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Abstract

This Ph.D. thesis investigates how intramodal and intermodal non-
linear processes in few-moded fibres can be used to generate light sources
at wavelengths outside the spectral gain-bands of rare-earth-doped optical-
fibres.

The design of two specialty few-moded fibres for use in a widely
tunable femtosecond fibre laser is presented. The two fibres are used
to facilitate the shifting of a soliton in a cascade configuration from the
ytterbium gain-band and to a wavelength of 1280 nm. The temporal
pulse duration is on a femtosecond scale with a pulse energy of 5 nJ.
The experimentally observed soliton self-frequency shift and thereby
the outcome of the experimental demonstration of the widely tunable
femtosecond fibre laser is shown to depend highly on the chirped of
the input pulse into the first few-moded fibre in the cascade setup.
Furthermore, an alternative splicing process, with a combination of a
fusion splicer and a gas-line burner, is applied to the few-moded fibres.

An intermodal four-wave mixing process and a novel intermodal
Čerenkov generation process are demonstrated experimentally in one of
the two speciality few-moded fibres. The two intermodal processes are
described theoretically and numerically. For the intermodal four-wave
mixing experiment an alternative version of the Generalised Non-Linear
Schrödinger Equation is derived, which includes the correct dispersion
of the transverse field. It is observed that the alternative version of
the Generalised Non-Linear Schrödinger Equation, as opposed to the
commonly used version, is able to reproduce the intermodal four-wave
mixing experiment.

The relation between the intramodal self-phase modulation and the
intramodal Raman effect is determined from experimental measure-
ments on a number of step-index fibres. The Raman fraction is found
to vary with the germanium concentration. For the considered step-
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x Abstract

index fibres the Raman fraction varies from 0.16 to 0.15 with increasing
germanium concentration, which is lower than the often cited value of
0.18.

Furthermore, an extensive work regarding modelling of mode-locked
lasers was performed. The result of this is reported for an all-normal
dispersive polarisation-maintaining laser.



Resumé (In Danish)

I denne ph.d. afhandling undersøges det, hvordan ikke-lineære pro-
cesser best̊aende af interaktioner imellem den samme tilstand af ly-
set1 og imellem forskellige tilstande af lyset kan bruges til at generere
lyskilder ved bølgelængder, som ligger uden for det spektrale forstærkn-
ingsomr̊ade af optiske fibre doteret med sjældne jordarter, hvor de før
nævnte ikke-lineære processer foreg̊ar i fibre som understøtter et be-
grænset antal tilstande af lyset.

Designet af to specielle fibre som understøtter et begrænset antal
tilstande af lyset er præsenteret. Fibrene er designet til anvendelse i en
femtosekund fiberlaser, hvor det er muligt at indstille bølgelængden af
lyspulsen i et meget bredt omr̊ade. Bølgelængden af lyspulsen ændres
ved at udnytte solitonpulsens egenskab til at skifte sin egen frekvens.
Skiftet af solitonpulsen foreg̊ar fra forstærkningsomr̊adet af ytterbium
til en bølgelængde p̊a 1280 nm ved at bruge de to specielle fibre i en
kaskade konfiguration. Den skiftede solitonpuls har en pulsenergi p̊a 5
nJ og en pulsbrede p̊a en femtosekund skala. Den eksperimentelle ob-
servation af solitonpulsens egenskab til at skifte sin egen frekvens viser
sig at være meget afhængig af fasen p̊a den oprindelig puls som kobles
ind i den første af to specielle fibre. Da den eksperimentelle demon-
stration af femtosekund fiberlaser er direkte relateret til solitonpulsens
egenskab til at skifte sin egen frekvens, f̊ar fasen p̊a den oprindelig puls
ogs̊a en betydning for resultatet af den eksperimentelle demonstration.
Endvidere er en alternativ splejsningsmetode anvendt p̊a fibrene som
understøtter et begrænset antal tilstande af lyset. Den alternative sple-
jsningsmetode best̊ar af en kombination af et fusionssplejsningsapparat
og en gaslinjebrænder.

I en af de to specielle fibre som understøtter et begrænset antal til-

1Oversat fra det engelske begreb ”mode”, som i dette tilfælde betegner tilstanden
af lyset i en optisk fiber.
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xii Resumé (In Danish)

stande af lyset er en blandingsproces med fire bølger imellem forskellige
tilstande af lyset og en Čerenkov genereringsproces imellem forskellige
tilstande af lyset eksperimentelt demonstreret. De to processer imellem
forskellige tilstande af lyset er beskrevet b̊ade teoretisk og numerisk. I
forbindelse med eksperimentet med blandingsprocessen med fire bølger
imellem forskellige tilstande af lyset er der udledt en alternativ udgave af
den generelle ikke-lineær Schrödinger ligning, som i modsætning til den
almindeligt anvendte udgave er i stand til at genskabe eksperimentet
med blandingsprocessen med fire bølger imellem forskellige tilstande af
lyset.

Forholdet mellem modulationen til egen fase af den samme tilstand
af lyset og Raman effekten af den samme tilstand af lyset er bestemt ud
fra målinger p̊a en række fibre med en indeksprofil best̊aende af en flad
cirkulær kerne med højere indeks end den omkringliggende kappe. For
disse fibre varierer Raman brøkdelen fra 0,16 til 0,15 for en stigende
koncentration af germanium, hvilket er lavere end den ofte citerede
værdi p̊a 0,18.

Derudover er der blevet udført et omfattende arbejde ang̊aende
modellering af lasere hvor tilstanden af lyset er fastl̊ast. Resultatet af
dette arbejde er præsenteret for en laser, som best̊ar af fiberstykker der
alle har normale dispersions egenskaber og samtidig er polarisationsbe-
varende.
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and D. Jakobsen, “Time-domain multimode dispersion measure-
ment in a higher-order-mode fiber,” Opt. Lett., vol. 37, no. 3, pp.
347–349, Feb 2012.

• M. E. V. Pedersen, P. Kristensen, L. Gruner-Nielsen, and K. Rot-
twitt, “Impact of the scalar approximation on the prediction of
the group velocity dispersion,” Lightwave Technology, Journal of,
vol. 29, no. 21, pp. 3129 –3134, nov.1, 2011.

Accepted Conference Contributions

• J. Cheng, M. E. V. Pedersen, K. Charan, K.Wang, C. Xu, L. Grüner-
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Nielsen, and D. Jakobsen, “Optimization of a higher-order-mode



xv

fiber for energetic soliton propagation,” in CLEO: Science and
Innovations. Optical Society of America, 2012, p. CTh4G.2.

• M. E. V. Pedersen, T. Palsson, K. Jespersen, D. Jakobsen, B. Pals-
dottir, and K. Rottwitt, “The raman contribution to the intensity
dependent refractive index in optical fibers,” in Photonics Con-
ference (PHO), 2011 IEEE, oct. 2011, pp. 571 –572.

Submitted Publications

• M. E. V. Pedersen, J. Cheng, C. Xu, and K. Rottwitt, “Transverse
field dispersion in the generalised non-linear schrödinger equation:
Four wave mixing in a higher-order-mode fiber,” Lightwave Tech-
nology, Journal of.

• K. Charan, M. E. V. Pedersen, K. Wang, L. Grüner-Nielsen,
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Chapter 1

Introduction

In the following the background and motivation for the Ph.D. project
is given. This is followed by a short description of the content and
structure of the thesis.

1.1 Background & Motivation

In 1960 Theodore Maiman carried out the first demonstration of the
lasing principal in a ruby crystal [1] based on the theoretical concept
presented by Schawlow and Townes [2]. Since the first demonstration
the field of lasers evolved quickly and most of the significant and funda-
mental discoveries within the field of lasers were obtained in the 1960s.
Maiman’s demonstration was shortly after followed by the first demon-
stration of a gas laser by Ali Javan et al. [3]. In 1961 the first demonstra-
tion of light generated by a non-linear process was shown [4]. Unfortu-
nately, the editor of the journal mistook part of the recorded spectrum,
which was generated by a second-harmonic process, as a misprint and
removed it in the final edition of the paper, thereby removing the exper-
imental documentation for the first observed optical non-linear effect.
The first fibre laser was also demonstrated in 1961 [5] and in 1962 the
first semiconductor laser was a realisation [6]. The laser has since then
defined and revolutionised numerous scientific fields and our everyday
life.

With the development of the low-loss fibre, the way was paved for
the vast optical networks, which today spans the Earth connecting the
majority of the population of the world to each other. In 2009 half of
the Nobel prize in Physics was given to Charles K. Kao for his ”ground-
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2 Introduction

breaking achievements concerning the transmission of light in fibers for
optical communication” [7]. The fibre optics research community has
benefited greatly from the advancement of the telecommunication in-
dustry. The fibre laser has several unique properties, some of these
properties are that the laser is free of alignment of bulk components
and therefore very robust, less sensitive to the environment, and re-
quires less maintenance. The properties are of high interest for many of
the commercial and industry applications involving lasers. A common
method used in fibre lasers is to dope the fibre with rare earth elements,
e.g. ytterbium, erbium, and thulium to obtain lasing in discrete spectral
windows in the infra-red region [8]. It is possible to dope with other
materials to obtain lasing in other spectral windows, however, these
aforementioned rare-earth elements provide the highest conversion ef-
ficiencies. An often applied strategy, for lasing outside these spectral
windows, is to utilise non-linear effects for generating light at other
wavelengths. As the strength of the non-linear process is related to the
peak power of the light, it is advantageous to generated the input light to
the non-linear process with the aforementioned rare-earth elements. For
most cases the non-linear processes include higher-harmonic generation,
four-wave mixing (FWM), Raman scattering, and soliton self-frequency
shift (SSFS) [9].

Fibres which supports more than the fundamental mode are gen-
erally denoted multi-mode fibres (MMFs). Historically, MMFs have
been designed to support hundreds of modes [10], however, in recent
years there have been a renewed interest in fibres, which only support
a couple of modes. These fibres are denoted higher-order-mode (HOM)
fibres or few-moded fibres (FMFs). In the beginning of the 1990s the
first demonstration of dispersion compensation using a HOM in an opti-
cal fibre was carried out [11,12]. The interest was renewed in 2001 with
a demonstration of an all-fibre system for a communication link over
1000 km using a HOM for the dispersion compensation [13]. The prop-
erties of HOMs also provide a path for bend-insensitive large-mode-area
fibres [14] and anomalous dispersion below 1.3 μm [15]. However, it is
within optical communications that the FMF has received the largest
amount of attention, since space-division multiplexing could potentially
increase the communication capacity significantly [16–19].

The Ti:Sapphire laser has had and will presumably continue to have
a significant impact with the field of optics and lasers for the years to
come. The state of the art commercial Ti:Sapphire laser can provide less



1.1 Background & Motivation 3

than 20 fs pulses with a tuning range of approximately 100 nm. When
used in combination with an optical parametric oscillator, this tuning
range can be extended to an impressive wavelength tuning range from
750 nm to 1600 nm. The Ti:Sapphire laser is the workhorse of nearly
all time-resolved research owing to its flexibility, high pulse quality, and
high pulse energies.

As the Ti:Sapphire laser is very versatile one very significant goal
within the field of fibre laser would be to construct an all fibre-based
counterpart of the Ti:Sapphire laser. The main focus of the Ph.D.
project has been to make an all fibre-based short-pulse laser, which
could be tuned to deliver pulse in the wavelength from the ytterbium
gain-band region to approximately at a wavelength of 1.3 μm, as this
could have a potential application within a number of fields. Further-
more, the possibility of having a fibre delivery with diffraction-limited
output generates a high practical value to such a fibre laser. The fi-
bre delivery can e.g. provide high quality light for microscopic imaging
or enable delivery of light into human tissue, in vivo, for diagnostic
purposes. The specific properties, such as the high peak-power, of the
tunable femtosecond fibre laser make it highly suitable for non-linear
processes such as multi-photon spectroscopy, which is an emerging ap-
plication of femtosecond pulses in biophotonics [20–24]. In vivo deep-
tissue multi-photon microscopy requires a significant pulse energy in
order to achieve adequate signal-to-noise ratio and a fast frame rate.
This requires output pulse energies greater than 5 nJ from the source.
To facilitate the wavelength tuning of the femtosecond pulses an ap-
proach is to use SSFS [25,26]. To support a soliton the considered fibre
is required to have anomalous dispersion to counter the accumulated
non-linear phase-shift. Micro-structured photonic-crystal fibres (PCFs)
could be used to support a soliton in this wavelength region, however,
generally PCFs have a small effective mode area in order to provide
the required anomalous dispersion [27,28]. Therefore the energy of the
soliton is also small and in general pulse energies of sub-nanojoules is
obtained. A hollow core photonic bandgap fibre could be used to sup-
port a soliton, but with the extremely low non-linearity the energy of
the soliton would be very large and in the range of hundreds of nano-
joules [29]. Unfortunately, this pulse energy is too high for any in vivo
application in human tissue. In between these two energy regions are
the soliton pulse energy in a FMF. Previous reports of the soliton
energy in FMFs have been limited to around 1 nJ in this wavelength
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region [30]. Therefore, the main focus of the Ph.D. project has been to
design and construct a fibre-based laser system, which is able to deliver
a wavelength tunable femtosecond pulse with a pulse energy of 5 nJ.
The laser system is to be pumped by an ytterbium-based source and to
shift the pulses to 1280 nm.

1.2 Content of the Thesis

To ease the reading experience, acronyms are used throughout the the-
sis. The definition of an acronym is provided in each chapter for the
first appearance of the acronym. The complete list of acronyms can be
found in App. C.

To give a more detailed overview of the chapters in this thesis a
short description of each chapter is given in this section. The structure
of the thesis is as follows:

• In Chap. 2 the governing equation for the pulse propagation,
which is Generalised Non-Linear Schrödinger Equation (GNLSE),
is derived from Maxwell’s equations. The GNLSE is derived in
order to expand the framework of the GNLSE to include multi-
mode (MM) interaction and the correct dispersion of the trans-
verse field distribution. In the end of the chapter the frame-
work for the modesolver used throughout the project is briefly
explained.

• In Chap. 3 there is an investigation of the Raman contribu-
tion to the intensity-dependent refractive index for a number of
step-index silica-based fibres with a germanium-doped core and
cladding of pure silica.

• In Chap. 4 the general outline and optimisation of the designs
of the two essential FMFs are presented. This is followed by a
characterisation of the two essential FMFs and a consideration on
how to excite the desired LP0,2 mode. The two essential FMFs
are denoted by the acronym of their project names throughout
the thesis. The fibres are referred to as the left-sided fibre (LSF)
and the right-sided fibre (RSF). The origin for the project names
is explained in the chapter. The chapter is rounded off with a
section about splicing two different FMFs together.
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• In Chap. 5 the two fibre-based oscillators, which are utilised in
this project are presented. They both use an ytterbium-doped
fibre as the gain medium. The first of the oscillators, a HOM
dispersion-balanced laser, is used to excite a soliton in the two
essential FMFs. The second oscillator, an all-normal dispersive
(ANDi) polarisation-maintaining (PM) laser, has been subjected
to a more thorough theoretical investigation.

• In Chap. 6 the simulated and experimentally observed SSFSs to
longer wavelengths are presented in the LSF and the RSF for an
input pulse, which is either an unchirped femtosecond pulse or a
chirped picosecond pulse.

• In Chap. 7 the two different intermodal non-linearity processes,
which were observed in the LSF, are presented together with the
theoretical explanation of the two processes. The two processes
are an intermodal FWM process and an intermodal Čerenkov pro-
cess. The derived GNLSE with the correct dispersion of the trans-
verse field distribution from Chap. 2 is shown to be of importance
when simulating the intermodal FWM experiment in the LSF.

• In Chap. 8 the conclusion of the thesis is presented.

• In Chap. 9 the outlook with recommendations for continuation
of the project is presented.



Chapter 2

Theory

In this chapter the main theoretical foundation for this work is pre-
sented. The starting point is Maxwell’s equations from which the gov-
erning equation for propagation of an optical pulse through an opti-
cal fibre is derived, which is known as the Generalised Non-Linear
Schrödinger Equation (GNLSE). The GNLSE is both expand to in-
cluded multiple modes and rewritten to include the correct dispersion
of the transverse field. Finally, the framework for the applied modes-
olver is briefly presented.

2.1 Maxwell’s Equations

Light is a special form of electromagnetic radiation. Electromagnetic ra-
diation is governed by Maxwell’s equations. Maxwell’s equations are the
basic foundation for describing the physical dynamics of light. There-
fore, the theory presented in this work will start the derivation from
Maxwell’s equations. The Maxwell’s equations are

∇×E = −∂B

∂t
, (2.1.1)

∇×H = Jf +
∂D

∂t
, (2.1.2)

∇ ·D = ρf , (2.1.3)

∇ ·B = 0, (2.1.4)

where E is the electric field, B is the magnetic field, D is the electric
displacement field, H is the magnetising field, Jf is the free current

7
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density, ρf is the free charge density, t is the time, and ∇ is the nabla
operator. All the symbols in bold are vectors. The auxiliary fields are
given as

D = ε0E+P, (2.1.5)

B = μ0μrH, (2.1.6)

where ε0 is the permittivity of free-space or the electric constant, P is
the induced polarisation, μ0 is the vacuum permeability or the magnetic
constant, and μr is the relative permeability. In glass composites, it is
reasonable to assume

ρf = 0, (2.1.7)

Jf = 0, (2.1.8)

μr = 1, (2.1.9)

as glass is non-magnetic and an insulator. Maxwell’s equations are then
written as

∇×E = −μ0
∂H

∂t
, (2.1.10)

∇×H = ε0
∂E

∂t
+

∂P

∂t
, (2.1.11)

∇ ·D = 0, (2.1.12)

∇ ·H = 0. (2.1.13)

Taking the curl of 2.1.10 results in

∇× (∇×E) = −μ0∇×
(
∂H

∂t

)
= −μ0ε0

∂2E

∂t2
− μ0

∂2P

∂t2
. (2.1.14)

Transforming the equation from the time domain to the frequency do-
main with a Fourier transformation gives

∇×
(
∇× Ẽ

)
=

ω2

c2
Ẽ+ μ0ω

2P̃, (2.1.15)

where ω is the angular frequency of the light and it has been used that
the speed of light in vacuum is c = 1√

ε0μ0
. The definition of the applied

convention of the Fourier transform can be found in App. A.1.1. The
tilde emphasises that the variable is the frequency domain version of
the variable. It is assumed that it is valid to write

∇ · D̃ = ε0εr∇ · Ẽ, (2.1.16)
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where εr is the relative dielectric constant. Eq. 2.1.16 is strictly only
valid for a uniform medium. However, for optical fibres, which only
consist of regions with doped silica, the spatial variation of the relative
dielectric constant, εr, is small, which justifies the approximation. With
the vector identities, given in App. A.1.1, and the assumption of a
uniform medium, the wave-equation is derived from Eq. 2.1.15 and is
given by

−∇
2Ẽ =

ω2

c2
Ẽ+ μ0ω

2P̃. (2.1.17)

The induced polarisation is expanded in a power series as [31]

P̃ =

∞∑
q=1

p̃(q), (2.1.18)

where the first order, i.e. linear, contribution to the induced polarisa-
tion is p̃(1) = ε0χ

(1)Ẽ. Where χ(1) is the linear electric susceptibility.
Inserting the expanded power series for the induced polarisation into
Eq. 2.1.17 gives

−∇
2Ẽ =

ω2

c2

(
1 + χ(1)

)
Ẽ− μ0ω

2
∞∑
q=2

p̃(q) =
ω2

c2
εrẼ+ μ0ω

2P̃NL,

(2.1.19)

where P̃NL is the non-linear induced polarisation. The order of the
non-linearities is defined as the power of the electric field, Ẽ, in the
equation. The first non-linear correction to the induced polarisation is
due to the second-order electric susceptibility, χ(2), which is negligible in
optical fibres due to the random orientation of the crystalline structure
in silica, i.e. silica is an anisotropic material. This makes the third-
order electric susceptibility, χ(3), the most significant non-linear effect
in optical fibres. Therefore, the non-linear induced polarisation for the
angular frequency of ωσ is written as

P̃NL =
3

4
ε0χ

(3) (−ωσ;ωj,−ωk, ωl) : Ẽ (ωj) Ẽ
∗ (ωk) Ẽ (ωl) . (2.1.20)

The notation for the third order non-linearity follows the one outlined
in [32]. The pre-factor of 3

4 is given with respect to the considered
interaction of electric fields and the possible distinct frequency permu-
tations. The non-linear interaction given in Eq. 2.1.20 is responsible for
multiple non-linear processes including self-phase modulation (SPM).
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2.2 Pulse-Propagation

For most cases it is sufficient to consider a scalar version of the governing
equation for pulse-propagation. In the situations where the wave-guide
contribution to the dispersion is dominant the full-vectorial equation is
needed [33–35]. In the following it is assumed that the electric field in
the time domain is polarised in the x direction and travelling in the z

direction

E (r, t) =
1

2
x {E (x, y, z, t) exp [−iω0t] + c.c.} , (2.2.1)

where E is the complex electrical amplitude, which is multiplied with
a carrier wave and the c.c. is the complex conjugate. In the frequency
domain, the Fourier transform of E (x, y, z, t) is given as

Ẽ (x, y, z, ω) = F̃ (x, y, ω) Ã (z, ω − ω0) exp [iβ (ω0) z] , (2.2.2)

where it has been assumed that it is possible to separate the amplitude
of the electric field into a transverse field distribution F̃ , a longitudinal
amplitude Ã, and the spatial part of the carrier wave, where β is the
propagation constant. It is now possible to write an equation for the
transverse problem and the longitudinal problem using the separation
of variables method. The calculation for the separation of variables is
performed in App. A.1.2. By using the method of separation of variables
two independent homogeneous differential equations are obtained

∇
2
⊥F̃ +

(
ω2

c2
εr −

(
β′)2) F̃ = 0, (2.2.3)

∇
2
zÃ+ 2iβ (ω0)

∂

∂z
Ã+

((
β′)2 − β2 (ω0)

)
Ã = 0. (2.2.4)

If only linear induced polarisation effects are considered, then

β′ = β =
ω

c
neff , (2.2.5)

where neff is the effective index of the mode in the fibre. In the following
the non-linear induced polarisation is considered as a perturbation and
the equation is solved to first order of the perturbation. The third order
induced polarisation is introduced into the equation as a perturbation
to the relative dielectric constant as

εr = ε0 + ηΔε, (2.2.6)
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where ε0 is the unperturbed value, Δε is the perturbation, and η ∈ [0; 1],
this results in a perturbation of both F̃ and (β′)2. The perturbation
calculation is performed in App. A.1.2. The perturbed propagation-
constant square is given as

(β′)2 = β2 +Δβ2, (2.2.7)

where the first order correction Δβ2 is given as

Δβ2 =
ω2

c2

∫
A
Δε

∣∣∣F̃ ∣∣∣2 dA∫
A

∣∣∣F̃ ∣∣∣2 dA . (2.2.8)

The non-linear induced polarisation introduces a negligible correction
to the transverse problem and therefore the first order perturbation of
the transverse problem is disregarded. However, for the longitudinal
problem the non-linear induced polarisation has a significant influence.

2.2.1 Generalised Non-Linear Schrödinger Equation

The GNLSE will be derived in this section. In anticipation of expanding
the GNLSE to include multiple modes and to include the correct disper-
sion of the transverse field, the amplitude of the electric field is denoted
with a subscript to keep track of different modes. The amplitude of the
electric field that experiences a change due to the induced polarisation
is denoted with ẼA and the amplitudes of the electric fields that take
part of the third order non-linear interaction are denoted with ẼB , ẼC ,
and ẼD. The propagation constant of the carrier wave is denoted βref

to make the choice of reference frame arbitrary. The perturbation Δε
from the previous section is written as

Δε =
P̃NL

ε0ẼA

, (2.2.9)

where P̃NL is the scalar version of the non-linear induced polarisation.
With Eq. 2.2.9 Δβ2 is given as

Δβ2 =

∫
A

χ(3) (−ωσ;ωj, ωk, ωl) ẼB (ωj) Ẽ
∗
C (ωk) ẼD (ωl)

F̃A exp [iβref (ω0) z]

∣∣∣F̃A

∣∣∣2 dA
∫
A

∣∣∣F̃A

∣∣∣2 dA
× 3

4

ω2
σ

c2
1

ÃA

. (2.2.10)
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The strength of the non-linear interaction is rewritten in terms of the
intensity-dependent refractive index, which is related to the SPM effect.
With the introduction of the intensity-dependent refractive index the
pre-factor of 3

4 is cancelled and the intensity-dependent refractive index
is assumed fundamental for any of the non-linear processes, which take
place in the fibre. The occurrence of distinct permutations for the
different non-linear interactions is handled by summing all the distinct
permutations together. For the SPM effect, it is possible to translate
the third-order electric susceptibility, χ(3), to an intensity-dependent
refractive index [9]

χ(3) =
4

3
n2
effε0cn

I
2. (2.2.11)

To be able to account for the frequency dependence of the non-linear
response of a given material, a response function, R̃, is multiplied with
the intensity-dependent refractive index, nI

2. Hereby, Eq. 2.2.10 is given
as

Δβ2 =

∫
A
R̃ (−ωσ;ωj , ωk, ωl) ẼB (ωj) Ẽ

∗
C (ωk) ẼD (ωl) F̃

∗
AdA∫

A

∣∣∣F̃A

∣∣∣2 dA
× ω2

σn
2
eff,Aε0n

I
2

c
exp

[
iβref (ω0) z

] 1

ÃA

. (2.2.12)

By inserting Eq. 2.2.12 into Eq. 2.2.4 the following differential equation
for the longitudinal amplitude is obtained

∇
2
zÃA − 2iβref (ω0)

∂

∂z
ÃA +

(
β2
A −

(
βref (ω0)

)2
)
ÃA =

−
∫
A
R̃ (−ωσ;ωj, ωk, ωl) ẼB (ωj) Ẽ

∗
C (ωk) ẼD (ωl) F̃

∗
AdA∫

A

∣∣∣F̃A

∣∣∣2 dA
× ω2

σn
2
eff,Aε0n

I
2

c
exp

[
−iβref (ω0) z

]
. (2.2.13)

For convenience the unit of the complex longitudinal amplitude Ã is
converted to the unit of

√
W. The conversion is done in App. A.1.2. Ã

is replaced with the following expression

Ã =
Ã√

1
2cε0neff

∫ ∣∣∣F̃ ∣∣∣2 dxdy
, (2.2.14)
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where Ã is the new variable with the unit of
√
W . The right-hand

side (RHS) of Eq. 2.2.13 is treated as an operator working on a vector
as Π̂Ã, where Π̂ is the operator, this is the same approach as applied
in [36]

∇
2
zÃA + 2iβref (ω0)

∂

∂z
ÃA +

(
β2
A −

(
βref (ω0)

)2
)
ÃA = Π̂ÃA.

(2.2.15)

The operator-vector product is given as

Π̂ÃA = −
∫
A
R̃ (−ωσ;ωj, ωk, ωl) ẼB (ωj) Ẽ

∗
C (ωk) ẼD (ωl) F̃

∗
AdA∫

A

∣∣∣F̃A

∣∣∣2 dA
× ω2

σn
2
eff,Aε0n

I
2

c
exp

[
−iβref (ω0) z

]
(2.2.16)

×

√
neff,A

∫
A

∣∣∣F̃A

∣∣∣2 dA√
neff,B

∫
A

∣∣∣F̃B

∣∣∣2 dA
√
neff,C

∫
A

∣∣∣F̃C

∣∣∣2 dA
√

neff,D

∫
A

∣∣∣F̃D

∣∣∣2 dA
= −2ω2

σneff,An
I
2

c2
q̃A,B,C,D. (2.2.17)

For a silica-based fibre it is assumed that the effective indices of the
different modes are approximately the same, which is true if the indices
are compared at the same frequency. The q̃A,B,C,D factor is given as

q̃A,B,C,D =

∫
A
F̃BF̃

∗
CF̃DF̃

∗
AdA√∫

A

∣∣∣F̃B

∣∣∣2 dA
√∫

A

∣∣∣F̃C

∣∣∣2 dA
√∫

A

∣∣∣F̃D

∣∣∣2 dA
√∫

A

∣∣∣F̃A

∣∣∣2 dA
× R̃ (−ωσ;ωj , ωk, ωl) ÃBÃ

∗
CÃD, (2.2.18)

where the fraction on the RHS is the field overlap, which is the inverse
of the effective area. With the definition of the operator Π̂ it is possible
to factor 2.2.15 into(

i
∂

∂z
− βref (ω0) +

√
β2
A + Π̂

)(
i
∂

∂z
− βref (ω0)−

√
β2
A + Π̂

)
ÃA = 0

(2.2.19)
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The first and the second parentheses are equivalent to a forward prop-
agating wave and a backward propagating wave, respectively. By ne-
glecting the backward propagating wave and expanding the square-root
to a first order expansion under the assumption that the non-linear

contribution to the propagation constants, i.e.
∣∣∣ Π̂ÃA

β2
A
ÃA

∣∣∣ << 1 then1

(
∂

∂z
− i

(
βA − βref (ω0)

))
ÃA = −i

Π̂

2βA
ÃA = i

ωσn
I
2

c
q̃A,B,C,D.

(2.2.20)

The coordinate system for the pulse propagation is translated into a
moving time-frame. Introducing a moving frame T = t− z

vrefg
= t−βref

1 z

and x = z changes the derivatives. In the moving time frame the
temporal and spatial coordinates are redefined as t and z, respectively.
The coordinate transformation is performed in App. A.1.2. Eq. 2.2.20
is then given as

(
∂

∂z
− i

(
βA − βref (ω0)− βref

1 (ω0) (ωσ − ω0)
))

ÃA = i
ωσn

I
2

c
q̃A,B,C,D.

(2.2.21)

Eq. 2.2.21 is valid for the frequency combination of the electric am-
plitudes EB, EC , and ED that add to the frequency of the electric
amplitude EA, this is given as ωσ = ωj +ωk+ωl. Therefore, to account
for all the possible frequency combinations, which yields a sum fre-
quency of ωσ, a double frequency integration is performed over q̃A,B,C,D

in Eq. 2.2.21(
∂

∂z
− i

(
βA − βref (ω0)− βref

1 (ω0) (ωσ − ω0)
))

ÃA =

i
ωσn

I
2

c

∫
ω1

∫
ω2

q̃A,B,C,Ddω2dω1. (2.2.22)

The frequency dependence of nI
2 is neglected [37]. The double frequency

integration over q̃A,B,C,D is performed in App. A.1.2. For the GNLSE
the frequency dependence of the transverse fields of the different electric
amplitudes is disregarded and this enables the RHS of Eq. 2.2.22 to be

1Another way to obtain this result is to use the slowly varying envelope approxi-
mation.



2.2 Pulse-Propagation 15

written as

i
ωσn

I
2

c

∫
ω1

∫
ω2

q̃A,B,C,Ddω2dω1 = i
ωσn

I
2

cAeff,A,B,C,D

×F
{
F−1

{
ÃB

}
F−1

{
R̃F

{
F−1

{
Ã∗

C

}
F−1

{
ÃD

}}}}
, (2.2.23)

where Aeff is the effective transverse-mode-area, F denotes the Fourier
transform from the time domain to the frequency domain, and F−1

denotes the inverse Fourier transform. The GNLSE is then given as

∂ÃA

∂z
= i

(
βA − βref (ω0)− βref

1 (ω0) (ωσ − ω0)
)
ÃA + i

ωσn
I
2

cAeff,A,B,C,D

×F
{
F−1

{
ÃB

}
F−1

{
R̃F

{
F−1

{
Ã∗

C

}
F−1

{
ÃD

}}}}
. (2.2.24)

The dispersion of the transverse field of the different electric fields,
which is involved in the non-linear interaction, has been disregarded.
In [38] a simple correction to Eq. 2.2.24 is presented to approximate the
dispersion of the transverse field with a first-order correction. Using the
correction from [38] the GNLSE is the given as

∂ÃA

∂z
=− αA

2
ÃA + i

(
βA − βref (ω0)− βref

1 (ω0) (ωσ − ω0)
)
ÃA

+ i
ωσn

I
2

c 4
√

Aeff,A,B,C,D

F
{
F−1

{
G̃B

}
F−1

{
R̃F

{
F−1

{
G̃∗

C

}

× F−1
{
G̃D

}}}}
, (2.2.25)

where G̃ = Ã
4
√

Aeff,A,B,C,D

and α is the power-loss coefficient, which also

is introduced. Therefore, the GNLSE for an intramodal interaction is
written as

∂Ã

∂z
=− α

2
Ã+ i

(
β − βref (ω0)− βref

1 (ω0) (ωσ − ω0)
)
Ã

+ i
ωσn

I
2

c 4
√

Aeff

F
{
F−1

{
G̃
}
F−1

{
R̃
∣∣∣G̃∣∣∣2}} , (2.2.26)

where Parseval’s theorem has been applied. The conserved quantity can
be shown to be proportional to the photon number by using the same
method as outlined in [36].
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The third-order non-linearity response function, R, is commonly
modelled as a sum of an electronic response, a vibrational/rotational
response, and an acoustic response. For silica the electronic response is
on the order of a few femtoseconds, the vibrational/rotational response
is on the order of a few hundreds of femtoseconds, and the acoustic
response is on the order of a few nanoseconds. When considering pulses
with a temporal duration in the sub-nanosecond range the response
function is often modelled as

R (t) = (1− fR) δ (t) + fRhR (t) , (2.2.27)

where hR (t) is the Raman-response function, the delta function repre-
sents the instantaneous electronic response, and fR is the Raman frac-
tion of the intensity-dependent refractive index. The Raman response
function in silica is often modelled as a damped oscillator [36], however,
more complex models exist [39,40]. The Raman fraction, fR, for a pure
silica-core fibre is reported to be 0.18 [41]. With the assumption about
the response function, the GNLSE is written as

∂Ã

∂z
=− α

2
Ã+ i

(
β − βref (ω0)− βref

1 (ω0) (ωσ − ω0)
)
Ã (2.2.28)

+ i
ωσn

I
2

c 4
√

Aeff

F
{
(1− fR) |G|2G+ fRF−1

{
h̃R

∣∣∣G̃∣∣∣2}G

}
.

Numerically the GNLSE is solved efficiently with the Fourth-Order
Runge-Kutta in the Interaction-Picture (RK4IP) method [42].

Soliton Solution

A special solution to the Non-Linear Schrödinger Equation (NLSE) and
therefore also the GNLSE is the soliton solution. The soliton solution
occurs under the right circumstances, when the accumulated non-linear
phase-shift is balanced by the anomalous dispersion. In the simple
case of the NLSE the soliton solution is an attractive fixed point for
the injected pulses. The soliton pulse solution is characterised by a

sech2
(

t
T0

)
intensity profile and the peak power of the soliton pulse is

given by [9]

Pp =
N2 |β2| cAeff

ωnI
2T

2
0

, (2.2.29)
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where N is the order of the soliton, β2 is the group-velocity disper-
sion. For a soliton in the sub-picosecond range the shorter wavelength
components act as a Raman amplifier for the longer wavelength com-
ponents in an intra-pulse Raman scattering process. This shifts the
soliton towards longer wavelengths, which is also known as the soli-
ton self-frequency shift (SSFS). The soliton solution was first observed
numerically [43, 44] and later experimentally [25]. The theory and an
analytical solution for the SSFS were first presented in [26]. The equa-
tion for the centre frequency of the soliton as a result of SSFS is given
as [40]

∂ω̄

∂z
= − 2Pp

π2Aeff

∫ ∞

0

gr (Ω)
(
ΩπT0

2

)3
sinh2

(
ΩπT0

2

) dΩ, (2.2.30)

where gr is the Raman gain. With the model for the response function
given in Eq 2.2.27, it is possible to rewrite Eq. 2.2.30 as

∂ω̄

∂z
= −4

|β2| fr
π2 (T0)

2

∫ ∞

0

�
{
h̃R (Ω)

}(
ΩπT0

2

)3
sinh2

(
ΩπT0

2

) dΩ, (2.2.31)

where � denotes the imaginary part. If the Raman response function is
assumed approximately the same for all silica-based fibres, the magni-
tude of the SSFS is determined by the temporal duration of the pulse,
the group velocity dispersion, and the Raman fraction. In Chap. 3 the
intensity-dependent refractive index and the Raman contribution to the
intensity-dependent refractive index is measured for a couple of simple
step-index fibres with a germanium-doped core. The Raman fraction,
fR, is determined to be smaller than 0.18 as reported for a fibre with a
pure silica-core [41].

2.2.2 Multi-Mode Generalised Non-Linear Schrödinger
Equation

The multi-mode (MM) GNLSE in this work is based on the Eq. 2.2.25.
This is similar to the framework of [45, 46], but in this section the
dispersion of the transverse field is included with the fourth-order root
method [38]. For an interaction with two different modes the equations
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for the pulse propagation are given as

∂ÃA

∂z
=− αA

2
ÃA + i

(
βA − βref (ω0)− βref

1 (ω0) (ωσ − ω0)
)
ÃA

+ Q̃A,A,A,A + Q̃A,B,A,A + Q̃A,A,B,A + Q̃A,A,A,B

+ Q̃A,B,B,A + Q̃A,B,A,B + Q̃A,A,B,B + Q̃A,B,B,B, (2.2.32)

∂ÃB

∂z
=− αB

2
ÃB + i

(
βB − βref (ω0)− βref

1 (ω0) (ωσ − ω0)
)
ÃB

+ Q̃B,B,B,B + Q̃B,A,B,B + Q̃B,B,A,B + Q̃B,B,B,A

+ Q̃B,A,A,B + Q̃B,A,B,A + Q̃B,B,A,A + Q̃B,A,A,A, (2.2.33)

where Q̃A,B,C,D is given as Eq. 2.2.23 with the fourth root method,
which is written as

Q̃A,B,C,D =i
ωσn

I
2

c 4
√

Aeff,A,B,C,D

F
{
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{
G̃B

}
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{
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{
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{
G̃∗
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}
F−1

{
G̃D

}}}}
. (2.2.34)

Q̃A,B,C,D represents the non-linear interaction for the given modal com-
bination. For some modal combinations, Q̃A,B,C,D yields a zero value
and can be disregarded. If the considered non-linear interaction is be-
tween one LP1,1 mode and three LP0,1 modes, then a difference in an-
gular symmetry will yield a zero non-linear interaction. However, if
the interaction is between one LP0,2 mode and three LP0,1 modes, the
non-linear interaction will yield a non-zero value. More insight into
symmetry overlap of the interacting modes is given in [45]. For the MM
GNLSE the conserved quantity is proportional to the sum of the photon
number for the different modes.

2.2.3 Transverse-Field Dispersion in the Generalised
Non-Linear Schrödinger Equation

It was found that to accurately simulate the intermodal non-linear in-
teraction in one of the few-moded fibres (FMFs) fabricated and used
in this work the MM GNLSE failed to reproduce the experimentally
obtained results. The failure of the MM GNLSE is caused by dis-
persion of the transverse field. In the GNLSE the dispersion of the
transverse field is incorporated with the effect area parameter. There-
fore, the GNLSE was re-derived from Maxwell’s equations to include
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the correct dispersion of the transverse field. The new version of the
GNLSE is denoted the Transverse-Field Dispersion in the Generalised
Non-Linear Schrödinger Equation (TFD-GNLSE). The derivation of
the TFD-GNLSE follows the derivation for the GNLSE up to and in-
cluding Eq. 2.2.22. The double frequency integration over q̃A,B,C,D in
Eq. 2.2.22 is carried out in App. A.1.2. For the TFD-GNLSE the fre-
quency dependence of the transverse fields of the different electric am-
plitudes is included and therefore the RHS of Eq. 2.2.22 is written as

Q̃A,B,C,D =

∫
ω1

∫
ω2

q̃A,B,C,Ddω2dω1 = i
ωσn

I
2

c

∫
A

F̃ ∗
N,A
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F−1

{
G̃B

}
F−1

{
R̃F

{
F−1

{
G̃∗

C

}
F−1

{
G̃D

}}}}
dA, (2.2.35)

where G̃ = ÃF̃N and F̃N is the normalised transverse field, where the
normalisation is

F̃N =
F̃√∫

A

∣∣∣F̃ ∣∣∣2 dA
. (2.2.36)

Numerical Considerations

In order to incorporate the correct dispersion of the transverse fields,
the integration over the transverse area has to be carried out after the
calculation of the double frequency integral, which is rewritten as a cou-
ple of Fourier transforms. As the integration over the transverse area
is performed after the set of Fourier transforms, it implies that the nu-
merically load increases significantly with respect to the GNLSE, since
the number of applied sets of Fourier transform scales with the num-
ber of grid points for the transverse field distribution. This emphasises
the significance of the fourth root method to approximate dispersion of
the transverse field in [38], as the numerical computational load is un-
changed with this method. To reduce the numerical computation load,
it is advantageous to utilise that the fibres considered in this project
have a radial symmetric refractive index profile and to solve the trans-
verse problem in cylindrical coordinates. This reduces the numerical
computational load, however, depending on the number of grid points
in the radial direction the computational load may still be significant.
To reduce the number of radial grid points used, a Gaussian quadrature
rule is applied to compute the transverse field overlap. This approach is
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similar to the one presented in [47], however in [47] it was only the fun-
damental mode that was considered and the result showed only a small
discrepancy between the modified GNLSE and unmodified GNLSE.

The set of basic equations presented for the MM GNLSE in Sec. 2.2.2
is also valid for the TFD-GNLSE if Q̃A,B,C,D is replaced with the ex-
pression in Eq. 2.2.35.

In App. A.1.2 a verification of the numerical implementation of the
TFD-GNLSE is performed. The verification is performed for a case of
an intramodal non-linear interaction, where a SSFS takes place. The
verification shows an excellent agreement between the TFD-GNLSE and
the GNLSE.

2.3 Modesolver

The work in this section is based upon [48]. The modesolver used in
this project is based on a full vectorial implementation of Maxwell’s
equations for a cylindrical fibre with a radial symmetric index profile.
The modesolver solves for the H̃ field and the equations for the radial,
ρ, and the angular, θ, component is given as

∂2H̃ρ (ρ)

∂ρ2
+

1

ρ

∂H̃ρ (ρ)

∂ρ
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ρ2
H̃ρ (ρ)− 1

ρ2
H̃ρ (ρ)

+
2m

ρ2
H̃θ (ρ) + εr (ρ) k

2
0H̃ρ (ρ) = β2H̃ρ (ρ) ,

(2.3.1)
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2m
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2
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+
1

εr (ρ)

∂εr (ρ)

∂ρ

[
−∂H̃θ (ρ)

∂ρ
− 1

ρ
H̃θ (ρ) +

m

ρ
H̃ρ (ρ)

]
= β2H̃θ (ρ) ,

(2.3.2)

where ρ is the radial coordinate, θ is the angular coordinate, m is the
angular eigenvalue and k0 is the wave-vector in vacuum. It is seen that
the radial, ρ, and the angular, θ, components are decoupled from the
longitudinal, z, component, so it is possible to solve for these compo-
nents separately. In order to obtain the full solution it is also necessary
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to determine the longitudinal, z, component. This can be done by using
that the magnetising field, H̃, is divergence free

H̃z =
−i

β

[
1

ρ
H̃ρ +

∂H̃ρ

∂ρ
− m

ρ
H̃θ

]
. (2.3.3)

In order to keep the complexity of the pulse propagation to a mini-
mum and thereby also not increasing the required numerical computa-
tional load, the modes are treated as scalar modes, but with the disper-
sive properties from the full vectorial modesolver. For the symmetric
LP0,x modes the approximation is reasonable, as the two transverse
components are identical.



Chapter 3

Non-Linearity in Optical
Fibres

The work in this section is based upon [49]. Over the years determi-
nation of the intensity-dependent refractive index has received signifi-
cant attention [37, 50–54]. However, only a few of the reported works
have tried to take into account the Raman fraction of the intensity-
dependent refractive index [41, 55, 56]. For a pure silica core fibre the
Raman fraction, fR, of the intensity-dependent refractive index is re-
ported to be 0.18 [41]. This value is often used in pulse propagation in
other silica-based fibres. However, this is questionable as the different
dopants influence the Raman fraction. For numerically modelling of the
soliton self-frequency shift (SSFS), one of the important parameters is
the Raman fraction, fR, of the intensity-dependent refractive index, see
Eq. 2.2.31. In this chapter the measured intensity-dependent refractive
index is presented for a couple of simple step-index fibres. The core of
the fibres is doped with germanium and the cladding consists of pure sil-
ica. The measured Raman gain for the fibres is presented together with
the complex Raman index of refraction, where the imaginary part of the
complex index is related to absorption and gain. The real and imaginary
parts of the complex index are connected through the Kramers-Krönig
relations. From the Kramers-Krönig relations the real part of the com-
plex Raman index of refraction is obtained. The value at zero detuning
of the real part of the complex Raman index of refraction is the Raman
process contribution to the self-phase modulation (SPM). SPM is di-
rectly related to the intensity-dependent refractive index. Therefore, it
is possible from the measured intensity-dependent refractive index and
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the Raman gain to calculate the Raman fraction, fR, to the intensity-
dependent refractive index. The choice of only considering simple step-
index fibres with a core of germanium is to avoid contributions from
other dopant materials such as fluorine and phosphor to the intensity-
dependent refractive index. The parameters for the different step-index
fibres are given in Table 3.1.

Core radius [μm] Δn
[×10−3

]
Fibre 1 2.0 8

Fibre 2 2.2 21

Fibre 3 1.4 23

Fibre 4 1.6 30

Fibre 5 2.1 31

Table 3.1: An overview of the different step-index fibres with a germanium-
doped core and pure silica-cladding. The index difference between the core and
cladding is measured at a wavelength of 632.8 nm.

3.1 Intensity-Dependent Refractive Index

The intensity-dependent refractive index of the germanium-doped step-
index fibres is measured with a SPM based technique, where the non-
linear phase is retrieved from the ratio of the peak intensity of the SPM
main peak and first-side bands [52]
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2
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nI
2

Aeff
Leff P̄ .

(3.1.1)

The effective area, Aeff , is calculated from the measured refractive index
profile of the different fibres. A sketch of the setup is seen in Fig. 3.1.
The frequency separation of the two polarisation-maintaining (PM)
continuous-wave (CW) distributed-feedback (DFB) lasers is 0.2 nm,
which corresponds to a 50 GHz modulation, this means that stimulated-
Brillouin scattering (SBS) is prevented. To avoid dispersion effects in
the measurement the following inequality has to be fulfilled

Δφspmβ2Δω2
0L << 1. (3.1.2)
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Figure 3.1: Sketch of the SPM-based setup.

This limits the possible length of the fibre-under-test (FUT). However,
the problem resides in knowing, which length of a fibre will satisfy the
inequality. The length of the fibres used in the measurements is 200 m.
An example of the measured SPM spectrum for a varying optical input
power is shown in Fig. 3.2. The two PM CW DFB are adjusted to have
the same peak power and the SPM sidebands are clearly shown. Using
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Figure 3.2: Example of a SPM measurement showing the spectrum for three
different input powers.

Eq. 3.1.1 it is possible to obtain the non-linear phase as a function of
the optical input power, an example is shown in Fig. 3.3. Both the left
and right sides of the spectrum are used to retrieve the non-linear phase
change as a function of the optical input power. The linear fits are fit-
ted such that they both have the same slope but a different intersection



26 Non-Linearity in Optical Fibres

with the y-axis. In Fig. 3.4 the retrieved intensity-dependent refractive
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Figure 3.3: Example of the retrieved non-linear phase shift.

index for the considered step-index fibres is shown as a function of the
weighted germanium concentration. The weighted germanium concen-
tration is introduced to account for the varying intensity distribution
across the core region for the different fibres. The weighted germanium
concentration is given as

Cge =

∫ 2π
θ=0

∫∞
r=0 xge

(∣∣∣F̃ ∣∣∣2)2

rdrdθ

∫ 2π
θ=0

∫∞
r=0

(∣∣∣F̃ ∣∣∣2)2

rdrdθ

, (3.1.3)

where r is the radial coordinate, θ is the angular coordinate, F̃ is the
transverse field distribution of the electric field, and xge is the molar
germanium concentration at a given point. From [57] the germanium
concentration is related to the index of refraction at a given radial
point. The weighted germanium concentration is calculated using the
measured index profile of the different fibres. By performing a linear
regression of the data points, the following expression for the intensity-
dependent refractive index is obtained

nI
2 (Cge) =0.0340 × 10−20 m2

mol%W
Cge + 2.18× 10−20m

2

W
(3.1.4)
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Figure 3.4: The intensity-dependent refractive index from both the electronic
and vibrational/rotational contribution is plotted as a function of the weighted
germanium concentration.

3.2 Complex Raman Index of Refraction

The Raman gain of the germanium doped step-index fibres is measured
with an on/off gain measurement. The contribution from the Raman
effects to the intensity-dependent refractive index is calculated from the
measured Raman gain. The Raman gain is related to the imaginary
part of the complex Raman index of refraction. The third-order non-
linear effect, which causes the Raman amplification, can be written as
an effective first-order effect, which is dependent on the Raman pump
intensity. Therefore, is it valid to apply the Kramers-Krönig relations
to the Raman effect. From the real part of the complex Raman index of
refraction the Raman contribution to the intensity-dependent refractive
index is obtained [41]. The complex Raman index of refraction is written
as

n†
2,R = nI

2,R + iκI2,R, (3.2.1)

where the nI
2,R is the real part of the complex Raman refractive index,

i is the imaginary unit, and κI2,R is the imaginary part of the complex
Raman refractive index. The Raman gain coefficient is given as

gR = −2
2π

λ

κI2,R
Aeff,R

, (3.2.2)

where Aeff,R is the effective area of the Raman process, which takes the
wavelength dependence of the field overlap between the pump and the
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signal into consideration [58]. The effective Raman area is calculated
from the measured index profile of the different fibres. The Kramers-
Krönig relations for the complex Raman refractive index are given as
[59]

nI
2,R (ν) = 1− 1

πν
p.v.

∫ ∞

−∞

ν ′κI2,R (ν ′)
ν ′ − ν

dν ′ (3.2.3)

κI2,R (ν) =
1

πν
p.v.

∫ ∞

−∞

ν ′
(
nI
2,R (ν ′)− 1

)
ν ′ − ν

dν ′, (3.2.4)

where p.v. is the principal value of the integral, and ν is the frequency.
From the Raman gain the imaginary part of the complex Raman refrac-
tive index is obtained and using the Kramers-Krönig relations the real
part of the complex Raman refractive index is calculated. The setup for
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Figure 3.5: Sketch of the setup for the Raman gain measurement.

measuring the Raman gain is seen in Fig. 3.5. The pump laser has a cen-
tre wavelength of 1453 nm and a full-width at half-maximum (FWHM)
of 0.1 nm. An example of the measured Raman gain from the on/off
gain measurement is shown in Fig. 3.6. In Fig. 3.7 an example of a cal-
culated complex Raman index of refraction is shown for the Raman gain
measurement in Fig. 3.6. It was utilised that the response function in
the time domain has to be real and obey causality, which makes the real
part of the complex index symmetric and the imaginary part asymmet-
ric. The contribution of the Raman effect to the intensity-dependent
index of refraction and thereby also the SPM effect is the real part of
the complex Raman refractive index at a frequency detuning of 0 THz.
The Raman contribution to the intensity-dependent refractive index is
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shown as a function of the weighted germanium concentration as de-
scribed in Sec. 3.1 in Fig. 3.8. By comparing Figs. 3.4 and 3.8 it is
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Figure 3.8: The intensity-dependent refractive index from the vibrational/
rotational contributions plotted as a function of the weighted germanium con-
centration.

observed that there is an additional data point in the measurement for
the intensity-dependent refractive index. The corresponding data point
has been removed in the measurement for the Raman contribution to
the intensity-dependent refractive index as it was suspected to be influ-
enced by multi-mode (MM) effects. By performing a linear regression
of the data points, the following expression for the Raman contribution
to the intensity-dependent refractive index is obtained

nI
2,R (Cge) =0.00342 × 10−20 m2

mol%W
Cge + 0.364 × 10−20m

2

W
(3.2.5)

3.3 Raman Fraction of the
Intensity-Dependent Refractive Index

In the two previous sections the intensity-dependent refractive index
and the Raman contribution to the intensity-dependent refractive were
obtained. The Raman fraction of the intensity-dependent refractive
index is given by

fR =
nI
2,R

nI
2

. (3.3.1)
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The Raman fraction, fR, as a function of the weighted germanium con-
centration is shown in Fig. 3.9. It should be noted that the intensity-
dependent refractive index is measured at a wavelength of 1550 nm,
whereas the Raman contribution to the intensity-dependent refractive
index is measured at a wavelength of 1453 nm. However, it is assumed
that the intensity-dependent refractive index is independent of the wave-
length within the considered wavelength region [37]. The dashed line
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Figure 3.9: The resulting Raman fraction, fR, from the values of Figs. 3.4
and 3.8. The Raman fraction is plotted as a function of the weighted germanium
concentration.

shown in Fig. 3.9 is the ratio between the two linear regressions Eq. 3.2.5
and Eq. 3.1.4, whereas the points are a point-wise calculation using the
points from the two data sets. For the point-wise calculation of the Ra-
man fraction the value seems to converge towards a constant value when
the weighted germanium concentration is increased, this attributed to
the small variations in the two data sets. The small variations become
greater in the calculation of the Raman fraction. By calculating the
Raman fraction from the two linear regressions the variations in the
two data sets are reduced. The dashed line in Fig. 3.9 is smoothly de-
greasing from 0.167 to 0.148 with an increasing weighted germanium
concentration. In the case of a high weighted germanium concentration
the Raman fraction is approximately 0.15, hence the error introduced
by using the commonly used Raman fraction of 0.18, which is reported
for a pure silica fibre to be 20%. This has a significant impact in any
application where the Raman effect plays a key role as the Raman frac-
tion, fR, is directly proportional with the strength of the Raman gain
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in the model of the material response given in Eq. 2.2.27 and therefore
also with the predicted SSFS.



Chapter 4

Few-Moded Fibres

The soliton energy in a few-moded fibre (FMF) is potentially well
matched to a multi-photon microscopy application, as it was motivated
in Sec. 1.1. In [30] an experimentally demonstration of a shifted soliton
in FMF was performed. The soliton had a pulse energy of 0.8 nJ and
a temporal pulse duration of 49 fs. The input to the FMF was a pulse
with a temporal duration of 200 fs and a pulse energy of 1.39 nJ. The
largest shift of the soliton was from the input wavelength of 1064 nm to
a wavelength of 1200 nm. This was obtained with an input pulse energy
of 1.63 nJ. The fibre-lase system, which is the main focus of this Ph.D.
project is to design and construct a fibre-based laser system, which is
able to deliver a wavelength-tunable femtosecond pulse with a pulse en-
ergy of 5 nJ. The laser system is to be pumped by an ytterbium-based
source and shift the pulses to a wavelength of 1280 nm. The tuning of
the pulses is facilitated by the soliton self-frequency shift (SSFS).

In order to satisfy the requirement of the high soliton pulse-energy
in a FMF and the large tunable bandwidth, it was realised that this
could not be accomplished by using only one fibre. The limitation is
set by a mode-crossing between the mode of the soliton and another
mode in the fibre. The mode-crossing issue is explained in more detail
later on, as this is very significant for the operation of the laser system,
but also as the mode-crossing provides a novel simultaneous mode and
wavelength-coupling phenomenon. A mode-crossing is generally unde-
sirable for a stable single-mode operation. The mode diagrams shown
in this chapter are valid for a straight fibre with perfect cylindrical sym-
metry. Any imperfection in the fabrication process or deformation of
the drawn fibre will break the orthogonality between the modes in the

33
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modes-crossing and create a strong coupling between the two modes.
Therefore, the mode-crossing limits the wavelength range in which the
soliton can be formed and shifted without any significant loss. To sat-
isfy the pulse energy and bandwidth requirement of the tunable laser
system, it was chosen to attempt a two-fibre approach for the SSFS. A
schematic representation of the two-fibre approach is shown in Fig. 4.1.
The purpose of the LSF is to form a high-energy soliton. The shift of

Oscillator

Mode
converter

λ

λGVD

Left-sided fibre

Right-sided fibre

OutputTransfer

Mode-crossing LSF

Mode-crossing RSF

Input

GVD

LSF RSF

Figure 4.1: A schematic representation of the cascade solution. The source is a
mode-lock oscillator, which provides femtosecond pulses. The light is converted
to the LP0,2 mode before entering the LSF. In the LSF a soliton is generated and
shifted to the transfer wavelength. The soliton pulse is coupled to the RSF where
the soliton continues to shift to the output wavelength. The transfer wavelength
is located between the mode-crossings in the LSF and the RSF.

the soliton in the LSF is limited by the mode-crossing. The soliton-
shift condition should be controlled in such a manner that the soliton
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is coupled from the LSF to the RSF before the soliton is shifted into
the mode-crossing in the LSF. The possible SSFS is much larger in
the RSF compared to the LSF. The RSF has a mode-crossing on the
lower wavelength side and this sets a requirement of the transfer wave-
length between the LSF and the RSF. The mode-crossings in the LSF
and the RSF form a wavelength transfer window between the two fi-
bres, if the soliton is to shift to longer wavelengths without entering
the mode-crossing. The LSF and RSF are the project names and the
names indicate which side of the dispersion curve the use of the fibre is
intended for with respect to the mode-crossing.

The design criterion for the fibre-based short pulse laser was de-
vised together with Chris Xu’s group at Cornell University. The initial
concept was to use a femtosecond pulse at a wavelength of 1060 nm
as the input pulse to the LSF. For the experiments performed at OFS
Fitel Denmark the centre wavelength of the oscillator was located at a
wavelength of 1030 nm. The wavelength shift of the input pulse could
be compensated by an increase in the pulse energy according to the
simulations performed.

In the following the design and optimisation process of the LSF and
the RSF is presented together with the characterisations of the two
fibres. This is followed by considerations regarding the excitation of
the LP0,2 mode. The LP0,2 mode is the intended mode of operation in
the LSF and the RSF. The chapter is rounded off with a section where
it is attempted to splice two different FMFs together.

4.1 Design

The first important step in the design process was to optimise the energy
of the soliton pulse from the previously reported soliton energy of 1 nJ
[30]. The energy of the soliton pulse is given as

Esol =
N2λ3DAeff

2π2cnI
2T0

∝ DAeff , (4.1.1)

where N is the soliton order, λ is the wavelength, D is the group-
velocity dispersion, Aeff is the effective mode area, c is the speed of
light in vacuum, nI

2 is the intensity-dependent refractive index, and
T0 is the pulse duration. From a design perspective using silica glass,
the significant parameters related to the energy of the soliton are the
group-velocity dispersion, D, and the effective area, Aeff , because these
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are direct attributes of the wave-guide design. The wave-guide design
also influences the value of the intensity-dependent refractive index,
however, the change in value is relatively small compared to the possible
changes in the values of group-velocity dispersion and effective area.
From Eq. 4.1.1 it is given that the soliton energy is directly proportional
to the product of the group-velocity dispersion and the effective area.
Therefore, to increase the soliton energy, it is a matter of designing a
fibre with a very large anomalous dispersion and/or a large effective
mode area for the mode of the soliton. The mode of choice of the LSF
and the RSF is the LP0,2 mode. In order to enhance the wave-guide
dispersion of the LP0,2 mode, both fibres have a triple-clad design. The
triple-clad design was chosen to enhance the features of the LP0,2, which
is described in more details in the following section. The LP0,2 mode
was chosen to keep the complexity of the design to a minimum, as a
mode of higher-order would introduce several mode-crossings, which
should be accounted for.

4.1.1 Left-Sided Fibre

The work in this section is based upon [60, 61]. There is an intuitive
explanation regarding the tailoring of the group-velocity dispersion for
the LP0,1 mode for a triple-clad design in [62], which also applies for the
LP0,2 mode. The triple-clad design can be viewed as a superposition
of two wave-guides, a core wave-guide and a ring wave-guide, as shown
in Fig 4.2. To illustrate the decomposition of the triple-clad design

Figure 4.2: Sketch of the refractive index profile for the core, the ring, and the
triple-clad wave-guides. The triple-clad design can be viewed as a superposition
of two wave-guides, a core wave-guide and a ring wave-guide.

into a core and a ring wave-guide, the effective indices as a function of
wavelength are shown for the core, the ring, and the triple-clad wave-
guides in Fig. 4.3 for the first couple of modes. The effective indices for
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Figure 4.3: The effective index shown as a function of the wavelength for the
core, the ring, and the triple-clad wave-guide design.
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the individual LP0,1 modes in the core and ring wave-guides cross at a
wavelength of approximately 1120 nm. Because the core and ring wave-
guides are coupled wave-guides in the triple-clad design and they have
the same angular symmetry, the two LP0,1 modes from the isolated core
and ring wave-guides are forced to make an avoided crossing to satisfy
the orthogonality requirement. This is seen by comparing Fig. 4.3a and
Fig. 4.3b. The LP0,2 mode in the triple-clad design starts out as the
LP0,1 mode of the isolated ring wave-guide at the shorter wavelengths
and ends up as the LP0,1 mode of the isolated core wave-guide at the
longer wavelengths. Therefore, the mode-crossing between the LP0,2

and LP1,1 modes in the triple-clad design is a consequence of the avoided
crossing between the LP0,1 and LP0,2 modes. The curvature of the
avoided crossing increases the closer the intersect angle between the
two LP0,1 modes from the isolated core and ring wave-guides are to 90◦.
The curvature of the effective index is directly related to the dispersion
value as

D = −λ

c

d2neff

dλ2
. (4.1.2)

However, as it is observed from Fig. 4.3b, the closer the intersect angle
is to 90◦, the closer in wavelength the mode-crossing between the core
LP0,1 mode and the ring LP1,1 mode is to the mode-crossing between
the core LP0,1 mode and the ring LP0,1 mode. Therefore, with the
triple-clad design there is a natural trade-off between a high anomalous
group-velocity dispersion value for the LP0,2 mode and how close the
mode-crossing wavelength between the LP0,2 and LP1,1 modes is to the
wavelength of peak value of the group-velocity dispersion.

The optimisation of the peak value of the group-velocity dispersion
is performed as explained above while ensuring a relative large effective
area, as the LP0,2 mode is located mostly in the ring structure of the
wave-guide for the wavelengths below the avoided crossing. The opti-
mised design is a compromise of soliton energy and the wavelength range
for SSFS in the LSF as explained above. This was verified numerically
as the design-parameter space of the LSF was thoroughly investigated
by running numerous computations of different configurations to find
the optimum design with the highest soliton energy. The different con-
figurations were perturbations of the triple-clad design. The result of
the optimisation process is shown in Fig. 4.4. The product of the group-
velocity dispersion and the effective area, i.e. the energy of the soliton
see Eq. 4.1.1, at the wavelength of 1060 nm is shown as a function of
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the mode-crossing wavelength for different wave-guide designs. Fig. 4.4
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Figure 4.4: The product of the group-velocity dispersion and the effective
area at the wavelength of 1060 nm is shown as a function of the mode-crossing
wavelength for different wave-guide designs.

shows that the mode-crossing wavelength moves closer to the input
wavelength of 1060 nm, as the product of the group-velocity dispersion
and the effective area increases. As a compromise between the soliton
energy and the stability, the optimised design of the LSF has a mode-
crossing between the LP0,2 and LP1,1 modes at approximately 1120 nm.
Fig. 4.3a shows the effective indices as a function of wavelength for the
first four LP modes of the final version of the LSF. Fig. 4.5 shows the
group-velocity dispersion and effective area of the LP0,2 mode as well
as the product of the group-velocity dispersion and the effective area.
Figs. 4.3a and 4.5a show that the mode-crossing wavelength is close to
the wavelength at the peak of the group-velocity dispersion curve. In
this optimisation process we have focused on the LP0,2 mode, however,
other higher-order-modes (HOMs) could also be utilised. In general,
the process would become more complex because more mode-crossings
should be considered, but by using a mode of higher-order the effective
area is increased and thereby also the soliton energy.

4.1.2 Right-Sided Fibre

The LSF and the RSF are to be used in a cascaded configuration. There-
fore, the design parameters of the RSF are dependent on the final LSF
design. The mode-crossing in the LSF is located approximately around
1120 nm. The longest wavelength intended for coupling the soliton
pulse from the LSF to the RSF is 1100 nm, as this will provide some
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distance in wavelength to the mode-crossing in the LSF for the shifted
soliton. The shifted soliton will have a temporal duration in the sub-
picosecond range. As the soliton pulse is required to shift to a wave-
length of 1280 nm, this sets a requirement for the anomalous region in
the RSF. Another requirement is that the single-soliton condition con-
tinues to be satisfied in the RSF. This includes the splice loss between
the LSF and the RSF. Basically, by comparing the soliton pulse energy
as given in Eq. 4.1.1 for the LSF and the RSF the following expression
is obtained

NRS3 =

√
DLS5Aeff ,LS5

DRS3Aeff ,RS3
. (4.1.3)

If the soliton number of the RSF is less than one, then the pulse will
broaden as a dispersive wave until the pulse duration matches the soliton
requirement. If the pulse duration enters the picosecond range, the
SSFS will be greatly reduced [26]. Therefore, it is not desirable to have
a soliton number less than one for the RSF. However, if the soliton
number of the RSF is much larger than one, then the soliton pulse will
generate a super-continuum, which is undesirable. A soliton of order
N will undergo soliton fission and split up into N fundamental soliton
provided there is a sufficient length of fibre [63]. Therefore is it difficult
to set a strict upper limit on the ratio between the product of the group-
velocity dispersion and the effective area in the RSF and in the LSF.
More details about coupling a soliton between two fibres can be found
in [64].

For the RSF the issue with the mode-crossing between the LP0,2

mode and the LP1,1 mode is present as this is generic to the triple-
clad design as explained in Sec. 4.1.1. To facilitate the long wavelength
shift of the soliton, the mode-crossing is designed to be at a shorter
wavelength than the transfer wavelength between the LSF and the RSF.
In Fig. 4.6 the effective indices for the first four LP modes are shown
for the RSF. The corresponding group-velocity dispersion and effective
area of the LP0,2 mode as well as the product of the group-velocity
dispersion and the effective area are shown in Fig. 4.7. Another limiting
factor for the RSF design is a consequence of the requirement of the
broad anomalous region as there is a potential mode-crossing between
the LP0,2 mode and the LP2,1 mode at the longer wavelengths for the
triple-clad design. This is not shown in Fig. 4.6, however, it can be
indicated if the effective indices for the LP0,2 mode and the LP2,1 mode
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respect to pure silica.

are extrapolated towards longer wavelengths. In summary, the peak
value of the group-velocity dispersion curve for the RSF design is limited
by the requirement of a broad anomalous region, the mode-crossing
between the LP0,2 mode and the LP1,1 mode, and the mode-crossing
between the LP0,2 mode and the LP2,1 mode.

The anomalous region of the RSF extends to a longer wavelength
than the design target of 1280 nm to anticipate the cancellation of the
SSFS due to the coupling of light from the soliton pulse to a dispersive
wave in the normal dispersion region generated by the Čerenkov process
[65,66].

The ratio of the product of the group-velocity dispersion and the
effective area between the LSF and the RSF at the transfer wavelength
of 1100 nm is 4.2. This means that the splice loss between the LSF
and the RSF can be up to 6.2 dB and the soliton condition in the RSF
would still be satisfied. If the splice loss between the LSF and the RSF
is negligible, a soliton of order 2 would be formed in the RSF, which at
maximum should give two solitons during the soliton fission process [63].
Two solitons are hardly enough for the generation of a super-continuum
over the considered bandwidth.

4.2 Characterisation

The LSF has undergone the most extensive characterisation, as this fibre
was the first fabricated and the design of the RSF depended on the prop-
erties of the drawn LSF. Both fibres were characterised by analysing the
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interferometric beat pattern with a sliding Fourier-transform-window.
The dispersion of multiple modes in LSF was measured in the time do-
main and the dispersion of the LP0,1 mode was measured in the spectral
domain. Each method is treated separately in the following.

4.2.1 Sliding Fourier-Transform-Window

For the sliding Fourier-transform-window method the interferometric
beat patterns between several modes are recorded by an optical-spectrum
analyser (OSA). The measurement is similar to the one presented
in [67]. A sketch of the measurement setup is shown in Fig. 4.8; a

OSA

FUT

Broadband source

SMF SMF

Offset coupling

Figure 4.8: The setup for the interferometric measurement.

single-mode broadband source, which is off-set coupled to the fibre-
under-test (FUT) in order to excite a multiple number of modes. The
light out of the FUT is collected with a single-mode fibre (SMF) and
recorded on an OSA. As the modes will have experienced different
group delays through the FUT and they are forced to interfere in the
collecting SMF, the recorded spectrum will exhibit beat patterns cor-
responding to the difference in the group-velocity between the modes.
The choice of source should depend on where the fibre has noticeable
features in the beat pattern.

The sliding Fourier-transform-window method is however also known
as the short-time Fourier-transform. The mathematical description of
the operation is given as

x̃ (Λ,Kfreq) =

∫ ∞

−∞
x (λ)w (λ− Λ) exp [−i2πKfreqλ] dλ, (4.2.1)

where x is the measured quantity, which is the transmission spectrum
from the interferometric measurement, w is the window function, which
is a raised cosine, λ is the wavelength, Λ is the tuning wavelength of the
window function, and Kfreq is the inverse Fourier-transform variable of
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the wavelength. The Kfreq is be equal to

Kfreq =
L

λ2
|Δng| , (4.2.2)

where L is the length of the FUT, λ is the wavelength, and Δng is the
difference in group index between the two modes interacting.

Left-Sided Fibre

In this section the result of the interferometric measurement on the LSF
is presented. The length of the FUT was 1.949 m. The light source is
an ytterbium-based amplified spontaneous emission (ASE) source. In
order to clearly resolve all the oscillations in the transmission spec-
trum the resolution of the OSA was 0.02 nm. Applying the sliding
Fourier-transform-window method to the recorded transmission spec-
trum results in a counter plot, shown in Fig. 4.9. The window size was
3.2 nm and the spacing between the sample points was 6.4 nm. Fig. 4.9
is a close-up on the region of interest, where the limits of the colour-bar
have been rescaled to remove some of the noise. The original contour
plot and the measured spectra are found in App. A.2.1. The strongest
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Figure 4.9: The sliding Fourier-transform-window method applied to the in-
terferometric data.

beat frequencies are the two starting at the shorter wavelength just be-
low Kfreq = 40 1

nm and going to zero at a wavelength approximately at
1120 nm. In Fig. 4.10 the calculated absolute group-index difference
between the first LP modes in the LSF are shown together with the
retrieved absolute difference in group index from the lower branch of



46 Few-Moded Fibres

the two strongest beatings in Fig. 4.9. The value of the lower branch of
the two strongest beatings is retrieved by locating the peaks in Fig. 4.9
and storing them of each sample wavelength. The two strong beatings
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Figure 4.10: Comparison between the retrieved absolute group-index from
the measurement and different calculated mode pairs. It is observed that the
retrieved peak from the measured data is not correctly located for every data
point. This explains the variation in the signal strength in the beat pattern.

in Fig. 4.9 are identified as the beating between the LP0,1 mode and the
LP0,2 mode and a beating between the LP0,1 mode and the LP1,1 mode.
The mode of most interest is the LP0,2 mode and it is observed that
the LP0,1 mode and the LP0,2 mode have a turn-around-point (TAP)
at the approximate wavelength of 1120 nm. Disregarding a small dis-
crepancy around the TAP, which is caused by a beating between some
of the other modes, the agreement is excellent for the measured and
calculated difference in the group index between the LP0,1 mode and
the LP0,2 mode.

Right-Sided Fibre

In this section the result of the interferometric measurement on the RSF
is presented. The length of the FUT was 7.940 m. The light source con-
sists of four super-luminescent light-emitting-diodes. The resolution of
the OSA was 0.05 nm in order to clearly resolve all the oscillations in the
transmission spectrum. Applying the sliding Fourier-transform-window
method to the recorded transmission spectrum results in a counter plot,
shown in Fig. 4.11. The window size was 4 nm and the spacing between
the sample points was 5 nm. Fig. 4.11 is a close-up on the region of inter-
est, where the limits of the colour-bar have been rescaled to remove some
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of the noise. The original contour plot and the measured spectra are
found in App. A.2.1. In Fig. 4.12 the calculated absolute group-index
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Figure 4.11: The sliding Fourier-transform-window method applied to the
interferometric data.

difference between the LP0,1 mode and the LP0,2 mode and between the
LP0,1 mode and the LP1,1 mode in the RSF are shown together with the
retrieved absolute difference in group index from Fig. 4.11. The value
of the two branches of beatings is retrieved by locating the peaks in
Fig. 4.11 and storing them of each sample wavelength. The agreement
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Figure 4.12: Comparison between the retrieved absolute group-index from
the measurement and the calculated difference between the LP0,1 mode and the
LP0,2 mode and between the LP0,1 mode and the LP1,1 mode. It is observed
that the retrieved peak from the measured data is not correctly located for every
data point. This explains the variation in the signal strength in the beat pattern.

between the measurement and the calculation is not as excellent as for
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the LSF, however, it is quite reasonable. The cut-off wavelength for
the LP0,2 mode is approximately at a wavelength of 1540 nm, which
is why the curve for the absolute group-index difference between the
LP0,1 mode and the LP0,2 mode stops at this wavelength in Fig. 4.12.

4.2.2 Temporal Dispersion Measurement

The work in this section is based upon [68]. The interferometric mea-
surement in the previous section, Sec. 4.2.1, was an indirect measure-
ment of the dispersive properties of the FUT, whereas the temporal
dispersion measurement, described in this section, is a direct measure-
ment of the dispersive properties of the FUT. The general concept
of the measurement is to use the output from a mode-locked laser to
excite multiple modes when coupling into the FUT, after which the
output from the FUT is measured on a fast oscilloscope. This is per-
formed for a number of discrete wavelengths and thereby the relative
group delay for each excited mode can be recorded as a function of
wavelength. The experimental setup is shown in Fig. 4.13. An 80 MHz

OSA
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SMF
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Coupling
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50/50 fibre
coupler

90/10 fibre
coupler

Photodetector

50/50 RF
coupler

Sampling
oscilloscope

SMF

SMF

Mode-
conveter Signal

Reference Trigger
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Figure 4.13: Sketch of the dispersion measurement.

mode-locked Ti:Sapphire laser is used as the input source. The initial
input wavelength is continuously tuned between 1010 nm and 1070 nm,
with a spectral bandwidth in the range of 10 nm to 20 nm. The input
bandwidth is then spatially filtered to 1 nm by a tunable wavelength
selector. The incident beam is split by a 50/50 fibre coupler, which
splits the light into the FUT and the reference arm. The total input
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pulse energy is maintained below 1 pJ to avoid fibre non-linearities. In
the FUT multiple modes are simultaneously excited after launch, this
is done with an off-set splice. The output from the FUT is measured
by a 30 GHz sampling oscilloscope with a fast photo detector module
(Agilent 86100A Infiniium DCA sampling oscilloscope). The incident
pulses on the detector have a duration of approximately 2 ps or less,
which is well below the impulse response time of the detector. The
recorded pulses are therefore determined by the impulse response of the
detector, however, the oscilloscope has a temporal precision of 250 fs,
which means that a delay shift of 1 ps can be measured. In the refer-
ence arm, the optical power is split by a 90/10 fibre coupler. The 90%
arm is detected by a 20 GHz detector. The electrical pulse train is then
split by a 50/50 RF coupler to trigger the oscilloscope and provide a
reference signal. The 10% arm is coupled into an OSA to measure the
input wavelength.

As the mode of most interest is the LP0,2 mode, a mode-converter
is used to excite the light to the LP0,2 mode. The mode-converter is
off-set spliced to the FUT, which is the LSF and as a consequence
both the LP0,1 mode and LP1,1 mode are excited together with the
LP0,2 mode. In Fig. 4.14 an example of the recorded temporal trace
is shown for a wavelength of 1064 nm. The three peaks in the trace
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Figure 4.14: An example of the recorded temporal trace at a wavelength of
1064 nm.

correspond to the LP1,1 mode, the LP0,2 mode, and the LP0,1 mode.
Each peak is continuously tracked to ensure that it represents the same
mode during the wavelength-tuning process. The amplitudes of the
peaks represent the relative optical power in each excited mode, and
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the temporal positions of the peaks indicate the relative delay of each
mode with respect to the reference pulse from the reference arm. At
each input wavelength, the relative delay of each mode is measured and
the relative delay can be expressed as

τ = τX − τRef +CRF =
LX

vg,X
− LRef

vg,Ref
+ CRF , (4.2.3)

where τ is the relative delay between mode X and the reference pulse.
τX represents the group delay of modeX after the mode has propagated
through the LSF, and τRef represents the group delay of the reference
pulse. vg,X and vg,Ref are, respectively, the group velocities of mode X
in the LSF and the fundamental mode in the SMF of the reference arm.
LX and LRef represent, respectively, the lengths of the LSF and the
SMF. CRF is the constant delay introduced by the RF devices in the
system. The length of the LSF in the measurement was 10.2 m. The
length of SMF in the reference arm has been adjusted to account for the
SMF in the signal arm and the resulting length was 1.7 m. The only
part which is not accounted for is the small length of FMF in the mode-
converter, however, as this length is less than 10 cm, this contribution
is neglected. Both the calculated and measured relative group delays
as a function of wavelength for the LP0,1 mode, the LP0,2 mode, and
the LP1,1 mode are shown in Fig. 4.15 . The agreement between the
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Figure 4.15: The measured and calculated relative group delays as a function
of wavelength for the LP0,1 mode, the LP0,2 mode, and the LP1,1 mode.

calculated and measured relative group delay is excellent. The relative
precision of the measured delay can be further improved by using longer
lengths of LSF. However, the relative delay between two modes in the
fibre must be shorter than the periodicity of the pulse train.
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As this is a direct measurement of the dispersive properties of the
fibre the group-velocity dispersion can be calculated from the measured
relative group-delay. In Fig. 4.16 both the measured and calculated
group-velocity dispersion are shown for the LP0,1 mode, the LP0,2 mode,
and the LP1,1 mode. The relative group delay is fitted with a third-
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Figure 4.16: The measured and calculated group-velocity dispersion as a
function of wavelength for the LP0,1 mode, the LP0,2 mode, and the LP1,1 mode.

order polynomial for the LP0,1 mode and the LP0,2 mode and a second-
order polynomial is used for the LP1,1 mode. Once again the agreement
between the measurement and calculation is excellent.

4.2.3 Group-Velocity-Dispersion Measurement

A commercial group-velocity-dispersion measurement setup used for
characterising single-mode telecommunication fibres can be used to mea-
sure the dispersive properties of a FMF if care is taken only to excite
a single mode. This is achieved by stripping the fibre of all but a sin-
gle mode, e.g. if the input of the FUT is tapering down to a fibre
diameter where all the HOMs are unguided. The main disadvantage
with this is that it is only possible to measure the group-velocity dis-
persion of the fundamental mode. An alternative could be to measure
the group-velocity dispersion with a broadband mode-converter before
the FUT. This is not trivial for the LSF as will be described later
on in Sec. 4.3. The LSF was tapered using a similar method to the
one described in [69]. Index oil was applied to the taper before the
measurement was carried out. The measurement was performed with
a Photon Kinetic 2800 Dispersion/Stain unit. The length of LSF was
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468 m. When the fibre is tapered, the dispersive properties are altered.
However, as the taper region is only a couple of centimetres the error
is negligible. In Fig. 4.17 the measured and calculated group-velocity
dispersion are shown for the LP0,1 mode. The agreement between the
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Figure 4.17: The measured and calculated group-velocity dispersion as a
function of wavelength for the LP0,1 mode.

measurement and calculation does not match as well as the previous
comparisons, however, it is still good. The polynomial fit used for the
measured group delay is a third-order polynomial. As for this measure-
ment and the temporal dispersion measurement there will always be
some artefacts in the end interval of the measured values due to the
polynomial fit.

4.3 Excitation of the LP0,2 Mode

For utilising the anomalous dispersion properties of the LP0,2 mode in
the LSF and later on in the RSF a method for successful excitation
of the mode is needed. One commonly used method is to induce a
long-period grating (LPG) to the fibre. There are various different
techniques for inducing a LPG to a given fibre. The grating could be a
micro-bend grating [70,71], which is only ideal for the coupling between
symmetric and asymmetric modes. Writing of LPGs with a CO2 laser
is also possible [72], or with high-powered femtosecond-pulses, which
induce damage in the silica lattice [73]. Another possibility is to utilise
that germanium-doped silica produces a refractive index change due to
a photosensitive process [74] to write an ultraviolet (UV) LPG. Other
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mode-conversion techniques involve phase plates [75] or spatial light
modulators [76]. As the design criterion for the final laser system is an
all-fibre system, it is the UV LPG method, which is of interest.

The resonance condition for the LPG can be found when the detun-
ing parameter equals zero. The detuning parameter, δ, is given as [77]

δ (λ) =
1

2

(
2π

Λ
−Δβ (λ)

)
, (4.3.1)

where λ is the wavelength, Λ is the grating period, and Δβ is the differ-
ence in propagation constants between the two modes. The resonance
condition can be written as

λres = ΔnneffΛ, (4.3.2)

where Δnneff is the difference in effective index between the two modes.
To a first approximation the following expression is valid

dΛ

dλres
=

Δng

n2
eff

, (4.3.3)

where Δng is the difference in group index between the two modes.
From Eq. 4.3.3 it is realised that the bandwidth of the LPG is broadest
where the group-index difference equals zero. This is also referred to
as the TAP. In Fig. 4.10 it is observed that the LP0,1 mode and LP0,2

mode experience a TAP at a wavelength of approximately 1110 nm,
which is also almost the same wavelength as the mode-crossing between
the LP0,2 mode and LP1,1 mode, which is at a wavelength of 1120 nm.
This complicates the mode conversion in the LSF, since a LPG with
a significant bandwidth has to be close to the mode-crossing. This is
also a consequence of the requirement of a high soliton-pulse energy.
Therefore, another approach is required. The chosen solution was to
write the LPG in another FMF where it was possible to have the grating
resonance wavelength within the ytterbium gain band. However, this of
course requires a splice between two different FMFs with low loss and
with the correct coupling of the modes. Furthermore, a splice between
the LSF and the RSF is also required for the cascade idea to work in
an all-fibre solution.

4.3.1 Mode-Converter Fibre

The mode-converter fibre shown in this section is optimised for a mode
conversion at 1030 nm and used to convert the output of the HOM
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dispersion balanced laser, which is presented in Sec. 5.1. The mode-
converter fibre was originally fabricated as part of the OFS Femto-
Comp product line. For various reasons the availability of pre-fabricated
mode-converters was non-existent. To fabricate broadband LPGs the
resonance wavelength should be located at the wavelength of the TAP.
In Fig. 4.18 the difference in group index between the LP0,1 mode and
the LP0,2 mode in the mode-converter fibre is shown. The TAP is ob-
served to be ideal for a broadband mode conversion at approximately
1030 nm. In Fig. 4.19 the group-velocity dispersion and the effective
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Figure 4.18: The calculated group-index difference between the LP0,1 mode
and the LP0,2 mode as a function of wavelength in the mode-converter fibre.

area are shown for the LP0,2 mode. The values are small when com-
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Figure 4.19: The group-velocity dispersion and the effective area of the LP02

mode in the mode-converter fibre.

pared to the values of the LSF. Therefore the soliton threshold is lower



4.3 Excitation of the LP0,2 Mode 55

in the mode-converter fibre compared to the LSF. This could poten-
tially have an influence on the soliton pulse formation depending on the
length of the mode-converter fibre.

UV LPGs were written in the mode-converter fibre with an amplitude-
mask placed after the fibre had been loaded with hydrogen in a high-
pressure chamber [78]. A typical grating transmission is shown in
Fig 4.20, where the fibre was tapered on either side of the grating.
The first taper is to have a pure LP0,1 mode before the grating, the
second taper is to remove the converted LP0,2 mode after the grating
and record the residual LP0,1 mode, which has not been converted by
the grating.
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Figure 4.20: A typical transmission characteristic through one of the LPGs
written during the project. The transmission is a measure for the amount of
residual LP0,1, which has not been converted.

4.3.2 Splicing of Few-Moded Fibres

The splice loss between two identical FMFs is in general quite low,
in [79] it was reported to be 0.3 dB. However, this is in general not the
case for two different FMFs. The potential for splicing one mode from
the first fibre to a different mode in the second fibre is significant as the
modes in the two fibres have different transverse field distributions.

To investigate the possibility of splicing two different FMFs together,
a simulation of the splice-loss evolution was performed. The programme
to simulate the splice loss was written by Torben Veng from OFS Fitel
Denmark. The programme solves the diffusion equation for the re-
fractive index profile of the two fibres. Afterwards the diffused index
profiles are used to calculate the field overlap between the mode from
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the first and second fibres. The simulated fusion splice loss for the
mode-converter fibre and the LSF at a wavelength of 1030 nm is shown
in Fig. 4.21. The splice loss increases rapidly in the beginning until it
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Figure 4.21: Simulated fusion splice-loss between the mode-converter fibre
and the LSF for the LP0,2 mode.

reaches a maximum. Afterwards it gradually decreases and slowly re-
duces towards zero. Unfortunately, it is not possible to splice two fibres
for such a long period of time in a fusion splicer. Instead a two-step
process was performed, where the first step consists of splicing the fibres
together in a fusion splicer and in the second step defusing the material
over a gas-line burner. The gas-line burner works at a much lower tem-
perature than the fusion splicer, however, as diffusion is a product of
time and heat, it should be possible to obtain the same effect just over
a longer time. Of course there is an underlying assumption that the dif-
fusion coefficients of the different materials in the fibre have the same
temperature dependence. The reason that splice loss goes asymptotic
towards zero for a long splice time can be understood by comparing
the evolution of the refractive index profile over time. In Fig. 4.22 the
refractive index profiles for the mode-converter fibre and the LSF are
shown for the sampled fusion times in Fig. 4.21. Both fibres seem similar
before the splice process due to the fact that they both have a triple-clad
structure. However, as soon as the splice process begins, the similarities
disappear. The mode-converter fibre diffuses into a very big single core
with a small oscillation on top, whereas the LSF diffuses into a sinu-
soidal profile. This explains the rapid increase in the splice loss in the
beginning of the process. As the splice process continues, the material
in both fibres diffuse even more and towards the end both fibres have
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Figure 4.22: The refractive index-profiles of the mode-converter fibre and the
LSF at selected sample points of the diffusion process. The input refractive
index-profile is approximated by the step equivalent to ease the computational
load.
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a very broad core, however, the transverse field overlap for the LP0,2

mode is almost identical in both fibres, which results in the low splice
loss at the end of the splice process. The splice evolution shown for the
mode-converter fibre and the LSF at a wavelength of 1030 nm is generic
for all the combinations of wavelengths and triple-clad structured fibres
considered in this project.

There are several experimental challenges for the combine fusion
and gas-line-burner splice to work. The fibres cannot be stripped by a
mechanical process as this would damage the surface of the fibre [80].
Water by-product from the propane-gas burner would enter the fibres
and reduce the strength of the fibres in the splice point, which makes
the fibres fragile in the splice point. Therefore, the fibres were heat-
stripped and cleaned in an ultra-sonic ethanol bath. It was found that
the cleave-angle of the fibres should not exceed 0.5◦. The initial align-
ment in the fusion splicer is critical as a slight off-set would increase
the coupling of a symmetric mode, as the LP0,2 mode, to a asymmetric
mode, as the LP1,1 mode. For the best result and to achieve a symmet-
rical heat zone around the splice point when using the gas-line burner, it
is important to precisely align the splice point over the gas-line burner.
When suspending the splice point over the gas-line burner, the tension
load must not be too high or too low as this could increase the splice
loss. Too much tension would cause a tapering of the splice point and
too low tension would cause the fibres to deform and bend at the splice
point.

The splicing of the mode-converter fibre to the LSF was carried out
with an automated splicing-station for the gas-line-burner splice. This
reduced the complexity in the splice process as the splicing-station con-
trolled the alignment of the splice point over the flame and the tension
load on the fibres. A sketch for the setup for the gas-line burner splice
is shown in Fig. 4.23. For the setup a broadband ASE source is used as
input. The single-moded output is spliced to the mode-converter fibre
with a high coupling efficiency to the fundamental mode. The light
is coupled to the LSF. After the light has travelled through the LSF,
the light is coupled into the mode-converter fibre, where all the light
in the LP0,2 is converted into the fundamental mode, which is spliced
to a SMF working as a mode-strip for any potential HOMs and there-
fore this is the only mode detected by the OSA. If some residual LP0,1

mode is coupled into the second-mode-converter fibre from the LSF, it
will be converted to the LP0,2 mode by the LPG and removed by the
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Figure 4.23: A sketch for the setup for the gas-line-burner splice.

mode-strip. As the LPG only converts between the LP0,1 mode and
the LP0,2 mode all other modes are removed by the mode-strip. How-
ever, residual light that has not propagated as the LP0,2 mode in the
LSF can be detected if the light ends up in the LP0,2 mode before the
final LPG. The source of this is mode coupling at the splice points or
distribution along the fibre [81, 82]. The splice points are put over a
gas-line burner at the same time and it is assumed that the two splices
are identical. Parasitic residual modal content creates a beat pattern on
the recorded OSA trace, due to a difference in the optical path length.
The residual modal content in a given signal is given by the multi-path
interference (MPI) as [62]

MPI = 20 log10

[
1−

√
10

−PtP
10

1 +
√

10
−PtP

10

]
, (4.3.4)

where MPI is in dB and PtP is the peak-to-peak difference in the
spectrum in units of dB. In Fig. 4.24 the wavelength average trans-
mission and the wavelength average MPI are shown as a function of
the experimental run-time. The averaged wavelength interval was from
a wavelength of 1025 nm to a wavelength of 1035 nm. The original
contour plot of the transmission and the MPI as a function of wave-
length and time can be found in App. A.3.1, where the variation with
wavelength is observed to be negligible. The first notable difference
between the simulated evolution of the loss in Fig. 4.21 and measured
transmission in Fig. 4.24 is that the measured transmission oscillates.
The simulated splice loss considers only the fraction of light coupled
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Figure 4.24: The gas-line burner splice evolution for the wavelength average
transmission and the wavelength average MPI as a function of the experimental
run-time. The length of LSF was 50 m and the resolution of the OSA was
0.02 nm.

from the LP0,2 mode in the first fibre to the LP0,2 mode in the second
fibre. The oscillation in the measurement can be explained by the fact
that different mode couplings take place during diffusion of the index
profiles and when the light is coupled to the LP0,2 mode in the second-
mode-converter fibre at the splice point, the light is detected by the
OSA, even though that light might not have travelled through the LSF
as the LP0,2 mode. In Fig. 4.24 it is observed that the minimum loss
is reached after an experimental run-time of a 1000 s, however, if the
gas-line burners continue to burn, the loss is observed to stabilise at a
value of 3.2 dB, which is 0.7 dB larger than the minimum loss. The
MPI calculated in a 2 nm bandwidth window is shown in Fig. 4.24. It
is observed that the MPI oscillates in the same manner as the trans-
mission and that when there is a low loss, there is also a low MPI. This
means that the improvement in the loss is due to better coupling to a
single LP mode.

The evolution in the transmission is quite reproducible and it is
possible to stop the gas-line-burner splice at the minimum loss region
after an experimental run-time of a 1000 s, if the speed at which the
gas-line burners are moved away from the splice points is sufficiently
slow. This was achieved in Fig. 4.25, where the gas-line burners were
moved with an initial speed of 10 μm

s . Fig. 4.25 shows the wavelength
average transmission and the wavelength average MPI as a function of
the experimental run-time. The averaged wavelength interval was from
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a wavelength of 1025 nm to a wavelength of 1035 nm. The original con-
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Figure 4.25: The gas-line-burner splice evolution. The splice process is stopped
shortly after an experimental run-time of 1000 s and the gas-line burners are
moved away. The length of LSF was 70 m and the resolution of the OSA was
0.02 nm.

tour plot of the transmission and the MPI as a function of wavelength
and time can be found in App. A.3.1, where the variation with wave-
length is observed to be negligible. Comparing Fig. 4.24 and Fig. 4.25
it is observed that the minimum splice of 2.5 dB recorded in Fig. 4.24
is not realised when the splice process is stopped after an experimental
run-time of a 1000 s as the recorded loss is 3.1 dB. The gas-line burn-
ers have to be lowered, such that the change in the heat zone across
the splice point is not abrupt, however, to stop the splice process at
the point of minimum loss there is only a relative short time window to
lower the gas-line burners. A total loss of 3.1 dB would make each splice
loss equal to 1.6 dB if the splices are assumed to be identical. A loss
of 1.6 dB is equal to a transmission of 69%. The mode-conversion is to
take place just after the amplification of the seed pulse and therefore it
should be possible to compensate the splice loss by higher amplification.

There are a lot of parameters that can be varied in this splice pro-
cess, including the above-mentioned, there is also the initial fusion-splice
time, fusion-splice current, and the temperature of the gas-line-burner
splice, which can be controlled by adjusting the height of the splice
point above the propane flame and also the amount of oxygen added
to the combustion process. Another possible parameter is the length
of the gas-line burner. With this in mind the applied splice process is
hardly optimised. However, due to the complicated required optimisa-
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tion process, this was not pursued further in this Ph.D. project.
There are of course alternative approaches by which a low loss might

be accomplished. Potentially, the use of one or more bridge fibres could
be applied to have a discrete, but gradual change of the transverse field
distribution of the considered mode. In line with this another idea could
also be to apply a taper to one of the two FMFs to make a slow and
adiabatic change of the transverse field distribution of the considered
mode, such that it would match the transverse field distribution in the
second fibre after which the two fibres are fusion spliced together. A
different approach could also be to use free space optics in between the
two FMFs to focus the mode to the correct dimension, however, this
would compromise the all-fibre integrated laser system.



Chapter 5

Fibre-Based Oscillators

In this chapter two fibre-based oscillators, which both use an ytterbium-
doped fibre as the gain medium, are presented. Common for both of
the two fibre-based oscillators is that they have been assembled prior to
the involvement in this project. The fibre-based oscillator, which is of
most importance is the higher-order-mode (HOM) dispersion-balanced
laser as this laser is used for the soliton experiments in the left-sided
fibre (LSF) and the right-sided fibre (RSF). The second fibre-based
oscillator is the all-normal dispersive (ANDi) polarisation-maintaining
(PM) laser, which has been the focus of an extensive work regarding
modelling mode-lock lasers during the visit to the Femtosecond Optics
Group at Imperial College London. As the ANDi PM laser has no
direct relation with what is described in the coming chapters, the laser
is placed in the last section of this chapter and can be skipped without
any loss of continuity regarding the constructions of the widely tunable
femtosecond pulse fibre-based laser system.

5.1 Higher-Order-Mode Dispersion-Balanced

Laser

The HOM dispersion-balanced laser was intended to supply the required
seed pulses for the experimental soliton self-frequency shift (SSFS) in
the LSF and the RSF. To obtain dispersion compensation in a laser
operating below the zero dispersion wavelength of silica, it is often ac-
complished with bulk components. It is also possible to have dispersion
compensation by using micro-structure photonic-crystal fibre (PCF),

63
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however, an alternative is to use a HOM module. The HOM module
would consist of two mode-converters and an adequate amount of few-
moded fibre (FMF) to provide the dispersion compensation. In Fig. 5.1
a sketch is shown of the HOM dispersion-balanced fibre oscillator. The
oscillator was originally built by Kim Giessmann Jespersen from OFS
Fitel Denmark. Therefore, the contribution to what is described in
this section has been the characterisation of the oscillator and the con-
struction of the amplification chain after the oscillator. The mode-
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Figure 5.1: Sketch of the HOM dispersion-balanced fibre laser.

locking mechanism is provided by a semiconductor-saturable-absorber
mirror (SESAM), which has a centre at a wavelength of 1040 nm, an
absorbance of 40%, and a recovery time of approximately 500 fs. The
cavity is a linear cavity, where the anomalous dispersion compensation
is provided by the HOM module. At the coupler, 20% is coupled out
for monitoring and the other 20% arm is used as the output. The
laser mode-locks at a repetition rate of 20 MHz. In App. A.4.1 the
recorded radio frequency (RF) trace is shown. The total length of the
single-mode fibre (SMF) is 2.45 m, which has a group-velocity disper-
sion value of −43 ps

nmkm at a wavelength of 1030 nm. The length of
the HOM module is 2.31 m, wherein the mode propagates as the LP0,2

mode, which has a group-velocity dispersion of 54 ps
nmkm at a wavelength

of 1030 nm. The ytterbium-doped gain fibre has a peak absorption of
350 dB

m at a wavelength of 980 nm. The length of the fibre is 0.29 m and
the group-velocity dispersion is −70 ps

nmkm at a wavelength of 1030 nm.
Therefore, the total dispersion of the cavity is slightly normal. This
is also observed on the recorded spectrum, which is shown in Fig. 5.2.
Interferometric ripples are observed on the edges of the spectrum, which
is due to the fact that the mode-converters only work in a finite band-
width region. The spectral full-width at half-maximum (FWHM) is
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Figure 5.2: Output spectrum of the HOM dispersion-balanced fibre laser.

12.5 nm. The output power of the laser is too low to measure a second-
harmonic generation (SHG) intensity autocorrelation. The measured
SHG intensity autocorrelation of the amplified seed pulse, which was
not unchirped after the amplification process, is shown in Fig. 5.3. The
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Figure 5.3: Intensity autocorrelation for the HOM dispersion-balanced fibre
laser. The output was amplified with a single amplifier to have a detectable
SHG signal in the autocorrelator.

retrieved temporal FWHM of the intensity pulse is 4.68 ps from the
fitted autocorrelation. From the fitted autocorrelation it is seen that
there is some satellite structure in the pulse causing the broadening
of the lower part of the autocorrelation. The original seed pulse from
the oscillator is assumed to be smaller since the pulse is broadened by
the SMF and the ytterbium-doped gain fibre in the amplifier. Fig. 5.4
shows a sketch of the amplification stage for the seed pulse. There are
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Figure 5.4: Sketch of the amplifier chain to boost the seed pulse from the HOM
dispersion-balanced fibre laser.

4.43 m of SMF, including the wavelength-division multiplexer (WDM),
between the output coupler and the ytterbium-doped gain fibre in the
first amplifier, which has a length of 1.44 m. This is followed by 5.31 m
of SMF, which includes the high-power isolator and the tap coupler.
The high-power isolator can handle up to 3 W, however, the centre
wavelength is at 1064 nm and therefore the isolator has a high insertion
loss at a wavelength of 1030 nm. The tap coupler is used to moni-
tor the transmitted and reflected spectra. The second amplifier has an
ytterbium-doped gain fibre of 0.50 m. This is followed by 3.32 m of
SMF and the third amplifier, which has an ytterbium-doped gain fibre
of 0.61 m. The three pumps used in the amplification stage for the seed
pulse can each deliver 450 mW of optical power. In Fig. 5.5 the spec-
trum after each amplifier stage is shown, together with the spectrum
from the monitor tap inside the oscillator. The output power after the
first amplifier is 19.2 dBm and after the second amplifier the output
power is 24.4 dBm. This could have been higher, if the high-power iso-
lator had been centred at 1030 nm. The output power after the third
amplifier is 27.7 dBm. All the power measurements were performed at a
wavelength of 1030 nm and with a long pass filter with a cut-off edge at
1000 nm in order to remove any residual pump. Under the assumption
that the measured average power is contributed only to the pulse, the
pulse energy would be 29.4 nJ. However, this assumption might not
be valid, considering the measured output spectrum in Fig. 5.5, where
outer-band amplified spontaneous emission (ASE) is observed and it
is suspected that this is accompanied with ASE generated in-between
pulses. The measured SHG intensity autocorrelation after the third
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Figure 5.5: The measured spectra after each amplification stage.

amplifier is shown in Fig. 5.6. The output from the amplifier stage was
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Figure 5.6: Intensity autocorrelation for the HOM dispersion-balanced fibre
laser after the third amplifier.

passed through a 20% coupler to reduce power and through a 3 W po-
larisation sensitive isolator to avoid feedback. The retrieved temporal
FWHM of the intensity pulse is 16.8 ps from the fitted autocorrelation.
It is observed that the autocorrelation trace has what appears to be a
coherence spike on top of the real pulse [83]. This indicates that there
is a significant portion of noise in the amplified signal. A more detailed
inspection of the autocorrelation trace is shown in Fig. 5.6, where it
is observed that the baseline is askew. This is suspected to be either
a consequence of the high input-power to the autocorrelator or that
the autocorrelation trace is spanning the maximum measurement-time-
window of the autocorrelator as this is not apparent in Fig. 5.3.
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The amplification is not optimal, due to lack of available compo-
nents. Ideally, the different amplifier stages should have been separated
with isolators and band-pass filters to reduce the ASE. The second
and third amplifier stages could also have been placed in a forward and
backward configuration if the necessary pump isolators had been avail-
able. The third amplifier stage could also have been excluded to give a
more optimal amplification, but at a lower average power. However, a
more powerful output was preferred over a less noisy output with the
anticipation of potential high loss in the splices between the FMFs and
the desire to power tune the soliton and thereby the final output of the
RSF.

5.2 All-Normal Dispersive
Polarisation-Maintaining Laser

The work in this section is based upon [84]. The ANDi PM laser has
not been used in any soliton-propagation scheme. However, a more
in-depth theoretical understanding of the mode-locking and pulse for-
mation has been obtained for this particular laser. The work regarding
this laser was carried out during an external visit to the Femtosecond
Optics Group at Imperial College London. The oscillator was origi-
nally built by Edmund J. R. Kelleher. Therefore, the contribution to
what is described in this section has been the characterisation of the
oscillator and the numerical investigation of the mode-locking dynamic
of the oscillator. In Fig. 5.7 a sketch is shown of the ANDi PM fibre
oscillator. The laser is a standard ring cavity with a single-wall carbon-

Isolator

Coupler

30/70 Output

Yb doped
fibre

amplifier

Carbon nano tube

Figure 5.7: Sketch of the ANDi PM fibre laser.

nano-tube as the saturable absorber. Two angle fibre-connectors are
mechanically joined in a fibre-mating-sleeve. The carbon-nano-tube is
adhered onto with index matching gel on the end-facet of one of the an-
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gle fibre-connectors. The absorption and transmission spectra for the
carbon-nano-tube are found in App. A.4.2. The ytterbium-doped fibre
amplifier is a commercial system. The fibre in the amplifier is a 0.9 m
PM double-clad ytterbium gain-fibre, which is pumped by a 4 W multi-
mode diode laser at 980 nm. A 30/70 coupler is used to provide the
output, where the output is passed through the 70% arm, leaving only
30% inside the cavity. The coupler has a 3 dB transmission bandwidth
greater than 150 nm. The isolator enforces a unidirectional cavity. The
total length of the passive fibre in the cavity is 5.35 m.

A lot of development on ANDi lasers has been carried out by the
group of Frank Wise at Cornell University and as their emphasis has
been on shorter pulse and more energetic lasers, there is often a filter
inside in the cavity to confine the spectral broadening generated by
the pulses on each round trip [85–88]. However, this is not necessar-
ily a strict requirement if the non-linear phase-shift is kept sufficiently
small, i.e. the peak power of the pulse. The ytterbium gain-medium is
sufficient for providing the spectral filtering, even though the FWHM
gain bandwidth is approximately 55 nm. This leads to formation of
so-called ”gain-guided” solitons, which previously was demonstrated in
the erbium gain-region [89]. Even through the erbium gain-region is
smaller than the gain-region of ytterbium, it is still possible to obtain
mode-locking, which will be shown in the following.

The measured output spectrum of the laser is shown in Fig. 5.8.
The spectrum has a FWHM of 0.15 nm, which indicates that the non-
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Figure 5.8: Output spectrum, measured with a 0.01 nm resolution.

linear phase-shift around the cavity is small. The output power of the
laser was −1.4 dBm. The cavity mode-locks with a repetition rate of
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33 MHz. The recorded relative-intensity noise (RIN) measurements are
found in App. A.4.2. The measured SHG intensity autocorrelation is
shown in Fig. 5.9. The output was amplified to achieve a measurable
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Figure 5.9: Intensity autocorrelation for the ANDi PM laser.

autocorrelation trace. The FWHM of the pulse was 13.9 ps under the
assumption of sech2 intensity profile.

The numerical simulation of the mode-locking dynamics is solved by
progression of a pulse around each element of the cavity. This is known
as the general round-trip model [83]. The element lay-out of the model
is shown in Fig. 5.10. The model shows two possible paths around

AmplifierLoss

Passive Fibre Passive Fibre

Saturable Absorber Fabry-Pérot

Figure 5.10: Overview of the numerical model, which is based upon the general
round-trip model. The path around the cavity without the Fabry-Pérot element
is referred to as the path around the standard ring cavity, whereas the other
path is referred to as the path around the Fabry-Pérot ring cavity.

the cavity, where the longer path includes a Fabry-Pérot element. The
path around the cavity without the Fabry-Pérot element is referred to
as the path around the standard ring cavity, whereas the other path is
referred to as the path around the Fabry-Pérot ring cavity. The Fabry-
Pérot element was introduced later in the process to give an explanation
for the small spectral bandwidth of the output pulse and explain the
ripples in the background shown in Fig. 5.8.
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The numerical scheme is as follows: In each fibre section the Non-
Linear Schrödinger Equation (NLSE) is solved and the resulting pulse
shape is transferred to the input in the next element. The other ele-
ments are represented by transfer functions. The simulation is started
from noise. A stable pulse can be obtained after some thousand itera-
tions if the parameters are correct for this type of solution. The Raman
effect is disregarded due to the small pulse bandwidth [9]. The simu-
lated pulse is centred at 1060 nm and with a time window of 200 ps
divided into 212 points. The parameters for the ytterbium-doped fi-

bre are: length 0.9 m, group-velocity dispersion β2 = 0.018 ps2

m , a
parabolic gain with a FWHM bandwidth of 56.8 nm, a small signal gain
of 20 dB, an energy saturation of 90 pJ when the Fabry-Pérot element
is included, and 60 pJ without the Fabry-Pérot element. The ampli-
fier energy-saturation is related to controlling the pump current in the
laboratory. The amplifier has as a non-linear coefficient of 0.003 1

Wm .
The loss element includes contributions from the output coupler and
the additional losses in the cavity and has a value of 7 dB. The two
passive fibre components are identical, with a length of 2.675 m, a

group-velocity dispersion β2 = 0.018 ps2

m , and a non-linear coefficient
of 0.003 1

Wm . The carbon-nano-tube saturable-absorber is modelled in
the limit where the pulse duration is much longer than the phase re-
laxation time. The modulation depth is 0.10 and the saturation power
is 4.2 W when the Fabry-Pérot element is included and 2.3 W without
the Fabry-Pérot element. The linear transmission loss of the carbon-
nano-tube is 50%, which is based on measurements of a similar carbon-
nano-tube saturable-absorber [90]. The Fabry-Pérot element has a re-
flectivity of 4% and a wavelength spacing between peaks of 1.2 nm.
The simulated autocorrelations for the two cases with and without the
Fabry-Pérot element are shown in Fig. 5.11. The simulated output
pulse has a temporal FWHM pulse duration of 13.9 ps and 14.1 ps
with and without the Fabry-Pérot element, respectively. The temporal
difference is quite small. The simulated spectra of the two cases are
shown in Fig. 5.12. The simulated output pulse has a FWHM spectral
bandwidth of 0.60 nm and 0.19 nm for the case without and with the
Fabry-Pérot element, respectively. Compared to the temporal differ-
ence between the two cases with and without the Fabry-Pérot element,
the spectral difference is relatively significantly larger. The simulation
with the Fabry-Pérot element is able to reproduce the spectral ripples,
which is observed in Fig 5.8. The influence obtained by adding the
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Figure 5.11: The simulated autocorrelations of the cases with and without the
Fabry-Pérot element.
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Figure 5.12: The simulated spectrum of the cases with and without the Fabry-
Pérot element.
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Fabry-Pérot element to the cavity might be small, however, it yields
a more accurate numerical representation. In Fig. 5.13 the temporal
and the spectral FWHM of the pulse are shown after each element for
the converged pulse. The spectral FWHM remains unchanged in the
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(a) The temporal FWHM of the pulse for both the cases with and without the Fabry-
Pérot element.
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(b) The spectral FWHM of the pulse for both the cases with and without the Fabry-
Pérot element.

Figure 5.13: The temporal and spectral FWHM of the pulse after each element
at the point where the pulse has converged to a steady state solution.

steady state regime and there are only small variations in the tempo-
ral FWHM, which indicates that the pulses are temporal dissipative
solitons, which experience only a low non-linear phase-shift.

In the following it is only the standard ring cavity that is consid-
ered. The mode of operation for the simulated cavity is presented as
the different parameters of the cavity are altered. The resulting outputs
from the simulations have been classified numerically to generate a map
of the mode of operation of the laser. In Fig. 5.14 there are examples
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of the four different classifications, which have been defined. As the
A
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Figure 5.14: Examples of the different pulse type classification used.

classification is performed numerically there are possible errors in the
classification scheme, as the classification is based on a simple charac-
teristic of the different pulse types. Another potential error is that the
simulation might not have converged to a steady state solution within
the maximum allocated number of iterations. In Fig. 5.15 the effect
of a filter in the cavity on the mode-locking dynamics is shown. The
filter bandwidth is varied along with the amplifier energy-saturation.
From Fig. 5.15 it is observed that a narrow band-pass filter has a more
distinctive effect on mode-locking dynamics. The filter forces the en-
ergy transferred from the amplifier to be limited to a small bandwidth
region. The threshold for a multi-pulse solution is lowered. If the filter
becomes too narrow, i.e. narrower than approximately 2 nm, more en-
ergy is lost in the filter and the multi-pulse threshold increases. As the
filter bandwidth is increased, the filter influence becomes less significant
as the gain material provides the dominating filter effect, when the filter
bandwidth is approximately above 30 nm. In App. A.4.2 more details
on the simulation are given in the form of an example of the tempo-
ral and spectral FWHM evolution for a converging simulation, together
with the final temporal and spectral FWHM values for the filter band-
width variation. There is also an example where the dispersion of the
passive fibres is varied.
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(a) Pulse-type map for a narrow band-pass filter.
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(b) Pulse-type map for a wide band-pass filter.

Figure 5.15: Pulse-type map for a varying filter bandwidth. Examples of the
different pulse types are shown in Fig. 5.14. The relation to the grey-scale map is
as follows: Black is a CW solution, dark grey is an undecided pulse solution, light
grey is single-pulse solution, and white is a multi-pulse solution. The spacing
between the steps in the amplifier energy saturation is logarithmic.



Chapter 6

Soliton Self-Frequency
Shift

In this chapter the simulated and experimentally observed soliton self-
frequency shift (SSFS) in the left-sided fibre (LSF) and the right-sided
fibre (RSF) are presented. The chapter is divided into two main sections
regarding the input pulse to the LSF, which has a significant impact
on the experimental outcome of the widely tunable femtosecond fibre
laser. For the experiments conducted at Cornell University the seed
source provided an unchirp femtosecond pulse. In the design process
of the LSF and the RSF it was also an unchirp femtosecond pulse that
was used as the input pulse. In the experiments conducted at OFS Fitel
Denmark the seed pulse from the oscillator needed amplification prior
to being coupled to the LSF as described in Sec. 5.1. Therefore, the
input pulse to the LSF in the experiments at OFS Fitel Denmark was
a chirped picosecond pulse. It was assumed that the chirped picosec-
ond pulse could be unchirped in the LSF before forming a soliton and
therefore the significant difference between the experiments with the
unchirped femtosecond pulse and the chirped picosecond pulse would
be a longer required length of LSF and a higher input pulse energy in
the experiment with the chirped picosecond pulse.

In the following it is an advantage to be familiar with the ba-
sic principal of SSFS process and the coupling of light from the soli-
ton to a dispersive wave in the normal dispersion region via the in-
tramodal Čerenkov process. As an option for the reader an introduc-
tion to these concepts are presented for a single-moded highly non-linear
fibre (HNLF) in App. B.

77
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6.1 Femtosecond Input Pulse

In this section the simulated and experimentally observed SSFS in the
LSF and the RSF are presented for an unchirped femtosecond input
pulse. First the simulated SSFS in the LSF and the RSF is presented
for the initial design concept, where the input pulse to the LSF is an
unchirped femtosecond pulse with a centre wavelength of 1064 nm.
Thereafter, the experimentally observed SSFS with an unchirped fem-
tosecond pulse is presented.

6.1.1 Simulated Soliton Self-Frequency Shift

During the design of the LSF and the RSF a femtosecond pulse cen-
tred at a wavelength of 1064 nm was used as the input pulse to the
LSF. For the simulation presented in this section the following pa-
rameters were used. The numerical simulation is started with a pump
pulse in the LP0,2 mode at a centre wavelength of 1064 nm and vac-
uum noise in all the other frequency bins. The number of points used
on the time/frequency grid is 214, the time discretisation is 5 fs, the
centre wavelength of the simulation window is 950 nm, the shape of
the input pulse intensity is a sech2, the temporal full-width at half-
maximum (FWHM) of the pulse intensity is 400 fs, the input peak
power of the pulse is 24.5 kW, the intensity-dependent refractive index
of the fibre is 2.55 × 10−20 m2

W , the fR ratio is 0.18 and the loss is ne-
glected. The simulation is done with the Fourth-Order Runge-Kutta in
the Interaction-Picture (RK4IP) method [42] and the efficient adaptive
step size method [91], with a local error limit of 10−7 for the conserved
quantity, which is proportionally to the photon number. The length of
the LSF and the RSF in the simulation was 19 cm and 8.5 cm, respec-
tively. The simulation is only considering intramodal non-linear effects.
The simulation through the section of LSF is shown in Fig. 6.1. The
output from the LSF is used as input for the RSF. In this case there
is no added splice loss between the LSF and the RSF. The simulation
through the section of RSF is shown in Fig. 6.2. The soliton pulse in the
output spectrum from the RSF has a pulse energy of 5.1 nJ at a centre
wavelength of 1277 nm and the temporal FWHM of the intensity pulse
is 15 fs. This is corresponding with the design criteria for the widely
tunable femtosecond fibre laser.
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(a) The spectral evolution is shown as a contour plot of wavelength and longitudinal
position in the fibre. The soliton is observed to SSFS to the transfer wavelength of
1100 nm.
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(b) Comparison of the input and the output spectra. In the output spectrum the soliton
has shifted to the transfer wavelength of 1100 nm. Light generated by the intramodal
Čerenkov process is observed at a wavelength of approximately 820 nm in the output
spectrum.

Figure 6.1: Simulated pulse propagation in the LSF with an unchirped fem-
tosecond pulse as the input pulse. The corresponding temporal evolution is
shown in App. A.5.1.
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(a) The spectral evolution is shown as a contour plot of wavelength and longitudinal
position in the fibre. The soliton is observed to SSFS to a wavelength of 1280 nm.
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(b) Comparison of the input and the output spectra.

Figure 6.2: Simulated pulse propagation in the RSF with an unchirped fem-
tosecond pulse as the input pulse to the LSF. The corresponding temporal
evolution is shown in App. A.5.1.
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6.1.2 Experimentally Observed Soliton Self-Frequency
Shift

The work in this section is based upon [60,61]. In the experiments con-
ducted at Cornell University the LSF was pumped with a femtosecond
pulse. The results presented in this section are performed with a laser
system centred at wavelength of 1045 nm.

The laser system with a centre wavelength of 1045 nm is an IMRA
FCPA μJewel laser system. The temporal FWHM of the input pulse
intensity is approximately 400 fs. The repetition rate of the laser is
1 MHz. The free-space output of the laser is attenuated before be-
ing coupled into the LSF. The input pulse energy into the LSF was
23 nJ and the length of the LSF was 25 cm. The measured output
spectrum is shown in Fig. 6.3. As the LSF supports multiple modes
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Figure 6.3: The measured and simulated spectra for 25 cm of LSF, with a
femtosecond source. The input pulse energy is 23 nJ into the fibre, however, not
all of the energy is coupled into the LP0,2 mode.

and the pulse is coupled in from free space, only a fraction of the pulse
energy is coupled into the LP0,2 mode. In Fig. 6.3 the spectrum from
an intramodal simulation of the soliton propagation in the LP0,2 mode
is shown together with the measured spectrum. The pulse energy of
the input pulse was used to fit the simulated spectrum of the soliton to
the experimental spectrum. The fraction of pulse energy in the LP0,2 is
determined from the ratio between the simulated pulse energy and the
measured total pulse energy, which is 48%. The LP0,2 mode is the only
propagating mode with anomalous dispersion and therefore the only
mode that supports a soliton pulse and the subsequent SSFS. From
Fig. 6.3, it is observed that the soliton has red-shifted to a centre wave-
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length of 1085 nm. The energy of the soliton is retrieved by measuring
the power out of the fibre through a long-pass filter with a band edge
at 1064 nm. This results in a soliton energy of 6.3 nJ, which is approx-
imately 6 times higher than the previous record in a solid-core fibre at
wavelengths below 1300 nm [30]. Even though this originally was not
intended in the design application, the LSF in this experiment provided
a higher pulse energy for the considered tuning range with femtosecond
pulse operation than current ytterbium fibre-laser systems [92,93].

The laser system centred at wavelength of 1045 nm had to undergo
repair before any consolidating experimental verification of the cascade
experiment with the LSF and the RSF was obtained. However, at the
moment of writing this thesis promising results for the cascade exper-
iment with the LSF and the RSF using a femtosecond laser system
centred at a wavelength of 1030 nm has been achieved, however, this in
not included in this thesis.

6.2 Picosecond Input Pulse

In this section the simulated and experimentally observed SSFS in the
LSF and the RSF are presented for a chirped picosecond input pulse.
First the simulated SSFS in the LSF and the RSF is presented, where
the input pulse to the LSF is a chirped picosecond pulse with a centre
wavelength of 1030 nm. Thereafter, the experimentally observed SSFS
with a chirped picosecond pulse is presented.

6.2.1 Simulated Soliton Self-Frequency Shift

The simulation parameters used for the chirped picosecond input to the
LSF are the same as presented in Sec. 6.1.1 expect for the following
parameters. The number of points used on the time/frequency grid is
215. The initial pulse has a centre wavelength of 1030 nm, the temporal
FWHM of the pulse intensity is 800 fs, and the input peak power of the
pulse is 250 W. Vacuum noise is added to all the other frequency bins.
In an attempt to recreate the chirp of the pulse used in the experiment,
the initial pulse is propagated through a numerical amplification stage,
which is similar to the amplification stage presented in Sec. 5.1. The
initial pulse is propagated through 4.4 m of single-mode fibre (SMF),
then the output is point-amplified with a factor of 10 in power, before
the pulse is propagated through 6.7 m of SMF, after which the output
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is point-amplified with a factor of 4 in power, before the pulse is propa-
gated through 3.8 m of SMF, after which the output is point-amplified
with a factor of 2 in power, before the is propagated through 0.6 m
and finally the pulse is propagated through a numerical representation
of the mode-converter fibre. The final pulse energy after the amplifi-
cation process is 18.2 nJ. The length of the LSF and the RSF in the
simulation is 5.5 m and 19 cm, respectively. The simulation through
the section of LSF is shown in Fig. 6.4. The output from the LSF is
used as input for the RSF. In this case there is no added splice loss
between the LSF and the RSF. The simulation through the section of
RSF is shown in Fig. 6.5. The soliton pulse in the output spectrum
from the RSF has a pulse energy of 3.5 nJ at a centre wavelength of
1288 nm and the temporal FWHM of the intensity pulse is 17 fs. The
energy transfer the to soliton pulse in the LSF is less efficient in the
case of a chirped picosecond pulse input than compared to the case of
an unchirped femtosecond pulse. With increased amplification of the
pulse energy, it should be possible to obtain similar results with the
chirped picosecond pulse compared to the unchirped femtosecond pulse
used in the design process.

6.2.2 Experimentally Observed Soliton Self-Frequency
Shift

The simulation with a chirped picosecond pulse indicates that the re-
quired length of the LSF should be longer for the chirped picosecond
pulse case to de-chirp the pulse before forming a soliton, when com-
pared to the length of the LSF in the case of an unchirped femtosecond
pulse.

The LSF was spliced to the mode-converter fibre as described in
Sec 4.3.2, with an assumed splice loss of 1.6 dB. The mode-converter
fibre was spliced to the output of the amplification stage with negligible
loss. In Fig. 6.6a the recorded spectrum with 100 m of LSF is shown
as a function of amplifier-current to the third amplifier. The currents
of the two other amplifier pumps were kept fixed. The soliton is ob-
served to slowly shift as the amplifier current is increased toward the
maximum value. However, the SSFS seems to halt before the soliton
has clearly split of the input pulse and light is generated approximately
at a wavelength of 1150 nm. This is shown in more details in Fig. 6.6b,
where the spectra for three selected amplifier-currents from Fig. 6.6a
are presented. There is a striking similarity to the cancellation of the
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(a) The spectral evolution is shown as a contour plot of wavelength and longitudinal
position in the fibre. The soliton is observed to SSFS to the transfer wavelength of
1100 nm. To compensate for the chirped before forming a soliton pulse the length of
the LSF is longer than for the case with an unchirped femtosecond pulse.
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(b) Comparison of the input and the output spectra. The input spectrum resembles
the measured spectrum without the outer-band ASE in Fig. 5.5.

Figure 6.4: Simulated pulse propagation in the LSF with a chirped picosecond
pulse as the input pulse. The corresponding temporal evolution is shown in
App. A.5.2.
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(a) The spectral evolution is shown as a contour plot of wavelength and longitudinal
position in the fibre. The soliton is observed to SSFS to a wavelength of 1280 nm.

-100

-80

-60

-40

-20

0

800 900 1000 1100 1200 1300

R
el

at
iv

e
Po

w
er

[d
B
]

Wavelength [nm]

Input
Output

(b) Comparison of the input and the output spectra.

Figure 6.5: Simulated pulse propagation in the RSF with a chirped picosecond
pulse as the input pulse to the LSF. The corresponding temporal evolution is
shown in App. A.5.2.
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(a) The spectral evolution is shown as a contour plot of wavelength and current to the
third amplifier pump in the fibre.
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(b) The spectra for three amplifier-currents emphasising the halt of SSFS.

Figure 6.6: The measured SSFS in 100 m of LSF with the HOM dispersion-
balanced seed laser.
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SSFS and the generation of dispersive wave in the normal dispersion
region by the intermodal Čerenkov process, however, as Fig. 4.5a shows
the dispersion is anomalous in this region for the LP0,2 mode in the
LSF. The generation of light at a wavelength of 1150 nm and the halt
of the SSFS is in fact an intermodal Čerenkov process. The light of the
soliton in the LP0,2 mode is coupled to a dispersive wave in the LP1,1

mode, when the fibre is bent, this complicates matters as the length
of the LSF is 100 m and therefore the fibre is placed on a spool. The
intermodal Čerenkov process is treated in more detail in Sec. 7.2. If
the spectral FWHM of the soliton at a amplifier current of 861 mA is
determined by measuring the half-width at half-maximum on the longer
wavelength side, a FWHM bandwidth of 16 nm is obtained. If the soli-
ton is assumed Fourier transform limited, then the temporal FWHM of
the pulse intensity is 153 fs. In Fig. 6.7 the measured second-harmonic
generation (SHG) intensity autocorrelation is shown. In order to record
the autocorrelation a core-less fibre serving as an end-cap was spliced to
the end of the LSF to reduce the back-reflected power. The core-less fi-
bre was cleaved under a microscope to provide a short length of roughly
100 μm. The trace of the autocorrelation has some structure at the

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

-6 -4 -2 0 2 4 6

N
or

m
al

is
ed

in
te

ns
ity

[a
.u
.]

Time delay [ps]

Measurement
Gaussian fit

Figure 6.7: Intensity autocorrelation from the output of the 100 m of LSF.

peak. If a Gaussian intensity profile is used to fit the autocorrelation, a
temporal FWHM of the pulse intensity of 1.65 ps is obtained. This is a
factor of 10.8 larger than the value obtained from the spectrum. This is
because the structure on top of the autocorrelation trace is the soliton
and the rest of the trace is caused by the dispersive wave. The top of
the autocorrelation was measured with a finer time resolution, which is
shown in Fig. 6.8. The top structure of the autocorrelation fits a sech2
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Figure 6.8: Intensity autocorrelation for the output of the 100 m of LSF, with
a femtosecond resolution.

intensity profile well, which agrees with the assumption that this is a
soliton. From the fit the FWHM of the pulse in the temporal domain
is 144 fs, which is almost the same value retrieved from the spectrum.
The soliton pulse energy is calculated from the pulse width retrieved
from the autocorrelation, a pulse energy of 2.6 nJ is obtained using
an intensity-dependent refractive index of 2.55 × 10−20 m2

W , a product
between the group-velocity dispersion and the effective area of 25.8 fs,
and a wavelength of 1075 nm. The energy conversion efficiency to the
soliton is 13%, this under the assumption that the amplified pulse had
a pulse energy of 29.4 nJ before the mode-converter fibre and includ-
ing the splice loss of 1.6 dB between the mode-converter fibre and the
LSF. As shown with the simulation of a chirped picosecond pulse in
Sec. 6.2.1 the energy conversion efficiency to the soliton pulse is re-
duced, when compared to the simulation of an unchirped femtosecond
pulse in Sec. 6.1.1. The energy conversion efficiency to the soliton pulse
in the LSF in the simulation of a chirped picosecond pulse is 27%. The
chirped of the experimental input pulse to the LSF is assumed to be
greater then expected chirp from the chirped picosecond pulse simula-
tion, due to the required longer length of LSF fibre in the experiment.
The larger chirped of the experimental pulse give the lower energy con-
version efficiency to the soliton pulse.

A significant observation about the experiment with the femtosec-
ond pulse as input to the LSF compared to the experiment with the
chirped picosecond pulse is that the soliton is able to shift to even longer
wavelengths with the femtosecond input pulse. This is possible as the
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required length of fibre is much shorter and therefore easier to handle
and thereby the bending of the fibre can be avoided. When the fibre
is kept straight, the SSFS is not limited by the intermodal Čerenkov
process. In the experiment with the chirped picosecond pulse it was at-
tempted to get the soliton to shift further by spooling of approximately
15 m of the LSF from the output end of the fibre and placing the 15 m
in a large coil, this had no effect of the measured output spectrum of
the fibre. No further attempts were performed to avoid the intermodal
Čerenkov process by spooling fibre of the spool. The soliton in the LSF
do not reach the designed transfer wavelength of 1100 nm due to the
intermodal Čerenkov process. This compromise the initial design as
the transfer wavelength was to be situated between the mode-crossing
wavelength in the LSF and in the RSF. The mode-crossing in the RSF
is at a wavelength of 1086 nm and therefore the soliton in the LSF
has not shifted far enough. The mode-crossing wavelength is sensitive
to small perturbation in the wave-guide design and as the comparison
between the calculated and measured absolute group-index difference
in Sec. 4.2.1 is not entirely perfect, the mode-crossing wavelength of
the RSF is assigned with some uncertainty. Therefore, even though
that the soliton in the LSF is at a wavelength shorter than the mode-
crossing in the RSF the cascade experiment is still attempted. The
simulated splice evolution between the LSF and the RSF is similar to
one shown in Sec. 4.3.2, however, a perfect physical coupling between
the fibres should also produce a low splice loss of approximately 0.7 dB
at the original design transfer wavelength of 1100 nm. The splice loss
reduces slightly at the wavelengths of interest below 1100 nm. The LSF
and the RSF was spliced with a fusion process and a combination of
a fusion and gas-line-burner process, however, no significant change in
the output spectrum was observed. The gas-line-burner process was
performed with a no-automated setup. The no-automated automated
gas-line-burner setup, opposed to the automated gas-line-burner setup
described in Sec. 4.3, could be move to the physical location of the laser
setup. The quality of the splice between the LSF and the RSF during
the gas-line-burner splice was determine by observing the shift of the
soliton of the output spectrum from the RSF while the laser system was
on. As a last resort the LSF and the RSF were physically coupled in
a fusion splicer with a drop of index matching oil on the end of one of
the fibres to avoid a strong Fresnel reflection from a silica-air interface.
With the manual alignment control of the fibres the coupling to the
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LP0,2 mode in the RSF was attempted to be optimised. Once again no
soliton shift to longer wavelengths was observed. It is expected that the
missing SSFS in the RSF is due to the position of the mode-crossing.
As the mode-crossing wavelength is sensitive to small perturbation in
the wave-guide design, there is a section of the drawn RSF, which has
a mode-crossing located at a wavelength of 1055 nm. This is in the fol-
lowing denoted as the shorter mode-crossing wavelength variation of the
right-sided fibre (SMCW-RSF). The effective indices for the first few
guided modes in the SMCW-RSF are shown in Fig. 6.9 As the mode-
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Figure 6.9: The effective indices of the first four LP modes in the SMCW-RSF,
with respect to pure silica.

crossing is located at a shorter wavelength in the SMCW-RSF compared
to the RSF the anomalous dispersion region is also shifted to shorter
wavelength, which limits the bandwidth of the SSFS. In Fig. 6.10a the
recorded spectrum with 75 m of LSF fusion spliced with cold splice to
1.5 m of SMCW-RSF is shown as a function of amplifier-current to the
third amplifier. The currents of the two other amplifier pumps were
kept fixed. The soliton is observed not to shift and remains halted at
a centre wavelength of 1075 nm. In Fig. 6.10b the spectra of three
selected amplifier-currents are shown. The most significant difference
between the recorded spectra out of the LSF and the SMCW-RSF is
that the baseline for the longer wavelengths of the output spectrum of
the SMCW-RSF has increased. It is difficult to give the exact explana-
tion for this, however, it is speculated that this is caused by four-wave
mixing (FWM). The splice between the LSF and the SMCW-RSF was
performed with different variations of both the fusion splice process and
the combined fusion and gas-line-burner process, however, none of the
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(a) The spectral evolution is shown as a contour plot of wavelength and current to the
third amplifier pump in the fibre.
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(b) The spectra from three amplifier currents emphasising the missing SSFS to the
longer wavelengths.

Figure 6.10: The measured SSFS in 75 m of LSF spliced together with 1.5 m
of SMCW-RSF with the HOM dispersion-balanced seed laser.
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variations facilitated a shift of the soliton to the longer wavelengths in
the SMCW-RSF. A simulation of the expected behaviour for the SSFS
in the SMCW-RSF is shown in Fig. 6.11. The input pulse to the 1.5 m
of SMCW-RSF is a soliton with a temporal pulse intensity FWHM of
144 fs and centred at a wavelength of 1075 nm, as measured out of the
100 m of LSF. It is assumed that the soliton in the 75 m of LSF and
the 100 m of LSF is similar as both solitons are halted by the mode-
crossing and the intermodal Čerenkov process at the same wavelength.
The pulse energy is varied to anticipate for a unknown splice loss. The
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Figure 6.11: The simulated SSFS in 1.5 m of SMCW-RSF. At an input pulse
energy of 2 nJ the SSFS is halted by an intramodal Čerenkov process at a
wavelength approximately of 1250 nm.

maximum value corresponds to the estimated pulse energy for the soli-
ton in the 100 m of LSF. From the simulation it is observed that even
for a reasonable splice loss it should have been possible to observe the
SSFS in the SMCW-RSF. However, this was not the case and a possible
explanation is that the index difference between the LP0,2 mode and the
LP1,1 mode remains small over a broad wavelength region around the
mode-crossing of the LP0,2 mode and the LP1,1 mode, which is shown
in Fig. 6.9. This is another consequence of the limitation of the peak
value of the group-velocity dispersion curve in the design process. It
is suspected that the shift in the position of the mode-crossing in the
SMCW-RSF is not enough.

In a final attempt to demonstrate that is was possible to couple the
soliton between two few-moded fibres (FMFs), the SMCW-RSF was re-
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placed with the mode-converter fibre to facilitate the shift of soliton to
longer wavelength. The mode-converter fibre does not have any mode-
crossing close to the transfer wavelength, however, the product of the
group-velocity dispersion and the effective area is smaller than in the
RSF, hence the soliton energy is lower. The LSF and mode-converter
fibre was spliced with a fusion process and a combination of a fusion
and gas-line-burner process and again no significant change in the out-
put spectrum was observed. Without monitoring the splice quality the
automated gas-line-burner setup was also utilised to splice the LSF and
mode-converter fibre with a heat exposure longer than 1000 s. It was a
surprise that this splice also failed to couple the soliton from the LSF
to the mode-converter fibre, as the splice procedure was identical for
the splice of the mode-converter fibre to the LSF at the wavelength of
1030 nm. As described in Sec. 4.3 the index profile after the gas-line-
burner process should be a broad core with a small index difference with
respect to the cladding for both fibres, which in theory should make the
splice loss less dependent of the wavelength. It should be noted that
this was only attempted once as this was one of the last experiments
performed during the Ph.D. project.

The experimental demonstration of the widely tunable femtosecond
fibre laser with the chirped picosecond input pulse to the LSF fails
as the soliton shift in the LSF is halted by the intermodal Čerenkov
process. The intermodal Čerenkov process occurs as the required length
of LSF, to de-chirp the input pulse before the soliton is formed, is too
long for the fibre not to be coiled. The SSFS in the LSF is halted
by the intermodal Čerenkov process at a wavelength shorter than the
intended transfer wavelength of the design and the wavelength of the
mode-crossing in the RSF. To compensate for this the SMCW-RSF
is used instead of the RSF. The experiments with the SMCW-RSF
showed no sign of a soliton shifted to longer wavelengths. This is either
an consequence of that the index difference between the LP0,2 mode and
the LP1,1 mode remains small over a broad wavelength region around
the mode-crossing of the LP0,2 mode and the LP1,1 mode, which couples
the light of the soliton in the LP0,2 mode to the LP1,1 mode in the
SMCW-RSF or that there is an unresolved problem with the splice
process. As it was not possible to substitute the RSF with the mode-
converter fibre for achieving the soliton shift to longer wavelengths,
it is suspected that there is an unrealised issue with the splice from
the LSF the other fibres. As these results were the final experimental
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results obtained during the Ph.D. project there was not enough time to
investigate the splice problem any further.



Chapter 7

Intermodal Non-Linearities
in Few-Moded Fibres

In this chapter the intermodal non-linear effects, which were observed
during the Ph.D. project, are described. The intermodal effects were
observed in experiments using the left-sided fibre (LSF). The LSF was
used to generate intermodal four-wave mixing (FWM) by pumping in
the LP0,1 mode and generating the idler in the LP0,1 mode and signal
in the LP0,2 mode. Furthermore, an intermodal Čerenkov coupling
between a soliton in the LP0,2 mode and a dispersive wave in the LP1,1

mode was generated, when the LSF was bended.

7.1 Four-Wave Mixing

The work in this section is based upon [94–96]. During experiments
with the LSF it was discovered that light in the LP0,1 mode was able to
generate intermodal FWM with an idler in the LP0,1 mode and a signal
in the LP0,2 mode. The results were obtained by using a home-made
all-fibre system to provide input pulses to the LSF. The mode-locked
fibre laser consists of a seed oscillator at 1064 nm and two ytterbium-
doped fibre amplifiers. The output of the fibre laser was a pulse train
with an 18.33 MHz repetition rate and a maximum average power of
470 mW. The pulse width was approximately 6 ps. The fibre laser was
directly spliced to 1.75 m of LSF. The measured FWM spectrum for
a pulse energy of 21 nJ into the LSF is shown in Fig. 7.1a. The input
light is coupled into the LP0,1 mode and an idler in the LP0,1 mode is
generated at a wavelength of approximately 940 nm and a signal in the

95
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Figure 7.1: FWM output spectrum from the experiment in the LSF, with an
input pulse energy of 21 nJ.
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LP0,2 mode is generated at a wavelength of approximately 1200 nm.
The theoretical phase-matching curve for the FWM process, where a
degenerated pump in the LP0,1 mode at a wavelength of 1064 nm is
used to generate an idler in the LP0,1 mode and a signal in the LP0,2

mode is shown in Fig. 7.2, together with the effective area for the FWM
process of the four interacting modes. The interaction is phase matched,
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Figure 7.2: The linear phase matching curve together with the effective area for
the FWM process with a degenerated pump in the LP0,1 mode at a wavelength
of 1064 nm and an idler in the LP0,1 mode and a signal in the LP0,2 mode. The
non-linear correction to the phase matching curve is of the order 1

m
, which make

the linear phase matching the dominating part in this case.

when the signal and idler are detuned from the pump by 35.2 THz,
which positions the idler and the signal at a wavelength of 945 nm and
1216 nm, respectively. The linear phase mismatch parameter is given
as

Δβ = 2β0,1 (ωp)− β0,1 (ωp +Δω)− β0,2 (ωp −Δω) , (7.1.1)

where βi,j is the propagation constant for the LPi,j mode, ωp is the
angular frequency of the pump, and Δω is the angular frequency de-
tuning between the idler or signal and the pump. The propagation
constant is calculated from the theoretical effective index curves shown
in Sec. 4.1.1. The effective area for the FWM process shown in Fig. 7.2
is the inverse of the transverse-field overlap, which is given by

N =
1

Aeff,FWM
=

∫
A

F̃N,0,1 (ωp) F̃N,0,1 (ωp)

F̃N,0,1 (ωp +Δω) F̃N,0,2 (ωp −Δω) dA, (7.1.2)
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where F̃N,i,j is the normalised transverse-field distribution, which in
this work is purely real, for the LPi,j mode, dA is the differential trans-
verse area. Fig. 7.2 showns that the FWM effective area is approxi-
mately 7 μm2 for a FWM process that is detuned 35.2 THz from the
pump. This means that the FWM process is strong due to the small
effective area, which comparable to a micro-structured photonic-crystal
fibre (PCF) [27, 28]. The phase-matching curve and the corresponding
FWM effective area are only valid for the specific mode configuration
and the wavelength of the pump.

By using the framework of the Generalised Non-Linear Schrödinger
Equation (GNLSE) given in Sec. 2.2.1 with the fourth-root method to
incorporate the dispersion of the effective area [38], then the intermodal
effective areas regarding two modes are given as three different inter-
modal effective areas. In the case of the LP0,1 mode and the LP0,2 the
first intermodal combination is 3×LP0,1 and 1×LP0,2, the second inter-
modal combination is 2×LP0,1 and 2×LP0,2, and the third intermodal
combination is 1×LP0,1 and 3×LP0,2. The effective area is calculated
as

Aeff =
1∫

A
F̃N,A (ω) F̃N,B (ω) F̃N,C (ω) F̃N,D (ω) dA

, (7.1.3)

where the modes of the field distribution are A, B, C, andD. In Fig. 7.3
the effective area is shown for the LP0,1 mode, the LP0,2 mode and the
three intermodal effective areas for the LSF. Both the effective area of
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the LP0,1 mode and the LP0,2 mode has a strong wavelength depen-
dence. This stems from the avoided-crossing between the LP0,1 mode
and the LP0,2 mode. By comparing the effective area of the intermodal
combination of 3 × LP01 and 1 × LP02 in Fig. 7.3 with the effective
area for the FWM process shown in Fig. 7.2, it can be realised that it
is not valid in this case to approximate the dispersion of the effective
area with the fourth-root method. The minimum value of the effective
area of the intermodal combination of 3 × LP01 and 1 × LP02 is ap-
proximately 18 μm2 at a wavelength of 1097 nm. This is compared to
the 7 μm2 at the idler wavelength of 945 nm or the signal wavelength
of 1216 nm. Therefore, an implementation with the intermodal effec-
tive areas shown in Fig. 7.3 will not capture the features of the FWM
process as the non-linear coupling is under estimated. To capture the
FWM process in the simulation, the field-overlap calculation needs to
be correctly incorporated in the numerical calculation and the frame-
work of the Transverse-Field Dispersion in the Generalised Non-Linear
Schrödinger Equation (TFD-GNLSE) from Sec. 2.2.3 should be applied.

As the LSF has a radial symmetric refractive index profile, it is pos-
sible to write the transverse-field distributions on a one-dimensional grid
with sine or cosine modulation to account for the angular dependence.
To reduce the number of radial grid points used, a Gaussian quadrature
rule is applied to compute the transverse-field overlap. In Fig. 7.4 the
effective areas for the LP0,1 mode and the LP0,2 mode are calculated
with the use of Gauss-Legendre quadrature and 18 radial grid points
spanning from 0 μm to 12 μm. It is observed that with 18 grid points it

0
20
40
60
80

100
120
140
160
180

900 950 1000 1050 1100 1150 1200 1250
-0.25

-0.2

-0.15

-0.1

-0.05

0

Ef
fe

ct
iv

e
ar

ea
[ μ

m
2
]

Δ
Ef

fe
ct

iv
e

ar
ea

[ μ
m

2
]

Wavelength [nm]

LP01 approx
LP02 approx
LP01 error
LP02 error

Figure 7.4: The effective area calculated with the Gauss-Legendre quadrature
method and 18 radial grid points. The error is with respect to the calculation
without using the Gauss-Legendre quadrature method.
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is possible to describe the dispersion of the normalised transverse-field-
distributions without any significant error. The number of radial grid
points is a trade-off between computational accuracy and computation
time.

The equations for modelling the FWM process between the LP0,1

mode and the LP0,2 mode, with the framework of the GNLSE and
the framework of the TFD-GNLSE are presented in Sec. 2.2.2 and in
Sec. 2.2.3, respectively. To simulate the experimental FWM spectrum
in Fig. 7.1a, the numerical simulation is started with a pump pulse in
the LP0,1 mode at a centre wavelength of 1064 nm and vacuum noise
in all the other frequency bins for both modes. The number of points
used on the time/frequency grid is 214, the time discretisation is 8 fs,
the centre wavelength of the simulation window is 1064 nm, the shape
of the input pulse intensity is a sech2, the temporal full-width at half-
maximum (FWHM) of the pulse intensity is 6 ps, the input peak power
of the pulse is 3085.25 W, the intensity-dependent refractive index of
the fibre is 2.6 × 10−20 m2

W , the fR ratio is 0.18, the length of the fibre
is 1.75 m, and the loss is neglected. The reference for the moving time
frame is the LP0,1 mode. The simulation is performed using the Fourth-
Order Runge-Kutta in the Interaction-Picture (RK4IP) method [42] and
the efficient adaptive step size method [91], with a local error limit of
10−7 for the conserved quantity, which is proportionally to the photon
number. The radial grid is made by using 18 grid points spanning from
0 μm to 12 μm for the TFD-GNLSE implementation. In Fig. 7.1b
the simulated output spectrum for the FWM experiment in the LSF
is shown both for the standard GNLSE with the fourth-root method
and the TFD-GNLSE implementation with the correct dispersion of
the transverse field distribution. It is observed that there is no FWM
when using the standard GNLSE, however, by comparing Fig. 7.1a and
Fig. 7.1b it is observed that the TFD-GNLSE numerical implementation
is able to reproduce the features of the FWM experiment. There are
minor discrepancies, which could be caused by the fact that the true
shape, power and chirp of the input pulse are not known. Also there
could be effects from the strength of the non-linear coupling terms as the
intensity-dependent refractive index is assigned a constant value, while
in principle this should be dependent on the material composition and
the field distribution for the specific third order non-linear interaction.

As the TFD-GNLSE is able to reproduce the features of the in-
termodal FWM experiment, the TFD-GNLSE can be used to gain a



7.1 Four-Wave Mixing 101

deeper insight in the intermodal FWM process. The temporal evolu-
tion for the two modes is shown in Fig. 7.5 as a contour plot of time
and longitudinal position in the fibre. The spectral evolution for the two
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(a) The temporal evolution for the LP0,1 mode as a contour plot of time and longitu-
dinal position in the fibre. The idler has gained a significant amount of power just after
0.2 m of propagation and is split off the pump pulse.
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(b) The temporal evolution for the LP0,2 mode as a contour plot of time and longi-
tudinal position in the fibre. The signal has gained a significant amount of power just
after 0.2 m of propagation.

Figure 7.5: The temporal evolution as a contour plot of time and longitudinal
position in the LSF for the FWM process between the LP0,1 mode and the LP0,2

mode.

modes is shown in Fig. 7.6 as a contour plot of wavelength and longitu-
dinal position in the fibre. From Fig. 7.5 it is observed how the signal
pulse and the idler pulse have gained a significant amount of power
after they have propagated just 0.2 m. The process is dominated by
the non-linear interaction, the length of which is 1.5 cm for the pump,
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(a) The idler in the FWM process, which is in the LP0,1 mode.
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(b) The pump in the FWM process, which is in the LP0,1 mode.
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(c) The signal in the FWM process, which is in the LP0,2 mode.

Figure 7.6: The spectral evolution as a contour plot of wavelength and longi-
tudinal position in the LSF for the FWM process with a pump and a idler in
the LP0,1 mode and with a signal in the LP0,2 mode.
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however, the difference in group delay between the pump, the signal,
and idler leads to walk-off and temporal pulse broadening. The walk-off
length between the pump and the signal is approximately 82 cm and
between the pump and the idler it is approximately 34 cm. In Fig. 7.6
it is observed how the pump pulse undergoes spectral broadening due
to self-phase-modulation, which results in a spectral broadening of both
the signal and idler as this allows for phase-matching with a pump de-
tuned slightly from 1064 nm. In Fig. 7.7 the simulated output spectra
for both the LP0,1 mode and the LP0,2 mode in the FWM experiment
are shown for the TFD-GNLSE implementation. It is observed that
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Figure 7.7: Simulated output spectrum for the FWM experiment with the
TFD-GNLSE. The three FWM processes listed in Table 7.1 is highlighted. Pro-
cess 1 is the blue dotted line, Process 2 is the orange long-dash-dotted line,
Process 3 is the purple short-dash-dotted line, and the solid arrow indicates a
wavelength used in more than one FWM process.

the spectra for the LP0,1 mode and the LP0,2 mode contain multiple
peaks as a result of multiple FWM processes. The three most signifi-
cant FWM processes listed in the order that FWM processes occur in
Table 7.1.

Idler/LP0,1 Pump 1/LP0,1 Pump 2/LP0,1 Signal/LP0,2

Process 1 945 nm 1064 nm 1064 nm 1216 nm

Process 2 882 nm 945 nm 1064 nm 1156 nm

Process 3 947 nm 1064 nm 1105 nm 1267 nm

Table 7.1: The three most significant FWM processes listed in the order that
FWM processes occur. The light at 1105 nm in the LP0,1 mode and the light
at 1267 nm in the LP0,2 mode are seeded by Raman amplification from light at
1064 nm in the LP0,1 mode and light at 1216 nm in the LP0,2 mode, respectively.
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7.1.1 Variation of the Dispersion of the
Transverse-Field Distribution

In order to probe further into the failure of the GNLSE, when predicting
the intermodal FWM in the LSF, the output spectra of the GNLSE
and the TFD-GNLSE are compared for different simulations as the
dispersion of the transverse field distributions is varied. It is only the
dispersive properties of the transverse field distributions and not the
dispersion properties for the effective indices that is varied, as this will
ensure the same linear phase matching condition for the FWM processes
in all the simulation. This investigation is performed to determine to
what limit it is possible to use the GNLSE for fibres that exhibit a
smaller amount of dispersion than the LSF, i.e. a standard multi-mode
fibre (MMF). The initial conditions for the FWM experiment remain
the same. The transverse field is synthesised as a combination of the
real field and a field of the reference mode, which does not exhibits the
same magnitude of dispersion as the real fields. The reference mode is
the fundamental mode of the isolated core wave-guide in Fig. 4.3b. The
effective areas of the LP0,1 mode and the LP0,2 mode are shown together
with the reference mode in Fig. 7.8. The synthesised transverse fields
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Figure 7.8: The effective areas of the LP0,1 mode and LP0,2 mode in LSF is
shown together with the effective area for the reference mode.

are given as

F̃ synth
01 = F̃0,1X + (1−X) F̃ref , (7.1.4)

F̃ synth
02 = F̃0,2X + (1−X) F̃ref , (7.1.5)
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where X is the mixing coefficient, F̃i,j is the real field, and F̃ref is
the field of the reference mode. The intermodal combination of the
synthesised fields for the combination of 3×LP0,1 and 1×LP0,2 is shown
in Fig. 7.9 for varying mixing coefficient. The intermodal combination
of 3×LP0,1 and 1×LP0,2 is the dominating intermodal combination of
the FWM processes as shown in Table 7.1. As the real fields contribute
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Figure 7.9: The intermodal effective areas for the combination of three LP0,1

mode and one LP0,2 mode for different values of the mixing parameter, X. The
behaviour shown is similar to that of the other intermodal effective areas.

an increasing part of the synthesised fields, i.e. as the mixing coefficient
X approaches 1, the intermodal effective area increases, which indicates
a decrease in the strength of the non-linear interaction.

In Fig. 7.10 the output spectrum of the LP0,1 mode is shown as a
function of the mixing coefficient. In Fig. 7.11 the output spectrum of
the LP0,2 mode is shown as a function of the mixing coefficient. It is
observed that the general features are lost for a mixing coefficient of 0.4
and higher in the GNLSE simulations. At a mixing coefficient of 0.6 and
higher the GNLSE is unable to reproduce any FWM, keeping in mind
that the linear part of the FWM phase matching criterion is the same
for all the simulations. The reduction in the efficiency of the FWM
process is therefore directly linked to the transverse overlap integral of
the given FWM process, i.e. the inverse of the effective area.

7.2 Čerenkov Radiation

The work in this section is based upon [97, 98]. During experiments
with propagation of soliton pulses in the LSF in the LP0,2 mode it was
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(a) Calculated LP0,1 output spectrum with the GNLSE.
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(b) Calculated LP0,1 output spectrum with the TFD-GNLSE.

Figure 7.10: Comparison between the output spectra for the LP0,1 mode with
the GNLSE and TFD-GNLSE.
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(a) Calculated LP0,2 output spectrum with the GNLSE.
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(b) Calculated LP0,2 output spectrum with the TFD-GNLSE.

Figure 7.11: Comparison between the output spectra for the LP0,2 mode with
the GNLSE and TFD-GNLSE.
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realised that it was possible to couple light to the longer wavelengths
from the soliton in the LSF, as shown by the results in Sec. 6.2.2. The
coupling is provided by an intermodal Čerenkov process between the
soliton in the LP0,2 mode and the dispersive wave in the LP1,1 mode.
The intermodal Čerenkov process requires the LSF to be perturbed from
the ideal perfectly cylindrical symmetric case, e.g. by a bend of the fibre.
In the ideal case the LP0,2 mode has anomalous dispersion, whereas the
LP1,1 mode has normal dispersion in the vicinity of the wavelength
of the mode-crossing between the two modes. When the LSF is bent
the mode classification is altered and the intermodal Čerenkov process
observed in the experiment is in fact an intramodal Čerenkov process
in the framework of the bend fibre. This is explained in details in the
following.

It is possible to calculate the wavelength of the Čerenkov radiation
from a solution in the case where the interaction takes place in the same
mode [9]. This approach is extended to cover a multi-mode (MM) case.
In general the phase of a propagating wave in the z-direction is written
as

φ = β (ω) z − ωt+ φ0, (7.2.1)

where β is the propagation constant, ω is the angular frequency, z is the
distance, t is the elapsed time, and φ0 is an arbitrary phase constant.
The soliton propagates as a wave-package with the speed of the group-
velocity of the centre frequency of the soliton. Therefore, the elapsed
time is written as

t =
z

vg,s
, where vg,s =

(
∂β0,2
∂ω

∣∣∣∣
ωs

)−1

. (7.2.2)

vg,s is the group-velocity of the soliton in the LP0,2 mode. The phase
of the soliton in the LP0,2 mode and the dispersive wave in the LP1,1

mode is given by

φ0,2 = β0,2 (ωs) z − ωs
∂β0,2
∂ω

∣∣∣∣
ωs

z + φ0, (7.2.3)

φ1,1 = β1,1 (ωd) z − ωd
∂β0,2
∂ω

∣∣∣∣
ωs

z + φ0. (7.2.4)

The non-linear contribution to the phase is excluded as this only con-
tributes to a minor correction. The Čerenkov radiation-process occurs
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when the soliton and the dispersive wave are phase matched leading to
the following expression,

β1,1 (ωd) = β0,2 (ωs) + (ωd − ωs)
∂β0,2
∂ω

∣∣∣∣
ωs

. (7.2.5)

It is possible to solve Eq. 7.2.5 with a graphical method. The angular
frequency of the dispersive wave can be found by calculating the tangent
to the propagation constant of the soliton and observing where the
tangent intersects the propagation constant of the dispersive wave. In
Fig. 7.12 this is illustrated for the LSF, where the soliton is centred at a
wavelength of 1085 nm and the dispersive wave generated by Čerenkov
process is located at a wavelength of 1153 nm. In Fig. 7.12 the material

30

32

34

36

38

40

1600 1650 1700 1750 1800

Δ
β
[

1
m

m

]

Angular frequency
[
Trad

s

]

Soliton
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Figure 7.12: Illustration of the graphical solution to find the phase matching
between the dispersive wave and the soliton. The Δβ shown on the y-axis is
the propagation constant, where the silica material contribution is subtracted in
order to give a more clear representation.

contribution of pure silica is subtracted from the propagation constants,
Eq. 7.2.5 is still valid as long as

∂βsilica
∂ω

∣∣∣∣
ωs

(ωd − ωs) + βsilica (ωs)− βsilica (ωd) ≈ 0. (7.2.6)

This is fulfilled as long as the slope of the material-propagation constant
is constant within the considered bandwidth, which is approximately
true for this case.

From the graphical solution shown in Fig. 7.12 it is realised that it
should be possible to phase match a Čerenkov radiation-process every
time there is a mode-crossing, with no consideration of the dispersive
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properties of the two modes. However, a mode-crossing indicates that
the two modes have the same effective index at the same wavelength,
hence the two modes must have a different angular eigenvalue for the
modes to fulfil the orthogonality requirement. The coupling to the
dispersive wave can be described by the following differential equation

∂

∂z
Ã1,1 = −α1,1

2
Ã1,1 + i

(
β1,1 − βref (ω0)− βref

1 (ω0) (ω − ω0)
)
Ã1,1

+ Q̃1,1:1,1:1,1:1,1 + Q̃1,1:0,2:1,1:1,1 + Q̃1,1:1,1:0,2:1,1 + Q̃1,1:1,1:1,1:0,2

+ Q̃1,1:0,2:0,2:1,1 + Q̃1,1:0,2:1,1:0,2 + Q̃1,1:1,1:0,2:0,2 + Q̃1,1:0,2:0,2:0,2.
(7.2.7)

The value of Q̃1,1:0,2:1,1:1,1, Q̃1,1:1,1:0,2:1,1, Q̃1,1:1,1:1,1:0,2, and Q̃1,1:0,2:0,2:0,2

should all equal zero in a perfect cylindrical symmetric fibre as the
transverse field overlap is zero due to the angular symmetry of the
transverse field of the modes. Therefore, the strength of the intermodal
Čerenkov radiation is zero for the perfect cylindrical symmetric fibre.
However, any perturbation of the fibre, i.e. a bend, will lead to an
asymmetric transverse field of the LP0,2 mode and hereby enable the
Čerenkov process. To a first-order approximation the sharper the bend
is the better the field overlap and the stronger the non-linearity is.

To experimentally verify the control of the strength of the inter-
modal Čerenkov radiation-process by bending the LSF a soliton was
initiated in the LP0,2 mode and three different bend radii were applied
to the fibre. The setup for pumping the LSF was described in Sec. 6.1.2.
The length of the LSF is 90 cm and the bend is applied to the fibre in
such a manner that there is approximately 20 cm of straight fibre at
the output end. In Fig. 7.13 the recorded output spectra are shown
for different pulse energies and for different bend radii. When the LSF
is kept straight and for the applied pulse energies the soliton tunes
from a wavelength of 1085 nm to a wavelength of 1120 nm as shown in
Fig. 7.13a. The modulation of the spectrum at an input pulse energy
of 18 nJ is assumed to be caused by mode coupling, which is induced
by fabrication imperfections of the fibre. It is observed that there is no
noticeable Čerenkov generated wave in the spectra. This observation is
consistent with the theoretical prediction that the field-overlap integral
vanishes for the intermodal Čerenkov process in this case. However,
by bending the fibre the field-overlap integral no longer vanishes and
thereby enables coupling between the soliton in the LP0,2 mode and the
dispersive wave in the LP1,1 mode. This is experimentally observed in
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(a) The fibre is kept straight.
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(b) The fibre is bent around an object with a radius of 14.0 cm.
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(c) The fibre is bent around an object with a radius of 5.5 cm.

Figure 7.13: The measured output spectra for three different bend radii, which
are applied to the LSF for different input pulse energies.
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Fig. 7.13b and in Fig. 7.13c at the longer wavelength side of the spectra.
The mode image of the soliton and the dispersive wave was measured
for a bend radius of 14 cm. The measured mode image is shown in
Fig. 7.14. The dispersive wave is imaged with a long-pass filter with a

(a) The measured mode image of the
soliton.

(b) The measured mode image of the
dispersive wave.

Figure 7.14: The measured mode image of the soliton and the dispersive wave
generated by the intermodal Čerenkov process.

band edge of at 1150 nm. The power is the reduce to a point where
the recorded mode image after the long-pass filter with a band edge
of at 1150 nm has vanished. This ensures that there is no detectable
dispersive wave. Then the soliton is imaged with a long-pass filter with
a band edge of at 1064 nm. From the imaged modes it is clear that the
soliton is in the LP0,2 mode. The mode image of the dispersive wave
could be turned into two side-lobes with a zero intensity line in the
middle by inserting a polariser before the camera. The zero intensity
line could be rotated by adjusting the polariser, which indicates that
the dispersive wave is in the LP1,1 mode.

In the following a modesolver written by John Fini from OFS Lab-
oratories, which handles calculations on bend index profiles, is used to
understand the intermodal Čerenkov process in the framework of the
bend fibre. To reduce the computational problem the modesolver only
solves the bend fibre in one half of the domain and assumes a symmetri-
cal boundary condition on the boarder to the other half of the domain.
The modesolver is used to calculate the mode properties for the LSF
with an applied bend. In Fig. 7.15 the effective indices for the different
modes are shown as a function of wavelength. The bend radius in the
calculation is 5.5 cm. The mode labelling for the five modes shown in
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Figure 7.15: The calculated effective indices for the LSF with an applied bend
radius of 5.5 cm, where the material contribution from pure silica is subtracted.

Fig. 7.15 is different compared to the convention that has been used
so far in the thesis. Two of the modes are identified as the standard
LP modes, i.e. the LP0,1 mode and the LP2,1 mode. The three other
modes are assigned the mode labelling A, B, and C as the properties
of transverse intensity flow in the longitudinal direction changes with
wavelength for these modes. The flow of intensity in the longitudinal
direction for the modes A, B, and C is shown in Fig. 7.16. At the shorter
wavelength the mode profile of mode A resembles a bend LP0,2 mode
and as the wavelength increases the mode profile of mode A changes.
At the longer wavelengths the mode profile of mode A resembles a bend
doughnut mode, which is part of the LP1,1 mode group. The opposite is
true for the mode C. At the shorter wavelength the mode profile of mode
C resembles a bend LP1,1 mode and at the longer wavelengths the mode
profile of mode C resembles a bend LP0,2 mode, which is guided in the
core wave-guide and therefore most of all resembles a LP0,1 mode. From
this it can be realised that when the fibre is bent the mode A and the
mode C must make an avoided-crossing to satisfy the orthogonality re-
quirement. The avoided-crossing between the mode A and the mode C
in the bend fibre enables the Čerenkov process. The dispersion of mode
A on the shorter wavelength side of the avoided-crossing is anomalous,
as the LP0,2 mode in the straight fibre. The avoided-crossing effects
and changes the curvature of the mode A, as the curvature is directly
related to the group-velocity dispersion, see Eq. 4.1.2, the dispersion
of mode A changes to normal, as the LP1,1 mode in the straight fibre,
on the longer wavelength side of the avoided-crossing. Therefore in the
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(a) Mode A 1080 nm (b) Mode B 1080 nm (c) Mode C 1080 nm

(d) Mode A 1105 nm (e) Mode B 1105 nm (f) Mode C 1105 nm

(g) Mode A 1130 nm (h) Mode B 1130 nm (i) Mode C 1130 nm

(j) Mode A 1155 nm (k) Mode B 1155 nm (l) Mode C 1155 nm

(m) Mode A 1180 nm (n) Mode B 1180 nm (o) Mode C 1180 nm

Figure 7.16: The flow of intensity in the longitudinal direction for the modes
A, B, and C in Fig. 7.15 at different wavelengths. The dimensions of the intensity
plots are from −10 μm to 10 μm in the x-direction and from 0 μm to 10 μm
in the y-direction. The bright colours represent areas of high intensity, whereas
the darker represent areas of low intensity on a linear scale.
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bend fibre the Čerenkov process is an intramodal process in the mode
A, however, when the fibre is straighten the soliton is in the LP0,2 mode
and the dispersive wave is in the LP1,1 mode. Even though that the
non-linear coupling is in fact an intramodal process in the bend fibre,
it is an effectively intermodal process in the straight fibre. From the
effective area of the modes shown in Fig. 7.17, which is valid for a bend
radius of 5.5 cm, it is verified that the mode A and the mode C exhibit
an avoid-crossing. From the effective area it is confirmed that the mode
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Figure 7.17: The calculated effective area for the LSF with an applied bend
radius of 5.5 cm.

A is located in the ring structure of the triple-clad wave-guide at the
shorter wavelength and as the mode is trying to transcend to the core
structure, the mode is forced back into the ring structure. The effective
indices and the effective areas are also calculated for a bend radius of
16 cm and 30 cm, which is found in App. A.6.1. From a comparison
of the effective indices for the different bend radii it is realised that the
sharper the bend is, the shorter is the wavelength where the effect from
avoided-crossing begins. This explains why the soliton self-frequency
shift (SSFS) is reduced for smaller bend radii as observed in Fig. 7.13,
as the anomalous dispersion region of the mode A is changed to a normal
dispersion region with the effect from the avoided-crossing.



Chapter 8

Conclusion

In this chapter the results and conclusion of the thesis are presented.

Two speciality few-moded fibres (FMFs), i.e. the left-sided fibre
(LSF) and the right-sided fibre (RSF), were designed and optimised for
used in a cascade configuration, where the two fibres can support a shift
of a soliton pulse from the ytterbium gain-band to longer wavelengths.
The mode of operation in the two speciality FMFs is the LP0,2 mode.
The two speciality FMFs was characterised and the characterisation was
in agreement with the prediction from the design. The two speciality
FMFs are designed for an unchirped input pulse centred at a wavelength
of 1064 nm with a sech2 intensity profile, a temporal full-width at half-
maximum (FWHM) of 400 fs, and a pulse energy of 11.1 nJ. The
resulting output pulse after 19 cm of LSF and 8.5 cm of RSF centred at
a wavelength of 1277 nm has a pulse energy of 5.1 nJ and a temporal
FWHM of 15 fs. The transfer wavelength between the LSF and the
RSF was 1100 nm.

It was demonstrated that it was possible to splice two different FMFs
together with a splice loss of 1.6 dB using a combination of a fusion-
splice process and a gas-line-burner process.

In the practical experiments the length of LSF had a significant
impact on the soliton self-frequency shift (SSFS). In the experiments
with an unchirped femtosecond input pulse the soliton pulse could be
shifted to the transfer wavelength of 1100 nm and beyond, if the few
centimetres of LSF was kept straight. In the experiments with a chirped
picosecond input pulse the SSFS was halted at a centre wavelength of
1075 nm, where the soliton pulse had a pulse energy of 2.6 nJ and a
temporal FWHM of 144 fs. The SSFS was halted by a novel intermodal
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Čerenkov process, when the fibre was bent. For the chirped picosecond
input the length of LSF was on a tens of metre scale, which required
the fibre to be on a spool or in a coil.

A novel non-linear intermodal Čerenkov process was experimentally
observed in the LSF, when the fibre was bent. The intermodal Čerenkov
process coupled light from a soliton in the LP0,2 to a dispersive wave
in the LP1,1 mode located at longer wavelengths. The theory for the
intermodal Čerenkov process was presented and it was described how
the coupling in the bend fibre is in fact an intramodal Čerenkov process,
but as the fibre is straighten the process appears to be an intermodal
Čerenkov process.

The Generalised Non-Linear Schrödinger Equation (GNLSE) was
derived and expanded to include multi-mode (MM) non-linear interac-
tions. An alternative variant of the GNLSE, i.e. the Transverse-Field
Dispersion in the Generalised Non-Linear Schrödinger Equation (TFD-
GNLSE), which included the correct dispersion of the transverse-field
distribution was also derived. The TFD-GNLSE was able to reproduce
the intermodal four-wave mixing (FWM) experiment in the LSF, while
the GNLSE failed to do so. The GNLSE failed to reproduce the inter-
modal FWM experiment as the modes involved in the FWM process in
the LSF exhibits a significance amount of dispersion. For FMFs where
the effective area remains approximately constant over the considered
bandwidth it would be acceptable to use the GNLSE, as shown with
the investigation where the dispersion of the transverse-field distribu-
tion was varied.

The intensity-dependent refractive index and the Raman effect was
measured for five step-index fibres, which had a germanium-doped core
and a cladding of pure silica. A linear relationship between the intensity-
dependent refractive index and a weighted germanium concentration
was established. A linear relationship between the Raman contribution
to the intensity-dependent refractive index and the weighted germa-
nium concentration was also established. From these two linear rela-
tionships the Raman fraction of the intensity-dependent refractive index
was obtained. For the considered step-index fibres the Raman fraction
decreases from 0.16 to 0.15 for an increase in the weighted germanium
concentration.

An all-normal dispersive (ANDi) polarisation-maintaining (PM) laser
was used as an case example to gain a more theoretical understanding of
the mode-locking dynamics in a mode-locked oscillator. Specifically, it
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was shown that the bandwidth of the ytterbium gain-band is sufficient
to provide the filtering effect in the ANDi laser, when the accumulated
non-linear phase-shift per round-trip of the mode-locked pulses is small.



Chapter 9

Outlook

In this chapter the thoughts and recommendations for continuation of
the project are presented.

In general and stimulated by the interest in FMFs, a more thorough
and fundamental investigation of the intermodal non-linearities is of
interest to justify the current model and non-linear strengths. For the
investigation of the intensity-dependent refractive index and the Raman
contribution to the intensity-dependent refractive index, it would be
interesting to establish the dependence of other dopant materials. Here
fluorine is the material of most interest. In this case the step-index
fibres should have a core of pure silica and a cladding or trench of
fluorine-doped silica.

The TFD-GNLSE successfully incorporated the dispersion of the
transverse-field distribution and the TFD-GNLSE was able to reproduce
the intermodal FWM experiment in the LSF. The complexity of the
TFD-GNLSE code is significantly greater than the GNLSE code. There
where an assumption in the derivation of the TFD-GNLSE that with
no cost in increased complexity could be included in the TFD-GNLSE
code. The assumption is made when the unit of the longitudinal com-
plex amplitude is converted to

√
W. The refractive index should have

remained inside the integral over the transverse area together with the
transverse-field distribution when going from Eq. A.1.26 to Eq. A.1.27.
For future use it is recommended to use Eq. A.1.26 in order to increase
the accuracy of the numerical model.

The setup with the chirped picosecond source coupled into the LSF
and the RSF did unfortunately not yield the desired widely tunable
short-pulse laser. The reason for this is speculated to be contributed
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one or more of the following issues: The ratio of amplified spontaneous
emission (ASE) in the amplified spectrum, the chirp of the pulse, or the
splice process between the different FMFs.

The amount of ASE noise from the amplifier chain after the mas-
ter oscillator is potentially significant compared to the amplified pulses.
The chain of amplifier should be upgraded to include isolators between
the amplifier stages and to protect the pump lasers. If this is not suf-
ficient to eliminate the parasitic ASE, then the signal should be time
filtered with an acousto-optical modulator or an electro-optic modula-
tor. With the use of additional isolators it is possible to use the two last
amplifiers in a backward and forward configuration, hereby increasing
the efficiency of the amplification process and reduce the accumulated
chirp and self-phase modulation (SPM).

The critical issue with the chirped picosecond source is that the
pulse must first be de-chirped in the LSF. This requires a significant
length of fibre, which means the fibre needs to be coiled or on a spool.
The bending radius of the fibre on the spool or in a coil facilitates the
intermodal Čerenkov radiation, which cancels the SSFS process. A sys-
tematic variation of the critical coil radius for the entire length of LSF
on the spool or in the coil would be in order to determine the radius,
where the intermodal Čerenkov process is negligible for the compression
process and the subsequently SSFS. A possible solution to this problem
is to have a pulse on a femtosecond duration as the input to the LSF or
to de-chirp the chirped picosecond pulse. Potential compression meth-
ods are hollow bandgap fibres [99,100], bulk gratings [83], and chirped
fibre Bragg gratings [101,102]. For the current application it is properly
the solution with the bulk gratings which is most obvious to test first, as
these are widely obtainable commercially. An other advantage with the
use of bulk gratings is that the tuning of the SSFS could be controlled by
changing the temporal duration of the input pulse to the LSF and not
by changing the amplification level. This would ensure a more constant
power output. An alternative to dispersion compensation would be to
have a mode-locked fibre-based oscillator, which could deliver pulses
with temporal duration in the femtosecond range and with a pulse en-
ergy of several nanojoules. This would ensure that the required length
of LSF is on a centimetre scale and not on a scale of tens of metre and
thereby it should be possible to keep the fibre straight and avoid the
intermodal Čerenkov process. In this case the accumulated SPM in the
mode-converter fibre due to the high peak power of a femtosecond pulse
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could be an issue and a more suited form of mode-conversion could be
performed with phase plates. If the bulk gratings was used to provide
the dispersion compensation, then phase plates could also be considered
as the all fibre criterion would already be void.

To reduce the loss of the splice between mode-converter fibre and the
LSF and to understand why the splice between the LSF and the fibres
for shifting the soliton to longer wavelength failed the parameter space
of the combination of the fusion and gas-line-burner splice should be in-
vestigated more systematically. However, before undertaking this task
it would be advisable to investigate the feasibility of tapering one of the
fibres before splicing the fibres together or using one or more bridge fi-
bres. If the tapering approach is chosen, care should be taken if the fibre
to be tapered contains a mode-crossing, as this will move in wavelength
as the fibre is tapered. For the evaluation of the splice loss between the
FMFs and in general for the experimental investigations, the output
should have been imaged and analysed with S2 technique [103].

With the optimisation of the triple-clad fibre design some interesting
intermodal non-linear effects was observed, however, the mode-crossing
issue turned out to be more complex than first anticipated. Therefore,
in retrospect for experimental simplicity a more viable path is perhaps
to utilise a fibre which can provide a high soliton pulse energy and
anomalous dispersion without any mode-crossing issue. This could po-
tentially be achieved with a double-clad fibre, where the inner core is
single-moded and the outer core is large and highly multi-moded. In
this type of fibre the dispersion would be anomalous for some of the
LP0,x mode and as the outer core is large the effective area would also
be large and thereby the soliton pulse energy.



Appendix A

Additional Material to the
Chapters

A.1 Theory

A.1.1 Maxwell’s Equations

Definition of the Applied Fourier Transform

In Chap. 2 the derivations are carried out with the following definition
of the Fourier transform

Ẽ (ω) =

∫
t

E (t) exp [iωt] dt, (A.1.1)

E (t) =
1

2π

∫
ω

Ẽ (ω) exp [−iωt] dω. (A.1.2)

Vector Identities

The vector identities are

∇×∇×V = ∇ (∇ ·V)−∇
2V, (A.1.3)

∇ · (ψV) = ψ∇ ·V +V ·∇ψ. (A.1.4)

Here V is a vector and ψ is a scalar both dependent on the position in
space.
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A.1.2 Pulse-Propagation

Separation of Variables

If Eq. 2.1.19 is considered without any non-linear induced polarisation
contributions and Eq. 2.2.2 is inserted, then the following is obtained

− F̃ exp [iβ (ω0) z]∇
2
zÃ − Ã exp [iβ (ω0) z]∇

2
⊥F̃

− (iβ (ω0))
2 F̃ Ã exp [iβ (ω0) z]− 2 (iβ (ω0)) F̃ exp [iβ (ω0) z]

∂

∂z
Ã

=
ω2

c2
εrF̃ Ã exp [iβ (ω0) z] . (A.1.5)

The variables are seprated by multiplying with 1
F̃ Ã exp[iβ(ω0)z]

, which

yields

1

F̃
∇

2
⊥F̃ +

ω2

c2
εr =

(
β′)2 = − 1

Ã∇
2
zÃ − 1

Ã2iβ (ω0)
∂

∂z
Ã+ β2 (ω0) .

(A.1.6)

The equation is separated into two independent homogeneous differen-
tial equations

∇
2
⊥F̃ +

(
ω2

c2
εr −

(
β′)2) F̃ = 0, (A.1.7)

∇
2
zÃ+ 2iβ (ω0)

∂

∂z
Ã+

((
β′)2 − β2 (ω0)

)
Ã = 0. (A.1.8)

In this case, where the effects from the non-linear contribution to the
induced polarisation have been disregarded, β′ is given as

β′ = β =
ω

c
neff . (A.1.9)

Perturbation

The third-order induced polarisation is introduced into the equation as
a perturbation to the relative dielectric constant as

εr = ε0 + ηΔε, (A.1.10)

where Δε is the perturbation and η ∈ [0; 1], this results in a perturbation
of both F̃ and (β′)2 given as

F̃ = F̃ 0 + ηΔF̃ , (A.1.11)(
β′)2 = β2 + ηΔβ2. (A.1.12)
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The homogeneous differential equations in Eq. 2.2.3 are then given as

∇
2
⊥
(
F̃ 0 + ηΔF̃

)
+

(
ω2

c2
(
ε0 + ηΔε

) − (
β2 + ηΔβ2

))(
F̃ 0 + ηΔF̃

)
= 0.

(A.1.13)

Collecting the terms with respect to the order of η, yields

η0 : ∇
2
⊥F̃

0 +

(
ω2

c2
ε0 − (β)2

)
F̃ 0 = 0, (A.1.14)

η1 : ∇
2
⊥ΔF̃ +

ω2

c2
ε0ΔF̃ +

ω2

c2
ΔεF̃ 0 − β2ΔF̃ −Δβ2F̃ 0 = 0.

(A.1.15)

Eq. A.1.14 is the homogeneous differential equation. Eq. A.1.15 is the
first-order correction to the homogeneous differential equation, which
is the correction that is considered in the following. Multiplying with(
F̃ 0

)∗
and integrating results in

Δβ2

∫
A

∣∣∣F̃ 0
∣∣∣2 dA =

ω2

c2

∫
A

Δε
∣∣∣F̃ 0

∣∣∣2 dA+

∫
A

[(
F̃ 0

)∗ (
∇

2
⊥ΔF̃

)

+
(
F̃ 0

)∗ ω2

c2
ε0ΔF̃ −

(
F̃ 0

)∗
β2ΔF̃

]
dA. (A.1.16)

If A.1.14 is complex conjugated and multiply by ΔF̃ , then this gives

ΔF̃∇
2
⊥
(
F̃ 0

)∗
+ΔF̃

(
ω2

c2
(
ε0
)∗ − (β∗)2

)(
F̃ 0

)∗
= 0. (A.1.17)

This can be integrated over the transverse plane subtracted from A.1.16
to give

Δβ2

∫
A

∣∣∣F̃ 0
∣∣∣2 dA =

ω2

c2

∫
A

Δε
∣∣∣F̃ 0

∣∣∣2 dA+

∫
A

[(
F̃ 0

)∗ (
∇

2
⊥ΔF̃

)

−ΔF̃
(
∇

2
⊥
(
F̃ 0

)∗)
+

(
F̃ 0

)∗ ω2

c2

(
ε0 − (

ε0
)∗)

ΔF̃

−
(
F̃ 0

)∗ (
β2 − (β∗)2

)
ΔF̃

]
dA. (A.1.18)

If ε0 and β are purely real, the equation reduces to

Δβ2

∫
A

∣∣∣F̃ 0
∣∣∣2 dA =

ω2

c2

∫
A

Δε
∣∣∣F̃ 0

∣∣∣2 dA+

∫
A

[(
F̃ 0

)∗ (
∇

2
⊥ΔF̃

)
−ΔF̃

(
∇

2
⊥
(
F̃ 0

)∗)]
dA. (A.1.19)
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By applying Green’s theorem it is realised that∫
A

[(
F̃ 0

)∗ (
∇

2
⊥ΔF̃

)
−ΔF̃

(
∇

2
⊥
(
F̃ 0

)∗)]
dA = 0. (A.1.20)

Therefore, the correction to β2 is given as

Δβ2 =
ω2

c2

∫
A
Δε

∣∣∣F̃ ∣∣∣2 dA∫
A

∣∣∣F̃ ∣∣∣2 dA . (A.1.21)

Unit of the Complex Amplitude

The unit of W is related to the optical power and is defined as

P̃ =

∫
A

ĨdA, (A.1.22)

where Ĩ is the intensity, which is integrated over the detection area.
The power flow of a time-average signal is determined by the real value
of the Poynting vector [104]

P̃ =

∫
1

2
�
[
Ẽ× H̃∗

]
, (A.1.23)

where � denotes the real part. For an electric field polarised in the
x direction and travelling in the z direction, the Poynting vector is
rewritten as

P̃ =
1

2

∫
A

η
∣∣∣Ẽ∣∣∣2 dA, (A.1.24)

where η is the intrinsic impedance of the material and Ẽ is the ampli-
tude. This can be rewritten as

P̃ =
1

2
cε0

∫
A

n
∣∣∣Ẽ∣∣∣2 dA, (A.1.25)

where the integral is now over the squared amplitude of the electric
field and the index of refraction. In the next step the amplitude of the
electric field is separated into a transverse and longitudinal component
and the power is written as

P̃ =
1

2
cε0

∣∣∣Ã∣∣∣2 ∫
A

n
∣∣∣F̃ ∣∣∣2 dA. (A.1.26)
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Eq. A.1.26 is often approximated by moving the index of refraction
outside the integral. The error is negligible for an almost homogeneous
material, which is approximately true for a silica-based fibre

P̃ =
1

2
cε0neff

∣∣∣Ã∣∣∣2 ∫
A

∣∣∣F̃ ∣∣∣2 dA, (A.1.27)

where neff is the effective index of the light in the fibre. In the next
step power is written as

P =
∣∣∣Ã∣∣∣2 . (A.1.28)

To convert the complex amplitude to the unit of
√
W , Ã is to be replaced

with the following expression

Ã =
Ã√

1
2cε0neff

∫
A

∣∣∣F̃ ∣∣∣2 dA
, (A.1.29)

where Ã is the new variable with the unit of
√
W .

Moving Time-Frame

Introducing a moving frame with the time T = t− z
vrefg

= t− βref
1 z and

x = z, gives a change to the derivatives as follows

∂A

∂z
=

∂A

∂x

∂x

∂z
+

∂A

∂T

∂T

∂z
=

∂A

∂x
− βref

1

∂A

∂T
, (A.1.30)

∂A

∂t
=

∂A

∂t

∂t

∂z
+

∂A

∂T

∂T

∂t
=

∂A

∂T
. (A.1.31)

All Possible Frequency Contributions

The double integral over q̃A,B,C,D is rewritten as

∫
ω1

∫
ω2

q̃A,B,C,Ddω2dω1 =

∫
A

F̃ ∗
N,A (ωσ)

∫
ω1

∫
ω2

R̃ (ωσ − ω1) ÃB (ω1)

× F̃N,B (ω1) Ã
∗
C (ωσ − ω1 − ω2) F̃

∗
N,C (ωσ − ω1 − ω2)

× ÃD (ω2) F̃N,D (ω2) dω2dω1dA, (A.1.32)
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where the transverse field distribution is written in the normalised form

F̃N =
F̃√∫

A

∣∣∣F̃ ∣∣∣2 dA
. (A.1.33)

Often when the Generalised Non-Linear Schrödinger Equation (GNLSE)
is derived, the frequency dependence of the transverse field is disre-
garded and all the transverse fields are evaluated at the same frequency
of ωσ. For the derivation of the Transverse-Field Dispersion in the Gen-
eralised Non-Linear Schrödinger Equation (TFD-GNLSE) the correct
dispersion of the transverse fields are incorporated into the equation
by keeping the longitudinal amplitude and the transverse field distri-
bution for each electric field together. In the following G̃ = F̃ Ã, then
Eq. A.1.32 is given as∫

ω1

∫
ω2

q̃A,B,C,Ddω2dω1 =

∫
A

F̃ ∗
N,A (ωσ)

∫
ω1

∫
ω2

R̃ (ωσ − ω1) G̃B (ω1)

× G̃∗
C (ωσ − ω1 − ω2) G̃D (ω2) dω2dω1dA, (A.1.34)

The integral over ω2 in A.1.34 can be shown to be equal to a convolution
by performing the following transform of variables ξ = ω2 and ζ =
ωσ − ω1. The integral over ω2 is then written as∫

ω2

G̃∗
C (ωσ − ω1 − ω2)G̃D (ω2) dω2 =

∫
ξ

G̃∗
C (ζ − ξ) G̃D (ξ) dξ (A.1.35)

= F
{
F−1

{
G̃∗

C (ζ)
}
F−1

{
G̃D (ζ)

}}
(A.1.36)

= J̃ (ζ) = J̃ (ωσ − ω1) . (A.1.37)

The F denoted the Fourier transform from time to frequency and F−1

denoted the Fourier transform from frequency to time. As with the in-
tegral over ω2, the integral over ω1 in A.1.34 can be shown to be a con-
volution. This is achieved by considering R̃ (ωσ − ω1) and J̃ (ωσ − ω1)
as one function R̃J (ωσ − ω1) = R̃ (ωσ − ω1) J̃ (ωσ − ω1). The integral
over ω1 is then written as∫
ω1

G̃B (ω1) R̃J (ωσ − ω1) dω1 = F
{
F−1

{
G̃B (ωσ)

}
F−1

{
R̃J (ωσ)

}}
.

(A.1.38)
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Therefore, is it possible to write the double frequency integral as Fourier
transforms, which numerically is a significant advantage. The double
integral of A.1.34 is written as∫

ω1

∫
ω2

q̃A,B,C,Ddω2dω1 =

∫
A

F̃ ∗
N,AF

{
F−1

{
G̃B

}
F−1

{
R̃

×F
{
F−1

{
G̃∗

C

}
F−1

{
G̃D

}}}}
dA.

(A.1.39)

By using Eq. A.1.39 the correct dispersion of the transverse field is
obtained and this is applied in the TFD-GNLSE. In the case of the
GNLSE where the dispersion of the transverse field for the interacting
electric fields is disregarded, the derivation follows the one outlined
above, however, in this case G̃ = Ã and the transverse field overlap
integral is moved outside the double frequency integrals in Eq. A.1.32
resulting in an alternate version of Eq. A.1.39 given as∫

ω1

∫
ω2

q̃A,B,C,Ddω2dω1 =
1

Aeff,A,B,C,D

F
{
F−1

{
ÃB

}
F−1

{
R̃

×F
{
F−1

{
Ã∗

C

}
F−1

{
ÃD

}}}}
, (A.1.40)

where it is utilised that the transverse field overlap integral is the inverse
of the effective area.

Verification of the Numerical Implementation of the

Transverse-Field Dispersion in the Generalised Non-Linear

Schrödinger Equation

The fibre data used for the verification of the numerical implementa-
tion is presented in Sec. 4.1.1. The fibre is the left-sided fibre (LSF),
which has a radial symmetric refractive index profile and therefore it is
advantageous to solve the transverse problem in cylindrical coordinates.

A comparison test between the standard implementation of the
GNLSE with the fourth root method and the implementation of the
TFD-GNLSE is carried out in this section. This is performed to verify
the TFD-GNLSE implementation. The test example is a higher order
soliton in the LSF. The number of points used on the time/frequency
grid is 213, the time discretisation is 10 fs, the centre wavelength of
the simulation window is 1030 nm, input wavelength of the pulse is
1064 nm, the shape of the pulse intensity is a sech2, the full-width at
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half-maximum (FWHM) of the pulse intensity is 400 fs, the input peak
power of the pulse is 4236.4 W, the intensity-dependent refractive in-
dex of the fibre is 2.6 × 10−20 m2

W , the fR ratio is 0.18, the length of
the fibre is 10 m and the loss is neglected. The simulation is performed
with the Fourth-Order Runge-Kutta in the Interaction-Picture (RK4IP)
method [42] and the efficient adaptive step-size method [91], with a lo-
cal error limit of 10−7 for the conserved quantity, which is proportional
to the photon number. The radial grid is made by using 18 grid points
spanning from 0 μm to 12 μm. In Fig. A.1 the effective area for the
LP0,2 mode is calculated with the use of the Gauss-Legendre quadrature
and 18 radial grid points spanning from 0 μm to 12 μm is shown to-
gether with the discrepancy from the correct calculation of the effective
area. It is observed that with 18 grid points it is possible to capture the
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Figure A.1: The effective area calculated with the Gauss-Legendre quadrature
method using 18 radial grid points. The error is with respect to the calculation
of the effective area without applying the Gauss-Legendre quadrature method.

dispersion of the normalised field distributions without any significant
error. The number of radial grid points is a trade-off between computa-
tional accuracy and computation time. The group-velocity dispersion
curve is shown in Fig. 4.5a.

The spectral characteristics for the simulated soliton propagation
are sampled through the fibre and shown in Fig. A.2 for both implemen-
tations. By comparing the two sub-figures A.2a and A.2b, it is observed
that the two implementations are in good agreement with respect to the
pulse evolution for the higher-order soliton in the LP0,2 mode, where it
is only intramodal effects that is considered. The agreement between
the two implementations is expected as the change in the effective area,
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(a) Simulation using the implementation of the GNLSE with the fourth root method
of the effective area.
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(b) Simulation using the implementation of the TFD-GNLSE with the correct disper-
sion of the transverse field distribution.

Figure A.2: Spectral characteristics sampled through the fibre for both numer-
ical implementations.
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within the bandwidth where the higher order soliton evolves, is close to
linear and therefore the fourth root method is a good approximation.
From Fig. A.2 it is observed that the higher order soliton breathes like
a 2nd order soliton, but is perturbed by the Raman effect and starts to
shift towards longer wavelengths. In Fig. A.3 the final output spectra
for both the GNLSE and the TFD-GNLSE are shown. The discrepancy
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Figure A.3: The output spectrum for both the GNLSE and TFD-GNLSE
implementation.

is not noticeable for the main part of the spectra. In Fig. A.4 the fi-
nal output pulse traces for both the GNLSE and the TFD-GNLSE are
shown. There is a discrepancy regarding the accumulated group-delay
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Figure A.4: The output pulse trace for both the GNLSE and TFD-GNLSE
implementation.

experience by the soliton between the GNLSE and the TFD-GNLSE.
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A.2 Few-Moded Fibres

A.2.1 Characterisation

Sliding Fourier Transform Window - LSF
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Figure A.5: The recorded data from the interferometric measurement.
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Figure A.6: The sliding Fourier transform window method applied to the
interferometric data shown in Fig. A.5. It can be verified that the sampling is
sufficient to resolve the oscillations.
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Figure A.7: The recorded data from the interferometric measurement.
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Figure A.8: The sliding Fourier transform window method applied to the
interferometric data shown in Fig. A.7. It can be verified that the sampling is
sufficient to resolve the oscillations.
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A.3 Excitation of the LP0,2 Mode

A.3.1 Splicing of Few-Moded Fibres
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(a) The measured transmission.
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Figure A.9: The gas-line-burner splice evolution. The length of LSF was 50 m
and the resolution of the OSA was 0.02 nm.
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(a) The measured transmission.
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Figure A.10: The gas-line-burner splice evolution. The splice process is
stopped just shortly after an experimental run-time of 1000 s and the gas-line
burners are moved away. The length of LSF was 70 m and the resolution of the
OSA was 0.02 nm.
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A.4 Fibre-Based Oscillators

A.4.1 Higher-Order-Mode Dispersion-Balanced Laser
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Figure A.11: The measured RF trace of the HOM dispersion-balanced fibre
laser. The pulse train has a small amplitude variation from pulse to pulse.
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Figure A.12: Single pulse RF trace of the HOM dispersion-balanced fibre laser.
This is a close-up of the RF trace is shown in Fig. A.12
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A.4.2 All-Normal Dispersive Polarisation-Maintaining
Laser
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Figure A.13: The measured absorption spectrum for the carbon-nano-tube.
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Figure A.14: The measured transmission spectrum for the carbon-nano-tube.
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Figure A.15: The measured RIN for the first few harmonics for the ANDi PM
laser.
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Figure A.16: A close-up on the first harmonic from Fig. A.15. The repetition
rate of the laser is 33.033 MHz.
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To determine the convergence of the pulse, two different defini-
tions of the FWHM are used, they are the maximum and the mini-
mum FWHM. The maximum FWHM is defined to give largest possible
width for a given trace at the signal half maximum value. The minimum
FWHM is defined to give smallest possible width for a given trace at the
signal half maximum value. Maximum FWHM and minimum FWHM
are identical for a converged single pulse. However, in the initial part
of the mode-locking process these two measures differ as the pulse has
a lot of structure.
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Figure A.17: An example of the mode-locking dynamics in the spectral domain.
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Figure A.18: An example of the mode-locking dynamics in the temporal do-
main. The temporal domain takes a significant large number of round-trips to
reach convergence compared to the spectral domain.
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Figure A.19: The corresponding FWHM of the spectrum for the pulse type
map shown in Fig. 5.15a.
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Figure A.20: The corresponding FWHM of the pulse duration for the pulse
type map shown in Fig. 5.15a.
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Figure A.21: The corresponding FWHM of the spectrum for the pulse type
map shown in Fig. A.21.
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Figure A.22: The corresponding FWHM of the pulse duration for the pulse
type map shown in Fig. A.22.
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Similar to the variation of the bandwidth of the filter, the group
velocity dispersion is varied for the two passive fibres. In this case there
is no band-pass filter element included. The pulse type map is shown in
Fig. A.23, where the group velocity dispersion of the two passive fibres
are varied together along with the energy saturation of the amplifier.
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Figure A.23: Pulse type map for the variation of the group velocity dispersion
of the passive fibres. The relation to the grey-scale map is as follows: Black is a
CW solution, dark grey is an undecided pulse solution, light grey is single-pulse
solution, and white is a multi-pulse solution. The spacing between the steps in
the amplifier energy saturation are logarithmic.
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Figure A.24: The corresponding FWHM of the spectrum is shown of the pulse
type map shown in Fig. A.23.
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Figure A.25: The corresponding FWHM of the pulse duration is shown of the
pulse type map shown in Fig. A.23.
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A.5 Soliton Self-Frequency Shift

A.5.1 Femtosecond Input Pulse
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(a) The temporal evolution is shown as a contour plot of time and longitudinal position
in the fibre.
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(b) Comparison of the input and the output temporal traces.

Figure A.26: Simulated pulse propagation in the LSF with an unchirped fem-
tosecond pulse as the input pulse.
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(a) The temporal evolution is shown as a contour plot of time and longitudinal position
in the fibre.
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Figure A.27: Simulated pulse propagation in the RSF with an unchirped fem-
tosecond pulse as the input pulse to the LSF.



A.5 Soliton Self-Frequency Shift 149

A.5.2 Picosecond Input Pulse
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(a) The temporal evolution is shown as a contour plot of time and longitudinal position
in the fibre.
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(b) Comparison of the input and the output temporal traces.

Figure A.28: Simulated pulse propagation in the LSF with an chirped picosec-
ond pulse as the input pulse.
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(a) The temporal evolution is shown as a contour plot of time and longitudinal position
in the fibre.
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Figure A.29: Simulated pulse propagation in the RSF with an chirped picosec-
ond pulse as the input pulse to the LSF.
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A.6 Intermodal Non-linearity in Few-Moded

Fibres

A.6.1 Čerenkov Radiation
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Figure A.30: The calculated effective indices for the LSF with an applied
bend radius of 16 cm, where the material contribution from pure silica has been
subtracted.
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Figure A.31: The calculated effective area for the LSF with an applied bend
radius of 16 cm.
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Figure A.32: .The calculated effective indices for the LSF with an applied
bend radius of 30 cm, where the material contribution from pure silica has been
subtracted.
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Figure A.33: The calculated effective area for the LSF with an applied bend
radius of 30 cm.



Appendix B

Intramodal Soliton
Self-Frequency Shift

In general there is nothing new in scientific terms in this appendix,
as soliton propagation has been demonstrated numerous times before
in the erbium gain-region and in highly non-linear fibres (HNLFs).
This appendix is more meant to be an introduction to the soliton self-
frequency shift (SSFS). The work, which the content of this appendix
is based on, was carried out in the beginning of the Ph.D. for the pur-
pose of obtained numerical and experimental experience with the SSFS
process. The oscillator, which provided the seed pulse, is a figure-eight
laser described in the next section. The output pulse from the figure-
eight laser was amplified before being coupled into the HNLF. In the
HNLF the pulse formed a soliton pulse, which shifted to longer wave-
length via the SSFS process, which is described in the final section of
this chapter.

B.1 Figure-Eight Laser

The figure-eight laser has received significant attention since the be-
ginning of the 1990s [105–107]. The name comes from the physical
appearance of the laser. A sketch of the lay-out of the laser is shown in
Fig. B.1. The laser was originally built by a former OFS Fitel Denmark
employee and was inspired by a laser built by Jeffrey W. Nicholson
from OFS Laboratories. The total length of the figure-eight cavity is
7.31 m, where the 2.55 m is the erbium-doped gain fibre and the rest is
single-mode fibre (SMF). The group-velocity dispersion parameters of

153
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Figure B.1: Sketch of the figure-eight fibre laser.

the SMF and the erbium-doped gain fibre are 17 ps
nmkm and −38 ps

nmkm
at a wavelength of 1550 nm, respectively. The peak absorption of the
erbium-doped gain fibre is 40 dB

m a at wavelength of 1530 nm.

The laser works by a non-linear amplifying loop mirror. The laser
starts from noise, normally with the help of a physical perturbation.
The pulse going along the direction of the isolator experiences a greater
amplification and thereby the pulse becomes dominating. As the pulse
which follows the direction of the isolator enters the gain fibre in the be-
ginning of the right loop, the accumulated self-phase modulation (SPM)
will be greater for this pulse in the final part of the loop. Therefore, the
right loop works as a non-linear loop mirror, where the reflection varies
sinusoidal as a function of intensity. The non-linear loop mirror behaves
similar to a fast saturable absorber [83]. With a careful adjustment of
the polarisation controllers, the laser mode-locks at a repetition rate of
28 MHz and an average output power of 0.58 dBm at a centre wave-
length of 1570 nm. In Fig. B.2 the measured spectrum of the laser is
shown. The spectral full-width at half-maximum (FWHM) is 30.9 nm.
The second-harmonic generation (SHG) intensity autocorrelation shown
in Fig. B.3 was measured after the pulse out of the figure-eight laser
had been amplified and dechirped accordantly after the amplification
process. The measured temporal FWHM of the pulse width under the
assumption of a sech2 intensity profile is fitted to 142 fs. There was
0.99 m of SMF before the erbium-doped gain fibre in the amplifier.
The length of the erbium-doped gain fibre was 0.58 m and the fibre had
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Figure B.2: Output spectrum of the figure-eight laser.
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Figure B.3: Intensity autocorrelation for the figure-eight laser. The output
has been amplified and compressed to increase the signal-to-noise ratio.
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a group-velocity dispersion parameter of −46.6 ps
nmkm at a wavelength of

1550 nm and a peak absorption of 150 dB
m at a wavelength of 1530 nm.

After the amplifier there was 4.40 m of SMF for re-compression. The
maximum average output power after the amplifier stage was increased
to 16.3 dBm.

B.2 Highly Non-Linear Fibre

The HNLF was spliced onto the compression fibre, which was used to
compress the amplified output of the figure-eight laser. In Fig. B.4
the measured spectra after the 30 m of HNLF is shown as contour
plot as a function of wavelength and pump current. The pump cur-
rent is directly related to the pump power. The soliton is observed
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Figure B.4: The measured SSFS in 30 m of HNLF.

to split of the amplified input from the figure-eight laser and shift to-
wards longer wavelengths at an amplifier current just above 100 mA. It
is approximately at the same pump current that the residue from the
980 nm pump begins to be noticeable. At a pump current just above
150 mA light is generated approximately at a wavelength of 1100 nm,
which is light generated by Čerenkov process in the normal dispersion
region. Light generated by Čerenkov process is a special case of four-
wave mixing (FWM) between a soliton and a dispersive wave in the
normal dispersion region. The dispersion compression fibre, which the
HNLF is spliced onto, is optimised for a maximum amplifier-current of
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218 mA and therefore if the pump current was increased even further,
it was expected that a non-linear effect will occur in the compression
fibre. The non-linear interaction is in general a product of the peak
power and the length. When the pulse is compressed the peak power
increases and thereby the non-linear interaction. It is expected that the
pulse experiences SPM in the compression fibre. It might also be possi-
ble to generate a soliton in the compression fibre, however, the soliton
threshold is much lower in the HNLF due to a smaller effective area of
the mode and a higher intensity-dependent index of refraction.

The observable SSFS in Fig. B.4 was limited by the bandwidth of
the optical-spectrum analyser (OSA). However, simulations of the SSFS
were carried out to longer wavelengths. To investigate the experiment
shown in Fig. B.4, a transform limited soliton-pulse with a FWHM
pulse duration of 144 fs is propagated through 4.30 m of pseudo fibre
with the exact opposite group-velocity dispersion properties of a SMF
and without non-linear effects. This is performed to ensure a chirped
pulse, which is to be amplified and afterwards compressed in the 4.30 m
of SMF. Thereafter, the pulse is propagated through 0.30 m of HNLF.
In Fig. B.5 the output of the HNLF is shown for a variation in the
pulse energy. Comparing Fig. B.4 and Fig. B.5, it is observed that the
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Figure B.5: The simulated SSFS in the HNLF.

simulation reproduces the features of the measurement. As the pulse
energy is increased to approximately 2.5 nJ the soliton shift is halted at
a wavelength approximately of 2200 nm and at the same time light is
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generated at the edge of the simulation domain at a wavelength of ap-
proximately 2600 nm. This is an example of SSFS cancellation [66]. The
SSFS is decreasing as the soliton approaches the second-zero-dispersion
wavelength at 2290 nm and via the Čerenkov effect the soliton is phase-
matched to a dispersive wave in the normal dispersion region, where the
coupling strength is increasing as the soliton shifts closer to the zero-
dispersion wavelength [65]. The transfer of energy from the soliton to
the dispersive wave causes a spectral recoil-effect on the soliton, which
shift the soliton away from the zero-dispersion wavelength SSFS [65].
As the SSFS and the spectral recoil-effect oppose each other the soli-
ton comes to complete halt, when the effect from the two processes is
equal. The group velocity dispersion and the effective area of the HNLF
is shown in Fig. B.6. The HNLF has two zero dispersion wavelengths in
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Figure B.6: The group velocity dispersion and the effective area of the HNLF.

the considered wavelength region. At the longer wavelengths the effec-
tive area is observed to rapidly increase, which indicates that the mode
field of the fundamental mode is expanding further out in the cladding.
The mode is guided, however the mode becomes more susceptible to
micro and macro bends. This adds to the intrinsic loss, which also is
rapidly increasing [108].

In summery the first dispersive wave generated by the Čerenkov
process at approximately 1100 nm is generated in the beginning of
the HNLF, when the soliton splits off the input pulse and shifts to-
wards longer wavelengths. The second dispersive wave generated by
the Čerenkov process at approximately 2600 nm is generated in the
final part of the HNLF, when the SSFS is halted.
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List of Acronyms

ANDi all-normal dispersive

ASE amplified spontaneous emission

CW continuous-wave

DFB distributed-feedback

FMF few-moded fibre

FUT fibre-under-test

FWHM full-width at half-maximum

FWM four-wave mixing

GNLSE Generalised Non-Linear Schrödinger Equation

GVD group-velocity dispersion

HNLF highly non-linear fibre

HOM higher-order-mode

LPG long-period grating

LSF left-sided fibre

MM multi-mode

MMF multi-mode fibre
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MPI multi-path interference

NLSE Non-Linear Schrödinger Equation

OSA optical-spectrum analyser

PCF photonic-crystal fibre

PM polarisation-maintaining

RF radio frequency

RHS right-hand side

RIN relative-intensity noise

RK4IP Fourth-Order Runge-Kutta in the Interaction-Picture

RSF right-sided fibre

SBS stimulated-Brillouin scattering

SESAM semiconductor-saturable-absorber mirror

SHG second-harmonic generation

SMCW-RSF shorter mode-crossing wavelength variation of the
right-sided fibre

SMF single-mode fibre

SPM self-phase modulation

SSFS soliton self-frequency shift

TAP turn-around-point

TFD-GNLSE Transverse-Field Dispersion in the Generalised
Non-Linear Schrödinger Equation

UV ultraviolet

WDM wavelength-division multiplexer
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“Method for the generation of arbitrary complex vector wave
fronts,” Opt. Lett., vol. 27, no. 21, pp. 1929–1931, Nov 2002.

[77] S. Ramachandran, Z. Wang, and M. Yan, “Bandwidth control of
long-period grating-based mode converters in few-mode fibers,”
Opt. Lett., vol. 27, no. 9, pp. 698–700, May 2002.

[78] P. Lemaire, R. Atkins, V. Mizrahi, and W. Reed, “High pres-
sure h2 loading as a technique for achieving ultrahigh uv photo-
sensitivity and thermal sensitivity in geo2 doped optical fibres,”
Electronics Letters, vol. 29, no. 13, pp. 1191 –1193, june 1993.

[79] S. Ramachandran, S. Ghalmi, S. Chandrasekhar, I. Ryazansky,
M. Yan, F. Dimarcello, W. REED, and P. Wisk, “Tunable disper-
sion compensators utilizing higher order mode fibers,” Photonics
Technology Letters, IEEE, vol. 15, no. 5, pp. 727–729, 2003.

[80] T. Volotinen, M. Zimnol, M. Tomozawa, Y.-K. Lee, and K. Raine,
“Effect of mechanical stripping and arc-fusion on the strength and
aging of a spliced recoated optical fiber,” MRS Proceedings, vol.
531, 0 1998.

[81] K. Jespersen, Z. Li, L. Gruner-Nielsen, B. Palsdottir, F. Poletti,
and J. W. Nicholson, “Measuring distributed mode scattering in
long, few-moded fibers,” in Optical Fiber Communication Confer-
ence. Optical Society of America, 2012, p. OTh3I.4.



170 BIBLIOGRAPHY

[82] L. Gruner-Nielsen, Y. Sun, J. Nicholson, D. Jakobsen, K. Jes-
persen, R. Lingle, and B. Palsdottir, “Few mode transmission
fiber with low dgd, low mode coupling, and low loss,” Lightwave
Technology, Journal of, vol. 30, no. 23, pp. 3693–3698, 2012.

[83] J. Diels and W. Rudolph, Ultrashort Laser Pulse Phenomena,
2nd ed. Academic Press, 2006.

[84] M. Pedersen, E. Kelleher, J. Travers, Z. Sun, T. Hasan, A. Ferrari,
S. Popov, and J. Taylor, “Stable gain-guided soliton propagation
in a polarized yb-doped mode-locked fiber laser,” Photonics Jour-
nal, IEEE, vol. 4, no. 3, pp. 1058 –1064, june 2012.

[85] A. Chong, J. Buckley, W. Renninger, and F. Wise, “All-normal-
dispersion femtosecond fiber laser,” Opt. Express, vol. 14, no. 21,
pp. 10 095–10 100, Oct 2006.

[86] B. G. Bale, J. N. Kutz, A. Chong, W. H. Renninger, and F. W.
Wise, “Spectral filtering for high-energy mode-locking in normal
dispersion fiber lasers,” J. Opt. Soc. Am. B, vol. 25, no. 10, pp.
1763–1770, Oct 2008.

[87] W. H. Renninger, A. Chong, and F. W. Wise, “Dissipative solitons
in normal-dispersion fiber lasers,” Phys. Rev. A, vol. 77, no. 2, p.
023814, Feb 2008.

[88] A. Chong, W. H. Renninger, and F. W. Wise, “Properties of
normal-dispersion femtosecond fiber lasers,” J. Opt. Soc. Am. B,
vol. 25, no. 2, pp. 140–148, Feb 2008.

[89] L. M. Zhao, D. Y. Tang, H. Zhang, T. H. Cheng, H. Y. Tam,
and C. Lu, “Dynamics of gain-guided solitons in an all-normal-
dispersion fiber laser,” Opt. Lett., vol. 32, no. 13, pp. 1806–1808,
Jul 2007.

[90] J. Travers, J. Morgenweg, E. Obraztsova, A. Chernov, E. Kelleher,
and S. Popov, “Using the e22 transition of carbon nanotubes for
fiber laser mode-locking,” Laser Physics Letters, vol. 8, no. 2, pp.
144–149, 2011.

[91] A. Heidt, “Efficient adaptive step size method for the simulation
of supercontinuum generation in optical fibers,” Lightwave Tech-
nology, Journal of, vol. 27, no. 18, pp. 3984 –3991, sept.15, 2009.



BIBLIOGRAPHY 171

[92] M. Schultz, H. Karow, D. Wandt, U. Morgner, and D. Kracht,
“Ytterbium femtosecond fiber laser without dispersion compensa-
tion tunable from 1015 nm to 1050 nm,” Optics Communications,
vol. 282, no. 13, pp. 2567 – 2570, 2009.

[93] L. Kong, X. Xiao, and C. Yang, “Tunable all-normal-dispersion
yb-doped mode-locked fiber lasers,” Laser Physics, vol. 20, pp.
834–837, 2010.

[94] J. Cheng, M. Pedersen, K. Charan, C. Xu, L. Gruner-Nielsen, and
D. Jacobsen, “High-efficiency intermodal four-wave mixing in a
higher-order-mode fiber,” in Lasers and Electro-Optics (CLEO),
2012 Conference on, may 2012, pp. 1 –2.

[95] J. Cheng, M. E. V. Pedersen, K. Charan, K. Wang, C. Xu,
L. Gruner-Nielsen, and D. Jakobsen, “Intermodal four-wave mix-
ing in a higher-order-mode fiber,” Applied Physics Letters, vol.
101, no. 16, p. 161106, 2012.

[96] M. Pedersen, J. Cheng, C. Xu, and K. Rottwitt, “Transverse
field dispersion in the generalised non-linear schrödinger equa-
tion: Four wave mixing in a higher-order-mode fiber,” Lightwave
Technology, Journal of, Submitted.

[97] J. Cheng, M. Pedersen, K. Charan, K. Wang, C. Xu, L. Grüner-
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