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Abstract

This thesis deals with chosen aspects of terahertz (THz) technology that

have potential in defense and security-related applications.

A novel method for simultaneous data acquisition in time-resolved THz

spectroscopy experiments is developed. This technique is demonstrated

by extracting the sheet conductivity of photoexcited charge carriers in

semi-insulating gallium arsenide. Comparison with results obtained us-

ing a standard data acquisition scheme shows that the new method

minimizes errors originating from fluctuations in the laser system out-

put and timing errors in the THz pulse detection. Furthermore, a new

organic material, BNA, is proved to be a strong and broadband THz

emitter which enables spectroscopy with a bandwidth twice as large as

conventional spectroscopy in the field.

To access electric fields allowing exploration of THz nonlinear phenom-

ena, field enhancement properties of tapered parallel plate waveguides

are investigated. A new method for imaging of the electric field distribu-

tion inside a parallel plate waveguide is developed and used to measure

frequency-resolved field reflection coefficients. Field enhancement fac-

tors higher than 20 are demonstrated and record-high field strengths of

> 1.4 MV/cm are reached. A good agreement between two independent

methods of field measurement and a numerical time-domain simulation

is shown.

Finally, and extensive study of THz radar cross sections (RCS) of scale

models of airplanes is carried out. Angle- and frequency-resolved RCS

of aircraft fighters F-16 and F-35 are measured. The scaling law allows

for translating THz RCS results to the microwave regime. 2D cross

section images of the airplanes are reconstructed. Range resolution of

0.27 mm and cross range resolution of 0.19 mm is reached. Properties

of flexible absorbing metamaterials for the THz stealth technology are

investigated and significant reduction of the RCS is shown.
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Resume

Denne afhandling omhandler udvalgte aspekter af terahertz (THz) teknologi

med potentiale i forsvars- og sikkerheds-relaterede applikationer.

En ny metode til samtidig dataopsamling i tidsopløst THz spektroskopi

eksperimenter er blevet udviklet. Denne teknik demonstreres ved bestem-

melse af fladekonduktiviteten af fotogenererede ladningsbrere i semi-

isolerende gallium arsenid. En sammenligning med resultater opn̊aet ved

hjælp af en standard dataopsamlingsprocedure viser at den nye metode

minimerer fejl stammende fra fluktuationer i laser systemet og timing

fejl i THz puls detektionen. Ydermere er det vist at et nyt organisk

materiale, BNA, virker som en kraftig og bredb̊andet THz kilde, som

muliggør spektroskopi med en b̊andbredde der er dobbelt s̊a stor som i

konventionel spektroskopi indenfor dette felt.

For at f̊a adgang til elektriske feltstyrker som tillader udforskning af

ikke-linere THz fnomener, undersøges feltforstrkningsegenskaberne for

tilspidsede parallel-plade-bølgeledere. En ny metode til visualisering

af det elektriske felt inde i en parallel-plade-bølgeleder er udvikles, og

anvendes til at m̊ale frekvensopløste feltreflektionskoefficienter. Felt-

forstrkningsfaktorer større end 20 demonstreres og rekordhøje feltstyrker

> 1.4 MV/cm opnaas. En god overensstemmelse findes mellem to

uafhængige metoder til bestemmelse af feltstyrke og en numeriske tids-

domne simulation.

Til sidst gennemføres en omfattende undersøgelse af THz radar cross

sections (RCS) for modelfly. Vinkel- og frekvens-opløste RCS m̊ales

for F-16 og F-35 model jagerfly. Skaleringsloven tillader at THz RCS

kan omsttes til mikrobølgeomr̊adet. 2D tværsnitsbilleder rekonstrueres

for flyene. En Range-opløsning p̊a 0.27 mm opn̊as og en cross-range-

opløsning p̊a 0.19 mm opn̊as. Egenskaberne for fleksible absorberende

metamaterialer til THz-stealth-teknologi undersøges og en signifikant

reduktion af RCS p̊avises.
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Chapter 1

Introduction

1.1 Brief introduction to THz

Terahertz (THz) waves, or submillimeter/far-infrared waves (sometimes

also called T-rays), refer to electromagnetic radiation in the frequency

range from 0.1 to 30 THz. This part of the spectrum is situated between

microwaves on the long waves side, and infrared on the short wave edge

of its range, as shown in Fig. 1.1. The boundaries between spectrum

ranges are not strictly defined, and highly depend on such aspects as

generation and detection methods. The THz frequency range lays on

the borderline of electronic world, where radio and microwave radiation

is easily generated using electron based devices, and photonic world,

where optical techniques are successfully applicable. Unfortunately the

efficiency of the electronic devices rapidly decreases in the THz range,

and also optical methods are inefficient. Due to its inaccessibility for

many years the THz frequency range used to be referred as a ’THz gap’.

Development in THz generation and detection methods over the past 25

years makes term ’THz gap’ inadequate. Especially THz time-domain

spectroscopy is already well established scientific technique, capable of

1



Chapter 1. Introduction 2

providing information about investigated objects unobtainable by other

methods [1, 2].

100 103 106 109 1012 1015 1018 1021 Frequency [Hz]

microwaves IR X-ray

THzRadio waves UV

electronics photonics

-ray

kilo mega giga tera peta exa zetta

Figure 1.1: The electromagnetic spectrum. The terahertz region is
situated between microwaves and infrared (IR). The visible part of the
spectrum is shown between the infrared and ultraviolet (UV) regions.

Terahertz technology is an extremely active field of science with the

number of publications increasing rapidly. Fig. 1.2 shows result of the

search on Web of Science for journal articles with ’terahertz’ or ’THz’

in the title. In the last 20 years the number of publications in this field

has increased nearly by a factor of 100 and judging by the exponential

growth it is going to continue increasing for at least next couple of years.

This high interest in the THz science has its origins in unique proper-

ties of the THz radiation. The frequency of 1 THz corresponds to one

trillion oscillation per second, or one oscillation per picosecond. In the

equivalent units 1 THz is:

1 THz ≡ 300µm ≡ 4.14 meV ≡ 33.3 cm−1 ≡ 47.6 K.

THz waves have low photon energies (4.14 meV for 1 THz, which is 1 mil-

lion times weaker than X-ray) and do not cause harmful photoinoization

in biological tissues [3, 4]. For that reason THz radiation is considered

completely safe for potential sensing and imaging techniques. THz waves

can penetrate through many optically opaque nonpolar dielectrics, such
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Figure 1.2: Number of journal publications per year in the THz field.
Data obtained as a search result on Web of Science for ’terahertz’ or

’THz’ in the publication title.

as paper, textile, plastic or ceramic with low attenuation. The THz fre-

quency range hosts low frequency crystalline lattice vibrations - phonon

modes, hydrogen-bonding stretches and other intermolecular vibrations

and rotational transitions of molecules in many chemical and biological

materials, including many explosives and drugs. The wealth of unique

spectroscopic signatures in the THz energy range for all states of mat-

ter (gasses, liquids, solid-state and even plasma), makes THz ideal for

spectroscopic purposes. Because of its spectroscopic properties com-

bined with ability to image under covers or containers and non-ionising

photon energies, THz waves are considered highly competitive for non-

destructive and noninvasive sensing.

The electromagnetic radiation at THz frequencies interacts strongly with

systems that have characteristic lifetimes in the picosecond range and

energy transitions in the meV range. To the long list of such systems one

can account bound electrical charges [5], free charge plasma [6], excitons

[7], phonons [8], molecular crystals [9], and relaxations in liquids [10].
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Subpicosecond broadband THz transients are an excellent tool to study

dynamics of ultrafast processes in semiconductors [11–14], which under-

standing is crucial for development of new electronic devices. Except of

purely scientific applications of THz technology, numerous practical ap-

plications start to emerge. THz techniques have high potential in such

opto-electronic areas as industrial control, pharmaceutics, medical di-

agnostics, security applications, high-speed wireless communication and

art conservation [1, 15–17].

There are several milestones that have made THz spectroscopy well es-

tablished scientific technique. As the first one, Fourier transform in-

frared (FTIR) spectroscopy developed in 1950’s should be mentioned

[18, 19]. FTIR combines interferometry and broadband infrared detec-

tors to achieve frequency resolution. Together with implementation of

fast Fourier transform (FFT) algorithm and first computers, FTIR be-

came a standard analytical method in the far- and mid-infrared range.

The next important development in the THz range started in 1960’s

with invention of maser and laser, which led to the invention of various

THz gas lasers (e.g. CO2 pumped methanol laser at 2.5 THz [20]).

A major development, which is also based on a fundamentally different

approach to the THz spectroscopy, came with the discovery of ultrafast

mode-locked lasers. The pioneering work was done in 1970s by D. H.

Auston at Bell Laboratories [21], who used photoconductive dipole an-

tennas to generate far-infrared radiation. The first THz time domain

spectroscopy setup (THz-TDS) based on optical excitation of photo-

conductive dipole antennas was developed in 1989 by D. Grischkowsky

et al. [22]. The development of photoconductive switches was closely

connected to the invention of Ti:saphire laser in 1991 [23, 24]. The devel-

opment of ultrafast laser amplifiers initiated nonlinear THz generation

and detection techniques. The difference frequency generation (DFG)

between two ruby lasers was fist demonstrated by Faries et al. [25], and

then DFG from a single laser pulse in lithium niobate LiNbO3 [26], span-

ning frequency range from 0.05 to 0.5 THz was shown. 1995 brought
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free space electro-optic sampling (FEOs), developed by three indepen-

dent groups [27–29]. Introduction of zinc telluride (ZnTe) [30] solved

initial problems with poor phase matching. In the first decade of XXI

century THz air photonic generation [31] and detection [32–34], by four

wave mixing in laser generated two-color-plasma, was invented. At the

same time optical rectification by tilted wavefront excitation of LiNbO3

opened doors for studying THz nonlinear phenomena using table top

systems [35, 36].

So far THz systems rarely leave laboratories, even though there are al-

ready few companies that offer commercial THz devices. Several factors

strongly restrict popularity of THz systems. Probably the most impor-

tant is a low speed of acquiring data. At current fastest THz systems

can obtain up to few hundred of THz waveforms per second. That num-

ber is already sufficient for a single point measurements, but is at least

two orders of magnitude too low for application in the serial large scale

industrial or security imaging. Next restriction is the high cost of THz

systems, which mainly comes from the high price of femtosecond laser,

used for THz generation and detection. Other obstacles for THz technol-

ogy come from the big size of THz systems, their poor insensitivity for

changing working conditions and short propagation length of THz radi-

ation in the atmospheric air due to water vapor absorption [37]. Several

techniques have potential to overcome some of the described problems.

For example asynchronous optical sampling (ASOPS) developed by Ya-

sui et al. [38] and Janke et al. [39] has a chance to speed up acquisition

rate, while multimode semiconductor laser diodes (MMSLDs) [40] com-

bined with THz quasi time domain spectroscopy [41] can reduce prices

of THz systems.

Stand-off detection of explosives is highly desirable for security purposes.

The transmitted and reflected THz spectra of most explosives and re-

lated compounds contain unique THz absorption fingerprints character-

izing crystalline lattice vibrational modes [42, 43]. Due to its ability to

penetrate many optically opaque materials [44], THz technology offers

potentially best solution in detecting explosives and related compounds
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(ERCs). But the task is so complex and difficult that so far there is

none commercial system in use in real life situation, as for example se-

curity scanning at airports. The list of issues that has to be addressed

before such system will be built is long. It is enough just to mention:

low speed of obtaining spectra, short range of detection, influence of sur-

face quality of a real-life explosive and influence of the package material.

It also seems that building a library of the THz absorption spectra of

different ERCs is a step needed before THz techniques will become pop-

ular. In this thesis we have not investigated directly THz properties of

explosives nor methods of their detection. Instead we’ve focused on two

other issues: improving the acquisition scheme for time resolved THz

spectroscopy and field enhancement by tapered parallel plate waveg-

uides.

THz time-domain spectroscopy is undoubtedly powerful technique, but

all the spectra obtained by THz-TDS are static and no information

about sample dynamics is present. At the same time subpicosecond

THz transients, which are synchronized to optical femtosecond pulse

trains, open possibility for studying dynamical properties of picosecond

nonequilibrium processes in the THz frequency range. In the first part of

this thesis we focus on obtaining more accurate time resolved THz spec-

troscopy data, which is done by introducing new simultaneous reference

and differential waveform acquisition. It is shown that the application

of the new method minimizes errors in spectrally resolved photocon-

ductivity originating in laser instabilities and pulse timing jitter. In

recent years high power-table top THz sources became available [36].

THz electric fields with amplitude over 1 MV/cm will allow for investi-

gation of yet poorly-understood anharmonic interactions between differ-

ent phonon modes in molecular crystals including explosives and related

compounds. Nonlinear interactions and energetic coupling between lat-

tice vibrations will not only open a new big block of fundamental science,

but will also provide additional information about the investigated sam-

ple and its environment. In this perspective new simultaneous reference

and differential waveform acquisition method presented in this thesis is



Chapter 1. Introduction 7

a step towards time-resolved high field THz-pump THz-probe interac-

tions and particularly THz 2D spectroscopy [45]. To access the range of

nonlinear THz interactions, THz electric fields exceeding 1 MV/cm are

needed. In this thesis we investigate properties of tapered parallel plate

for enhancing THz field strength to reach required levels. For that pur-

pose we developed a novel non-invasive broadband method of imaging

the THz electric field inside parallel plate waveguide. We experimentally

demonstrate field enhancement factors over 20 and peak electric fields

exceeding 1.4 MV/cm. Measured values agree well with numerical time

domain simulations.

In the last part of this thesis we consider another topic, highly relevant

for defence applications, namely the measurement of the radar cross sec-

tion (RCS). RCS measurements is a standard technique, particularly

important for military purposes, including detection and identification

of aircrafts, ships and other targets. In case of large size massive objects,

such as full-size airplanes or ships, RCS measurements are complicated,

time consuming, and expensive. In this analysis we apply the scaling

law and basing on values measured in the low THz range (0.1-2 THz)

we obtain values that would be measured at typical radar frequencies.

Scaling factor between THz waves and radar microwaves results in sizes

of scale models on the order of centimeters, which are easy to manu-

facture by a rapid prototyping systems such as computer numerically

controlled 3D milling machines or a 3D printers. Furthermore, we in-

vestigate properties of flexible metamaterials for reduction of RCS and

potential use in THz stealth measurements.

1.2 Organization of thesis

This thesis is organized as follows:

Chapter 2 starts with basic description of the ultrafast laser amplifier

systems that have been used while performing experiments reported in
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this thesis. Next a brief review of THz generation techniques is presented

with emphasis on optical rectification in nonlinear organic crystal BNA

and the generation of milijoule terahertz pulses by tilted-pulse-front ex-

citation in LiNbO3. The following part gives a short summary of dif-

ferent methods of detecting THz radiation. The free-space electro-optic

sampling is discussed in detail.

In chapter 3 we describe THz time domain spectroscopy techniques.

Basic concepts in time resolved THz spectroscopy are presented. Drude

model of conductivity is introduced, which is the most simple but also

best understood model of conductivity in semiconductor sample. As

a next part of the chapter we present in detail experimental setup for

simultaneous reference and differential waveform acquisition in time-

resolved terahertz spectroscopy. Subsequently setup calibration methods

are described. The chapter ends with results obtained for GaAs sample,

which is chosen as a test sample.

Chapter 4 begins with a short review of existing structures for guiding

THz waves. Particular attention is placed upon parallel plate waveguide

and its properties for dispersionless propagation of TEM mode. Next

we discuss air biased coherent detection of THz radiation and give a

detailed presentation of the experimental setup for non-invasive method

for characterization of the propagating electric field inside a tapered

parallel-plate waveguide. Frequency resolved reflection coefficients for

the waveguide tip are extracted. Field enhancement properties of a TP-

PWG are discussed. Analytical and numerical approaches are compared

and based on differences diffraction losses are estimated. We show that

THz electric fields exceeding 1.4 MV/cm with 20 µm waveguide output

gap are possible to be achieved. Results are verified using two different

methods and agree well with numerical predictions.

Chapter 5 deals with terahertz radar cross section measurements. Chap-

ter starts with an introduction to radar techniques. A definition of radar

cross section is given and scattering properties of simple scatterers like

conducting sphere, cylinder and plate are discussed. Thereafter a short
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review of terahertz computed tomography is given. Following we present

in detail the experimental setup that was used for performing radar

cross section measurements with a setup calibration discussion. Next

we present polar and azimuthal time- and frequency resolved RCS plots

of F-16 and F-35 fighter aircraft models rotated on a pedestal. The

time domain sub-ps resolution allows for sub-mm range resolution and

also allows for identification of scattering points. The shape of the mod-

els and positions of scattering parts are retrieved by the filtered back

projection algorithm.

In chapter 6 a summary of the work presented in this thesis is given.

Conclusions are drawn and the outlook for future is presented.



Chapter 2

Terahertz pulses

This chapter starts with a basic description of the laser systems that

have been used to obtain experimental results presented in this thesis.

Thereafter different sources of THz radiation are discussed, with partic-

ular attention to optical rectification in nonlinear organic crystal BNA

and generation of high-power terahertz pulses by tilted-pulse-front ex-

citation in LiNbO3. Such interesting phenomena as a strong redshift

of near-infrared spectrum transmitted through BNA or saturation of

efficiency of generation in LiNbO3 are reported. Different methods of

detecting THz radiation are also presented, with focus on free-space

electro-optic sampling, which has been used intensively through out this

thesis.

2.1 Laser system

The work presented in this thesis would not have been possible if not for

the development of ultrafast laser systems and particulary high power ul-

trafast laser amplifiers. Experiments performed in this thesis have been

done using two regenerative laser amplifier systems: Spectra-Physics

11



Chapter 2. Terahertz pulses 12

Spitfire and Hurricane also from Spectra-Physics. The first one will be

described in more detail below. A regenerative amplifier is a device

which is used for strong amplification of optical pulses, where multi-

ple passes through the gain medium are achieved by placing the gain

medium in an optical resonator [46]. An optical switch, in most cases

realized as an electro-optic modulator and a polarizer, is used to control

the number of round trips in the resonator. Number of passes through

the gain medium can be very high, which results in a very high gain (sev-

eral tens of decibels). The achieved optical peak intensities can become

very high, so to avoid nonlinear pulse distortion and even destruction

of the gain medium, chirped-pulse amplification (CPA) [47] has become

a standard technique. In CPA a femtosecond-long pulse from the oscil-

lator is chirped and temporally stretched to a much longer duration by

the use of a grating pair (stretchers based on a long fibers and prisms

are also used) before passing through the amplifier medium. This re-

duces the peak power to a level where the unwanted phenomena are

avoided. After the gain medium, a dispersive compressor (typically a

grating pair) removes the chirp and temporally compresses the pulses

to a duration comparable to the input pulse duration. CPA has allowed

for the construction of table-top amplifiers, which can generate pulses

with mJ energies and femtosecond durations, leading to terawatt peak

powers.

Spitfire
Regenerative Ti:Al2O3 Amplifier

Tsunami
Ti:Al2O3 Oscillator

Millennia
pump

E
m

po
w

er
pu

m
p

4.2 W
532 nm

<  25 fs,  800nm, FWHM ~ 60 nm
Pav ~ 380 mW, 76 MHz

~20 W
527 nm
1 kHz

< 35 fs, 800nm 
Pav ~3.5 W
1 kHz

T
o 

ex
pe
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en

ts

Figure 2.1: Ultrafast amplifier laser system in the DTU TER-
AWATT LAB.
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Spectra-Physics Spitfire laser system, presented in the Fig. 2.1, combines

four essential parts: ”Millennia Pro” pump, ”Tsunami” Ti:sapphire os-

cillator, ”Empower” pump and ”Spitfire” regenerative Ti:sapphire am-

plifier. Millennia Pro is a high-power CW green diode-pumped solid

state laser working at 1064 nm. The Millenia itself is pumped by two

808 nm diode lasers located in the power supplier. Lasing at 1064 nm

is achieved in a neodymium yttrium vanadate (Nd:YVO4) crystal. The

4.2 W output beam at 532nm from Millenia pro is generated by fre-

quency doubling in nonlinear crystal Lithium triborate (LBO) and is

used to pump Ti:sapphire crystal in the Tsunami oscillator laser [24].

Tsunami delivers sub-25 fs pulses at the central wavelength of 800 nm.

The central wavelength and the spectral bandwidth are adjusted by a

use of a slit-prism pair. For optimal operation a bandwidth of 60 nm in

FWHM is used (depicted in the Fig. 2.2(a)). Tsunami delivers pulses

at a repetition rate of 76 MHz with average power of 380 mW. This

ultrafast oscillator is used as a seed for Spitfire regenerative Ti:saphire

amplifier. The Ti:Al2O3 crystal in Spitfire is pumped using Empower

pump, which is a Q-switched Neodymium-doped yttrium lithium fluo-

ride (Nd:YLF) laser. The output wavelength of 527 nm is achieved by

frequency doubling in nonlinear LBO crystal of 1053 nm light from a

Nd:YLF solid state laser, which is pumped by a series of 808 nm diode

lasers. Strong ns-long pulses are generated by Q-switching [48], giving

average optical powers up to 20W at the repetition rate of 1kHz. In

the Spitfire incoming ∼ 5 nJ femtosecond pulses from Tsunami are first

stretched up to ns duration, then amplified to 3.8 mJ energy and in

the end compressed to sub 35 fs duration. A very high pulse energy

of 3.5 mJ combined with sub 35 fs pulse duration results in ultra high

peak power intensity of approximately 100 GW (what is already con-

sidered as a terawatt range). Figure 2.2(a) shows a typical spectrum of

pulses from Spitfire. The 34nm-in-FWHM-broad spectrum translated

into an ultra short pulses in time domain. Fig. 2.2(b) shows autocorre-

lation of Spitfire laser pulse measured using Spectra-Physics PulseScout

autocorrelator. Autocorrelation is a standard technique for measuring

temporal duration of short laser pulses [49, 50]. In the autocorrelator
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incident pulses are split into two equal portions. One of the pulses is

sent to a variable delay and then mixed in a non-collinear configuration

with the other pulse in a nonlinear crystal. By changing time delay be-

tween pulses the intensity of generated second harmonic can be mapped

out. Basing on the width of the autocorrelation, temporal duration of

the pulse itself can be calculated. Assuming that the incoming pulse has

a Gaussian shape, 60.5 fs in FWHM of autocorrelation corresponds to

43 fs-long pulse (factor of 1.414 [51]).
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Figure 2.2: (a) Output spectra from Tsunami and Spitfire. (b)
Autocorrelation of the generated 3.5 mJ laser pulse. Large pedestal is
an indication of a significant third and forth order phase dispersion.

2.2 Generation of terahertz radiation

Various ways of generating THz radiation have been developed through

the years. One could risk a statement by saying that everything can

be used to generate THz waves (probably one of the most surprising

processes that lead to THz emission is peeling adhesive tape [52]).

Historically, the oldest sources of THz radiation are thermal sources.

Invention of maser and laser in 1960’s brought important development

for THz generation. Namely powerful CO2 lasers were used for pumping
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THz molecular lasers, which for THz emission were using transitions

between different rotational energy levels. CO2 pumped methanol laser,

which gives emission at 119 µm is still in use in some laboratories [20,

53]. The main disadvantage of those THz emitters is that the THz

detection is based on the detection of the intensity instead of direct

electric field, which will be discussed in the chapter 3.1. More recent

development in continuous wave THz sources are the quantum cascade

lasers (QCLs) [54]. From the microwave side of spectrum THz radiation

can be generated using backward-wave oscillators (BWO), gyrotrons and

sum-frequency mixed Schottky [55] and Gunn [56] diodes. The main

problem with sources based on the electronic approach is that their

efficiency quickly rolls off with increasing frequency.

Free electron laser (FEL) with energy-recovering linear accelerators is

the most powerful source in the THz range [57, 58] and until recently it

was the only one that was able to generate terahertz pulses that have

at least 1 µJ of energy. Free-electron lasers as the lasing medium use

relativistic electron beam, which propagates through spatially varying

magnetic field [59]. The magnetic field causes the electrons to oscillate

and emit photons, whose wavelength can be tuned from microwave to X-

ray area by adjusting the energy of the electron beam or the magnetic

field strength. Extremely high costs and big sizes of FELs facilities

severely restrict their application.

If all the THz systems were counted, photoconductive switches would

probably emerge as the most popular type. THz generation by optical

excitation of photoconductive dipole antennas was pioneered in 1970s

by D. H. Auston [21] and further developed in the 1980s [60–62]. In

a semiconductor material of a photoconductive switch, photons from

a femtosecond laser pulse with sufficiently high energy can excite elec-

trons into the conduction band. The metallic electrodes supply external

bias electric field to the semiconductor in the photoconductive gap be-

tween electrodes. Bias field accelerates generated free carriers, creating

microscopic current transient. Due to different channels of recombina-

tion, free carriers finally recombine, causing currents to vanish. In this
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way current impulses, lasting on the order of few hundred femtosec-

onds, are generated. Dynamics of those ultrashort transient currents is

a source of the THz radiation. The short carrier lifetime (∼ 100 fs) of

the emitter semiconductor material is beneficial for the high bandwidth

of generated radiation. For that reason materials with high number of

recombination centers and a fast capture time, as radiation-damaged

silicon-on-sapphire [63], low-temperature grown GaAs [64, 65] or ion-

implanted InGaAs [66, 67] can be used.

2.2.1 Optical rectification

in
te
ns
ity

DFG

in
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ity

DFG SFG

(a)

(b)

Figure 2.3: Photon picture of (a) difference-frequency generation
(DFG) of THz frequencies and (b) DFG and sum-frequency generation

(SFG) of sidebands to the pump frequencies.

One of frequently used table-top methods of generating relatively high-

power THz sources is optical rectification (OR) in nonlinear materials
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[68]. Below we will present it in more detail on example of N-benzyl-2-

methyl-4-nitroaniline (BNA) crystal. Optical rectification is a difference

frequency mixing process and occurs in media with large second order

susceptibility χ2. For ultrashort laser pulses (typically fs pulses from

Ti:sapphire laser) that have large bandwidth, as shown in Fig. 2.2(a),

the frequency components are differentiated with each other to produce

bandwidth from ideally 0 to several THz. The photon picture of the

difference-frequency generation (DFG) is shown in the Fig. 2.3(a). A

femtosecond laser pulse with a spectrum centered at ωc contains a comb

of frequencies, spaced by ∆ω due to the constant repetition rate of the

laser. Two NIR photons ω1 and ω2 (ω2 < ω1) interact with each other in

the nonlinear crystal. As the result photon ω1 is annihilated and two new

photons are created: second ω2 and a new Ω with energy ~ (ω1 − ω2).

Frequency of the Ω photon lays in the THz range. Due to the interaction

the spectrum on the NIR pump beam shifts in the direction of longer

wavelength (so called redshift). When the population of THz photons

gets big enough, a different DFG process can take also place - Fig. 2.3(b).

This time one NIR photon ω2 interacts with the THz photon Ω′. As a

result ω2 is annihilated and its energy is used for creation of a second Ω′

photon and a NIR photon of energy ~ (ω2 − Ω′). This process also leads

to the increase of THz energy and a redshift of NIR pump. An opposite

process called sum frequency generation (SFG) can also take place, in

which energy is transferred from THz wave to the NIR pulse.

The efficiency of described processes of DFG and SFG is govern by

several factors. The most important one is the value of the second order

susceptibility χ2. Phase matching between the optical and terahertz

beams also plays a crucial role for efficient optical rectification. Collinear

matching between group velocity and the terahertz phase velocity in such

crystals as ZnTe and GaP is achievable for pump wavelengths of around

800nm and 1µm, respectively. Energies of up to 1.5µJ in single-cycle

terahertz pulses have been obtained from large aperture ZnTe crystal

[69].
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(a) (b) (c)

Figure 2.4: (a) Molecular formula of BNA crystal. (b) Photo of
freshly cleaved BNA 1.3 mm-thick (010) crystal (c) BNA crystal with
visible signs of optical degradation due to 800-nm pump irradiation.

Recently, strong interest is placed upon new organic nonlinear crys-

tals (NLO), such as 4-dimethyl-mino-N-methyl-4-stilbazolium tosylate

(DAST) [70], 2-methyl-4-nitroaniline (MNA) [71], 2-(α-methylbenzyl-

amino)-5-nitropyridine (MBANP) [72] and N-benzyl-2- methyl-4 -nitroaniline

(BNA) [73, 74]. Those crystals posses very high second order nonlinear-

ities with lower dielectric constants, than their inorganic counterparts.

Except for high nonlinearities, NLO are required to have sufficient size

to be subjected to mechanical processing, such as cutting and polishing.

Those two characteristics are in opposition: large optical nonlinearities

can be easily achieved in a lower-symetry structures, which usually result

in small and fragile crystals. On other hand centrosymmetric structure

is energetically more stable, and organic molecules are likely to condense

in that structures. BNA crystal, which molecular formula is shown in

Fig. 2.4(a), was developed to overcome these difficulties. Large BNA

crystals, shown in Fig. 2.4(b), were grown with a vertical Bridgman

method. The second order nonlinear coefficients of BNA (d333 = 234

pm/V and d322 = 16 pm/V [75, 76]) are high and allow for more effi-

cient THz generation than the most commonly used ZnTe. The values

of the refractive indices of BNA allow for generation of THz radiation

in the collinear phase matching configuration for pump wavelength of
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around 800nm [77, 78]. BNA exhibits a linear dependence (Fig. 2.5(a))

of generated electric field versus pump power up to the point when signs

of damage are apparent at a fluence of ∼ 1 mJ/cm2 (Fig. 2.4(c)). BNA

has a orthorhombic lattice structure, space group symmetry Pna21 and

point symmetry mm2. Because second order nonlinearity d is a tensor,

related to the crystallographical symmetry of BNA crystal, the crystal

must be oriented correctly to the laboratory reference frame to maxi-

mize THz conversion efficiency. Figure 2.5(b) shows the dependence of

the generated THz field on the BNA crystal angle orientation, which

is measured in the setup presented in the Fig. 2.5(c). Electric field

components parallel and perpendicular to the generation beam polariza-

tion are detected. Pair λ/2-polarizer changes polarization of the pump

beam between parallel and perpendicular with respect to the direction

of THz detection. The lines in the Fig. 2.5(b) are a best fit to the-

oretically predicted dependencies ETHz ∝ cos3 x for the parallel and

ETHz ∝ cosx sin2 x for the perpendicular field components.

THz generation in BNA is so efficient that a clear redshift of the pump

beam due to the energy transfer to the THz beam is visible. Figure 2.6

shows pump beam spectra at (a) 2 µJ and (b) 130 µJ excitation level for

two different polarizations of incoming pump beam with respect to the

BNA crystallographical orientation. For the first orientation, the pump

beam is polarized in the direction that gives minimal THz emission,

while the second orientation is optimal for THz emission. At a low

pump fluence both spectra look identical. For the 130 µJ excitation

energy, the mean optical wavelength shifts by 2.6 nm in the direction

of long waves. Based on the redshift it is calculated that the energy

conversion efficiency is 3.3 · 10−3. Unfortunately, part of the generated

THz radiation gets reabsorbed by the BNA before it couples out from

the crystal, which has a high absorption coefficient of nearly 70 cm−1

at 1 THz [74]. Including also reflections in the crystal, we can calculate

energy of freely propagating THz pulses to be 44 nJ.
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Figure 2.5: (a) The peak of THz electric field as a function of NIR
pump power. The inset shows the time waveform of the generated THz
electric field.(b)Detected parallel and perpendicular THz electric field
components as a function of the azimuthal angle of the 1.3 mm BNA
source crystal. The lines are a fit to ETHz ∝ cos3 x for the parallel
and ETHz ∝ cosx sin2 x for the perpendicular field components.(c)
Simplified schematic of BNA orientation used to obtain the angle
dependent data. Pair λ/2-polarizer changes polarization of the pump
beam between parallel and perpendicular with respect to the direction

of THz detection.

2.2.2 Generation of high-power terahertz pulses by tilted-

pulse-front excitation

As it has been mentioned before, the efficiency of the THz generation in

optical rectification critically depends on matching between the group

velocity vgrNIR of the ultrashort light pulse and the phase velocity vphTHz

of the THz radiation. Velocity matching is obtained if the condition

vgrNIR = vphTHz (2.1)
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(a) (b)
2.6 nm

Figure 2.6: Redshift in BNA. Spectra of NIR probe transmitted
through BNA crystal for (a) 2 µJ (b) 130 µJ incident 800 nm pump
pulses. Pair λ/2-polarizer is used to change energy of the incident
pump beam and to switch between polarizations of the pump beam,
that give highest and lowest THz generation. The mean value of the

wavelength shifts by 2.6 nm into red.

is fulfilled. For such materials as ZnTe, GaP, DAST or BNA, velocity

matching of the terahertz phonon-polariton wave can be achieved in

a collinear configuration. The nonlinear coefficients of such materials

as ZnTe or GaP are significantly smaller than nonlinear coefficients of

nonlinear organic crystals as DAST or BNA. Unfortunately, nonlinear

organic crystals have a low damage threshold and optical pumping with

very intense laser pulses is not recommended. A solution to this problem

is to use high dielectric ferroelectrics such as lithium niobate (LiNbO3) or

lithium tantalate (LiTaO3), which have nonlinearities comparable with

NLO and can sustain higher pump fluences. Unfortunately for those

materials, the difference between group refractive index ngrNIR of the NIR

pump and the phase refractive index nphTHz of the THz radiation is big

(correspondingly 2.23 and 5.16 for LiNbO3 [79]), which does not allow for

efficient THz generation in a collinear configuration. Velocity matching

in those materials is possible by tilting the optical pulse front [35, 36,

79, 80]. Proper choice of the tilt angle γ, shown in Fig. 2.7(b), allows to

equalize phase velocity of the THz pulse with a projection of the NIR
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Figure 2.7: THz generation in LiNbO3 in a tilted wavefront config-
uration.

pulse onto the direction of the THz beam according to equation:

vgrNIR · cos γ = vphTHz. (2.2)

For LiNbO3 the tilt angle is ∼ 63◦. Figure 2.7(a) shows a possible

experimental setup used for the THz generation by femtosecond laser

pulses with tilted pulse fronts. The wavefront of the optical pulse is tilted

using diffraction grating and then imaged onto the LiNbO3 surface using

a lens [81]. The tilt angle of the NIR pump wavefront in the configuration

presented on the figure 2.7(a) is given by:

tan γ =
mFλ

ngrNIRd

1

cosβ
, (2.3)

where F is the imaging demagnification factor, β is the angle of diffracted

light, d is a period of the grating and m diffraction order. By combining

Eq. 2.3, with a diffraction grating equation:

d (sinα+ sinβ) = m · λ, (2.4)

where α is the incidence angle onto the grating, the required α and β

angles can be calculated. For example: if a 2000 l/mm grating is used,

and the demagnification factor F = 2, then α = 66.6◦ and β = 43◦.
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Particular tilted wavefront setups used in this thesis, will be discussed

in more detail in chapters 5.3 and 4.4. Highest ever reported THz pulse

energies obtained using this method were 10µJ and corresponding tera-

hertz electric field at the focus of a parabolic mirror was calculated to

be 250kV/cm [80]. In those experiments Ti:sapphire amplifier system

delivering 10mJ pulses at a 10Hz repetition rate was used. Figure 2.8(a)

shows the energy of the THz pulses generated in LiNbO3 in a tilted wave-

front configuration as a function of incident pump pulse energy. Unlike

optical rectification in BNA which shows perfect quadratic dependence

of the generated THz power vs. excitation pulse power (what corre-

sponds to a linear dependence of the peak electric field and has been

presented in the Fig. 2.5(a)), THz generation in LiNbO3 shows linear

dependence above saturation threshold. This change from quadratic to

linear increase of the generated THz energy has its origins in the free

carrier absorption inside LiNbO3 caused by multiphoton absorption at

the pump wavelength [82] and results in a saturation of THz generation

efficiency, as depicted in Fig. 2.8(b).

It has been theoretically predicted and observed [82] that the shortest

pump pulses do not necessarily give highest THz conversion efficiency.

High material and angular dispersion inside LiNbO3, makes NIR pulses

of 350 fs duration in their time-bandwidth limited form most favor-

able for high power THz efficiency. Unfortunately, NIR pulses from the

Spectra-Physics Spitfire laser system, that has been mostly used in this

thesis, are 35 fs long, which yields nearly 8 times lower power conversion

efficiency than for 350 fs pulses.

2.3 Detection of terahertz radiation

There are several ways to detect THz radiation. Historically the oldest

detection methods are based on thermal effects. THz light is absorbed in

the material and lead to the increase of temperature, which can be sensed

by such devices as bolometers [83], Golay cells [84] and pyrodetectors[85]



Chapter 2. Terahertz pulses 24

0 . 0
0 . 5
1 . 0
1 . 5
2 . 0
2 . 5

0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 0 1 . 2 1 . 4 1 . 60 . 0

0 . 4

0 . 8

1 . 2

1 . 6

 

 

 M e a s u r e m e n t
 L i n e a r  f i t
 Q u a d r a t i c  f i tTH

z p
uls

e e
ne

rgy
 [µ

J] ( a )

( b )

 E f f i c i e n c y
 D i f f e r e n t i a l  E f f i c i e n c y

 

 

Eff
icie

nc
y [

µJ
/ m

J]

P u m p  P u l s e  E n e r g y  [ m J ]
Figure 2.8: (a) The energy of the THz pulses generated in LiNbO3 in
a tilted wavefront configuration as a function of incident pump pulse
energy. Dashed lines shows best linear and quadratic fits to experi-
mental data. (b) Absolute PTHz/PNIR and differential dPTHz/dPNIR

efficiency of THz generation in LiNbO3.

and related to the intensity of the THz wave. Because being dependent

on heating processes, response times of those devices are slow, sensitiv-

ity is low and they often require cryogenic cooling. A newer class of

detectors comes from electronic approach and include Schottky diode

mixers [86], high electron mobility transistors and many other.

The very commonly used way of detecting THz transients is using pho-

toconductive switches [87–89]. THz detection in this scheme is a reverse
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process to the THz generation using photoconductive antennas. Por-

tion of the laser beam that is used for THz generation is split off and

sent to the detector. The femtosecond laser pulse excites free carriers in

the photoconductive gap of the detector semiconductor material. This

time, instead of connecting electrodes to the bias circuit, they are con-

nected to a current preamplifier. The electric field of the THz pulse

drives photocurrent which is measured by the preamplifier. The pho-

tocurrent in the antenna is a convolution of the electric field and the

transient photoconductivity excited by the gating pulse. If the tran-

sient photoconductivity is much faster than the dynamics of the electric

field, then the measured current is directly proportional to the THz

electric field. The bandwidth of detection is mainly limited by the trap-

ping and recombination time of photoconductivity, and for that rea-

son radiation-damaged silicon-on-sapphire [63], low-temperature grown

GaAs [64, 65]or ion-implanted InGaAs [66, 67] are used.

optical 
probe pulse

THz 
 pulse

t

EO
crystal

Wollaston 
prism

PD A

PD B

without THz field

with THz field

Ix  = I0/2

Iy  = I0/2

Ix  = (1-    )  I0/2

Iy  = (1+    )  I0/2

(a)

(b)

(c)

Figure 2.9: (a) Schematic confriguration of electrooptic sampling.
Polarization of NIR probe beam are shown (b) without and (c) with

THz electric field.

The other frequently used method of detecting THz pulses is free-space

electro-optic sampling (FEOS) [27–29], which uses the Pockels effect
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in an electro-optic (EO) crystal. Because FEOS is the method used

through this thesis, it will be described in more detail. A schematic

setup of the FEOS is presented in Fig. 2.9. In the absence of THz field,

a linearly polarized NIR gating pulse travels through EO crystal unaf-

fected, then it passes through a λ/4 plate where its linear polarization is

changed into circular. The orthogonal polarization components are split

by a Wollaston prism and sent to photodiodes (PD) A and B. Signal

from photodiodes is sent to the lock-in amplifier, which subtracts the

incoming signals. Because the probe beam after the λ/4 plate has cir-

cular polarization, the signal (current, which can be also converted into

voltage) is identical and lock-in amplifier returns zero-reading. When

the THz transient overlaps in time with the NIR gating pulse, the gat-

ing pulse experience phase retardation and its polarization is changed

into elliptical. The phase retardation Γ between different components

of the gating pulse is proportional to the strength of the THz pulse and

can be expressed by

Γ =
ωn3

0r41L

c
ETHz (2.5)

where n0 is the refractive index at the optical frequency, r41 is the elec-

trooptic coefficient (∼4 pm/V for ZnTe [90] and ∼ 0.88 pm/V for GaP

[91]), L is the thickness of the EO crystal, ω frequency of NIR probe and

ETHz is the value of the THz electric field. This time the polarization of

the gating beam after the λ/4 plate is not exactly circular and the pho-

todiodes A and B do not show the same signal any more. Photocurrents

at photodiodes A and B are

IA =
I0

2
(1− sin Γ) , (2.6)

IB =
I0

2
(1 + sin Γ) . (2.7)

The modulation depth of photocurrents is directly proportional to the

THz electric field:

∆I

I0
=
IB − IA
I0

= sin Γ = sin

(
ωn3

0r41L

c
ETHz

)
, (2.8)
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which gives the expression for the THz electric field:

ETHz = arcsin

(
∆I

I0

)
c

ωn3
0r41L

≈ ∆I

I0

c

ωn3
0r41L

. (2.9)

For weak THz fields (i.e. ∆I
I0

< 0.5), measured THz electric field is

directly proportional to the photocurrent modulation. The phase retar-

dation Γ also depends on the orientation of the crystal and directions

of polarization of the THz radiation and the NIR laser pulse. For 4̄3m

zincblende structure crystals, such as ZnTe, the optimum angles between

the THz and the probe beam polarizations are 0◦ or 90◦ [92, 93]. By

varying time difference t between THz beam and NIR gate the entire

THz waveform can be mapped in time. To improve signal-to-noise ratio

the lock-in amplifier is locked to the frequency of optical chopper, which

modulates the THz generation beam at a first subharmonic frequency

(500Hz) of the laser system (1kHz). This detection scheme is charac-

terized by excellent S/N ratios, which in most cases exceed 1000. Two

reasons behind high S/N ratio are the coherent detection that rejects

incoherent background radiation and a very short sampling time given

by ultrashort gating pulse duration. ZnTe and GaP are the two most

commonly use EO crystals. Other crystals, such as GaSe, InP, GaAs,

DAST, BNA as well as some polymers and liquids have also been used.

The detection bandwidth is limited by the phase matching between the

THz transient and the NIR gating pulse. Other type of limitation comes

from absorptive phonons in the crystals (such as T0 phonon in ZnTe at

5.3 THz and phonon at ∼11 THz in GaP [94]). By application of very

thin EO crystals (e.g. ∼ 10µm ZnTe), which minimizes influence of

phase mismatch, the detection bandwidth can be increase even to over

100 THz [95–97]. Note that the detection of the magnetic field of the

THz pulse is also possible in similar method [98, 99].

In recent years several detection methods based on air photonics have

been developed [33, 100]. Due to its extreme broadband responsivity air

biased coherent detection (ABCD) [34, 101] is gaining big popularity.
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ABCD method will be described in detail in chapter 4.3. THz radiation-

enhanced emission of fluorescence (REEF) [102] and terahertz enhanced

acoustics (TEA) [103] are interesting examples of other methods based

on interaction of intense femtosecond pulses with THz transients inside

laser-induced plasma.



Chapter 3
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differential waveform

acquisition in time-resolved

terahertz spectroscopy

Time-resolved terahertz spectroscopy (TRTS) is a relatively new and

powerful experimental technique for studying subpicosecond dynamics

of photoexcited charge carriers in semiconductors [13, 14, 104] and other

materials [11, 105]. To extract the frequency-resolved conductivity of a

photoexcited sample, two THz transients are necessary: a reference scan,

Eref (t), of the unexcited sample and a scan of the pumped sample,

Epump (t). The most common data acquisition scheme is to separately

measure Eref (t) with a blocked pump beam or at negative pump-probe

delay times. Next step is to measure a differential THz scan, ∆E (t)

and calculate Epump (t) = Eref (t)+∆E (t). In this procedure two scans

are taken separately and some false spectral features can be introduced

if in between scans the output (power, pulse shape) of the laser system

changes. In this chapter we present a new method of data acquisition in

29
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which both scans are taken simultaneously. This approach is not only

twice as fast, but also eliminates spurious errors in the spectroscopy

arising from experimental conditions changing during data acquisition.

The chapter will begin with a brief introduction to time-domain tera-

hertz spectroscopy and time-resolved terahertz spectroscopy. Then we

will present and discuss the Drude model for conductivity, which is the

most simple but also best understood model of conductivity in semicon-

ductor sample. In the next part of the chapter we will in detail present

the experimental setup and write about calibration methods. The chap-

ter will end with results obtained for GaAs sample, which was chosen as

a test sample.

3.1 Time-domain terahertz spectroscopy

Terahertz time-domain spectroscopy (THz-TDS) is a method of deter-

mining optical properties of investigated sample. High signal to noise ra-

tio of photoconductive switches and THz emitters and detectors based on

nonlinear phenomena makes those devices well suited for spectroscopic

purposes. More over, since the electric field of THz transient is directly

mapped in time (instead of intensity), both amplitude and phase infor-

mation are coherently measured. This field information allows for direct

determination of the complex refractive index (or equivalently complex

dielectric function or complex conductivity) without a necessity to use

Kramers-Kronig relations.

The real beauty of THz spectroscopy lays in the wealth of spectroscopic

signatures in the THz energy range for all states of matter: gasses, liq-

uids, solid-state and even plasma [2, 106]. Rotational excitations of small

gas molecules have energies in the THz range and thus TDS-THz spec-

troscopy can be used to identify various gases [107, 108]. In liquids the

THz spectrum is dominated by relaxation of either permanent dipoles

in polar liquids or collision-induced dipole moments in nonpolar liquids.
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So far water and its mixtures is probably the most extensively studied

liquid in the THz range [109–111]. In the case of simple dielectrics THz

spectroscopy allows for simple and accurate determination of the refrac-

tive index and absorption coefficient [87]. THz-TDS techniques have also

been used for investigating such systems as insulators [112], inorganic

and organic semiconductors [87], metals [113], doped semiconductors

[114], quantum wells [115] and many others.

Figure 3.1: (a) THz absorption spectra of RDX, TNT, HMX and
PETN obtained with THz-TDS. (b) THz absorption spectra of explo-
sive related compounds obtained using THz-TDS. The spectra have

been vertically shifted for clarity. [16]

The THz range hosts low frequency crystalline lattice vibrations - phonon

modes, hydrogen-bonding stretches and other intermolecular vibrations

of molecules in many materials. For purposes of this thesis the most

important fact is probably that the transmitted and reflected spectra of

explosives and related compounds (ERCs) contain THz absorption fin-

gerprints characterizing these THz vibrational modes [42, 43, 116, 117].
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Fig. 3.1 shows measured THz absorption spectra of hexahydro-1,3,5-

trinitro-1,3,5-triazine (RDX), 2,4,6-trinitrotoluene (TNT), tetramethy-

lene tetranitramine (HMX), pentaerythritol tetranitrate (PETN) and

explosive related compounds: 1,3-dinitro-benzene (1,3-DNB), 4-nitro-

toluene (4-NT), 2,6-dinitro-toluene (2,6-DNT), 2,4-DNT, 4-amino-2,6-

DNT and 2-amino-2,6-DNT. Most of these THz absorption fingerprints

are from the lattice vibrational modes of solid-state explosive materials.

Absorption fingerprint in a broad range from 0.05 - 0.6 THz of such

explosive as DNT has been also measured in its gas-phase [118].

d
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Figure 3.2: THz transmission through a sample of a thickness d and
a real refractive index N and an absorption coefficient α.

Below we will show how to determine the frequency dependent refrac-

tive index N (ω) and the absorption coefficient of a sample α (ω) in a

transmission configuration of a THz-TDS system. For simplicity we as-

sume that the THz radiation is incident at a normal angle to the sample

surface - Fig. 3.2.

Two measurements are necessary to extract the refractive index and the

absorption coefficient of a sample. The first one is a reference pulse Eref ,

which is taken without the sample in the spectrometer.

Ẽref (ω) = Ẽi (ω) · e−αair(ω)d/2 · e−iωNair(ω)d/c, (3.1)

where Ẽi (ω) is the incident THz transient, Nair (ω) is the real part of

the refractive index of air and αair (ω) is the absorption coefficient of

air (here Nair (ω) is here is assumed to be 1 and αair (ω) is assumed to

be 0). The second measurement Ẽsamp (ω) is done when the sample is
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placed in the THz path inside the spectrometer.

Ẽsamp (ω) = t̃12t̃21Ẽi (ω) · e−α(ω)d/2 · e−iωN(ω)d/c, (3.2)

where t̃12 and t̃21 are the Fresnel transmission coefficients. In the case

of an air-sample interface, t̃12 = 2
1+ñ , where ñ is the complex refractive

index of the sample ( ñ (ω) = N (ω)−iκ (ω) = N (ω)−ic/2ω ·α (ω)). For

the sample-air interface t̃21 = 2ñ
ñ+1 . Taking the ratio between Ẽsamp (ω)

and Ẽref (ω) one gets the complex transmission function T̃ (ω)

T̃ =
Ẽsamp

Ẽref
=

4ñ (ω)

[1 + ñ (ω)]2
· e−α(ω)d/2 · e−iω[N(ω)−1]d/c =

∣∣∣T̃ (ω)
∣∣∣ · e−iΦ(ω).

(3.3)

In the case when the sample thickness is comparable to or larger than the

THz wavelength, the phase shift arising from the Fresnel coefficient is

much smaller than the phase shift originating from the wave propagation

through the sample and the real part of the sample refractive index can

be expressed by:

N (ω) ' 1 +
c

ωd
Φ (ω) . (3.4)

Once the refractive index N (ω) is determined, one can calculate the

absorption coefficient of the sample using

α (ω) = −2

d
· ln

[∣∣∣T̃ (ω)
∣∣∣ [1 +N (ω)]2

4N (ω)

]
. (3.5)

The amplitude
∣∣∣T̃ (ω)

∣∣∣ =
|Ẽsamp(ω)|
|Ẽref (ω)| and phase Φ (ω) = θsamp − θref of

the complex transmission function are obtained from the ratio of the

Fourier transforms of Esamp (t) and Eref (t).
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3.2 Time-resolved terahertz spectroscopy

Time-domain THz spectroscopy allows only for measurement of static

optical functions. But already in the mid 1980’s people realized that sub-

picosecond THz transients, which are synchronized to optical femtosec-

ond pulse trains, open possibility for pump-probe experiments that could

provide a way to study dynamical properties of picosecond nonequilib-

rium processes in the THz frequency range [119]. This technique is

know as time-resolved terahertz spectroscopy (TRTS) or transient THz

spectroscopy. It is a non-contact method capable of determining the

evolution of the frequency-dependent photoconductivity with a tempo-

ral resolution better than 200 fs. TRTS is a time-domain technique,

where the spectral information is obtained by Fourier transform of near-

single-cycle transients following interaction with a sample, usually by

transmission. TRTS has a huge impact on our understanding of ultra-

fast phenomena in systems such as: inorganic [12, 13, 104, 120, 121] and

organic [122] bulk semiconductors and insulators [112], liquids [123], su-

perconductors [124–126]. In recent years the research focus in ultrafast

phenomena studied with TRTS methods has been placed on nanostruc-

tures, such as nanocrystals [14, 127], quantum wells [128], quantum dots

[129–131], carbon nanotubes [127, 132], conjugated polymer/nanorod

composites [133] and many other [11, 105].

The physical picture of TRTS spectroscopy on photoexcited semiconduc-

tors is based on interaction between THz wave and excited free carriers

in the conduction (electrons) and valence (holes) band. The THz electric

field accelerates carriers, which next scatter and dissipate energy gained

from the THz wave. This energy transfer from THz transient to the free

carriers causes decrease in the THz field strength. Absorption of THz

radiation depends both on the carrier density n and on the mobility µ

of carriers through conductivity of the sample σ = enµ. The mobility µ

of the carrier, describes how quickly a given carrier can move through

a metal or semiconductor, when pulled by an electric field. In many
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Figure 3.3: THz transmission through (a) unexcited and (b) pho-
toexcited sample.

materials the mobility of holes is much lower then the mobility of elec-

trons (400 cm2/ (V s) for holes and 8500 cm2/ (V s) for electrons in GaAs

at room temperature [134]), so the THz absorption will be dominated

by absorption by electrons in the conduction band. In those materials

TRTS will probe mostly dynamics of photoexcited electrons.

The complex transmission function t̃ through a thin conducting film

placed between two media with real refractive indices is know as the

Tinkham equation [135]:

t̃ =
2Y1

Y1 + Y2 + dσ̃
, (3.6)

where d is the thickness of the film, σ̃ is its complex conductivity, Y1 and

Y2 are admittances of the surrounding materials. Substituting Y1 = 1/Z0

for free space or air and Y2 = N/Z0 for the dielectric substrate with

refractive index N we find

t̃ (ω) =
2

N + 1 + Z0dσ̃ (ω)
(3.7)
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where Z0 = 377Ω is free space impedance. This equation is valid as long

as d � λ/n, that is as long the wavelength inside the conducting film

(with refrative index n) is longer than the film thickness and all internal

reflections and interferences can be neglected. Values of n high enough

to make the expression invalid can be obtained in metallic thin films

but for semiconductors investigated in this thesis Eq. 3.7 is valid. The

next limitation for applicability of Eq. 3.7 is that the temporal changes

of conductivity σ̃ have to be slower than the THz pulse duration. If

the transmission function of the unexcited dielectric slab (substrate)

t̃subs = 2
N+1 is treated as a reference, then a transmission T̃ (ω) through

the photoexcited slab (thin film with pump induced photoconductivity

∆σ̃ (ω)) is in the form:

T̃ (ω) =
Ẽpump (ω)

Ẽref (ω)
=

N + 1

N + 1 + Z0d∆σ̃ (ω)
. (3.8)

In case the thickness d of the photoexcited film cannot be determined,

it may be convenient to use sheet photoconductivity ∆σ̃s defined as

∆σ̃s (ω) = d ·∆σ̃ (ω).

Two scans are needed to extract the frequency dependent photocon-

ductivity: a reference scan Eref (t) and a pumped scan Epump (t). The

reference scan is taken with blocked pump beam or at the negative

pump-probe delay time, when the THz probe pulse does not experience

pump pulse. The pumped scan Epump (t) carries the information about

the photoexcitation - Fig. 3.3. However in most TRTS systems the dif-

ferential ∆E (t) waveform is mapped and then Epump (t) is calculated by

Epump (t) = Eref (t) + ∆E (t) (Fig. 3.4), instead of measuring directly

Epump (t), . The measurement of ∆E (t) is done by moving the optical

chopper from the THz generation beam to the optical pump beam to

improve signal to noise ratio of the analyzed data. In Chap. 3.4 we

present a novel method that allows for simultaneous reference Eref (t)

and differential waveform ∆E (t) acquisition.
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Figure 3.4: Reference Eref (t), pump Epump (t) and differential
∆E (t) waveforms for time-resolved spectroscopy on semi-insulating
GaAs, photoexcited with 400 nm light 30 ps after excitation at room

temperature. The pump fluence is 25 µJ/cm2.

By a simple manipulation of Eq. 3.8 in the polar coordinates the com-

plex sheet conductivity ∆σ̃s = ∆σ′s + i∆σ′′s can be split into real and

imaginary parts:

∆σ′s (ω) =
N + 1

Z0

[
1

|T (ω)|
cos [Φ (ω)]− 1

]
(3.9)

∆σ′′s (ω) = −N + 1

Z0

[
1

|T (ω)|
sin [Φ (ω)]

]
(3.10)

The amplitude
∣∣∣T̃ (ω)

∣∣∣ =
|Ẽpump(ω)|
|Ẽref (ω)| and phase Φ (ω) = θpump − θref

of the complex transmission function are obtained from the ratio of

the Fourier transforms of Epump (t) and Eref (t). By changing the time

delay ∆t between the photoexcitation pulse and the THz probe pulse,

the dynamics of the photoconductivity can be mapped out.
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3.3 Drude conductivity

Linear response of charge carriers to an applied electric field can be

fully described by a complex conductivity function σ̃ (ω) = σ′ (ω) + i ·
σ′′ (ω). Several models have been developed to describe conductivity in

semiconductors. Even though many of those models have been created

before quantum mechanics, they are still able to describe complicated

problems in a rather accurate way. The simplest and the most commonly

used is the Drude model [136], in which carriers are considered free to

respond to the electric field. In addition to acceleration by an external

field, mobile carriers undergo collisions with scattering centers described

by a characteristic scattering time τ . The collisions are assumed to be

instantaneous, elastic and randomly changing momentum of the carrier.

The frequency dependent complex conductivity of a conductor according

to Drude model is described by [136]:

σ̃ (ω) = σ′ (ω) + i · σ′′ (ω) =
σdc (ω)

1− iωτ
. (3.11)

DC conductivity σdc is expressed using scattering time τ , carrier density

n and effective mass of the carrier m∗ by:

σdc =
ne2τ

m∗
= ω2

pε0τ, (3.12)

where the plasma frequency ωp is defined as ω2
p = ne2/ε0m

∗. The Drude

model also gives expression for the mobility of carriers µ = eτ
m∗ , from

which we see that the heavier the effective mass m∗ of a carrier the

lower the mobility.

Equation 3.11 can be seperated into real and imaginary parts

σ′ (ω) = σdc
1

1 + (ωτ)2 , (3.13)

σ′′ (ω) = σdc
ωτ

1 + (ωτ)2 . (3.14)
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Figure 3.5: Real and imaginary parts of complex conductivity in
the Drude model.

Figure 3.5 shows the real and imaginary parts of the complex Drude

conductivity normalized by DC conductivity σdc as a function of the

product ωτ . The most feature-rich area of the plot is in the vicinity of

ωτ = 1, where σ′ (ω) = σ′′ (ω). For typical semiconductors, the scatter-

ing time τ is on the order of tens to few hundreds of femtoseconds, so

the characteristic frequency where ωτ ∼ 1 is placed in the terahertz re-

gion. For that reason, if one is able to measure the complex conductivity

function of semiconductor in the THz range and one assumes that the

response is given by only one type of carrier, one can accurately extract

carrier concentration, mobility and scattering time.

3.4 Experimental Setup

Figure 3.6(a) shows the schematic representation of the time-resolved

terahertz spectroscopy setup. A regenerative Ti:sapphire femtosecond

laser amplifier is delivering 45 fs, 2.8 mJ pulses with center wavelength
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Figure 3.6: (a) Schematic of the simultaneous reference and dif-
ferential waveform acquisition TRTS setup. (b) 2 frequency chopper

blade.

of 800 nm at a 1 kHz repetition rate. The laser output is split into three

portions: a source beam for THz pulse generation, a pump beam for

excitation of the sample and a gating beam for THz detection by free

space electro-optic sampling. Terahertz waves are generated by opti-

cal rectification in 1.4 mm-thick [010] N-benzyl-2-methyl-4-nitroaniline

(BNA) crystal [73, 74], which in detail is presented in chapter 2.2.1. The

800 nm light transmitted through the BNA crystal is blocked by a black

polyethylene sheet, transmissive to the THz pulse. Off-axis parabolic

mirrors are used to expand the THz beam and next to collimate and fo-

cus it to a ∼ 1 mm-diameter spot on the sample. The transmitted THz
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pulse is then collimated and re-focused onto a [110] GaP crystal (300

µm-thick) for free space electro-optic detection of the THz transients.

GaP is chosen for detection over the more efficient ZnTe to allow higher

bandwidth detection, as the first phonon is at ∼11 THz whereas ZnTe

has its first phonon at ∼5.3 THz [94]. The usable bandwidth of such

a system extends from 0.1 to nearly 6 THz - Fig. 3.7(b) and is over

two times broader than a similar setup with THz generation based on

optical rectification in ZnTe. The highest THz electric fields obtained in

this setup are on the order of ∼ 5 kV/cm so we do not expect to observe

any nonlinear phenomena. The setup was enclosed in a plexiglass box

and purged with dry N2 to avoid water absorption lines. Both the 800

nm probe beam and the pump beam were focused through small holes

in the centers of off-axis parabolic mirrors for collinear detection and

excitation of the sample at normal incidence. The pump beam was fre-

quency doubled to 400 nm by β-BaB2O4 (BBO) crystal to ensure that

the ∼ 15 nm penetration depth of the pump beam in semi-insulating

gallium arsenide (SI GaAs) creates a film thin enough to fulfil the thin

film approximation [137]. The sample is mounted on the back of a 1.5

mm-diameter aperture to aid in pump/probe overlap. The pump beam

spot is approximately 3 mm in diameter, ∼3 times larger than the THz

spot which ensured uniform excitation [138]. Two computer controlled

delay stages are used to change the pump-probe delay times and also to

map the THz pulse shape. The setup is constructed in such a way that

one delay stage is scanning the time interval between the pump pulse

with respect to both the THz source and probe pulses. In this way the

whole THz transient is experiencing a constant delay from the pump

pulse [139].

Double modulation is a well-known technique for both static and time-

resolved terahertz spectroscopy [140–143], however to date this has only

been used for noise reduction of the differential scan. The key element

in simultaneous acquisition of reference and differential THz scans is

the use of a two frequency chopper blade, which shape is shown on Fig

3.6(b). The chopper blade consists of two kinds of sets of slots and



Chapter 3. Simultaneous reference and differential waveform
acquisition in time-resolved terahertz spectroscopy 42

Figure 3.7: (a)Waveforms and (b) spectra of THz radiation gen-
erated in 1 mm-thick (110) ZnTe and 1.3 mm-thick (010) BNA and

crystals.

shutters. The outer set is built of 15 slots and 15 shutters in equal

spacing, while the inner set consists of 10 slots and 10 shutters, where

the shutters are twice as wide as the slots. The chopper blade is rotating

at such a speed to modulate the beam going though the outer part at

500 Hz, synchronized to the 1-kHz repetition rate of the laser. At the

same time chopper blade modulates the beam going though the inner

part at 333 Hz. The output from the balanced photodiode detector

is split and sent to two independent lock-in amplifiers. The reference

signals for the lock-in amplifiers are second (500Hz) and third (333 Hz)

sub-harmonics of the laser system reference signal, and therefore are not

harmonic with respect to each other. As a result the cross talk between

signals measured at those frequencies is on the noise level.

Figure 3.8 shows the time sequence of the laser, pump, generation and

THz pulses with respect to each other. The inner chopper blade selects

every third pulse which is used for THz generation, while the outer blade

transmits every second pulse which is used as a pump. The first trans-

mitted THz transient does not experience the presence of a pump, while

the transmission of the second THz pulse decreases due to increased ab-

sorption from excited free carriers. The reference and pumped electric

fields of the terahertz transients can be expressed by the signals mea-

sured by the first [E1 (t), modulated at 333 Hz] and the second [E2 (t),
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Figure 3.8: Time sequence of incoming pulses.

modulated at 500 Hz] lock-in amplifiers by

Eref (t) = E1 (t) +AE2 (t) (3.15)

Epump (t) = E1 (t)−AE2 (t) (3.16)

where A is a calibration constant.

Figure 3.9(a) shows a typical shape of the voltage difference V1−2 be-

tween the two balanced photodiodes while monitoring the induced phase

retardation at the peak of the THz transient, as illustrated in the lowest

row of signals in Fig. 3.8. The exponential decay at t = 0 ms corre-

sponds to the transmitted THz signal strength without pump, whereas

the exponential decay at t = 3 ms corresponds to the transmitted THz

signal with pump light, thus resulting in a lower amplitude. The values
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measured by the lock-in amplifiers at 333 Hz and 500 Hz are correspond-

ingly the third (a333) and second (a500) harmonic Fourier coefficients of

the repetitive voltage difference between the two photodiodes with 6-ms

period (167 Hz repetition rate). The constant A can be expressed using

a333 and a500 by

A =
a333|pump off − a333|pump on

a500|pump on
. (3.17)

Figure 3.9(b) shows calculated values of the calibration constant A as a

function of the decay time τ of the voltage difference. For fast photodi-

odes (τ ≈ 0) the constant A is 1, and increases to a maximum value at

τ = 0.75 ms, followed by a gradual decrease at even slower photodiode

response times. We note that not only the decay time constant, but

also the detailed shape of the photodiode decay curve can influence the

constant A significantly.

Figure 3.10(a) shows the measured E1 and E2 signals of the peak of

the THz pulse as a function of time after 400 nm excitation of undoped

silicon, as well as the calculated Eref and Epump. The carrier life time in

silicon following 400 nm excitation is on the order of hundreds of µs [144],

and so the first 20 ps after excitation the Epump response is flat. This

step-like response allows for accurate experimental determination of the

constant A, which is found to be equal to 1.33. The decay constant of

the voltage difference V1−2 between the balanced detector photodiodes

was found to be 1.02 ms, what corresponds to the value of A of 1.28.

The difference from the experimentally obtained value can be explained

by variations of the voltage difference waveform from a pure exponential

decay. Figure 3.10(b) shows the reference signal Eref , calculated from E1

and E2. Eref is constant except for near the arrival of the pump where

a slight distortion originating from the detector response is visible.
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Figure 3.9: (a) The experimental waveform (points) of the voltage
difference V1−2 between the balanced detector photodiodes with an
exponential decay fit (solid line) extended to later times to represent
a typical shape of the voltage difference during experiments with the
simultaneous data acquisition scheme. The decay constant for the
voltage difference was found to be 1.02 ms. (b) The calculated values
of the constant A as a function of photodiodes decay time t under
the assumption that voltage difference V1−2 is composed of pure ex-

ponential decays.

3.5 Results

Frequency-resolved THz spectroscopy was performed on a 0.44 mm-thick

wafer of semi-insulating gallium arsenide (SI GaAs), which has become

the standard test material for TRTS for its well known Drude conduc-

tivity response [12, 139], carrier dynamics and optical absorption [145].

Figure 3.11 presents the complex sheet conductivity, ∆σ̃s, in SI GaAs

30 ps after 400 nm excitation. The applied pump fluence is 25 µJ/cm2,

what results in a maximum differential THz transmission of 21%. The
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Figure 3.10: (a) Measured E1 and E2 signals at the peak of THz
pulse after 400 nm excitation of semi-insulating silicon in a 1D pump-
probe experiment. (b) The recovered reference signal Eref = E1+AE2

(A = 1.33) indicating a disordered response at the arrival of the pump.

left column (a-c) shows data obtained with the standard data acqui-

sition method (Eref and ∆E (t) obtained in separate scans). Refer-

ence Eref (t), pump Epump (t) and differential ∆E (t) waveforms for Fig.

3.11(a) are presented in the Fig. 3.4. The right column (d-f) shows re-

sults of measurements in which the simultaneous data collection scheme

was applied. The individual plots differ from each other by the number

of measured THz pulses used for averaging, which was done in the time-

domain. The observed transient complex conductivity of photoexcited

SI GaAs can be well described by a simple Drude model, although to a

varying degree depending on data acquisition method and the number

of averaged scans. It is evident that the spectra extracted from the si-

multaneous detection scheme employed here are better represented by

the Drude model than the spectra obtained by separate acquisition.

Drude model fits to both ∆σ′s (ω) and ∆σ′′s (ω) data were performed

simultaneously using the Levenberg-Marquardt algorithm [146]. The
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Drude scattering time τ obtained using the separate and simultaneous

acquisition methods differ, and the standard method gives lower values

with greater variations. The results obtained with simultaneous data

acquisition are identical within error and the uncertainty decreases with

number of scans.

Comparing Fig. 3.11 (a) and (d) it can be seen that especially at high

frequencies the conductivity spectrum obtained using the simultaneous

method contains more noise. This behaviour can be explained by the

fact that only every third pump pulse is measured by the E2 signal, so

the signal to noise ratio (SNR) decreases by a factor of
√

3 in comparison

to the standard technique. This estimation of SNR is valid under the

assumptions that the main source of noise in the system is the laser.

In the case when the SNR is determined by the electrical noise from

photodiodes and lock-in amplifiers (∆E is not much higher than noise

on a base line), the fact that E2 = 1
2A∆E results in further decrease

in SNR by a factor of 2A. However, the factor of 2 which is gained in

data acquisition speed with the simultaneous method increases signal-

to-noise ratio by a factor of
√

2 for a given acquisition time. This is also

observed when comparing Fig. 3.11(c) and Fig. 3.11(f). Scattering of

data points at high frequencies, caused by the high ω roll-off of the THz

pulse power spectrum, decreases with the number of scans in the average.

The bandwidth at which the collected data agrees with the Drude model

increases with the number of scans only for the simultaneous detection

scheme.

Analyzing Figs. 3.11(a), (b) and (c) we find that the data obtained using

the standard method are characterized with lower point to point noise,

but the agreement with the Drude model is very poor. At frequencies

higher than 1.5 THz, ∆σ′s (ω) is higher than expected from the Drude

model, while ∆σ′′s (ω) is lower than expected. Such a difference can

have its origins in a small time shift between the reference Eref and

differential ∆E scans. A constant time shift ∆t results in a linear phase

shift ∆Φ (ω) = ω∆t. Based on the fact that cos (Φ + ∆Φ) ≈ cos (Φ) −
Φ∆Φ and sin (Φ + ∆Φ) ≈ sin (Φ) + ∆Φ (which holds for |∆Φ| � |Φ| �
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Figure 3.11: Complex sheet conductivities ∆σ̃s = ∆σ′s + i∆σ′′s of
photoexcitated SI GaAs, 30 ps after 400 nm excitation at room tem-
perature. Conductivity extracted by taking (a-c) two separately and
(d-f) simultaneously acquired reference and pump waveforms. The
lines over the conductivity data are simultaneous Drude fits to ∆σ′s

and ∆σ′′s with scattering times given in the figures.
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1) and using Eqs. 3.9 and 3.10 we find expressions for the measured

sheet conductivities ∆σ
′∗
s (ω) and ∆σ

′′∗
s (ω),

∆σ
′∗
s (ω) = ∆σ′s (ω)− N + 1

Z0

1

|T (ω)|
Φ∆Φ, (3.18)

∆σ
′′∗
s (ω) = ∆σ′′s (ω)− N + 1

Z0

1

|T (ω)|
∆Φ. (3.19)

A constant time shift influences both the real and imaginary part of

conductivity in a linear fashion with opposite signs of the corrections to

the real and the imaginary part (Φ is negative for a Drude response).

This phase error influences the results of the extracted conductivity more

at higher frequencies than lower frequencies. The relative error in the

phase will be less in the vicinity of the scattering rate since this is where

the transmission function has a peak in its phase response.

An analysis of the data in Fig. 3.11(c) shows that a constant time shift

of 17 fs between the reference and differential scans can explain most

of the disagreement between the data and the Drude model. The new

value for the scattering time taking this shift into account is 141 ± 7

fs and is in better agreement with that obtained using simultaneous

data acquisition scheme. To test the simultaneous data acquisition, we

similarly performed a fit including a floating time shift correction to data

from figure 3.11(f). A time shift of 1.0 ± 0.5 fs was found to improve

the Chi2 of the fit, but this is on level of accuracy of delay lines and

confirms the principle of simultaneous scans acquisition.

A small time shift between the reference transient Eref and the differ-

ential ∆E can have several origins. It can be a result of a change in the

optical path between the THz generation and gating pulse (on the order

of few just few µm), which can be caused by temperature changes of the

optical table and elements on it, changes in the refractive index of air

due to variations in atmospheric humidity or N2 purging conditions, or

changes in the output of the laser system. Particularly changes in the

near infrared pulse duration can greatly impact the shape of the ampli-

tude spectrum of the generated THz radiation. Accurate spectroscopy
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therefore demands very stable laboratory conditions. Because a time

shift results in a linear phase shift, this requirement is even more im-

portant for high bandwidth spectroscopy. The simultaneous detection

scheme presented here eases the demands of these stability conditions.

We note that in this case the conductivity response of the tested mate-

rial was known in advance to be of Drude form. In more exotic materials

where the response is unknown, elimination of these artifacts resulting

from instability in experimental conditions is imperative for accurate

spectroscopy and interpretation of the experimental data.

Figure 3.12: Complex sheet conductivity 1 ps after photoexcita-
tion with 400 nm light at a fluence of 1.9 mJ/cm2 for (a) P3HT, (b)
P3HT:PCBM, (c) CdSe nanorods and (d) P3HT:CdSe nanorods as
an example of non-Drude conductivity studied with simultaneous ref-
erence and differential waveform acquisition. The real conductivity
increases with frequency, the imaginary conductivity is negative and
both real and imaginary components are comparable in magnitude

over the THz bandwidth. (from [133])

This developed by us method of simultaneous reference and differen-

tial waveform acquisition has been successfully applied in other experi-

ments. Systems exhibiting pure Drude photoconductivity response (as
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semiconductors [147]), and non-Drude response (InGaN/GaN multiple

quantum well [128], black silicon [128] and conjugated polymer/CdSe

nanorod composites [133] - Fig. 3.12) have been investigated. A similar

method of two lockin detection for time-resolved terahertz spectroscopy

was independently developed by Golde et al. [148].

3.6 Conclusions

In summary, we have suscessfully applied 1.4 mm-thick [010] BNA gen-

eration crystal combined with 0.3 mm-thick [110] GaP detection crystal

to perform TRTS experiments with a bandwidth expanding from 0.1 to

nearly 6 THz, which is over two time broader then similar setup based

on ZnTe. We developed a new method for simultaneous data acquisition

in time-resolved terahertz spectroscopy experiments. We have applied

this method to extract the sheet conductivity of photoexcited carriers

in SI GaAs and compared the results with those of a standard data ac-

quisition scheme. We have shown that application of the new method

minimizes errors in spectrally resolved photoconductivity data originat-

ing from fluctuations in the laser system output and timing errors in the

THz pulse detection.



Chapter 4

Imaging THz field insidea

parallel plate waveguide

Guiding of terahertz waves by various structures is a topic of extensive

investigation [149]. Due to its unique properties such as dispersionless

propagation of the TEM mode with no frequency cut-off, the parallel

plate waveguide (PPWG) has attracted significant attention [104, 150–

154] . Recently a tapered PPWG (TPPWG) has been proposed [155–

157]. THz waves can be confined inside a TPPWG on subwavelength

scale in both transverse dimensions [158] thus enabling THz near-field

spectroscopy with subwavelength resolution. Recently a nanofocusing

of mid-infrared radiation has been experimentally illustrated [159]. The

TPPWG also offers significant field enhancement and thus has a big

potential for investigation of nonlinear THz phenomena with tabletop

laser sources, which in recent years has become a very active research

field. For experimental characterization of the TPPWG it is necessary to

characterize the electric field distribution inside the waveguide. Recently

a method based on scattering of the field from needle tip inserted into

the waveguide was demonstrated [160].

53
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In the first part of the chapter we present a short review of chosen

topic concerning THz waveguides. In more detail we describe parallel

plate waveguide, which is in the focus of this chapter. Thereafter a

short introduction to the air bias coherent detection of THz radiation

will be given. As a next part of the chapter we present a new non-

invasive method for characterization of the propagating electric field

inside a TPPWG. We adapt the air bias coherent detection (ABCD)

technique and apply it to a TPPWG in order to image the THz electric

field distribution inside the waveguide along the propagation direction

without disturbing the propagation of the guided THz wave. As an

application of the method we demonstrate the direct measurements of

the reflection coefficient for the THz wave at the end of the waveguide. In

the next part of the chapter we investigate field enhancement properties

of the TPPWG. We show that THz peak electric field exceeding 1.4

MV/cm can be obtained. That high values of electric field open exciting

possibilities of investigating THz nonlinear processes.

4.1 Terahertz waveguides

The majority of THz systems are based on free space propagation of

THz transients. At the same time THz waveguides show significant

potential in many applications, including THz based sensors [161], THz

communication [17, 162] and subwavelength imaging [163]. Development

of waveguides for terahertz waves is motivated by the necessity of remote

delivery of broad band terahertz radiation from a terahertz source to the

point of interaction with the sample. The main challenge the THz field

is facing, is a high loss in most structures; which is caused by either

absorption losses in the material or conduction losses for the structures

incorporating metals.

Variety of realized and proposed structures is very rich. So far the most

investigated structure for guiding THz waves is a parallel plate waveg-

uide, which in detail will be described in the next section of this chapter.
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To other metal structures allowing for THz propagation one can account

single [164–166] or double [167] metal wires, hollow circular and rectan-

gular metal waveguides [168, 169] or metallic slit waveguides [170]. THz

propagation on a metal surfaces in a form of Zennek surface waves has

been also demonstrated [171, 172]. A next big class of THz waveguides

are THz fibers, which include crystalline solid core fibers [173], polymer

solid core fibers [174, 175] and hollow core photonic crystal fibers [176–

178] and air-clad porous fiber with sub-wavelength features in the core

[179]. Losses in those structures vary from tens of dB/cm for dielectric

slab waveguides [180] and metal hollow core waveguides [168] to few

dB/m for metal wires with plasmon mediated guidance [164]. Losses

depend highly on the designed structure, but the general tendency is

that the tighter the confinement the higher losses.

4.2 Parallel plate waveguides

Fig. 4.1(a) shows the simple geometry of the parallel plate waveguide

(PPWG). PPWG consists of two conducting plates separated by a set

distance b and forming in this way a waveguide. Many variations of this

structure have been designed during years. Usually conducting plates are

made of a well conducting bulk metals (mainly copper and aluminum),

but constructions where plates are formed by thin evaporated metal

[181] or by transparent conducting oxide like fluorinated tin oxide (FTO)

[182] have been also used. The volume between the space can be filled

with dielectric [161, 183] or left empty, depending on the purpose of the

waveguide.

For the electric field polarized along y-direction and propagating in the

z-direction only transverse magnetic (TM) modes can exist. If the plates

are formed out of perfect conductor, the non-vanishing terms of the field
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Figure 4.1: (a) Schematic of the parallel plate waveguide. (b) Mode
profiles of the first three modes in PPWG.

components are [184]:

Hx (y, z) = Am cos
(mπ
b
y
)
e−iβzz, (4.1)

Ey (y, z) = −Amβz
ω0ε

cos
(mπ
b
y
)
e−iβzz, (4.2)

Ez (y, z) =
Am
iω0ε

(mπ
b

)
sin
(mπ
b
y
)
e−iβzz, (4.3)

and β2
z +

(mπ
b

)2
= β0 = ω2

0µε, (4.4)

where m = 0, 1, 2, ... is the order of the TM mode, 0 ≤ y ≤ b, Am is the

field amplitude, ω0 is THz wave angular frequency, µ and ε are magnetic

permeability and dielectric permittivity of the medium filling waveguide.

The cut-off frequencies are given by

fm =
mc

2b
√
µε
, (4.5)

where c is the speed of light. The lowest order TM0 mode is in fact

TEM mode. It has no cut-off frequency and for perfectly conducting

plates, it is dispersionless, meaning that phase and group velocity of the

whole structure are equal to the phase and group velocity of the filling

dielectric.

Fig 4.1(b) shows mode profiles of the first three TM modes in PPWG.

Modes have spatial dependence of cos (mπy/b). This dependence results
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in a uniform field profile for the TEM mode, odd profile for TM1 and even

for TM2 mode. It is important to note that all the modes are orthogonal

to each other. That implies that any field distribution can be expressed

as a superposition of waveguide modes. That allows for easy calculation

of coupling coefficients of incoming field into the waveguide modes. For

example Gaussian beam, which has a even symmetry, will excite only

even modes (TEM, TM2, TM4) and the coupling coefficients will be

given by overlap integrals. Presented theory predicts that for infinitely

wide PPWGs mode profiles have no frequency dependance. That is due

to the strong boundary conditions at the conductor-dielectric interfaces.

Recently it has been experimentally shown that finite-width PPWGs

with real (not perfect) metals exhibit transition frequency above which

TEM-like mode changes its field profile and propagates as a plasmonic

mode [160].

The propagation losses in a ideal PPWG come from two sources: con-

duction losses from currents in metal plates and dielectric losses from

the medium filling the waveguide. In case of the PPWG filled with dry

air/nitrogen the second type of losses is obviously vanishing. The first

type of losses arises from the finite conductivity of the metal. The THz

field after propagating for distance L along the waveguide is attenuated

by factor e−αL/2. The attenuation constant α for the TEM mode coming

from the Ohmic losses can be expressed by [185]

α =
2nRs
Z0b

(4.6)

where Rs =
√
πfµ/σ is a surface resistivity, n is the refractive index of

the material filling waveguide, Z0 free space impedance and σ the con-

ductivity of the metal. From this equation two important observations

are seen. First of all losses of the TEM mode in the PPWG depend

inversely proportionally on the plate separation b, and secondly they

increase with frequency as a square root. This situation is different for

higher order modes, where Ohmic losses for frequencies above cut-off are

decreasing [151].
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4.3 Air bias coherent detection
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Figure 4.2: Schematic diagram of air bias coherent detection.

Coherent detection of THz radiation is based on the interaction between

the laser pulse Iω and the THz electric field ETHz in the presence of the

external oscillating electric field Ebias [34]. Figure 4.2 shows a simple

geometry of the air bias coherent detection (ABCD) setup. By focusing

the terahertz pulse with a probe fundamental (ω) beam without addition

of external bias, an optical field at second harmonic (2ω) is emitted:

E2ω (~r, t) ∝ χ(3)
xxxxETHz (~r, t)Eω (~r, t)Eω (~r, t) , (4.7)

where χ
(3)
xxxx is the third-order nonlinear susceptibility of the gas. All the

fields on the Fig. 4.2 are polarized along x-direction. For the moment

lets consider interaction only at one point (~r, t) and omit time-space

coordinates. Since E2ω ∝ ETHzEωEω, the intensity of the second har-

monic is proportional to the intensity of the THz wave I2ω ∝ ITHz. The

signal measured in this way is incoherent, and its applications are lim-

ited. To realize coherent detection, external ac bias field with amplitude

Ebias is added at the point of the optical focus. The phase of the exter-

nal field relative to the THz pulse trains is oscillating from 0◦ to 180◦

with every other THz pulse, changing in this way direction of the bias
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field. The external ac bias together with fundamental beam generates

second harmonic pulse with field amplitude ELO2ω ∝ χ(3)IωEbias, which

mixes with terahertz induced second harmonic ETHz2ω ∝ χ(3)IωETHz.

The total second-harmonic intensity has a form

I2ω ∝
(
ETHz2ω ± ELO2ω

)2
=
(
ETHz2ω

)2 ± 2ETHz2ω ELO2ω +
(
ELO2ω

)2
, (4.8)

where we assume that Ebias is constant during the interaction time be-

tween the THz transient and the probe pulse, and what can be also

written as

I2ω ∝
(
χ(3)Iω

)2 [
E2
THz ± 2EbiasETHz + E2

bias

]
. (4.9)

Due to the phase modulation of the bias field between 0◦ to 180◦, lock-

in detection can easily isolate the cross-term. The amplitude of second

harmonic intensity measured by the lock-in amplifier locked to the os-

cillation frequency of the high voltage modulator is equal to

I2ω ∝ 4
[
χ(3)Iω

]2
EbiasETHz. (4.10)

By changing the THz-probe time delay τ the full THz waveform can

be mapped out. Since the detection of the THz radiation occurs in a

nearly non-absorbing and non-dispersive medium, the spectrum is only

limited by the properties of the laser probing pulse. In contrast to

the free space electrooptic sampling in crystals, the measured spectrum

is not disturbed by crystal phonon modes and accurately corresponds

to the spectrum of the incident THz pulse. More over the acquired

waveform does not suffer from reflections in the crystal and the spectral

resolution can be increased by increasing the length of the measurement

time window. The optimal intensity of the probe beam is such that

it does not cause creation of plasma, what would lead to a white light

generation and result in increased noise measured by the photomultiplier

tube. On the other hand, it has been shown that for very high probe

intensities (� 6 · 1014 W/cm2) the generated second harmonic (SH) can

act as a local oscillating field, so coherent detection is possible without
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need external ac bias [32]. However this method is characterized by

much poorer signal to noise ratio. THz detection in other gases than

just air has been investigated and it has been found out that the THz

ABCD detection in xenon can be more efficient [186]. Further more by

applying balance detection signal to noise ratio of ADCD scheme can be

improved [101].

4.4 Imaging terahertz field inside parallel plate

waveguide

THz

NIR pump

LiNbO3

Lens

2000 l/mm

HWP

TPPWG

THz

4"

3"

x

z

Figure 4.3: Schematic of THz generation and coupling to the ta-
pered parallel plate waveguide. THz radiation is generated using tilted
wavefront method in LiNbO3. A pair of 4” and 3” off-axis parabolic
mirrors is used to couple THz into the TPPWG. Inset shows THz spot
at the input to the TPPWG measured using pyroelectric detector with
a 250 µm-diameter aperture has elliptical shape with FWHMs inten-
sity of 1.6 mm along x-direction and 0.7 mm along y-direction. HWP

- half wave plate.

Here we present a novel non-invasive method for characterization of the

propagating electric transients inside a tapered parallel plate waveguide

(TPPWG). For this purpose we adapt previously described ABCD tech-

nique and apply it to a TPPWG in order to image the THz electric field

distribution inside the waveguide along the propagation direction. This
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method does not disturb the propagating THz field. In a closer detail

we look at the influence of the cross-directional propagation.

translation stage

THzTHz 
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time delay

THz

NIR probe

THz

TPPWG
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z
x

y
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Figure 4.4: Schematic of the air photonic setup for non-invasive field
imaging inside a tapered parallel plate waveguide. THz radiation is
coupled into the TPPWG, propagates along it and then interacts with
NIR probe inducing second harmonic generation in the presence of
oscillating local electric bias field. L1, L2 - lenses, F - 400 nm bandpass
filter, HVM - high voltage modulator, PMT - photomultiplying tube,

HWP - half wave plate.

Figures 4.3 and 4.4 show the schematics of the experimental setup. The

TPPWG consists of two electrically isolated, fine polished aluminum

plates of varying width (input 3 mm, output 49 µm) and a varying plate

separation. The input plate separation to the waveguide is set to 1 mm,

while the output plate separation can be varied between 0µm and 500
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µm by help of a micrometric stage. Aluminum was chosen as a mate-

rial for metal plates because of its combination of high conductivity and

hardness, that is needed for low loss propagation and possibility of man-

ufacturing narrow tips. The total length of the TPPWG is 25.4 mm. A

high voltage modulator (HVM) delivering ±100 V at 500 Hz (synchro-

nized with first subharmonic of the laser repetition rate) is connected to

the waveguide plates. The applied voltage results in an electric bias field

of ±5 kV/cm at the point of the narrowest gap between metal plates

for 200 µm plate separation. Broadband THz pulses are generated by

tilted pulsefront optical rectification in LiNbO3 (described in chapter

2.2.2) using near-infrared (NIR) 0.6 mJ pump pulse from a 1 kHz, 90 fs,

800 nm regenerative Ti:sapphire femtosecond laser amplifier (Spectra-

Physics Hurricane). The intensity front of fs pulses is tilted by a 2000

line/mm holographic grating and imaged by a 63 mm-focal length lens

with demagnification factor of 2 onto the front surface of a stoichiomet-

ric LiNbO3 crystal at room temperature. THz pulse energies up to 0.5

µJ measured directly after the LiNbO3 were obtained. Pair of 50.8 mm-

diameter, 101.6 mm- and 76.2 mm-focal length off-axis parabolic mirror

is used to collimate and focus THz radiation at the input to the TPPWG.

A pyroelectric detector with a 0.25 mm-diameter aperture mounted on

a x-y motorized translation stage was used to image THz field intensity

at the input to the waveguide. The THz beam has an elliptical shape,

shown in the inset to the Fig. 4.3, with intensity FWHMs of 1.6 mm

along x-direction and 0.7 mm along y-direction. The THz wave couples

into the TPPWG, propagates between the aluminium plates in a TEM

mode and then couples out into the free space at the narrow end of the

waveguide. A NIR beam from the same laser is used for probing the

THz field between the plates of the waveguide. The probe beam is fo-

cused in the center of the volume between the plates with a 19 mm-focal

length lens (L1) and recollimated after the waveguide with lens L2. The

beam waist at the focus point has been estimated to be 6.5 µm and

the Rayleigh range is 41 µm. The highest NIR pulse energy limited to

18 µJ in order to avoid ionization of the air. This part of the setup is
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mounted on a translation stage, that enables scanning along the waveg-

uide (z- direction). The beam is sent through 400 nm bandpass filters

to a photomultiplier tube (PMT) which detects the 400-nm light gener-

ated in the ABCD process. The signal from the PMT is measured by

a lock-in amplifier referenced to HVM modulation frequency. The po-

larizations of the four interacting electric fields (terahertz, fundamental,

second harmonic and bias) are perpendicular to the waveguide plates.

In the standard ABCD configuration the probe pulse and the THz tran-

sient propagate collinearly through the area of a bias field. For a given

THz-probe delay time τ , each point of the NIR probe interacts with

the same part of a THz waveform through out the whole interaction

length. Thus the detected second harmonic intensity I2ω (τ) is propor-

tional to the time convolution between the THz waveform ETHz (t) and

the square of probe intensity I2
ω (t):

I2ω (τ) ∝ Ebias
∫
ETHz (t) I2

ω (τ − t) dt. (4.11)

In our configuration the THz transient and the probe pulse propagate in

perpendicular directions. In this case for a given THz-probe delay time

τ , each point of the NIR probe interacts with a moving THz waveform

and the intensity I2ω (τ) of the generated SH is expressed as:

I2ω (τ) ∝
∫
Ebias (~r)

(∫
ETHz (t, ~r) I2

ω (t+ τ, ~r) dt

)
d3~r. (4.12)

In the above equation the inner integral is a temporal cross-correlation

between the THz transient and the square of the probe beam intensity

at the space point ~r, while the outer integral sums contributions from

each point of the interaction volume.

We now consider our case of a 800 nm, 90 fs-long NIR pulse in a focused

Gaussian beam of waist 6.5 µm and a Rayleigh range of 41 µm. The

beam is focused in a uniform THz field restrained to a volume of thick-

ness Lx (inset in Fig. 4.5(a)). The maximum induced SH I2ωmax as a
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Figure 4.5: (a) Normalized maximum second harmonic intensity I2ω
as a function of interaction length Lx between fundamental and THz
beams. The 800 nm beam waist at the focus point has been calculated
to be 6.5 µm and the Rayleigh range is 41 µm, pulse duration 90 fs.
Inset presents considered geometry. (b) Normalized response function

R (f) for Lx = 20µm, 80µm and 200µm.

function of Lx calculated with Eq. 4.12 is shown in Fig. 4.5(a). Single-

cycle THz transient with frequency components in the range 0.05 - 3.0

THz was used for the calculations. For Lx shorter than the Rayleigh

range the interaction length between the THz wave and the probe is de-

fined by Lx. In the opposite limit of Lx longer than the Rayleigh range

I2ω saturates. The interaction length is limited by the geometrical di-

mensions of the focus of the probe beam, as indicated by the quadratic
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dependence of Iω in Eq. 4.12. This is valid as long as the wavelength of

the highest frequency components within the THz transient is shorter

than the Rayleigh range of the probe beam. The response function

R (f) = I2ω (f) /ETHz (f), which describes the spectral response, has

been evaluated for different widths of the THz region as shown in Fig.

4.5(b). For small Lx the response function is monotonously decreasing

with frequency. For larger Lx the effects of positive and negative part

of THz waveform can interfere leading to sharp dips in the response.

In Fig. 4.6(a) we show a 2D map of THz induced SH I2ω (τ, z) as a

function of the THz transient-probe delay time τ for different positions

z of the probe beam along the waveguide can be obtained. Two THz

transients are visible in the plot: the first transient, centered at 5 ps

time delay, is the incident pulse propagating inside the waveguide. The

second transient, propagating in the opposite direction, originates from

the reflection at the waveguide end (position z = 0 mm) due to the

impedance mismatch between the waveguide (z < 0) and free space

(z > 0). Values of I2ω (t, z) for z < 0 has been corrected for the local

bias field Ebias (z), which changes with the plate separation. We have

to note that for z > 0 (outside the waveguide) the bias electric field

quickly decays which leads to vanishing I2ω (t, z). Fig. 4.6(b) shows the

retrieved and simulated peak value of THz electric field as a function of

NIR probe position z along the waveguide. To calculate ETHz (t, z) the

values of I2ω (t, z) have been corrected using the width of metal plates

(and correspondingly by the interaction length Lx (z)) according to the

dependence from Fig. 4.5(a). The time-domain numerical simulation

was performed with CST Microwave Studio for a TPPWG made of alu-

minium treated as a lossy metal with conductivity of σ = 3.56 · 107

S/m [187]. The simulation agrees well with the measurement except

for z > 0 where the fast decrease in the measured value is caused by

the rapid decay of Ebias outside the waveguide. The dip at z = −0.15

mm has its origins in the interference between incident and reflected

wave. The shape of the TPPWG structure can cause field enhance-

ment in the proximity of the waveguide edges (propagating THz edge
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Figure 4.6: (a) 2D map of THz induced second harmonic I2ω (t) as
a function of THz wave-probe delay time for different positions of the
probe beam along the waveguide. Values of I2ω (t) have been corrected
for the bias field. (b) Measured and simulated integrated peak THz
electric field across the waveguide as a function of NIR probe position

z.

plasmons)[158], while the calculated value of ETHz (t, z) is an integrated

value of the THz electric field along the probe direction within the in-

teraction volume. If additional freedom of the scanning stage movement

along directions x and y is available, then edge enhancement effects
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can also be investigated using our method, with a transverse resolution

determined by the Rayleigh range of the probe beam.

Fig. 4.7 shows measured frequency dependent amplitude reflection co-

efficient Γ (f) = Erefl (f) /Einc (f) of the waveguide end together with

the result of a numerical simulation. For a good temporal separation

between the incident and reflected pulses, the data (shown at the inset

to the Fig. 4.7) is taken at a point z = −0.9 mm from the waveg-

uide end. That implies that the presented reflection coefficient Γ in-

cludes not only reflection but also propagation effects, such as ohmic

losses and wave scattering, which will lead to additional reduction of

the amplitude of the reflected field. The reflection of the THz wave

is caused by impedance mismatch between free space Z0 = 377Ω and

the waveguide ZPPWG =
√

(R+ iωL) / (G+ iωC), where R, L, G, C

are correspondingly distributed resistance, inductance, conductance and

capacitance of the waveguide. We observe that the reflection coeffi-

cient Γ = (ZPPWG − Z0) / (ZPPWG + Z0) decreases with increasing THz fre-

quency, as it is expected since short waves are easier to squeeze through

subwavelength gap. We find good agreement between measurement and

simulation in the frequency range 0.1 - 0.5 THz. At higher frequencies

the measured reflection coefficient Γ is smaller than theoretically pre-

dicted. This can be caused by the increased wave scattering (especially

important at higher frequencies and at interfaces) [188] and increased

ohmic losses at higher frequencies.

4.5 Field enhancement inside tapered parallel

plate waveguide

Figure 4.8 shows the output intensity distributions of the THz electric

field measured using a pyroelectric detector with a 0.25 mm-diameter

aperture placed 0.8 mm away from the waveguide tip for output gaps

of 0 µm, 20 µm and 200 µm with the input gap Bin = 1 mm. For

the closed waveguide no THz field is transmitted directly through the
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Figure 4.7: Measured and simulated frequency dependent amplitude
reflection coefficient Γ of the waveguide end. Waveform from point

z = −0.9 mm shown in the inset.

output. However we are able to observe THz waves that leaked around

the tip - blurred halo around the center of the scan. The vertical lines

visible on the picture come from the THz waves that propagate on the

outside vertical walls of the waveguide. For the open gaps the majority

of the THz wave propagates through the gap and dominates the pic-

tures. Those strong burst of THz radiation, even for output gaps that

are over one order of magnitude smaller than the THz wavelength, indi-

cate that high THz intensities are focused below diffraction limit. This

subwavelength energy concentration opens possibility of strong field en-

hancement which will be discussed below.

First we will try to estimate in an analytical manner the field enhance-

ment at the output of the waveguide. Lets consider 1D-tapered infinitely

wide PPWG with THz wave propagating as a TEM mode. In the case

of PPWG tapered in the y-direction, the plate spacing b is a function of
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Figure 4.8: Output intensity distributions measured using pyroelec-
tric detector with a 0.25 mm-diameter aperture placed 0.8 mm away
from the waveguide tip for output gaps Bout of 0 µm, 20 µm and 200

µm. Bin = 1 mm.

the position z along the waveguide

b (z) = Bin −
Bin −Bout
LWG

z, (4.13)

where Bin and Bout are plate separations at the input and output to the

waveguide, LWG is the total length of the waveguide. As a result the

attenuation constant, expressed by Eq. 4.6, is also a function of position

along the waveguide

α (z) =
2Rs

Z0b (z)
=

2Rs

Z0

(
Bin − Bin−Bout

LWG
z
) , (4.14)

where Rs =
√
πfµ/σ is the surface resistivity. The differential equation

for the field amplitude along the waveguide is of the form:

dE = E (z + dz)− E (z) = −α (z)

2
E (z) dz, (4.15)

dE

E
= − Rs

Z0

(
Bin − Bin−Bout

LWG
z
)dz. (4.16)
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By integrating both sides of above equation, the electric field as a func-

tion of position inside the waveguide is found in a form

E (z) = E0

[
1−

(
1− Bout

Bin

)
z

LWG

]Rs
Z0

LWG
Bin−Bout

. (4.17)

The field reduction FR at the output to the waveguide due to Ohmic

attenuation is equal to:

FR =
E (z = LWG)

E0
=

[
Bout
Bin

]√πfµ/σ
Z0

LWG
Bin−Bout

. (4.18)
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Figure 4.9: Calculated field reduction FR due to Ohmic losses at the
output of a 1D-tapered PPWG as a function of the output gap Bout

for 0.5, 1.0 and 2.0 THz. Data for input plate spacing Bin = 1000µm,
the total length of the waveguide LWG = 25.4 mm and conductivity

of the metal σ = 3.56 · 107 S/m.

Figure 4.9 shows the calculated field reduction FR at the output of a

1D-tapered PPWG as a function of the output gap Bout for the field

frequencies of 0.5, 1.0 and 2.0 THz. Lines are calculated using Eq.

4.18, where the conductivity of aluminum was set to σ = 3.56 · 107 S/m

[187], input plate spacing Bin = 1000 µm, and the total length of the
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waveguide LWG = 25.4 mm. It can be seen on the figure that the field

reduction depends strongly on the output plate separation Bout, in a way

that the larger the plate separation the smaller the losses. Hence the

attenuation coefficient α increases with the frequency of the propagating

THz field as a
√
f , and therefore the field reduction FR is also frequency

dependent.
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Figure 4.10: Calculated field enhancement FE at the output of a
2D-tapered PPWG as a function of the output gap Bout for 0.5, 1.0
and 2.0 THz. The field enhancement is achieved by energy squeezing
in the area between metal plates. Data for Bin = 1000µm, Win =
3000µm, Wout = 49µm, LWG = 25.4 mm and conductivity of the

metal σ = 3.56 · 107 S/m.

The analytical calculation of field reduction FR, which is presented

above, is only an indication of the average Ohmic loss along a PPWG

tapered in one direction, and does not include the fact that the THz en-

ergy of a THz wave is getting squeezed to a smaller area. The TPPWG

investigated in this thesis has two-dimensional tapering in directions per-

pendicular to the propagation of THz wave. Now we will assume that

a THz wave, which is uniformly distributed across input facet, is con-

fined within the volume between metal plates. That is the transmitted

total power is constant: E2 (z)A (z) /ZWG (z) = const, where A (z) is a
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cross-sectional area and ZWG (z) is impedance of the waveguide at the

position z. Neglecting changes of impedance along the waveguide (what

is reasonable since Zin ≈ 126 Ω and Zout ≈ 153 Ω for Bout = 20 µm,

calculated using ZWG = 120πb/w) [189]), one can present the field en-

hancement as the product of the field reduction FR and the geometrical

factor
√

Aout
Ain

:

FE = C

√
Aout
Ain

FR, (4.19)

FE = C

√
Wout

Win

Bout
Bin

[
Bout
Bin

]√πfµ/σ
Z0

LWG
Bin−Bout

, (4.20)

where Ain, Aout, Win and Wout are correspondingly the input and the

output area and the width of the TPPWG. C is the coupling coefficient

of the Gaussian input excitation beam EG and the uniform field distri-

bution EU of the TEM eigen mode of the TPPWG at the its input. The

constant C can be calculated using the mode overlap integral [190]:

C =

∣∣∫ EGE∗UdA∣∣√∫
|EG|2 dA

√∫
|EU |2 dA

. (4.21)

We note that an overlap integral as given above is useful for calculating

mode amplitudes. For many situations, such as coupling of optical power

into a mode, the square of the overlap integral is relevant. The coupling

constant C between the Gaussian input excitation mode and uniform

field distribution of the TEM mode for 1 mm plate spacing has been

calculated to be 0.877. Figure 4.10 shows calculated field enhancement

FE at the output of a TPPWG. In the figure we can see that the field

enhancement increases with decreasing output plate separation. Values

above 45 are achieved for Bout smaller than 20 µm. The presented

calculations do not account for diffraction losses nor reflection from the

non-perfect impedance matching, and because of that the actual values

of FE will be lower. The argumentat does not take into account either

that the mode profile may depend on the plate width and separation,
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neither that the absorption constant may be different for finite width

PPWG.

The time-domain numerical simulations are performed with CST Mi-

crowave Studio for a full size TPPWG made of aluminium treated as a

lossy metal. The TPPWG is divided into 40 · 106 mesh cells. Perfectly

matched layer (PML) boundary conditions are used. Simulations are

performed on a 12-core processor computer workstation with 48GB of

memory and take ∼ 4.5 hours of computing time each. The THz beam

at the input to the waveguide has shape close to elliptical Gaussian,

with FWHM in intensity of 1.6 mm along x-direction and 0.7 mm along

y-direction. Figure 4.11 shows the peak electric field at the central point

between metal plates along the TPPWG for output gaps Bout of 20, 40,

60, 100, 140 and 200 µm. The electric field is normalized to the maxi-

mum of Gaussian field at the input to the waveguide. The input to the

waveguide is at z = −25.4 mm and the output at z = 0.0 mm. During

the first 7 mm of the waveguide the THz peak electric field oscillates.

Those changes are caused by mode fitting between Gaussian mode and

TEM mode. In the last 18 mm of the waveguide gradual increase of the

peak THz electric field happens. Field enhancement higher than a factor

of 20 is achieved for the output gap of 20 µm. At z = 0 THz field couples

out of the TPPWG, and for z > 0 the peak electric field decreases due to

strong diffraction. The smaller the output gap the bigger the diffraction

angle in the vertical direction and the faster the decrease of the peak

electric field. Also the reflection coefficient is larger for smaller gaps, so

less energy couples out when Bout is narrow.

Figure 4.12 shows the calculated distributions of the y-component of the

peak THz electric field along the TPPWG for a few chosen positions z.

The field at the input (z = −25.1 mm) of the waveguide has an elliptical

gaussian distribution. The general trend visible from presented field

distribution is that the majority of the energy of the THz field is confined

within the area between metal plates. The confinement is tighter the

closer the metal plates are. At the position of z = −9.1 mm the field has

a distribution more resembling the uniform field distribution of the TEM
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Figure 4.11: Simulated peak electric field along the TPPWG for
output gaps Bout of 20, 40, 60, 100, 140 and 200 µm. Electric field
is normalized to the field at the input to the waveguide. Field values
for the center points between plates. Input to the waveguide is at z =
−25.4 mm and the output at z = 0.0 mm. Data for Bin = 1000 µm,
Win = 3000 µm, Wout = 49 µm, LWG = 25.4 mm and conductivity

of the metal σ = 3.56 · 107 S/m.

mode, with exception of proximity to edges of the waveguide, where it

is enhanced. This effect has been previously reported by Zhan et al.

[157], and can be explained by the presence of THz propagating edge

plasmon. Once the THz transient couples out of the TPPWG the THz

beam rapidly diffracts. In Fig. 4.12(j) a blurred halo around the center

of the image and the vertical lines that come from the THz waves that

propagate on the outside vertical walls of the waveguide are visible, what

is in agreement with measurements shown at Fig. 4.8(a) and (b).
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Figure 4.12: Distributions of the y-component of the peak THz
electric field along the TPPWG for Bout of (a-e) 200 µm and (f-j) 20
µm at positions along the waveguide z = −25.1, −9.1, −4.1, −0.1 and
0.9 mm. Note that scales in the left and right column are different
(left column range is 0 to 20000 V/m, while for the right column has

range from 0 to 100000 V/m).
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Figure 4.13 shows the ratio between THz field enhancement simulated

using CST Microwave Studio FEsim and calculated in analytical man-

ner FEan using Eq. 4.20 at the output of the TPPWG for different

sizes of the output gap Bout. The main difference between FEsim and

FEan is that the second one does not account for wave diffraction in the

x-direction, so FEsim
FEan

is a good representation of diffraction losses. It is

clear that diffraction losses increase with increasing output gap separa-

tion. This effect can be explained using the contrast between effective

waveguide impedance ZWG and a free space impedance Z0. Narrowing

plate separation increases effective waveguide impedance ZWG. Higher

contrast between ZWG and Z0 leads to higher reflection coefficient in the

x-direction, which means that the THz wave is tighter confined within

the waveguide. This effect is analogous to solid core optical fibers, where

high contrast in refractive index gives tight confinement of the optical

wave. A single exponential decay has been fitted to the data points in

Fig. 4.13 with parameters shown in the figure. The agreement between

data points and the exponential decay is very good. The long distance

limit of FEsim
FEan

(Bout →∞) fit is 0.174 ± 0.011. This result is in agree-

ment with work of Zhan et al. [157], who has experimentally showed that

the field confinement in the area between plates of a PPWG decreases

exponentially with increasing plate separation.

To experimentally verify THz field enhancement by TPPWG two meth-

ods are used. The first method is to detect THz radiation using free space

electro-optic sampling outside the TPPWG and then to use outcoupling

coefficients, delivered by numerical simulation, to compute fields at the

output of the waveguide. The second method is based on detection of

THz induced second harmonic and is similar to the ABCD method.

Figure 4.14 show a schematic of the free space electro-optic setup for de-

tection of the THz field at the output of the tapered parallel plate waveg-

uide. NIR probe pulses from the same laser amplifier are focused using

a 50 mm-focal length lens onto 300 µm-thick [110] GaP crystal. Part

of the NIR probe enters the GaP crystal and is reflected from the back

surface of the electro-optic crystal and copropagates with THz radiation.
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Figure 4.13: Calculated diffraction losses in a TPPWG as a func-
tion of the output gap Bout for THz wave at 1.0 THz. Solid line
shows exponential decay fit. Data for Bin = 1000µm, Win = 3000µm,
Wout = 49µm, LWG = 25.4 mm and conductivity of the metal

σ = 3.56 · 107 S/m.
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Figure 4.14: Schematic of the electro-optic detection of output from
the tapered parallel plate waveguide. THz radiation is generated using
the tilted wavefront method in LiNbO3, coupled into the TPPWG,
propagates along it, couples out and is detected in 300 µm-thick [110]
GaP crystal in reflection configuration. Distance between output of

TPPWG and the GaP crystal is ∼ 360µm.



Chapter 4. Imaging THz field inside a parallel plate waveguide 78

The beam waist at the focus point has been estimated to be approxi-

mately 20 µm. The lens is mounted on a micrometric xyz-translation

stage for an accurate alignment on the crystal. Due to unfortunate ge-

ometrical restrictions the distance between GaP crystal and waveguide

output can not be shorter than 300 µm. The THz electric field induces

a phase retardation between polarization components of the NIR probe.

The phase retardation is measured by the balanced detection. The same

setup was used to detect THz field at the input to the waveguide.

The second method of calibrating the electric field of the THz wave at

the output of the TPPWG is based on measuring the THz induced SH

intensity. According to Eq. 4.9 the total second harmonic generated as

a result of interaction between the THz transient, the fundamental pulse

and the DC bias electric field is expressed by

I2ω ∝
(
χ(3)Iω

)2 [
E2
THz + 2EbiasETHz + E2

bias

]
. (4.22)

Now, instead of modulating Ebias as it is done in the ABCD method, we

will modulate the THz beam by inserting an optical chopper in its path.

A lock-in amplifier is locked to chopper frequency and detects following

SH intensity

I2ω ∝ [E2
THz + 2EbiasETHz]. (4.23)

Performing two measurements of SH intensity: I0
2ω without and Ibias2ω

with known external DC bias, the absolute amplitude and sign of the

THz electric field can be determined:

x =
Ibias2ω − I0

2ω

I0
2ω

=
2EbiasETHz

E2
THz

, (4.24)

ETHz =
2Ebias
x

, (4.25)

where x is the modulation depth of the generated second harmonic.

Figure 4.15 shows measurements of intensity of the THz induced SH

without and with external 10 kV/cm bias at the output of TPPWG

with an output gap of 100 µm. Measurements are performed in the setup
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presented in Fig. 4.4. Because of the bipolar nature of the THz transient

one peak of the induced SH decreases in the presence of external field

while the other one increases. Using the method outlined above the

peak of the THz electric field has been calculated to be 295 kV/cm. To

check if the THz induced second harmonic has a nature described by Eq.

4.23, a pair of polarizers has been inserted in the path of THz beam. By

rotating the first polarizer, the THz field strength can be varied. Figure

4.16(a) shows the intensity of the generated SH as a function of E2
THz.

A linear dependence is clear for over two orders of magnitude of the THz

intensity. Figure 4.16(b) shows the difference of the generated SH in the

presence of external bias DC field, which is well described by a linear

function of ETHz.
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Figure 4.15: Intensity of THz induced second harmonic (SH) for
output gap of 100 µm with and without DC bias.

Figure 4.17 presents the collection of results of the peak THz field at

the output of the TPPWG for different output gaps Bout in the range

20 - 200 µm. Black squares are results of direct measurement using

THz-induced second harmonic generation. Unfortunately due to high

intensity of the probe beam (though still lower than plasma ionization

threshold) measurements of the THz field in this way for Bout smaller
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(a) (b)

Figure 4.16: (a) Intensity of generated SH as a function of E2
THz.

Red line shows best linear fit. (b) Difference of intensity of generated
SH (with and without external DC bias) as a function of ETHz. Red
line shows best linear fit. Bias field 8.5 kV/cm, output gap of the

TPPWG 140 µm. The peak THz field is 293 kV/cm.

than 60 µm resulted in a high chance of damaging the waveguide, so

values are presented only for Bout ≥ 60µm. Red circles in Fig. 4.17

represent values of peak THz electric field measured using electro-optic

detection in GaP crystal corrected by outcoupling coefficients. Previ-

ously described numerical CST Microwave Studio simulations were used

to obtain values of the outcoupling coefficients, which are calculated by

considering average THz electric field at the location of the GaP crys-

tal divided by peak value of the field at the tip of the waveguide. The

blue dashed line shows values of the THz field from CST Microwave

Studio simulation, using the previously described elliptical beam with

peak THz field of 68 kV/cm as input. All the three values of the peak

electric field at the tip of the TPPWG agree well with each other over

a wide range of Bout. The small differences can have different nature

of origins. For the THz field obtained by air-photonic method they can

be caused by non-uniform distribution of the bias field within the THz

beam. Deviations can also come from the fact that local field enhance-

ment at the edges of the waveguide were probed. The uncertainty of the

electro-optic values are increasing with decreasing the output gap size,

since the outcoupling coefficients are smaller. Error bars in the Fig. 4.17
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has been calculated on the basis of uncertainty of the distance between

the waveguide tip and GaP crystal. In any case the good agreement be-

tween different measurements indicate that very high values of the THz

field at the tip of the waveguide were achieved. For the output gap of

20 µm we estimated a value of over 1.4 MV/cm. Even higher values are

expected for smaller output gaps.

Figure 4.17: Peak electric field at the output of the TPPWG for
different output gaps Bout.

In Fig. 4.18(a) the waveforms of THz radiation transmitted through

the TPPWG for different output gaps Bout are shown. THz radiation

is detected in a 300 µm-thick [110] GaP crystal positioned 358± 30 µm

away from the waveguide output. No signs of group velocity dispersion

is visible. Small part of radiation that leaked around the tip is visible

for the closed waveguide output. Figure 4.18(b) shows output spectra

of THz radiation transmitted through the TPPWG for different out-

put gaps Bout, normalized to the input spectrum incident on the whole

waveguide. The spectra are presented on a logarithmic plot. The dashed

line shows the best fit to the spectrum according to Eq. 4.18, where THz
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Ohmic losses are proportional to the square root of frequency. The dip

at ∼ 1.7 THz comes from incomplete cancellation of water vapor ab-

sorption lines in the reference and sample spectra, due to 25.4 mm of

extra propagation in the humid air.

(a) (b)

Figure 4.18: (a) Measured waveforms and (b) spectra of THz ra-
diation transmitted through the TPPWG normalized to the input
spectrum. THz radiation is detected in 300 µm-thick [110] GaP crys-
tal positioned ∼ 360 µm away from the waveguide output. Dashed

line shows the best fit to the spectrum according to the Eq. 4.18.

4.6 Conclusions

In conclusion we have presented a novel non-invasive broadband method

of imaging the THz field inside PPWGs. The method does not disturb

the propagating THz field as exemplified by the measurement of the

THz reflection coefficient from the tip of the waveguide. The resolution

of the method is restricted by the geometrical dimensions of the NIR

probe focus spot only, while the frequency response depends on the

interaction length between THz and the NIR probe. We investigated

field enhancement properties of the TPPWG and we showed that a field

enhancement of over 20 is possible, resulting in THz peak electric field

exceeding 1.4 MV/cm for the output gaps of 20 µm. Field values were

measured using two methods: free-space electro-optic sampling and THz
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enhanced second harmonic generation. Obtained values agree with each

other and also with predictions from numerical simulations. Even higher

values of peak THz field are expected for smaller output gaps. Such

high values of electric field open exciting possibilities of investing THz

nonlinear processes.



Chapter 5

Terahertz radar cross

sections

Scattering of terahertz waves by conducting and dielectric objects is an

area of intensive investigation both from theoretical and experimental

side [191–195]. Time-domain based THz systems can provide a conve-

nient, fast and precise method of visualization of scattering centers. At

the same time, the measurement of the radar cross section (RCS) is

a standard technique, particularly important for military and defense-

related purposes, including detection and identification of aircrafts, ships

and other targets as well as for countermeasures such as RCS reduction

and stealth. The necessity for operating on massive objects, such as

full-size airplanes or ships, can make those measurements complicated,

time consuming, and expensive. Also the size of the platforms makes

it impractical to iterate the design and testing phases allowing only for

software calculations of RCS values with limited possibility of experi-

mental testing.

Submillimeter continuous wave systems based on molecular lasers with

bolometric detectors for characterization of RCS on scale targets have

85
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been previously investigated [196]. Poor signal to noise ratio, single fre-

quency operation and no possibility of depth resolution were important

factors limiting the application of those systems. In this chapter we

combine a time-domain based THz system and the RCS technique to

obtain RCS values at broadband THz frequencies with high signal to

noise ratio and depth resolution of 200µm. By employing scaling laws

we are able to scale values measured in the low THz range (0.1-2 THz)

into values that would be measured at radar frequencies. Typical radar

systems operate at a frequency range from hundreds of MHz up to a

few tens of GHz. This defines the scaling factor between THz waves

and radar waves from tens to a few hundreds, forcing scale objects to

be in the size range of a few centimeters and larger. Objects of such

dimensions are easy to handle and manipulate and allow for iterative

design and testing procedure, where the test object is manufactured by

a rapid prototyping system such as a computer numerically controlled

3D milling machine or a 3D printer.

Radar technology also opens the door for imaging objects using synthetic

aperture radars (SAR) and inverse synthetic aperture radars (ISAR),

which will be explained in chapter 5.1.1. The first works on this ground

using THz frequencies also have been performed [197–200]. Most of this

work is in its proof-of-concept phase and significant progress still has to

be achieved before THz SAR and ISAR imaging systems can be used

outside laboratories.

In this work we measure the THz RCS of scale models and present polar

and azimuthal time- and frequency resolved RCS plots of F-16 and F-35

fighter aircraft models rotated on a pedestal. The time domain sub-ps

resolution allows for sub-mm range resolution and also allows for iden-

tification of scattering points. The obtained sub-mm range resolution

for THz frequencies after upscaling to radar frequencies is comparable

with the resolution of modern radars. The shape of the model and po-

sitions of scattering parts are retrieved by the filtered back projection

algorithm.
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5.1 Radar Cross Sections (RCS)

The term radar comes from the phrase ”radio detection and ranging”.

Radar plays an important role in both military and civilian applications.

In the civilian systems, radar is used for navigation, air traffic control,

weather monitoring and altimetry. On the military side, radars perform

reconnaissance, surveillance and attack tasks. Military missions have

higher chances of success when detection by the enemy is avoided. For

this reason reduction of radar cross section has received high priority

in the design of new platforms such as airplanes, ships, missiles and

satellites. Those invisible to radar platforms have been described as

”stealth”. To be undetectable, it is necessary that the radar echo re-

turning to the receiver is below detection threshold. Stealth technology

has evolved as a countermeasure against radars and in a consequence

more sensitive radars have evolved to detect lower RCS platforms.
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Figure 5.1: (a) Monostatic and (b) bistatic radar configuration.

In the most general case, the radar transmitter and receiver can be

at different locations, as shown in Fig. 5.1(b). This is referred to as

bistatic radar. However, the transmitter and receiver are usually located

on the same platform and share antenna, which is called monostatic

configuration and has been depicted in Fig. 5.1(a). When a radar uses

two slightly separated antennas, it is called quasi monostatic. For the

purpose of this study, the quasi monostatic can be considered equal to
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monostatic, since the distance between antennas is much smaller than

the distance to the target.

Most radars operate in the frequency range of 10 MHz - 100 GHz, where

low frequencies are used for long range high power search radars and

higher frequencies for airborne compact short range radars. Typical

bandwidths are up to few percent of the central frequency. A modern

radar can provide a large amount of information about a target and the

environment, such as: 1) range, measured as the propagation time of a

radar pulse to the target and back, 2) velocity, by measuring the Doppler

frequency shift 3) size of the target, based on the scattered signal inten-

sity 4) target shape, determined by the magnitude as a function of the

viewing angle.
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Figure 5.2: Typical values of RCS for some natural and man-made
objects.

The RCS of a scattering target illuminated with radar radiation is a

parameter expressed in units of area which describes the intensity of the

wave reflected back to the radar. The most general definition of RCS

can be written as [201, 202],

RCS = lim
R→∞

4πR2 |Es|
2

|Ei|2
(5.1)

where Ei and Es are the incident and scattered electric fields, and R is

the distance between radar and target. In this definition the limiting

process is primarily introduced to ensure that the incident wave is a

plane wave which, in the optical design of our setup presented in Chap.

5.3, is fulfilled. As indicated in Fig. 5.2, typical values of RCS range

from ∼0.001 m2 for insects, ∼ 0.01 - 0.1 m2 for birds, ∼ 100 m2 for

fighter airplanes to over 10000 m2 for large ships. The RCS depends on
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many factors. Those include the size and shape of the target, incident

and reflected angle, ratio between the size of target and the wavelength,

polarization of the emitted and detected radiation and finally on the

properties of the material that the target is made of.

Below we will derive the radar range equation. Let us consider a mono-

static radar located a distance R from a target. The radar transmitter

power is Pt and the antenna gain is Gt. The incident power density at

the target Wi is given by

Wi =
PtGt
4πR2

. (5.2)

The RCS relates the incident power density Wi at the target to the

power scattered back in the direction of the observer Ws.

Ws =
PtGt
4πR2

·RCS · 1

4πR2
(5.3)

Power received by the detector Pr is the product of the scattered power

density Ws and effective receiving antenna area Aeff :

Pr =
PtGt

42π2R4
·RCS ·Aeff =

PtGt
42π2R4

RCS
Grλ

2

2π
, (5.4)

where Gr =
2πAeff
λ2

is the receiving antenna gain. Since Pr ∼ RCS/R4

that implies that if an airplane wants to be twice as close to the radar

and stay undetected it has to reduce RCS by factor of 24 = 16. This

strong dependance of maximum stealth RCS on the minimal radar-

target range underlines the importance of proper design of the aircraft

and its RCS characterization.

The wave scattering of a target is strongly dependent on the incident

wave frequency. There are three frequency regions in which the scatter-

ing characteristics are different. Those regions are distinguished by the

product of the incident wavevector k and the characteristic size of the

target L.
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- Low-frequency region, also called Rayleigh range, where k ·L� 1.

At those frequencies the phase variations of the incoming plane

wave across the target are small. The shape of the target’s body is

not important (e.g., a small metal sphere and a small metal cube

will have similar scattering pattern). Wave scattering is essentially

isotropic (direction independent). In general, RCS vs. k · L is

smooth and varies as 1/λ4 (as presented on the Fig. 5.3). Rayleigh

scattering of the sun light on microscopic air density fluctuations

is the phenomena that makes the sky blue.

- Resonance region, also called Mie range, where k · L ≈ 1. The

phase variations of the incoming plane wave across the target are

significant. All parts of the object contribute to the scattering

pattern. RCS vs. k · L will oscillate.

- High-frequency region, also called optical range. k · L � 1. Mul-

tiple 2π phase variations of the incoming plane wave across the

target. The scattered field is strongly angle dependent. Strong

narrow scattering peaks are possible due to the specular scatter-

ing (mirror-like reflection) by big flat surfaces. In general, in this

region RCS vs. k · L may be smooth and independent of λ.

A perfect illustration to those three frequency regions is the scattering

of electromagnetic waves on the most simple scatterer, which is a metal

sphere. The RCS of a perfectly conducting sphere with radius r as a

function of k · r is depicted in the Fig. 5.3. The presented RCS is

calculated on the base of the Mie theory [203, 204]. For k · r � 1 the

RCS varies as 1/λ4, for k · r ≈ 1 the RCS oscillates around πr2 and for

k · r > 1 a metal sphere has a frequency independent RCS equal to its

physical cross section area RCS = πr2.

For a conducting cylinder the largest RCS = 2πrh2/λ is achieved at the

specular angle, where h is the height of the cylinder. The RCS of a flat

conducting plate with sides a and b decreases rapidly with angle from
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Figure 5.3: RCS of a perfectly conducting sphere of radius r as a
function of k · r product.
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Figure 5.4: Maximum RCS of (a) sphere (b) cylinder (c) flat plate.

the maximum value RCS = 4πa2b2/λ2 at the specular reflection angle,

which has been depicted in the Fig. 5.5.

The RCS should ideally be a parameter describing the target and should

not depend on the target-detector distance. This statement is valid only

for sufficiently large distances. Let us consider a flat conducting disc

with radius r0, which can be treated as a perfect reflector. Figure 5.6

shows the RCS at the specular reflection angle as a function of the

disc-radar distance R, calculated using RCS (R) = 4πR2 |Es(R)|2

|Ei|2
. The

scattered field Es (R) has been found using Fresnel diffraction integral.

For short distances |Es|2 = |Ei|2 and the RCS increases as R2 with
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Figure 5.5: Normalized peak-to-peak electric field scattered by a 15
cm in diameter flat plate measured as a function of azimuthal plate
orientation. Blue line represents noise level without the plate in the

THz path.

modulation which originates in interferences. For longer distances wave

diffraction becomes dominant and |Es|2 ∝ 1/R2 implying that the RCS

saturates. It can be shown that the RCS of a circular flat disc reaches

91% of its long-distance value at a distance R = 3r2
0/λ. The distance

where the RCS reaches its far-distance value is shorter for objects with

smaller radius of curvature. Also, the angular distribution of scattered

electric field depends on the distance from the target. It may seem

counterintuitive that RCS increases with the distance to the radar. It

can be explained a bit more on the example of a radar operator. If

radar detects an unknown object, the distance to the object R can be

computed using time of flight of the scattered signal. The radar operator,

knowing the power of his radar, may calculate value of the electric field

at the position of scatterer. Hence one measures scattered field, one can

calculate RCS using equation 4πR2 |Es|2

|Ei|2
. Now if the object is closer to

the radar, the computed values of R, Es and Ei will be different, so RCS

can also change. Even though the calculated value of RCS can decrease,

it does not mean that the object will be less visible to the radar, simply
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because according to Eq. 5.4 power received by radar increases with

decreasing distance faster (Pr ∼ RCS/R4).
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Figure 5.6: RCS of a flat conducting disc of a radius r0 = 12 mm
as a function of disc-radar distance R. THz radiation at frequency of
1 THz is incident and scattered at normal angle. RCS reaches 91%
of its long-distance value RCS∞ = 4π3r40/λ

2 = 28.6 m2 at a distance
R = 3r20/λ = 143 cm. The RCS is over 63000 times larger than the

geometrical cross section.

The RCS of objects typically encountered by radars are more compli-

cated than simple spheres, cylinders or plates. But the scattering pat-

tern of any complex targets can be decomposed into primitives (basic

geometrical shapes). It is possible to express the total scattered electric

field as a superposition of fields scattered by the individual source on

the target:

|Es| =

∣∣∣∣∣
Ns∑
n=1

Esn

∣∣∣∣∣ , (5.5)

where Ns is the number of primitive scattering objects. Each of the

basic objects may be characterized by different frequency and angle de-

pendent scattering mechanism. For RCS measurements the three most

important scattering mechanisms are:



Chapter 5. Terahertz radar cross sections 94

- Reflections. This mechanism gives the highest RCS peaks, but

peaks are limited to the number or reflecting surfaces. Multiple

surfaces can produce multiple reflection (e.g. corner reflector).

- Diffraction. Diffracted waves originate at discontinuities on the

target, such as edges and tips. Scattered fields are less intense but

appear in a wide angular range.

- Surface waves. Electromagnetic waves that propagate along the

target and then are reemitted in the direction of the receiver. One

example are creeping waves, which travel around a curved object.

5.1.1 Synthetic aperture and inverse synthetic aperture

radar imaging

A Synthetic Aperture Radar (SAR), is a coherent radar system which

utilizes the movement of the radar platform to electronically simulate

an extremely large antenna or an aperture. This procedure generates

high-resolution remote sensing images. The synthetic aperture radars

are mostly airborne or spaceborne sidelooking systems. The SAR works

similar to a phased array, but in contrast to a large number of the parallel

antenna elements of a phased array, SAR uses one antenna in different

locations. The different geometric positions of the antenna elements are

a result of the moving platform.

Complimentary to SAR is the inverse synthetic aperture radar (ISAR)

systems. The ISAR technology uses movement of the target rather than

emitter to create the synthetic aperture. High resolution ISAR images

allow for discrimination between various missiles, military and civilian

aircrafts. If the investigated target is rotated by an angle ∆θ, the phase

φ of the object will change proportionally to the cross-range (direction

perpendicular to the radar wave propagation) distanceX from the center

of rotation to the target as it undergoes a change in range according to

the formula: φ ≈ 2π∆θX/λ. Therefore, if the change of the phase φ
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of the target is measured over a finite angular extent, the cross-range

coordinate X of the scatterer can be calculated by performing a simple

Fourier transform. In a similar way, the downrange distance (along the

radar wave propagation) to the target can be calculated by varying the

frequency of the radar and carefully measuring the change in the phase

of the scatterers. For accurate ISAR imaging, high resolution frequency

determination of the phase of scattered field is needed. Also very high

phase stability is required. To obtain a 2D image, the investigated object

has to be rotated independently along two perpendicular axes, which are

perpendicularly oriented to the radar wave propagation. The acquired

2D matrix of phase values of the scattered field is Fourier transformed

to obtain 2D image of the scattering centers.

5.2 Terahertz Computed Tomography

Tomography is a cross-sectional imaging of objects, obtained by mea-

suring the transmitted or reflected radiation. The most common type of

tomography is computed tomography (CT), in which digital geometry

processing is used to generate a three-dimensional image of the inside

of an object from a large series of images taken around a single axis

of rotation. Particularly popular version of CT is a X-ray CT, which

through out years has become a standard medical imaging techniques

(Nobel prize in 1979). Although primarily used in medicine, CT is also

used in other fields, such as nondestructive materials testing, archaeol-

ogy, paleontology and biological studies.

In computed tomography investigated object is rotated by 360◦ along

single rotation axis. Next the object is divided into set of slices along

this rotation axis. For each slice a set of line scans indexed by the slice

orientation round the rotation axis is measured. Those line scans are

also called as shadow images and are connected to the optical properties
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Figure 5.7: Schematic of the Radon transform. The Radon trans-
form R {f} (r, θ) of the function f (x, y) represents a total object op-
tical density integrated along the L (r, θ) line. Line L (r, θ) is defined

by the distance to the rotation axis r and the angle θ.

of the investigated slice by a Radon transform [205]:

R {f} (r, θ) =

∫
L(r,θ)

f (x, y) ds, (5.6)

where f (x, y) is a function describing the properties of the scanned

object. In case of X-ray CT, f (x, y) ds represents the probability that

the radiation is absorbed or scattered in the section ds along a straight

line L (r, θ). For each shadow image filtered backprojection algorithm

[206] can be used to invert Eq. 5.6 and obtain 2D tomography slice.

The basic idea behind back projection method is to populate pixels of

the reconstructed image with the shadow projections back along the

directions they were measured (hence the name ”back projection”) to

obtain a rough approximation to the original. The back projections from

different angles will add constructively in regions they originate from.
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Unfortunately this solution gives blurring of the image and high-pass

spatial filtering is needed to make the back projected image sharp. A

set of 2D tomography slices stacked together give a full 3D image.

Terahertz computed tomography, demonstrated first by Ferguson and

co-workers [207], is a growing imaging technique [208–210]. There are

several differences between THz and X-ray CT, which come from the

different nature of wave interaction with matter. In the X-ray range

choosing the absorption as the f (x, y) function is straightforward and it

is a good representation of the density of the object. In the THz range

different quantities have been used: total transmitted power, time of

flight of the THz pulse or the phase of transmitted radiation. The next

difference arises from the fact that the THz beam propagation can not be

accurately described as a straight ray-line, which is valid for X-ray. The

wavelength of THz radiation is seven order of magnitude longer than X-

ray, so the diffraction and scattering can blur and deform reconstruction

image. Also choice of the reconstruction algorithm is an important factor

and can improve the quality of the reconstructed image [211]. In most

cases THz CT is performed in the transmission configuration, but the

reflection configuration has also been investigated [212].

5.3 Experimental Setup

A schematic diagram of our THz RCS setup is shown in Fig. 5.8. A re-

generative Ti:sapphire femtosecond laser amplifier delivers 35 fs, 2.9 mJ

pulses with center wavelength of 800 nm at a 1 kHz repetition rate. The

laser output is split into a source beam for THz pulse generation and a

gating beam for THz detection by free-space electro-optic sampling. THz

waves are generated by optical rectification in lithium niobate LiNbO3

crystal applying the tilted pulse front method, described in chapter 2.2.2.

The intensity front of fs pulses is tilted by a 1714 line/mm grating and

imaged by a 75 mm lens with demagnification factor of 2 onto the front

surface of a stoichiometric LiNbO3 crystal at room temperature. The
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LiNbO3 crystal was doped with 2% of MgO to prevent photorefractive

damage [213]. The highest THz peak electric field in the focused THz

beam achieved in our setup is at least 40 kV/cm, limited predominantly

by the high angular and material dispersion inside the LiNbO3 crystal of

the 60 nm-FWHM pump pulses. The high efficiency of THz generation

allows us to obtain high dynamic range of the setup up to 43 dB, defined

as ratio between the peak electric field to the noise floor for the THz

beam reflected in a specular angle off a metal mirror bigger than the

THz beam - (blue line in the Fig. 5.5). The near-infrared light trans-

mitted through the LiNbO3 crystal is blocked by a black polyethylene

sheet, which is highly transmissive for the THz pulse.
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Figure 5.8: (a) Schematic diagram of the THz RCS setup. (b) 10
cm-long 1:150-scale metal model of aircraft fighter F-16.

A pair of off-axis parabolic mirrors with focal lengths of 25.4 mm and

516.8 mm and diameters of 25.4 mm and 101.6 mm respectively is used

to expand the THz beam and subsequently to collimate it. The wide,
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collimated THz beam propagates 1200 mm towards the target which is

placed on a computer-controlled rotation platform. The expansion optics

increases the THz beam size by a factor of 20, which leads to a spatial

FWHM of 73 mm of the THz electric field at the object distance. The

electric field of the THz transient is polarized in the vertical plane. The

scattered THz radiation is collected by a 170 mm−diameter flat metal

mirror at a distance of 1200 mm from the target, and focused using a

101.6 mm-diameter, 152.4 mm-focal length off-axis paraboloidal mirror

onto a detection crystal. The scattered THz radiation thus travels 1430

mm before it reaches the detector. The angle between the incident and

scattered radiation is 6.6◦ and therefore our RCS measurements are in

principle bistatic, but in practice reasonably close to a monostatic radar

configuration. A truly monostatic configuration can be achieved by using

a thick wedge silicon beam splitter and a normal incidence. Such a

configuration will inevitably reduce the dynamic range due to reflection

losses on the beam splitter. All THz and infrared beams propagate

at a height of 160 mm above optical table which is sufficient to avoid

reflections from the table surface. The setup is aligned using a big 170

mm-diameter metal mirror in a place of the scattering object. This

mirror reflects all THz radiation in the direction of the receiver. The

complete THz beam path is purged by dry nitrogen to avoid absorption

by water vapor in the atmosphere.

The 800 nm probe beam is directed through a small hole in the center of

off-axis parabolic mirror for collinear detection. A computer-controlled

delay stage is used to map the temporal THz pulse shape. The electric

field of the THz transients is detected by free-space electrooptic sampling

in a [110] zinc telluride (ZnTe) crystal (2 mm-thick). A second passive

[100] 2mm-thick ZnTe crystal with anti-reflective coating for 800 nm

light on one facet is stacked together with the active crystal to increase

temporal separation between the directly transmitted THz pulse (tran-

sient A in Fig. 5.9(a)) and the pulse that experience two reflections in

the detection crystals (transient B in Fig. 5.9(a)) [214]. The time delay

between these two pulses is 89 ps. The temporal order of incoming pulses
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Figure 5.9: (a) THz waveform reflected from a 170 mm-diameter
metal flat disk. The transient include the main THz pulse (labeled
A), a partial reflection of the main pulse inside the detection crystals
(labeled B), and a part of the main pulse undergoing multiple reflec-
tions in the LiNbO3 crystal (labeled C). (b) The amplitude spectrum
of the generated THz radiation obtained as a Fourier transform of a

50 ps-wide time window around transient A.

is further complicated by an additional THz pulse (transient C in Fig.

5.9(a)) which experiences multiple reflections inside LiNbO3 crystal and

arrives at detector 160ps after the main pulse. Between transient A and

pulse B (at 60 ps) there is also a small pulse visible, which has its origins

in imperfections of the boundary between the [110] detection crystal and

the [100] inactive spacer crystal. The FWHM of the main THz transient

of 0.96 ps allows for distinction of two different point scatterers sepa-

rated by 144 µm along the THz propagation direction. Figure 5.9(b)

shows the amplitude spectrum of the detected THz radiation obtained

from a Fourier transform of a 50 ps time window around transient A.

The amplitude spectrum extends from 0.02 THz up to 3 THz, but 95%

of the generated THz energy lies within 0.1 THz - 1.0 THz range. The
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longest THz waves that are generated in our setup have a wave vector

of k = 2π/λ =∼ 2 mm−1 (at ∼ 0.1 THz), so for all the investigated

objects (L > 1 mm) we are in the optical regime (kL� 1).

The target objects are placed on a support column of polystyrene foam,

which consists of 97% air or other gases and only 3% polymer, and thus

has low refractive index of 1.02 in the THz range [215]. Furthermore, the

polystyrene foam is cut in a shape which resembles a tapered diamond

column, which reflects all the THz radiation away from the detector.

No signs of volume reflections from the thousands of internal cells in the

foam structure have been observed. No THz signal has been measured

without samples positioned on the polystyrene support column above the

background noise level. The investigated target was a 1:150-scale model

of aircraft fighter F-16. The model was 10 cm long with a wingspan of

6.7 cm. The object was made of painted metal with elements such as

missiles, nose and undercarriage made of plastic.

5.4 Terahertz radar cross section on scale mod-

els of aircrafts

Before the RCS measurements are performed in the previously described

setup, the linearity check and calibration of the setup has to be executed.

We have decided to do it using the most standard technique, based on

the field scattering from conducting spheres. Figure 5.10 shows the peak

scattered electric field as a function of metal sphere diameter between

2 and 45 mm. The steel spheres are placed on the polystyrene column

and centered in the THz beam. The data are results of averaging up to

25 single THz waveforms. Since all the frequency components arrive in

phase at the peak of the THz transient, the squared value of the peak

electric field Ep accurately represents the energy carried by the pulse.

Since RCSsphere = πr2 and RCSsphere ∼ E2
p , we find that Ep ∼ r. This

linear relationship is shown in Fig. 5.10 from which the coefficient of

proportionality is obtained by linear regression (red line). For metal
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Figure 5.10: The peak electric field of THz radiation scattered from
a conducting sphere as a function of sphere diameter. The red line
shows the best linear fit to the experimental data. The horizontal
green line represents the average noise level in single scan measure-
ment. The red and green curves intercept at the point corresponding

to a sphere of 0.98 mm diameter.

spheres with diameter larger than the THz beam waist dependence of

Ep of sphere radius will become sublinear, and will saturate at a constant

value at the limit of r → ∞, when all the THz radiation is reflected to

the detector. The horizontal green line in Fig. 5.10 represents the noise

level of a single scan. The smallest detectable sphere in a single scan

has a diameter of 0.98 mm (crossing of the red and green line).

For complicated structures, which we will be dealing with below, the

electric field from multiple point scatterers overlap and another method

is required for calculating the RCS. For the purposes of this article we

introduce a frequency-averaged RCS, which can be defined by:

RCS = πr2
0

∫ T
0 |Eobject (t)|2∫ T

0 |Ecal (t)|2 −
∫ T

0 |Ebg (t)|2
, (5.7)
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where Eobject (t) is the detected electric field from the scattering object

as a function of time t, Ecal (t) the electric field scattered by calibrated

metallic spheres of RCS = πr2
0 , and Ebg (t) represents background

noise measured as a signal without the sample on the support column.

The standard procedure to calibrate a RCS setup is substitution by a

metal sphere of known RCS. Since we measure not only the intensity of

electromagnetic radiation but the field itself we can also introduce the

frequency resolved RCS defined as follows:

RCS = πr2
0

|Eobject (ω)|2

|Ecal (ω)|2 − |Ebg (ω)|2
, (5.8)

where Ei (ω) is the Fourier transform of Ei (t).

Figure 5.11: THz transient E (t) and its instantaneous amplitude
Ea (t) = |E (t) + i ·H {E} (t)|

The instantaneous amplitude of the function u (t) is the absolute value of

the complex analytic signal ua (t) = |u (t) + i ·H {u} (t)|, whereH {u} (t)

is the Hilbert transform [216] of a function u (t), and which can be ex-

pressed using following formula:

H {u} (t) =
1

π
p.v.

∫ ∞
−∞

u (τ)

t− τ
dτ, (5.9)
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where p.v. stands for principal value. For example for a pure sinusoid,

the instantaneous amplitude is a constant, while for single-cycle electro-

magnetic pulses the instantaneous amplitude is a good representation of

the envelope function - Fig. 5.11.

Figure 5.12(a) shows the logarithm of the instantaneous amplitude of the

THz waveforms vs. polar angle and range (calculated from the time-of-

flight of the reflected THz pulse and the speed of light), recorded on

the F-16 scale model. In such high range resolution maps the single

point scatterers are seen as sine functions (sinograms) of the rotation

angle. 0◦ position on Fig. 5.12(a) corresponds to the position where

the nose of the airplane faces the incoming THz radiation, while 180◦ is

tail-on. Clear traces of scattering originating at the airplane nose, wing

tips, fuselage, tail and exhaust pipe are visible. Figure 5.12(b) shows

the frequency-averaged polar RCS for the investigated scale model. The

values of RCS vary from 1.4 cm2 (seen from the front of the airplane)

up to 193 cm2 (seen from a wing side). The RCS plot is rotated slightly

counter-clockwise with respect to the orientation of the symmetry plane

because of the 6.6◦ bistatic design of the setup. The RCS plot is also

asymmetric due to a possible minor unintentional azimuthal tilt of the

scale model. Figure 5.12(c) presents again the logarithm of the instanta-

neous amplitude of the THz waveforms, now as function of the azimuthal

angle and range. On the azimuthal map, the orientation 0◦ corresponds

to the situation at which the airplane is exposed to THz radiation di-

rectly from above. Scattering from wing surfaces and edges, tail, fuselage

and even plastic missiles is easily distinguishable. However, due to pulse

reflections B and C in Fig. 5.9(a) some of the sinograms are repeated

with a delay corresponding to the delay between the reflections, but at

significantly lower amplitudes. By inspection of Fig. 5.12(d) we no-

tice that the largest RCS in the azimuthal configuration is when the

airplane is seen exactly from below (1208 cm2) and above (881 cm2).

The smallest RCS is observed just below the wings. The RCS plot is

again counter-clockwise rotated with respect to the orientation of the

symmetry plane due to the bistatic nature of measurement. Scaling
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by a factor of 1502 can provide the RCS of a full-sized F-16 measured

at a distance of 150 · 143 cm = 214.5 m at frequency ∼ 3 GHz. This

scaling approach is only valid as far as the model is a true scale copy

of the original and under the assumption that the material reflection

properties are unchanged as function of frequency. This scaling assump-

tion is true for metals between the GHz and THz frequencies, but may

be invalid for the dielectric objects. Both data sets were measured in

the configuration where the incoming THz radiation was polarized in

the vertical direction. Obtained results would have been different if the

THz radiation was polarized in the horizontal direction. We can expect

that the biggest differences would come from objects with dimensions in

one direction longer than the THz wavelength and in the perpendicular

direction comparable or shorter than the THz wavelength, such as thin

wires or sharp edges (e.g. wing or tail tips). The FWHM of the instan-

taneous amplitude of the main THz transient from the Fig. 5.9(a) is 1.8

ps, which gives range resolution of presented sinograms of 270µm.

RCS measurements have also been performed on a 1:150-scale metal

model of the aircraft fighter F-35. Fig. 5.13 shows frequency-averaged

polar RCS for the investigated scale model. When comparing RCS

for F-16 (Fig. 5.12(b)) and for F-35 (Fig. 5.13), few differences are

visible. All values of RCS for F-35 fighter are smaller. Secondly, the

biggest differences are at angles 90◦ and 270◦. The fighter F-16 has a

vertically oriented tail, which gives a strong specular reflections at those

angles. Small azimuthal tilt of the model causes the RCS peaks to be

asymmetric. At the same time F-35 has two tails, each of them tilted

by 20◦ from the vertical axis so the specular reflections are avoided and

measured RCS is ∼ 10 time lower.

Figure 5.14 shows values of the frequency-resolved THz RCS of the

scale model of the F-16 fighter in the azimuthal configuration for fre-

quencies 0.3, 0.7 and 1.1 THz. We notice that at angles where the THz

waves are reflected from large plane surfaces (0◦ and 180◦ - from the

wing surfaces and at 90◦ and 270◦ from the tail surface), the RCS at

high frequencies is larger than at low frequencies, in agreement with the
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Figure 5.12: Logarithm of the instantaneous amplitude of THz
waveforms scattered from the F-16 scale model shown in Fig. 5.8(b)
for different (a) polar and (c) azimuthal angles and (b), (d) their
frequency-averaged RCS. Letter marks indicate positions of differ-
ent scattering parts of the airplane model: nose (N), wing tips (WT),
wing surface (WS), vertical tail surface (VTS), vertical tail tip (VTT),
fuselage (F), missiles (M1, M2). Additionally letters marks A, B and
C show example of the main transient and two echoes (according to

Fig. 5.9(a)).

frequency-dependent nature of wave scattering by objects with different

curvatures.

Our THz radar system is similar to a reflection tomography setup [212].

Each sinogram contains enough information about the target to trans-

form it into a two-dimensional image of the target. The filtered back

projection algorithm (FBP) [206] is one possible method to retrieve the

spatial distribution of scatterers. However, the FBP algorithm does not
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Figure 5.13: Frequency-averaged polar RCS of a metal model of
aircraft fighter F-35
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Figure 5.14: Frequency-resolved azimuthal RCS of a metal model of
the fighter aircraft F-16 at frequencies 0.3, 0.7 and 1.1 THz. The pre-
sented data are averaged within a frequency interval of +/− 20GHz.
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Figure 5.15: (a) Metal test target (b) Logarithm of the instan-
taneous amplitude of THz waveforms scattered from the metal test
target. (c) Cross section of the test target reconstructed using filtered
back projection algorithm (d) Cross section of the test target recon-
structed using filtered back projection algorithm with windowing out

flat surface reflections.

include wave diffraction effects which leads to artifacts that we demon-

strate by measurements on a metal test target shown in Fig. 5.15(a).

The test target is an elongated cuboid (20 x 20 mm in cross section)

with two 4 x 4 mm grooves cut in its cross-section profile. Addition-

ally on one of the sides a 4 mm-thick step was introduced to make the

structure more asymmetric. Figure 5.15(b) shows sinogram for the test

target. Data are taken with 1◦ angular resolution. Figure 5.15(c) shows

the FBP reconstruction using data from Fig. 5.15(b). Because of the

small sizes of the test object (for most of the angles echoes B and C

do not overlap in time with the real reflected signals) it was possible

to apply simple time windowing function that would minimize effects of
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echoes B and C. The reconstructed image represents the actual shape

of the target well. However, the image is not free from artifacts in the

form of lines crossing the whole image, with the tendency for large plane

surfaces to be represented by stronger and longer lines. This behavior

originates in the fact that the FBP algorithm does not compensate for

diffraction of scattered waves. That effect is especially important at in-

termediate target-detector distances, where the angular distribution of

electric field depends strongly on object size and shape. In our case the

detector is placed 143 cm away from the target. At this distance, the

RCS reaches 91% of its long-distance value for a plane metal plate of

radius r0 =
√
Rλ/3 = 12 mm at a frequency of 1 THz (what has been

also presented at Fig. 5.6). This implies that for flat objects bigger than

12 mm, the angular distribution of the scattered electric field is strongly

dependent on the size of the target even within a class of objects with

the same shape. A more complete reconstruction algorithm would have

to take such diffraction effects into account. To further illustrate this

weakness of the FBP algorithm in the form that we have applied here,

we window out the intense, localized reflections from flat surfaces in the

sinogram in Fig. 5.15(b), since these reflections are the main source of

error. Figure 5.15(d) shows the result of the FBP algorithm after win-

dowing. The picture is much clearer and in a better way represents all

the point and edge scatterers. The depth resolution of a single angle

scan is 270µm, but because FBP uses many projections for image recon-

struction, both depth and lateral resolution of the reconstructed image

is 270/
√

2 = 191µm.

Finally we have applied the FBP algorithm, with and without windowing

on the data from the model aircraft sinogram in Fig. 5.12(c), and the

results are shown in Fig. 5.16. The outline shape of the airplane can be

easily recognized. Also particular scatterers such as fuselage, tail, wings,

end of the wings and even missiles are distinguishable.
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Figure 5.16: Projected cross section of the scale model of the F-
16 aircraft reconstructed using the filtered back projection algorithm
on data from Fig. 5.12(c) without (a) and with (b) windowing out
flat surface reflections. Letter marks indicate positions of different
scattering parts of the airplane model: wing tips (WT), wing (W),

tail (T), fuselage (F) and missiles (M1, M2).
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5.5 Stealth metamaterial objects characterized

in the far field by Radar Cross Section mea-

surements

Stealth technology, that includes reduction of RCS, radar jamming and

deception techniques, is an ongoing trend in the design of new aircrafts,

ships and ground vehicles, which aims to make them less visible (ideally

invisible) to radars. For a full control over RCS, both the shape and the

material that the object is made of, has to be optimized. The geomet-

rical approach to reduction of RCS is based on using multiple angled

surfaces, that reflect incoming electromagnetic radiation away from the

radar - a beautiful example is Lockheed F-117 Nighthawk aircraft. Mul-

tiple surfaces that give return reflections like corner reflector should be

also avoided. Complimentary approach is to use radar absorbing mate-

rials (RAM) that give low reflections. RAMs can be realized in several

different ways, that include foam absorbers for anechoic chambers, can-

celation of phase shifted ways reflected from multilayered materials, and

radar absorbing paints. Due to their broadband absorption spectrum

and planar configuration radar absorbing paints are probably most use-

ful for the military aircraft industry. Most of RAMs are based on ferrites,

which are ceramic materials with a cubic crystalline structure and chem-

ical formula MOFe2O3, where Fe2O3 is iron oxide and MO refers to a

combination of two or more divalent metal oxides. Different metal oxides

create ferrites that exhibit different magnetic and absorptive properties.

The reduction of wave reflection from ferrites is based on the fact that

they can have complex magnetic permeability equal (or nearly equal)

to complex dielectric constant, what results in their impedance equal to

that of free space. Ferrites can provide 10 - 25 dB of absorption between

30 MHz and 1 GHz.

As we have explained in the chapter 5.1, scaling law of transforming

RCS values measured at THz frequencies to the RCS values at radio

frequencies is valid only if the electric properties of the material are
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the same in those two frequency ranges. This condition is basically

fulfilled in case of metals. For example for copper with DC conductiv-

ity of σDC = 5.7 · 107 S/m, the THz reflectivity is 0.9972 at 1 THz,

while reflectivity at 1 GHz is 0.99991 [136], which gives the difference

of reflection factors smaller than 3 · 10−3 � 0.99991. The situation is

more complicated for dielectric materials, for which dielectric function

ε (ω) may have completely different values at radio frequency and cor-

responding THz frequency. The lack of natural materials, which would

allow for designing electromagnetic response, has led to the development

of new artificial materials - metamaterials (MMs). Most metamaterials

are based on a periodic arrangement of a single unit cell structure, which

mimics the natural occurring crystal structure. Unit cells of metama-

terials are much larger than atoms or even single molecules, but still

shorter than the wavelength of the electromagnetic wave that they are

designed for. The response of such metamaterial is based on electro-

magnetic resonances in fabricated fundamental elements, and can be

tailored for specific applications. Metamaterials exhibit numerous novel

effects, such as negative refractive index [217], perfect lensing [218, 219]

or cloaking [220]. Fabrication and optical characterization of metamate-

rial films designed for THz frequencies is a very active area in the THz

field [221–223]. THz MM enabled the demonstration of device concepts

such as frequency-agile filters [224], absorbers [225–227], polarizers [228],

modulators for THz radiation [229–231] and sensing devices [232].

In this chapter we apply a near-unity absorbing MM as a way to reduce

the radar cross section of an object, and consider the real-life situa-

tion where the probe beam is significantly larger than the MM film and

the object under investigation. Thus we need to be concerned not only

about the intrinsic properties of the MM film, but also on scattering

from edges of the object and other disturbances. The metamaterial

absorber is based on the principle of minimal transmission and simul-

taneously, minimal reflection [225, 227]. By manipulating resonances in

dielectric permittivity ε and magnetic permeability µ of the metama-

terial independently, it is possible to absorb both the incident electric
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Figure 5.17: (a) Unit cell layout and dimensions of the metamate-
rial absorber. (b) Metamaterial foil wrapped around an aluminium

cylinder with circumference 80 mm. PI: polyimide spacer.

and magnetic field. Additionally, by matching ε and µ, a metamaterial

can be impedance-matched to free space, minimizing reflectivity. Tao

et al. [226] recently designed, fabricated and characterized thin, flexible

films of near-unity resonant metamaterial-based absorbers which could

be wrapped around mm-sized cylinders [233]. The real-world applica-

tions of such absorbing materials are plentiful, including suppression of

unwanted reflections, stealth operation, and frequency-selective filters

for chemical imaging applications [234, 235]. We follow closely this de-

sign, with a geometry shown in Fig. 5.17. A 12 µm thick polyimide

(PI) layer is covered with a 200 nm thick gold layer, followed by another

12 µm thick layer of PI. On top of this sandwich structure a periodic

array of split-ring resonator (SRR) is defined in 200 nm thick gold by

UV lithography, with SRR side lengths of 54.5 µm, capacitor gap of 2

µm, and line width of 4 µm, and a lattice period of 75 µm, as illustrated

in Figure 5.17(a).

The resonant electromagnetic response to an electric field applied par-

allel to the central capacitor is due to the LC resonator formed by the

two inductive loops on each side of the central capacitor and a dipolar

response of the side conductors. For electric fields polarized perpendicu-

larly to the central capacitor leads, a single dipole resonance is expected.

The metamaterial array forms an active area of 20x10 mm, flanked by
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metal surface for the two polarizations of the incident THz field: paral-
lel (red curve) and perpendicular (black curve) to the central capacitor

leads.
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pads of dimensions 10x10 mm, consisting of the gold layer embedded be-

tween the PI layers but without MM structures defined on the top. The

full sample of dimensions 40x10 mm is wrapped around an aluminium

cylinder with circumference 80 mm and height 10 mm, thus covering

exactly half of the circumference of the cylinder. The MM absorber was

attached to the cylinder by double-sided sticky tape. The macroscopic

sample geometry is illustrated in Fig. 5.17(b).

First, the normal-incidence reflection spectra were recorded with a refle-

ction-type THz-TDS system based on low-temperature-grown GaAs pho-

toconductive emitters and detectors (Menlo Systems) and driven by a

femtosecond oscillator (Femtolasers Fusion 300 Pro). The experimental

setup is illustrated schematically in Fig. 5.18(a). For this measurements

MM sample is placed on a flat aluminum mounting plate. Briefly, the

THz beam is coupled from the emitter onto the sample at normal in-

cidence by a 2-mm thick high-resistivity silicon wafer. The reflected

beam is transmitted back through the beamsplitter and directed to the

detector. The spot size of the THz probe beam on the sample for this

measurement is slightly below 1 mm, measured as the 10-90% rise dis-

tance of the reflection signal when scanned over a razor blade edge. The

focusing is achieved by a polymer lens with 40 mm focal length.

The reflection spectrum recorded at a position close to the center of the

sample active area is shown in Fig. 5.18(b), for the two polarizations

of the incident THz field: parallel (red curve) and perpendicular (black

curve) to the central capacitor leads. The LC resonance is seen as a sharp

dip in the reflection coefficient, reaching a minimum reflectivity of -27

dB at 0.89 THz. Power transmission through the sample is estimated

to be smaller than 0.0067, what has been calculated on the base of

the skin depth of 80 nm [236, 237] for 1 THz radiation through a 200

nm gold layer. Power reflectivity of -27 dB with transmission T <

0.0067 corresponds to an absorptivity A = 1 − R − T = 0.9913. A

second, less pronounced reflectivity minimum is seen at 1.9 THz. For

the perpendicular polarization the dipole resonance is seen as a relatively

broad reflectivity minimum reaching -7.5 dB at 1.35 THz. A weak,
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secondary reflectivity minimum is observed at 1.6 THz. The reflectivity

spectra are each normalized to the reflectivity of the blank metal surfaces

at the each side of the active area.
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Figure 5.19: (a) Position-dependent power reflection spectrum of
the sample along the direction indicated. (b) Position-dependent re-
flection coefficient at representative frequencies 0.42, 0.89 and 1.32

THz as indicated by cross-lines in (a).

In Fig. 5.19(a) we have plotted the positional dependence of the power

reflectivity spectrum of the sample across its surface along the route

indicated in the illustration above the diagram. The LC resonance is

clearly visible at 0.89 THz in the region from -7 to +9 mm. Near the

edges of the MM array the resonance is blurred and abruptly shifted

to a higher frequency of 1.3 THz. While this edge effect is subjected

to ongoing further investigations we believe that it is a signature of the

finite size of the MM array and modified coupling between the MM cells

near the edge of the sample area, due to the neighbor interactions [238].

In addition to this significant modification of the reflection spectrum

we observe a slight variation across the active area of the resonance fre-

quency of the order of 0.03 THz around the average resonance frequency

of 0.89 THz. This may be due to fabrication inaccuracies of the flexible

film or the subsequent significant handling of the film during repeated

attachment and release on various metallic objects.
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Figure 5.20: RCS measurements of the MM-covered cylinder at
0.40, 0.87, and 1.30 THz.

Figure 5.19(b) shows the positional dependence of the power reflectivity

at specific frequencies (0.42, 0.89, and 1.32 THz) across the sample, as

indicated by cross-lines in Fig. 5.19(a). For 0.42 THz the reflectivity

is uniform except of the edges of the sample (position -20 and 20 mm),

where interferences and scattering from the boundary between the sam-

ple (which is elevated due to the double-sided sticky tape beneath) and

the aluminum metal surface causes the reflectivity to decrease. For 0.89

THz at the position -3 mm, reflectivity reaches minimum of -27 dB. A

slight variation across the active area of the resonance frequency results

in an increase of the reflectivity at the position ∼ 0 mm, and then its

decrease at +7 mm. For 1.3 THz the reflectivity reaches minima at the

edges of the MM area.

To investigate effects of the illumination with THz beam larger than

the sample, we have performed radar cross section measurements on the

MM sample mounted on the metal cylinder, depicted in Fig. 5.17(b) and

placed in a target position in the RCS setup presented in Fig. 5.8(a).

Results of the frequency-resolved RCS measurements for frequencies

0.4, 0.87 and 1.3 THz are presented in Fig. 5.20. Values of RCS are
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normalized to the RCS of a metal cylinder (in this case 180◦ orienta-

tion). Here we note that the resonance frequencies between flat planar

geometry (Fig. 5.19(b)) and bent cylidrycal geometry (Fig. 5.17(b)) are

shifted by 0.02 THz into longer waves. For 0.4 THz the variations of

RCS in Fig. 5.20 are small, and they mostly occur at the edges of the

sample, where interferences and scattering causes decrease in the reflec-

tivity. For 0.87 THz, the minimal RCS of 0.0026 is achieved for sample

orientation of −8◦. RCS of 0.0026 corresponds well to the reduction of

reflectivity in the planar geometry by -27 dB (−27 dB = 0.002 = 1/384).

For 1.3 THz, RCS has two minima: one at −32◦ and the second one at

+8◦. In general the shape of the RCS for those three frequencies is very

similar to the shape of the reflectivity across the sample, as shown in

Fig. 5.19(b). Here we show that significant reduction of RCS is possi-

ble, even though the MM sample is bent to accommodate for the round

shape of the cylinder, and even though the THz beam that is used for

illumination of the structure is larger then the size of the structure, and

interferences between THz radiation originating at different part of the

structure are present.

Recently a dual band terahertz metamaterial absorbers have been de-

signed and manufactured [239, 240]. The dual band absorber consists

of a dual electric-field-coupled resonator on a metallic plane. Individual

fine tuning of the two absorption resonances can be achieved by indi-

vidually adjusting each electric-field-coupled resonator geometry, and in

this way providing possibility for even larger freedom in designing object

with decreased RCS in even broader frequency range.

5.6 Conclusions

We have presented a method for bistatic RCS measurements using THz

waves. The calibrated setup has resolution of 0.2 mm. We have per-

formed a series of RCS measurements in the polar and azimuthal ori-

entation on a scale model of the fighter aircrafts F-16 and F-35. By
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scaling wavelengths and models to real-scale platforms we can make de-

tailed comparisons to RCS of real sized aircrafts at standard MHz/GHz

frequencies. The application of a time domain system allows not only

for determination of the total RCS but it also provides RCS values of

particular elements of the model. Using the filtered back projection al-

gorithm we are able to reconstruct a two-dimensional (and in principle

also three-dimensional) visualization of all the scattering points. Our re-

sults show need for better algorithms, which could take into account the

shape of the object and could compensate for diffraction, for improving

the quality of reconstructed images. Furthermore we have investigated

properties of flexible metamaterial absorbers, that allow for designing

electromagnetic response according to our requirements. We have shown

that reduction of RCS by factor of nearly 400 at the frequency of 0.87

THz is possible. Possibility of designing and manufacturing MM ac-

cording to our requirements, makes them ideal for simulating stealth

materials in the THz frequency range.



Chapter 6

Conclusions and outlook

This thesis has been dealing with chosen aspects of THz technology

that can have defense and security-related applications. In chapter 2 we

have presented a short review of the current THz technologies, used for

purposes of this thesis. The review included a brief description of THz

sources, with a focus on high intensity THz generation using the tilted

wavefront technique. A summary of possible detection schemes for THz

experiments has been also presented.

In this thesis we have developed a novel method for simultaneous data

acquisition in time-resolved terahertz spectroscopy experiments, based

on the simultaneous double modulation of the probe and pump beams.

We have applied this method to extract the sheet conductivity of pho-

toexcited carriers in SI GaAs and compared the results with those of a

standard data acquisition scheme. We have shown that application of

the new method minimizes errors in spectrally resolved photoconduc-

tivity data originating from fluctuations in the laser system output and

timing errors in the THz pulse detection. Furthermore we have demon-

strated that the new organic material, BNA, is a very strong and broad-

band THz emitter, which enabled us to carry out spectroscopy with a

bandwidth twice as large (from 0.1 to nearly 6 THz) as conventional

121
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spectroscopy in the field. Fast development of high power THz sources

will make advanced techniques such as all-THz pump-probe [241–243]

and even two dimensional nonlinear THz spectroscopy accessible in the

near future. Those techniques will allow for investigation of yet poorly-

understood anharmonic interactions between different phonon modes in

molecular crystals including explosives and related compounds. Nonlin-

ear interactions and energetic coupling between lattice vibrations will

not only open a new big block of fundamental science, but will also

provide additional information about the investigated sample and its

environment. This extra information can allow for example for more

accurate discrimination between different compounds that might have

similar linear phonon spectrum. 2D nonlinear THz spectroscopy is a

very challenging technique and only experiments in the mid infrared,

have been performed [45, 244]. For that reason at first we have concen-

trated on time-resolved terahertz spectroscopy, which in its pump-probe

nature is a simplified linear version of the 2D THz spectroscopy. Be-

fore 2D spectroscopy will be realized it is essential to be sure that the

extracted data correspond to the physical reality. According to our

predictions the technique of simultaneous data acquisition can also be

adapted and used for the THz 2D spectroscopy.

The need for high intensity sources of THz radiation directed our fo-

cus on possible ways of enhancing THz field in different waveguide

structures. As a result we have manufactured a tapered parallel plate

waveguide consisting of two aluminium plates of a varying width and a

varying plate separation. To fully understand field dynamics inside the

waveguide, we have developed a novel non-invasive broadband method

of imaging the THz electric field inside PPWGs. The method is based

on nonlinear interaction between NIR probe pulse and a THz transient

in the presence of external oscillating bias. The interaction leads to the

generation of THz-enhanced second harmonic of a near-infrared probe

pulse, which can be measured and related to the value of THz field in

an absolute and calibrated manner. The method does not disturb the
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propagating THz field as exemplified by the measurement of the THz re-

flection coefficient from the tip of the waveguide. The resolution of the

method is restricted by the geometrical dimensions of the NIR probe

focus spot only, while the frequency response depends on the interac-

tion length between THz and the NIR probe. Next we investigated field

enhancement properties of the TPPWG. Analytical and numerical ap-

proaches are compared and based on the differences diffraction losses

are estimated. We show that a field enhancement factor of over 20 is

possible, resulting in a THz peak electric field exceeding 1.4 MV/cm for

the output gaps of 20 µm, which is a significant fraction of molecular

field inside crystals. Obtained values are verified using two independent

methods and agree well with numerical predictions. Even higher val-

ues of the THz electric field are expected for smaller output gaps, and

further work needs to be done to find limits of this field enhancement.

High values of electric field opens exciting possibilities of THz nonlinear

processes. One extremely interesting phenomena would be overcoming

the work function of a metal by the ponderomotive potential of high

intensity THz wave. The work function is the minimum energy needed to

remove an electron from a solid to a point immediately outside the solid

surface. For example for aluminum the work force is 4.08 eV, for silver

4.7 eV and for gold 5.1 eV [245]. The ponderomotive energy is the cycle-

averaged energy of a free electron in an electric field. The ponderomotive

energy is given by Up = e2E2

4mω2 , where E is the amplitude of the electric

field, m is mass of electron and ω is the frequency of electro-magnetic

radiation. For 1 MV/cm peak field THz wave of a central frequency

of 1 THz, the ponderomotive potential is 11.1 eV and is bigger than

the work function. It would be very interesting to investigate if so high

ponderomotive potential is able to remove the electron from the metal.

The electric field of the TEM mode in the PPWG is perpendicular to the

metal plate, so if such effect is achievable then the free electron would

be accelerated by the electric field and travel to the other plate causing

microscopic current. Because of the field enhancement and TEM mode
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propagation, the TPPWG structure seems to be ideal for investigation

of the described phenomena.

The measurement of the radar cross section of a target is a standard

technique in the GHz region, particularly important for military and

defense-related purposes including detection and identification of un-

known targets as well as for countermeasures. In chapter 5 we have

presented a method for bistatic RCS measurements using THz waves.

By employing scaling laws we are able to scale values measured in the

low THz range (0.1-2 THz) into values that would be measured at radar

frequencies. The access to high intensity THz pulses, generated by tilted

wavefront optical rectification, allowed for determination of THz RCS

of small scattering centers. The calibrated setup is able to detect ob-

ject smaller than 1 mm-diameter metal sphere. The range resolution

of the setup is 0.27 mm and cross range resolution 0.19 mm. We have

performed a series of RCS measurements in the polar and azimuthal

orientation on scales model of the aircraft fighters F-16 and F-35. By

scaling wavelengths and models to real-scale platforms we can make de-

tailed comparisons to RCS of real sized aircrafts at standard MHz/GHz

frequencies. The application of a time domain system allows not only

for determination of the total RCS but it also provides RCS values of

particular elements of the model. Using the filtered back projection al-

gorithm we are able to reconstruct a two-dimensional (and in principle

also three-dimensional) visualization of all the scattering points. Our re-

sults show need for better algorithms, which could take into account the

shape of the object and could compensate for diffraction, for improving

the quality of reconstructed images. To have a better control over the

measured RCS we have investigated possibility of using metamaterials

(MMs). We have showed that using MM perfect absorbers significant

reduction of RCS can be achieved. Possibility of designing and manufac-

turing MM according to requirements, makes them ideal for simulating

stealth materials in the THz frequency range. Elasticity of produced

MM structures opens door for placing them on curved surfaces. Fur-

ther work on different techiques for depositing MM on the surfaces of
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investigated targets is still required. Next class of interesting problems

concerning THz RCSs is the influence of the environment on the result

of measurements and capability of simulating real life scenarios in the

THz frequency range.
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