This can be 
achieved by using a carefully designed diffuser plate between the backlight and LC. Backlight can be located either 
directly behind the diffuser, or at the edges of the screen. Conventionally, Cold Cathode Fluorescent Lamps (CCFLs) 
have been most commonly used as backlight, due to their inexpensive cost and reasonable energy efficiency. However, 
the backlights based on LEDs are now becoming a commonplace, thanks to the rapid advances in LED technology in 
terms of cost and power consumption. Due to the tightening regulations and increasing environmental awareness, energy 
efficiency is a crucial issue in the TV industry, and since the backlight is typically the most power consuming component 
of an LCD, power efficiency is a highly essential criterion for selecting the backlight technology. 
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One advantage of LEDs is that the light intensity can be changed in a flexible manner. This allows a technique called 
local backlight dimming: backlight can be consist of several segments, and brightness of each segment can be adjusted to 
match the content in the respective segment of the displayed image. If the image contains both dark and bright regions, 
significant power savings can be reached by using lower backlight intensity in the dark areas. Another benefit of local 
backlight dimming is the reduced light leakage. Due to imperfections of practical LCs, they are not capable of blocking 
all the light through black pixels. This makes black pixels look slightly grayish, which reduces the perceived contrast of 
the image. However, light leakage can be efficiently restricted by using low backlight level in the dark regions. 

Different display architectures with backlight dimming capability exist. The most trivial form of backlight dimming with 
only one backlight segment covering the whole display is referred as global backlight dimming. In edge-lit displays, the 
screen may be divided in vertically or horizontally directed backlight segments, allowing so called 1D dimming. The 
backlights can also be allocated at both sides so that the 1D backlight segments are split in two parts; this would be 
called 1.5D dimming. Backlight segments located directly behind diffuser (direct-lit) allows most flexibility, and such an 
architecture is referred as 2D dimming. LCDs using different local backlight configurations, with the number of 
segments ranging from a few up to several thousands, have been built. Figure 1 shows examples of 2D and 1.5D 
backlight. 

Apparently, local backlight dimming offers substantial potential benefits in the form of power savings and improved 
contrast, but there are also challenges. In practical backlight architectures, the light from different backlight segments is 
mixed on the diffuser, and the backlight luminance at each pixel position is therefore contributed by several backlight 
segments. This is why finding an optimal combination of backlight intensities is a very challenging optimization 
problem, basically including all the pixels and backlight segments as variables. Bright and dark pixels located close to 
each other are especially challenging. If the backlight level is too low for a bright pixel, the target intensity cannot be 
reached. In this case, the pixel is said to be clipped. On the other hand, when the backlight level is high, the dark pixels 
may suffer from light leakage. Leakage is often especially disturbing around a bright object, where a halo effect is 
observed. In most cases, a fully optimal solution cannot be found, but a trade-off between clipping and leakage must be 
chosen. 

Because optimized local backlight dimming is a very complex computational problem, most practical implementations 
and solutions known from the related literature are based on suboptimal algorithms. Most of these proposals aim at 
optimizing the image quality, whereas power saving is seen more as a positive additional benefit. An optimization-based 
algorithm based on linear programming has been presented in our earlier work [1], later extended with a cost function 
where different weight can be applied to image quality and power consumption [2]. Unfortunately, the computational 
load of the proposed algorithm is too high for real-time applications, such as TV display. In this paper, we present 
approaches for reducing the complexity of the proposed approach, while maintaining the optimality as well as possible. 

The rest of this paper is organized as follows. In Section 2, the basic concepts and approaches for modeling a local 
backlight dimming system are explained. In Section 3, we explain the optimization-based backlight dimming algorithm 
and the proposed extensions for speeding up the algorithm. In addition, we explain selected algorithms from the 
literature, used as a comparison point in the experimental part of our work. Section 4 describes the practical experiments 
we have performed to validate the proposed algorithms and summarizes the results of the experiments. Finally, the 
concluding remarks are given in Section 5. 

Figure 1: A frame displayed on a LCD and examples of direct-lit "2D" backlight and edge-lit "1.5D" backlight. 
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2. MODELING 
In order to implement any practical backlight dimming algorithm, it is first necessary to model the essential 
characteristics of a display with local backlight dimming capabilities. The most essential concepts are transmittance, that 
defines the proportion of light an LC pixel is adjusted to let through, and backlight level, that defines the brightness level 
of a backlight element. These are the input signals to LCD. When a color display is concerned, each pixel actually 
contain three subpixels: red (R), green (G) and blue (B). For the sake of simplicity, we only consider a single color 
channel in this work, but the presented equations and formulations can be applied to all the three color components. The 
observed backlight intensity at certain pixel position depends on the physical structure of the diffuser plate. The 
distribution of light coming from a single element is modeled using a Point Spread Function (PSF), and the contributions 
from different light sources need to be summed up to model the total observed backlight at each pixel. Because of light 
leakage, there may also be a mismatch between intended transmittance and observed transmittance. All these issues need 
to be considered in the backlight model.  

2.1 Transmittance and leakage 

The observed luminance L of pixel (i,j) in a locally dimmed backlight LCD screen can ideally be expressed as the 
product of the backlight intensity B and the LC transmittance T:

).,(),(),( jiTjiBjiL  (1) 

The values of L, B and T are all normalized to the interval [0,1], so B(i,j)=0 means that there is no light behind pixel (i,j), 
while B(i,j)=1 means that the intensity of the light is at its maximum. Similarly for the transmittance, T(i,j)=1 means that 
all the backlight is passed through LC, while T(i,j)=0 means that the pixel is fully blocked. Ideally, T is the same as the 
driving signal S controlling LCs. However, in practice, LC cannot block all the light, due to leakage. Leakage can be 
modeled linearly by using a parameter , also called leakage factor, defined as the amount of light leaking through pixel 
(i,j) when T(i,j)=0 and B(i,j)=1. The model of output luminance L in the presence of leakage is given as  

),(1),(),(),(),(),( jiTjiBjijiTjiBjiL  (2) 

or alternatively: 

),,(),(),( jiTjiBjiL o  (3) 

where To is the observed transmittance, as opposed to ideal transmittance T. To can be expressed as 

).,(),(),(1),( jijiTjijiTo  (4) 

The leakage factor  can be different for each pixel, depending on the pixel position and the viewing angle, for example. 
For simplicity, a constant  across the whole screen is assumed in this paper. Figure 1. illustrates the model graphically. 

2.2 Backlight diffusion 

Light diffusion in the backlight can be expressed as a function of the intensities of the backlight segments, and their 
Point Spread Functions (PSFs). The backlight resulting from a certain array of LED values at the pixel (i,j) is simply the 
linear combinations of all the PSFs multiplied by the corresponding LED intensity, given as 

,),(),(
1

N

k kk jihrjiB  (5) 

where B(i,j) is the backlight at pixel (i,j), N is the number of backlight segments, rk is the intensity of the k-th segment 
and hk(i,j) is the value of the PSF of the k-th segment to pixel (i,j). It is possible to express Eq. (5) in matrix form: 

,Hrb  (6) 
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where B(i,j) values are represented by the column vector b with as many elements as there are pixels, PSFs are 
represented by the influence matrix H with N columns and a row per pixel, and r is a column vector with N backlight 
values. 

There are cases where it is unpractical or not possible to know all the PSFs. For example, in the case of a direct-lit 
backlight with a high number of segments, a large amount of memory would be required to store all the PSF data. One 
solution is to use the same PSF for all the segments; this PSF can be obtained by averaging over some PSFs from 
different segments, for example. The downside of this approach is that the segments close to the edges of the screen will 
trim the PSF and modeling of light diffusion around the edges becomes inaccurate. 

A common assumption is that backlights are designed so that if all the LEDs have the full intensity, the resulting full 
backlight would be smooth and uniform. With this assumption, it is possible to simulate the same effect by scaling the 
PSFs by the full backlight:  

),,(),(),(' jiBjihjih Fkk  (7) 

where BF(i,j) is the full backlight at pixel (i,j), assuming that all the backlights have full intensity: 

).,(),(
1

jihjiB
N

k kF  (8) 

2.3 Backlight-pixel interaction and brightness compensation 

When the backlight is dimmed, the consequent reduction of luminance can be compensated by increasing the 
transmittance of the LC pixel. This step is usually referred as pixel compensation [3]. In an ideal case, the compensated 
transmittance TC can be solved from Eq. (1) by replacing L with the target image Ly:

.
),(
),(

),(
jiB

jiL
jiT y

C  (9) 

However, in practice TC has a limited range of valid values. In particular, it is up-bounded at 1, because otherwise it 
would mean that LCs could amplify the backlight luminance. On the other hand, observed transmittance is low-bounded 
at , because of the leakage. To set the upper bound and compensate the impact of leakage, Eq. (9) should be rewritten 

L

T
0

1

0 1

Ideal

Observed

B=0.5
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Figure 2: Impact of leakage factor  on output luminance L with ideal transmittance T, when the backlight intensity is B.
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as:  
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Pixels for which Condition I is true will experience clipping, which means that the LCs cannot compensate properly the 
backlight reduction. As a result, the pixels looks dim. On the contrary, pixels for which Condition II is true will show 
leakage and look brighter than they should. These pixels can be called clipped and leaking, respectively. After solving 
TC, the observed physical transmittance can be computed from Eq. (4), by replacing T with TC.

2.4 Perception of brightness 

Since the Human Visual System (HVS) perceives luminance non-linearly, the perceived severity of a luminance error on 
a dark pixel is different from the error of a similar magnitude on a bright pixel. In fact, the HVS is more sensitive to 
luminance changes at low luminance levels than at high levels. Because of this, the impact of leakage on subjective 
image quality is larger than indicated by the physical luminance error. The sensibility to luminance changes decreases, as 
the luminance increases. The perceived response is often approximated with a power function of the form:  

,
1

LLU  (11) 

where LU is the perceived luminance and  is the Gamma. Gamma value of 2.2 is typical, but other values have been used 
as well [3]. The inverse response can simply be calculated: 

.ULL  (12) 

LU, is said to be perceptually uniform, ie. a fixed step always indicates similar perceived difference, whereas the same 
steps correspond to different intervals of variable length for L. Conversely, equal steps of L correspond to variable step 
sizes of LU, determined by the response (Gamma) function. We say that LU represents luminance in perceptual domain 
and L in physical domain. It should be noted that the model described in this Section operates in the physical domain, ie. 
physical luminance is assumed in Eqs. (1)-(10). 

The use of Gamma to approximate the HVS response to luminance is based on the assumption that the peak luminance 
of the display is relatively low, about 100 cd/m2. This is not a valid assumption for advanced High Dynamic Range 
(HDR) LCD displays, that can have peak luminance values up to 4000 cd/m2, like one of the screens modeled for the 
experiments reported in this work [4]. For this reason, other response functions have been proposed [5]. However, in this 
work the traditional Gamma function is adopted for clarity. 

3. ALGORITHMS 
This Section presents the optimization-based backlight dimming algorithm in [1], along with a possible strategy to 
reduce the complexity of the problem and an alternative approach based on Gradient Descent optimization. The last sub-
Section describes other backlight dimming algorithms known from the literature, used for the purpose of comparison. 
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3.1 Optimization-based algorithm 

Let y be a vector representing the ideal target image of size m×n, and x a vector representing the actual image rendered 
on the display, respectively, it is possible to formulate backlight dimming as an optimization problem [1], as shown 
below:  

Nir
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,...,1,10
,...,1,1

subject to
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Hrb
btx

xy

 (13) 

where x is the product of the LC transmittances t (vector presentation of observed transmittances) and the backlight b
(see Eq. 3), which depends on the LED values r and the PSF information contained in the influence matrix H (see Eq. 6). 
Because of leakage, the observed transmittance of the LCs is low-bounded by the leakage factor , see Eq. (10). The 
LED values range between zero (minimum, turned off) and one (maximum, full power). In Eq. (13), the aim is to 
minimize the cost function based on the distance between y and x. The cost can be calculated in 1-norm, 2-norm or 
another norm. As shown in [1], it is possible to reformulate the problem as a convex problem. Using 1-norm the problem 
is linear, and with 2-norm it is quadratic. 

It is possible to generalize Eq. (13) by including a term in the cost function favoring solutions with lower power 
consumption and introducing error weighting for each pixel of the y and x difference [2]. These extensions are included 
in the formulation that follows: 
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where w is the error weighting vector, p is a measure of power consumption (in this work we use the average LED value) 
and q a weight of its impact in the cost function. It is clear that if w is a vector of ones and q is equal to zero, Eq. (14) is 
equivalent to Eq. (13). 

This optimization-based algorithm can find the optimal solution minimizing the error for one image on a specific 
backlight configuration. In its original form, the optimization is done in the physical luminance domain, as opposed to 
the perceptual domain, which means that the algorithm minimizes the luminance error for each pixel. However, due to 
the non-linear nature of luminance perception, it is not possible to do linear optimization in the perceptual domain; it is 
however possible to use the weighting vector w in Eq. (14) to give a different weight to errors, depending on the target 
luminance of each pixel. The weights can be derived from the slope of a curve modeling the human response to 
luminance at the target luminance level, for example. 

3.2 Proposals for reduction of complexity 

The optimization-based approach can find the optimal backlight for a given image. However, in this case the complexity 
increases very rapidly with the number of variables; considering that Full HD screens have more than two million pixels 
and each pixel corresponds to a variable, this is obvious. It is thus important to consider strategies that allow solving the 
problem with a reduced set of variables. 

One possible solution is to downscale the input image, solve the problem at the reduced resolution, and finally apply the 
resulting solution to the full resolution image [1]. The efficacy of this approach depends on the downscaling technique 
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and factor. The problem with downscaling is that it either causes aliasing or uses a low pass filter, blending very bright 
or very dark pixels and therefore resulting a larger number of clipped or leaking pixels. 

Another strategy is to find the optimum over a subset of the pixels from the original image. We propose to solve the 
problem on the distorted pixels of the image, ie. the pixels experiencing clipping or leakage, see Eq. (10). It can be said 
that in backlight dimming the very bright pixels and the very dark pixels are the most challenging, for two reasons: 
firstly, the two are in conflict with each other, particularly if they are located close to each other, because a proper 
backlight level for the pixels in one group might mean leakage or clipping for the pixels in the other group; secondly, all 
the other pixels with intermediate target intensity can be rendered properly with a wider range of backlight intensities. 
This means that the only pixels contributing to the cost function are those that cannot be properly compensated, that is, 
the distorted leaking and clipped pixels. This is why it is a reasonable conjecture that the optimal solution for an image 
could be reached by solving the optimization problem on those distorted pixels only. 

If an optimal backlight solution is found on a subset of pixels and this solution generates no new distorted pixels, then it 
is the overall optimal solution. In order to utilize this observation, we propose the following approach. Given an image 
and backlight intensities provided by any algorithm, all the leaking and clipped pixels of the image are listed. After 
compensation, the leaking pixels have a luminance level higher than the target luminance, while the clipped pixels have a 
luminance level lower than the target luminance. Once this subset of distorted pixels is selected, the optimization 
problem can be solved on it, and the resulting solution can be applied on the full image. All the pixels that are distorted 
after this step, but were not distorted in the previous step, are added to the list. Then, the is algorithm is re-iterated, until
there are no new distorted pixels. The cost function to minimize can then be formulated as follows: let DC denote the set 
of pixels distorted by clipping and DL the pixels distorted by leaking, respectively. Using 1-norm, the cost function in Eq. 
(13) may then be expressed as:  

,),(),(),(),(
),(),( LC DjiDji

jiyjiBjiBjiyf  (15) 

where y(i,j) is the target image value at position (i,j).

This approach reduces the number of variables used in each iteration. However, the additional outer loop of iteration 
rounds increases the execution time. Nevertheless, experimental results show that it is possible to find nearly optimal 
backlight levels without using all the pixels from the original image. 

The presented approach is just one alternative. The subset of pixels could be selected in many other ways, depending on 
the chosen criteria. It is possible to use segmentation techniques, for example, or perform histogram analysis to identify 
the most crucial pixels. These techniques will be examined in our future work. 

3.3 An approach based on gradient descent 

Given a specific cost function, optimizing the optimal backlight for an image y can also be approached through gradient 
descent algorithm, that is a search-based iterative strategy. The solution space has a number of dimensions, equal to the 
number of backlight segments. For a given solution, it is possible to calculate the derivative of the cost function over all 
the dimensions and thus find the gradient. The next solution is then obtained by adjusting the solution in the direction of 
the gradient. This process can be iterated for any given number of steps, or until a terminating condition is met (for 
example, when the optimum is reached). The solution after each iteration is expressed as:  

),(1 iii fs rrr  (16) 

where ri is the solution at step i, f is the cost function for a given target image y, and s is the step size. The minus sign is 
used because in this case the aim is to minimize the cost. The length of step s can be varied for each iteration; large steps 
allow quick convergence, while shorter steps are more precise and return lower cost solutions. In our initial 
implementation of the search based approach, we opted for a variable step size: first, the solution is found iterating with a 
relatively large step size, then the step size is halved, and the search starts again from the new solution; the process is 
then iterated, until the step size becomes smaller than a predefined threshold. 

Assuming that the cost function is based on 1-norm and B(i,j) is expressed by Eq. (5), the partial derivative of the cost 
function in Eq. (15) with respect to rk gives:  
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If there are pixel values, y(i,j), at the clipping boundary y(i,j)= B(i,j) or the leakage boundary y(i,j)= B(i,j), the partial 
derivatives given by Eq. (17) are not strictly well defined, as the contributions to the cost function are non-differentiable, 
although both the right and left derivatives are well defined. 

This iterative strategy is particularly flexible, as it allows to improve existing solutions easily. For example, assuming a 
video sequence, where consecutive images are very similar and have expectedly similar optimal backlights, the gradient 
descent based search can be used to calculate the solution for the current frame starting from the solution for the previous 
frame. It is also possible to use this approach on a reduced set of pixels, as described in the previous subsection; in this 
case, the gradient might be calculated over the distorted pixels only. 

3.4 Algorithms for comparison 

In order to compare our approaches against the other proposed solutions, we have selected four backlight dimming 
algorithms presented in the literature. The selected algorithms are described below. 

Albrecht et. al. [6] introduced a clipper free algorithm, which under this constraint minimizes the power consumption. 
This formulation may be seen as a limiting case of Eq. (14) by setting the leakage to 0, let the power weight, q, go to 0. 
For practical implementation they suggest a clipper-free algorithm consisting of three steps. In the first step, the lower 
bounds are set for each backlight segment, depending on the image content and the PSF. The second step is optional and 
iterative: during each round, the most unsatisfied pixel, ie. the pixel that requires the largest increase in luminance to be 
rendered properly, is found and the most influential LED for this pixel is increased to the intensity to satisfy the pixel in 
question. If the LED is already at its maximum, then the second most influential LED is used; if the second is at its 
maximum, then the third most influential LED is enhanced, and so on. The process is converged, when all the pixels are 
satisfied. The final third step scans the pixels of each segment in a specific order determined by the PSF and adjusts the 
LED values to make sure that every pixel receives enough backlight. 

The algorithm introduced by Cho et. al. [7] uses the relationship between the average and the maximum luminance of the 
input image to calculate the backlight luminance by adopting an additional correction term. The backlight luminance is 
calculated by: 

,)avg( corrr kk y  (18) 
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where rk is the backlight luminance of element k, yk contains the original pixels in backlight segment k, and n is the bit 
depth of y. The values of the correction value corr can be stored in a look-up-table. 

In [8], Nam introduces a low power local dimming algorithm described in the following steps: 

Step 1: The mean value mk of the average and maximum pixel values for a given segment k, corresponding to the 
respective backlight segment, is determined as follows:  

.
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)avg()max( kk
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yy
 (20) 

A roll-off point value mfull, calculated in a similar fashion from the full image, is assigned to all blocks. 

Step 2: For the full image, the backlight luminance is calculated as follows: 

,
2n

full
ifull

m
rr  (21) 
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where ri is the initial backlight luminance without active dimming, and is the gamma value of a given display which 
deals with 8-bit image data (ie. n=8). 

Step 3: If mk is bigger than mfull, its backlight luminance is set as for the full image in Step 2. Elsewhere, max(yk) is 
compared with avg(yfull). When max(yk) is less than avg(yfull), the backlight luminance is computed from Eq. (22). If 
max(yk) is larger than avg(yfull), the dimming algorithm is expressed by Eq. (23).  
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Finally, the Max algorithm [9] sets the intensity of each backlight segment to the maximum value of the pixels contained 
in the respective segment. 

4. EXPERIMENTAL RESULTS
This Section reports the results of some experiments that have been run to test the performance of the proposed solutions. 
Each subsection contains a description of the experiments, the relevant results and the following comments. 

The experiments have been run for 32 different input images. Of these, 24 belong to the Kodak True Color Image Suite 
[10], the remaining include two images of high-contrast synthetic content, two compressed pictures acquired with a 
digital camera, two video frames and two natural images. All images have been rescaled to Full HD resolution with 
bicubic interpolation. For simplicity, the color images have also been converted to grayscale with the rgb2gray function 
from Matlab. Finally, normalized grayscale values have been linearized by elevating them by the power of 2.2 .

The displays with backlight dimming capabilities have been simulated. The first one is based on a edge-lit display with 
1.5D backlight having 16 segments placed in 8 rows and 2 columns; the PSFs have been measured with a digital camera 
and properly post-processed. The second display is based on a 47'' local backlight dimming Full HD screen 
manufactured by SIM2 [4]; this screen has 2202 backlight segments placed in a hexagonal grid and the PSF has been 

Figure 3: The set of images used in the experiments. 
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provided by the manufacturer. The leakage factor  has been set to 0.001 in all simulations, relative to a peak luminance 
of 1.  

To reduce computational requirements and processing time of optimization, the input images have been downscaled by a 
factor 10 for each dimension. The resulting solutions have then been applied to the original image at full resolution and 
an inverse  has been applied to the normalized result to return to a perceptually uniform representation. This introduces 
a form of distortion when the results of the algorithms are evaluated at full resolution.  

Distortion has been measured at two levels: on the low resolution linearized image, where the optimum has been found, 
and on the high resolution perceptually uniform image, which can be compared against the input grayscale image and 
represents what the screen displays. 

In this work, optimization is performed in the physical domain, where it is possible to formulate the problem linearly. 
Ideally, however, optimization should be done in the perceptual domain, but this problem cannot be formulated linearly. 
This introduces a form of distortion which can be noticed when measurements are done in the perceptual domain, since 
the optimal solution in the physical domain does not usually coincide with the perceptual optimum. 

One last note about distortion is that the results reported here allow transmittances and LED intensities to have any value 
between zero and one. However on real systems these values need to be quantized depending on the native bit-depth of 
the LC signals and of the LED intensities; the most common case is a precision of 8 bits, but HDR system for 
professional systems can have precisions as high as 12 bits. 

4.1 Sample reduction through detection of distorted pixels 

This first experiment tested the performance of the complexity reduction strategy proposed in Section 3.2. This solution 
and the original method have been simulated on the two displays that have been modeled, the SIM2 screen and the other 
one with 1.5D backlight. The input images have been downscaled by a factor 10 and by factor 4 and the minimization 
has been performed using both 1-norm and 2-norm. The starting solution used by the proposed methods has been 
generated with the Max algorithm (see 3.4). Mean Absolute Error (MAE) and Mean Squared Error (MSE) have been 
measured at the low resolution physical level, while PSNR was calculated at the high resolution perceptually uniform 
level; power consumption was also considered, as well as the average number of iterations required for convergence of 
the proposed approach and the average percentage of samples from the original problem that was used in the last 
iteration. The results are presented in Table 1. 

Table 1: Comparison of the proposed sub-sampling strategy ("Subset") in 1-norm (a) and 2-norm (b) optimization. 

  Downscaled by 10  Downscaled by 4  
  1.5D SIM2  1.5D SIM2  
  Original Subset Original Subset  Original Subset Original Subset  
Avg. LED value  82.36% 82.89% 73.06% 67.12%  87.91% 89.30% 81.21% 75.77%
Avg. MAE 3.78·10-5 3.78·10-5 1.05·10-5 1.05·10-5  4.62·10-5 4.62·10-5 1.81·10-5 1.81·10-5 a
Avg. iterations  - 2.59 - 2.67  - 2.69 - 2.91  
Subsampling % 
in last iteration - 9.70% - 25.70% - 9.55% - 17.73%  

       

Downscaled by 10  Downscaled by 4   
1.5D SIM2  1.5D SIM2  

Original Subset Original Subset  Original Subset Original Subset 
Avg. LED value  76.50% 84.66% 48.80% 61.03%  87.82% 92.62% 57.72% 67.51%  

Avg. MSE 4.04·10-8 4.04·10-8 8.70·10-9 8.70·10-9  5.73·10-8 5.73·10-8 1.48·10-7 1.48·10-7 b

Avg. iterations  - 2.59 - 2.59  - 2.72 - 2.97  
Subsampling % 
in last iteration - 9.70% - 25.86%  - 9.48% - 17.95%  

Proc. of SPIE Vol. 8436  84360B-10

Downloaded from SPIE Digital Library on 02 May 2012 to 192.38.90.11. Terms of Use:  http://spiedl.org/terms

108 Ph. D. Publications



In all the considered cases, the proposed approach reaches virtually the same 1-norm or 2-norm quality if compared to 
the original algorithm. Convergence occurs in about 2 or 3 iterations in average, and the last iteration averagely used 
about 9.5% of the original pixels in the case of the 1.5D screen and between 18% and 26% in the case of the SIM2 
screen. 

The results show that it is possible to obtain quasi-optimal solutions with a significant complexity reduction. 
Nevertheless, it should be reminded that the results depend on the starting solution that has been used, in this case the 
one produced by the Max algorithm, and that although the proposed approach reduces the number of variables in the 
optimization problem it also introduces iteration, which increases overall complexity. 

4.2 Performance of the gradient descent based approach 

The gradient descent based approach proposed in Section 3.3 has been compared against Eq. (13). The starting solution 
has been calculated with the Max algorithm (see 3.4) and a maximum of 1000 iterations was allowed. Both 1-norm and 
2-norm optimization have been tested on the 1.5D backlight screen model, with the input images scaled by a factor 10. 
The results for 1-norm and 2-norm optimization are shown in Table 2. 

MAE and MSE have been measured at low resolution in the physical domain. In both cases it is possible to get very 
close to the optimal solution. Convergence took in average 95.53 iterations for 1-norm and 812.69 for 2-norm. 
Convergence is faster for 1-norm than it is for 2-norm, however it should be remarked that the most relevant 
improvements in MAE or MSE tend to happen in the first steps. To show this, the same experiment has been run again 
but with a limit of 10 iterations for 1-norm and of 50 iterations for 2-norm. In the first case, convergence occurred in 
average after 5.44 steps with an average MAE of 3.83·10-5, which corresponds to 99.85% of the possible improvement 
from the starting solution to the optimum; in the 2-norm case, the average number of steps was 40.81 and the average 
MSE was 5.45·10-8, corresponding to 99.96% of possible improvement. Figure 4 shows the average MAE decrease in the 
first 10 steps on gradient descent 1-norm minimization; about 95% of the possible improvement happens after the first 

Table 2: Performance of the gradient descent based proposed solution for 1-norm and 2-norm. 

Optimal Subset Gradient Descent Max  
MAE (·10-5) 3.78 3.78 3.81 37.3 1-norm minimization 
MSE (·10-8) 4.04 4.04 4.08 4041 2-norm minimization 

Figure 4: Average MAE reduction in the first step of 1-norm minimization with gradient descent; the dashed line 
represents the optimum. 
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step. This makes search based techniques like this one particularly interesting in the case of backlight dimming of video 
sequences, where the backlight solution for one frame can be used as starting solution for the following ones and time 
and hardware limitations might allow only a limited number of iterations. 

It should be noted that the efficacy and the efficiency of such techniques are affected by several aspects like the choice of 
the starting solution and the determination of the variable step size. The proposals reported here might not be the optimal 
ones, however these first results show the potential of search strategies applied to backlight dimming. 

4.3 Introduction of power penalty in the cost function  

The original optimization based algorithm, see Eq. (13), does not include power consumption in the cost function. 
However, it is considered in the extended version given by Eq. (14). The goal of this experiment is to evaluate the effect 
of the proposed sub-sampling strategy when power consumption is penalized. Following the notation used in Eq. (14), p
was calculated as the average value of the intensity of the backlight segments, which is an approximation of the 
normalized power consumption of the backlight; the weight q was instead set to 0, 1, 10, and 50 for 2-norm optimization. 
With these parameters, the extended algorithm was run for the 1.5D backlight screen model with the input images 
downscaled by a factor 10. The distortion at the low resolution physical/linearized level was measured in MSE. The 
results are shown in Figure 5, where they have been compared against those from other algorithms. The sub-sampling 
based algorithm always achieves nearly-optimal quality levels; the same applies to the power consumption, except for 
q=0 where it has increased. 

The power weighting extension introduced in Eq. (13) allows to identify the optimum at several power levels and to 
compare the optimization based algorithms against other solutions that have been proposed, as shown in Figure 5.  

4.4 Impact of error weighting 

In this experiment, we have introduced an error weight to the optimization problem (Section 3.2). The error weight is 

Figure 5: Impact of power penalization on 2-norm minimization on the optimization based algorithm and on the "Subset" 
sub-sampling approach. 
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different for each pixel (i,j) and is determined by [2],

,
1

),(),( jiyjiw  (25) 

where y(i,j) is the target luminance of the optimization for pixel (i,j) and =2.2 simulates the response to luminance of the 
HVS (see 2.4). Since the gamma curve is steeper for low y(i,j) values, leakage errors are emphasized more than clipping 
errors. This approximates the behavior of the HVS, where the same luminance error is perceived as larger in leakage 
than in clipping. 

Optimization for 2-norm has been performed on the 1.5D backlight model, at a downscaling factor of 10, thereafter 
PSNR has been measured in the perceptually uniform domain at low resolution. The algorithm has been compared 
against others presented in Section 3.4; to ensure a comparison at similar power levels, different values of the power 
weight factor q (1, 10 and 50) were used. The experiment was also run for q=0, but since with this setting the PSNR 
values were exceeding the range considered realistic, we have preferred to omit them. The results are shown in Figure 6.  

As in the previous experiment, the sub-sampling strategy is capable of finding solutions that are close to the ones found 
by using all the samples. 

5. CONCLUSIONS 
In this work, we have studied a backlight dimming algorithm based on linear optimization and showed that it is possible 
to calculate the optimal solution using a subset of pixels varying between 9% and 26% of the total number of pixels of 
the original image, depending on the display model. In this way, the complexity of the problem can be reduced 
significantly. We have also proposed a backlight dimming algorithm based on gradient descent search. This algorithm 
allows to quickly improve a backlight solution obtained using any algorithm. Gradient search is particularly interesting 
for its versatility, especially for displays with a relatively low number of segments that allow fast computation of the 
gradient. 

We have also considered an extended formulation to the original optimization-based algorithm based on  introducing 

Figure 6: Effect of weighting the error perceptually during optimization on PSNR; the labels along the data lines indicate the 
power weight q used in the cost function. 
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pixel-specific error weighting and adjustable penalization of power consumption. The proposed sub-sampling strategy 
can find solutions that are close to optimal also when these extensions are used. All the proposed techniques can be 
combined together to calculate optimal backlight in a flexible and efficient manner. In the future work, we aim to 
improve efficiency, and explore the alternative approaches. We will also address optimization in the perceptual domain 
instead of physical domain. Subjective quality assessment will be performed for ultimate validation of perceived image 
quality.   
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ABSTRACT 

 
In this work, we consider and propose two extensions to an 
optimization-based image dependent backlight dimming 
algorithm. The first extension introduces error weighting 
based on human perception of luminance, aiming to 
improve the perceived image quality; the second extension 
adds an adjustable term for power consumption to the cost 
function, allowing flexible power management. 
Experimental results show that the proposed solution can 
achieve better results than other algorithms at several power 
consumption levels. 
 

Index Terms— Liquid crystal display, Local backlight 
dimming, Optimization, Image quality, Power management 

 
 

1. INTRODUCTION 
 

Liquid Crystal Displays (LCDs) are used on a wide variety 
of devices, including TV sets and computer monitors. 
Liquid crystals do not emit light; the light is generated by 
the backlight instead, then modulated by the crystals, which 
- thanks to proper color filters - can render a large gamut. 
Today Light Emitting Diodes (LEDs) are common light 
sources for LCD backlight, due to attractive characteristics 
like flexibility in use and growing efficiency [1]. 

In LCDs a large amount of light is dissipated and only a 
small fraction, down to less than 10%, reaches the viewer 
[2]. For this reason, the backlight must emit intense light, 
which makes it the most power consuming component in the 
display. LCD are also affected by light leakage: LC cannot 
fully block light when reproducing black or very dark 
pixels, making them look slightly grayish. Light leakage is 
the reason for the limited contrast ratio in LCDs, and it is 
especially visible from wide viewing angles. 

Leakage and power consumption can be reduced by 
dimming the backlight, and instead increase the 
transmittance of the LC to compensate the lower light 
output. This allows to decrease light emission, while 
rendering the same image with little or no distortion. LED 
technology has eased the implementation of independently 
controllable segments of local backlights, as opposed to 
global backlight, where the luminance is uniform across the 
whole display. In this paper, the terms "backlight segments" 
and LED are used interchangeably. Depending on the image 
content, local backlight dimming gives significant 

opportunities for power saving and contrast improvement. 
However, aggressive dimming can cause clipping: when the 
LC cannot compensate the reduction of light intensity, 
pixels appear less bright then they should. In this work, we 
refer to pixels affected by clipping as "clipped" pixels. 

Several backlight dimming algorithms exist; many of 
them focus on reducing power consumption while keeping 
an acceptable quality [3][4][5]. In [6], backlight dimming is 
modeled as an image optimization problem. The optimum 
backlight illumination defined by a cost function and by the 
input image is found; the result is a compromise between 
clipping and leakage. The focus is on increasing contrast 
and image quality and taking power savings as a positive 
side effect. We propose to extend this algorithm by 
introducing weighting of errors based on luminance 
perception by the Human Visual System (HVS), and by 
adding an adjustable term for power consumption to the cost 
function.  

The rest of this paper is organized as follows. Section 2 
presents the fundamentals of modeling LCD with backlight 
dimming systems. In Section 3, the proposed extensions are 
illustrated. Section 4 shows the experimental results and, 
finally, the concluding remarks are given in Section 5. 
 

2. MODELING BACKLIGHT DIMMING SYSTEMS 
 

Figure 1 illustrates a generic LCD display with local 
backlight dimming. The backlight dimming algorithm takes 
the digital image to be displayed as input, and produces the 
intensities for each backlight segment and the transmittance 
of LC pixels as output. The observed luminance L at pixel 
(i,j) can be calculated as the product of the backlight 
intensity B behind the pixel and the transmittance T of the 
pixels itself: 
                            ,        (1) 
where B and T are normalized to the interval [0,1]. 

The digital input image is typically presented in an 
ideally perceptually uniform format, i.e. similar intervals of 
pixel values represent similar differences in perceived 
intensity over the whole range. Since the relationship 
between physical luminance and perceived brightness is not 
linear, practical displays usually perform gamma correction 
when the input image is converted to LC transmittance. 
Gamma correction is good for conventional displays with 
relatively low peak luminance (up to about 100 cd/m2), but 
more accurate functions have been proposed for perceptual 
linearization of the input signal in brighter displays [7]. 
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Since HVS is very sensitive to contrast changes at low 
physical luminance levels, light leakage becomes a problem 
in dark parts of images. The impact of leakage on the 
observed luminance can be included by modifying Eq. (1): 

,   (2) 
where (i,j) is a leakage factor representing the amount of 
light leaking through a black LC pixel. Leakage and (i,j) 
depend on pixel position and viewing angle; however, in 
this work, we assume a constant  across the display. 

In practical LCDs, light from independent backlight 
segments is diffused and mixed on the diffuser plate 
between backlight units and LC layer. In order to compute 
the backlight intensity at each pixel, we need to know how 
the light is distributed around the center of a light source. It 
is assumed that the distribution follows a Point Spread 
Function (PSF) specific to the display, multiplied by the 
normalized luminance of the backlight unit. Each pixel 
position is usually influenced by several backlight units, and 
the total luminance can be computed simply by summing 
the individual contributions. The PSF is sometimes 
approximated by a two-dimensional Gaussian function, but 
for more accurate results, the PSF should be determined 
experimentally for each display. The backlight intensity at 
pixel (i,j) can be computed as follows: 

                  ,                 (3) 
where Bk is the intensity of backlight unit k, and hk is the 
PSF expressing the relative amount of light from backlight k 
reaching pixel (i,j). Since the backlight dimming algorithm 
may have dimmed the light intensity significantly in the 
regions dominated by dark pixels, the so-called "brightness 
compensation" is performed to restore the original target 
luminance. This is done by increasing the LC transmittance 
T so that the target L is reached. 

Using the Eqs. (2) and (3), it is possible to compute the 
observed luminance of each pixel, or in case of color 
display, the luminance of R, G and B subpixels, out of the 
intensities of individual backlights and LC transmittance 
values. The modeled luminance can be converted back to 
uniform scale by performing inverse Gamma correction and 
rescaling normalized values to 8-bit integers. Then, it is 
possible to compare the modeled image on the display 
against the original input using traditional measures, such as 

Mean Squared Error (MSE), Peak Signal-to-Noise Ratio 
(PSNR), or any other image quality indicator. 

 

3. PROPOSED ALGORITHM 
 

An algorithm minimizing the error was presented in [6]. In 
this work, we propose two extensions: one extension is 
image dependent individual weighting of the pixel error, 
based on perceptual aspects; the other extension is the 
introduction of a term representing power consumption in 
the cost function. 

As in [6], the algorithm models backlight dimming as 
an optimization problem. The distortion to be minimized is 
the difference between an ideal output y and the actual 
output x rendered on the screen, which is determined by the 
backlight b as derived from Eq. (3), the compensated pixel 
values a and the leakage factor ; the constraints include the 
values of pixel transmittance and LED intensity. The other 
term is power p multiplied by a weighting parameter q. 
Optimization can be done in  or ; the experiments in this 
work used  as it allows to solve the problem using linear 
programming. For more details, the reader may consult [6]. 
The formulation of the problem, with the proposed 
extensions, is given as: 

                 
                        
                         (4)
                        
                         
where the constraint  corresponds to Eq. (3) and the 
term  is multiplied point-wise by a weighting matrix 
w. The original formulation of the optimization problem [6] 
can be obtained again by setting w to a matrix of ones and 
by setting q to zero. 

The original formulation solves the backlight problem 
in the physical domain, meaning that it deals with luminance 
and pixel transmittance to find the light output that matches 
the target as closely as possible. However, the HVS has a 
nonlinear response to luminance, and the perceived 
luminance LP is a function of the physical luminance L: 

. The function f can be modeled in several ways. 
Without loss of generality, we can approximate the HVS 
response to luminance with an inverse gamma function: 

                                                                 (5) 
A typical value for  is 2.2 [8]. Due to the nonlinearity 

of HVS, a small change of a low luminance level will be 
more noticeable than the same change at a higher luminance 
level. This implies that, given the same absolute error in 
physical luminance, leakage is more noticeable than 
clipping. For this reason, the optimal "physical" solution to 
the backlight problem might not be the optimal perceived 
solution. We propose to modify the cost function by adding 
a weighting matrix w that assigns a weight to the error, 
depending on the target luminance of the pixel in question. 

                     (6) 

Figure 1. Generic local backlight dimming system. 
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In this work, the weight is calculated from the gamma curve 
at the normalized target luminance value. Since the slope of 
the curve is steeper at low luminance, errors in the dark 
pixels will be weighted more than those in the high 
luminance area, providing a better match to the perception 
model. The concept of the weighting matrix w can be 
extended to include any kind of image dependent weighting 
applied to the error which is to be minimized. 

The second extension proposed adds a power term to 
the cost function. The optimization-based algorithm aims to 
achieve the best possible image quality and considers power 
savings as a positive side effect. However, lower image 
quality might be acceptable in exchange of lower power 
consumption, and it is interesting to study the tradeoff 
between the two factors. The power term in the cost 
function includes the mean of the normalized LED 
intensities (Eq. (7)), which estimates power consumption: 

                                          (7) 
 

4. EXPERIMENTAL RESULTS 
 

The experiments conducted here aim at evaluating the 
performance of the proposed algorithm with different power 
weights in the cost function and at different image 
resolutions. The first experiment compares the impact of 
image downscaling for the proposed algorithm on two 
simulated displays. The second experiment compares the 
proposed algorithm against other algorithms as the power 
weight factor and the image downscaling factor vary. 

The proposed algorithm has been compared with other 
algorithms described below. In the Max and Avg algorithm 
[9], the intensity of each backlight segment is set to the 
maximum or average value of the segment pixels; only the 
Max algorithm has been considered for the experiment. The 
other algorithms cited here are referred to by the name of 
the first author of the respective publication. In Cho e.a. [3], 
the algorithm analyzes each segment and sets the backlight 
luminance to the sum of the average value of the segment 
pixels and a correction value, which depends on the average 
and the maximum value of the segment. In Nam [4], the 
backlight luminance can be set locally or globally depending 
on the type of image. LED intensities for global and local 
cases are set according to the mean of the maximum and 
average values of the total image and segment, respectively. 
Finally, in Albrecht e.a. [5] a clipper-free algorithm 
consisting of three steps is proposed: the first step sets lower 
bounds for each backlight segment, depending on the image 
content and on the PSF; the optional second step is iterative: 
for each iteration, it increases the luminance of one LED 
until there are no clipped pixels, or another ending condition 
is met; the third step scans the pixels of each segment in a 
specific order and adjusts the LED values to make sure that 
every pixel receives enough backlight. 

Two screen models have been used for the experiments. 
The first one is a simulated device with 221 backlight 
segments places in a grid of 13 rows and 17 columns; the 

PSF is given by a Gaussian function. The second one is 
modeled on a 47'' local backlight dimming Full HD screen 
manufactured by SIM2 [10]. The screen has 2202 backlight 
segments placed in a hexagonal grid behind the LC layer; 
the PSF has been provided by the manufacturer. For our 
simulations, leakage has been modeled with an  value of 
0.001 for both screens. 

Eight images were used in the experiments. The set of 
chosen images includes several image types like synthetic 
graphics, natural images and compressed pictures. For the 
simplicity of error analysis, all the images are in grayscale. 

The target luminance y is calculated from the sRGB 
input image I as the CIE 1931 luminance component Y (8). 
The complexity of the proposed algorithm grows very 
quickly with the image size; e.g., solving the optimization 
problem for a Full HD image on the SIM2 screen implies 
millions of variables and constraints. It is possible to reduce 
the complexity by downscaling the input images. Depending 
on the experiment, the input images have been downscaled 
by a factor varying between 1 (original size) and 10 using 
bicubic interpolation. The PSF of the screens have been 
downscaled accordingly. Even if the backlight is calculated 
from a downscaled version of the input image, the resulting 

 values are applied at full resolution; after brightness 
compensation, distortion is measured in PSNR between the 
normalized input image I and the output of the algorithm x 
after applying Eq. (5) to each L(i,j) obtained from Eq. (2) at 
full resolution: 

                ,                (8) 

where N is the number of pixels in I and x. Figure 2 
shows that both the PSNR and power consumption of the 
solution obtained from the proposed algorithm increase as 
the downscaling factor decreases; the factor was varied 
between 1 and 10 for the screen with Gaussian PSF, and 
between 4 and 10 for the SIM2 screen. 

Figure 3 shows the comparison between the proposed 
method and the other algorithms presented earlier. The 
results have been calculated for the optimal backlight with 
13 positive values of the power weight factor q (Eq. 4). The 
resulting curve highlights the tradeoff between power 
consumption and PSNR. For a given power level, the 
proposed solution can achieve a better outcome than the 
other algorithms: the PSNR for the proposed algorithm is 
approximately 3db higher than the Max, Nam, Cho and 
Albrecht solutions at the power level of each of these; with 
the same PSNR, the proposed algorithm reduces power 
consumption by 0.2 compared to Albrecht.  It is interesting 
to notice that for low q values (right part of the curve in the 
figure) a modest increase of error is associated with a 
significant reduction in power consumption. 

Table 1 shows the relative contributions to MSE from 
leaking and clipped pixels for all algorithms. Three q values 
are considered for the proposed method. Using the notation 
of problem (4), pixel (i,j) is defined as leaking if a = 0 and 
x(i,j) > y(i,j) and it is defined as clipped if a = 1 and       
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x(i,j) < y(i,j). The error in Max, Nam and Cho is almost 
completely caused by clipping, as they fail to provide 
enough light to many pixels. The error in the Albrecht 
algorithm is mostly due to leakage instead; this is expected, 
since the algorithm is clipper free. There is a small clipping 
error caused by the algorithm being run on a downscaled 
image, causing clipping in the full resolution image. As for 
the proposed algorithm, the impact of leakage and clipping 
depends on the power factor q. Leakage is dominant when q 
is equal to zero, but clipping pixels become more important 
as q increases. This is easily explained by the fact that a 
higher q favors low LED intensities, resulting in more pixels 
being clipped. 

5. CONCLUSIONS 
 

We have presented two extensions for an optimization-
based image dependent backlight dimming algorithm [6] to 
provide a tradeoff between perceived distortion and power. 
The proposed solution can achieve a PSNR improvement of 
about 3db compared to other algorithms at the level of 
power consumed by these. Downscaling the input image 
prior to optimization reduces complexity and power 
consumption, although at the price of a higher mean square 
error. Leakage is the main cause for errors at high power 
levels, while clipping becomes dominant at low levels. 
Future work will include reducing the complexity of the 
algorithm, and investigation of the perceptual weighting of 
errors.  

Table 1: average absolute contribution of leaking and 
clipped pixels on MSE (·10-5) and related percentage. 

Algorithm Leakage Clipping 
Max 2.49 4.92% 48.1 95.04% 
Nam 0.84 0.42% 197.0 99.57% 
Cho 1.91 2.19% 85.2 97.79% 
Albrecht 25.1 97.73% 0.54 2.09% 
Proposed q=0 5.5 65.30% 2.85 33.82% 
Proposed q=1468 2.99 17.61% 13.9 82.24% 
Proposed q=19818 0.88 0.66% 13.1 99.33% 
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Fuzzy filtering has recently been applied and optimized for reducing distortion in

compressed images and video. In this paper, we present a method combining the

powerful anisotropic diffusion equations with fuzzy filtering for removing blocking and

ringing artifacts. Due to the directional nature of these artifacts, we have applied

directional anisotropic diffusion. In order to improve the performance of the algorithm,

we select the threshold parameter for the diffusion coefficient adaptively. Two different

methods based on this approach are presented: one designed for still images and the

other for YUV video sequences. For the video sequences, different filters are applied to

luminance (Y) and chrominance (U,V) components. The performance of the proposed

method has been compared against several other methods by using different objective

quality metrics and a subjective comparison study. Both objective and subjective

results on JPEG compressed images, as well as MJPEG and H.264/AVC compressed

video, indicate that the proposed algorithms employing directional and spatial fuzzy

filters achieve better artifact reduction than other methods. In particular, robust

improvements with H.264/AVC video have been gained with several different

content types.

& 2012 Elsevier B.V. All rights reserved.

1. Introduction

Image and video compression is a common source
of spatial and temporal distortion. Spatial distortion
includes blocking and ringing, whereas typical temporal
distortion types are mosquito and flickering artifacts.
Blocking artifacts are caused by separate compression of
each block, and it occurs both in horizontal and vertical
direction of each frame. Ringing artifacts occur when the
high frequency transform coefficients obtained from dis-
crete cosine transform (DCT) or wavelet-based coding are
quantized or truncated. This causes ripples or oscillations
around sharp edges or contours in the image, known as
Gibbs phenomenon. When ringing artifacts alternate from

frame to frame as a video sequence is displayed, mosquito
artifacts are created. Flickering artifacts [1] appear due to
the quality inconsistencies at the same spatial position in
adjacent frames.

Even though blocking and ringing artifacts do not
necessarily cause significant distortion in terms of mea-
surable noise, the human visual system (HVS) has shown
to be relatively sensitive to such artifacts. Over the years,
many algorithms have been proposed to reduce the
spatial and temporal artifacts. Zhai proposed an algorithm
for deblocking [2], consisting of three parts: local AC
coefficient regularization (ACR) of shifted blocks in the
discrete cosine transform (DCT) domain, block-wise shape
adaptive filtering (BSAF) in the spatial domain, and a
quantization constraint (QC) in the DCT domain [2]. Kim
[3] proposed an adaptive deblocking algorithm for low
bit-rate video coding. In that algorithm, the DC and AC
values of each block are used to classify each block into
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one of two categories, low and high activity block. In the
following post-processing stage, two kinds of low-pass
filters are adaptively applied on each block, based on the
classification result. In [4,5], linear low-pass filters, and
Projection Onto Convex Sets (POCS) in [6] have been used
for postprocessing. Anisotropic diffusion has been pro-
posed to remove blocking artifacts, exploiting the char-
acteristic of HVS [7]. A de-blocking algorithm [8] has been
proposed for DCT-based compressed images, using aniso-
tropic diffusion that can control the diffusion rate along
the direction of the edges, using a rate control parameter.
Yao et al. [9] proposed a post-processing algorithm for
reducing coding artifacts in compressed image and video
sequence. The algorithm is based on anisotropic diffusion
process, using a histogram-driven diffusion coefficient.

The methods listed above can reduce blocking arti-
facts, but they introduce blurriness. To remove ringing
artifacts, linear or non-linear isotropic filters can be
applied to the regions near to edges [10,11]. For combat-
ing flickering artifacts, most of the current methods focus
on reducing the flickering in intra-frame coding [1,12],
where flickering artifacts are often especially visible. In
[1], the quantization error is considered for deciding the
optimal intra prediction mode to reduce flickering. Also in
[12], flickering is included in the cost function, when the
optimal prediction mode and block size are chosen. In
[11,13–15], spatiotemporal fuzzy filters are used to
remove different artifacts. Other methods for artifact
removal have been introduced in [16–21].

It is well known that orientation and frequency are the
fundamental spatial characteristics processed by the HVS
[22,23]. In order to produce visually pleasing results,
these characteristics need to be taken into account in
image enhancement algorithms. It has been observed that
the use of Gaussian-like filtering for removal of small-
scale spatial artifacts is motivated from the perspective of
human perception [24]. In image processing and compu-
ter vision, anisotropic diffusion, also called Perona–Malik

diffusion, is a technique aiming at reducing the noise
without removing essential parts of the image content,
such as edges, lines and other details that are important
for the interpretation of the image. Their use for image
restoration and enhancement has been studied exten-
sively [25–40]. In particular, Ling and Bovik [38] intro-
duced smoothing of low signal-to-noise ratio (SNR)
medical images via regularization of the anisotropic
diffusion using median filtering.

Another type of filter used in our study is the fuzzy
filter, which is derived from the fuzzy transformation
theory [41], and has been applied to coding artifacts
reduction recently [11–14]. This filtering technique direc-
ted by the classified edge map provides a solution for
coding artifacts reduction, but the perceptual quality of
the processed images and videos is however not optimal
with respect to the blocking and ringing artifacts. On the
other hand, anisotropic diffusion is a powerful algorithm
for noise reduction and image enhancement and it may
reduce coding noise in general.

In this paper, we present two new methods based
on combining the powers of anisotropic diffusion proces-
sing and spatial fuzzy filtering [13,14] to reduce coding

artifacts in compressed images and video, thus providing
an improved solution for the artifact reduction and per-
ceptual quality enhancement. We process all the vertical
and horizontal artifacts using one-dimensional (1D) aniso-
tropic diffusion after applying a fuzzy filter. To avoid the
blurring effect, anisotropic diffusion is performed with a
small number of iterations. This paper is an extended
version of our initial work [42], including a more compre-
hensive description of the extended algorithm and a
significantly expanded results section, including a subjec-
tive comparison study to verify the results obtained with
traditional objective quality measures. Additional algo-
rithms have also been included for comparison.

Our results show that the proposed methods give good
results with both still images and video sequences, even for
H.264/AVC compressed video, that has not been widely
covered in studies for video denoising algorithms up to
date. Since H.264/AVC represents the state of the art in
video compression, we have compared the performance of
the proposed method against methods proposed also in
[2–5,11,13,14,16,17,43] for both H.264/AVC compressed
video sequences, and JPEG coded images. In [13], results
using a spatiotemporal approach for H.264/AVC encoded
video are also presented.

The rest of the paper is organized as follows: Section 2
provides a description of fuzzy filtering. Section 3 sum-
marizes the anisotropic diffusion. Combined adaptive
fuzzy filtering and anisotropic diffusion for artifact reduc-
tion in compressed video sequences is explained in
Section 4. Section 5 summarizes the techniques used for
performance evaluation. Section 6 shows the experimen-
tal results and compares the proposed algorithm with
known methods in terms of visual quality measured both
objectively and subjectively. Finally, the concluding
remarks are given in Section 7.

2. Fuzzy filter

Fuzzy filtering has been used with success in deblock-
ing and deringing of compressed images and videos
[11,13,14,41]. Fuzzy filters, such as those described in
[13,14], are designed for similar purposes as median
filters [15] or rank condition rank selection filters [41].
In this section, we describe the fuzzy filter following
[13,14]. Assuming that a given filter h is applied to a set
o of neighboring pixels around the input pixel at i,jð Þ 2 Z2,
we can formulate the normalized output:

Î i,j½ � ¼
P

½i0 ,j0 �2oh I½iþ i0,jþ j0�,I½i,j�� �
I½iþ i0,jþ j0�P

½i0 ,j0 �2oh I½iþ i0,jþ j0�,I½i,j�� � , ð1Þ

where h(I[iþ i0, jþ j0],I[i, j]) controls the weight of the input
pixel intensities I[iþ i0, jþ j0].

A low-pass filter designed to perform effectively in the
flat areas may introduce blurring artifacts in the detailed
areas [14]. The challenge is to preserve the details, while
removing the artifacts.

The function h(I[iþ i0,jþ j0], I[i,j]) is called a membership
function [11,15,41]. In our work, a Gaussian membership
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function is used as given in [13,14]:

h I iþ i0,jþ j0
� �

,I i,j½ �� �¼ exp � I½iþ i0,jþ j0��I½i,j�� �2
2s2

 !
, ð2Þ

where s represents the spread parameter of the input and
depending on i, i0, j, and j0 (Fig. 3) controls the strength of
the fuzzy filter. The input I[i,j] always contributes no less to
the output than the other samples:

h I½i,j�,I½i,j�ð ÞZh I½iþ i0,jþ j0�,I½i,j�� �
: ð3Þ

For the same difference 9I[iþ i0,jþ j0]-I[i,j]9, the higher
the value of s, the higher the contribution of I[iþ i0,jþ j0] to
the output. This implies that I[i,j] will be influenced more
by I[iþ i0,jþ j0]. Smaller values of swill keep the signal I[i,j]
more isolated from its neighboring samples. The spread
parameter should be adaptive to different areas with
different activity levels, such as smooth or detailed
textures. The conventional fuzzy filter uses a fixed spread
parameter in (2) for the surrounding sample, ignoring
their relative positions. Adaptive influence can be
achieved by an adaptive spread parameter:

s I½iþ i0,jþ j0�,I½i,j�� �¼ K½i,i0,j,j0� � sA½i,j�, ð4Þ
where sA is a position-dependent amplitude function of
the spread parameter, and K is the scaling function con-
trolled by the direction of [iþ i0, jþ j0] to [i,j]. We use K¼1,
as in [8]. In this work, we use 1D fuzzy filtering for
deblocking and 2D fuzzy filtering for deringing. 1D fuzzy
filter can be derived from the definitions for 2D filtering
above by removing one of the dimensions from Eqs.
(1)–(4).

In image and video compression, distortions such as
blocking, ringing or flickering artifacts are directional;
thus, the direction between I[i,j] and its surrounding
samples I[iþ i0, jþ j0] should be taken into consideration.
In [14], a cosine-based general form for the spread
parameter was used:

sðyÞ ¼ sA aþbcos2ðy� �Þ, ð5Þ
where sA is a function of the standard deviation of pixel
intensities as described in [8], y is the angle defining the
direction from the pixel of interest [i, j] to the surrounding
pixel [iþ i0, jþ j0], relative to the horizontal direction, a and
b are positive scaling factors controlling the maximum
and minimum strength of the filter [9]. The details of the
membership function s in Eq. (3) are discussed in [13,14]
for compressed images and compressed video sequences.
More information about fuzzy filters is available in
[11,15,41].

3. Anisotropic diffusion equations

Anisotropic diffusion is a mathematical model with
many practical applications in physics and chemistry. The
use of anisotropic diffusion has been widely extended for
signal and image processing [25–40]. This method was
first proposed by Perona and Malik [25] for multiscale
description, enhancement, and segmentation of images.
Let a gray scale and 2-D image I(x,y) be represented by
a real-valued mapping I : R2 ) R. In P-M diffusion, the
initial image I0 is modified through the anisotropic

diffusion equation:

@I

@t
¼ div c :rI:

� �rI
� �

I x,y,tð Þ9t¼ 0¼ I0 x,yð Þ, t 2 0,Tð Þ, ð6Þ

where div denotes the divergence operator, , is the

gradient operator, :rI: is the gradient magnitude of I,

I(x,y,t) is the two-dimensional image as a function of
position (x,y) at time t, where t is a scale parameter; in
discrete implementation it is used to enumerate iteration

steps (step size) [28], and cð:rI:Þ is a diffusion coefficient

[25–30] which controls the diffusion speed. This function
is a monotonically decreasing function of the gradient

magnitude cð:rI:Þ. It yields intra-region smoothing but

not inter-region smoothing [35–39] by impeding the
diffusion at image edges. It increases smoothing parallel
to the edge and stops smoothing perpendicular to the
edge, as the highest gradient values are perpendicular to

the edge and dilated across edges. The choice of cð:rI:Þ
can greatly affect the extent to which discontinuities are

preserved. If cð:rI:Þ is allowed to vary according to the

local image gradient, then we have anisotropic diffusion.
Two different diffusion coefficients were proposed by PM.

In this paper, we use c :rI:
� �

as in [25]:

c x,y,tð Þ ¼ exp � :rðIðx,y,tÞÞ:2

k2

 !
, ð7Þ

where k is a threshold parameter used to distinguish edge
region from smooth region.

The major drawback of the above-mentioned method
is that the gradient is computed from the noisy image.
From a practical point of view, the place of edges in the
image may not be recognized accurately [26,28]. Theore-
tically it is ill-posed in the sense that similar images are
likely to diverge during the diffusion process [35]. In order
to overcome this problem, it was suggested to use a
regularized or smoothed version of the image to calculate
the gradient [28]. In our approach, the gradient is calcu-
lated from a smoothed image [29,30]:

r IGð Þ ¼r GsnIð Þ, ð8Þ

where Gs is a Gaussian filter, and n is a convolution
operator. Instead of Gaussian filtering, Ling [38] and
Demirkaya [32] introduced another version of regulariza-
tion by median filtering to obtain better edge estimation.
In this case, in the anisotropic diffusion equation in
Eq. (6), the diffusion function is replaced by r IMð Þ, where
IM is the image I x,y,tð Þ after median filtering. In addition,
in [39] a relaxed median filter in the diffusion steps is
used to remove noise from the image. The blocking effect
is the main problem of median filtering in anisotropic
diffusion equation, and this is why Gaussian regularization
is used to implement the anisotropic diffusion equation for
deringing (and deblocking).

Parameter k in the diffusion function in Eq. (7) has
been chosen as suggested in [42]. In our work, it will be
used for the horizontal and vertical directions. The value
is derived based on the gradient of the image:

k¼jUB, ð9Þ
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where j is a constant and B is the variance of the image
gradient in different directions. The value of B is com-
puted using the variance of the gradient magnitude of the
image as follows:

B¼ var 9rI9
� �

: ð10Þ

This will make the diffusion function adaptive accord-
ing to the gradient changes of the image in different
directions. We chose j¼2�10�6, as suggested in [42].
The anisotropic diffusion equation in Eq. (3) is solved
using the finite difference method [35–37]. The spatial
derivatives are approximated by central differences, while
the temporal derivative is replaced by its forward differ-
ence approximation. This results in an explicit finite-
difference equation of the form:

Inþ1
i,j ¼ Ini,jþ

Dt
9Zi,j9

X
p2Zi,j

cðð:rIni,j:ÞpÞUððrIni,jÞpÞ, ð11Þ

where Ini,j is the discretely sampled image with pixel
position (i, j), Zi,j is the spatial neighborhood of the pixel
(i, j), 9Zi,j9 is the number of pixels in this neighborhood
window, cðdÞ is diffusion coefficient given by Eq. (7), n is
the number of iteration and Dt is the time step size. An
approximate solution to this equation can be obtained in
the discrete domain [30]. The spatial discretization used
in Section 4.1.3 applies to 1�3 or 3�1 pixel windows in
the vertical and horizontal directions, and corresponds to
the simpler standard discretization and the more complex
non-negativity discretization [33,37]. The one-dimen-
sional discrete form, which is used in the proposed
method, will be explained in Section 4.1.3.

The use of diffusion equations has already been estab-
lished as an important method for image denoising. A
number of authors have addressed color image enhance-
ment using diffusion equations [36,44–47]. Tang et el.
[36] introduced an algorithm to remove noise from multi-
channel images. The algorithm is based on separating the
image data into chromaticity and brightness components,
and then processing the components with partial differ-
ential equations or diffusion flows. In Tang’s algorithm,
each color pixel is considered as an n-dimensional vector.
The two chroma components are processed using cross
component diffusion equations.

When RGB images are considered, image enhancement
performed separately on each color channel may result in
smearing or blurring of edges that are not present in all
the channels. Prasath [44] proposed a multichannel ver-
sion of partial differential equation, which is used to
restore noisy color images. Weighted coupling of inter-
channel edges is done by computing the Laplacian differ-
ences to detect edges between channels. Anisotropic
intra-channel smoothing is then used to denoise and
preserve edges. Weickert [45] proposed a method for
enhancing coherent flow-like structures in color images,
based on anisotropic diffusion. To avoid the enhancement
process to evolve in different directions in the R, G and B
channels, a common diffusion tensor is used to all the
channels. Sapiro et al. [46] perform image diffusion via
coupled differential equations in a framework generalized
to any color space, such as CIE Lnanbn. The algorithms in
[45,46] use a system of single-valued images (channels),

scalar PDEs, each performed on a separate color channel.
Boccignone et al. [47] proposed another approach, using
the color channel interactions in the framework of the
thermodynamics of open systems. It has been shown that
by considering different channels as interacting systems,
it is possible to derive a generalized diffusion equation
that determine the evolution in the spatio-chormatic
scale space without being constrained by a particular
form of diffusivity. We focus on video frames in YUV
format. Here the luminance and chrominance have dif-
ferent statistical characteristics and perceptual impor-
tance. Furthermore, YUV values are less correlated than
RGB values. Therefore we take the computationally sim-
pler approach of processing Y, U, and V separately. Cross-
channel processing may be beneficial for removing e.g.
color bleeding artifacts.

4. Proposed method for removing artifacts

Fuzzy filtering has been proven efficient in deblocking
and deringing [11,13–15], whereas anisotropic diffusion is
commonly used for image enhancement [26–31]. Since
compressed images and video frames in real life typically
suffer from noise artifacts in addition to blocking and
ringing, we consider a combination of fuzzy filtering and
anisotropic diffusion to be a reasonable approach for
general image enhancement. In this section, we explain
how the adaptive anisotropic diffusion and fuzzy filtering
are combined for artifact reduction in compressed images
and video sequences (MJPEG, H.264/AVC). We define two
different methods based on the filters described in
Sections 2 and 3: The first proposed method is designed
for still images, and the second method for video
sequences. The main difference between these methods
is that for video sequences, luma and chroma components
are handled differently, as they perceptually have differ-
ent significance, and they are also separated in the native
video format (YUV).

4.1. Spatial fuzzy filtering and directional anisotropic

diffusion for deblocking and deringing

In the proposed method, adaptive 1D fuzzy filtering is
first applied to the pixels potentially suffering from
blocking artifacts, and then directional anisotropic diffu-
sion is used to increase the quality. The 1D fuzzy filter
follows Eqs. (1)–(4) and is similar to [11], except that we
use a Gaussian kernel function as defined in Section 3
instead of a linear function. Finally, adaptive 2D fuzzy
filtering [13] is applied to the pixels with ringing artifacts.
An overview of the combined method is given in Fig. 1.

When adaptive fuzzy filtering is used, the blocking
artifacts will be attenuated or removed from the image,
but the unwanted noise remains, if 1D adaptive aniso-
tropic diffusion is removed (in both directions) from the
system depicted in Fig. 1. This is illustrated in Fig. 2b: The
noise remains (see the background of the image), but the
blocking effect is removed (compare the face of the kid
and the mother in Fig. 2a and b). On the other hand, if
anisotropic diffusion is used without 1D fuzzy filtering,
the quality of the image is improved by removing noise
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(in the background), but some blocking artifacts will
remain. Fig. 2c shows the effect of the anisotropic diffu-
sion: The quality is improved, but blocking effect remains
in several places.

4.1.1. Block classification

At this step, we classify the blocks to allow 1D and 2D
fuzzy filter to adapt to the variation of the pixels in each
block. This is based on standard deviation (STD) of 3�3
pixel blocks, denoted as STD(I(i,j)) when the center pixel
of the block is at position [i,j]. The classification is based
on comparing the STD value in a 3�3 windows around
each pixel and the value of the maximum STD (MaxSTD)
in a 4�4 block (with H.264/AVC) or an 8�8 block (with
JPEG/MJPEG) with a set of predetermined threshold. The
threshold values for different labels are obtained by
repeating the experiments on JPEG compressed images,
deblocking and deringing them using different thresholds,
and choosing the values giving the best results.

Label¼

strongedgeblock if MaxStd 2 ½45,þ1Þ
weakedgeblock if MaxStd 2 ½25,45Þ
strongtextureblock if MaxStd 2 ½15,25Þ
weakTextureblock if MaxStd 2 ½5,15Þ
smoothblock if MaxStd 2 ½0,5Þ

8>>>>>><
>>>>>>:

ð12Þ
Fig. 3 shows the flowchart of the proposed algorithm

to find the spread parameter (s) for a block. The main
differences between the proposed method and the
method in [11] are that a linear membership function is
used as a kernel function instead of Gaussian function,
and images are divided to blocks of 4�4 (for H.264) or
8�8 pixel blocks, and then classified in five categories.

In contrast, four categories for 8�8 pixel blocks are used
in [11].

4.1.2. One-dimensional adaptive fuzzy filtering

In order to remove blocking artifacts in horizontal and
vertical directions, an adaptive fuzzy filtering will be
applied in each direction, as described in Section 2.
Vertical artifact detection is performed along each vertical
boundary of an 8�8 or 4�4 block, which are the relevant
sizes for most of the practical block-based codecs employ-
ing transform of 8�8 (as JPEG and MJPEG) or 4�4 pixels
(as H.264/AVC). First, the difference between each pair
of boundary pixels, G0, is found (see Fig. 4): G0 is the
absolute difference between Y7 and X0 (8�8 pixels) or Y3
and X0 (4�4 pixels). The absolute differences between
pixels are denoted using R and L, right and left of the
border, respectively (Fig. 3). Then, if MAX(L1, L2, L3, L4)o
G0 or MAX(R1, R2, R3, R4)oG0 (in case of JPEG) or MAX
(L1, L2, L3)oG0 or MAX(R1, R2, R3)oG0 (in the case of
H.264/AVC), the current row is marked as a boundary gap
and is filtered by the 1D fuzzy filter (1)–(4). The length of
the filter is five pixels, and the filter given in Eq. (2) is
applied to all the pixels on the row or column within the
block. The same process is also performed for horizontal
artifacts. The spread parameter s in Eq. (4) for 1D and 2D
fuzzy filter is calculated based on the flowchart shown
in Fig. 3.

4.1.3. Adaptive anisotropic diffusion

After applying deblocking to the image, the anisotropic
diffusion equation, as described in Section 3, will be
applied to the deblocked image. This section explains a
discrete form of the anisotropic diffusion based on a
numerical approach. Fig. 5 shows the effect of applying

Fig. 2. The effect of removing the adaptive fuzzy filter and adaptive anisotropic diffusion: (a) the original compressed image, (b) 1D adaptive fuzzy

filtering (both directions) and (c) 1D adaptive anisotropic diffusion (both directions).

Block Classification and 
Mode Decision

(See Fig. 3)

1D Adaptive 
Fuzzy Filtering 

(Horizontal)

1D Adaptive Fuzzy 
Filtering 
(Vertical)

1D Adaptive Anisotropic 
Diffusion (Horizontal

Direction)

1D Adaptive Anisotropic 
Diffusion (Vertical

Direction)

Decoded
Frame

2D Adaptive Fuzzy
Filtering Restored Frame

Fig. 1. Flowchart of the proposed method for image filtering. Solid lines denote the data flow and dashed lines the parameter flow.
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the 1D and 2D anisotropic diffusion for removal of
blocking artifacts in a JPEG compressed image. Compar-
ison of these figures illustrate that 2D anisotropic diffu-
sion can remove the blocking effect in the image, but in
turn it causes blurring and smoothing effects in the
output image. Fig. 6 depicts the pixel intensities along
the 200th line of the image in Fig. 5. To avoid smoothing
and blurring and increase the quality of images, only one-
dimensional anisotropic diffusion is performed, rather
than the two-dimensional diffusion, causing a blurring
effect.

Nonlinear diffusion equations of the form given in
Eq. (7) do not have an analytical or open form solution.
These equations have to be solved using numerical
methods. A finite difference based approach is one of
the most common approaches used to solve this type of
PDEs [30,35,37].

As mentioned in Section 3, the proposed anisotropic
diffusion is an iterative adaptive algorithm. Based on a
one-dimensional solution to Eq. (6)–(11), the discrete
numerical solution of the proposed iterative adaptive
diffusion algorithm is described below.

Fig. 3. Adaptive spread parameter (s) selection for a block.

Fig. 4. Detecting the vertical boundary gap in a row across the vertical block boundary (a) for H.264/AVC video sequences and (b) for JPEG images and

MJPEG video sequences.
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1. Find the value of parameter k from Eqs. (9) and (10).
2. Let the time step be Dt and the spatial step be h in the

x and y directions. Then, the time and space coordi-
nates can be presented in discrete form as:

t¼ nDt, n¼ 0,1,2,:::;

x¼ ih, i¼ 1,2,3,:::,M�1,

y¼ jh, j¼ 0,1,2,:::,N�1, ð13Þ

where h denotes pixel spacing in x and y directions.
Pixels may be assumed to be located within the unit
length (i.e., h¼1) [30]. Let us approximate the image I(x, y, t)
at time t by Ini,j. Then, the left hand side of Eq. (6) can be
written as:

@I

@t
¼ Inþ1

i,j �Ini,j
Dt

: ð14Þ

The size of the image is Mh�Nh and the input image is
I0i,j ¼ I ih,jh,0ð Þ, derived from the deblocking phase based on
1D adaptive fuzzy filtering. Then, the final image can be

obtained by iterating the five-stage approach described
below for the horizontal direction.

Stage I: The horizontal derivative approximations and
the horizontal Laplacian approximations are computed for
the frame:

Iniþ1,jð Þ�Ini,jð Þ
h

,
Ini�1,jð Þ�Ini,jð Þ

h
,

r2Ini,j horð Þ ¼
Iniþ1,jð Þ þ Ini�1,jð Þ�2� Ini,jð Þ
� �

h2
, ð15Þ

where h¼1. The symmetric boundary conditions are
used:

In�1,j ¼ In0,j, InM,j ¼ InM�1,j, j¼ 0,1,2,:::,N�1: ð16Þ

Stage II: Computing the horizontal diffusion coefficient
c(x,y;t) as in [30]:

cni,j ¼ exp � r2Ini,jðhorÞ
k2

" # !
: ð17Þ

Fig. 5. Comparison of 1D and 2D anisotropic diffusion equation applied to a JPEG compressed image for removing blocking artifact. All parameters are

the same. (a) JPEG compressed image with blocking effect, (b) 1D anisotropic diffusion, (c) 2D anisotropic diffusion.

Fig. 6. The 200th line of the JPEG compressed image in Fig. 5, processed by 1D and 2D anisotropic diffusion.
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Stage III: Computing the divergence of c Uð ÞrI:

dni,j ¼
1

h2
cniþ1,j Iniþ1,j�Ini,j

� �
þcni�1,j Ini�1,j�Ini,j

� �h i
, ð18Þ

with the symmetric boundary conditions:

dn�1,j ¼ dn0,j, dnM,j ¼ dnM�1,j, j¼ 0,1,2,:::,N�1: ð19Þ

Stage IV: The numerical approximation to the differ-
ential equation is given by:

Inþ1
i,j ¼ Ini,jþ

Dt
2

dni,j: ð20Þ

Eq. (20) is equivalent to (6) in discrete form for the
horizontal direction (in this work: Dt/2E0.125).

Stage V: Check the stop criterion. For filtering, we use a
fixed number of iterations, with 10 as the default value.
When the stop criterion is reached, the algorithm termi-
nates, otherwise it goes back to Stage I. After terminating
the algorithm in the horizontal direction, the same algo-
rithm is used in the vertical direction (Fig. 1). The optimal
number of iterations in vertical and horizontal directions
can be different if the artifacts are stronger in one
direction than the other, since the best possible trade-
off between smoothness of the edge versus blocking and
ringing artifacts may be reached at different points.

4.1.4. Two-dimensional fuzzy filtering

In Section 4.1.2, the standard deviation in a 3�3
window was computed around each pixel and then the
MaxSTD in each 4�4 block or 8�8 block was compared
with a set of predetermined thresholds. In the following
step, according to the type of the detected block in
Eq. (12), and depending on its neighboring blocks, a 2D
fuzzy filter Eq. (2) may be applied with adaptive spread
parameter s. For instance, if the detected block is labeled
as a strong edge and not all of its surrounding blocks are
strong edges, then the fuzzy filter will be applied with
large spread parameter (s¼25); otherwise, no filtering is
needed. In the case of strong or weak texture, the filtering
decision is based only on four neighboring blocks (up,
down, left and right). Fig. 3 illustrates the flowchart of
fuzzy filtering parameter selection process for all block
sizes in compressed images and videos. The method is
inspired by [11], with a difference that we use a more
sophisticated decision tree. The procedure for 4�4 blocks
and 8�8 blocks is the same.

The fuzzy filter described here is used in the algorithm
shown in Fig. 1 to reduce blocking (1D fuzzy) and ringing
(2D fuzzy) artifacts, while retaining the sharpness of the
edges. The main drawback of the isotropic fuzzy filter
[13,41] for multi-dimensional signals, such as images, is
that the signal is converted to a vector before filtering. The

direction between the pixels is ignored in this case.
Blocking artifacts are either vertical or horizontal, whereas
ringing artifacts occur along the edges of arbitrary direc-
tion. Therefore, it is expected that deringing performance
would improve if the filter is applied adaptively according
to the direction of the edges. The proposed algorithm is an
adaptive algorithm, which accounts for both blocking and
ringing artifacts, using both adaptive fuzzy filtering and
anisotropic diffusion filter to further improve the quality.

4.2. Adaptive fuzzy and anisotropic diffusion for artifact

reduction in H.264/AVC video sequences

Fig. 7 illustrates a compound algorithm for artifact
removal in video sequences, in particular video sequences
compressed with H.264/AVC, represented in YUV 4:2:0
color space. Since the HVS processes brightness and
chrominance information differently, several algorithms
have been proposed for separate processing of luminance
and chrominance channels [33,36,38].

In the proposed algorithm, we have examined different
designs to find the best algorithm for deblocking and
deringing in luminance and chrominance channels, and a
hybrid algorithm where anisotropic diffusion is combined
with fuzzy filtering is proposed, as shown in Fig. 7. In this
algorithm, the chrominance components (U, V) of a video
frame are first upsampled using bilinear interpolation
to the same size with the luminance component (Y).
To obtain higher quality, each Y frame component is
enhanced by a directional spatial fuzzy filter. First, the
initial amplitude for the spread parameter s0 is derived,
following the procedure explained in Section 4.1.4. Then,
directional fuzzy filtering [14] is applied with spread
parameter from Eq. (5). The spread parameter amplitude
sA obtained from:

sA i,jð Þ ¼ s0 1�g� �� STDðI i,jð ÞÞ�STDmin

STDmax�STDmin
þg

� 	
, ð21Þ

where STDmin and STDmax are the minimum and maximum
standard deviations found in the current frame, and g is
an offset parameter. In contrast, each U and V frame
components are deblocked after upsampling using the
spatial fuzzy filtering and anisotropic diffusion, as illu-
strated in Fig. 1 (Section 4.1).

5. Performance evaluation methods

In order to assess the performance of the proposed
method in comparison to other methods in the literature,
we have used established full reference objective image
and video quality metrics for test images and video

Fig. 7. Proposed method for video frames.
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sequences processed with different methods. In addition,
we have performed a subjective assessment study to
verify the results obtained from objective measurements.
The metrics used are described shortly in this section.

5.1. Objective quality metrics

PSNR is a performance metric indicating the ratio
between the maximum possible power of a signal and
the power of the corrupting noise affecting the fidelity of
the distorted signal. It is the most commonly used
objective quality indicator for distorted digital images or
video. When a color image or video sequence is processed,
there are several options to compute overall PSNR. In the
case of video representation in YUV color space, the luma
(Y) component alone is often used for computing PSNR
(referred as Y-PSNR), since luminance is more relevant for
human perception than chrominance. It is also possible to
compute PSNR over both luma and chroma components
(YUV-PSNR), each component separately, or to use differ-
ent weighting factors for luma and chroma components.
Weight 0.8 is often used for luma and weight 0.1 for each
of the chroma components [48]. In this paper, we study
post-processing methods involving both luma and
chroma components, and this is why we have chosen to
use YUV-PSNR as one measure in our analysis (U- and
V-components are upsampled to the same size as Y-compo-
nent). When images in RGB color space are concerned, we
have used average PSNR of R, G, and B components.

Structural similarity (SSIM) index can be used to measure
the visual similarity of two images [49]. In SSIM, the total
distortion is modeled as a combination of three different
factors: loss of correlation, luminance distortion, and contrast
distortion. Given that vector X ¼ xi i¼ 1,2,3,:::,N



 ��
contains

the intensities of all the N original pixels and Y ¼
fyi9i¼ 1,2,3,:::,Ng of the pixels in the degraded image, SSIM
is defined as:

SSIM¼ sXY

sXsY

� 	a
� 2XY

X
� �2þ Y

� �2
0
@

1
A

b

� 2sXsY

s2
Xþs2

Y

 !g

¼ s X,Yð Þa � l X,Yð Þb � c X,Yð Þg ð22Þ

where X, Y are the average pixel values of X and Y , sX and
sY are standard deviations of X and Y, sXY is the covariance

between X and Y, a40 ,b40 and g40 are parameters
defining the relative weights of the individual factors of
quality. In order to simplify the expression, we have used

values a¼ b¼ g¼ 1 for our measurements. The dynamic
range of SSIM is [�1,1]. The highest possible value 1 is
achieved if and only if yi ¼ xi for all i¼1, 2, 3, y, N. In
practical use, the local statistics for SSIM are often computed
within a small sliding sampling window. As a result, a spatial
SSIM index map is produced. In order to obtain a represen-
tative quality value for the whole image, Mean SSIM (MSSIM)
value is then calculated by computing the mean value of the
local SSIM values over the whole picture. Just as with PSNR,
different approaches may be taken to compute MSSIM of a
color signal: Most typically, MSSIM is computed for the luma
(Y) component only, but chroma components may also
be included. In this study, we have computed MSSIM for

Y-component only (using the Matlab script provided for the
public by the authors of [49], using 11�11 pixel blocks). For
images in RGB color space, we have computed the average
MSSIM of R, G, and B components.

To evaluate temporal artifacts like flickering, sum of
squared differences (SSD) can be used to evaluate the
temporal variation of the coding artifacts in video [1]. SSD
is defined as:

SSD t,i,j½ � ¼ 1

N

X
½m,n�2½i,j�

ðD½t,m,n��D½t�1,m,n�Þ2 ð23Þ

where N is the number of frames, t is the frame index, and
D is the difference between the original frame X and the
compressed frame Y:

D½t,m,n� ¼ X½t,m,n��Y ½t,m,n� ð24Þ
Larger SSD values correlates with higher flickering

intensity.

5.2. Subjective quality assessment

Even though objective metrics for visual quality have
shown a relatively good match with subjective perception
of quality in many studies, subjective quality assessment
is still considered the ultimate approach to evaluate visual
quality. Several different subjective quality assessment
methods have been proposed in the literature and many
of them have even been standardized [50]. The methods
can be classified into many ways, for example according
to the number of stimuli (single, double, multiple), task
(direct or comparative rating, rank ordering) or scaling
(discrete, continuous, binary).

Most typically, subjective quality assessment involves
quality rating, and the final result is expressed in terms of
mean opinion score (MOS), which is the average of the
scores by individual test subjects. Rating is often consid-
ered problematic, since different individuals may inter-
pret vocabulary and intervals of the rating scale
differently, and ratings may be influenced by the attrac-
tiveness of the content [51]. This is why formation of MOS
out of individual scores may require some processing,
such as removal of outliers and systematic personal bias.
In order to make results more reliable, many subjective
evaluation procedures involve comparative rating, where
the test stimulus is compared against the (typically
distortion free) reference stimulus.

When post-processing algorithms are compared, the
visual differences are often small, and subjects can only
identify those differences clearly when different stimuli
are shown concurrently. This is why direct MOS rating
does not suit our study well. Another option could be to
use paired comparisons [52], but if all the possible pairs
are tested, it would lead to a large number of test cases.
This is why we have adopted a rank ordering method,
where all the stimuli are shown at the same time and test
subjects are asked to rank them in the order of preference.
To our knowledge, this method is not commonly used for
subjective video quality assessment, but a similar method
has been described for comparing still images in [53].
The video sequences are looping, and therefore the test
subjects have the opportunity to observe the subtle

Please cite this article as: E. Nadernejad, et al., Enhancing perceived quality of compressed images and video with
anisotropic diffusion and fuzzy filtering, Signal Processing-Image Communication (2012), http://dx.doi.org/10.1016/
j.image.2012.12.001i

E. Nadernejad et al. / Signal Processing: Image Communication ] (]]]]) ]]]–]]] 9

A.4 Enhancing Perceived Quality of Compressed Images and Video
With Anisotropic and Fuzzy Filtering 129



differences carefully, in spite of short duration of the
sequences.

In our practical subjective experiments, we have used
a 55 in. high quality liquid crystal display with LED
backlight delivered by Bang&Olufsen, aimed to be used
as a television screen. Since the screen is capable of full
high definition resolution, it is possible to accommodate
several CIF resolution video sequences on the screen at
the same time and play them synchronized. The large size
of the screen allows viewing the details of sequences
clearly. The viewing distance was 2.0 m, and the physical
height of a single CIF resolution video on screen is 18 cm.

6. Experimental results

Tests have been performed to demonstrate the effec-
tiveness of the two proposed algorithms on JPEG images
(Fig. 1) and MJPEG and H.264/AVC video sequences (Fig. 7),
respectively. The qualities of the different approaches have
been compared in terms of PSNR, MSSIM and subjective
visual quality. For comparison, the artifact removing
methods proposed by Zhai et el. [2], Kim [3], Chen et al.
[4], Liu et el. [5], Vo et el. (fuzzy-based methods)
[11,13,14], Tai et al. [16], Yao (PDE-based algorithm) [9],
Chebbo et al. [43], and, have been tested. The 5/3 MCTF
method, which is proposed by Chen et al. [17], has been
also simulated. We have tested the implementations for
Chen, Liu and 5/3 MCTF methods publicly available in the
Internet [54]. Kim’s method, Tai’s method, Zhai’s method,
Yao’s method, Chebbo’s method, isotropic fuzzy method,
2D fuzzy method and directional fuzzy method have been
implemented.

6.1. Enhancement of compressed images

To evaluate the efficacy of the proposed post-
processing technique for reducing blocking and ringing
artifacts in still images (Fig. 1), we have conducted
experiments with test images from video sequences,
compressed using the JPEG image compression algorithm.
The performance of the proposed method has been
compared against Chen’s method, Liu’s method, Kim’s
method, Chebbo’s method, Tai’s method, adaptive 2D
fuzzy filter [13], Zhai’s method, directional fuzzy filter
[14] and isotropic 2D fuzzy filter with constant para-
meters [11]. For the directional fuzzy method, only the
non-edge pixels (with G4180 in [14]) are filtered in order

to avoid smoothing the real edges of the image and all
parameters were chosen from Ref. [14]. All the para-
meters in Section 5 are chosen experimentally using a
wide selection of images to achieve the optimal visual
quality. In the proposed algorithm, there are some para-
meters, which need to be initialized. The parameter k in
Eq. (7) is chosen by using Eq. (9). Because the proposed
algorithm is iterative, we have used a wide range of
different images with highly varying texture, luminance,
etc., to train the algorithm and find the optimal number of
iterations. In the training phase, PSNR of the compressed
and post-processed image is measured after each iteration
round. It is assumed that PSNR increases until the optimal
number of iterations is reached, and then starts decreas-
ing. Therefore, the stop criterion during training is:

PSNR nþ1ð ÞoPSNRðnÞ, ð25Þ
where n is the number of iterations. In average, the
proposed method achieved the best PSNR with 10 itera-
tions for both horizontal and vertical directions. This
default value is used unless otherwise stated.

Parameter g defined in Eq. (21) controls the balance
between artifact removal in the flat regions and keeping
the details in the high activity regions. Parameters a and b
in (5) are used to adjust the relative filtering strength
between the gradient and tangent directions of the edges.
We have used the values for parameters in Eqs. (5) and
(22) from [14], giving, i.e, g¼0.5, a¼0.5 and b¼3.5, and
s0 computed as shown in the flowchart in Fig. 3. The set
o of neighboring pixels in Eq. (1) and the spatial window
W size are set to 5�5. We have compressed several CIF
resolution video sequences using Motion JPEG with scal-
ing factor 4 for the quantization. The test set includes
different types of images (frames), converted to RGB
format, from the following video contents: Silent, Fore-
man, Mobile, Paris, News, and Mother. The average PSNR
and MSSIM values for the six different sequences with 50
frames (images) are listed in Tables 1 and 2, respectively.
PSNR and MSSIM values for each frame are the equally
weighted averages computed from the R, G, and B-
components. To validate the use of predefined number
of iterations obtained by training with a different set of
images, we have also included the results with the
optimal numbers of iterations (25) for different images.

To demonstrate the visual quality, the results obtained
with different artifact removal techniques on a compressed
6th frame in Mother and Daughter are shown in Fig. 8. In this
experiment, the spread parameter of the proposed method

Table 1
Comparison of different methods by average RGB-PSNR (dB) (first column, JPEG and other methods, 2¼Chen’s method, 3¼Liu’s Method, 4¼Kim’s

Method, 5¼Chebbo’s Method, 6¼Zhai’s method, 7¼2 D Fuzzy, 8¼Tai’s method, 9¼directional [9], 10¼Yao’s method [49], 11¼Isotropic, 12¼proposed

with iteration¼10, 13¼proposed with optimum number of iterations (the number of iterations is shown inside the parentheses).

PSNR 1 2 3 4 5 6 7 8 9 10 11 12 13

News 25.56 26.03 25.86 26.08 26.11 26.13 25.97 26.08 26.17 26.07 25.56 26.16 26.19 (11)

Silent 25.53 26.12 25.96 26.11 26.22 26.32 26.19 26.27 26.22 26.29 25.54 26.38 26.43 (11)

Foreman 25.33 25.86 25.91 25.81 26.05 26.21 25.98 26.11 26.05 26.15 25.43 26.22 26.26 (9)

Mobile 21.25 21.17 21.33 21.48 21.51 21.73 21.76 21.65 21.75 21.62 21.28 21.96 21.96 (10)

Mother 27.81 28.35 28.19 28.46 28.56 28.51 28.66 28.75 28.41 28.53 28.81 28.87 28.90 (11)

Paris 21.89 22.35 22.25 22.37 22.42 22.51 22.50 22.53 22.43 22.45 22.41 22.68 22.71 (9)

Ave Gain 0.419 0.358 0.489 0.584 0.673 0.614 0.669 0.61 0.58 0.227 0.818 0.847
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has been calculated using the method in Fig. 3. Compared to
the compressed full frame in Fig. 8a (PSNR¼31.02,
MSSIM¼0.839) and the enhanced image using Chen’s
method (Fig. 8b, PSNR¼31.83, MSSIM¼0.869), Liu’s method
(Fig. 8c, PSNR¼31.61, MSSIM¼0.862), Kim’s method (Fig. 8d,
PSNR¼31.69, MSSIM¼0.861), Chebbo’s method (Fig. 8e,
PSNR¼31.65, MSSIM¼0.864), the 2D Fuzzy filter method
(Fig. 8f, PSNR¼31.77, MSSIM¼0.865), Zhai’s method (Fig. 8g,
PSNR¼31.64, MSSIM¼0.862), Tai’s method (Fig. 8g,
PSNR¼31.84, MSSIM¼0.869), Yao’s method (PSNR¼31.78,
MSSIM¼0.865), the enhanced image using the proposed
method in Fig. 8h (PSNR¼32.10, MSSIM¼0.872) achieved a
clear improvement in terms of both PSNR and MSSIM.

Comparing to the compressed image in Fig. 8a, all of
the post-processing methods can remove most of the
blocking and ringing artifacts. However, these methods
introduce other types of artifacts, such as blurring at the
dominant edges, and loss of details. For example, the DCT-
based low-pass filtering technique proposed by Chen
(Fig. 8b) is able to suppress some of the ringing artifacts,
but in turn it causes a substantial blurriness in the
processed image. Liu’s method (Fig. 8c) and Kim’s method
(Fig. 8d) are able to retain some of the sharpness, but is
not able to reduce the ringing artifacts. Chebbo’s method
(Fig. 8e) shows ringing around the edges, as well as
blocking, especially within the facial area. 2D fuzzy filter
(Fig. 8f) also shows some visible ringing and blocking
effects. The Zhai’s method (Fig. 8g) and Tai’s method
(Fig. 8h) cannot remove blocking artifacts successfully,
and they introduce some smoothing effect. The frame
enhanced with the proposed algorithm shows the best
quality, compared to the other algorithms. It efficiently
removes the blocking and ringing artifacts, but still keeps
the details and the sharpness of the edges.

6.2. Enhancement of compressed video sequences

To demonstrate the advantage of the proposed method
designed for video sequences (Fig. 7), the experiments in
this section are performed on MJPEG and H.264/AVC
coded sequences, represented in YUV format.

6.2.1. Enhancement for MJPEG video sequences

In MJPEG, each frame of a video sequence is compressed
separately using the JPEG standard. In the practical imple-
mentation, the parameter K in Eq. (4) is chosen as K¼1 [13].
The sizes for o and the spatial window are 5�5 pixels.

Fig. 9 compares the enhanced frame obtained using
different post-processing methods, including the pro-
posed algorithm, applied on the 35th frame of the Mobile
video sequence. The enhanced frame obtained by the
proposed method for video artifact reduction (Fig. 9f)
shows significantly reduced ringing artifacts and better
color quality than the other algorithms, including the 2D
fuzzy method [13]. The visual improvement obtained
with the proposed scheme is much more noticeable when
the processed frames are played in a sequence, since the
proposed method produces a video of smoother quality
with significantly reduced artifacts.

Figs. 10 and 11 compare the PSNR, and MSSIM values
of all the tested methods for 45 frames of the Mobile
sequence. In this section, we use YUV-PSNR and Y-MSSIM,
unless stated otherwise. The plots clearly demonstrate
that the proposed method for video sequences achieves a
consistent average PSNR gain of about 0.55 dB relative to
the compressed frames without post- processing, and
about 0.23 dB relative to the frames enhanced with the
2D fuzzy filter method. The respective MSSIM gains are
about 0.02 and 0.05.

6.2.2. Enhancement for H.264/AVC video sequences

In order to demonstrate that the proposed method is
beneficial also for H.264/AVC video compression, which
tend to have less artifacts compared to previous method,
further experiments were performed with sequences com-
pressed using H.264/AVC video compression standard. For
this purpose, we have compressed several CIF resolution
video sequences with H.264/AVC reference encoder using
GOP length 12 (prediction structure IBBPBBy) and fixed
QP of 45. The standard in-loop deblocking filter was
enabled. In the post-processing phase, the offset parameter
g in Eq. (21) for the directional fuzzy filtering (Fig. 7) was
set to 0.5. This value (g) has been chosen experimentally to
get the best visual quality for a wide range of sequences.
The PSNR values for the compressed sequences with and
without post-processing are given in Table 3. As the results
show, PSNR is improved for luma and both chroma
components in all cases when the proposed method is
used. However, the gain is less significant for sequences
with complex textures, such as Coastguard. The average
gains are 0.12 dB, 0.21 dB, and 0.26 dB for the Y, U and V-
components, respectively.

To study the performance more comprehensively, we
have analyzed the Foreman sequence compressed using
the prediction structure of IBBBPBBBP at 132 kbps (rate

Table 2
Comparison of different methods by average RGB-MSSIM (first column, JPEG and other methods, 2¼Chen’s method, 3¼Liu’s method, 4¼Kim’s method,

5¼Chebbo’s method, 6¼Zhai’s method, 7¼ 2D Fuzzy, 8¼Tai’s method, 9¼directional [9], 10¼Yao’s method [49], 11¼ Isotropic, 12¼proposed method.

1 2 3 4 5 6 7 8 9 10 11 12

News 0.489 0.508 0.503 0.505 0.510 0.514 0.515 0.517 0.513 0.513 0.509 0.520
Silent 0.413 0.432 0.441 0.438 0.445 0.446 0.444 0.448 0.444 0.443 0.434 0.452
Foreman 0.470 0.486 0.495 0.492 0.528 0.531 0.503 0.510 0.499 0.521 0.494 0.518

Mobile 0.462 0.458 0.469 0.471 0.475 0.483 0.482 0.489 0.480 0.478 0.475 0.491
Mother 0.495 0.510 0.505 0.515 0.512 0.508 0.523 0.531 0.522 0.510 0.517 0.533
Paris 0.444 0.462 0.449 0.461 0.463 0.469 0.470 0.473 0.466 0.466 0.461 0.479
Ave Gain 0.014 0.015 0.018 0.023 0.029 0.027 0.032 0.025 0.026 0.020 0.038
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control is used instead of fixed QP) in more detail. Fig. 12
shows the third frame from the compressed Foreman
sequence (Fig. 11b), the Kim’s method (Fig. 12c), the
Chebbo’s method (Fig. 12d), the Haar MCTF method
(Fig. 12e), the Zhai’s method (Fig. 12f), the 2D fuzzy

filtering method (Fig. 12g), the Tai’s method (Fig. 12h),
the Yao’s method (Fig. 12i) and enhanced frame with the
proposed method (Fig. 12j).

In this experiment, the proposed algorithm improves
PSNR and MSSIM, compared to the PSNR and MSSIM with

Fig. 8. The comparison of filtered results on zoomed images: (a) the compressed image-4Q (PSNR¼31.02, MSSIM¼0.839), (b) Chen’s method

(PSNR¼31.83, MSSIM¼0.869); (c) Liu’s method (PSNR¼31.61, MSSIM¼0.862), (d) Kim’s method (PSNR¼31.69, MSSIM¼0.861), (e) Chebbo’s method

(PSNR¼31.65, MSSIM¼0.864), (f) 2D fuzzy filter method (PSNR¼31.77, MSSIM¼0.865), (g) Zhai’s method (PSNR¼31.64, MSSIM¼0.862), (h) Tai’s

method (PSNR¼31.84, MSSIM¼0.869), (i) Yao’s method (PSNR¼31.78, MSSIM¼0.865) and (j) the proposed method (PSNR¼32.10, MSSIM¼0.872).
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Chen’s method, Liu’s method, Kim’s method, Chebbo’s
method, Haar MCTF method, Zhai’s method, 2D fuzzy
method, Tai’s method, and in-loop filtering (H.264/AVC
video sequences). This improvement is consistent for the
Foreman sequence, as verified by the PSNR and MSSIM
curves shown in Figs. 13 and 14. The average results are
shown in Table 4. The average PSNR and MSSIM perfor-
mance of the proposed method is better than other

methods. Visual inspection shows that compared to
H.264/AVC frames, all the post-processing algorithms sig-
nificantly reduce the ringing and blocking artifacts. How-
ever, the proposed method maintains the sharpness of
edges better than the 2D fuzzy method [13]. This improve-
ment indicates a more pleasant visual appearance.

To evaluate the effectiveness of the proposed algorithm
in the temporal dimension, SSD (Eq. (23)) is also computed

Fig. 9. Comparison of filter results for MJPEG sequences (35 th frame). (a) Compressed (PSNR¼23.03, MSSIM ¼0.786), (b) Chen’s method (PSNR¼22.58,

MSSIM¼0.774); (c) Liu’s method (PSNR¼22.88, MSSIM¼0.782), (d) Kim’s method (PSNR¼23.28, MSSIM¼0.794), (e) Chebbo’s method (PSNR¼23.13,

MSSIM¼0.793), (f) 2D fuzzy filter method (PSNR¼23.26, MSSIM¼0.804), (g) Zhai’s method (PSNR¼23.23, MSSIM¼0.794, (h) Tai’s method

(PSNR¼23.42, MSSIM¼0.798), (i) Yao’s method (PSNR¼23.49, MSSIM¼0.784) and (j) The proposed method (PSNR¼23.56, MSSIM¼0.819).
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Fig. 10. Comparison on PSNR of simulated methods for mobile sequence (average PSNR: MJPEG¼26.43, Chen’s method¼26.39, Liu’s method¼26.45,

Kim’s method¼26.51, Chebbo’s method¼26.46, Zhai’s method¼26.56, 2D fuzzy¼26.71, Tai’s Method¼26.61, Yao’s Method¼26.78, Proposed¼27.17).

Fig. 11. Comparison on MSSIM of simulated methods for Mobile sequence (average MSSIM: MJPEG¼0.773, Chen’s method¼0.777, Liu’s method¼0.779,

Kim’s Method¼0.780, Chebbo’s method¼0.775, Tai’s Method¼0.786, Zhai’s method¼0781, 2D fuzzy¼0.789, Yao’s Method¼0.791, Proposed¼0.806).

Table 3
Y, U, and V-PSNR for H.264/AVC compressed sequences of 100 frames with and without the proposed post-processing.

Sequence (CIF, QP¼45) H.264/AVC Proposed Gain (DPSNR)

Y U V Y U V Y U V

Coastguard 25.32 38.89 39.35 25.34 38.98 39.66 0.02 0.08 0.31

Mobile calendar 22.81 31.45 31.87 22.90 31.46 31.88 0.09 0.01 0.01

Akiyo 30.34 36.07 38.77 30.48 36.37 39.23 0.14 0.30 0.46

Hall monitor 27.94 36.02 38.01 28.15 36.27 38.20 0.21 0.26 0.19

Mother and daughter 30.38 38.48 39.09 30.46 39.05 39.62 0.08 0.57 0.53

Silent 27.54 35.33 36.77 27.64 35.41 37.02 0.10 0.08 0.25

News 27.62 35.32 36.63 27.77 35.53 36.81 0.15 0.21 0.18

Foreman 28.00 36.98 37.84 28.17 37.14 38.00 0.17 0.15 0.16

Average gain 0.12 0.21 0.26
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Fig. 12. Comparison of filter results for H.264/AVC sequences (frame no. 3 zoomed): (a) original frame, (b) compressed with in-loop filtering

(PSNR¼32.30, MSSIM¼0.869), (c) Kim’s method (PSNR¼32.32, MSSIM¼0.872), (d) Chebbo’s method (PSNR¼32.32, MSSIM¼0.870), (e) 5/3 Haar MCTF

method (PSNR¼32.11, MSSIM¼0.873), (f) Zhai’s method (PSNR¼32.45, MSSIM¼0.873), (g) 2D fuzzy filter method (PSNR¼32.13, MSSIM¼0.872),

(h) Tai’s method (PSNR¼32.44, MSSIM¼0.874), (i) the Yao’s method (PSNR¼32.42, MSSIM¼0.873), (j) the proposed method (PSNR¼32.57, MSSIM¼0.876).
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for the processed Foreman sequence. The average results are
included in Table 4. The results show that Chen’s, Liu’s and
Haar’s algorithms increase SSD thus indicating more flicker-
ing compared to the original compressed sequence, whereas
the other algorithms reduce the SSD and therefore likely also
reduce the flickering. The proposed algorithm shows the
lowest level of flickering artifacts as measured by SSD.

The video sequence compressed with H.264/AVC
(in-loop deblocking filter enabled) has fewer artifacts
when enhanced using the proposed method, compared
to the compressed sequence enhanced with the fuzzy
method [11,14]. The PSNR improvement obtained with
the proposed algorithm applied to the Foreman sequence
compressed with different bitrates are shown in Fig. 15.
The proposed algorithm yields more than 0.33 dB

improvement, compared to the fuzzy method giving
0.21 dB improvement for bitrates from 70 kbps to
170 kbps. Also, visual inspection indicates higher quality
when the proposed method is used. The proposed algo-
rithm is an iterative algorithm, and compared to the other
spatial algorithms it is therefore more complex. The
proposed method does not require a motion compensa-
tion stage and spatiotemporal filtering, like 5/3 MCTF
(Haar’s method) described in [17]. Nevertheless, the most
relevant comparison point to our method is the 2D fuzzy
method proposed by Vo and Vetro [13], and our method
shows steadily better performance, measured by both
PSNR and MSSIM. Extending the algorithm by using
temporal filtering as in [13] should also improve the
performance of the proposed method.

Fig. 13. Comparison on PSNR of simulated methods for Foreman sequence.

Fig. 14. Comparison on MSSIM of simulated methods for Foreman sequence.
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6.2.3. Subjective evaluation of MJPEG and H.264/AVC

video sequences

In order to verify the objective measurements, a subjec-
tive comparison study based on rank ordering of simulta-
neously played video sequences as described in Section 5.3
was performed by using 16 test subjects. In this phase, we
have included the ‘‘Mobile Calendar’’ sequence compressed
with MJPEG and ‘‘Foreman’’ sequence compressed with
H.264/AVC. In order to facilitate test arrangements and limit
the number of tested sequences in each comparison, the
subjective tests have been performed in two phases. In the
first phase, we compared the baseline (MJPEG or H.264/AVC)
against the proposed method and four other methods: Liu,
Chen, Chebbo and 2D fuzzy. For H.264/AVC test also Haar
method was included. The results of the first phase showed
best performance for the proposed method, 2D Fuzzy and
Chebbo methods. The other methods showed substantially
worse performance. For the second phase, we have chosen
the two best performing methods (2D fuzzy and the pro-
posed method) from the first phase to be compared against
three other methods not used in the first test: Kim, Tai and
Zhai. The results from the second phase are summarized in
Tables 5 and 6. As the results show, the average ranking
shows the best performance for the proposedmethod in both
cases. The closest competitor is 2D fuzzy method, like in the
objective results.

With some exceptions for methods giving close results,
the subjective ranking is reasonably well in line with
rankings based on PSNR and MSSIM, suggesting that both
metrics can be used for a rough evaluation of the relative
performance of different algorithms for artifact removal.
The visible differences between most of the sequences are
rather small, and therefore some uncertainty in the

results is expected. It should be noted that PSNR and
MSSIM estimate the quality on per-frame basis, omitting
temporal artifacts, such as flickering. The results indicate
that flickering does not have a dominating role in our
experiments, but in sequences with significant temporal
artifacts, quality indicators such as PSNR and MSSIM
would most likely give less reliable results.

For MJPEG, all post-processing methods are visually
ranked better than direct decoding without post-
processing. For H.264/AVC, 2D fuzzy, Chebbo and the
proposed methods are ranked better, both visually, and
by PSNR and MSSIM. 2D fuzzy and Chebbo have a similar
average ranking, while the proposed method is preferred.

7. Conclusions

In this paper, we have presented two effective algo-
rithms for image and video artifact removal, based on
combining adaptive fuzzy filtering and directional aniso-
tropic diffusion. The novel method improves the perfor-
mance by adapting to the activity and direction between
pixels at edges, and therefore preserves the visually

Table 4
The average PSNR, MSSIM and flickering metric (SSD) of compressed Foreman sequence: 1¼ H.264/AVC without post-processing, 2¼Chen’s method,

3¼ Liu’s Method, 4 ¼Kim’s method, 5¼ Chebbo’s method, 6¼ Haar MCTF method, 7¼Guangtao’s method, 8¼ 2D fuzzy, 9¼ Tai’s method, 10¼ Yao’s

method, 11¼proposed method, respectively.

1 2 3 4 5 6 7 8 9 10 11

PSNR 32.24 31.78 32.11 32.27 32.26 31.95 32.35 32.28 32.31 32.32 32.46
MSSIM 0.868 0.863 0.868 0.869 0.869 0.869 0.868 0.869 0.869 0.868 0.871
SSD 59.44 64.25 60.27 59.43 59.18 62.37 59.10 57.55 58.66 56.31 53.81
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Fig. 15. Comparison of PSNR with different bit-rates of the Foreman

sequence.

Table 5
Subjective ranking of different methods (Mobile calendar compressed

with MJPEG), compared with PSNR and MSSIM rankings and gains (D)
relative to MJPEG coding.

Method Mean subjective

rank

Rank PSNR

(D PSNR)

Rank MSSIM

(D MSSIM)

MJPEG 5.563 6. (23.03 dB) 6. (0.786)

Kim 4.188 5. (þ0.08 dB) 3. (þ0.009)

Tai 4.125 3. (þ0.17 dB) 4. (þ0.013)

Zhai 3.375 4. (þ0.13 dB) 5. (þ0.003)

2D fuzzy 2.250 2. (þ0.24 dB) 2. (þ0.018)

Proposed 1.000 1. (þ0.53 dB) 1. (þ0.033)

Table 6
Subjective ranking of different methods (Foreman compressed with

H.264/AVC), compared with PSNR and MSSIM rankings and gains (D)
relative to H.264/AVC with in-loop filtering.

Method Mean subjective

rank

Rank PSNR

(D PSNR)

Rank MSSIM

(D MSSIM)

H.264/AVC 4.750 6. (32.24 dB) 6. (0.8684)

Kim 4.688 5. (þ0.03 dB) 3. (þ0.0022)

Tai 4.188 3. (þ0.07 dB) 2. (þ0.0017)

2D fuzzy 3.813 4. (þ0.05 dB) 4. (þ0.0004)

Zhai 1.875 2. (þ0.11 dB) 5. (þ0.0000)

Proposed 1.250 1. (þ0.17 dB) 1. (þ0.0029)
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essential elements, such as edges and fine textures, better
than the traditional methods used for removing ringing
and blocking artifacts. We have shown that the proposed
algorithms improves the visual quality of compressed
images and videos in terms of PSNR, SSD and, MSSIM,
when compared against other well-known spatial post-
processing methods in the literature. The objective results
have been confirmed by subjective quality assessment
based on rank ordering. The proposed adaptive scheme
can be applied to images and video sequences com-
pressed with several different standards, such as JPEG,
MJPEG and H.264/AVC, and it shows robust performance
on different types of contents compressed with these
standards, even for H.264/AVC using in-loop filtering.
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ABSTRACT

We present a method to reduce blocking and ringing artifacts

in H.264/AVC video sequences. For deblocking, the proposed

method uses a quality measure of a block based coded image

to find filtering modes. Based on filtering modes, the images

are segmented to three classes and a specific deblocking filter

is applied to each class. Deringing is obtained by an adaptive

bilateral filter; spatial and intensity spread parameters are se-

lected adaptively using texture and edge mapping. The analy-

sis of objective and subjective experimental results shows that

the proposed algorithm is effective in deblocking and dering-

ing low bit-rate H.264 video sequences.

Index Terms— deblocking, deringing, H.264, Bilateral

Filter, Post-processing

1. INTRODUCTION

Block based video codecs like MPEG-4 [1] and H.264/AVC

[2] may suffer from ringing and blocking artifacts, which re-

quire effective post-processing to be reduced. Post-processing

improves image quality without changing existing standards.

Many deblocking and deringing algorithms have been

proposed for compressed images and videos [3–13]. Kim [3]

proposed an adaptive deblocking algorithm for low bitrate

video, where the DC and AC values are used to label each

block as low or high activity; then, based on the classifica-

tion, two kinds of low-pass filters are adaptively applied on

each block. A method combining the directional anisotropic

diffusion equations with adaptive fuzzy filtering for remov-

ing blocking and ringing artifacts was presented in [4]. Zhai

proposed an algorithm for deblocking [9], consisting of three

parts: local AC coefficient regularization (ACR) of shifted

blocks in the discrete cosine transform (DCT) domain, block-

wise shape adaptive filtering (BSAF) in the spatial domain,

and a quantization constraint (QC) in the DCT domain. Yao

et al. [8] introduced an algorithm using histogram driven

diffusion coefficients for post-processing.

This work introduces a new algorithm to reduce blocking

and ringing artifacts in H.264 video sequences. Deblocking is

done with a decision mode-based algorithm using local char-

acteristics of the blocks and a quality metric of each frame (I,

B, P). After deblocking, an adaptive bilateral filter is applied

to the regions with ringing artifacts. The experimental results

show that the proposed algorithm effectively reduces block-

ing and ringing, outperforming other methods with respect to

PSNR, MSSIM and subjective tests.

The rest of this paper is organized as follows. The pro-

posed algorithm is described in Section 2. Section 3 shows

the experimental results on H.264/AVC video sequences. Fi-

nally, we conclude in Section 4.

2. PROPOSED ALGORITHM

The proposed algorithm consists of two steps: deblocking and

deringing. In the first step, the quality of each frame (I, P,

B) is calculated using a quality metric and deblocking is done

using decision modes. In the second step, a bilateral filter with

adaptive spatial and intensity spread parameters is applied to

the deblocked image for deringing.

The deblocking scheme is based on region classification

with respect to the activity across block boundaries; depend-

ing on the classification, three different filtering modes are

applied in the horizontal and vertical directions. Hard filter-

ing is used on flat areas, whereas weak filtering is used to pre-

serve sharpness in areas of high spatial or temporal activity.

An intermediate mode (without filtering) is used to solve the

problem of too coarse a decision and avoid either excessive

blurring or inadequate removal of the blocking effect. Figure

1 presents a flowchart of the proposed algorithm.

2.1. Deblocking

In the deblocking step, the decision mode is done based on

a pixel quality metric and predefined thresholds. Appropriate

two steps filtering is then performed based on decision modes.

2.1.1. Quality Measure for Pixels in H.264 sequence

A compressed video sequence is mainly degraded by coarse

quantization of DCT coefficients and inaccurate motion com-

pensation. Due to different quantization steps and different

frame types (I, P, B), pixels are distorted with different de-

grees and providing different qualities. Based on quantization

step size and frame types, we estimate a quality parameter for

each pixel which is used in the decision mode step.
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F(V)>T2

|V4-V5|<F(QP)|max(V)-
min(V)|<F(QP)

Yes

NoNo

No

Yes Yes

Decoded Frame
(I, P, B)

Measuring Quality of
Frame

Decision Mode
check the activity of pixels across the block boundary

Without
Filtering

Segmentation of horizontal and vertical directions into 3 classes: 1-Smooth region
class and Strong filtering class 2-Intermeddiate region class and no filtering class 3-

Complex region class and Normal filtering

Deblocking Using Two Steps Filtering
First, eight pixels belonging to the circumference and second, four pixels

belonging to the inside of the circumference (As shown in Fig. 3)

Deringing using adaptive bilateral filter

Fig. 1: Flowchart of the proposed algorithm.

The quality measure (QM ) is defined to reflect approxi-

mate MSE for each pixel in I, P and B frames [10]:

QM =
√
12×MSE (1)

Pixels with smaller QM values are considered to have higher

quality. This pixel quality parameter cannot reflect the qual-

ity of each individual pixel accurately, and it is just used to

compare approximately individual pixels with different quan-

tization step and frame type [10, 11]

The curves shown in Fig.2 were obtained by measuring

the MSE of the luminance components of H.264/AVC de-

coded sequences. QP determines the quantizer step size [11].

The Laplacian distribution is used to model the MSE quality

as shown in Fig.2. The results indicate that intra coded frames

(I) provide the best quality, and that unidirectional predic-

tion frame (P) have better quality than bidirectional predic-

tion frame (B). As QP increases, degradations for I, P and B

frames are all increasing, while the quality differences among

I, P and B frames are decreasing. In this paper, these train-

ing data are used to describe relative comparisons between

different coding modes. All the settings and testing in later

experiments are based on these curves. With the QP value

and frame type we can calculate the quantization step size

(Qs) and use Fig.2 to get an MSE estimate which provided

QM using Eq.1. The decision modes and segmentation step

use the following function of QM :

F (QP ) =
√

QM (2)

2.1.2. Decision Modes and Segmentation

This step classifies the pixels activity in the regions to be fil-

tered and applies the appropriate filter depending on the fea-

tures of the region. The filtering modes are determined based

Fig. 2: MSE vs Qs measured on mobcal (CIF); rate control is

disabled, different QP values chosen for the different points

[11].

Fig. 3: Position of filtered pixels and pixel vector used for the

decision mode process in horizontal direction. For vertical

direction the pixel vector is the same.

on the variation of activity in vertical and horizontal pixel vec-

tors at each 4× 4 block boundary, as shown in Fig. 3.

In this step, flat regions and complex regions are classified

by local characteristics. An activity factor is assigned to the

pixels inside each vector of pixels at the 4 × 4 block bound-

aries, as described in Fig. 3. The activity is as follows:

R(V ) =

7∑
i=1

φ(vi − vi+1), (3)

where 0 ≤ R(V ) ≤ 7 and

φ(Δ) =

{
1, if |Δ| < T1

0, otherwise
, (4)

where T1 is a fixed threshold (should be set to a small value),

V represents the eight-pixels vector and vi are the pixel val-

ues. The activity factor R(V ) reflects the activity in V across

block boundary; it also represents the number of detected

edges inside V . If the value of R(V ) is smaller than a certain

threshold T2, and the difference between the maximum and

minimum values of V is smaller than F (QP ), we assume V
to be in a complex region and apply the filter for complex re-

gion. If R(V ) is bigger than F (QP ), then it is does not need

filtering. If R(V ) > T2, the two pixel values on either side of

the block boundary (v4 and v5) are considered. If the absolute
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a b c

Fig. 4: Decision mode of the 25th frame of the Foreman se-

quences, a) coded frame, b) horizontal direction modes, c)

vertical direction modes.

difference of two pixels is smaller than F (QP ), we assume V
to be in a smooth region, otherwise it does not need filtering.

In this work, T1 = 6 and T2 = 2.

Based on the decisions mode in horizontal and vertical

directions, the frame is segmented in three no filtering (N),

weak filtering (W) and hard filtering (H) regions. Figure 4

shows an example of segmentation.

2.1.3. Two steps filtering for deblocking

Two steps filtering is done after segmentation and labeling

of each pixel. A 6 × 6 filtering window is centered at the

intersection of four 4×4 pixel blocks as shown in Fig. 5. The

filtering window is placed at the upper left corner of the frame

and is shifted across the whole frame.

Deblocking is done in two steps. In the first step, only

eight pixels are filtered at the intersection of four 4 × 4 pixel

blocks (x1 . . . x8). As mentioned before, there are two op-

tions for each pixel in the both vertical and horizontal di-

rections. After segmentation, if no filtering mode is selected

in any direction with other filtering modes, only one dimen-

sional filters are required. For instance, in NW or WN modes

just apply a weak 1D filter on the target pixels in vertical and

horizontal directions, respectively. If NH or HN is selected

then a hard 1D filter is applied to the target pixel in one of

both directions. When the filtering mode belongs to the weak

filtering and hard filtering mode (WH, HW, HH), 2D filtering

is applied on the pixel. Equation 5 shows the updated values

of the x1u in different modes (� is the bitshift operator).

x1u =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

y1 + 5x1 + 3x2 − y2 � 3 if NW,

2a7 + y1 + 2x1 + x2 + y2 + a8 � 3 if NH,

4(x1 + a3) + 2(x2 + y2 + y3) + y1 + y2 � 4 if WH,

4(a2 + a3 + a4 + x1) + 2(y1 + x5 + y4

+y6) + a7 + x2 + y2 + a8 + y3 + y5+

x3 + x6 � 5

if HH.

(5)

The other pixels are filtered in the same way. To limit

computation, the weighting matrix of the 2D filter is simpli-

fied and some coefficients are cut or rounded. The literature

includes different methods for simplification [3, 5].

Fig. 5: Pixels must be filtered in two steps filtering in window

(6× 6).

At the end of the first step, pixels belonging to x1 . . . x8

are filtered and in the second step, the remaining pixels be-

longing to y3 . . . y6 are filtered by applying the appropriate

filter according to the pre-assigned filtering mode. The pixels

will update according to their filtering mode as follows:

y3u =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

3x5 + y3 + y7 − y4 � 2 if NH

2x5 + 5y3 + 3y4 − 2x8 � 3 if NW

6x5 + 4y3 + 2y4 + 4x7 + 2y5 − x1 − x3 � 4 if HW

x5 − x7 + x1 − x3 + 4y3 + 2y5 + 2y4 � 3 if WW

2(x5 + x7 + x1 + x3) + y5 + 6y3 + y4 � 4 if HH

(6)

For symmetric filtering modes, the filtering values are simply

computed in a symmetric manner.

2.2. Bilateral Filter for Deringing

After removing the blocking artifacts from the frame, an

adaptive bilateral filter is used to remove ringing artifacts.

The bilateral filter is a nonlinear weighted averaging filter,

obtained by combining two Gaussian filters; one filter works

in spatial domain, other filter works in intensity domain [14].

The weights depend on both the spatial distance and the in-

tensity distance with respect to the center pixel. The main

feature of the bilateral filter is its ability to preserve edges

while doing spatial smoothing. At pixel location x, the output

of a bilateral filter can be formulated as follows:

J(x) =
1

Z

∑
y∈ψ(x)

e
−‖(y−x)‖2

2σ2
d e

−|(I(y)−I(x))|2
2σ2

r , (7)

where σd and σr are parameters controlling the fall-off of

weight in spatial and intensity domains, respectively. ψ(x)
is the spatial neighborhood of pixel I(x) and Z is a normal-

ization constant:

Z =
∑

y∈ψ(x)

e
−‖(y−x)‖2

2σ2
d e

−|(I(y)−I(x))|2
2σ2

r . (8)

The behavior of the bilateral filter is determined by σd and σr.

For deringing, these parameters should be chosen carefully,

since it is desirable to avoid over-smoothing texture regions

and to preserve edges in edge regions. These could be done

first by estimating the texture regions and discontinuity of the
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edges, and then control the extent of smoothing and sharpen-

ing through the σd and σr values. In the proposed method,

each 4 × 4 block is classified into one of the four categories:

strong edge, weak edge, texture and smooth blocks. For a

smooth region, the value of the σd can be large, otherwise it

should be small. Classification is done by computing the stan-

dard deviation (STD) in a 4×4 window around each pixel and

comparing the maximum STD in each 4× 4 block with a set

of predetermined thresholds as follows:

σd =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

StrongEdge, σd = 0.8 if MaxSTD ∈ [35,∞)

WeakEdge, σd = 1.8 if MaxSTD ∈ [25, 35)

Texture, σd = 2.8 if MaxSTD ∈ [15, 25)

Smooth, σd = 3.8 if MaxSTD ∈ [0, 15)

(9)

The optimal σr value of the bilateral filter is linearly propor-

tional to the standard deviation of the noise (σr = α × σn).

The noise variance is estimated with the robust median noise

estimator technique [11]. In the proposed algorithm, the value

of α is set to 1/3 in each 4 × 4 block. The calculation of σd

and σr are repeated for all blocks to obtain the block spatial

map Mσd
and the block intensity map Mσr .

3. SIMULATION RESULTS

The performance of the proposed algorithm was evaluated

on H.264/AVC video sequences through comparison with

our implementation of several state-of-the-art spatial post-

processing algorithms [3–9, 12, 13]1. The GOP structure

was defined as (IPPB)12. Two different types of exper-

iments have been performed. In the first experiment, the

algorithm was applied with two different quantization pa-

rameters (QP = 35, 45) with the in-loop deblocking filter

enabled. In the second experiment the in-loop deblocking

filter was disabled. Several CIF (4:2:0) test sequences were

chosen: Akiyo, Bus, Coastgard, Container, Cycling, Fore-

man, Hall, Mobcal, Mother and Daughter. The algorithms

were applied on the first 100 frames of each sequence. The

qualities of the different algorithms have been compared in

terms of Weighted-PSNR and Weighted-MSSIM, where the

luma and chroma components have a weight of 2/3 and 1/6,

respectively [15, 16]. The comparative objective results for

the first experiment are summarized in Table 1. It can be

seen that the proposed algorithms achieves higher PSNR and

MSSIM compared to the other algorithms.

In the second experiment, the H.264/AVC in-loop de-

blocking filter was disabled. The proposed algorithm reaches

higher PSNR and MSSIM when compared to the in-loop

filter alone. Table 2 shows the performance of the proposed

algorithm against H.264/AVC when the in-loop filtering is

disabled on Akiyo video sequences.

Figure 6 visually compares the in-loop filter and the pro-

posed post-processing algorithm for deblocking and dering-

ing. It can be seen that the blocking and ringing artifacts are

1The software for [9] was provided by Zhai

Table 1: The average results of post-processing H.264/AVC

video test sequences using different algorithms.

Metric PSNR MSSIM

QP 35 45 35 45

H.264/AVC 34.76 30.51 0.906 0.810

[3] 34.09 30.35 0.898 0.806

[4] 35.09 30.63 0.911 0.812

[5] 35.03 30.52 0.910 0.811

[6] 34.66 30.49 0.901 0.809

[7] 34.82 30.57 0.907 0.813

[9] 35.03 30.59 0.910 0.813

[8] 35.00 30.36 0.907 0.809

[12] 35.04 30.39 0.909 0.810

[13] 34.82 30.44 0.908 0.809

Proposed 35.18 30.62 0.911 0.814

Table 2: Results of H.264/AVC video when the in-loop filter-

ing is disabled/enabled and with the proposed algorithm on

Akiyo video.

Metric PSNR MSSIM

QP 35 45 35 45

Disabled in-loop 33.15 28.21 0.895 0.793

Enabled in-loop 33.25 28.36 0.912 0.806

Proposed 33.30 28.43 0.912 0.812

more effectively attenuated in both images, resulting in a bet-

ter perceptual quality for the reconstructed video.

4. CONCLUSION

We have proposed an adaptive post-processing algorithm for

blocking and ringing artifact reduction in H.264/AVC video

sequences. The algorithm uses a quantization parameter to

estimate the quality of each frame. Deblocking is performed

using a quality metric and the activity of pixels across of the

block boundary; a deringing algorithm is applied to the areas

which have ringing artifacts using an adaptive bilateral filter.

Results show that the proposed algorithm improves the objec-

tive and subjective quality of H.264 video sequences.

a b c

Fig. 6: The comparison of filter result on Akiyo (75th frame),

a) Compressed frame, b) In-loop filter, c) Proposed algorithm.
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ABSTRACT

This work presents a method to determine the optimal

backlight scanning signals to minimize crosstalk for time-

sequential stereoscopic 3D on LCD TV with active shutter

glasses. The solution is obtained through optimization of

the variables defined by a model of backlight scanning that

considers important aspects like liquid crystal transitions and

light diffusion, subject to constraints that ensure the rendition

of a uniform backlight. Compared with basic backlight scan-

ning, the proposed method can increase luminance at a given

crosstalk level or reduce crosstalk at a given luminance level.

Index Terms— Optimization, Liquid crystal displays,

Time-sequential stereo 3D, 3D crosstalk, Backlight, Scan-

ning, Strobing, Blinking, Three dimensional TV

1. INTRODUCTION

Among display technologies, liquid crystal displays (LCDs)

are today the most widespread on the TV market. Tradition-

ally used to visualize two dimensional (2D) content, LCDs

can also be used to display stereo three dimensional (3D)

content [1]. The effect of stereo vision is achieved by show-

ing two different views of the same scene to the left and the

right eye; this is possible with either passive glasses or active

glasses. In the first case, left and right frame are displayed

at the same time but on different partitions of the screen (i.e.

even and odd lines); the partitions emit light with different

polarization and the use of glasses with properly polarized

filters allows the right frame to reach only the right eye and

the left frame to reach only the left frame TODO: replace with

EYE. In the second case, the left and the right frames alter-

nate on the screen in sequence; the frames are delivered to

the intended eye with the use of active shutter glasses based

on liquid crystals (LCs), which become clear to let only the

intended frame through and opaque to block the other. To

maintain the input frame rate, the display refresh rate must

be double (i.e. a 60Hz video requires a 120Hz refresh rate).

This second approach is called time-sequential stereoscopic
visualization and is the case considered in this work.

One of the most important aspects affecting 3D video

quality is the presence and intensity of crosstalk. Crosstalk

is the incomplete isolation of the left and right image chan-

nels so that one image leaks into the other; the term is often

confused with ghosting, which is the perception of crosstalk

[2]. When using shutter glasses with LCDs, crosstalk is due

to several factors, including the quality of the shutter glasses,

their synchronization with the display, the viewing angle, the

response time of the display pixels and the image update

method of the screen [1]. The last two aspects depend on

the display and are addressed in this work. In LCDs, frames

are updated with a progressive scanning process where pixels

are addressed in sequence, typically starting from the top-left

pixel and then proceeding left-to-right and top-to-bottom. Af-

ter being addressed, each pixel completes the transition to its

new state and becomes stable after a finite time, called re-
sponse time. These two facts imply that, during the update

process, there is more than one frame shown on the display;

depending on the characteristics of the display, it can happen

that there is never one single frame shown on the screen. This

is one of the causes of crosstalk independent from other fac-

tors like those due to the shutter glasses.

In this work, we focus on reducing crosstalk using LCD

backlight. The backlight is the component of an LCD that

emits light; this light is modulated by LC based pixels, which

give it the desired intensity and color, depending on the input

image. Traditionally, backlight used to be global, that is with

a uniform luminance across the whole display, and always

turned on. More recently, new screens with local backlight
have been introduced: here, the backlight is divided in sev-

eral sectors or segments, each one with a light source (usually

light emitting diodes, or LEDs) that can be controlled inde-

pendently. Local backlights have several advantages, for ex-

ample to allow dynamic backlight dimming, where the back-

light adapts dynamically to the displayed image to reduce

power consumption and improve contrast. Local backlights

can be also used to reduce crosstalk in time-sequential stereo

visualization, through the techniques of backlight strobing
(also called blinking [3]) and backlight scanning. In backlight

strobing the whole backlight is turned on only when all the

pixels are stable, otherwise is turned off: this way, each frame

is shown only when all its pixels have been updated com-

pletely, assuring that there is no residue of the previous one;

unfortunately this might not always be possible if the update
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process is too long. Backlight scanning is instead done during

the update process: the backlight segments are turned on and

off to follow the LC scanning and to highlight the stable pix-

els against the others. Backlight strobing and scanning can be

combined, so that the first is done while the pixels are updated

and the second is done when they are all stable. It should be

noted that luminance is a scarce resource when dealing with

3D TV on LCDs with passive glasses, because of the many el-

ements that dissipate the backlight (display light guides, light

diffusers, light polarizers, LCs, color filters and glasses LCs).

Both strobing and scanning reduce light emission, so it is im-

portant to maximize it with acceptable crosstalk levels.

While backlight strobing is overall simple and only re-

quires to know when all pixels are stable, backlight scan-

ning is a more complex problem. A very simple way to do

backlight scanning is to turn on one segment at a time, in se-

quence, to follow the pixel scanning. This approach has been

used in [4] and we refer to it as basic backlight scanning. Al-

though simple, basic backlight scanning ignores display char-

acteristics and, with a large number of segments, can reduce

luminance dramatically. In this work, we propose a model

for backlight scanning that we use to minimize crosstalk at a

given luminance level. The model includes important aspects

like light diffusion in the backlight and the pixel response for

display specific optimization.

The rest of this paper is structured as follows. Section 2

presents the model in all its aspects. The model is used to

formulate an optimization problem in Section 3. Experiments

based on the model and results are reported in Section 4. Fi-

nally, conclusions are drawn in Section 5.

2. MODELING

In this section we define a model for backlight scanning in-

cluding its main aspects. Based on the model, we propose a

solution to find the optimal backlight scanning strategy mini-

mizing 3D crosstalk. To avoid issues like changing luminance

levels, the model is defined image-independent.

2.1. Timing of scanning and strobing

We consider the case of LCD screens which start drawing a

new frame from the top-left pixel, going left-to-right and top-

to-bottom. The frame time tf is the time between the start

of two consecutive frames. On a display with a refresh rate

of 120Hz, tf = 1
120s. The pixels are addressed one by one

at time ti; the time required to address all of them is called

addressing time (ta). After being addressed, each pixel com-

pletes the transition after the response time tr.

We define scanning time (ts) as the time during tf when

backlight scanning is performed:

ts =

{
ta + tr if ta + tr < tf

tf if ta + tr ≥ tf
. (1)

By definition, ts cannot be longer than tf . When all the pixels

are stable there is no need to scan the backlight and strobing

can be done by turning all segments on. Strobing lasts for

a tf − ts long time, therefore it is not possible if ts = tf ,

because there is never an instant when all pixels are stable.

Figure 1 includes a visualization of these concepts. In gen-

eral, during ts at least two frames are partially shown on the

screen; depending on ta and tr, the frames can be three or

more. In this work we assume ta < tf , which guarantees that

the frames are at most two, and tr < tf , which ensures that

each pixel becomes stable before being addressed again.

During one loop of backlight scanning loop lasting ts, the

backlight is updated Q times. The updates happen at regular

intervals, at time tk where k = 0, . . . , Q− 1, so that

tk+1 = tk +
ts
Q
. (2)

During the time interval [tk, tk+1), or equivalently during

[tk, tk + ts
Q ), the backlight is fixed. For simplicity, we as-

sume that t0 coincides with the beginning of the new frame,

that is when the top-left pixel starts the transition.

2.2. Backlight

Local backlights have several independently controllable light

sources, usually LEDs, assigned to specific areas of the dis-

play, called segments. In the following discussion we use the

terms LEDs and segments interchangeably.

Each LED contributes to the luminance of many pixels,

and the luminance of each pixel is determined by many LEDs.

The interaction between LEDs and pixels is described by the

point spreading functions (PSFs), which specify the influence

of each LED on each pixel.

LED j is controlled by the time varying signal rj(t), the

values of which range between 0 and 1, 0 meaning that the

LED is off and 1 meaning that it is at full power. The lumi-

nance emitted by LED j is proportional to rj(t). The back-

light luminance bi(t) emitted by all M LEDs at pixel i is

bi(t) =
M∑
j=1

hij · rj(t) (3)

where hij is the contribution of LED j to pixel i when the

LED is at full power. As rj(t), bi(t) is valued between 0 and

1. The complete set of values hij for all LEDs and all pixels

defines the PSFs of the backlight. We assume uniform back-

light, therefore all hij for pixel i sum up to 1 and consequently

all hij sum up to the number of pixels, defined as N .

During [tk, tk + ts
Q ), the rj(t) values do not change, as

well as bi(t). We indicate the backlight luminance for pixel

i and the value of the LED j during this time as rjk and bik,

respectively:

bik =
M∑
j=1

hij · rjk. (4)
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Fig. 1. Backlight scanning/strobing timeline for ts < tf with

short ta and tr (top) and for ts = tf with larger ta and tr (bot-

tom); in the latter case strobing does not occur; the vertical

axis of Frames represent vertical screen position; the shading

indicates pixel transition to the new frame; the red and green

overlays show when the frames are considered correct (C) or

ghost (G); the square waves are the LED control signals.

2.3. Frames

We introduce the definition of correct frame and ghost frame
(so named because it causes ghosting): the former is the frame

that is being shown on more than N
2 pixels, while the latter is

the frame shown on the remaining pixels.

In the case of two frames on the screen, there is a rela-

tion between previous/current frame and correct/ghost frame.

When the current frame starts to be updated at t0, the previ-

ous frame is the correct and the current is the ghost. When

half of the pixels have changed to the current frame, this be-

comes the correct frame and therefore the previous becomes

the ghost frame. The rigorous definition of the moment when

the change happens depends on the pixel transition function

(see next Section). For simplicity, in this work we define this

instant to be t0 +
ta+tr

2 . Figure 1 includes an illustration of

these concepts.

2.4. Pixel transition and state

In a LCD, the luminance emitted by pixel i depends on the

intensity of the backlight behind it and by its transmittance.

The proposed model is image-independent, therefore we ig-

nore transmittance. However, for backlight scanning/strobing

it is necessary to know the state of the pixel in its transition

from one frame to the other. We express this transition with

the function f(t), which is characterized by the response time

tr, which depends on the LC characteristics and on the initial

and final gray values. To keep the model image-independent,

we consider only one response time which is representative

of all the gray-to-gray transitions. This could be, for exam-

ple, the largest response time or a shorter time which approx-

imates the response time of a large selection of gray-to-gray

transitions. The function f(t) is valued between 0 and 1 and

is increasing in [0, tr]; its value is zero for negative t and 1 for

t > tr. The LC transition has been studied and modeled in

many previous works [5, 6, 7]. For simplicity, here we use a

linear transition from 0 to 1 in [0, tr].
With regards to the correct and ghost frame, let us express

the state of pixel i with the periodical function si(t), which is

based on f(t) and valued between 0 and 1. When si(t) is 1,

the pixel is part of the correct frame; when si(t) is 0, the pixel

is part of the ghost frame; other values mean that the pixel is

in transition from one frame to the other. The period of si(t)
is tf since the pixels are refreshed over the same period. The

complete definition of si(t) is

si(t) =

⎧⎪⎨
⎪⎩
1− f((t− ti)mod tf ) if t ∈ [ti,

ta+tr
2 ]

or if t ∈ [ ta+tr
2 , ti]

f((t− ti)mod tf ) otherwise

(5)

During the time interval [ti,
ta+tr

2 ] (or [ ta+tr
2 , ti] if ti >

ta+tr
2 ), the value of f(t) is inverted to reflect the fact that

the transition is from the correct frame to the ghost frame.

Figure 2 shows examples of si(t).
We also define sik as the average state of pixel i during

the time interval [tk, tk + ts
Q ), also depicted in Figure 3:

sik =
Q

ts

∫ tk+
ts
Q

tk

si(t)dt. (6)

2.5. Luminance

We introduce lC,i(t) and lG,i(t) as the contribution of pixel i
to the luminance of the correct frame and the ghost frame:

lC,i(t) = si(t)bi(t), (7)

lG,i(t) = (1− si(t))bi(t). (8)

Equation 8 reflects the fact that the light not going through the

correct frame goes through the ghost frame. The average lC,i
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Fig. 2. Three examples of si(t) with different ti.

Fig. 3. Example of average pixel state (top) and backlight

diffusion (bottom) during scanning time with 4 segments and

4 updates; green color corresponds to an average state mostly

in the correct frame, while red corresponds to the ghost frame.

during [t0, t0 + ts) can be calculated by integration:

lC,i =
1

ts

∫ t0+ts

t0

si(t)bi(t)dt. (9)

Reminding that during [t0, t0 + ts) the backlight is updated

Q times, that it is constant during [tk, tk + ts
Q ) with k =

0, 1, . . . , Q − 1, and combining Eq. 9 with Eqs. 4 and 6 we

obtain

lC,i =
1

Q

Q−1∑
k=0

biksik. (10)

Assuming a uniform backlight, we can express the correct

frame luminance LC as the average of the pixel luminances:

LC =
1

N

N∑
i=1

lC,i. (11)

Combining Eq. 11 with Eqs. 10 and 4 gives

LC =
1

NQ

N∑
i=1

Q−1∑
k=0

M∑
j=1

hijsikrjk. (12)

Upon definition of the coefficients gjk =
∑N

i=1 hijsik, Eq. 12

can be rewritten as

LC =
1

NQ

M∑
j=1

Q−1∑
k=0

gjkrjk. (13)

As Eq. 13 shows, LC is simply a linear combination of the

LED values rjk with coefficients gjk.

The luminance of the ghost frame LG can be calculated

similarly using lG,i instead of lC,i. It can be calculated that

LG =
1

NQ

N∑
i=1

Q−1∑
k=0

bik − LC , (14)

which shows again that the backlight flows through either the

correct or the ghost frame. We define the frame luminance L:

L =
1

NQ

N∑
i=1

Q−1∑
k=0

bik, (15)

from which follows that

L = LG + LC . (16)

3. OPTIMAL BACKLIGHT SCANNING

Based on the proposed model, we formulate an optimization

problem to minimize crosstalk at a fixed luminance level us-

ing backlight scanning.

3.1. Crosstalk

The metric used in [4] measures crosstalk between black

and white frames and follows international standards (Sec-

tion 17.1, Eq. 27 of [8]). However, this metric includes the

contribution to crosstalk of shutter glasses and is designed

for measurements with a light-meter. In order to measure

crosstalk as a function of the display only and to avoid im-

age dependency, for our model we define it as

Crosstalk =
LG

LC
, (17)

which combined with Eq. 16 gives

Crosstalk =
L

LC
− 1. (18)

Minimizing Eq. 18 is equivalent to minimizing Eq. 17 and,

for fixed L, it is equivalent to maximizing LC .

3.2. Constraints

It is necessary to enforce a constraint on rjk ensuring a uni-

form backlight. We assume that the Q updates of the back-

light during ts are fast enough to avoid visible flickering and

to produce a sensation of constant backlight. For this, it is

necessary that the average value of LED j during the time

interval [t0, ts) is constant and equal for all LEDs:

1

Q

Q−1∑
k=0

rjk = d j = 1, . . . ,M. (19)
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The constant d must be valued within the 0 and 1. Remem-

bering that the sum of all the hij elements is N (see Section

2.2) and combining Eqs. 4, 15 and 19, we obtain

L = d, (20)

which means that the frame luminance is equivalent to the

average LED value during scanning time.

3.3. Optimization problem

The goal of optimization is the minimization of crosstalk. For

fixed d, this is equivalent to the maximization of LC . The

variables of the problem are the M ×Q LED values rjk. The

constraints are the uniformity constraint (Eq. 19) and the valid

values of rjk. The problem is therefore:

maximize
∑M

j=1

∑Q−1
k=0 gjkrjk

subject to
∑Q−1

k=0 rjk = Qd j = 1, . . . ,M
0 ≤ rjk ≤ 1

(21)

Considering that realistic maximum values of M and Q
are in the order of tens and thousands, respectively, the num-

ber of variables of the problem is in the order of tens of thou-

sands. Considering also that the value to maximize is a lin-

ear combination of variables, the complexity of the problem

can be considered low. It might be more computationally de-

manding to calculate the gjk coefficients, depending on them

being determined numerically or analytically and by the mod-

eling of f(t). Nevertheless, the optimization problem is dis-

play specific and needs to be solved only once: after the opti-

mal scanning control signals are known, they can be used on

the backlight of the display without any additional cost.

4. EXPERIMENTS AND RESULTS

This section reports the results of some experiments that have

been designed on the model presented above. The proposed

approach for optimal backlight scanning is compared against

basic backlight scanning, where the segments are turned on at

full power (rjk = 1) in sequence and only one at a time. This

means that the constraint given by Eq. 19 is respected and that

d = 1
M , which is also the frame luminance L.

We have simulated a display based on an existing Full

HD edge-lit screen with 16 backlight segments placed in 8

rows and 2 columns. Grouping segments together enables the

emulation of a coarser backlight (i.e. 4 rows and 1 column).

We consider the cases of 2, 4 and 8 rows and 1 column and

additionally that of global backlight where all rij are set to d.

The proposed approach was implemented in Matlab using

the CVX package (version 1.21). The frame time tf was set to
1

120 s = 8.33ms. The addressing time ta was set to 0.75× tf .

Three response times tr were considered: 0ms (ideal, instan-

taneous response), 2ms and 4ms. The pixel response f(t) was

modeled with a linear function, for simplicity. The number

Fig. 4. Experiment with tr = 0ms (top), tr = 2ms (middle)

and tr = 4ms (bottom).

of backlight updates Q was set equal to the number of pixel

lines (1080); this is justified by the very fast response time

of LEDs, which is in the order of few microseconds or less.

The minimum crosstalk was calculated for different values of

d ranging from 0 to 1 with a step of 0.01.

Figure 4 shows the results for tr = 0ms, tr = 2ms and

tr = 4ms. The plots account for backlight scrolling and

strobing combined. Since while strobing the backlight is fully

turned on and all pixels are stable, average luminance over tf
is equal to ts

tf
LC +

tf−ts
tf

, while average crosstalk is equal to
ts
tf

LG

LC
, as there is no crosstalk while strobing.

It can be seen that optimal backlight scanning improves

the tradeoff between luminance and crosstalk compared to ba-

sic scanning. For instance, with tr = 4ms and 2 segments, ba-

sic scanning has 50% luminance and 1.335× 10−1 crosstalk.

Optimal scanning can either reduce crosstalk to 2.895×10−2

at the same luminance level or increase luminance to 83%

with the same crosstalk. The relative improvement is even

larger for 4 and 8 segments. In all cases, having more back-

light segments allows larger crosstalk reduction at the same

luminance level. This is expected as, in these experiments,

segments are grouped together to simulate coarser backlights,

therefore limiting the degrees of freedom of the optimization.
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Fig. 5. LED control signals before (top, basic backlight scan-

ning) and after optimization (bottom) with 4 backlight seg-

ments.

It can also be seen that the size of the improvement varies

with the luminance level, and that the improvement from 2 to

4 segments is rather large if compared to the 4 to 8 improve-

ment. This might suggest that 4 backlight segments could be

“good enough” to achieve acceptable results.

Figure 5 shows how the backlight control signals for tr =
4ms have changed after optimization if compared with basic

scanning. It can be seen that the improvement is achieved by

turning on more than one LED at the time and by concentrat-

ing the light output when this is most convenient to increase

LC . This can cause the backlight to be turned off for part

of the scanning loop, creating a sort of complementary strob-

ing that shuts the backlight off when doing otherwise would

be detrimental. The figure also shows that the shape of the

square waves controlling the backlight LEDs has not changed

and that therefore the optimal result is obtained by properly

“shifting” the waves to the most convenient time intervals.

These results are illustrative of the improvements that can

be obtained by optimizing backlight scanning, even if some

simplifications have been used (i.e. linear transition function).

Nevertheless, the model is general enough to allow a more

precise simulation of the system.

As a final note, the same experiments have been run for

another simulated screen with the same characteristics except

for a 10 times lower pixel resolution. The results were nearly

identical, showing that it is acceptable to reduce the complex-

ity of the problem by downsampling.

5. CONCLUSION

We have proposed a model for backlight scanning which

we have used to formulate an optimization problem to min-

imize crosstalk at a given luminance level. The results show

that better tradeoffs between luminance and crosstalk can be

achieved by concentrating the emission of light where this re-

duces crosstalk. The tradeoff improves with more backlight

segments, however the experiments suggest that 4 segments

could be sufficient to achieve good tradeoffs. Complexity is

not an issue because the value function is linear, the variables

are relatively few and there are no particular time require-

ments to solve the problem, as the optimal scanning signals

need to be determined only once. Moreover, downsampling

the problem does not affect the final result.
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Abstract—We present a framework for modeling color Liq-
uid Crystal Displays (LCDs) having local LED backlight with
dimming capability. The proposed framework includes critical
aspects like leakage, clipping, light diffusion and human percep-
tion of luminance and allows adjustable penalization of power
consumption. Based on the framework, we have designed a set
of optimization-based backlight dimming algorithms providing a
perceptual optimal balance of clipping and leakage, if necessary.
The novel algorithms are compared with several other schemes
known from the literature, using both objective measures and
subjective assessment. The results show that the novel algorithms
provide better quality at a given energy level or lower energy at
a given quality level.

Index Terms—Backlight dimming, Color image, Contrast, High
dynamic range (HDR), Image quality, LED backlight, Light
leakage, Liquid crystal display (LCD), Optimization, Power
saving.

I. INTRODUCTION

Liquid Crystal Displays (LCDs) are nowadays the most

widespread display type, used for several kinds of devices,

from digital watches to 3D TV. Liquid Crystals (LCs) are not

light emitters but voltage controlled light filters, and therefore

require an external light source, typically a built-in backlight.
The backlight is usually composed of one or more light

sources, a light diffuser distributing the light evenly across the

display, and sometimes a light guide, which directs the light

before it enters the diffuser. Light sources can be placed behind

or at the sides of the diffuser, respectively defining direct-lit
and edge-lit backlights. Today, Light Emitting Diodes (LEDs)

are replacing Cold Cathode Fluorescent Lamps (CCFLs) as

light sources, thanks to rapidly improving energy efficiency

and decreasing price [1]. LED-based backlights can be divided

in independently adjustable segments, called local backlights,

in contrast to global backlight, where a single segment covers

the whole display; in this work we often use the word LED to

refer to backlight segments. Local backlight and LEDs have

eased the adoption of backlight dimming: with this technique,

the backlight can be dimmed to match the image content.

When the backlight is divided in local segments, each one

can be dimmed to match the brightness of the respective

image area. This saves power, since dark areas require less

light. Backlight dimming can also reduce leakage, a typical

problem of LCD: the LCs cannot completely block the light

going through them, which makes black pixels look grayish

and consequently reduces the contrast ratio. Backlight dim-

ming lowers the amount of light leaking through dark pixels.

The possibility to vary the backlight intensity also allows to

increase the number of distinct luminance levels that can be

emitted and enable High Dynamic Range (HDR) rendering.
The advantages of backlight dimming come at a cost and

create some challenges. Because of the division in segments

and the mixing effect of light diffusers, the backlight lumi-

nance of each pixel is determined by several LEDs. Because

of this, dark and bright pixels are in conflict since the high

luminance required by the latter produces leakage in the

former, and conversely the low luminance required by the

former causes the latter to look dim or in other words to

be clipped. In particular, the presence of a bright object on

dark background can cause a halo effect due to leakage. It is

therefore not always possible to determine a backlight level

that is ideal for all pixels; however, optimization can find the

optimal tradeoff given some starting conditions [2]–[4].
Several algorithms have been proposed for backlight dim-

ming. The simplest methods calculate the LED values from

global or local image statistics, for example using the maxi-

mum, average or square root of the average value of the pixels

contained in each segment [5]. These values can be combined

together and adjusted with correction tables, as in [6] and [7].

More complex algorithms use features like the global [8] or

local histogram [9]. The backlight level in each segment can

be improved by considering the neighboring ones [10]. To

calculate the backlight more accurately, other algorithms use

some level of knowledge of the point spreading function (PSF,

also called light spread function [8]), that is how the light

spreads from a point source on the diffuser plate [2]–[4].
To obtain optimal results, a backlight dimming algorithm

should take into account all the color components and include

an accurate model of the display characteristics, like PSFs

and (image dependent) leakage, which backlight dimming

algorithms often neglect. In this work, we present a model for

backlight dimming displays and propose optimization-based

algorithms built on top of it, that can calculate screen-specific

optimal backlight given some starting parameters. The rest

of this paper is organized as follows. Section II explains the

model of LCDs with local backlight dimming. In Section

III, we present a set of algorithms based on optimization

together with others from the literature. Section IV describes

the practical experiments we have performed to assess the

proposed algorithms and summarizes their results. Finally,

Section V provides the concluding remarks.

II. MODELING LOCAL BACKLIGHT DIMMING IN LCDS

In order to model local backlight dimming, the display

characteristics need to be taken in to account. The basic
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concepts are transmittance, the ratio of light that an LC pixel

lets through, and backlight intensity, the local brightness level

of the backlight [3]. These are the input signals to the LCD and

determine the resulting image. In a color display, each pixel

contains three Red, Green, and Blue (RGB) sub-pixels. The

observed backlight intensity at a certain pixel position depends

on the physical structure of the diffuser plate and on the light

sources. The distribution of light coming from each backlight

source is modeled using the PSFs, and the contributions from

different light sources are summed to model the total observed

backlight at each pixel. Because of leakage, there may be a

mismatch between intended and observed transmittance. All

these aspects need to be considered in the model.

A. Transmittance and leakage
In a locally backlit LCD screen, the observed pixel lumi-

nance l can ideally be expressed as the product of the backlight

intensity b and the LC transmittance t [3]:

l = bt. (1)

The values of l, b and t are normalized to [0, 1]. If b = 0 there

is no light behind the pixel, while if b = 1 the light intensity

is maximal. Similarly for the transmittance, if t = 1 the full

(normalized) backlight goes through the LC, and if t = 0 the

light is fully blocked. However, in practice, leakage prevents

LCs to block all the light [3]. Leakage can be modeled linearly

by using a parameter ε, also called the leakage factor, defined

as the ratio of light leaking when t = 0 and b = 1. In presence

of leakage, the model of the output luminance l becomes

l = bt+ εb(1− t), (2)

or alternatively:

l = bto, (3)

where to is the observed transmittance, as opposed to ideal

transmittance t; to can be expressed as

to = (1− ε)t+ ε. (4)

The model, Eqs. 2-4, allows each pixel to have a different ε
value, as leakage increases with the viewing angle θ. For high

accuracy, a vertical and a horizontal viewing angle should be

used, as leakage can increase differently in the two directions.

The perceived leakage also depends on the ambient light, as

it is easier to see in dark environment. For simplicity, in this

work we have assumed a constant value of ε across the screen.

B. Backlight diffusion
Light diffusion in the backlight can be expressed as a

function of the intensities of the backlight segments and their

PSFs. For each pixel, the backlight b resulting from a set of

LED values is modeled as the sum of all the PSFs multiplied

by the corresponding LED intensity, given by

b =
∑N

k=1 rkhk, (5)

where N is the number of segments, rk is the intensity of

segment k and hk is the value of the PSF of segment k at the

pixel position. In matrix form, Eq. 5 for all pixels is

b = Hr, (6)
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Figure 1. Example of the modeled (top) and the measured backlight (bottom).

where the column vector b has a b value per pixel, the influence
matrix H (N columns and a row per pixel) represents the PSFs

and r is a column vector with N LED values.

In practice, it often may be impractical to define all the

individual PSFs. One approximation is to use a high-level

segment-based description of the light diffusion, which re-

duces the amount of data at the cost of precision [4]; another

is to use one PSF for all LEDs. The downside of the latter

approach is that the segments close to the edges of the screen

will trim the PSF and make the modeling of light diffusion

inaccurate in that area. Light distribution is typically not

perfectly uniform (see Fig. 1). Because of the non-uniformity,

not all the pixels can reach the maximum luminance. One

solution can be to reduce the target peak luminance to some

value smaller than the maximum peak luminance achievable by

the screen. While an excessive reduction of peak luminance

is not advisable, lower target peak luminance can improve

the backlight uniformity and deliver a more pleasant viewing

experience especially when the maximum peak luminance is

very high. For this work, we have set the target peak luminance

to 99% of the maximum peak luminance, to cancel out peak

luminance fluctuations in the central part of the display.

C. Backlight-pixel interaction and brightness compensation

The reduction of luminance caused by dimming the back-

light can be compensated by increasing the pixel transmittance.

This is called brightness compensation [11]. In an ideal case,

the compensated transmittance tC can be solved from Eq. 1

by replacing l with the target pixel luminance ly:

tC =
ly
b
. (7)

The values of tC are limited to lie between 0 and 1, as LCs

can only attenuate light. Moreover, tC is lower-bounded by ε
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due to leakage. Equation 7 should thus be rewritten as

tC =

⎧⎪⎨
⎪⎩
1 if ly/b > 1 (Cond. I)

0 if ly/b < ε (Cond. II)

(ly/b− ε)/(1− ε) otherwise

. (8)

Condition I defines the occurrence of clipping, when the

LCs cannot fully compensate the backlight reduction creating

clipped pixels that appear dimmer than intended. Condition II

defines the occurrence of leakage, when compensated pixels

are brighter then intended. The observed physical transmit-

tance can be computed from Eq. 4, by replacing t with tC .

It should be noted that Eq. 8 describes hard clipping,

where pixels are compensated as much as possible. This

minimizes the error from the target luminance but on the other

hand can visually cause an undesirable posterization effect on

bright colors. This problem can be alleviated by using soft

clipping, where the clipping curve is smoothed to obtain some

differentiation in the posterized areas [11]. Equations 1-8 apply

for white backlight and a monochrome LC signal. When more

color components are used, as in RGB LCD, the equations

have to be applied to all of them. However, the color can

change if this is done independently for all channels, as the

original ratio between the components may change. A possible

solution is to compensate so that the ratio between R, G, and B

is maintained; this helps preserving color, at the cost of lower

luminance. For simplicity, in this study we have always used

hard clipping on the three color channels independently.

D. Perception of brightness

The impact of leakage on subjective quality is larger than

indicated by the physical luminance error, since the Human

Visual System (HVS) perceives it non-linearly: the sensitivity

to luminance variations decreases as the luminance increases.

In general, a perceptual response can be expressed as

lU = g(l), (9)

where g defines the perceived response of the HVS to the

physical luminance l. The function lU is said to be perceptually

uniform [12], i.e. a unit step indicates similar perceived

difference. Conversely, equal steps of l correspond to variable

step sizes of lU . We say that lU represents luminance in

perceptual domain and l the luminance in physical domain.

It should be noted that the model described in this Section is

specified in the physical domain, i.e. physical luminance, l,
is assumed in Eqs. 1-8. In this work, we shall approximate g
with the Gamma function, i.e.

lU = l
1
γ . (10)

The inverse response is simply given by:

l = lγU . (11)

In this work, for simplicity, we approximate the HVS

response to luminance with Eq. 10 and γ = 2.2, which

coincides with the gamma of the sRGB color space [13] and

thereby allows to compare the simulated perceptual output

directly with the input image. This is an acceptable choice

when the peak luminance of the display is set to about 100

cd/m2 [12]; for higher values, larger γ can be used. e.g. 2.2-

3.0 are reported to have excellent perceptual performance [14].

In the case of HDR LCDs operating at high peak luminance

(1000 cd/m2 or more), other response functions are more

appropriate [12], [15].

III. OPTIMIZATION-BASED DIMMING ALGORITHMS

This section presents a set of backlight dimming algorithms

based on optimization. These algorithms exploit the modeling

of backlight and LC transmittance to find the best trade-off

between leakage and clipping with the option to constrain

power. The backlight can be optimized for one or more color

components; a proposal to reduce complexity of the latter case

is presented, as well as an approach based on gradient descent.

A. Optimal Backlight Dimming

Backlight dimming can be formulated as an image depen-

dent optimization problem. In [2] the target is a clipping-free

result; in [4] it is to minimize power limiting clipping below

a threshold; in [3] it is the optimal tradeoff between leakage

and clipping in the physical domain. In this work, we extend

the algorithm in [3] to include power penalization and error

weighting. In the algorithms in [2] and [4] leakage is neglected

when calculating the backlight. In [4] additionally a strong

assumption that the backlight is constant inside segments is

made. We propose methods that, besides considering leakage

and allowing the use of detailed PSF to determine the back-

light, allow to determine the optimal backlight using one of

several cost functions thus providing broader generality.

In general, given a multivariate cost function f , the goal of

optimization is finding a combination of variable values mini-

mizing it. For backlight dimming the cost primarily depends on

the target output y and on the actual output x rendered on the

locally backlit LCD. The elements of x are given by Eq. 3; the

backlight b is given by Eq. 6, the transmittances t are limited

between ε and 1 (see II-A) and the LED values rk between 0

and 1. The initial formulation [3], where f is the 1-norm (�1)

or 2-norm (�2) of x−y, has been extended to include an error

weighting vector w, with an element per pixel, and a power

consumption penalty term given by the product of p and an

adjustable weight q [16]; p estimates power consumption as

the average of the LED values:

p =

∑N
k=1 rk
N

. (12)

This is a good approximation as the LEDs are controlled with

PWM signals whose duty cycle is proportional to the emitted

luminance. In this work, we have used w to improve the

perceptual result (see Section III-E).

This extended formulation includes [2] and [3] as special

cases. We want to minimize a cost function f(y,x,w, q, p)
subject to the model and to constraints on tk and rk; the

output of the algorithms, presented in this Section, are the

optimal rk values minimizing f . Several cost functions will

be considered; if f is linear then the problem belongs to the

class of linear problems, i.e. minimization of y − x in �1.
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The following sections present three formulations of backlight

optimization problems where the cost includes the norm of

y − x and power consumption.

Once a linear, or more generally convex, optimization prob-

lem has been formulated, it is possible to find a solution using

a software solver. For the results reported in this work, we have

used the CVX package [17], [18] in Matlab to implement the

algorithms of Sections III-B-D.

B. Single component

The following formulation considers the case where y and

x have one color component, i.e. grayscale images or the luma

component of a color frame:

min ‖(y − x) ◦w‖+ q × p
s.t. x = b ◦ t

b = Hr
ε ≤ tk ≤ 1, k = 1, . . . ,mn
0 ≤ rk ≤ 1, k = 1, . . . , N

, (13)

where the ◦ operator defines element-wise multiplication, and

the first two conditions derive from Eqs. 3 and 6, respectively.

After optimization, the rk values determine the optimal back-

light. The problem may be formulated in linear form [3]:

min ‖λ‖+ q × p
s.t. b = Hr

λ ≥ ((ε ◦ b)− y) ◦w
λ ≥ (y − b) ◦w
λ ≥ 0
0 ≤ rk ≤ 1, k = 1, . . . , N

. (14)

If q is set to 0 and the elements of w to 1, the problem

is equivalent to [3]. If additionally the elements of ε are set

to 0, leakage is ignored and the solution will be clipper-free.

Assuming small values of q going to 0, will lead to a minimum

energy solution under the clipper-free requirement as in [2].

The error between x and y is caused by distorted pixels,

i.e. leaking and clipping pixels. Another source of distortion

is the quantization of the LC control signals, usually limited

to 8-10 bits. However, leakage and clipping are more critical

and the quantization error is ignored in the optimization step.

C. Color components

The optimization problem can also be formulated for color

images and displays, at the cost of higher complexity due

to the larger number of variables and constraints. The min-

imization affects the three RGB color components. However,

the monochrome backlight is the same for all components. A

specific weight vector may be assigned to each component.

min
∥∥∥∑i=R,G,B (yi − xi) ◦wi

∥∥∥+ q × p

s.t. xi = b ◦ ti; i = R,G,B
b = Hr
ε ≤ tki ≤ 1; k = 1, . . . ,mn; i = R,G,B
0 ≤ rk ≤ 1; k = 1, . . . , N

. (15)

D. Using Min and Max of the color components

This section presents an approach that approximates the

full color problem described in the previous section but with

the same complexity as the single component formulation. In

RGB images, the color of each pixel is given by a triplet of

values. The linear formulation of the grayscale optimization

problem (Eq. 13) specifies an upper and a lower threshold

for the variables λ to be minimized. These thresholds de-

termine leakage and clipping errors. In an RGB triplet, the

minimum value corresponds to the leakage threshold, while

the maximum value to the clipping threshold. Equation 14 is

thus modified by replacing y with ymin or ymax; ymin is

the vector of the minimum values of each RGB triplet, while

ymax is the vector of the maximum values:

min ‖λ‖+ q × p
s.t. b = Hr

λ ≥ ((ε ◦ b)− ymin) ◦wmin
λ ≥ (ymax − b) ◦wmax
λ ≥ 0
0 ≤ rk ≤ 1, k = 1, . . . , N

. (16)

The idea behind this approach is that if the maximum and

minimum pixel values can be properly compensated, then the

median value can be too. The number of variables λ is reduced

to one third, from one per sub-pixel to one per pixel. For a Full

HD image, this means going from about 6 million variables to

about 2 million. The number of constraints is also reduced by

a third. The results may be sub-optimal, but our experiments

show that the error increases only slightly (see Section IV-C).

E. Perception-based error weighting

The optimization problems that have been presented assume

y and x to be linear. However, the HVS does not perceive

luminance linearly. This means that the optimal “physical”

solution may differ from the optimal perceptual solution. It is

possible to mitigate the difference using the weight vector w
introduced in the extended formulation of Eqs. 13-16.

As mentioned in Section II-D, in this work we approximate

the HVS response to luminance using Eq. 10 with γ = 2.2.

This function shows that the sensitivity to luminance variation

decreases as the luminance increases. We model this sensitivity

with the slope of the curve, which in this case gives the weights

w =
1

γ
× y1−

1
γ . (17)

If, for each pixel, the weight w is calculated from the target

luminance y, the impact of the error y − x is adjusted

accordingly. This increases the influence of leakage errors over

clipping errors, reflecting human perception.

F. Gradient Descent

Given a cost function, the optimal backlight for an image

y can also be determined through iterative search-based ap-

proaches, such as gradient descent. The solution space has as

many dimensions as the number of backlight segments. For

a given solution, it is possible to calculate the gradient or to

estimate it numerically, if a closed form is not available. The
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next solution is then obtained by taking a step in the direction

opposite to the gradient, since the target is minimization. This

process can be iterated as needed, or until an ending condition

is met. The solution at iteration i+ 1 is calculated by

ri+1 = ri − s∇f(ri), (18)

where ri is the solution for iteration i, f is the cost function

for y, ∇ is the gradient operator and s the step size. The minus

sign is because the aim is to minimize the cost. The length of

s can be chosen adaptively. In this work, we have used golden

section search to find the error-minimizing step for each

iteration [19]. Given the gradient of the current solution and

Eq. 18, the cost of the next solution (ri+1) can be expressed

as a function of s. Golden section search is a bisection

method that allows to find a bracketed minimum of this

function iteratively and with a given precision, ensuring fast

convergence and reducing the number of function evaluations.

The initial bracketing is given by s = 0 and the largest value

of s ensuring that ri+1 lies within the solution space.
This iterative strategy is very flexible, as it allows to improve

existing solutions. Consider for example a video sequence

with similar consecutive frames that probably have similar

optimal backlight; gradient descent can calculate the solution

for the current frame taking the backlight of the previous one

as starting solution and adjusting the iterations to the available

resources. This would also reduce backlight flickering.

G. Reducing complexity
The complexity of these optimization problems can be very

high. For example, with Full HD input, Eqs. 14 and 16 have

more than two million variables; for Eq. 15 the numbers triple.

Thus, it may be necessary to find ways to contain complexity.

It has been suggested to exploit the fact that in small areas the

backlight is smooth and nearly constant, which would allow

to use just one variable per area [3]. A comparable approach

has been used in [4], where high precision PSFs are replaced

with segment-based high-level approximations of the light

diffusion; such approximations might however be too coarse in

the case of large backlight segments, like in edge-lit displays.

Another solution is to calculate the backlight on a sub-sampled

version of the input image. The sub-sampling can be done

simply by downscaling the input image, or by adopting more

complex strategies that select samples adaptively so that they

represent the local characteristic of the image, such as colors,

edges and the risk of leakage or clipping; in a previous

work we have shown that it is possible to compute nearly-

optimal results by using about 10-25% of the input pixels [20].

For the gradient descent approach, an additional parameter

is the number of iterations, which can be set as needed;

experiments show that the largest improvements happen in the

first iterations, therefore good results can be achieves with few

loops. For video sequences, using the result from the previous

frame as initial guess can provide a fast solution.

IV. EXPERIMENTAL RESULTS

We have conducted experiments to evaluate the effectiveness

of the proposed approaches. A first set of experiments mea-

sured the performance of the reduced complexity algorithm

described in Section III-D. A second set of experiments

compared a combination of the proposed approaches against a

selection of algorithms from the literature. All the algorithms

have been implemented in Matlab. The ones described in

Sections III-B-D use the CVX package [17], [18].

The experiments featured the modeling of two locally

backlit screens. One is a 55 inch panel with edge-lit backlight

having 16 segments placed in 8 rows and 2 columns. The other

is modeled on a 47 inch screen from SIM2 [21] with direct-lit

backlight having 2202 segments placed in a hexagonal grid.

Both screens have full HD resolution (1920x1080 pixels). Our

focus has been mainly on the first display.

Power consumption of the backlight is estimated with

Eq. 12. The metrics used have been Mean Squared Error

(MSE), calculated on the RGB differences between the origi-

nal and the distorted pixels, and LabPSNR, presented below.

The image and backlight values used in the measurements

are normalized between 0 and 1. Before being put into the

model, the normalized RGB values have been linearized with

γ = 2.2, which closely approximates the gamma of the sRGB

color space [13]. For each pixel, the target luminance (input

for the backlight dimming algorithms) is set to the minimum

of the two values given by the linearized input image data and

the maximum backlight luminance achievable for the pixel.

A. LabPSNR

Since the HVS has different sensitivity for different color

components (red, green and blue), the perceived impact of

color distortion is difficult to assess with traditional quality

measures, such as MSE, weighting different color components

in a non-optimal manner. Therefore we propose a metric

based on Peak Signal to Noise Ratio (PSNR), but operating in

the CIE 1976 L*a*b* color space (denoted Lab for brevity)

instead of conventional RGB or YUV spaces. The conversion

from linearized (Gamma corrected) sRGB to Lab is defined

via the intermediate XYZ color space as follows [13], [22]:⎡
⎣ X

Y
Z

⎤
⎦ =

⎡
⎣0.412 0.358 0.180
0.213 0.715 0.072
0.019 0.119 0.950

⎤
⎦
⎡
⎣ R

G
B

⎤
⎦ (19)

L∗ = 116 · f(Y/Yn)− 16
a∗ = 500 · [f(X/Xn)− f(Y/Yn)]
b∗ = 200 · [f(Y/Yn)− f(Z/Zn)]

where f(k) =

{
k1/3 if k > 0.008856

7.787 · k + 16
116 otherwise

, (20)

where Xn, Yn and Zn are the X, Y and Z values for the

reference white, respectively. The Lab color space has been

designed so that any transition of fixed magnitude in the color

space approximates an equivalent perceived change, regardless

of the direction. Therefore, we can define the color difference

ΔE, that is the perceived difference between two colors,

considering both luminance and chrominance differences [22]:

ΔE =
√
ΔL∗2 +Δa∗2 +Δb∗2, (21)

where ΔL∗, Δa∗ and Δb∗ define the differences between

the original and distorted pixel measured for L∗, a∗ and
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b∗ components. Using PSNR, we can define LabPSNR by

replacing conventional MSE by mean squared ΔE:

LabPSNR = 10 · log10

⎛
⎜⎜⎝ (ΔEmax)

2

1
mn

n∑
i=1

m∑
j=1

ΔE(i, j)2

⎞
⎟⎟⎠ , (22)

where ΔE(i, j) is the color difference at pixel position (i,j),

given by Eq. 21, m and n define the image dimensions,

and ΔEmax is the difference between black and white, i.e.

normalized sRGB triplets (0,0,0) and (1,1,1); its value is 100.

B. Backlight dimming algorithms

We have selected some backlight dimming algorithms pre-

sented in the literature to compare our approach against other

algorithms, besides the conventional full backlight and the

simplest algorithms described in the introduction [5]. The

algorithms introduced by Cho et al. [6] and Zhang et al. [7]

first calculate the backlight intensity combining average and

maximum luminance of the input image, then add a correction

term; in [6] it is based on the difference between maximum and

minimum values of each backlight segment; in [7] it is based

on the estimated loss of detail occurring when the backlight is

reduced to the average luminance of the input image. In [8],

Lin et al. propose to use the inverse cumulative distribution

of the global histogram to map, for each segment, a weighted

mean of the average and maximum pixel value to backlight

intensity. Kang et al. [9] presented an algorithm where multi-

histograms are used to analyze the pixel distribution for the

RGB components of the input image and set the backlight to

limit the occurrence of clipping. The algorithm proposed by

Kim et al. [10] calculates the backlight segment intensity by

analyzing the neighboring segments and by comparing leakage

and clipping measures. Albrecht et al. [2] introduced a clipper-

free algorithm which minimizes the power consumption under

this constraint. This formulation may be seen as a limiting

case of Eq. 15 by setting ε and q to 0. In the first step of the

algorithm, lower bounds are set for each backlight segment,

depending on the image content and the PSF. The second

(optional) step is iterative and finds, in each loop, the most

unsatisfied pixel (the pixel that requires the largest increase

in luminance to avoid clipping) and increases the intensity of

the most influential LED to satisfy it. The final step scans the

pixels of each segment in a specific order determined by the

PSF and adjusts the LEDs to make sure no pixel is clipped.

In our implementation we have included the first two steps,

which produce a clipper-free result.

C. Performance of the Min-Max color approach

This experiment aimed at assessing the performance of the

reduced-complexity color optimization approach based on the

maximum and minimum RGB values (Eq. 16) compared with

the full RGB problem (Eq. 15). The optimal backlight has been

calculated on both modeled screens, at different downscaling

factors (4, 5, 6 and 8 for the edge-lit panel, 8 and 10 for

the direct-lit panel), for two leakage factors ε valued 0.0002
and 0.001 and for both �1 and �2. The power penalty q was

Table I
COMPARISON OF FULL AND REDUCED COMPLEXITY COLOR �2

MINIMIZATION ON EDGE-LIT (TOP) AND DIRECT-LIT (BOTTOM) PANELS.

ε = 0.0002 ε = 0.001
Power MSE Power MSE

Full color 74.47 2.731 E-4 57.28 9.202 E-4
Color Min-Max 76.87 2.820 E-4 59.84 9.574 E-4
Variation 2.40 3.26% 2.56 4.04%

ε = 0.0002 ε = 0.001
Power MSE Power MSE

Full color 38.55 4.584 E-5 31.78 1.247 E-4
Color Min-Max 39.30 4.807 E-5 32.46 1.345 E-4
Variation 0.75 4.86% 0.68 7.84%

set to zero. The input images have been downscaled with

bicubic interpolation. The input data set included seven images

(Man, Stars, City1 and City2 shown in Fig. 2, one of night

fireworks, one frame from the ending titles of a movie and

a frame from a high contrast animation sequence) which,

in past experiments, proved to be challenging by showing

a higher error after optimization compared to other images.

Table I shows the results for downscaling factor 4 (edge-lit

screen) and 10 (direct-lit screen). In �2 minimization, MSE

increases at most by 7.84%. Power consumption, normalized

and multiplied by 100, increases as well with values between

0.68 and 2.56. Results for other downscaling factors and for �1
minimization are analogous and not reported here. Considering

the significant reduction of variables, these results support

our statement that the reduced-complexity approach can be a

viable alternative to the full problem. As would be expected, a

higher leakage factor yields lower power consumption as the

leakage can only be reduced by dimming the backlight.

D. Optimal backlight and comparison with other algorithms

In the second set of experiments, we have calculated the

backlights minimizing �1 and �2 and compared against the

algorithms presented in Section IV-B on a set of 32 images:

the 24 images of the Kodak True Color Image Suite [23] and

8 more shown in Fig. 2. We have used gradient descent (Eq.

18) to calculate the perceptual optima at Full HD resolution;

the cost function is as in Eq. 15 but with yi and xi in

the perceptual domain (approximated with Eq. 10) and with

all the elements of wi set to 1. The starting solution was

generated with the Min-Max approach (Eq. 16) minimizing

the same norm and with perception-based error weighting

enabled at a downscaling factor of 5. It should be noted that

the cost functions are not identical as the gradient descent

approach optimizes directly in the perceptual domain, while

the Min-Max approach uses the error-weighting vector w.

Figure 3 shows a plot comparing the MSE of the proposed

approach with �2 minimization with that of other algorithms.

The optimization has been performed with different power

penalty values q that provided solutions at power levels close

to those of the other algorithms to enable fair comparisons.

The results are averaged over the test set of 32 images and,

for the proposed approach, at the same q. Figure 4 shows the

same comparison in LabPSNR. The LED and LC values have

also been quantized as this is necessary to display them on real
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Figure 2. Sample of images used for the experiments: (left to right, top to
bottom) Man, Pedestrian, City1, Sunflower, Stars, Barn, Sunset and City2.

screens. Quantizing LED values does not have a significant

impact but quantizing the LC does; in Fig. 4 we show results

for LC values quantized to 8 and 10 bits. Quantization does

not have a large effect on overall MSE and is omitted in Fig.

3. The average algorithm has been removed from Fig. 3 due

to its high error (1.99 E-3). The figures show that at a given

power level the proposed approach achieves the best result.

Table II reports the MSE values from Fig. 3 split into leak-

age and clipping contributions, with extra data for ε = 0.0002.

Clipping values are for ε = 0.001. The ε value affects the

LED values output by the proposed approach but not the other

algorithms, for which clipping is the same for both ε. Clipping

for the proposed approach is 2.68 E-6 (13.01%) at q = 0 and

3.60 E-5 (74.01%) at q = 100 if optimizing for ε = 0.0002.

The dotted line in Fig. 3 depicts the clipping contribution for

each q of our optimization based algorithm. The table confirms

that leakage has more impact for higher ε.

An additional result is presented in Fig. 5: optimization in �2
was performed for direct-backlit screen and only on the images

shown in Fig. 2. Since calculating the gradient is very time-

demanding due to the high number of segments, we only run

the initial optimization with CVX [17], [18] at a downscaling

factor of 5. The average algorithm is again omitted due to the

excessive MSE (3.31 E-3). Also on this display, the proposed

approach achieves the lowest error at all power levels.

These results altogether show that high power algorithms

tend to render with higher fidelity but neglect leakage, which is

the main cause of distortion, while low power algorithms suffer

from clipping. The proposed optimization-based approaches

reduce distortion in all cases finding the optimal tradeoff at a

given power level. This reduces color distortion, as shown by

the LabPSNR data in Fig. 4. The same figure shows that the

Figure 3. Distortion (MSE) vs. power trade-off of the proposed approach
(curve) compared with other algorithms on edge-lit 16 segments backlight.
Labels indicate power penalty. The dotted line plots the contribution of
clipping to MSE for optimal �2.

Figure 4. Quality (LabPSNR) vs. power trade-off of the proposed approach
(curve) compared with other algorithms on edge-lit 16 segments backlight.
Labels indicate power penalty. The smaller markers indicate quantized results
for 10 bits (middle size) and 8 bits (smallest); power levels and symbols are
the same as the non-quantized result.

quantization error tends to dominate leakage and clipping error

at high power levels, as revealed by the tendency of the curves

to saturate. Quantization is less important at lower power.

E. Subjective experiments

Many studies have proven that simple distortion measures,

such as MSE and PSNR, do not always predict the perceived

Table II
CONTRIBUTION OF LEAKAGE AND CLIPPING TO MSE (EDGE-LIT).

ε = 0.0002 ε = 0.001
Leakage % Leakage % Clipping

Avg 2.70 E-6 0.14 1.32 E-5 0.66 1.97 E-3
Cho 1.66 E-5 11.26 7.54 E-5 36.57 1.31 E-4
Full 3.51 E-5 100 1.60 E-4 100 0
Max 2.91 E-5 98.88 1.33 E-4 99.75 3.31 E-7
Sqrt 7.33 E-6 2.15 3.46 E-5 9.38 3.34 E-4
Zhang 2.88 E-5 77.86 1.31 E-4 94.11 8.18 E-6
Albrecht 3.36 E-5 100 1.52 E-4 100 0
Kang 1.66 E-5 1.99 7.46 E-5 8.35 8.19 E-4
Kim 1.97 E-5 14.93 8.93 E-5 44.26 1.12 E-4
Lin 3.41 E-5 97.38 1.55 E-4 99.41 9.18 E-7
Opt q=0 1.79 E-5 86.99 6.03 E-5 98.48 1.28 E-5
Opt q=100 1.21 E-5 25.09 4.57 E-5 45.09 5.56 E-5

A.7 Modeling power-constrained optimal backlight dimming for color
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Figure 5. Distortion (MSE) vs. power trade-off of the proposed approach
(curve) compared with other algorithms on direct-lit 2202 segments backlight
(downscaled 5 times). Labels indicate power penalty.

subjective quality accurately. However, accuracy is highly

dependent on the distortion type and, in our case, also on

the accuracy of the backlight model, in particular leakage and

PSFs. In order to assess the visual quality and to verify that

the subjectively perceived image quality follows the measured

distortion in the model, we have performed a subjective test to

compare our gradient descent approach with other algorithms;

the backlight of the edge-lit display is simulated and shown

on the direct-lit SIM2 display. The borders (ca. 30 pixels on

each side) of the screen where covered to hide backlight non-

uniformities close to the edges.

Since subjective scoring schemes are not well suited for dis-

tinguishing small visual differences between images, we have

adopted a pairwise comparison method, where the subjects

choose the preferred image out of two versions of it, produced

with a different backlight dimming scheme. In order to limit

the duration of the experiment, but yet to have different image

types represented, we have used a subset of seven images,

where three images have been chosen among those used in

the objective evaluation (Stars image in Fig. 2, Beach and

Parrot from the Kodak dataset), and the other four are frames

from the Volcano and Diver video sequences from [24], and

the images Exotic and Lizard from [25]. The latter four were

included as they have saturated colors and a high contrast.

Sixteen test subjects performed the test, all of them naive

regarding the purpose of the test and not experts in backlight

dimming. The participants were 12 men and 4 women, of age

ranging from 22 to 30. During the test session, each observer

was allowed to freely switch between the two compared im-

ages before making the binary choice of preference. The reader

may refer to [26] for more details of the test arrangement.

The results from pairwise comparisons were transformed

into a subjective rank order, and the correlation between the

rank order based on objective results (average LabPSNR)

and the subjective preference was studied. The results are

summarized in Table III. Except for one outlier case (Stars),

the results show a fairly good match between subjective and

objective results in terms of Spearman rank order correlation

coefficient (SROCC). The average SROCC is 0.80. Gradient

descent with low power weight (q=0 or q=1) outperforms all

Table III
PERFORMANCE COMPARISON OF BACKLIGHT DIMMING ALGORITHMS.

ALGORITHMS ARE LISTED IN SUBJECTIVE PREFERENCE ORDER FOR EACH

IMAGE; GDqX REFERS TO THE GRADIENT DESCENT ALGORITHM WITH

POWER WEIGHT q=X; CENTRAL COLUMNS ARE LABPSNR, RIGHT

COLUMNS ARE NORMALIZED POWER CONSUMPTION.

Exotic (SROCC 0.96)
GDq0 45.17 0.948

Albrecht 45.78 0.985
Zhang 38.01 0.932

GDq200 33.52 0.763
Kang 29.32 0.752

GDq400 23.86 0.578
Cho 22.76 0.635

Parrot (SROCC 0.96)
GDq0 51.42 0.813

Albrecht 51.74 0.840
Zhang 50.00 0.811

GDq100 44.92 0.648
Cho 38.50 0.660

GDq600 25.37 0.440
Kang 25.02 0.447

Volcano (SROCC 0.83)
Albrecht 38.98 0.660

GDq0 38.19 0.513
Zhang 38.04 0.767
Cho 25.48 0.439
Kang 22.62 0.388

GDq400 26.39 0.324

Lizard (SROCC 0.89)
GDq1 46.46 0.870

Albrecht 47.35 0.981
Zhang 36.28 0.904

GDq400 37.06 0.644
Cho 25.35 0.684
Kang 24.57 0.658

Beach (SROCC 0.89)
GDq1 51.91 0.730

Albrecht 52.92 0.855
Cho 39.11 0.767

Zhang 45.25 0.800
GDq800 23.17 0.483

Kang 20.42 0.448

Diver (SROCC 0.70)
GDq0 46.90 0.702

GDq400 30.12 0.546
Albrecht 44.11 0.825
Zhang 32.54 0.740
Cho 23.66 0.560

Stars (SROCC 0.40)
GDq0 39.29 0.304

Albrecht 36.89 0.982
Kang 38.58 0.504
Cho 38.34 0.499

Figure 6. Displayed results of the Stars image (as in Table III) for backlight
algorithm Albrecht (left) and gradient descent (GDq0, right).

the other algorithms in terms of subjective preference in all

cases except one (Volcano), where Albrecht is preferred, how-

ever the latter requires significantly higher power consumption.

Another important observation is that both subjective and

objective results show the gradient descent algorithm outper-

forming all the other algorithms with the same or lower power

consumption. Figure 6 shows two pictures of the displayed

results of the Albrecht and gradient descent algorithms for the

Stars image. For the gradient descent, leakage is less annoying.

V. CONCLUSION

We have presented a model for LCD with LED local

backlight dimming that includes important modeling aspects

like leakage, clipping, PSFs, color and human perception of

luminance. Based on it, we have designed optimization-based

dimming algorithms, considering both leakage and clipping,

and compared them to other approaches. The model allows

the proposed methods to optimize several cost functions and
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to obtain the best trade-offs between quality and power con-

sumption at all power levels. In particular, the approach based

on gradient descent is very versatile and powerful, as it allows

to optimize for non-linear cost functions at Full HD resolution.
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170 Testsets

Figure B.1: This testset is called “ICIP” because it was originally used for the
experiments whose results were submitted to IEEE ICIP 2012; its images are called
(left to right, top to bottom) Man, Pedestrian, City1, Sunflower, Stars, Barn, Sunset
and City2.
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Figure B.2: This testset is called “ICIP” because it was originally used for the
experiments whose results were submitted to IEEE ICIP 2012; its images are called
(left to right, top to bottom) Man, Pedestrian, City1, Sunflower, Stars, Barn, Sunset
and City2. Grayscale version.
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Figure B.3: Kodak True Color testset [56]. The images are called k01, k02, k03, k04,
. . . , k23, k24, starting from the top-left then going left to right and top to bottom.



173

Figure B.4: Kodak True Color testset [56]. The images are called k01, k02, k03, k04,
. . . , k23, k24, starting from the top-left then going left to right and top to bottom.
Grayscale version.
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Figure B.5: Four images used for experiments: Exotic flower, Lizard, Diver, Vol-
cano. The first two are found in [57], the other two in [58].
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Figure B.6: First frames of 9 video sequences used for experiments: Akiyo, Bus,
Coastgard, Container, Cycling, Foreman, Hall, Mobile, Mother, News, Paris and
Silent.
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Acronyms

1D One Dimensional

2D Two Dimensional

3D Three Dimensional

AVC Advanced Video Coding

CIE Commission Internationale de l’Éclairage

CCFL Cold Cathode Fluorescent Lamp

CDF Cumulative Distribution Function

CIF Common Intermediate Format

CRT Cathode Ray Tube

DCT Discrete Cosine Transform

EEFL External Electrode Fluorescent Lamp

FEL Field Emission Lamp

FFL Flat Fluorescent Lamp

GD Gradient Descent

GOP Group of Pictures

HCFL Hot Cathode Fluorescent Lamp

HD High Definition
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HDR High Dynamic Range

HVS Human Visual System

IBL Initial Backlight Level

IIR Infinite Impulse Response

IPS In-Plane Switching

JPEG Joint Picture Experts Group

LC Liquid Crystal

LCD Liquid Crystal Display

LED Light Emitting Diode

LUT Look-Up Table

MAE Mean Absolute Error

MPEG Motion Picture Experts Group

MJPEG Motion Joint Picture Experts Group

MSE Mean Squared Error

OLED Organic Light Emitting Diode

PDF Probability Density Function

PDP Plasma Display Panel

PSF Point Spreading Function

PSNR Peak Signal to Noise Ratio

PU Perceptually Uniform

PWM Pulse Width Modulation

RGB Red, Green and Blue

SSIM Structural Similarity
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SROCC Spearman rank order correlation coefficient

STD Standard Deviation

TN Twisted Nematic

TV Television
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