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Abstract

In this thesis we have performed quantum-electrodynamics experiments on
quantum dots embedded in photonic-crystal cavities. We perform a quanti-
tative comparison of the decay dynamics and emission spectra of quantum
dots embedded in a micropillar cavity and a photonic-crystal cavity. The
light-matter interaction in the micropillar cavity is so strong that we mea-
sure non-Markovian dynamics of the quantum dot, and we compare to the
Jaynes-Cummings model with all parameters independently determined. We
find an excellent agreement when comparing the dynamics, but the emission
spectra show significant deviations. Similar measurements on a quantum dot
in a photonic-crystal cavity show a Rabi splitting on resonance, while time-
resolved measurements prove that the system is in the weak coupling regime.

While tuning the quantum dot through resonance of the high-Q mode we
observe a strong and surprisingly broadband Purcell enhancement of the decay
rate, which cannot be described by the Jaynes-Cummings model. The broad-
band Purcell enhancement occurs because the quantum dot emits or absorbs
a longitudinal acoustic phonon with the energy corresponding to the detuning
between the quantum dot and cavity. We successfully model the decay rates
with a microscopic model that allows us to for the first time extract the effective
phonon density of states, which we can model with bulk phonons.

Studies on a quantum dot detuned from a low-Q mode of a photonic-crystal
cavity show a high collection efficiency at the first lens of (44.34+2.1)%, while the
emission exhibits a very strong anti-bunching. We demonstrate how the quan-
tum dot can be efficiently and selectively excited through longitudinal optical
and acoustic phonon-mediated excitation. Indistinguishability measurements
of the emitted photons under these two excitation schemes reveal low dephasing
rates of 0.82 £+ 0.41 peV and 0.42 £ 0.18 peV respectively.



Resumeé

Denne afthandling beskriver kvante-elektrodynamiske eksperimenter pa kvan-
tepunkter i fotoniske nanostrukturer. Vi udfgrer en kvantitativ sammenligning
af henfaldsraterne og emissions spektrerne fra kvantepunkter i mikrosgjle og
i fotonisk krystal-kaviteter. Lys-stof vekselvirkningen er tilstraekkelig steerk i
mikrosgjle kaviteten til, at vi maler et ikke-Markovisk henfald af kvantepunktet,
og vi sammenligner vores data med Jaynes-Cummings modellen (JCM), hvor
alle parametrene er malt uafhaengigt. Sammenligningen af dynamikken viser
en glimrende overensstemmelse, mens emissions-spektrene viser store afvigelser.
Lignende malinger pa et kvantepunkt i en fotonisk krystal-kavitet viser en Rabi
opdeling, mens tidsoplgste malinger viser, at systemet er svagt koblet.

Vi maler en staerk og forbavsende bredbandet Purcell-forsteerkning af kvan-
tepunktets henfaldsrate, nar det bringes gennem kavitetens resonans, hvilket
ikke kan forklares med JCM. Den bredbandede Purcell forstaerkning foran-
lediges af, at kvantepunktet enten udsender eller absorberer en longitudinal
akustisk fonon med en energi svarende til energiforskellen mellem kvantepunk-
tet og kaviteten. Ved brug af en mikroskopisk model kan vi modellere hen-
faldsraterne glimrende, hvilket gor det muligt at udtrackke den effektive fonon
tilstandsteethed for forste gang, og vi kan modellere denne med plane bglger.

Vi undersgger ogsa et kvantepunkt i en fotonisk krystal-kavitet med en lav
kvalitets-faktor. De emitterede fotoner opsamles med (44.3+2.1)% effektivitet
ved den fgrste linse, og vi viser at fotonerne i meget hgj grad ikke klumper sig
sammen. Vi demonstrerer, at kvantepunktet kan eksiteres effektivt og selektivt
ved den ledsagende udsendelse af longitudinale optiske og akustiske fononer.
Ved at male hvor uadskillelige de udsendte fotoner er under disse forskellige
typer eksitation, kan vi afslgre, at omgivelserne gdelaegger kohaerensen med en
rate pa hhv. 0.82 £0.41 peV og 0.42 4+ 0.18 peV.
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Chapter 1

Introduction

In the last 100 years quantum theory has evolved from the initial description
of the Hydrogen atom, signified by the Bohr model in 1913, to the state where
individual quantum systems can be manipulated, for which Serge Haroche and
David Wineland was awarded the 2012 Nobel Prize in Physics. Dirac laid the
cornerstone of quantum optics by quantizing the electromagnetic field, which
led to the realization that the vacuum electromagnetic field exhibits fluctuations
around its mean zero amplitude. These fluctuations give rise to the Lamb shift
and stimulate spontaneous emission. Since the foundation was laid, the field of
quantum optics has progressed to the point, where the vacuum fluctuations can
be modified and the light-matter interaction controlled as a number of ground
breaking experiments on atoms demonstrated [1]. In addition, quantum optics
has also been a testing ground for more fundamental aspects of quantum theory,
which most notably includes the investigation of the Einstein-Podolsky-Rosen
paradox [2] culminating with the violation of Bell’s inequality [3] by Aspect et
al. [4].

During this development, the field of solid-state physics evolved greatly
and eventually saw one of the most influential inventions of the twentieth cen-
tury, namely the transistor, which forms the fundamental building block of all
modern electronics. Ever since, semiconductors have been the subject of an
immense body of research, which eventually made the fabrication of devices
that combine optics and electronics possible.

More recently quantum optics in solid-state materials has become a field in



Chapter 1. Introduction

its own right. This is largely due to the invention of self-assembled semiconduc-
tor quantum dots (QDs), where discrete electronic transitions give rise to the
emission of single photons, which is a property normally attributed to single
atoms. A crucial difference, however, stems from the semiconductor material
the quantum dots are embedded in, which makes it possible to tailor the optical
properties by utilizing the mature technology for fabrication in semiconductor
materials. One of the main reasons for the intense research within this field is

the prospect of using this as a platform for quantum-information processing.

The initial proposal for quantum cryptography [5] was based on having
single photons available on-demand, and this spurred the interest in solid-
state quantum optics. Later proposals for quantum computing [6] that rely on
indistinguishable single photons on-demand fueled the interest in the research
field further. While the solid-state environment does give rise to undesired
effects such as decoherence, it also offers the prospect of scaling the individual
systems and can thus form a platform for quantum-information processing.
In addition to generating single photons, the engineering of the light-matter
interaction, made possible by the solid-state platform, has been proposed to

create a single-photon non-linearity [7, 8].

Although many proposals in solid-state quantum optics revolve around the
application for quantum-information processing, it has also become clear that
the interplay between otherwise disjunct fields of physics can be studied in this
platform. Examples of this includes the emerging field of quantum optomechan-
ics, where the ultimate quantum mechanical motion of, e.g., nanomembranes
is studied [9].

In this thesis the coherent dynamics of quantum dots in photonic-crystal
cavities is investigated. The coherence is determined by the environment expe-
rienced by the quantum dot, and this can be divided into two parts; a nanopho-
tonic and a solid-state environment. The former modifies the vacuum fluctua-
tions of the electromagnetic field and we probe it by measuring the spontaneous
emission from quantum dots. The latter gives rise to decoherence of quantum
dots, and we obtain information on the responsible mechanisms by measuring

the coherence of the emitted photons.
The outline of the thesis is as follows:

In chapter 2 the basic concepts used throughout this thesis are introduced.

First quantum dots are described with a focus on their electronic and optical
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properties, and thereafter the concept of photonic crystals and in particular
cavities are explained. Finally, the light-matter interaction of a quantum dot
coupling to a cavity is described and the measurable quantities are derived.

In chapter 3 we study quantum dots embedded in two different types of
cavities; a micropillar cavity and a photonic-crystal cavity. Both cavities alter
the vacuum fluctuations experienced by the quantum dot significantly, and as a
consequence the spontaneous emission from the quantum dots strongly depends
on the cavity. We perform a quantitative analysis of the resulting dynamics and
emission spectra by comparing them to the model for light-matter interaction
derived in chapter 2.

Mechanical motion due to thermal vibrations, i.e. phonons, is omnipresent
in solids, and in chapter 4 we investigate how phonons can alter the dynamics
of a quantum dot in a photonic-crystal cavity. We investigate the interplay
between the vacuum phonon field and the vacuum photon field, which allows
us to extract detailed information on the solid-state environment.

We study how the single photons emitted from a quantum dot can be effi-
ciently collected in Chapter 5, which is important for the use of quantum dots
for quantum computing. The solid-state environment is examined further by
investigating how phonons can assist in the excitation of the quantum dot. In
an effort to understand how phonons cause decoherence of the emitted pho-
tons, we measure the indistinguishability, which is also of crucial importance
for quantum information protocols.

In chapter 6 we describe how the quantum dot can be excited resonantly and
thus without relying on the absorption of energy by the solid-state environment.
The experimental setup is described, and a measurement showing resonant
excitation is presented.

While detailed conclusion are presented in each chapter, we present a gen-

eral conclusion in chapter 7.



Chapter 2

Quantum dots and

photonic crystals

Photons are indivisible single quanta of light and thus constitute a quantum
mechanical object. The laws of quantum mechanics allow for the unbreakable
encryption of data saved in, e.g., the polarization of single photons [5], which
has spurred a tremendous interest in the field of quantum cryptograph [10].
Implementation of such encryption schemes requires the triggered emission of
single photons into a specific optical mode, a requirement that can be relaxed to
the triggered emission of no or a single photon. Triggered generation of single
photons has been demonstrated using a single atom [11], ion [12], molecule [13],
nitrogen-vacancy (NV) center in diamond [14, 15], and semiconductor quan-
tum dot (QD) [16, 17]. While the field of quantum cryptography has matured
to the point, where commercial products utilizing quantum cryptography are
now available, the overall field of quantum information processing is still in
its infancy. The reason is that quantum information processing using linear
optics [6] in addition to single photons requires the photons to be indistin-
guishable from each other, meaning that they have the same energy, coherence
time, and optical mode [18, 19]. QDs are receiving much interest due to the
possibilities of engineering the light-matter interaction by embedding them in
photonic nanostructures that allow for the manipulation of the light-matter
interaction. This offers both insight on the fundamental aspects of quantum

mechanics as well as the promise of using a QD as a single-photon nonlin-
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Chapter 2. Quantum dots and photonic crystals

earity [7, 8]. While quantum computing can be done with linear optics that
approach is inherently probabilistic in contrast to quantum computing using

single-photon nonlinearities.

In this chapter we will discuss the basic properties of the self-assembled
InAs QDs that are used throughout this work. The internal electronic structure
will be described as well as the optical properties that form the basis of our
understanding of QDs. We will then move on to describe the nanophotonic
platform of photonic crystals and subsequently photonic-crystal cavities that
are used for most of the work presented in this thesis. In the last part of
this chapter we will present the theory for light-matter interaction and derive
the theoretical expressions for measurable quantities such as the spectrum,
the dynamics, and the second-order correlation function. In the final part we
demonstrate how the local density of optical states (LDOS) picture normally
used for describing spontaneous emission is equivalent to the density matrix
description of a QD in an optical cavity up to the point where dephasing is
introduced.

2.1 Electronic and optical properties of quantum
dots

In this work ITI-V semiconductor quantum dots consisting of small islands
of InAs embedded in GaAs are studied. Using the Stranski-Krastanov process
quantum dots are grown by molecular beam epitaxy, where the GaAs substrate
is initially grown crystal layer by crystal layer. Next InAs is introduced in the
chamber, which has the same zinc-blende crystal structure as GaAs but a 7%
larger lattice constant [20]. After a few monolayers of InAs have been grown,
the lattice mismatch makes it energetically more efficient to form small islands
ideally consisting of only InAs, but it may also contain some amount of Ga.
Once these islands have been grown, they are capped by a layer of GaAs,
causing them to be completely embedded in GaAs. The first monolayers of
InAs that did not form islands make up the wetting layer, and a schematic of
a quantum dot is shown in the left of Fig. 2.1. Due to the random manner
in which the quantum dots are formed, the size of them will also differ with

typical values being 15 nm in diameter and 5 nm in height.
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Electronic and optical properties of quantum dots

2.1.1 Electronic states

Semiconductors are characterized by having an occupied valence band at low
energies, in which electrons are bound, and an unoccupied conduction band
at high energies, where electrons are free. In between these two bands no
electronic states are allowed and this region is called the bandgap. Both InAs
and GaAs have direct bandgaps meaning that the lowest energy state in the
conduction band and the highest energy state in the valence band coincide at
the point in the reciprocal lattice corresponding to an electron wavevector of
zero (k = 0). While a free electron has a quadratic dispersion relation, where
the curvature gives the mass, the situation is in general much more complex in
a crystal structure. However, around the point of the direct bandgap both the
conduction and valence bands are approximately quadratic and the electrons

can thus be described with the effective mass approximation [21].

For the energies considered here, there is a single conduction band with s-
like symmetry, meaning that it has no orbital angular momentum in analogy to
the atomic s-orbital. In contrast there are three valence bands, and they have
p-like symmetry, meaning that they have orbital angular momentum of 1, again
in analogy to the atomic p-orbitals. Two of these valence bands are degenerate
at the k = 0 point, while the third band is split off to much lower energies due
to the spin-orbit coupling coupling, and it is consequently known as the split-off
band. The two bands degenerate at the k = 0 point have different effective
masses and are thus called heavy-hole (HH) and light-hole (LH) bands. The
spin-orbit coupling means that only the total angular momentum is conserved,
and the projection of the total angular momentum onto the growth axis is J, =
+3/2 and J, = +1/2 for the HH and LH bands, respectively [22]. Transitions
between the valence and conduction bands are thus s to p transitions that
are allowed electric dipole transitions following the selection rules. Optical
excitation of a semiconductor can thus occur by the absorption of a photon
with an energy higher than the bandgap energy, which results in an electron
being promoted to the conduction band [23]. The electron leaves behind an
unoccupied state in the valence band called the hole, which is described as a
quasi-particle also with an effective mass. The electron and hole are created at
the same spatial position and due to their opposite charges they can attract each
other through the Coulomb force and form an excition, which is annihilated

when the electron and hole recombine by emission of a photon or through

7
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Figure 2.1: Left: Sketch of an InAs quantum dot embedded in GaAs with a
thin InAs wetting layer (WL). Middle: Creation of an exciton in the GaAs that
relaxes down to the s-shell before recombining optically. Right: Example of a

recorded emission spectrum showing a strong exciton line.

non-radiative processes [23].

A sketch of the energy at the point of the direct bandgap (k = 0 point) as a
function of position for the quantum dot is shown in Fig. 2.1, where there is a
continuum of electronic states in the GaAs and in the InAs wetting layer. Due
to the small dimensions of the InAs QD, a potential well in all three spatial
dimensions is created, where only discrete states are allowed. Strain during
the growth of the QD lifts the degeneracy of the heavy-hole and light-hole
bands by shifting the latter down in energy by several tens of meV [24]. The
highest energy state in the valence band thus becomes the heavy-hole, and only
transitions between the heavy-hole and conduction band will be considered in
this work. The size of the QD allows for a confined ground state for both the
electron and hole with the lowest and highest energy state in the conduction

and valence band, respectively. These states are termed s-states due to their

8



Electronic and optical properties of quantum dots

symmetry, and the size of the QD even allows for the confinement of higher and
lower energy states in the conduction and valence band, respectively, named
p-states. We can use Bloch’s theorem to divide the potential of the crystal
into an atomic-scale potential, which is periodic with the crystal lattice, and a
macroscopic potential, which follows the spatial dependence of the QD. Using

this we can write the electron and hole wavefunctions as
%(r) = Fe(r) -’U,C(I') and "/}h(r) = Fh(r) 'uv(r) ) (2'1)

where F, (r) are the envelope functions for the electron and hole that satisfy
Schrodinger’s equation using the macroscopic potential, and u.,(r) are the
Bloch functions for the conduction and valence bands that satisfy Schrodinger’s
equation using the atomic-scale potential [25]. Both envelope functions for the
ground states have s-symmetry, while the conduction band has s-symmetry
and the valence band has p-symmetry, as discussed. As a result the electron
wavefunction has s-symmetry and the hole wavefunction has p-symmetry. This
means that only transitions between the s-states or between the p-states are
allowed in the QD following the selection rules. It is noted that the sizes of the
electron and hole wavefunctions are typically smaller than the size of the QD
extracted from scanning electron microscopy (SEM), and in chapter 4 these
sizes are extracted. Furthermore, the QDs studied in this work are small,
meaning that the exciton in the QD is bound by the confinement potential and
not the Coulomb force, and consequently the electrons and holes are moving

independently.

The Pauli exclusion principle ensures that only two electrons and two holes
with opposite spins can occupy the s-states of the QD [26]. If two excitons are
present in the QD, the energy of the exciton that first recombines radiatively
will be shifted due to the Coulomb interaction of the two excitons, and this is
denoted the bi-exciton. This ensures that any radiative recombination at the
exciton energy will result in single photon emission. An example of an emission
spectrum from a QD is shown in the right of Fig. 2.1, where the verification
of the single photon nature of the emission is presented in chapter 5. The
ground state exciton has an electron with a projected total angular momentum
of J, = £1/2 and a hole with J, = £3/2, which results in four possible exciton
states with J, = +1 and J, = 2. Single photons are circularly polarized and

have an angular momentum of 1, meaning that the two former states are bright

9



Chapter 2. Quantum dots and photonic crystals

states that can decay radiatively while the two latter states are dark states that
can only decay nonradiatively. However, when the symmetry of the exciton
wavefunctions in the plane orthogonal to the growth direction is broken, the two
bright states mix with each other due to the long-range exchange interaction.
As a result, the two bright states become linearly polarized and obtain a fine
structure splitting in energy of typically a few tens of peV, while the degeneracy
of the dark excitons is lifted by the short-range exchange interaction and both
lie a few hundred peV below the bright states [24]. Typically the in-plane
symmetry of the confinement potential is broken due to strain of the lattice
during the growth of the QD, as is the case for all the QD samples used in this
work [27]. The two resulting linear dipoles will be oriented preferably along
the crystal directions. The decay of a bright exciton has a radiative 7,,q and
nonradiative Ynraq contribution to the decay rate. However, the bright state is
coupled to the dark state through the spin-flip rate 4, where the spin of a
single electron or hole is flipped mediated by phonons and exchange interaction
causing the exciton to become dark. The QD is thus a five-level system with
two bright excitons, two dark excitions and a ground state consisting of no
excitons. However, because the effective mass of the electron is much smaller
than that of the hole, spin-flip processes will predominantly flip the electron
spin, and the five-level system can be separated into two three-level systems
each consisting of a bright and dark exciton and a ground state, cf. Fig. 2.2.
Previous work has shown that the nonradiative decay rate of bright (12,,)
and dark (vd,,) states can be assumed equal, and that the spin-flip rates
from bright to dark and the reverse (ypq and ~ap) likewise can be assumed
equal, because the thermal energy is much larger than the bright-dark energy
splitting [28]. Finally, the spin-flip rates are much slower than both radiative
and non-radiative processes [29], which means that the measured decay of a
QD will be bi-exponential of the form Ap,gpe™ estt + Agowe 7wt Here Ypas =
Yrad + Yarad and Yslow = Ynrad, Where Ypaq is the radiative and nraq is the
nonradiative decay rate. From experimental decay curves the radiative decay

rate can thus be extracted as the difference Vyaq = Vrast — Vslow-

The discussion so far has resulted in the QD being considered a three-level
system, but the solid-state environment also gives rise to a number of features
that are unique to solid-state quantum states, of which the most predominant

effect is decoherence. Phonons are omnipresent in solids and the interaction
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Figure 2.2: Three-level system of the QD with a bright state |X);, that decays
with the radiative rate 7,54 and the nonradiative rate 72, to the ground state
lg). The dark state |X)q only decays with a nonradiative rate v< . The bright
and dark states are coupled through the spin-flip rates y,q and vq4p.

of the bright exciton with lattice phonons has been shown to broaden the
spectral linewidth of the QD significantly. By phonon-assisted recombination
of the exciton, part of the exciton energy is sent into the lattice by spontaneous
emission of acoustic phonons, giving rise to a phonon sideband on the low
energy side [30]. However, part of this sideband extends to the higher energy
side of the bright state, because the thermal occupation of low-energy phonons
is not negligible even at cryogenic temperatures, e.g. 10 K, and absorption as
well as stimulated emission of phonons are present. These processes will be
discussed in detail in chapter 4, where the experimental evidence for these
processes in the setting of cavity quantum electrodynamics is presented, and
in chapter 5, where the decoherence resulting from different phonon-mediated
excitation schemes is discussed. Acoustic phonons can also couple the QD with
free carriers outside the QD and this has been shown to give rise to further
broadening of the exciton emission line [31, 32]. Furthermore, the energy levels
of the QD are easily shifted by fluctuations of the electrostatic environment, that
can also broaden the QD linewidth. This will typically happen on a timescale
much slower than the dynamics of the QD, but recent work has indicated
that these processes can take place also on the timescale of the dynamics [33].
Finally, the presence of carriers in the wetting layer continuum, e.g. generated
under continuous wave excitation, can give rise to shifts in the exciton energy

through the Coulomb interaction. This is essentially a scattering process, where
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excitons scatter off carriers in the wetting layer continuum, and as a result a
quasi-continuum of states is formed around the s-state exciton energy. In an
emission spectrum this quasi-continuum, also known as multiexcitons, is orders
of magnitude weaker than the bare exciton transition [34, 35|, but it becomes
significant in cavity quantum electrodynamics, where the cavity can strongly
enhance the effect [36].

2.1.2 Spontaneous emission

An exciton confined in the QD can recombine optically by spontaneous emission
of a single photon. In order to describe this process we need to introduce both
the quantized matter, i.e. the QD, and the quantized radiation field. By
considering only the bright exciton, a QD can be described as a two level
system, where the excited state, |e), corresponds to an excition in the s-shell of
the QD, while the ground state, |g), corresponds to no exciton. The frequency
difference between these two states is denoted wqq and we introduce the atomic
lowering and raising operators 6_ = |g)(e|] and 64 = |e)(g|. The hamiltonian
for a non-interacting two-level system can be written ﬁqd = hwqqd+0_, where
the zero point energy level has been placed at the ground state. Similarly, the
exciton can decay into the kth optical mode, thereby rasing it from the ground
state of no photon, |0), to the state of a single photon, |1;), with frequency
wk. The Hamiltonian for the field is given by I:Iﬁeld = hzk wkdk&l, and the
zero point energy has been omitted for each mode.

The interaction between the QD and the optical field can be described as an
electric dipole interaction with a hamiltonian given by H =-d- E(ro), where
d is the QD electric dipole moment. E(rg) is the electric field evaluated at
the position of the QD, where we have made use of the dipole approximation
stating that the electric field can be assumed constant over the size of the
exciton wavefunction. Though recent work has shown that this approximation
can break down for QDs [37], it remains a good approximation for the QDs
considered in this work, where the sizes of the exciton wavefunction extracted
in chapter 4 are much smaller than the variation of the electric field. The

electric field operator for a quantized multimode field can be written [38]
B(r,t) = Y B (anOf() + af 0F: (1)) (2.2)
k
where Fx = /hwi/(26on?V) and n is the refractive index, €y is the vacuum
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permittivity, and V' is the effective mode volume. fi(r) = éx(r) fi(r) where the
first part describes the polarization, and the second part describes the relative

field amplitude normalized to give unity at the maximum of the electric field,

() fmax = 1.

The dipole moment of the QD can be written
d=de6, +di6- | (2.3)

where do = (e|d|g) is the transition dipole moment. Inserting Eq.(2.2) and

(2.3) into the interaction hamiltonian yields

HI = hz (961 ax + gpo—a Jr) , (2.4)

where gx = —h !Eyd., - fi(ro) is the light-matter interaction strength. We
have applied the rotating wave approximation, meaning that we have discarded
the counter rotating terms that do not preserve the energy (6_ax and 6+&£
terms). The full hamiltonian for the system can now be written

H = hwqa64+6- + thkakak + hz GO ax + gro— T) . (2.5)
k k

The state vector relevant for this system can now be written

[W(t)) = ce(t)]e, 0x) +Z g, 1) (2.6)

where the first term corresponds to an excited QD and no photon in any of
the k& modes, while the second term corresponds to no exciton and a photon
emitted into the multimode field. We now insert the state vector and the full
hamiltonian into the Schrédinger equation, and by projecting onto the states

le,0x) and |g, 1) we obtain the following two equations

d

ﬁée(t) = —i E gkc ’(“qd @it (2.7)
d ~k -k~ —i(wga —wi)t

dt Cg(t) = —igile(t)e "W ) (2.8)

where the slowly varying time operators ¢o(t) = c,(t)e™d? and 5 (t) = cg(t)e'x!
have been introduced. Direct integration of Eq. (2.8) and insertion into Eq. (2.7)
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gives

d_ ,
e /Z|9kl2ce t')e!waa =)t gyl (2.9)

Finally, we introduce a frequency integral together with a delta function and
insert the expression for the coupling strength which yields

d deg|? } ,
ZpCe(t) =—% /0 /_ Oowp(w,ro,éqd)ée(t’)e’(“qd_w)(t_t)dwdt’ ., (2.10)

where €4q is the dipole orientation and the projected local density of optical
states (LDOS) is defined as

p(w, 1, €qd) = Z|fk o) |8qa - ex|*0(w — wy) . (2.11)

Eq. (2.10) gives a powerful relation that describes the dynamics of a QD (or
any two-level emitter), where the first part of the equation contains the key
QD property, namely the size of the transition dipole moment, and the second
part contains all information of the local optical environment described by the
LDOS. In the Wigner-Weisskopf approximation the LDOS varies slowly over
the linewidth of the QD, and it can be pulled outside the frequency integral
and evaluated at the QD frequency. This results in an exponential decay of
the QD with the decay rate I' = Wldcgl

medium the LDOS does not depend on ro or €qq due to the symmetry and

WqdP(Wqd, To,€qd). In a homogenous

it can be calculated to give p(w) = % The decay rate in a homogenous
medium is thus
|deg|*nwiy
Thom = —————— 2.12
hom 3eghmed (2.12)

In section 2.4.4 the equivalence of the LDOS description to the celebrated
Jaynes-Cummings model is described and the limitations of the LDOS approach
are highlighted.

2.2 Photonic crystals

In the previous section we saw that the dynamics of a QD depends on both

the size of the transition dipole moment and the local optical environment.
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Photonic crystals

While the former is hard to control due to the randomness of the growth,
the latter can be carefully engineered. There is an immense body of research
on semiconductors and we can draw on this very mature technology for the

fabrication of nanostructures around the QDs.

The principle of photonic crystals can be understood by considered the
one-dimensional system of a Bragg reflector, where alternating layers of high
and low refractive index materials are placed periodically along the propaga-
tion direction of the electric field [39, 40]. While the dispersion relation in a
homogenous medium is given by w = ck/n allowing for optical modes at all fre-
quencies, the periodicity of this structure introduce a photonic bandgap, where
no optical modes are allowed, and the bandgap widens when increasing the
refractive index difference. It should be pointed out, that while no extended
states are allowed, evanescent states that decay exponentially into the photonic
crystal do exist for crystals of finite extent. However, the bandgap only exists
for waves propagating orthogonally to the plane of the layers and by consid-
ering off-axis propagation optical modes become present within the bandgap.
This one-dimensional system can be generalized to two-dimensions by intro-
ducing holes in a otherwise homogenous dielectric material. The rods of air
are ordered in a triangular lattice, which is characterized by the hole radius
r and lattice constant a, cf. Fig. 2.3. For certain values of r/a this structure
introduces a complete bandgap, where both TE and TM polarized light prop-
agating within the plane are not present [41]. Light propagating orthogonal
to this plane is still allowed, causing the LDOS to not completely vanish. We
consider a membrane that is thin in the direction orthogonal to the plane of the
photonic crystal. The GaAs-air interface gives rise to total internal reflection
of fields with an incident angle larger than approximately 17 degrees, and for
smaller angles the fields are still partly reflected due to the high-low refractive
index interface. The strong suppression of optical modes makes the LDOS and
thus the decay rate of the QD strongly suppressed with inhibition factors up
to 70 [28], and for this reason the photonic-crystal membrane is said to have a

pseudo-bandgap.

As described earlier, the QDs are grown by depositing single atomic layers
using molecular beam epitaxy on a GaAs-wafer. When the growth of the sample
is finished, the structure, from the bottom and up, consists of; the GaAs-wafer,
a 1530 nm sacrificial layer of AlGaAs, 77 nm of GaAs, the InAs QD layer,

15



~“ 020202 02022020-
0,.0,.0_0_0_0_0_0
0203050003000 00

- PLPLPLI)
eg0cec0c00000

oqec0c0c0c00
IRERBRE

0,0,0.0-0-0-0-0
000e0022000000¢
9e2%e° QOO b

Figure 2.3: Scanning electron microscope image of a cleaved photonic-crystal

membrane.

and finally 77 nm of GaAs. We now give a short outline of how the photonic
crystal is made. First an etch mask is deposited, followed by deposition of an
electron beam resist. Thereafter, the photonic-crystal pattern is written with
high precision using electron beam lithography. Reactive ion etching is now
used to remove the etch mask followed by removal of the electron beam resist.
By inductively coupled plasma reactive ion etching of the wafer, the air rods are
now etched in the GaAs. Finally, the sacrificial layer is removed by selective
underetching, and the photonic-crystal membrane remains [42], cf. Fig. 2.3.
Typical values for the lattice parameters in our samples are r/a = 0.28 and
a = 260 nm, which ensures the aforementioned pseudo-bandgap for the TE
modes. In order to obtain the bandgap for both the TE and the TM modes a
higher r/a-ratio is needed, e.g. a complete bandgap exists for r/a = 0.48 |41],
but because such structures contain little material they often collapse and are
thus very difficult to fabricate. It has, however, been shown that a complete

bandgap can be achieved by not having symmetric rods but rather triangles [43].
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Finally we note that Maxwell’s equations for dielectric media are scalable. The
properties of a photonic crystal are thus solely given by r and a, and any design
can be scaled to fit the wavelength of the QD.

2.3 Photonic-crystal cavities

By introducing a defect in the photonic crystal, we can create a localized mode
with a frequency in the bandgap. Such a localized mode will be strongly bound
to the defect and decay exponentially into the photonic crystal. The photonic
crystal acts like a 2D frequency-specific mirror, and because the confinement
is on the order of the wavelength the modes are discrete [41]. Such defects can
be realized in many ways, and examples include removing three holes which is
denoted an L3 defect [44], removing one hole which is denoted an H1 defect [45],
and not removing but rather shifting some of the holes which is denoted an HO

defect [46]. In the following we will focus on the first of the above.

2.3.1 Confining light

The L3 cavity is formed by leaving out three air holes along a vertical line
in Fig. 2.4. The frequency of the localized mode lies within the bandgap,
which gives rise to a high quality (Q) factor, that is defined as Q = wea/k,
where wc, is the center frequency of the cavity and k is the decay rate of the
cavity. Furthermore, because the cavity mode is strongly localized around the
position of the defect that is on the nanoscale, the effective mode volume of the
cavity becomes on the order of the wavelength, V ~ 0.7(\o/n)? [47]. This is
particularly important, because the light-matter interaction strength depends
on the ratio Q/V, as will be shown in the next section.

The discretization of modes gives rise to six optical modes of the L3 cav-
ity, where the mode with the lowest frequency (M1) has the highest Q-factor
and the lowest mode volume. Simply omitting three holes does give rise to a
localized mode, but the Q-factors are rather low. This can be understood by
considering the very abrupt change in the envelope function of the electric field
that occurs at the edges of the cavity. As a result, the Fourier transform of the
electric field has a large component at small wavevectors that corresponds to
out-of-plane leaky modes. By shifting the position of the holes at the ends of

the cavity, the electric field envelope function becomes much smother, and the
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Figure 2.4: Emission spectrum from an L3 photonic-crystal cavity. The optical
modes are labeled M1-M6 and the insets show the norm of the corresponding
simulated electric fields. M1, M2, M4, and M6 are all y-polarized in the far-
field, while M3 and M5 are z-polarized.

Fourier transform of the field has only very small components inside this leaky
region. This is known as gentle confinement of the light [44], and it greatly
increases the QQ-factor while the mode volume stays small. In our samples we
have shifted the first three holes at the ends of the cavity by 0.175a, 0.025a,
and 0.175a, respectively [47].

In Fig. 2.4 the emission spectra from an L3 cavity is shown, where the optical
modes are labeled (M1-M6), and the corresponding simulated electric fields are
also shown. The modes M1, M2, M4, and M6 are all co-polarized along the
y-axis in the far-field, while M3 and M5 show the orthogonal polarization along
the z-axis in the far-field. The modes M1, M2, and M4 typically have Q-factors
in the range 3000 — 7000 in our sample, with M1 always having the highest,
while the modes M3, M5, and M6 all have low Q-factors around 500 and below.

18



Light-matter interaction in a cavity

2.4 Light-matter interaction in a cavity

The study of single QDs embedded in cavities is the main focus of this thesis
and in order to capture all the quantum mechanical features of the interaction,
we need to apply a fully quantized theory to describe both the QD and the
electric cavity field. In section 2.1.2 the spontaneous emission of a QD into a
continuum of modes was described, whereas we now describe the cavity field as
a single quasi-mode and consider the interaction with a QD two-level system
using the celebrated Jaynes-Cummings (JC) model [48].

2.4.1 Jaynes-Cummings model

Whereas spontaneous emission was described in the Schrédinger picture, the
following theory will be described in the density matrix picture. As we shall
see later, this is done to allow for the inclusion of mixed states, i.e. classical
uncertainties. We start by considering the full hamiltonian from Eq. (2.5), but

for only a single mode of the electric field:

H = Hya+ Hpea + H
= Tiwgab 16 + hwead'a + (g a+ g*6_a') . (2.13)

This hamiltonian can be simplified by moving into a frame rotating with the
frequency of the cavity field wc,, which is equivalent to the introduction of
slowly varying operators done in the Schrédinger picture in section 2.1.2. By
insertion into the Schrédinger equation it is easily verified, that a unitary trans-
formation, U(t), of a state vector is equivalent to transforming the hamiltonian

in the following way:

H.oo = U ) HU(t) — ihUT(t)%U(t) . (2.14)

The unitary operator needed in this case is U(t) = e~ wea(10-+a'D)t ynq the

hamiltonian in this new rotating frame becomes
H.ot = WG 6_ + h(g64a+ g*6_al) | (2.15)

where A = wqq — Wea- From now on the subscript will be dropped as we
are consistently within the rotating frame. The above hamiltonian captures

all the features of the coherent light-matter interaction, but in a real physical
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system dissipation is always present. We may think of the density matrix, that
includes the QD and cavity field, as a reduced density matrix for our system,
ps = Trrpsr, where the reservoir has been traced out of the complete density

matrix psg. Solutions to the equation of motion should be of the form [49]
psr(t) = ps(t) @ pr(ti) + pe(t) , (2.16)

where pgr(t;) is the state of the reservoir at initial time ¢; where the inter-
action starts, and the system-reservoir interaction energy has been assumed
small. The contribution to the density matrix, p.(t), arises from the interac-
tion between the system and reservoir and if the interaction is set to zero, the
subsystems are independent. Instead of using this equation to obtain the time
evolution of the subsystem consisting of the QD and cavity field, we turn to a
general framework known as the Markov master equation of Lindblad form [50].
The density matrix must be Hermitian, nonnegative, and of unit trace. A gen-
eral concern when including dissipation phenomenologically is that these crite-
ria for the density matrix may no longer be fulfilled. However, if the dissipation
process associated with the operator R occurs on a faster timescale than the
rest of the dynamics and with a magnitude of I', then Lindblad terms of the
form L(I,R) =T (Rﬁf{r — %RTRﬁ — %[)RTR) can be added to the equation
governing the time evolution of the density matrix, without violating any of
the criteria for the density matrix [51]. We thus write the master equation for

the density matrix operator as [52]
p=—ihi H, pl + L(k,a) + L(,6_) + L(Vap/2,62) (2.17)

where 6, = [64,6_]. As indicated in the sketch in Fig. 2.5, the first term is
responsible for the coherent light-matter interaction, where a QD can decay by
emitting into the cavity and if the coupling is strong enough the single photon
in the cavity can be reabsorbed by the QD, and the excitation thus coherently
oscillates back and forth. The three last terms correspond to dissipation of the
cavity, dissipation of the QD, and decoherence of the QD, respectively. Cavity
dissipation is due to imperfect confinement of the light and the cavity decay
rate is given by £ = wea/Q. Although other modes are strongly inhibited by the
photonic crystal, the QD can still emit into radiation modes, which is included
as the decay rate . Finally, the decoherence of the exciton is included as a pure
dephasing rate, vqp, which corresponds to white noise on the exciton energy

level, caused by e.g. phonons or changes in the electrostatic environment.
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Figure 2.5: Schematic of the dissipative Jaynes-Cummings model, where both
the QD and cavity are described as two-level systems. The QD is initially
excited, and it is dephased by the pure dephasing rate vq, and decays to the
environment with the decay rate . The QD is detuned by A from the cavity,
and it couples coherently to the cavity with the coupling strength g. The losses

of the cavity are given by the decay rate k.

Equations of motion

It is necessary to choose a representation of the master equation, where the
QD and field operators commute. A complete basis spanned by the states

{le,1),1g,1),e,0),|g,0)} is chosen and the operators are given by

0 0 0 0
a = I d o_=1I 2.18
a <1 O>® and & ®<1 0) (2.18)

In this complete basis the master equation becomes:

0 0 0 0

.| 0 igp23 — 19" P32 iApaz +1ig* (p22 — p33) —19" P34

p= . ‘ C. ) ) )
0 —iApzz —ig(paz — p33) g P32 — 19pP23 —iAp3s — igpaa
0 1gp4s3 1Apaz + 19" paz 0
0 0 0 0
0 —K _ytrt2%ap _E

+ 'y+n+§f$d?p 2 pas ’Y+§’7€li4 (2.19)

0 ——=—"p3 —P33 — 5 P
0 — 5 P42 —W%Pm Kp22 + VP33
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The elements {p11, P22, p33, paa} correspond to the populations of the states
{le;1),]g,1),e,0),]g,0)}. We restrict to consider only a single excitation in
the system, which is the reason why element pi; is zero in Eq. (2.19) and does
not couple to the other elements. The first matrix in Eq. (2.19) captures the
coherent light-matter interaction, while the second matrix originates from the
dissipative Lindblad terms. The dynamics of the populations of the QD and

cavity field make out a subset and are governed by the following equation:

P22 —K ig —ig* 0 P22

pos | _ | g AR 0 —ig* P23

psr || —ig 0 —iA - EERE g P32

P33 0 —ig ig - P33
(2.20)

This can be written in the more compact form py(t) = Mpy(t). In the ab-
sence of any light-matter coupling both the cavity field (p22) and the QD (p33)
populations decay exponentially with the rates x and -, respectively, while the
pure dephasing rate only gives rise to a decay of the polarization (pa3), i.e.

coherence. A general solution to Eq. (2.20) can be expressed as [53]
py(t+7) = eMTpv(t) =U(r)py(t) - (2.21)

Under non-resonant excitation of a QD, the exciton created above the bandgap
will fall down to the s-shell on a typical timescale of ~ 10 ps, while the decay
mechanism of the QD is typically on a much slower timescale 0.1 — 1 ns. The
QD can thus be assumed to be in the excited state at the initial time, meaning
that p33(0) = 1, p22(0) = 0, and pa3(0) = p32(0) = 0. Obtaining a general
analytical solution of Eq. (2.20) is very complicated, but in the absence of
detuning (A = 0) and pure dephasing (4, = 0) we can obtain the following

solution
pas(r) = Una(r) = L= —2; +0) - 811 - s etr-pr
L B *2;2* B) = 8l91” ~s(xtrt8)r
— ggfeg(nﬂ)r , (2.22)

where 8 = \/(k — )2 — 16[g[2. The size of g relative to the dissipative rates

k and v thus determines whether or not the exponent is real or complex and
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we will now discuss these two distinct regimes. Worth noting, however, is that

the solution always contains three terms due to the three quantities, pa2, pss,

and pa3 = p,.

Weak coupling

From Eq. (2.22) we see that the QD decays irreversibly if 4|g| < |k — 7|, mean-
ing that the coupling strength is smaller than the dissipative terms. While
obtaining an analytical solution of Eq. (2.20) is very complicated, we can adi-
abatically eliminate the polarization terms by setting p23 = 0, and we get the

following expression

(p3s — p22) (2.23)

where Yot = (K + 7 + 274p)/2. We note that in photonic-crystal cavities the
cavity rate is often much larger than the two others, x > {7,v4p}. Inserting
this into Eq. (2.20) and solving for pss, shows that the QD decays exponentially

with a decay rate given by

I =+ 2P 5t (2.24)
i

The decay rate is enhanced following a lorentzian shape, where the width is

determined approximately by the cavity rate. The enhancement of the decay

rate is known as Purcell enhancement [54], and the Purcell factor is defined as

the QD decay rate relative to that of a homogenous environment. On resonance

this gives

Ip

ro g 3Q<A>3|deg~f(ro>|2
2 (D) B VL (2.25)

= T = Thom A2 V n ‘deg|2 s

where we have assumed & >> {7, 74y}, inserted the definitions of the coupling
strength and k, and used Eq. (2.12) from section 2.1.2. The first term in
Eq. (2.25) is the decay of the QD in the absence of any cavity relative to the
decay rate in a homogenous medium. In a photonic-crystal cavity = is strongly
inhibited by the surrounding structure [55], while the inhibition is not nearly
as strong in micropillar cavities [56]. However, in either cavity this term is
much smaller than the second term that is due to the cavity. The importance

of a high Q-factor and low mode volume is evident from this equation, but also

23



Chapter 2. Quantum dots and photonic crystals

400 |- (@)

200 -

-200 |-

Detuning, %A (ueV)
o
I

-400 |

L I B L B
25 20 15 10 S5 0-400 -200 0 200 400
Enh. of decay rate, I'/y Relative frequency, 7Q (neV)

Figure 2.6: a) Enhancement of the decay rate as a function of detuning in
the weak coupling, where hx = 100 peV, Ay = 1 peV, hygp = 10 peV, and
lgl = k/5. b) Cavity emission spectra as a function of detuning calculated
using Eq. (2.37). A small inhomogenous contribution is added to the cavity
peak in order to make it visible. The intensity of the spectra increases on

resonance and the crossing of the two peaks is the tell-tale of weak coupling.

the position of the QD dipole relative to the cavity field and alignment of the
transition dipole moment with the field polarization are clearly important. In
Fig. 2.6(a) the decay rate of the QD is plotted as a function of detuning, and
we see how the enhancement predominately is given by the linewidth of the
cavity. Finally we note that the method of adiabatic elimination corresponds to
making the Markovian Wigner-Weisskopf approximation and only holds when
the system is well inside the weak coupling regime, 4|g| < |k — 7|. For larger
values of g, 8 remains a real number and the QD does decay irreversibly, but
the backaction from the cavity field onto the QD will result in non-Markovian
dynamics, which we will present the experimental proof of in chapter 3. The
corresponding emission spectra are shown in Fig. 2.6(b), where a crossing be-

tween the cavity and QD peak is seen, and the intensity increases significantly
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when on resonance.

Strong coupling

In the case where ( is imaginary it is instructive to write Eq. (2.22) as

At | | :
p33(T) = o [(5 + Kk — 7) cos(Q7) +i2(k — ) B sin(Q7) — 16]g] ] ,

(2.26)

from which it is clear that the population of the QD oscillates with the frequency

2
O =2lg[y/1 - (ﬁ) , and the oscillations are damped exponentially with the

rate (k + 7)/2. This means that the excitation coherently oscillates back and
forth between the QD and the cavity field, meaning that they are entangled
until the excitation eventually leaks out predominately by cavity losses. The
oscillations of the QD population are known as Rabi oscillations [57] and in
Fig. 2.7(a) the decay is plotted for a few different detunings. In Fig. 2.7(b) the
corresponding spectra are plotted as a function of detuning, and an avoided
crossing between the QD and cavity field peaks is observed. This splitting
occurs because the QD and cavity are entangled, and it is not possible to

distinguish between them close to resonance.

2.4.2 Emission spectra

We now turn to calculating the emission spectrum from the coupled system,
because this quantity can be measured experimentally and has frequently been
used to characterize QD-cavity systems [58]. The Wiener-Khinchin theorem
states that the spectrum is given by [59, 38]
1 T v X oy
S(w) = — lim dt/ dt' (EC) () ED) (t))e @t (2.27)
0 0

h 2T T—oo

In the case of stationary conditions this can be simplified greatly as only the
time difference will be of importance, but such conditions do not in general

apply in QD-cavity systems. However, the spectrum can be written [60]

S(Q) = 2Re { /0 " drei®r / T aEO @+ ED @) (2.28)

™ 0

where Q = w — wqq is the relative observation frequency, and E’(i)(t) are the

positive and negative frequency parts of the electric field operator. The electric
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Figure 2.7: a) Three representative decay curves of the QD at different de-
tunings showing damped Rabi oscillations for the parameters hx = 100 ueV,
Try =1 ueV, fiygp = 10 peV, |g| = k. b) Cavity emission spectra as a function
of detuning showing Rabi splitting close to resonance as expected from the
dynamics. The avoided crossing of the two peaks is considered the tell-tale of
strong coupling,.

field that can be measured in a spectrometer will in general contain emission

from both the cavity and QD, which means that we can express the electric
field operator as [49]

B0 (1) = neav/Rt(t) + mua /76— (1) . (2.29)

where any time retardation between the two operators have been neglected,
which is usually a good approximation in nanophotonic cavities. The coeffi-
cients 7ca and 7qq are complex coeflicients that describe the collection efficien-

cies of the cavity and QD electric field, respectively, and their relative phase.
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Combining Eq. (2.29) and (2.28) allows to express the full spectrum as

fRe/ dre'® / dt

[|770a‘ KSca + |77qd| YSqd + ncan:id\/ KYSdc + n:anqd V K’YSCd] ) (230)
where

sea(t',7) =(al(t' + 7)a(t))

th ) =6t +1)o-(t))
) =@t +7)5-(1) ,
) =(6+(t' +7)a(t)) -

/
t,T

(
(
(
Sac(t', T
In order to calculate the two-time expectation values above, we employ the
quantum regression theorem in differential form, which states that given a set of

operators A;j, whose expectation values satisfy a closed set of linear differential

equations

O-(Aj(t+7) = > LAt + 7)) ,
k

then the two-time averages the operator flj with any other operator B also

satisfy the same differential equation [61]

0. (Ai(t+7)B ZLJ K(Ax(t +7)B(1))

This means that the equation governing the evolution of s, (t',7) is the same
as the equation governing (af(7)) = Tr(p(1)a’) = pso(7). The equation con-
taining the cavity spectrum, sc,, can thus be written

d Sca Sca -5 7/9
= =W ., W= 2 . (231
dr ( Sde > ( Sde > ( igt iA - 1l ) (231)

which has been extracted from the master equation (2.19). The general solution

to this equation can be written in the form

sea(t,7) = Ki(t)eM vy + Ko(t)e*Tv_ 1 (2.32)
sac(t', ) = K1 (t)eM vy o 4+ Ko(t)er"v_ o | (2.33)
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where v, ; is the first element of the eigenvector v and A1 are the correspond-
ing eigenvalues given by:

L'* 'A_’Y‘f"}’dp_)\) 1
’U:t:<g (’L 12 + , )\i:Z(—’y—’ydp—H+Z2A:t\/a) s

a=(k+7+vap — 21A)? + 4ir(2A + iy + ivap) — 16[g]* . (2.34)

Ky (t') and Ky (') are constants with respect to 7, and by evaluating sc. (¢, )

and sc,(t',7) at time 7 = 0 we find them to be given by

Ki(t') = ﬁ(v—,wz?)(t/) = pa2(t)) (2.35)

1
Ka(t') = ————(p22(t') — vy,1p23(t)) . (2.36)
V-1 7 V41
Combining these expression and inserting them back into Eq. (2.30) gives us

the following expression for the cavity spectrum

2|"76a|2’i V41 /OO / ’ V-1 /oo / /
Sea = — Re | - : dt' K1 (t —_—l dt' Ko (t ,
= o )+ 56055, 2(t)
(2.37)

and for the cross-term

2ncanga/mY 1 * 1 >
e =— dt' K (t) + —— dt' Ko (t) ] .
Sa - Re[i§2+)\+/0 i )+i§2+)\_/0 2( )}

(2.38)

While we have derived the pole structure of the cavity spectrum, we note that
a fully analytical solution requires an analytical solution of Eq. (2.20), which
is very complicated and for that reason the spectrum needs to be calculated
numerically. In Fig. 2.6(b) the cavity spectrum is calculated as a function of
detuning in the weak coupling regime, where the anticipated crossing of the
cavity and QD peaks is observed. The cavity spectrum is very weak compared
to the QD spectrum for far-detuned conditions, and in this figure a small in-
homogeneous contribution has been added at the cavity frequency in order
to make the cavity visible. Close to resonance the cavity spectrum becomes
dominant because most of the QD emission couples out through the cavity as
evident from the Purcell enhancement. In Fig. 2.7(b) the same calculation is

done in the strong coupling regime, and we have not added any inhomogeneous
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contribution. We observe an avoided crossing, and the Rabi splitting between
two identical peaks is observed in perfect correspondence with the dynamical
properties. We note that the effect of dephasing is twofold. It broadens the
QD linewidth and it gives rise to a larger intensity in the cavity peak. In both
figures, although most clear for strong coupling, the QD peak is shifted slightly
in frequency even for large detunings. This energy shift can be considered the
cavity-assisted Lamb shift, where the modification of the LDOS gives rise a
frequency shift of the QD. It occurs because part of the emission is now at the
larger or smaller cavity frequency and in order to preserve the total energy, the
QD peak shifts slightly in the opposite direction, which we will show experi-

mentally in the next chapter.

Calculating the QD spectrum and the remaining cross-term is now easy,
because they also satisfy Eq. (2.31) and their solutions are thus also given by
Eq. (2.33), with the only difference that K;(t') and Ko (¢') are now called L (')
and Ly(t') and are given by

1
Li(t") = ————(v_p33(t)) — ps2(t)) , (2.39)
V-1 7 V41
1
Lo(t') = ————(ps2(t') —viapas(t)) - (2.40)
V-1 = V41
Again we can combine the equations and insert them into Eq. (2.30) to obtain

the following expressions for the QD spectrum and the remaining cross-term:

2|77qd|2'7 1 /Oo / ’ 1 /oo / /
— dt'Lq(t B — dt'Lo(t
ety O+ 005 ), 2]

2773a77qdv Ry Vi1 /OO / / V-1 /OO / /
Seq = — Re | —% AL+ ——2— | dt'Ly(t)]| .
d T “liarr J O+ 5 n o 2(t)

Sqa =

(2.41)

Using the above equations we now plot the cavity and QD spectra in
Fig. 2.8(a) for a detuned system in the weak coupling regime. We have set
[Neal® = |nqal> = 1/2, and we notice that while both have peaks at the QD
frequency only the cavity spectrum has a peak at the cavity frequency. As
detuning increases the total intensity in the cavity spectrum drops and the QD
spectrum dominates, while the cavity spectrum dominates on resonance. In
Fig. 2.8(b) the total spectrum from Eq. (2.30) is plotted, where we have intro-
duced the relative phase ¢ as n%,7qd = € |ncal - [7qa|- Changing the relative

29



Chapter 2. Quantum dots and photonic crystals

chI and SCa S=Sqd+ Sqd+ Scd+ Sdc
a b
0.5 —( ) S 7 1.5 ( ) (I)=3TE/2 -
B qd -
04 4 _
S S
£0.3 ¢ 1.0
S )
2 2
iz 0.2 Z
5 5 0.5
< 0.1 c
0.0 0.0
| ! | ! | ! | )
-400 -200 0 200 -400 -200 0 200

Relative frequency, 7Q (ueV)  Relative frequency, 7Q (neV)

Figure 2.8: A detuned system in the weak coupling regime with parameters
RA = 250 peV, hx = 100 peV, by = 1 peV, hygp, = 20 peV, and |g| =
k/5. a) Both the QD and cavity spectra have peaks at the QD frequency,
while only the cavity spectrum has a peak at the cavity frequency. b) The
total emission spectra containing both QD, cavity and interference terms with
[Neal? = [Nqal® = 1/2 and 1%,nqa = €*®|Ncal - [Nqa]- Changing the relative phase

can drastically alter the total emission spectrum.

phase not only changes the total intensity by an order of magnitude but also
the qualitative shape of spectrum, with the cavity peak being negligible for
¢ = 37/4 but dominating for ¢ = 7/2. The relative phase can easily change
experimentally when detuning is changed or depending on alignment, and much
care thus needs to be taken when comparing experimentally measured spectra
with theory as we will discuss more in the following chapter.

As noted, all the spectra have the same pole structure and from Eq. (2.37)

we can find the approximate Rabi splitting between the two peaks on resonance
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Figure 2.9: The Rabi splitting on resonance is plotted as a function of the
coupling strength for the parameters hx = 10hyq, = 100y = 100 peV. By
numerical investigation, the rabi splitting is extracted from the cavity and
QD spectrum, and we compare them to the Rabi splitting obtained from the
approximate expression in Eq. (2.42). We find a good agreement with the Rabi
splitting extracted from the QD spectrum, while the Rabi splitting extracted

from the cavity spectrum shows a large deviation.

to be

2
AQ ~ \/4|g|2 - (MQ'“P) (2.42)

However, it is noted that this is only an approximate expression since the pole
structure actually gives rise to four peaks, that also depend on the numerators.
This also leaves room for the Rabi splitting to vary between the cavity and
QD spectrum, which numerical investigation reveals is the case. In Fig. 2.9 the
Rabi splitting extracted from both the cavity and QD spectrum is shown to-
gether with the value obtained from the approximate expression in Eq. (2.42).
While the Rabi splitting extracted from the QD spectrum agrees well with the
approximate expression, the Rabi splitting extracted from the cavity spectrum

shows large deviations at small coupling strengths. Varying the collection ef-
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ficiencies of the QD spectrum relative to the cavity spectrum can thus alter
the total spectrum significantly without changing any other parameters. This
emphasizes that care must be taken when extracting quantitative information
from the emission spectra. Furthermore, we note that the Rabi splitting ex-
tracted from cavity spectrum is significantly smaller than the expected value
at smaller coupling strengths, and if mainly the cavity spectrum is detected
experimentally, this would lead to a significant underestimate of the coupling

strength.

2.4.3 Second order coherence

The last measurable quantity that we will discuss is the second order coher-
ence of the emitted electric field, which reveals information on the statistics of
the emitted field. Fock states, or number states, constitute the basis for the
quantum theory of light, and they are characterized by having no uncertainty
in the photon number n, i.e. (An)? = 0, which makes it easy to evaluate the

second order coherence function as [38]

1
g (r=0)=1-= for n>1. (2.43)

n
Single photon emission thus has a vanishing ¢(®(0), and this provides a cru-
cial experimental check of single photon emission. Moreover, this quantity is
experimentally accessible by directing the emission onto a 50 : 50 beamsplit-

ter and recording the coincidence counts on the detectors with the time delay 7.

We now consider two experimentally distinct cases, where the QD-cavity
system is excited either pulsed or continuously. Under pulsed conditions it is
trivial that ¢ (0) = 0 since only a single excitation is present in the system.
Under continuous excitation the situation becomes slightly more complicated,
but if we consider the QD-cavity system well inside the weak coupling regime,

where the adiabatic approximation applies, we obtain the expression [38]
g (r)=1-¢eT7 | (2.44)

where I' is given by Eq. (2.24). For details on how this function is calculated
we refer to chapter 6, where the same method is used but for the different

situation of a resonantly driven QD.
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2.4.4 Relation to the local density of states

In the above calculations the density matrix is used to describe the state of
the system, but the calculations can also be done using the LDOS description
from section 2.1.2. In the following we will show that the two approaches are
equivalent up to the point where pure dephasing is introduced. We start by

noting that the local density of states can be expressed in the following way [62]

R 2w . .
p(w,ro,€q4) = @Im{eqd -G(w,rg,10)  €qa} , (2.45)

where G(w,rp,rg) is the Green’s tensor for the electromagnetic field. The
imaginary part of the Green’s tensor only has a transverse part, which can be
written [63]

no_ e fu(r)f; (r')
GT(w,r,v) = 7 ZH: 2o (@ — ) (2.46)

where @,, = wea—ik/2 and it has been assumed that one cavity mode dominates

the expansion of the Green’s tensor. The LDOS for an emitter can thus be

expressed
p(w,To,€qd) = Pog(w,ro,€qd) + Pea(w,To,€qa) , Where (2.47)
N h&o 1
Pog(w, To, €qd) = TWV and (2.48)
K/2

pealw, To, 8qa) = [£(ro)[*|éqd -écal2< (2.49)

w2V W — Wea)? + (K/2)?
The first term in Eq. (2.47) gives the LDOS in the absence of the cavity. This
term depends on the inhibition of spontaneous emission in the photonic crystal,
but for the comparison to the Jaynes-Cummings model it has been constructed
so that it gives rise to a frequency-independent decay rate. The second term
is the LDOS originating from the cavity that has been found by substituting
Eq. (2.46) into Eq. (2.45) and assuming that the QD-cavity detuning is much
smaller than the frequency of the cavity. Inserting this LDOS into Eq. (2.10)

gives the following expression

d ¢ ; /
—co(t) = —lce(t) - |g|2/ Co(t')e TR/ AR =t gyt (2.50)

This equation can be solved by performing a Laplace transformation, isolating

the coefficient ¢, and transforming back to time domain, thereby obtaining
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an analytical expression for c.(t). The population of the QD is now easily

computed as |ce(t)|* and the expression is found to be equal to Eq. (2.22)

which was found using the density matrix description.

Within this framework we can also calculate the dynamics of the cavity,
the emission spectrum, etc. [64] just like in the density matrix description.
The above derivation was done by considering a pure state, and pure dephas-
ing, which is a classical probability, was not included. Pure dephasing can be
included in the above calculations but it requires quantum Monte Carlo sim-
ulations. The density matrix allows for the inclusion of classical probabilities
and pure dephasing is easily included through the Lindblad terms that auto-
matically preserve the properties of the density matrix, and for this reason the

main derivation in this chapter has been done using that description.
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Chapter 3

Quantitative analysis of
quantum dots in cavity

quantum electrodynamics

Cavity quantum electrodynamics (CQED) provides a way of enhancing and
controlling the light-matter interaction between a single emitter and a cavity
field. It has potential applications in the field of quantum information process-
ing [65] as a few-photon nonlinearity [66], and as a controlled-NOT gate, where
the state of a solid-state quantum bit conditionally controlled by the state of
a photonic quantum bit [67] has already been demonstrated. The field was
pioneered by a number of founding experiments on single atoms [1], but scal-
ing of these systems to larger networks remains a major challenge. Solid-state
implementations with quantum dots embedded in nanophotonic structures are
a promising platform that, although in its infancy, could potentially solve the
problem of scalability and lead to quantum-information processing on an opti-
cal chip [68].

In this chapter we present a comprehensive study of the dynamical and
spectral properties of CQED systems including a quantitative comparison to
theory. Experiments are performed on single QDs embedded either in a mi-
cropillar cavity or in a photonic-crystal cavity. It is demonstrated that while

the dynamics of single QDs tuned through the resonances of both micropil-
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lar and photonic-crystal cavities are well described by theory, this is not the
case for the spectral measurements. We attribute the discrepancy to the fact
that the details of the out-coupling of photons from the cavity to the detector
are not well known, and mutual interference between the different propagation
paths can occur.

For a single QD tuned through resonance with the fundamental mode of a
micropillar cavity we observe non-Markovian, i.e. memory dependent, effects
in the dynamics. While the system is in the weak coupling regime, the light-
matter coupling strength is sufficiently large for the cavity to exert backaction
on the QD. As a result the QD decays irreversibly, but the non-Markovian
coupling to the photon reservoir gives rise to a non-exponential decay.

For the photonic-crystal cavity we observe an anti-crossing in the measured
spectra when tuning the cavity through the QD resonance, which suggests
strong coupling between the QD and cavity. From the spectral Rabi splitting
and from time-resolved measurements we determine the light-matter coupling
strength, but the two obtained values differ by more than a factor of 4. The de-
cay rate is found to be significantly slower than expected from the anti-crossing,
which proves that the QD is in fact not in the strong coupling regime despite
the expectations from spectral measurements. We attribute this difference to
the feeding of the cavity by mainly multiexcitons but also other QDs that may
give rise to a collective Rabi splitting.

The main part of the quantitative analysis of dynamics and emission spectra
presented in this chapter is based on the work we have published in [69], while
the observation of non-Markovian dynamics for a single QD in a micropillar

cavity is based on the work we have published in [56].

3.1 Micropillar cavities

The first demonstration of a significant Purcell enhancement in a solid-state
system, was done by measuring the enhanced decay of an ensemble of QDs em-
bedded in a micropillar cavity [70]. Shortly after, single-photon emission was
demonstrated [17, 71] and finally the generation of indistinguishable photons
from a QD embedded in a micropillar was demonstrated [72]. Since then, exper-
imental proof of strong coupling in a micropillar cavity and in a photonic-crystal

cavity was published simultaneously [73, 74]. The geometry of micropillars
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Figure 3.1: Sketch of a micropillar cavity with a single QD embedded and the
corresponding LDOS.

makes it possible to excite the sample orthogonally to the primary emission
direction, which has allowed for resonant excitation of a single QD showing
Mollow triplets [75] due to the dressing of the QD two-level system by the

excitation laser [76].

3.1.1 Optical properties

The micropillar investigated has a height of ~ 9 um and a diameter of 1.7 pm
and consists of alternating GaAs and AlAs layers surrounding a central GaAs
cavity with a layer of low density ITnAs QDs (60 — 90 um~2) embedded, cf. the
sketch in Fig. 3.1. The alternating layers have a thickness of (A/n)/4 and form
a 1D photonic crystal, and the central cavity with thickness A/n permits a
cavity mode in analogy to the L3 photonic-crystal cavity. There are 30 periods
of alternating layers beneath the cavity and only 26 above the cavity in order
to make the cavity leak primarily in the upward direction, where it can be col-
lected efficiently. Because the micropillar consists of the same material as the
photonic-crystal membrane, the same fabrication method that was outlined in
section 2.2 can be used. However, because the total number of layers exceed
110 and because the pillar has a height of ~ 9 um, great care has to be taken
during the growth to ensures that the layers are flat and during the etch to en-
sure that the outside of the pillar is smooth since this might otherwise degrade
the Q-factor. The micropillar sample investigated in this work is fabricated

by our collaborators at the University of Wiirzburg and more details on the
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fabrications process can be found in [77]. While the QDs are randomly posi-
tioned inside the cavity, they are by design always placed at the antinode of the
cavity field, thereby ensuring an effective coupling to the cavity mode. While
the layers above and below the central cavity region work as Bragg mirrors,
the QD can still couple to radiation modes that leak out perpendicularly to the
micropillar. The symmetry of the pillar implies that radiation modes always
have an incidence angle close to zero and there is no total internal reflection
taking place, that would otherwise help limit the effect of radiation modes.
The transition from high to low refractive index does, however, still give rise
to some reflections. Very high Q-factors of ~ 50000 can be reached [78], but in
general the mode volume is ~ 10 (A/n)3 [79], which is an order of magnitude

larger than in L3 photonic-crystal cavities.

Because the background decay rate, i.e. the decay rate when far detuned
from the cavity mode, is not significantly altered, the LDOS for a QD embedded
in a micropillar cavity can be sketched as shown in Fig 3.1. The small size of
the central GaAs cavity results in discrete optical modes, and so far we’ve only
been refering to the high-Q fundamental mode of the cavity. In general it is
possible to identify at least 4 modes, where the 3 higher-order modes typically
lie closely spaced within a small range (~ 3 nm) situated at around ~ 10 nm

shorter wavelengths than the fundamental mode.

3.1.2 Experimental setup

If the thermal energy is too large, the shallow confinement potential of the QDs
cannot keep excitons confined and non-radiative recombination becomes large.
Emission can therefore only be seen from the QDs if the temperature is below
~ 70 K, and in order to reduce the effects of dephasing from the environment we
typically cool the sample to 10 K using liquid helium. The sample is attached
to a copper sample holder using silver glue and is placed in a helium flow
cryostat, Microstat HiRes II from Oxford Instruments, where liquid helium
is pumped from a dewar into a cold finger, that is thermally anchored to the
sample mount. Approximately 2 mm above the sample a window with diameter
25 mm and thickness 1.5 mm is placed which allows for the optical access in a
large solid angle. Using a turbo pump the sample chamber is pumped down to

~ 107% mbar. The cyostat is mounted on two translation stages, which enables
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Figure 3.2: Experimental setup for spectral and time-resolved measurements
using side-excitation of micropillar cavities. The zoom-in shows a sketch of the
micropillar with the corresponding cavity and QD emission spectra.

positioning of the sample with a precision of 0.1 um relative to the excitation
optics [80].

For excitation of the sample we use a mode-locked Ti:Saphh laser, Mira
900 from Coherent, which is pumped by a 5 W laser at 532 nm, Verdi from
Coherent. Wile the laser can always be operated in continuous wave (CW)
mode, optics can be added or removed to switch between femto-second and
pico-second mode. However, we only use pico-second mode where the pulse
width is ~ 3 ps, which is much shorter than the dynamics of the QD and
excitation can thus be considered a delta pulse. The corresponding spectral
width is ~ 0.4 nm, which is narrow enough to efficiently excite higher levels
of the QDs, e.g. p-shell excitation. Furthermore, the Ti:Sapph laser has a
wide tuning range of 750 — 950 nm, where purging with nitrogen is needed
for mode-locked operation above 900 nm. For power control, the output of
the laser is directed through two sets of half-wave-plates (A/2) and polarizing
beamsplitters (PBS) and if needed neutral density (ND) filters before coupling
into a single-mode fiber.

The p-shell of the QD is typically ~ 20 nm blue detuned from the emission,
which means that the Bragg mirrors also reject most of the excitation laser
when attempting to excite the micropillar from the top. Therefore, we excite
the micropillar from the side, as shown in Fig. 3.2. The output of the single-
mode fiber is collimated by a fiber-coupler and the output passes through a
A/2-plate for polarization control before it is directed onto a lens that focusses

the light to a spot size of 8 pum with an incidence angle of 15° with respect to
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the substrate. This side-excitation is particularly useful for both p-shell and
s-shell excitation as it allows for easy separation of the excitation laser and

emission.

The emission from the sample is collected by a microscope objective, CFI
Super Plan Flour ELWD 40XC from Nikon, with a numerical aperture (NA) of
0.6. The window of the cryostat imposes a certain minimum working distance
and it also gives rise to spherical abberations of the emission, and this objective
was found to be the best solution as it has a long working distance of 2.8 — 3.6
mm, a reasonably high NA, and the possibility to compensate for spherical
abberations from the window. The spot size of the objective has been measured
to be 2.4 um [80] and the transmission is 77% in the range 800 — 950 nm.
The objective is mounted in a customized Olympus BXFM system, which is
not shown in Fig. 3.2, and it allows for the distance between the microscope
objective and the sample to be varied. It also makes it possible to remove the
mirror that directs the emission to the A/2-plate and PBS, and the emission
can be sent to a CCD camera for imaging. At the same time a beam-splitter
cube, that reflects ~ 10% and transmits ~ 90%, can be inserted before the
mirror, and it directs a white light source onto the sample while most of the

light reflected from the sample is transmitted to the CCD for imaging.

After being collimated by the microscope objective, the emission from the
sample is directed onto a A/2-plate and PBS for polarization filtering before
being coupled into a single-mode polarization-maintaining (PM) fiber. The PM
fiber is situated at the image plane, and it provides the spatial filtering needed
for experiments on single QDs. A gaussian beam can be coupled into the fiber
with an efficiency up to ~ 80%. For a dipole pattern half of the emission is
in the direction opposite of detection, and maximally 51% of the radiation in
the direction towards detection can be coupled into a single mode fiber [81].
However, the QD couples to the micropillar cavity mode, which results in a

more complex radiation pattern.

Despite of the loss in the fiber coupling, it is still advantageous to use a
fiber, since the output of the fiber remains independent of the alignment into
the fiber. The output of the fiber is collimated and sent to a 0.5 m spectrometer,
PI Acton 2-500i from Princeton Instruments, where a 1200 g/mm or 150 g/mm
grating can be used, cf. Fig. 3.2. While the former has a high resolution down to

~ 0.025 nm it also suffers from lower transmission and only a small wavelength
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region of ~ 40 nm can be viewed on the CCD. In contrast, the latter has a low
resolution, but a larger transmission and wavelength region on the CCD. For
spectral measurements the output of the spectrometer can be directed onto
a CCD, which is peltier-cooled down to —75° in order to reduce the noise.
For lifetime-measurements, the output of the spectrometer is directed onto an
avalanche photo diode (APD), PDM-50CT from Micro Photon Devices, that
has a high time resolution of 50 ps and low dark counts of 75 counts/s but a
low quantum efficiency of 5% at 900 nm. After each detection event the APD
has a dead time of 70 ns, where no photons can be detected, and there is a
0.5% afterpulsing probability.

Before coupling the laser into the single mode fiber, a portion of the beam
is picked out and sent to a fast triggering diode. Using a PicoHarp 300 from
PicoQuant, the output of the triggering diode is correlated with the output
from the APD with a resolution of 4 ps. If a single photon is detected by
the APD, the PicoHarp electronics calculate the time-difference to the last
pulse from the triggering diode and builds up a histogram with single-photon
detection events versus arrival time. The setup also includes a Hanbury-Brown
and Twiss (HBT) setup and a Hong-Ou-Mandel interferometer, but these will
be explained in detail in chapter 5.

3.1.3 Observation of non-Markovian dynamics

In this section we present a systematic study of the dynamics of a single QD
tuned through the resonance of the fundamental mode of a micropillar cavity.
The system is shown to be in neither the weak nor strong coupling regime,
but rather in an intermediate regime, where the QD decays irreversibly but
non-Markovian, i.e. memory dependent, which are usually features attributed
to the weak and strong coupling regime, respectively. Both the strong coupling
and intermediate regime are manifestations of non-Markovian effects, because
the QD-cavity coupling is so strong that there is "memory" in the system,
meaning that the population at one instant of time depends on its value at
previous times, which leads to light-matter entanglement. While the ability to
enter the strong coupling regime has been demonstrated by recording detuning-
dependent spectra [73], the results presented here constitute the first experi-
mental demonstration of non-Markovian dynamics in solid-state cavity QED

to our knowledge [56], thus complementing results on atomic systems [82].
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The experimental signature of non-Markovian coupling between a two-level
emitter and a radiation bath is the deviation of the spontaneous emission in-
tensity from an exponential decay. This can realized by recasting Eq. (2.20)

for the Jaynes-Cummings model to the integro-differential form

pad(t) = —vpaa(t) — lgP[G(t) + G*(1)] ,
fea(t) = —kpea(t) + lgI?[G(1) + G*(1)] | (3.1)

t
G0) = [ paat) = peald e =t
0

where Yot = (kK + v + 274p)/2. Here G(t) is the memory kernel of the sys-
tem and we can recognize the three distinct regimes: |yior — 4A| > 2|g| is the
weak coupling Markovian regime, where the Wigner-Weisskopf approximation
holds and the QD decays exponentially. 2|g| < |vtot —4A| defines an intermedi-
ate non-Markovian regime, where the Wigner-Weisskopf approximation breaks
down and the QD decays irreversibly but non-exponentially due to the back-
action from the cavity. Finally, 2|g| > |yt — ¢A| defines the strong coupling
regime, where the excitation coherently oscillates back and forth between the
QD and cavity due to the strong coherent back-action from the cavity. We
will show that the particular system we are investigating is in the intermediate

regime, which is revealed by performing time-resolved measurements.

Initially we search many cavities in order to find a QD coupled to a cavity
mode and situated at a slightly higher energy, thereby allowing for the QD to
be tuned through the cavity mode resonance by increasing the temperature.
After finding such a QD-cavity system we tune the excitation laser to the p-
shell of the QD, which results in a very clean spectrum, cf. Fig. 3.3(a). The
Q-factor of the cavity is measured under strong above-band excitation power
to ensure that all QDs are saturated [83], and we find () = 12200 corresponding
to hk = 110 neV by deconvoluting the spectrum with the instrument response
function (IRF) of the spectrometer. The QD emission shifts to lower energies
much faster than the cavity mode when increasing temperature, which allows
for systematic variations of the detuning by controlling the temperature. In
Fig. 3.3(b) the recorded decay curve and corresponding fit are displayed under
far-detuned conditions (RA = 362 peV) as well as the IRF of the setup, which
is measured by propagating a laser pulse through the setup and adjusting the

power to be similar to that of the emission. The decay curves are modeled by
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Figure 3.3: a) Emission spectrum at 10 K under p-shell excitation. b)
Measured curves of the QD decay close to and far from resonance. For
hA = 362 eV the decay is Markovian and bi-exponential, and the fit is ex-
cellent. The data for AA = 17 peV is modeled with the non-Markovian model
obtained by solving Eq. (3.1) (solid blue curve) with an additional exponential
decay accounting for the recombination of dark excitons. The green dashed
curve represents the case, where the data is modeled with a Markovian bi-
exponential decay and the same slow rate is used. A pronounced offset from
the Markovian theory is observed. ¢) The fast part of the Markovian and non-
Markovian fits to the decay curve at hA = 17 peV without convolution with
the IRF, which highlights the deviations from the Markovian theory.
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convoluting a bi-exponential function including a background with the mea-
sured IRF. By blocking the laser a background file is recorded from which the
dark counts are extracted. Afterpulsing also contributes to the background
and this is calculated using the counts in the measured decay curve and added
to the background. The offset between the IRF and measured decay curve is
important for the convolution process, and by starting the fit much before the
excitation, the reduced ¥? is calculated as a function of offset. Usually a clear
minimum can be found, which gives the offset. Finally, the starting time for
the fit is chosen to be at the maximum of the decay curve. With the back-
ground, offset, and start time as fixed parameters, the four parameters for the
bi-exponential decay are now fitted to the decay curve. The normalized resid-
uals are plotted for each time-bin and if the fit is good there should not be any
systematic deviations. Similarly, ¥2 is calculated for the fit and if ¥? ~ 1 the
agreement between the observed and expected distributions is satisfactory [84].
For verification we also fit single exponentials to the data, but ¥? is usually
significantly higher, indicating that this is not the correct model. More details
on the fitting routine can be found in [85, 80]. The far-detuned decay curve
(hA = 362 peV) in Fig. 3.3(b) is bi-exponential and as outlined in section 2.1.1
we extract the background radiative decay rate as ¥ = Yeast — Vslow = 1.94 ns™!
corresponding to Ay = 1.3 peV.

Close to resonance (AA = 17 peV) the fast decay is modeled with the full so-
lution obtained from Eq. (3.1), with the experimental values of A, k, v, and vqp.
The slow part of the decay, that is due to the recombination of dark excitons,
is still modeled with an exponential. Fig. 3.3(b) shows the comparison between
experiment and theory (solid blue line) close to resonance, from which we ex-
tract h|g| = 22.6 + 0.9 peV. The system is in the intermediate coupling regime
(2lg] S |0t —2A) as verified by evaluating i|yior —A| = 64.1 ueV. Describing
the data with the Markovian bi-exponential model is shown in Fig. 3.3(b) (dot-
ted green line), where the same slow component has been used. Erroneously
describing the data using this model leads to significant deviations between the
theory and data that are visible in the raw data in Fig. 3.3(b). We stress, that
the number of parameters used for both the Markovian and non-Markovian
modeling are the same. In order to highlight the deviations from the Marko-
vian theory, we plot the fast part of the Markovian and non-Markovian fits
to the decay curve at hA = 17 pueV without the convolution with the IRF in
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Figure 3.4: a) Detuning-dependent decay rates of the QD extracted using
the Markovian approximation and the full non-Markovian model, where large
deviations are observed close to resonance. The prediction from the Jaynes-
Cummings model with no free parameters is seen to be in excellent agreement
with the data. The upper temperature scale is approximate. b) The slow decay
rate extracted for each measured decay curve. ¢) Reduced-chi-squared for the
Markovian model showing the inability of the model to describe the data close

to resonance.

Fig. 3.3(c). The inability of modeling the decay curves with the Markovian
bi-exponential model is quantified by 2, which we have plotted in Fig. 3.4(c).
Close to resonance we observe significant deviations from the optimum value
of unity proving that the Markovian model does not agree with the data, while

all the non-Markovian fits give a value of ? close to unity [56].
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Alternatively the deviations from the Markovian behavior observed in the
experiment can be displayed by comparing the decay rate extracted from the
Markovian model with the generalized decay rate 1/(t) = [ pqadt/ [~ tpqadt
obtained from the non-Markovian decay, cf. Fig. 3.4(a). The slow components
are modeled for each decay curve individually, cf. Fig. 3.4(b), where a weak
temperature dependence is observed, and in Fig. 3.4(a) only the radiative rate
is shown. While the Markovian and non-Markovian rates as expected agree
under far-detuned conditions, very pronounced deviations are observed close
to resonance. Importantly, the rates extracted without making the Marko-
vian approximation are seen to be described excellently by the predictions of
the Jaynes-Cummings model without any adjustable parameters, as evident
from Fig. 3.4(a). Making the Markovian approximation close to resonance
greatly overestimates the decay rate to 35.6 ns—', while the correct value in
the full non-Markovian model is 17.7 ns~!. This would in turn lead to a large
overestimate of the coupling strength. While previous studies have employed
global-fitting routines to extract parameters from spectral measurements [58]
or assumed reasonable values for the parameters [86], we stress that there are
no free parameters in the comparison in Fig. 3.4(a), thereby making this the
first quantitative study of a QD-based cavity QED system [56]. The role of
pure dephasing is made clear by noting that the full-width at half-maximum
(FWHM) of the Purcell enhanced region in Fig. 3.4(a) is 99.3 peV, which is
larger than the 88.3 pneV expected from a model without dephasing. This
means, that pure dephasing broadens the Purcell enhanced region because it
increases the linewidth of the QD, and the data in Fig. 3.4(a) constitutes the

first experimental proof of this mechanism that was first predicted in [87].

Finally it is discussed how the remaining parameters for the comparison
between experiment and theory were determined. The single-photon nature
of the emission from the QD was verified by performing autocorrelation mea-
surements using a Hanbury-Brown and Twiss interferometer, and details on
this setup can be found in chapter 5. For large detunings we measure an anti-
bunching of ¢® (7 = 0) = 13.2% under pulsed excitation conditions, proving
that the QD acts as a single-photon emitter, where background emission only
constitutes 6.6% of the total signal [69]. The coherence of the emission is mea-
sured by sending the emission to a Hong-Ou-Mandel interferometer [88, 72],

where consecutively emitted photons are interfered on a 50 : 50 beamsplitter
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and the coincidence counts are measured. If the photons are indistinguishable
they will always bunch together in one arm, leading to a vanishing coincidence
count a zero time delay. Dephasing will, however, randomly shift the QD emis-
sion frequency leading to a degradation of this effect, and we extract a degree
of indistinguishability of 48%. From this overlap the pure dephasing rate of the
QD can be extracted to Ayqp = 6.3£2.2 peV at T= 16.3 K. Details on both the
physical effect and setup are presented in chapter 5. Below 60 K, the dephasing
rate has been shown to depend linearly on temperature [89], which allows us
to extract the derivative h07vqp/0T = 0.39 & 0.13 peV /K, which is valid in the
temperature range where we perform the experiments (10 — 23 K) [56].

3.1.4 Detuning-dependent emission spectra

We now perform a similar comparison between experiment and theory in the
spectral domain. For every detuning we have also recorded the emission spec-
trum and a few representative spectra are shown in Fig. 3.5. As shown in
Eq. (2.30) the emission spectrum consists of both a cavity and QD part as well
as the interference terms, but the individual prefactors are undetermined. The
cavity contribution is expected to be dominant in the micropillar cavity due to
the geometry, and in the modeling of the recorded spectra we therefore assume
Nqd = 0. On resonance we have performed an autocorrelation measurement of
the emission that yields the value ¢g®) (7 = 0) = 34.5%, which indicates ad-
ditional feeding of the cavity from other QDs or multiexcitons. The detected
signal can therefore be expressed as I = I4q + I, where the former part origi-
nates from the QD and the latter is due to the background. A background due
to other recombination processes will have a thermal distribution [38] and is
likely to be uncorrelated with the QD signal. Inserting the expression for the
detected signal into the definition of the autocorrelation, g(®(r = 0) = gjg
9®(r=0)
2

means that the background constitutes of the total signal. An inho-
mogenous contribution to the cavity spectrum of 17.3% is therefore added to
the calculated cavity spectrum. At each detuning the spectrum is calculated
using the parameters determined from the time-resolved measurements, and
the spectrum is convoluted with the spectral IRF and normalized to the QD

peak, cf. Fig. 3.5.

We immediately notice that the calculated spectra consistently underesti-
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Figure 3.5: The measured spectra (red circles) for a QD in a micropillar cavity
for various values of detuning, which is controlled by changing the temperature.
The blue lines are the corresponding cavity spectra calculated without any free
fitting parameters.

mate the intensity at the cavity peak. The asymmetry in the relative QD-cavity
intensity cannot be reproduced by the theory and the disagreement between
experiment and theory is large. There are, however, a number of effects that
are not included in the theory, which may explain this discrepancy. Firstly,
both the QD and interference terms are not included in the comparison. Be-
cause the coefficients 744 and 7., are not determined experimentally and are
expected to be detuning dependent, the QD and interference terms cannot be
included when performing the quantitative comparison, and in the previous
chapter we demonstrated how important these contributions are for the total
spectrum. Secondly, feeding of the cavity by other QDs and multiexcitons is
known to increase the intensity at the cavity peak even when they are far de-

tuned [36], which may contribute to the observed disagreement. Finally, all
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the time-resolved measurements, including autocorrelation and two-photon in-
terference measurements, all probe the dynamics and coherence at short time
scales (of the order nanoseconds). In contrast, the spectra are integrated over
much longer timescales (of the order seconds), which implies that they are sen-
sitive to slow dephasing mechanisms, e.g. spectral diffusion, where changes in
the electrostatic environment broadens the QD linewidth. As a result, spectral
measurement can reveal a much broader QD compared to what is expected from
time-resolved measurements. These complications lead to the conclusion that
it is favorable to extract quantitative information about the system through
time-resolved measurements rather than from spectral measurements, where
we have observed systematic deviations between experiment and theory [69].

3.2 Photonic-crystal cavities

QD-cavity systems in the strong coupling regime have been the subject of an
intense study [90, 91, 92] since the first demonstration of Rabi splitting in the
spectrum [74, 73]. Due to the limited time-resolution offered by APDs, the
strong coupling regime has been studied exclusively in the spectral domain,
where e.g. global-fitting routines have been employed to extract the parameters
from the vast parameter space [58]. Most notable, the appearance of a third
peak at the bare cavity frequency was observed in an otherwise strongly coupled
system, which was attributed to blinking of the QD [93]. In the following we
present spectral measurements on a system that appears to be in the strong
coupling regime, but time-resolved measurements prove that the system is in

fact in the weak coupling regime.

3.2.1 Experimental setup

The setup used for measurements on photonic-crystal cavities is the same as
used for micropillar cavities shown in Fig. 3.2 with minor modifications. The
geometry of the photonic-crystal cavity does not easily allow for side-excitation,
and instead a dichroic mirror, which reflects light below ~ 860 nm and trans-
mits light above ~ 900 nm, is inserted on top of the microscope objective.
The cavities of interest all have emission wavelengths above 900 nm, where the
dichroic mirror transmits all the light, and the detection is done as shown in
Fig. 3.2. For the data presented here, the QD is excited below 860 nm, where
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the dichroic mirror reflects all light and thus allows for an easy separation of the
excitation and emission. After coupling the excitation out of the single-mode
fiber, the beam propagates through a PBS followed by a \/2-plate for polariza-
tion control before being incident on the dichroic mirror. The mode structure
of a photonic-crystal cavity was shown in Fig. 2.4, and we now excite the QDs
spatially in the cavity by tuning the excitation laser into resonance with the
M6-mode at 850 nm while observing the emission around the fundamental M1-
mode at 952 nm. In this way we ensure that only QDs spatially coupled to
the cavity are excited, and the spectrum becomes much cleaner compared to
above-band excitation. In order to ensure efficient in-coupling, the polarization
of the excitation laser is adjusted to match that of the M6-mode.

The detuning can still be varied by changing the temperature, but as seen
in the case of micropillar cavities this results in a relatively small variable range
~ 1 meV. However, for photonic-crystal cavities we also have the possibility to
change the cavity frequency by depositing small amounts of Nitrogen gas on
the sample, which results in a small decrease in the radius of the holes [94].
Effectively this makes the cavity larger and the wavelength of the cavity shifts
to longer wavelengths without any significant changes to the Q-factor of the
cavity and combining this with temperature tuning gives a tuning range of over
6 meV. In practice, however, the cavity slowly drifts towards longer wavelengths
even when Nitrogen is not introduced intentionally and the pressure remains
low, ~ 107% mbar, which has also been observed by others [35]. We find that
the determining factor for this modewalking is the size of the window for the
optical access. For the measurements we vary between two different lids, where
the only difference is the diameter of the window seen by the sample which is
25 and 10 mm, respectively. Modewalking is significantly faster for the latter,
where the mode drifts almost 0.8 nm over 90 min. as opposed to the former,
where the cavity mode drifts less than 0.2 nm in the same time. Furthermore,
it is observed that the drift always saturates after a characteristic time, which
for the 25 mm window happens after almost 6 hours where it has drifted about
1 nm. We also observe that increasing the temperature to 16 — 18 K results in
the evaporation of the condensed material and the cavity wavelength thus goes
back to the initial wavelength [95]. We note that a determining factor for the

rate of modewalking seems to be the solid angle of the window seen from the
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sample. The larger this solid angle is, the slower the modewalking happens.
We note, that the timescale of the modewalking has to be much longer than
the characteristic measurement times in order for the assumption of stable
conditions to apply. This was indeed the case for the two lids mentioned,
but we have also constructed a lid with a small nozzle that allows for the
controllable deposition of Nitrogen onto the sample, and this resulted in a very

fast modewalking that did not allow for measurements.

3.2.2 Detuning-dependent emission spectra

The cavity studied here has a lattice constant @ = 240 nm and hole radius
r = 65 nm, and the three holes at each end of the cavity have been shifted
in order to increase the Q-factor as explained in section 2.3. The Q-factor
is measured to a moderate 6690 £ 37 corresponding to hx = 195 £ 1 peV
under high excitation power. The detuning-dependent spectra are shown in
Fig. 3.6(a), where the cavity is tuned through the QD while the temperature
is fixed at T= 10 K.

The measured spectrum is the spectrum emitted from the QD-cavity system
convoluted with the spectrometer TRF. Importantly the convolution theorem
states that a convolution in one domain is a simple product in the comple-
mentary domain [96]. Using this we can deconvolute the measured spectra by
performing an inverse Fourier transform, dividing by the inverse Fourier trans-
formed IRF and multiply by a bandpass filter in order to reduce noise, before
finally transforming back to the frequency domain [97]. The validity of this
procedure is carefully checked by convoluting the deconvoluted spectra with
the IRF and comparing to the measured spectra. The deconvoluted spectra
are fitted by two Lorentzians each having the center, width, and amplitude as
free parameters, and in Fig. 3.6 the measured spectra are shown together with
the convoluted fits [69]. The limitations to the quantitative knowledge that
can be extracted from spectral measurements, as was discussed in the context
of micropillars in the previous section, also applies to photonic-crystal cavities.
However, in the following we will focus on investigating the Rabi splitting that
has been widely studied in the literature [74, 73, 93, 58] and is considered to
be a robust measure of the light-matter coupling strength between the QD and
cavity.

Figures 3.6(b)-(d) show the quantities extracted from modeling the mea-
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Figure 3.6: a) The recorded emission spectra (red circles) of a QD-cavity sys-
tem, where the cavity is tuned through the QD by gas deposition at T= 10
K. The black line is the fit with two Lorentzians after convolution with the
spectrometer IRF. b-d) The resonance energy, Q-factor, and relative area of
the two peaks, respectively, as a function of detuning. Red lines are the fit of
the cavity spectra from the JC model used to extract the coupling strength.
The relative area of e.g. the QD is defined as Aqq/(Aqa+Aca) where Aqq (Aca)
is the area of the QD (cavity) peak.

sured spectra, i.e. the energy of the two resonances, their Q-factors and the
area of each Lorentzian relative to the total area. In Fig. 3.6(b) a clear anti-
crossing is observed close to resonance, which is considered to be the tell-tale
sign of strong coupling. Fig. 3.6(c) shows that the Q-factors become identical
on resonance, but for a strongly coupled system the two peaks are expected to
share the total linewidth on resonance. This means that while the cavity and

QD have the linewidths x and 7 + 2vgp, far from resonance, their linewidths
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Figure 3.7: a) The measured emission spectrum (red circles) at detuning
hA =15 peV together with the double Lorentzian fit. b) The deconvoluted fit
decomposed into the two Lorentzians showing a Rabi splitting of A2 = 114 peV.
¢) The measured decay curves close to resonance (hA = 0.12 meV) and far-
detuned (AA = 4.6 meV) along with their fits (red lines) showing a strong
Purcell enhancement. We extract the decay rates 18.5 ns~! and 0.39 ns™!,
respectively, and the IRF of the APD is shown for reference.

should both equal (k + v 4 274p)/2 corresponding to Q= 12820 on resonance,
which is seen not to be the case in Fig. 3.6(c) although the Q-factor of the
cavity does increase slightly. We note that the increase in Q-factors for the QD
peak observed for positive detunings is most likely an artifact of the deconvo-
lution process because the Q-factor of the QD is close to the resolution of the
spectrometer, which corresponds to Q= 32560. Finally, Fig. 3.6(d) shows that
while the relative area of the cavity peak dominates away from resonance, the
two peaks have almost equal intensity on resonance, as expected for a system

in the strong coupling regime [69].

Fig. 3.7(a) shows the spectrum recorded almost at resonance (AA = 15 peV)
together with the convoluted double Lorentzian fit, and in Fig. 3.7(b) the fit
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is decomposed into the two Lorentzian functions. We observe a clear splitting
between the two peaks that have almost the same width and area, as can also
be seen in Fig. 3.6(c-d). This is also expected for a strongly coupled system,
where the single excitation coherently oscillates back and forth between the
QD and cavity mode thereby creating two indistinguishable alternatives. The
splitting between the two peaks is h{) = 114 peV. Assuming the splitting is a
vacuum Rabi splitting we extract the coupling strength hg = 92.4 peV using
the Jaynes-Cummings model with the measured values for the parameters
and 7, and using a realistic pure dephasing rate of fyqp = 4 peV [56]. The
ability of this model to describe the detuning dependence of the resonance
energies is evident from Fig. 3.6(b), where there is an excellent agreement.
Finally we note, that the energy of the QD peak in Fig. 3.6(b) is shifted
slightly down for negative detunings and up for positive detunings with respect
to the center of the splitting on resonance. This energy shift can be considered
the cavity-assisted Lamb shift, where the modification of the LDOS gives rise
to a frequency shift. As is evident from Fig. 3.6(b) this cavity-assisted Lamb
shift depends on detuning, which is reproduced by the model, and we attribute
it to conservation of energy. Initially the QD is excited but part of the emission
is at the higher cavity frequency, and in order to fulfil energy conservation in
the emission spectrum, the QD energy is shifted in the direction opposite of

the cavity.

3.2.3 Comparing spectra with dynamics

As described in section 3.1.3 a quantitative measure of the coupling strength
can be obtained from time-resolved measurements, which allows us to test the
validity of the Rabi splitting extracted from the spectra. In Fig. 3.7(c) examples
of measured decay curves for large detunings (hA = 4.6 meV) and close to
resonance (RA = 0.12 meV), respectively, are shown together with their fits. As
described, the decay curve of a QD is expected to be bi-exponential, where the
slow rate only contains the non-radiative rate, while the fast also contains the
radiative rate. For very large detunings the radiative rate is strongly inhibited
by the photonic crystal, and the decay curves consequently appear to be single-
exponential. We use the same fitting routine that was outlined previously and
for the far-detuned decay curve in Fig. 3.7(c) we extract a decay rate of 0.39

ns~!, corresponding to iy = 0.2 peV.
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When the QD is tuned closer to resonance the decay rate gets Purcell en-
hanced and consequently the decay becomes bi-exponential. However, for de-
tunings h|A| < 0.5 méV additional exciton lines and multiexcitons feed the
cavity and this cannot be spectrally filtered because of the small detuning. As
a result an extra exponential decay must be added in order to model the decay
curves successfully, where we extract the fast decay rate that will be dominated
by the resonant exciton [69]. We will discuss this in detail in the next chapter.
From the decay curve close to resonance (hA = 0.12 meV) we extract a rate of
18.5 ns~!, corresponding to a Purcell enhancement of 47.4 obtained by com-
paring to the far-detuned case. Similarly we can compute the emission into the
cavity mode relative to the total emission, i.e. the beta factor, which gives us
8 = (18.5—10.39)/18.5 = 97.9%.

By using the expression for the Purcell factor derived in Eq. (2.25) we
conclude that the coupling strength in the photonic-crystal cavity is only 3.2%
of the maximum achievable value for an emitter positioned optimally in an
antinode of the cavity with aligned dipole moment, while for comparison this
value is 19% for the previously studied micropillar cavity. Because light is
confined much tighter in the photonic-crystal cavity it is also more sensitive
to the spatial position of the QD, and the probability of having a QD at the

maximum of the field is thus lower.

From the time-resolved data we now extract a coupling strength of #|g| =
22 + 0.7 peV, which surprisingly is more than four times smaller than that
obtained from the spectral Rabi splitting. This proves that the system is in
fact not in the strong coupling regime but rather well inside the weak coupling
regime. This pronounced discrepancy is another example of the incompatibil-
ity of the information extracted from spectral and time-resolved measurements.
For the latter measurements only a narrow spectral region is sent to the APD,
and we can be confident that we are primarily probing the dynamics of the sin-
gle excition line. In contrast, spectral measurements also contain contributions
from other QDs and/or multiexcitons that feed the cavity [98, 99], which has
been experimentally confirmed by autocorrelation measurements of the cav-
ity peak that showed bunching although the cavity was being fed by a single
QD [36].

Consequently we suggest that the additional feeding of the cavity can give
rise to collective effects and that the Rabi splitting observed spectrally is due
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not to the coupling strength of the single exciton but rather to the collective
coupling strength of all the emitters. The clean spectra in Fig. 3.6(a) suggest
that there are no other excitons contributing to the coupling, but the intensity
in the cavity peak is systematically larger than the intensity in the QD peak,
cf. Fig. 3.6(d), which supports the hypothesis that multiexcitons are feeding
the cavity. As described in chapter 2, multiexcitons originate from a single QD
where, e.g., a ground state exciton scatters of an additional charge in either the
wetting layer or higher states of the QD. Through the scattering process, the
exciton is brought to a virtual level at ,e.g., a lower energy from where it re-
combines optically. This creates a quasi-continuum on both energy sides of the
ground state exciton, but this is several orders of magnitude weaker than the
ground state exciton [34, 35]. However, when the QD is embedded in a high-
Q cavity this background will experience a significant and broadband Purcell
enhancement and contribute to the cavity intensity [36]. The situation of a con-
tinuum of emitters all with equal coupling strengths has been studied in [100],
where it was shown that the collective effects could give rise to strong coupling.
This can be understood by considering the well-known situation of N identical
emitters that give rise to a collective coupling strength /N times larger than
the individual coupling strengths. As a model system, we have studied the case
of two emitters without assuming them to be identical, and have verified that
adding an additional emitter can bring the system into strong coupling [64].
While the observed anti-crossing and equal area of the two peaks agree with vac-
uum Rabi splitting, the lower cavity Q-factor did not increase on resonance as
expected for a single QD coupled to the cavity, since the total linewidth should
be shared between the two peaks. However, if a multiexcitonic background is
also coupling to the cavity, the total linewidth of the system would be much
larger and could potentially explain why the lower cavity Q-factor does not
increase on resonance. This collective coupling could also potentially explain
the surprisingly large Rabi splitting observed in other strong-coupling experi-
ments that were initially suggested to be a consequence of the giant oscillator
strength of the large QDs [73], but this explanation was found unsatisfactory
through detailed measurements of the oscillator strength [101].
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3.3 Conclusion

We have performed a quantitative analysis of the dynamics and emission spec-
tra of single QDs embedded in two of the commonly studied cavities. Mea-
surements of the dynamics of a single QD in a micropillar revealed that the
dynamics become non-Markovian when the QD is close to resonance with the
cavity. The non-Markovian effects arising from the back-action from the pho-
ton reservoir revealed themselves as a offset in the measured decay curves that
could not be explained by an exponential decay. Failing to account for the
non-Markovian effects was shown to lead to a large overestimate of the light-
matter coupling strength. We described the dynamics by the full dissipative
Jaynes-Cummings model, where we independently measured all the parameters
and we found an excellent agreement with no free parameters, thus providing a
quantitative understanding. The observation of non-Markovian dynamics is, to
our knowledge, the first experimental demonstration in solid-state cavity QED.

After determining all the parameters and having shown the agreement with
theory for the dynamics, we performed the same comparison in the spectral
domain. The full emission spectrum contains both a cavity and QD part as
well as their mutual interference terms, but we miss the microscopic insight into
the parameters determining the relative contributions and from geometrical
consideration we compared only with the spectrum arising from the cavity
part. Even after accounting for inhomogenous contributions to the cavity,
we find a large disagreement between measured and calculated spectra. We
attribute a large part of this discrepancy to the neglection of the QD and
interference terms. This lead us to the conclusion that spectra cannot be used
for quantitative comparisons without insight into the microscopic mixing of the
different contributions to the spectrum.

We have performed a similar analysis on a single QD in a photonic-crystal
cavity by recording the detuning-dependent emission spectra, where clear signs
of strong coupling were observed. The two peaks showed an anti-crossing and
although the expected linewidth narrowing on resonance did not occur, the
relative areas of the two peaks did become close to equal as expected for a
strongly coupled system. Assuming that the observed anti-crossing was due to
a vacuum Rabi splitting, we extracted the coupling strength fi|g| = 92.4 peV.

Time-resolved measurements did, however, reveal that the system was in

fact not strongly coupled by rather well inside the weak coupling regime and
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we extracted a coupling strength of 7i|g| = 22 £0.7 ueV, which is less than one
fourth of that extracted from the splitting. As argued, time-resolved measure-
ments allow us to reliably extract information on the single exciton due to the
spectral filtering, whereas spectral measurements are sensitive to feeding of the
cavity by multiexcitons and other QDs. We suggest, that the spectral splitting
is a result of collective effects, where the single exciton and a multiexcitonic
background interacts with the cavity and gives rise to a collective Rabi split-
ting. This effect could explain the observed discrepancy between parameters
extracted from the spectral measurements as well as the disagreement with

time-resolved measurements.
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Chapter 4

Measuring the effective
phonon density of states of

a quantum dot

Mechanical motion due to thermal vibrations, i.e. phonons, is omnipresent in
solid-state systems and inevitably leads to decoherence of quantum superposi-
tion states encoded in the system. Understanding and ultimately engineering
phonon processes may thus lead to new opportunities for coherent quantum
optics in all solid-state systems. Photonic crystal cavities provide an exciting
platform that not only allows for studies of the cavity quantum electrodynam-
ics of the interaction between a single emitter and a localized electromagnetic
field, but also their interaction with the mechanical degrees of freedom of the
photonic-crystal membrane. Recent work on cavity optomechanics has demon-
strated how the cavity structure modifies the interaction between the optical
and phononic modes [102, 103], which can even give rise to mechanical modes
localized within the cavity [104] that can be modulated using gigahertz acous-
tic phonons [105]. Furthermore, the emerging field of quantum optomechanics
explores the ultimate quantum mechanical motion of, e.g., nanomembranes [9],
and generating carriers in semiconductor membranes has been proven to enable

novel mechanical cooling mechanisms [106, 107].

In this chapter we explore the mechanical degrees of freedom in cavity quan-
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tum electrodynamics. Although the solid-state environment is non-Markovian
in its nature, it has successfully been described as Markovian because the
timescale of the correlations of the environment are orders of magnitude faster
than those of the optical transitions in the QD [108]. However, the influence
of the non-Markovian environment has been observed for QDs in bulk as a
phonon sideband mainly on the low energy side of the zero-phonon line, and it
arises from the accompanying emission of phonons [30]. Previous studies were
only possible at elevated temperatures, where the phonon dephasing is very
pronounced, and quantities governing the phonon interaction could be mod-
eled [109]. In addition, a temperature dependent broadening of the zero-phonon
line was also observed, which could be attributed to thermal activation of spec-
tral diffusion [31] and interaction with linewidth-broadened phonons [110].

The modification of optomechanical properties arising from the introduc-
tion of optical cavities in photonic-crystal membranes, naturally leads to the
speculation that the effective phonon density of states experienced by a single
QD in the cavity may be modified. As a result, this could possibly minimize
the deteriorating influence of decoherence processes. The phonon-mediated
coupling in a cavity has been studied spectrally [111], but as discussed in chap-
ter 3 it is difficult to perform a quantitative comparison based on emission
spectra. Previous temporal studies [86] of the phonon-mediated coupling have
also not been able to perform a quantitative analysis but have rather relied on

assuming reasonable values for the parameters.

In this chapter we study the temporal evolution of a single QD embed-
ded in a photonic-crystal cavity. We will show how the cavity enhances the
electron-phonon coupling and how a quantitative comparison allows us to for
the first time extract the effective phonon density of states, which governs all
the phonon dephasing properties of the QD. With this description we can also
explain the differences to other cavities such as Anderson localized cavities in
a photonic-crystal waveguide and micropillar cavities that do not show simi-
lar broadband Purcell enhancements. Remarkably, we demonstrate that the
phonons interacting with the QD are very well described as bulk phonons de-
spite the inhomogeneity of the cavity. This chapter is based on the work we
have submitted for publication in [55].
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4.1 Electron-phonon interaction

Although the dissipative Jaynes-Cummings model derived in section 2.4 ex-
cellently describes both the coherent light-matter interaction as well as the
optical dissipation, as shown in the previous chapter, the inclusion of the solid-
state environment as a simple pure dephasing of the energy levels does not
suffice for describing a QD in a photonic-crystal cavity. In the following we will
outline a theory that takes the non-Markovian solid-state environment into ac-
count by including processes, where the polariton quasi-particle is dephased by
phonon processes mediated by longitudinal acoustic (ILA) phonons. We exclude
transverse acoustic (TA) phonons because they only couple through the piezo-
electric constant, which is much smaller than the deformation potential that
LA phonons couple through. The piezoelectric coupling is a polar interaction
mechanism that relies on the change of the electric dipole orientation when me-
chanical stress is applied. Polar mechanisms are completely absent if the system
is locally electrically neutral, i.e., if the electron and hole wave functions are
identical. The large electron-hole overlap in QDs therefore strongly reduces
all polar interactions and TA phonons are as a result neglected [112]. Optical
phonons are out of phase movements of the atoms in the lattice, which in the
simple diatomic linear chain model can be understood as the two atoms within
the unit cell moving in opposite direction, as opposed to acoustic phonons
where the two atoms move in the same direction [21]. The dispersion relation
for longitudinal optical (LO) phonons is non-zero at zero phonon wavevector
and the energy of them is calculated to 36.8 meV [112]. This energy is an
order of magnitude larger than the QD-cavity detunings considered here and
consequently we can neglect LO phonons, although in chapter 5 we show how
they can be used for efficient excitation of QDs. Finally, we note that although
photon-phonon interaction has recently been observed by optically pumping
the cavity [104], these effects are strongly dependent on the number of photons
in the cavity and are orders of magnitude smaller than the coupling to LA

phonons described here.

The hamiltonian shown in Eq. (2.15) describes the coherent light-matter

interaction. We now add the electron-phonon interaction terms and obtain the
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hamiltonian [108]

H="hA6,6_ +hg(6ra+6_al)
66> MO i)+ hwblbi (4.1)
k k

where the third term describes the electron-phonon interaction and the last
term describes the free phononic modes. I;k and I;L are the bosonic annihilation
and creation operators for the kth phonon mode, and M* = Mk — Mgg is
the effective interaction matrix element, here expressed as the difference be-
tween the excited and ground state interaction matrix elements. We see that
interaction with the phonons does not give rise to real transitions but rather
virtual transitions, where a phonon in the kth mode is absorbed and a phonon
is emitted into the —kth mode, while preserving the QD population. Deriving
the equations of motion is rather complicated but shown in full detail in [108].
Here it suffices to note that the electron-phonon interaction is treated by apply-
ing the time-convolutionless approach, which essentially includes the electron-
phonon interaction as a Lindblad term with a time-dependent scattering rate.
This approach preserves the non-Markovian description of the dynamics. The
equation of motion are thus the same as derived in Eq.(2.17):

p=- ih_l[ﬁJC’7P] + [’(H7&) + ﬁ(’}/,@'_) + SLA(t) ’ (42)

only with the addition of a time-dependent scattering term, Spa(t), arising
from the interaction with the LA phonons. We have also excluded the pure
dephasing rate as this is now described by the electron-phonon interaction. The
coupling strength g is assumed to be real. The hamiltonian H ¢ contains the
first two terms in Eq. (4.1), as derived in section 2.4. The equations of motion
for the populations can be written as three coupled differential equations [113]
with additional time-dependent terms in the polarization. When considering
the dynamics, a long-time limit can be taken and the equations can be written

in the form

pad = —Ypea — GO [K (1) + K*(t)] |
pca = —Kpca T+ 92 [K(t) + K*(t)] ’ (43)

b (yee i Re(y12)) (t—t") g~ / g< '
K(t) = Odte o 1+7 paa(t’) — 1+? Pea(t’)
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where K (t) serves as a memory kernel and the influence of the electron-phonon
interaction enters through G2 and ~15. By setting these terms to zero we re-
cover the result from the Jaynes-Cummings model shown in Eq.(3.1), with the
only difference that there is no pure dephasing rate, i.e. Yot = (k+7)/2. The
rate vy contains both coupling to radiation modes and nonradiative recombina-
tions. The real part of the quantities G2 renormalizes the light-matter coupling
strength g, but in general Re[G<] #Re[G~] thus the renormalization does not
correspond to an overall change in the value of g. The imaginary part of G2
gives rise to additional decay or growth of the polarizations. The real part of
Y12 gives rise to a pure dephasing rate and the imaginary part gives rise to a
small energy shift that has been absorbed into the detuning A [108]. In order
to gain more insight on these processes, we now consider the case of resonance
(A = 0), where the two quantities can be expressed as
> 1 o

O30=155 [ sin(2gt)D2(t)dt’ (4.4)
202 J,

oo
0= /0 DE(H) — sin®(gt)[D<(¢) + D> ()|t . (4.5)
where DZ are the phonon-bath correlation functions. It is clear that the
relevant figure of merit is the timescale over which the phonon bath cor-
relations decay (typically a few picoseconds) relative to the timescale over
which Rabi oscillations occur. If the latter occurs on a much slower timescale,
then the renormalization of the coupling strength vanishes (QEZO = 0) and
Y50 = 75 [,- D=(t')dt’ becomes the pure dephasing rate. The effect of the
electron-phonon interaction on the Purcell enhancement in the weak coupling
regime can be derived by adiabatically eliminating the polarization in Eq. (4.3).
The detuning-dependent decay rate can then be expressed as [108§]

1
F=7+292 2’Ytot

dO=AT
Voot T A2 B2 YVtot ( )

; (4.6)

where the effective phonon density experienced by the QD is defined as

O(QT) =7 Y MM [nie(T)5(Q + ) + (e(T) + 1)5(2— Q)] - (4.7)
k

In the last equation, ny(T) = (e™/*8T — 1)~1 is the Bose-Einstein distri-

bution, and Qy is the frequency for the kth phonon mode. ®(2,7T) can be
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Figure 4.1: The effective phonon density versus energy plotted for 0 to 50 K
with steps of 10 K. The asymmetry reflects the difference between emission
of phonons, responsible for the decay at positive detunings, and absorption of
phonons that are available but sparse at negative detunings. This can be viewed

as the difference between vacuum and thermal fluctuations of the phonon field.

considered the effective phonon density experienced by the QD, because when
evaluated at a given detuning and temperature it tells how phonons can assist
the QD in decaying into the cavity mode. This happens with the accompany-
ing emission or absorption of a phonon with the energy given by the detuning.
The effective phonon density is plotted in Fig. 4.1 for the parameters extracted
later in this chapter and shows a pronounced asymmetry at low temperatures.
The strong asymmetry at low temperatures illustrates the fact that for positive
detunings wqq > Wea, a QD detuned many linewidths away from the cavity res-
onance can still emit photons into the cavity mode through the accompanying
emission of a phonon, while a negatively detuned QD relies on the absorption
of a phonon, which is unlikely at low temperatures. For example, at T= 10
K and phonon energies larger than 1 meV, which are typical values in the
present, experiment, we estimate n < 0.45, meaning that the probability for
phonon emission (o< 7 + 1) and absorption (o n) varies significantly. As the

temperature increases the asymmetry becomes less pronounced, but it does not
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vanish because the thermal occupation of the phonon modes gives rise to stim-
ulated phonon emission. The broad energy range of ®(£2,7") and the relation
in Eq. (4.6) gives rise to a broadband enhancement of the decay rate when the
interaction with LA phonons is included. Alternatively, the term A= 2®(Q,T)
that has dimensions of a rate can be considered a phonon scattering rate de-
scribing the possibility of an exciton to scatter off a phonon and decay optically

into the cavity mode.

4.2 Detuning-dependent dynamics

For measurements on the photonic-crystal cavities we use the experimental
setup described in section 3.2.1, where confocal microscopy is employed and a
dichroic mirror is used to separate the excitation from the emission. The cavity
is excited by tuning the laser into resonance with the M6-mode situated at 850
nm, which results in a clean emission spectrum around the fundamental M1-
mode, since only QDs spatially coupled to the cavity are excited. As described
previously, the detuning between the QD and the cavity is controlled by both
temperature tuning in the range 10 — 46 K and deposition of Nitrogen gas on
the sample, which redshifts the QD and cavity resonance, respectively. After
polarization selection, the emission is sent to a spectrometer, where the output
can be directed to a CCD camera for spectral measurements or to an APD
for time-resolved measurements. For this cavity we measure Q = 6690 + 37,
corresponding to a cavity decay rate of hx = 195 + 1 peV, by saturating the
QDs and recording the cavity linewidth. Fig. 4.2 shows examples of recorded
decay curves for three very different detunings together with their fits. The
presence of both bright and dark exciton states results in a bi-exponential de-
cay, where the fast rate is approximately equal to the sum of the radiative and
non-radiative rate, while the slow rate is equal to the non-radiative rate. The
fast rate, which gives the decay of the bright exciton, is therefore the relevant
rate for the comparison to theory. For large detunings, the QD decays very
slowly because the radiative rate is strongly suppressed due to the presence of
the photonic bandgap. The decay in this case is well fitted by a single expo-
nential since the radiative rate is smaller than the non-radiative rate. This is
evidenced by the low value of the goodness-of-fit parameter ¥? = 1.11 obtained
for the fit in Fig. 4.2(a), where the temporal resolution (IRF), taken under the
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same experimental conditions, is accounted for by convoluting the fit with the
measured IRF before comparing to the recorded decay curve, as described in
more detail in section 3.1.3. We obtain the decay rate I' = 0.39 ns~! from the
far-detuned (AA = 4.59 meV) decay curve shown in Fig. 4.2(a), and since the
cavity is not expected to contribute to the decay rate of the QD at such large
detunings, we can use this decay rate to determine the background decay rate
to Ay = 0.2 peV. For smaller detunings the radiative decay rate is enhanced
and the decay is bi-exponential as expected, and in Fig. 4.2(b) such a decay
curve is shown (AA = 1.33 meV), where we extract the rates I',gp = 3.24 ns—!
and I'gow = 0.66 ns~!. The bi-exponential decay proves that it is not a charged
exciton, e.g., an exciton and an additional electron, because charged excitons
do not have dark states and consequently their decay follows a single exponen-
tial model. The exciton also displays a linear power dependency, which rules
out bi-excitons that have super-linear power dependencies. This makes it pos-
sible to conclude that it is a neutral exciton we are measuring on. Finally, in
Fig. 4.2(c) a decay curve close to resonance (AA = 0.12 meV) is shown. Here we
observe that we cannot fit the data with a bi-exponential model, as evidenced
by an increase in ¥2. For detunings larger than the cavity linewidth, the exciton
dynamics under the sole influence of phonons is probed, because only a small
spectral region around the QD is sent to the APD. However, when the QD is
close to resonance with the cavity, the emission from other QDs and/or mul-
tiexcitons that decay through the cavity will also influence the recorded decay
curves, since it is not possible to spectrally filter these contribution away [55].
An example of a spectrum recorded under far-detuned conditions is shown in
Fig. 4.3(b), where it is illustrated that a small spectral region is filtered out for
time-resolved measurements which only away from resonance guarantees that
we probe just the single exciton. Consequently we observe that for detunings
R|A] < 0.5 meV the decay curves appear to be triple-exponential, where the

fast rate is expected to be dominated by the resonant exciton, cf. Fig. 4.2(c).

As argued in section 3.2.3 the clean spectra, cf. Fig. 4.3(b), indicates that
there are no significant contributions from other QDs, while the intense cav-
ity indicates that multiexcitons are feeding the cavity as previous work has
demonstrated [36]. However the multiexcitonic background is typically more
than two orders of magnitude smaller than the exciton peak [34, 35]. This is

due to the fact that the multiexcitonic background can be considered as the
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Figure 4.2: Recorded decay curves for three different detunings together with
their fits that take the recorded time-resolution (IRF) into account. a) For
the QD far-detuned from the cavity (RA = 4.59 meV) the decay is single
exponential showing a decay rate of I' = 0.39 ns™' and a goodness-of-fit of
x> = 1.11. b) For moderate detunings (hA = 1.33 meV) the decay is bi-
exponential with g = 3.24 ns™!, T'yow = 0.66 ns™!, and ¥ = 1.09. c)
Close to resonance (RA = 0.12 meV) the decay becomes triple-exponential
with Tpas = 18.6 ns™!, Thiddle = 3.61 ns™!, Tgjow = 0.56 ns—!, and x2 = 0.98

exciton scattering off other carriers via the Coulomb interaction, but with a
low scattering rate. Therefore, the neutral exciton is expected to be dominant

in intensity and have the fastest decay rate close to resonance, where the cavity
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and QD cannot be separated spectrally. If we consider multiexcitons to form
a continuum, where each constituent has a Purcell-enhanced amplitude and
decay rate dictated by the cavity, then the resulting decay can be described as
a single exponential decay with an effective amplitude and decay rate. For this
reason we attribute the additional exponential with the middle decay rate to
the multiexcitonic background. Following the reasoning above, the slow decay
rates obtained from the bi- and triple-exponential fits should not change, which

in Fig. 4.2(c) is shown to also be the case.

In Fig. 4.3(c) the measured decay rates are plotted as a function of detuning.
Because temperature varies across the data set, the color of each data point
corresponds to the temperature used for that particular measurement. We
observe a large and very broadband Purcell enhancement of the QD decay
rate. Though we can not access the statistical uncertainty of each point, since
the uncertainty obtained from the fit will mainly reflect the quality of the
fit and not the reproducibility of the data point, we can still still judge the
statistical uncertainty from the point-to-point fluctuations in Fig. 4.3(c) since
the sampling of the detuning is very high. Close to resonance we observe
a large scattering of the data points, which we attribute to the presence of
multiexcitons. From the data points close to resonance we extract the coupling
strength to ig = 224+0.7 peV using Eq. (4.6) with the independently measured
values of k and 7 and the fact that on resonance ®(2 =0,T) ~ 0, cf. Fig. 4.1.
The applied excitation power is 1.5 times the saturation power of the QD
except for hA < —0.5 meV and hA > 2 meV, where the power is 0.7 times the

saturation power [55].

For comparison we have plotted the Purcell enhancement expected from
the Jaynes-Cummings model using these parameters. In Fig. 4.3(c) we see
the complete inability of this model to describe the measured data. However,
we also plot the model introduced in the previous section that includes LA
phonon-assisted transitions and we observe a very good agreement. Through
the effective phonon density, ®(£2,7'), this model also depends on temperature
and in Fig. 4.3(c) we have shaded the area between the theory curve for the
highest (46 K) and lowest (10 K) temperature. The data away from resonance
are seen to fall in-between these two curves while a larger degree of scatter-
ing is observed close to resonance. In order to make a complete comparison

we have calculated the expected decay rates for each measured decay rate at
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the temperature used experimentally (black diamonds). Fig. 4.3(d) shows the
residuals (exp — T'the)/Texp between the experimental, T'eyp, and theoretical,
I'the, decay rates. We have inserted a guide to the eye that shows the excellent
agreement for h|A| > 0.5 meV, while a larger degree of scattering is observed
close to resonance.

The broadband Purcell enhancement occurs because for positive detunings
the QD emits a photon into the cavity mode while the residual energy is emitted
as a LA phonon, i.e. a lattice vibration as illustrated in the right of Fig. 4.3(a).
This gives rise to the broadband enhancement even at T= 10 K, since it does
not depend solely on the thermal occupation of the phononic modes. At around
hA = 2 meV the data points at higher temperatures show an increase in the
decay rate although detuning is increased slightly. This occurs because the
thermal occupation of the phononic modes gives rise to stimulated emission of
a phonon, and this is also expected from theory. For negative detunings the
QD relies on the absorption of phonons, that are sparse at low temperatures,
and as a result the QD primarily decays through leaky radiation modes, as
indicated in the left of Fig. 4.3(a). In the following we will discuss how we have

calculated the decay rates from the LA phonon model.
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Figure 4.3: a) Illustration of the physical mechanism behind the phonon-
enhanced Purcell effect. For negative (positive) detuning, the QD (yellow
point) can decay into the cavity by absorbing (emitting) a phonon. At T= 0
K no phonon absorbtion is possible and residual spontaneous emission (red
wavepacket) will dominate for negative detunings. b) Emission spectrum with
the indication of the spectral range detected by the APD. ¢) Measured decay
rate (Iexp) vs. detuning with the color specifying the experimental tempera-
ture. The theory is plotted for the highest and lowest experimental tempera-
tures (solid curves) and also calculated at the detuning and temperature of the
individual measurements (I'ye) showing a very good agreement. d) Residuals
(Texp — I'the) /Texp with a guide to the eye at 0.13 for detuned conditions.
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4.3 Extracting the effective phonon density of

states

Having determined the parameters k, v, and g independently we can extract
the effective phonon density by rearranging Eq. (4.6) to give

(FEXP - 'Y) (7‘520t + Agxp)
292 Vtot

(I)(Q = Aexpa Texp) = h2’ytot 11, (48)

where oy is the measured decay rate at a given detuning Acy, and tem-
perature Tey,. We have done this for all the measured decay rates and in
Fig. 4.4(a) the extracted effective phonon density is shown. As the decay rates,
this quantity also has a temperature dependence and the color of each data
point, corresponds to the temperature at which it was recorded.

Due to the linear dispersion of LA phonons, the effective phonon density
vanishes at zero phonon energy. The effective phonon density depends on the
thermal occupation of the phonon modes, i.e. temperature, which varies across
the data set, but we can compensate for the effect of temperature. Follow-
ing the definition in Eq. (4.7), the effective phonon density goes as m on the
negative energy side, while it goes as (n + 1) on the positive side. By multi-
plying with the inverse, i.e. n~! and (n + 1)~!, on the negative and positive
side, respectively, we can cancel out the temperature dependence. This can
alternatively be written as ®(Q = A)-sgn(Q)(1 — e ™/#5T) which is the ef-
fective phonon density of states (DOS) that for a given detuning tells how many
phononic states are available to assist in an optical transition into the cavity
mode. The eff. phonon DOS extracted from experiment is shown in Fig. 4.4(b).
The observed energy dependence of the eff. phonon DOS is a direct signature
of the non-Markovianity of the phonon reservoir, since it would be a flat line
in the case of a Markovian reservoir. We note that the eff. phonon DOS is
a general concept, where no assumptions on the nature of the phonons have
been made, and, e.g., localized phononic modes would give rise to sharp peaks
at their resonance frequencies. The eff. phonon DOS is low for small phonon
energies and grows rapidly with energy, reaching a maximum at about 3 meV
before rapidly decreasing. This energy cutoff originates from the phonon wave-
length (of about 7 nm) becoming comparable in size to the wavefunctions of
the exciton confined in the QD [114], which makes the overlap integral between
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Fig. 4.3(c) using Eq. (4.8). The color scale indicates the experimental tempera-
ture at each data point and the upper axis indicates the corresponding phonon
wavelengths. b) The effective phonon density of states (DOS) extracted from
(a) by canceling out the temperature dependence. A cutoff is observed at
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corresponding theory assuming bulk LA phonons in GaAs.
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Modeling with bulk phonons

the exciton wavefunctions and the phonon mode vanish and thus the electron-
phonon coupling strength go to zero. Consequently, a larger spatial extent of
the QD corresponds to a smaller extent in k-space, and it therefore couples to
fewer phonon modes. Though difficult with current technology, this does imply
that tailoring the QD size may be employed for influencing phonon-dephasing
processes.

4.4 Modeling with bulk phonons

We will now derive the eff. phonon DOS assuming that the QD is interact-
ing with bulk phonons and compare this theory to the experimental data in
Fig. 4.4(b). When assuming bulk phonons, we can expand them in terms of
plane waves. This allows us to express the electron-phonon coupling strength
for the kth phonon mode as

7k o o
Mk — @(De/drﬂ)e(r”ze_lk r_Dg/dr|wg(I‘)|2€ ik > 7 (49)

where D, = —14.6 eV and D, = —4.8 eV are the deformation potentials [112],
¢, = 5110 ¥ is the longitudinal speed of sound averaged over the three differ-
kg is the density of GaAs, and V is the phonon
quantization volume. The subscripts e and g denote the excited and ground

ent crystal axes, d = 5370 -5
state of the electron. The values for GaAs are used because bulk phonons are
primarily located in the GaAs. The electron wavefunctions are assumed to be
gaussians and symmetric in the xy-plane orthogonal to the growth direction,
which allows us to express them as

7/)u(r) = ;67(1/,24»?’/2)/2['2413/6722/215,2

- 1/2 )
7T3/4lu,mylu,z

(4.10)

where v = {e,g}, and [, 5, and [, , are the widths. Inserting these wave-
functions into Eq. (4.9) gives the following expression for the effective phonon
density assuming bulk phonons [55]

h 03
@(Q;T) :47Tdcl5 1 _ e_hQ/k-BT

1 - - - -
/ du (Deegi,w(uz_n—nzﬁ_Dgeﬂi,xy<u2—1>—93,zu2)2 . (4.11)
0
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Ql,.,

where €, , = =2

and p = {xy,z}. From this expression it is evident that
the multiplication with sgn(Q)(1 — e~ "¥*2T) cancels out the temperature de-
pendence and ensures positivity of the function. From Eq. (4.11) we see that
the phonon density depends on the integral over the excited and ground state
wavefunctions of the electron weighed by their respective deformation poten-
tials, but importantly it also depends on the overlap between the excited and
ground state wavefunctions. In Fig. 4.4(b) we have modeled the data with the
function ®(Q, T)-sgn(Q)(1 — e ¥/k2T) where (2, T) is given by Eq. (4.11).
The free parameters in the fit are the widths of the excited (lexy and le )
and ground (lgxy and [z ,) state wavefunctions of the electron and an overall
amplitude of the function. We further impose the restriction that the heights
of the wavefunctions must be smaller than the widths, i.e. leyxy > les. A
remarkable good agreement between the experimental data and the model for
bulk phonons is found in Fig. 4.4(b), where the theory captures the essential
features of growth at small phonon energies until reaching the phonon cut-off
at around 3 meV and rapidly decreasing. We obtain the following realistic
widths of the electron wavefunctions; lexy = 3.4 nm, lo, = 1.4 nm, lg v, = 3.9
nm, and l;, = 2.3 nm. We show the model with the above sizes to be in
excellent agreement with the data, but because the four parameters for the
sizes of the wavefunctions do not have drastically different influences on the
theory curve, there may be other combinations of sizes in the vast parameter
space that give equally good agreements. Using these sizes we can, however,
perform an important consistency check by computing the oscillator strength
to be 15.5, which is in very good agreement with previous measurements on
the same QDs that showed an oscillator strength of ~ 13.3 [28]. In Fig. 4.4(b)
we observe the phonon cut-off, where the eff. phonon DOS decreases when
the phonon wavelength is around 7 nm and it has reduced significantly at 4.5
nm, when the phonon wavelength is almost equal to the size of the electron

wavefunctions.

The remarkable success of the bulk-phonon theory excludes effects of local-
ization of phonon modes in the cavity. Phonon localization in an L3 photonic-
crystal cavity has been reported at energies up to 4.1 peV [104], while the
typical phonon energies required for the phonon-assisted optical recombina-
tions are above 0.5 meV. The corresponding phonon wavelengths are 42 nm

and below, which is much smaller than the cavity dimensions, and thus ex-
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plains the success of the bulk-phonon theory. We note that localized phonons
could play a role for the minor deviations from theory observed at small phonon
energies, but in this region the effect of multiexcitons is also expected to be
pronounced. In addition to the four size parameters, the only other free pa-
rameter in the fit in Fig. 4.4(b) is the overall amplitude, for which we obtain
the value 5.56. This corresponds to dividing the speed of sound in Eq. (4.11)
by 1.41. Since the speed of sound is anisotropic in GaAs, which we have not
explicitly accounted for in the theory, the overall amplitude can partly be at-
tributed to this anisotropy. However, uncertainties in, e.g., the deformation
potential may also contribute to the overall amplitude. For large detunings the
quantity h~2®(A > 0, T) enters in the theory as an effective pure-dephasing
rate, but its value is typically 3 orders of magnitude larger than dephasing
rates extracted when interpreting experiments with a Markovian model [115],
which stresses the importance of accounting for the microscopic non-Markovian

dephasing processes.

4.5 Comparison with other cavities

The broadband Purcell enhancement of the decay rate observed in the L3
photonic-crystal cavity was curiously not observed for the micropillar cavity,
as discussed in section 3.1.3, despite comparable parameters. In order to ex-
plain the origin of this difference we experimentally study another type of
cavity, namely an Anderson-localized (AL) cavity formed due to disorder in a
photonic-crystal waveguide. The sample is displayed in the inset of Fig. 4.5
with the y-component of the simulated electric field overlayed the SEM im-
age. In the sample, random cavities are generated by randomly perturbing
the hole positions in the three rows of holes on each side of the waveguide
with a standard deviation of 3% of the lattice parameter a. The Anderson-
localized nature of the cavities together with cavity QED effects in this sample
was previously demonstrated [116]. In Fig. 4.5 we present detuning-dependent
measurements of the decay rate of a single QD close to resonance with an
AL cavity. We observe no broadband Purcell enhancement, and the detun-
ing dependence is well described by the Markovian Jaynes-Cummings model,
despite the fact that the measured coupling strength and Q-factor of the AL
and L3 cavities do not differ significantly. Thus we find hrap, = 230 + 12 peV
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Figure 4.5: Detuning-dependent decay rate of a single QD close to resonance
with an AL cavity. There is no broadband Purcell enhancement, and the data
are well described by the Markovian JC model. Inset shows a SEM image of
the sample, where the y-component of the simulated electric field is overlayed.

(Q = 5700 £ 288) and hgar, = 13.3 pneV for the AL cavity, which should be
compared to ik = 195+ 1 peV and hg = 22+ 0.7 peV for the L3 cavity. As we
demonstrate in the following, a crucial difference between the two cavities stems
from the different background decay rates that we determine to Ayar, = 0.4 peV
and hy = 0.2 peV for the AL and L3 cavities respectively.

The difference between AL and micropillar cavities on the one hand and
L3 photonic-crystal cavities on the other can be explained from Eq. (4.6). The
Purcell enhancement factor I'/v is plotted in Fig. 4.6 for the three different
cavities using the same effective phonon density and with the remaining pa-
rameters determined from experimental data. We find that the background
decay rate v plays a decisive role in determining the visibility of the broadband
Purcell enhancement originating from phonon processes. The rate ~ varies
significantly for the different cavity geometries. The insets in Fig. 4.6 show
sketches of the LDOS for the L3 and AL cavities highlighting that while the
former appear in the bandgap, where the optical decay rate is strongly sup-
pressed [28], AL cavities appear as random resonances on top of a background
LDOS representing the waveguide mode [116], which gives rise to an emission

channel. Similarly, the coupling to radiation modes is not strongly suppressed
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Figure 4.6: Calculation of the enhancement factor for the L3 photonic-crystal
cavity, AL cavity, and micropillar cavity at T= 30 K. The parameters extracted
from experiment are used and the same eff. phonon DOS extracted from the L3
cavity is used for all three cavities. Although g is almost identical for the L3 and
micropillar cavity a huge difference in enhancement is seen due to background
decay rate y. Insets show sketches of the optical LDOS for the 1.3 and AL

cavities.

in micropillar cavities, as the LDOS sketch in Fig. 3.1 indicates.
From Eq. (4.6) we deduce that two requirements need to be fulfilled in

2
order to see broadband Purcell enhancement: ;;I;(,f)t > 1 and %(Z(g) > 1.

The former weak requirement is for a cavity with @ = 6690, as the L3 cavity,

fulfilled for detunings above 0.5 meV, while the latter and stronger requirement
can be evaluated to % x (0.6 ps) = 4.47 > 1 for a typical detuning of 2 meV.
This value evaluated for the L3 cavity is 5.5 and 6.1 times larger than that
for the AL and micropillar cavities respectively, thus explaining the observed

differences between the cavities.

4.6 Conclusion

We have observed the broadband Purcell enhancement for a QD in a photonic-

crystal cavity. While the inability of the Jaynes-Cummings model to describe
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the experiment was evident, we successfully modeled the data with a micro-
scopic theory taking the non-Markovian interaction with LA phonons into ac-
count. Using this theory we have recorded the effective phonon density of
states, which was made possible by the nanocavity that increased the sensi-
tivity to phonon dephasing processes. The effective phonon density of states
describes all the dephasing processes of the QD, and from it we have been
able to extract the size of the exciton wavefunctions. We performed an im-
portant consistency check by computing the oscillator strength and comparing
it to previous measurements on the same QDs, which showed a very good
agreement. At short phonon wavelengths we observed a cutoff in the effective
phonon density of states due to the phonon wavelength becoming comparable
in size to the exciton wavefunctions, which results in the interaction matrix el-
ement vanishing. Remarkably, the measured effective phonon density of states
is well described by a bulk phonon theory, despite the inhomogeneity of the
photonic-crystal cavity. This was understood by considering the wavelength
of the phonons relevant for the phonon-assisted transitions, where we noted
that these are typically an order of magnitude smaller than the dimension of
the cavity, thereby explaining the success of the bulk phonon theory. Local-
ized phonon modes could still play a role for the minor deviations observed at
small phonon energies, but multiexcitons are also expected to give significant
contributions to the these deviations. Finally, we compared the broadband
behavior in the L3 photonic-crystal cavity to an Anderson localized cavity in a
photonic-crystal waveguide and the micropillar cavity studied previously. The
broadband behavior is only observed in the L3 cavity and using the LA phonon
theory we were able to show that a significant difference stems from the smaller
background decay rate that is crucial for the visibility of the phonon-assisted

processes.
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Efficient generation of
indistinguishable photons
using phonon-mediated

excitation

Single photons are the basis of optical quantum computing, and they must be
generated on-demand in a specific optical mode. On-demand implies that every
excitation event must lead to the emission of a single photon and into a specific
optical mode means that every emitted photon must be collected by, e.g., the
microscope objective. For quantum cryptography applications, optical losses
can be corrected for and the requirement can be relaxed to the generation of
a single or no photon on-demand. One way of obtaining single photons is to
use heralded single photons from a parametric down-conversion process in a
crystal, where a single photon of the pump field is converted into two photons.
These two photons have half the frequency of the incoming photon, and they
are emitted in two different optical modes. Detection of a photon in one of the
modes implies that there is a single photon in the other mode. Heralded sources
are, however, not on-demand but rather probabilistic, and scaling these systems
for quantum computing is difficult. One of the most impressive demonstrations

of on-demand generation of single photons has been done using molecules as
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emitters, where a collection efficiency of 96% has been reached [117]. Some
of the most efficient semiconductor solid-state single-photon sources include
nanowires and micropillar cavities, where collection efficiencies at the first lens
of 72% [118] and 79% [33], respectively, have been demonstrated.

Implementation of quantum computing using linear optics imposes the ad-
ditional and very strong requirement that the single photons generated on-
demand in a specific optical mode must be indistinguishable from each other [6].
Recent work has demonstrated that high degrees of indistinguishability can be
achieved by tailoring the nanophotonic structure [33] and by resonantly exciting
the QD [119].

Reducing decoherence processes in quantum dots is therefore of high im-
portance for the utilization of QDs for quantum-information processing, since
dephasing reduces the indistinguishability. Usually the dephasing of the emitter
is attributed to spectral diffusion and the interaction with phonons. Spectral
diffusion is the consequence of Coulomb shifts of the QD transition due to the
interaction with free or trapped carriers outside the QD, i.e. fluctuations of
the electrostatic environment. Although these processes are expected to be on
a timescale much slower than the nanosecond timescale of the QD dynamics,
recent work has indicated that rapid changes in the electrostatic environment
may be responsible for the decrease in indistinguishability [33]. In the last
chapter we saw how the interaction between the exciton in the QD and LA
phonons can alter the dynamics of the QD significantly. The same interaction
gives rise to dephasing of just the QD transition on the very short picosec-
ond timescale compared to the nanosecond timescale of the dynamics. This

dephases the QD and consequently degrades the degree of indistinguishability.

In this chapter we study a QD in an L3 photonic-crystal cavity that acts as
a highly efficient single-photon source. We demonstrate that the high collection
efficiency is a broadband feature and does not depend strongly on the coupling
of the QD to the cavity mode. Numerical simulations of the emission from the
QD have been performed in order to understand the high collection efficiency,
but the agreement was found to be poor, and we discuss the possible reasons
for this. We demonstrate selective phonon-mediated excitation of the QD by
the absorption of either LA phonons or two longitudinal optical (LO) phonons.

In particular, using LO phonons we can selectively excite the exciton or bi-

exciton 7 times more efficient than under above-band excitation. Under LO and
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LA phonon-mediated excitation we perform indistinguishability measurements
using a Hong-Ou-Mandel interferometer, which show modest indistinguisha-
bilities due to the inhibited rate of spontaneous emission. The corresponding
dephasing rates are, however, very low and we demonstrate a decrease in de-
phasing when shifting from LO to LA phonon-mediated excitation. This chap-
ter is based on the article " Efficient generation of indistinguishable photons
using phonon-mediated excitation of a quantum dot in a photonic-crystal cav-
ity" by K. H. Madsen, S. Ates, J. Liu, A. Javadi, and P. Lodahl, which is being

prepared for submission.

5.1 Single-photon collection efficiency

The photonic-crystal cavity sample has a lattice constant a = 240 nm and
hole radius » = 66 nm. The experimental setup is the same as described in
the previous chapter, where we probe the cavity by confocal microscopy and a
dichroic mirror separates the excitation from the emission. We use a tunable
Ti:Sapph laser for continuous wave (CW) or pulsed (3 ps pulse duration and
76 MHz repetition rate) excitation. For measurements of the efficiency, the
collected emission is sent to a spectrometer through a free-space path in order
to reduce the losses of the optical path. Although the excitation beam can be
tightly focused on the sample to a spotsize of 2.4um, the carriers generated
in the GaAs can diffuse over typical lengths of ~ 15um, thus exciting other
QDs. Spatial selection is therefore always needed to filter out these other
contributions. This is done by sending the optical beam through a one-to-one
telescope and inserting a pinhole in the image plane created between the two
lenses. For autocorrelation and coherence measurements the emission is sent
through a single-mode polarization-maintaining fiber. After the spectrometer,
the emission is directed onto a CCD-camera or an avalanche photo detector
(APD). In Fig. 5.1(a) the recorded cavity emission spectra under strong above-
band (800 nm) CW excitation power is shown. The modes are labeled M1-M6,
and because the QD ensemble only emits within the region 880 — 1000 nm,
the M6 mode is not visible, although its presence will be demonstrated in the
following by scanning the excitation laser across its resonance. Most notably,

the M3 mode is very intense despite being a low-Q mode.
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Figure 5.1: a) Cavity emission spectrum showing the modes labeled M1-M6
under strong above-band CW excitation. b-¢) Emission spectra recorded on
APD under pulsed M6-resonant excitation for excitation powers 2.1 and 0.2
times the saturation power of the exciton X-line, respectively. The neutral
exciton (X), bi-exciton (XX), and charged exciton (X2) all originate from the
same QD and are identified using cross-correlation measurements and power

series.

5.1.1 Identification of emission lines

In Fig. 5.1(b-c) we show the spectra recorded on the APD around the M3 mode,
where the pulsed excitation laser has been tuned into resonance with the M6
mode. The applied excitation powers are 2.1 and 0.2 times the saturation
power of the X-line. For the high power we observe a very high count-rate on
the APD of almost 300 kHz. The emission spectrum is also very clean, and even
above saturation power the M3 mode has not increased in relative intensity.
The neutral exciton (X) is identified by the linear power dependence shown in
Fig. 5.3(a) and single-photon emission from this line is shown in Fig. 5.3(c),
which we will discuss more shortly. The X-line is linearly polarized and under
pulsed excitation we record the decay curve that is found to be bi-exponential

L. The bi-exponential

with a fast rate of 0.62 ns~! and a slow rate of 0.24 ns™
behavior proves that it is a neutral exciton, since the slower exponential decay
is due to the dark state, that does not exist for a charged exciton. We also note

that the fast rate is inhibited compared to the bulk decay rate, where typical
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Figure 5.2: Normalized coincidence counts as a function of time delay under
CW excitation. a) Autocorrelation measurement of the bi-excitonic XX-peak,
where the anti-bunching reveals single-photon emission. b) Cross-correlation
measurement where the time delay is measured from detection of an X photon
and stopped when detecting an XX-photon. The bunching at negative times
proves that the process is a cascaded emission and identifies the XX-peak as
a bi-exciton. ¢) The same feature is observed for the X2-XX cross-correlation
proving that the XX-peak also decays into the X2-peak. d) Cross-correlation
proving that the X2 is a charged exciton.

fast decay rates of 1.1 ns~! are found. The inhibition of the fast decay rate
for the investigated QD is due to the suppression of spontaneous emission by
the photonic-crystal structure. Because the background decay rate is strongly
inhibited, the QD can couple to the cavity while still having a decay rate that is
inhibited compared to the bulk decay rate. The bi-exciton (XX) is identified by
its super-linear power dependence, which occurs because it can decay into both
bright exciton states. In Fig. 5.2(a) we show an autocorrelation measurement
of the XX-peak that exhibits anti-bunching, which is a proof of the single-
photon emission from the bi-exciton. The raw data does not dip all the way

to zero in part due to the convolution with the instrument response function,
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i.e. the time-resolution of the APDs. The bi-excitonic nature of the XX-line is
demonstrated in Fig. 5.2(b), where a cross-correlation between the X- and XX-
line shows the expected behavior for a bi-exciton. The time-delay is measured
from the detection of a photon in the X-peak and stopped when a photon is
detected in the XX-peak. Thus when having detected a X-photon there is a
reduced probability of detecting an XX-photon and a dip in the coincidence
counts is observed, while the probability is enhanced for the opposite case.
In Fig. 5.2(c) a cross-correlation between the X2- and XX-peak is shown and
the same behavior is observed. This means that the bi-exciton (XX) has a
cascaded decay into both the X and X2 exciton. From a power series we verify
that the X2-line has a linear power dependence and in Fig. 5.2(d) we show
the cross-correlation between the X- and X2-peaks. This measurement shows
only anti-bunching which means that the X- and X2-lines originate from the
same QD but the radiative decay of X2 does not populate X and vice versa.
The asymmetry of the dip with a fast recovery for 7 > 0 is expected if the
X2 arises from a charged exciton. The post-measurement state of charged-
exciton emission is a single-charged QD, and the recovery time for 7 > 0 is
thus determined by the timescale of injection of a single charge into the QD.
The recovery time for 7 < 0 is determined by the timescale of injection of three
charges [120], which is expected to be much slower and thus gives rise to the
strong asymmetry observed in Fig. 5.2(d). We thus conclude that the X2-line

originates from a charged exciton in the same QD.

5.1.2 Calculating the collection efficiency

We send the emission from the neutral exciton (X) to an APD and perform the
power series shown in Fig. 5.3(a), where the very high count-rates on the APD
bear evidence of the high collection efficiency. The corresponding very clean
spectra at two different excitation powers were shown in Fig. 5.1(b-c). We fit
the power series with the function Coup = Caat(1 — e_Pi“/Pm), where P, and
Ps,t are the input power and input saturation power, respectively, and Cy,t and
Csat are the corresponding output count-rates. Modeling of the power series is
shown as solid lines in Fig. 5.3(a) together with the data, and we extract the
parameters P, = 46.7£3.7 nW and CX, = (2.93 £ 0.086) - 10° counts s~* for

the single X-line.

In Fig. 5.3(c) autocorrelation measurements of the X-line are shown for
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Figure 5.3: a) Power series of the X-line and of a QD in bulk recorded on
the APD under pulsed (76 MHz) excitation showing a 56 times increase in
count-rate for the X-line. Solid lines are the fits, and on the right axis the cor-
responding efficiency at the first lens is plotted. b) The values of the second-
order correlation function ¢ (7 = 0) extracted from (c), where we present
auto-correlation measurements of the neutral exciton (X) under three differ-
ent excitation powers showing a pronounced anti-bunching even at excitation

powers 21 times the saturation power.

three very different excitation powers. We calculate the value of normalized
coincidence counts at zero time delay, g(® (7 = 0), by averaging all counts in a 2
ns window around zero delay, and we obtain the values 0.03£0.04, 0.04 +0.05,
and 0.16 4 0.1 for excitation powers of 0.4, 2.1, and 21 times saturation power,
respectively. These values are also shown in Fig. 5.3(b) and remarkably the
anti-bunching remains very strong even at 21 times saturation power proving

that the X-line contains single-photon emission.

A power series on a QD situated in bulk GaAs is also shown in Fig. 5.3(a).
By fitting the data we obtain the parameters PPu% = 126.7 + 6.3 nW and
Chulk — (5.22 4 0.10) - 10 counts s~!. Power series have been measured on
several QDs in bulk and the one presented here is the one giving the high-
est count-rate. The X-line in the photonic-crystal cavity still gives 56 times
more counts than the bulk QD. In order to determine the collection efficiency

of the X-line we need a calibration value. For this purpose we calculate the

85



Chapter 5. Efficient generation of indistinguishable photons using phonon-mediated
excitation

collection efficiency at the first lens of a bulk QD situated below an air-GaAs
interface and for the experimentally used numerical aperture (N.A.) of 0.6. Us-
ing the finite-element method the far-field pattern of a dipole in a homogenous
medium is calculated, but more details on the simulations will be provided
later. In order to take the air-GaAs interface into account, Fresnel equations
for the refraction of a wave at the air-GaAs interface are used to calculate the
energy profile in air. The intensity that falls within a ring given by N.A.= 0.6 is
integrated and divided by the total intensity, which gives a collection efficiency
of Npuik = 0.79% for a bulk QD. Very similar values for the collection effi-
ciency are obtained in [118], where the value is calculated using an eigenmode

expansion technique.

The bulk count-rate above saturation can be expressed as
CP% = neetup Moulk Trep (5.1)

where 7getup is the transmission of the setup from the output of the microscope
objective to detection, Mpui is the collection efficiency at the first lens, and
I'rep is the repetition rate of photon emission from the exciton in the QD.
Importantly this expression is only valid for excitation powers above saturation,
because in order to guarantee that only the two orthogonal dipoles in the QD
and no dark states are excited, a bi-exciton has to be created for every excitation
event. One might expect the rate of photon emission, 1., to be given by
the laser repetition rate (76 MHz) but for several reason this is not correct.
Firstly, at saturation both orthogonal dipoles of the QD are excited with equal
probability, so division by a factor of two is necessary. Secondly the non-unity
quantum efficiency of the exciton means that it sometimes recombines non-
radiatively, which would reduce the rate even further. Finally, other charges in
the GaAs can get trapped close to the QD and shift the frequency of the exciton
far away. The exciton returns to its normal frequency when this trapped charge
has disappeared again, and this gives rise to blinking of the QD, which has
been observed previously in cavity quantum electrodynamics [93, 66], and will
reduce Tycp, even further. Blinking will be studied in more detail shortly. For
the derivation of the collection efficiency we make the important assumption
that 1ep is the same for the QD in the cavity and the QD in bulk. With this
assumption we can divide Eq. (5.1) for the QD in the cavity with the one for
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Figure 5.4: Normalized coincidence counts at large delay times. Both at low
(a) and high (b) power we found no systematic variations of the peak heights,
which is otherwise a tell-tale sign of blinking of the QD. The standard deviations
of the peak heights are +2.5% and +1.6% for low and high power, respectively.

the bulk QD and we obtain the following collection efficiency

X

C
X = Motk o = (443 £2.1)% (5.2)

sat

This collection efficiency should be compared to the best found in the literature,
where 72% |118] and 42% [121] for nanowires and 79% |33| for micropillars have
been demonstrated. Just considering the APD detection frequency of single
photons, we measure 293 kHz compared to ~ 65 kHz [118], ~ 236 kHz [121],
and ~ 700 kHz [33] for the three former cases found in the literature.
Blinking of the QD can usually be observed as variations of the peak ampli-
tude at large time delays in autocorrelation measurements. In Fig. 5.4(a-b) we
plot the low, 0.4 PX  and high, 21 PX  power autocorrelation measurements
from Fig. 5.3(c) at large time delays. Both at low and high power we observe
no systematic variations in the peak heights and the standard deviation of
the peaks heights are +2.5% and +1.6% for the low and high power measure-
ments, respectively. Larger delays were also investigated, but no systematic
variations were found, and we conclude that blinking of the QD is negligible

on the timescales investigated. Unfortunately we could not perform the same
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autocorrelation measurements on the emission from the bulk QD due to low
count-rates.

The efficiency at the first lens has been measured for many QDs all spec-
trally situated around the M3 mode, and the high efficiency is seen to be repro-
ducible and relatively broadband. We found 8 QDs with efficiencies above 20%
out of which 5 QDs had efficiencies above 25% and for some of the QDs the de-
tuning exceeded 5 nm. The corresponding decay rates have also been recorded
showing, as expected, a strong frequency dependence of the Purcell enhance-
ment of the decay rate with Purcell factors up to ~ 6 close to resonance with
the M3 mode. In addition, no strong correlation was found between the high
collection efficiency and the Purcell enhancement, which confirms that the high
efficiency is not due to the Purcell enhancement but rather to the modification

of the far-field radiation pattern resulting from the cavity structure.

5.2 Numerical modeling of the efficiency

The high efficiency has also been investigated theoretically by performing nu-
merical simulations of the emission from a QD with various detunings from
the M3 mode. The simulations are done in the commercially available software
COMSOL using the finite-element method in frequency domain. We calculate
the electric field from the dipole on a surface 10 nm above the membrane and
perform a near-field to far-field transformation over the surface ' [122, 123].
The far-field patterns are calculated for the two orthogonal dipole moments
of the QD oriented along the x- and y-axis, and the energy falling within a
N.A.= 0.6, corresponding to our microscope objective, in the upward direc-
tion compared to the total emitted energy gives the collection efficiency. The
experimental situation is illustrated in Fig. 5.5(a), from which it is clear that
the symmetry of the membrane results in identical emission patterns in the
up- and downward directions. Figure 5.5(b) shows examples of the far-field
patterns for the z- and y-dipoles, where the norms of the z- and y-components
of the simulated electric fields are plotted.

The calculated collection efficiencies are shown in Fig. 5.5(d-e) as a function
of detuning from the M3 mode for the x- and y-dipoles, respectively, and for the

6 different spatial positions that are shown in the position map in Fig. 5.5(c).

lSimulations have been performed by Alisa Javadi, Niels Bohr Institute
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Figure 5.5: a) Illustration of the experimental situation. b) Calculated far-
fields showing the norms of the electric field components for the z- and y-dipoles
at position 3 and detuning 5 nm in spherical coordinates with the polar () and
azimuthal (¢) angles. There is almost no mixing of the polarizations in the far-
field. ¢) Position map for the cavity. d-e) Calculated collection efficiencies at
the first lens for a N.A.= 0.6 as a function of detuning at 6 different spatial
positions for the z- and y-dipoles, respectively. f-g) The corresponding Purcell
factors show a small coupling to the M3 mode for many positions at large
detunings. There is no strong correlation between Purcell factors and collection

efficiencies.

The z-dipole is generally the most efficient, while both dipoles exhibit a broad-
band high efficiency, none of which, however, is as high as the experimentally
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measured value. We also calculate the corresponding Purcell factors for the
two dipoles in order to gain insight on the degree of coupling to the M3 mode,
and the results are shown in Fig. 5.5(f-g). The z-dipoles are generally Purcell
enhanced, while the y-dipoles have an inhibited spontaneous emission rate. For
larger detunings, the Purcell factor decreases significantly while the efficiencies
remain high, thus showing no strong correlation between Purcell factor and
efficiency. This proves that it is not the coupling to the M3 mode but rather
the modification of the far-field pattern due to the cavity structure that is
responsible for the high efficiency.

As an example, position 3 exhibits the broadband high efficiency and low
Purcell factors that we measure experimentally. The far-fields plots in Fig. 5.5(b)
are for the two dipoles at position 3 and detuning 5 nm. For the z-dipole, |Ey|
is scaled up by a factor of 11 for the structure to be visible on the same scale
as |Ex|. Similarly |Ey| is scaled up by a factor of 7 for the y-dipole, and we
immediately observe that the z- and y-dipoles emit almost exclusively into the
x- and y-polarizations, respectively. This means that there is no mixing of the
polarizations in the far-field at position 3. This result is important because
mixing of the polarizations can result in errors in the calculations of the effi-
ciency, because it leads to underestimates of r.ep. For the same detuning of
5 nm we do, however, observe polarization mixing for position 4, where both
dipoles emit into the z-polarization in the far-field. We attribute this mixing
to the fact that the y-dipole at position 4 is also coupled to the M3 mode, as
evidenced by the detuning-dependence of the Purcell factor. The M3 mode
is x-polarized in the far-field, and since the y-dipole couples to the M3 mode
this obviously leads to polarization mixing. We note that the measurements
reveal that the exciton is highly polarized, which indicates that there might be

polarization mixing in the far-field.

The calculated efficiencies are, however, systematically lower than the ex-
perimentally measured value. The most likely explanation for this discrepancy
is that we do not take the under-etch of the membrane into account. Under-
neath the membrane there is a air gap of 1530 nm before the GaAs substrate
is reached, cf. Fig. 5.5(a). This distance is large enough for near-field effects
to have died out [123], but the air-GaAs interface will give rise to reflections.
For reference, for a plane wave at normal incidence ~ 55% of the power is

reflected. Furthermore, the light reflected from the substrate can interfere con-
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structively with the top-emitted field. This could very well be the reason for

the discrepancy between the calculated and measured values for the efficiency.

5.3 Phonon-mediated excitation

We now turn to studying different excitation schemes of the QD in order to
address the QD of interest in the cavity. While resonant excitation provides the
ultimate selective excitation method [92, 66], it is technically very demanding as
shown in the next chapter. We previously showed that p-shell and higher-order
mode excitation also provide relatively selective excitation. In the following we
will demonstrate both LO and LA phonon-mediated excitation of the QD,

which proves to be a selective excitation mechanism.

5.3.1 LO phonon-mediated excitation

In Fig. 5.6(a) we present photoluminescence excitation (PLE) measurements,
where we detect the total intensity in the M1 mode while scanning the laser
across the M6 mode, thus mapping out the absorption spectrum. By scanning
across the M6 mode under high excitation power we map the linewidth of
the M6 mode and record a Q-factor of 306. Thereafter we again scan the
excitation laser across the M6 mode but now under low excitation power, while
we record the total intensity of the exciton X. We observe two strong absorption
resonances at 854.56 and 856.40 nm and the corresponding emission spectra are
shown in Fig. 5.6(b-c), respectively, both showing very clean emission spectra.
In Fig. 5.6(a) we also plot the total intensity of the bi-exciton XX as a function
of excitation wavelength, where we observe a single strong resonance at 856.40
nm.

When exciting through the 854.56 nm resonance, the emission spectrum
is completely dominated by the excitonic X-line, cf. Fig. 5.6(b), while the bi-
excitonic XX-line increases by a factor of ~ 3 when exciting through the 856.40
nm resonance and keeping the excitation power constant. Furthermore, the
energy difference between the absorption peaks at 854.56 and 856.40 is 3.12
meV, which exactly matches the energy difference between the X- and XX-
emission lines. The resonances are too high in energy to be higher electronic
states of the QD and the wetting layer does not give rise to sharp resonances.

Furthermore, the fact that the PLE measurement in Fig. 5.6(a) maps out the
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Figure 5.6: a) PLE measurement of the absorption showing the integrated area
in the M1 mode (high power), in the exciton X-line (low power), and in the
bi-exciton XX-line (low power) as a function of excitation wavelength around
the M6 mode. The linewidth of the M6 mode is mapped when detecting the
M1 mode and agrees well with the fit (solid red line). Detecting the X- and
XX-lines reveal sharp resonances at 854.56 and 856.40 nm corresponding to LO
phonon-mediated excitation of the exciton (X) and bi-exciton (XX), and the

corresponding spectra are shown in (b) and (c).

M6 linewidth while detecting the intensity in the M1 mode proves that the
wetting layer is a continuum over the M6 linewidth. The energy difference
between the excitation and emission is 81.2 meV, which roughly corresponds
to two times the LO-phonon energy in GaAs as we will discuss shortly. We
thus conclude that the resonances are due to the absorption of 2 L.LO phonons,
where the lower and higher wavelength-resonances correspond to LO-phonon

mediated excitation of the exciton and bi-exciton, respectively.

LO phonons are out of phase movements of the atoms in the lattice, which
in the simple diatomic linear chain model can be understood as the two atoms
within the unit cell moving in opposite direction, as opposed to acoustic phonons
where the two atoms move in the same direction [21]. As opposed to LA-
phonons that have a linear dispersion relation and thus form a continuum, the
energy of an LO phonon is non-zero at zero phonon wavevector. The dispersion
relation for LO phonons is almost constant at small wavevectors. As demon-

strated in section 4.3, the QD only interacts with phonons up to a certain
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wavevector because the finite size of the exciton wavefunctions gives rise to a
cut-off [112]. For wavevectors below this cut-off, the LO phonon dispersion is
constant, and we calculate the energy to be 36.8 meV 2. This results in discrete
lines of the LO phonon absorption spectrum, corresponding to multiples of the

single LO phonon energy.

The calculated energy of a LO phonon in bulk GaAs is 36.8 meV, while
we experimentally obtain the value 40.6 meV. Part of this discrepancy may be
attributed to the calculated value containing the average of all LO mode fre-
quencies [124]. Previous work has observed LO phonon energies increased by
~ 0.7 meV, where transmission spectra revealed that the shift in energy arose
from the strong coupling between the p-shell of the QD and 2 LO-phonons [125].
However, in our QDs the p- to s-shell energy difference is typically ~ 28 meV.
This means that the 2 LO-phonon resonance lies within the continuum of elec-
tronic states in the wetting layer, and the former mentioned effect has only been
demonstrated when the 2 LO-phonons interact with a discrete p-shell level. One
might speculate that the energy difference is emitted as LA phonons, but this
would not give rise to a sharp but rather a broadband resonance. The reason
for this discrepancy should most likely be found in the inhomogeneity and/or
strain of the QD that could shift the frequency of the LO-phonons. Further-
more, because LO phonons can be considered microscopic distortions within the
primitive cell of the semiconductor [126], phonon localization either in the QD
or at the interface between the InAs and GaAs could maybe be responsible for
this increase in energy. By keeping the excitation power constant, we observe
that LO phonon mediated excitation is 7 times more efficient than above-band
excitation. According to theoretical calculations? for a bulk QD, it should be
3 orders of magnitude more efficient to excite through the 1 LO-phonon line
than the 2 LO-phonon line used here. However, experimentally we could not
excite through the former because that absorption line does not lie within the
linewidth of a cavity, which highlights the fact that the total absorption de-
pends both on the optical properties of the photonic-crystal membrane as well

as on the absorption spectrum of the material.
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Figure 5.7: The excitation laser is resonant with the M3 mode, and LA-phonons
mediate the excitation of the X-line. The peak at the M3 mode is due to laser
reflections. The spectrum is surprisingly clean with only emission from the
X-line, because excitation of the bi-exciton (XX) and charged exciton (X2) is

highly unlikely.

5.3.2 LA phonon-mediated excitation

In Fig. 5.7 we demonstrate that we can also excite the QD by tuning the ex-
citation laser into resonance with the M3 mode, which is only 4.8 nm blue
detuned from the X-emission line. The large peak seen at the M3 wavelength
is the laser reflection, which we could not suppress more. This excitation mech-
anism must be mediated by LA phonons since their linear dispersion results in
a continuum of modes, and the excitation cannot be due to electronic states
of the QD since they lie much higher in energy. Physically, the process starts
with the absorption of a photon with the energy of the cavity that becomes an
exciton in the QD with emission of the residual energy into the lattice as an LA
phonon. This has been previously demonstrated [127], whereas in chapter 4
we demonstrated the opposite process, where the QD was initially excited and
emitted an LA phonon in order to decay into the cavity [55]. Figure 5.7 shows
a surprisingly clean spectrum, where only emission from the X-line is present.
The bi-excitonic XX-line is most likely suppressed because it is detuned 3.12
meV further away from the excitation than the X-line, and because it requires

absorbtion of an additional photon and the subsequent emission of one more

2Calculation performed by Per Kaer, DTU Fotonik
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LA phonon, which is unlikely. The charged exciton (X2) is also absent from
the spectrum in Fig. 5.7 because the process is highly unlikely. One addi-
tional charge is needed for a charged exciton and this cannot be created by
phonon-mediated optical excitation.

5.4 Indistinguishability measurements

We now study the effect of the phonon-mediated excitation on the coherence
of the single photons emitted from the QD, in order to gain more insight on
the decoherence mechanisms that give rise to dephasing. The coherence is in-
vestigated by measuring the indistinguishability of two consecutively emitted
photons in a Hong-Ou-Mandel (HOM) interferometer [88], where the two pho-
tons are interfered on a beam-splitter and their coincidence counts are measured
as a function of delay time. If the two photons are completely distinguishable,
then the two photons will neither bunch nor anti-bunch, whereas indistinguish-
able photons will bunch in one arm and thus not give rise to any coincidence
counts. This is a purely quantum mechanical effect that does not appear in the
classical description of the experiment [38]. In the following, the theoretical

background will briefly be derived before discussing the experimental data.

5.4.1 Calculating the indistinguishability

For comparison to correlation measurements, we can to a good approximation
describe the neutral exciton as a two-level system that decays exponentially.
This can be done because the amplitude of the slow component is 29 times
smaller than the amplitude of the fast component. The equations of motion
are easily found from the master equation for the density matrix, as done in
section 2.4. However, we do not need to include the coherent light-matter inter-
action since we are considering a QD that decays exponentially, and dissipation
can therefore be included through Lindblad terms. In this way we introduce
the decay rate v and the pure dephasing rate yqp of the QD, and we obtain the

following time-evolutions of the population and polarization, respectively:
Pad(t) = e~ and Ppo(t) = e~ (V/247ap)t (5.3)

The electric field annihilation operator, @, can in the far-field be related to the

QD lowering operator, 6_, with a time-retardation due to the propagation time
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of the emitted photon and with a space dependent amplitude [49]. Neglecting
both the amplitude and time-retardation allows us to express the unnormalized

first-order coherence function as
GO (t, 1) = (64 (t+7)6_(t)) = e~ V/2H00)7p (1) = e~ (/2 1a0)Te =7t | (5.4)

where the second equality sign has been obtained by use of the quantum re-
gression theorem [38]. The photon annihilation operators as(t) and a4 (¢) cor-
respond to the two output ports of the beam-splitter, so experimentally we
measure the coincidence counts between those two, which is given by the cross-
correlation function (ad(t)al(t+7)as(t+7)as(t)) [128]. Using the input-output
relationship for the operators in the beam-splitter, the output operators as(t)
and a4 (t) can be related to the operators a(t) and as(t) for the two input
ports. Assuming that the emitters sending light into the beam-splitter are
independent but have identical expectation values corresponds to the case of
consecutive emissions from the same QQD. The coincidence counts are thus given

by the correlation function [128§]

1
Glidni(t:7) = 5 [paa(paalt +7) = |60 (1,7 (5.5)
]' — —YT — dpT
=3¢ =T [1 — e 27| (5.6)

Experimentally we only measure the delay time 7 between the two single photon
detection events, and because the total detection time T is much longer than the
single photon pulse-width we can write the experimentally measured correlation
function as
2) i [ e [ SRS

GHOM, exp(T) = Th_{noo ; Gyom(t, T)dt = He [1—e @] . (5.7)
In the limiting case of indistinguishable photons (v4p, — 0) the coincidence
counts go to zero, meaning that the two incoming photons always bunch in one
of the two output arms of the beam-splitter. In the opposite case of completely
distinguishable photons (yqp — ©00) the coincidence counts decay with the
lifetime of the emitter. In between these two extrema the coincidence counts

curiously always vanish at zero time delays. This central dip occurs because the

time of the two photons, thus making them indistinguishable. The first factor
in Eq. (5.7) thus arises from the incoherent dynamics, while the second factor
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comes from the coherent dynamics. Often in experiments, this structure cannot

be resolved due to the time resolution of the detectors and only the integrated

coincidence counts are available. This area is given by
T 1

—_9 1 (2)
AO - 2711_1)20 0 GHOM, exp (T)dT

lydp

= 5——F0 5.8
Y2y +27ap (58)

where a factor of 2 takes the negative delay times into account. The case of

completely distinguishable photons gives an area of

1
A = 1. A = — , 59
1= Jm Ao =55 (5.9)
so we can define the indistinguishability, V, as
A
ve=1-0-_ 71 (5.10)
Ay v+ 27

which vanishes in the case of distinguishable photons and takes the value of
unity in the case of indistinguishable photons. This expression agrees with
that obtained in [129]. It is evident that dephasing degrades the indistin-
guishability of the emitted single photons, but it can be compensated for by
Purcell-enhancing the decay rate, which has been demonstrated experimen-
tally [72]. This can be understood by considering the emitter in the frequency
domain, where in the absence of dephasing the spectrum of the emitter is only
lifetime-broadened. Pure dephasing corresponds to adding an inhomogeneous
broadening to the spectrum of the emitter, but this can be compensated for
by increasing the lifetime-broadening, which corresponds to Purcell-enhancing

the decay rate.

5.4.2 Experimental setup

The experimental setup is shown in Fig. 5.8, where the part before the PM
fiber is the one we previously used for the investigation of photonic-crystal cav-
ities. The sample is placed in the cryostat, accessed optically using confocal
microscopy, where the excitation and emission are separated by a dichroic mir-
ror, and the emission is coupled into the PM fiber after polarization selection.
Before coupling the pulsed Ti:Sapph laser into the excitation fiber, we send
half of the excitation beam through an optical delay path of 3.04 ns before
coupling it back into the original optical mode. This results in two pulses sepa-

rated by 3.04 ns arriving at the sample every 13 ns (corresponding to the laser
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Figure 5.8: Experimental setup used for indistinguishability measurement. Ev-

Optical delay

ery 13 ns two pulses from the Ti:Sapph laser separated by 3.04 ns excite the
sample. The emission is sent through a HOM interferometer, where ideally the
first photon goes to the reflected arm and is delayed by 3.04 ns compared to
second photon that goes into the transmission arm. Both photons are reflected
both to the same beam-splitter and interfered. The outputs are sent through

spectrometers before the coincidence counts are measured using APDs.

repetition rate of 76 MHz). We can consider the case where every excitation
event gives rise to a detected photon, because only these events give rise to
coincidence counts. Thus every 13 ns two single photons separated by 3.04 ns
arrive at the output of the PM fiber shown in Fig. 5.8 and are directed into
the Hong-Ou-Mandel interferometer [88]. The optical beam is incident on a
50:50 beam-splitter, where the reflected arm has an optical delay of 3.04 ns
compared to the other arm. The beams in both arms are reflected back to the
same beam-splitter, where the two beams are interfered. Both output beams
are sent through spectrometers before being incident on APDs for detection.
Importantly, the resolution of the spectrometers is 0.05 nm, and it only allows
us to filter away other emission lines, not to spectrally filter on the emission
line, i.e. post-select. For these measurements the photon flux in the optical
beam is very important, since reducing it by a factor of two reduces the coin-
cidence counts by a factor of four. Therefore we use APDs from Perkin Elmer,
model SPCM CD3371H, that offer a high quantum efficiency of ~ 35% at 900
nm with dark counts of 70 Hz and a dead-time of 25 ns. The downside of using
these APDs is their low time-resolution of 330 ps. For coincidence measure-
ments, dark counts are not a problem since they very rarely give rise to any
coincidence counts. It is important that the delay in the excitation exactly
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matches the delay in the HOM interferometer, and we ensure this to a high

precision (< 20 ps) through time-resolved measurements.

5.4.3 Measurements under LO phonon-mediated excitation

We now excite the X-line using LO phonon-mediated excitation, where the ex-
citation laser is tuned to the resonance at 854.56 nm. By blocking one of the
delay arms in the HOM interferometer, we continuously perform autocorrela-
tion measurements, and because we excite below saturation power the emission
always exhibits complete anti-bunching, as we verified in Fig. 5.3(c). The out-
come of a HOM measurement under LO phonon-mediated excitation is shown
in Fig. 5.9(a), and it gives a cluster of five peaks for every 13 ns, where only
the center peak corresponds to the desired two-photon interference. The peaks
correspond to all the other possible path-combinations that the two photons
can take in the HOM interferometer. Counting from the left, the first peak
originates from the first photon taking the short path in the HOM interferome-
ter, while the second photon takes the long path giving a delay time of —2-3.04
ns. The second peak originates from both photons taking either the short and
long path, in which case the delay time is —3.04 ns. The third (i.e. center) peak
comes from the first photon taking the long path and the second photon the
short path, which gives rise to the two-photon interference effect around zero
delay time. These combinations should be mirrored around the center peak,
because it is probabilistic which output port of the beam-splitter the photons
go out through, and this gives rise to the fourth and fifth peaks. In the case
of completely distinguishable photons, the relative intensities in the peaks 1-5
should be 1 : 2 : 2 : 2 : 1, while the center peak should vanish completely
for indistinguishable photons. As shown in Eq. (5.7), all of the peaks fall of
exponentially with the decay rate of the X-line. Although we have chosen the
delay to be large (3.04 ns), the inhibited decay rate (y = 0.62 ns™!) of the
X-line means that all the peaks overlap with their neighboring peaks. A larger
delay will increase the peak-to-peak distance, but in that case the peaks from
the neighboring clusters will begin to overlap, so the delay chosen was found
to be optimum.

In Fig. 5.9(c) we have zoomed in on the center peak in Fig. 5.9(a), where we
see a clear suppression of the center peak. Furthermore, we see that the center

peak, as expected from theory, actually has a double peak structure with a dip
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Figure 5.9: a) Indistinguishability measurements under LO phonon-mediated
excitation at the temperature 5 K and under an excitation power of 0.88 PX,.
The data shows a cluster of five peak every 13 ns, where only the center peak at
7 = 0 corresponds to the two-photon interference. The fit shows a reasonable
agreement with the data, and in (b) the fit is decomposed into the five peaks,
where the fine structure of the central peak with a small central dip is clear. c)
Shows a zoom-in around the center peak. For reference the lines corresponding
to completely distinguishable (V' = 0) and indistinguishable (V' = 1) photons
are also shown. We extract the indistinguishability V1o = 0.20 4 0.07, which
corresponds to a low dephasing rate of hfy({fpo =0.82 +0.41 peV.

in the middle. This is experimental evidence for the effect that photons emitted
very fast have not been subject to much dephasing and consequently they are
indistinguishable. In previous work, this fine structure of the center peak has
not been observed, because Purcell enhancement of the decay rate has been
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used to increase the indistinguishability making this fine structure impossible
to resolve temporally [72, 115].

In order to model the recorded data in Fig. 5.9(a), we initially leave out
the data from the cluster around zero time delay. Because the beam-splitter is
balanced, as verified by measurements, we can assume the amplitudes of peak
1 and 5 are identical and that the amplitude of peak 2 and 4 are also identical.
The time delay between the peaks has been measured independently and each
peak is given by an exponential function, where the decay rate has also been
measured independently. By propagating a laser pulse through the system we
record an IRF, and the exponential function is convoluted with the IRF before
fitting. When modeling the data away from the central cluster the only free
parameters we thus need are the amplitudes of peaks 1, 2, and 3.

Having determined these we now include the central cluster of peaks in the
data. We assume that the ratios between the peaks 1 and 2 are unchanged,
and we thus only need one overall amplitude for fitting the peaks 1,2,4, and 5.
The amplitude of the central peak is the same as for peaks 2 and 4. The center
peak is therefore modeled with the expression in Eq. (5.7) after convolution
with the IRF and with yqp as a free parameter. Fig. 5.9(a-c) shows the theory
curve and we obtain an indistinguishability of V1,0 = 0.20 £ 0.07 under LO
phonon-mediated excitation. The model shows a reasonably good agreement,
and for reference we also show the curves corresponding to V=0 and V =1,
where we note that even the V' = 1-curve does not go completely to zero due to
the overlaps. In Fig. 5.9(b) the theory is decomposed into the five peaks, and
the central dip due to indistinguishability of the photons is evident. Using the
relation we derived in Eq. (5.10) we extract the coherence rate (/2 —|—’y(1;po) =
1.02 £ 0.41 peV, which gives a pure dephasing rate of 7y} = 0.82 +0.41 peV.
The data were recorded at the temperature 5 K and under an excitation power
of 0.88 PX

sat*®

5.4.4 Measurements under LA phonon-mediated excitation

The excitation laser is now tuned into resonance with the M3 mode in order
to excite the X-line using LA phonon-mediated excitation. An example of
the very clean emission spectrum can be seen in Fig. 5.7 and autocorrelation
measurements verify that the emission still exhibits complete anti-bunching.

We now perform HOM measurements on the emission in the exact same way
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Figure 5.10: a) Indistinguishability measurements under LA phonon-mediated
excitation at the temperature 4.8 K and under an excitation power of 0.10 PX,.
The fit shows a reasonable agreement with the data and in (b) the fit is de-
composed into the five peaks, where the fine structure of the central peak with
a small central dip is clear. ¢) Shows a zoom-in around the center peak. For
reference the lines corresponding to completely distinguishable V' = 0 and in-
distinguishable V' = 1 photons are also shown. We extract the indistinguisha-
bility Vo = 0.33 £ 0.09 which corresponds to a very low dephasing rate of
h’y&? = 0.42 £ 0.18 peV, which is a reduction by a factor of two compared to
LO phonon-mediated excitation.

as under LO phonon-mediated excitation. The outcome of the measurement
can be seen in Fig. 5.10(a), and in (¢) we have zoomed in on the area around the
center peak at 7 = 0. We notice, that the center peak seems less intense, and

that the dip within the center peak is more pronounced than under L.O phonon-
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mediated excitation. The data is now modeled following the same procedure as
before, and the theory curve is seen to be in reasonably good agreement with
the data in Fig. 5.10(c). From the theory we extract an indistinguishability
of Vo = 0.33 £0.09, and in Fig. 5.10(b) the model is decomposed into the
five peaks. A clear dip within the center peak is also seen in Fig. 5.10(b), and
this center dip originates from photons being emitted before they have had
time to dephase thus making them indistinguishable. Resolving this dip is only
possible because the decay rate of the emission is inhibited and because the
dephasing rate is low. This center dip holds information on the dephasing at
early times, where, e.g., LA phonons have been shown to give rise to a time-
dependent dephasing rate. This rate varies strongly within the first ~ 4 ps,

after which it settles to a constant level [130].

From the indistinguishability we extract the coherence rate hi(y/2+ ’ygﬁ) =
0.62 £ 0.18 peV, which gives a very low pure dephasing rate of hfyéﬁ =042+
0.18 peV at 4.8 K and under an excitation power of 0.10 PX

at- 1N comparison

this dephasing rate is 5 times lower than the one we measured for a QD in
a micropillar cavity even after having compensated for the temperature by
assuming a linear dependency. Low dephasing rates have been demonstrated
for a QD in a micropillar cavity, where the value 0.46 peV was obtained at
3 — 7 K under p-shell excitation [72]. However, previous work on QDs in
photonic-crystal cavities used a strong Purcell enhancement to obtain a high
indistinguishability of 0.72, while the pure dephasing rate was measured to
2.34 peV at 4 K under p-shell excitation [115].

We also note that the dephasing rate decreases when changing from LO
to LA phonon-mediated excitation, which we attribute to the much smaller
residual energy being emitted as LA-phonons. For LO phonons the energy
difference between excitation and emission is 81.2 meV, while it is only 7.2
meV for the LA phonons. One would therefore expect the LO-phonons to
perturb the lattice and thus the exciton wavefunctions significantly more than
LA phonons, and thus give rise to the higher dephasing rate. Furthermore, the
almost completely flat dispersion of the LO phonons implies a very slow group
velocity, and as a result LO phonons do not propagate over the timescale of
the dynamics. Instead LO phonons scatter into e.g. LA phonons, where one
LO phonon can decay into two LA phonons both with half the energy and

opposite wavevectors. The lifetime of LLO phonons has been measured to 7
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ps in GaAs at 77 K [23], and LO phonons thus give rise to dephasing on a
very short timescale before decaying into LA phonons that propagate away.
Before decaying LO phonons perturb the lattice at the position of the exciton
wavefunctions, which is expected to dephase the wavefunctions considerably.
In comparison LA phonons propagate with the speed of sound ~ 51107 and
they therefore only distort the lattice, where the exciton is confined, for a short
time.

Using the dephasing rate from LA phonon-mediated excitation, we estimate
that if the X-line had a Purcell factor of 5, the indistinguishability would be
very high, V= 0.86. However, studying slow QDs has the advantage that the
coherence of the photons is limited not by the lifetime but by the dephasing
rate. In this way we can study how the QD is dephased at early times and
investigate whether or not pure dephasing is the correct model to apply for the

times shortly after the excitation.

5.5 Absorption of LA-phonons

In the previous demonstrations of LA phonon-mediated excitation, the excita-
tion laser had a higher energy than the QD emission, and the residual energy
was emitted as LA phonons. Now we study the opposite case, where the excita-
tion laser has lower energy than the QD emission and relies on the absorption
of LA phonons in order to excite the QD. In Fig. 5.11(a) we show an emission
spectrum, where the excitation laser is tuned into resonance with the M4 mode
at 914.7 nm and we observe strong emission from the X-line. However, we note
that the emission spectrum is not nearly as clean the one in Fig. 5.7, where
excitation relied on the emission of LA phonons. In Fig. 5.11(b) we show a PLE
measurement, where we have scanned the excitation laser across the M4 mode
while detecting the total intensity in the X-line. The precise power applied to
the sample is difficult to determine due to the wavelength-dependent reflection
of the dichroic mirror, but we make sure to operate below saturation of the
X-line. The data clearly map out the linewidth of the M4 mode, and we fit the
data with a Lorentzian (solid red line), which gives a Q-factor of 3354 with a
center wavelength of 914.76 nm. This is in good agreement with the Q-factor
2927 and center wavelength 914.61 nm we extract from strong above-band ex-

citation, where the M4 mode is visible in the emission spectrum. Because
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Figure 5.11: a) Emission spectrum where the laser is coupling to the M4 mode
and absorption of LA phonons makes excitation of the X-line possible. b) PLE
measurement where the total intensity in the X-line is plotted as a function of
the excitation wavelength at low excitation powers and at 10 K. The linewidth
of the M4 mode is mapped out, and it agrees very well with that obtained from
emission spectra. This proves that the feeding mechanism is broadband and
thus due to the absorption of LA phonons.

the absorption follows the linewidth of the M4 mode, the feeding mechanism
is broadband and it must be due to LLA phonons, since no other broadband

mechanisms should be present.

The data in Fig. 5.11 are taken at the temperature 10 K, and the energy
difference between the X-line and the center of the M4 mode used for excitation
is 14.08 meV. Evaluating the thermal occupation number at this energy and
temperature gives an occupation number of 8.5- 1078, which would imply that
the absorption of single LA phonons is highly improbable. Most likely, the laser
induces some local heating effects that would increase the thermal occupation
of phonons. Although the absorption coefficient is only o = 2.4-107° nm~!
in GaAs [20], the Q-factor of the cavity enhances the absorption to Qa =
0.08 nm~!, and because the M4 has a relatively high Q factor the excitation
light is strongly confined and could heat the lattice around the QD significantly.
As an example if the local temperature is 35 K, then the thermal occupation is
n = 0.01. Furthermore, multiphonon absorption processes, where several low-

energy phonons are absorbed, could also contribute. However, these processes
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are also subject to selection rules that need to be taken into account [131].
Finally we note that it was possible to excite the X-line even at 5 K, where
we measured the linewidth of the X-line using a scanning Fabry-Perot. Though
not conclusive, these measurements indicated that the spectral linewidth of the
X-line was above 20 peV, in stark contrast to the linewidths of 2.04 + 0.82
and 1.24 £ 0.36 peV expected from indistinguishability measurements under
LO and LA phonon-mediated excitation. This would most likely be due to
spectral diffusion, i.e., spectral wandering of the X-line due to changes in the
electrostatic environment. Spectral diffusion is expected to take place on a
slow timescale (up to seconds), which is also the timescale of the Fabry-Perot
measurements, and it would thus broaden the measured linewidths, but not
influence the outcome of a HOM measurement, where the dephasing rate is

probed on a nanosecond timescale.

5.6 Conclusion

We have performed measurements on a QD detuned from a low-Q mode of a
photonic-crystal cavity. The exciton, bi-exciton and charged exciton was identi-
fied using power series and cross-correlations measurements, and by comparing
to a bulk QD we derived a collection efficiency at the first lens of (44.3+2.1)%.
Autocorrelation measurements proved the single-photon nature of the emis-
sion, and a pronounced anti-bunching was observed for excitation powers 21
times higher than the saturation power. The efficiency and Purcell factor has
been measured for many QDs, and the high efficiency is seen to be reproducible
with 5 QDs showing efficiencies above 25%, while no strong correlation between
efficiency and Purcell factor was observed.

The high efficiency was also investigated by performing numerical simu-
lations of the far-field pattern. The collection efficiency at the first lens was
calculated for the experimentally used N.A.= 0.6, and in agreement with exper-
iment we found the high efficiencies to be broadband and not strongly correlated
with the Purcell factor. This proved that it is not the coupling to the M3 mode
but rather the modification of the far-field pattern due to the cavity structure
that is responsible for the high efficiency. However, the calculated efficiencies
were found to be systematically lower than the experimentally measured val-

ues. We attribute this discrepancy to the under-etch of the membrane, since
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half of the emission from the QD propagates down towards the substrate, and
at the air-GaAs interface a significant part will be reflected upwards towards

the collection lens.

We have demonstrated both LO and LA phonon-mediated excitation by
exciting the QD through phonon absorption lines that lie within the linewidth
of higher-order cavity modes. LO phonon-mediated excitation of both the
exciton and bi-exciton by absorption of 2 LO-phonons was demonstrated and
shown to be 7 times more efficient than above-band excitation. The energy
difference between the exciton and bi-excitonic LO phonon absorption lines
matched very well with the energy difference between the exciton and bi-exciton
emission lines. However, the energy of the 2 LO phonon line was slightly larger
than expected from theory, which we provide some possible explanations for.
Selective excitation of the exciton was demonstrated by LA phonon mediated
excitation. This resulted in an emission spectrum much cleaner than under LO

phonon-mediated excitation and only the exciton emission line can be seen.

In order to investigate the effect of excitation on the dephasing we per-
formed indistinguishability measurements of the exciton emission line under
both LO and LA phonon-mediated excitation. Under the former we extract
an indistinguishability of 0.20 £ 0.07. However, this value is only low because
the radiative decay rate of the exciton is inhibited, and the extracted pure
dephasing rate of h'y&po =082+ 041 peV at 5 K is a low rate. Under LA
phonon-mediated excitation we measure an indistinguishability of 0.33 4 0.09,
but we extract the very low pure dephasing rate of h’yg;ﬁ = 0.42 £ 0.18 peV
at 4.8 K. The pure dephasing rate thus decreases when going from LO to LA
phonon-mediated excitation. We attribute this to the much smaller residual
energy being emitted into the lattice as phonons, which is 81.2 meV for LO
phonons but only 7.2 meV for LA phonons. Furthermore, while LA phonons
propagate away from the QD quickly, LO phonons stay localized around the
exciton wavefunctions and perturb the lattice before decaying into LA phonons
that propagate away. LO phonons thus give rise to an additional very fast de-
phasing of the exciton wavefunctions. Interestingly, we were able to resolve the
fine structure of the center peak in the indistinguishability measurement. This
dip occurs because the photons have been emitted before the environment has
had time to dephase the QD. The inhibition of the radiative decay rate thus
enables us to probe dephasing at early times, and investigate whether or not
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pure dephasing is the correct model to apply in this regime. Finally, we demon-
strated that we can also excite the QD with lower-energy photons and rely on

the absorption of LA phonons to mediate the excitation.
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Resonant excitation of
quantum dots in photonic

crystals

In the previous chapters we studied the selective excitation of QDs through
the p-shell, higher-order modes of the cavity, and phonon resonances, but the
most selective and cleanest excitation is to tune the laser into resonance with
the s-shell of the QD. This makes it possible to address the exciton of inter-
est. Only recently has resonance fluorescence from a solid-state emitter been
demonstrated [132, 133], where Mollow triplets resulting from the dressing of
the exciton level in a QD with the laser was shown. Furthermore, coherent
oscillations of the QD were proven by observing the oscillations in the second-
order correlation. The biggest technical difficulty in resonance fluorescence is
to separate the excitation laser from the emission, since they both have the
same wavelength. In the aforementioned work the separation was done by cou-
pling the excitation laser into a waveguide containing the QDs and observing
the emission in the orthogonal direction. Spin-resolved resonance fluorescence
was observed not long after [134], where Mollow triplets were observed for
both excitons separated by the fine-structure splitting. Resonant excitation
was also seen to minimize decoherence compared to non-resonant excitation,

and the most remarkable reduction in decoherence was demonstrated in [135],
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where a 30-fold reduction of the emission linewidth with respect to the radiative
linewidth of the QD was observed. Normally the radiative decay rate sets a
minimum linewidth of the QD through the Fourier transform, but the excitation
laser results in a coherently and incoherently scattered part of the field, where
the former part inherits the coherence properties of the incident laser while
remaining anti-bunched [136]. The total field is dominated by the coherent
part at low powers and for relatively small dephasing rates. In contrast to the
incoherent part, the coherent part has a phase relation to the excitation laser,

and this has been demonstrated by optical heterodyning measurements [137].

Exciting the QD with a pulsed resonant laser allows us to fulfill the require-
ment of on-demand single photons. Here the QD can be prepared in any super-
position of the ground and excited state by adjusting the pulse area [132, 138],
and the final population of the QD thus varies periodically with pulse area.
Not surprisingly dissipation damps this process, and recent work demonstrated
that phonon dephasing due to acoustic phonons is the principal responsible for
the intensity damping [139] and gives rise to a renormalization of the coupling
strength [114]. The emitted photons under such pulsed excitation were impres-
sively shown to have a high degree of indistinguishability of ~ 97% and were
used to successfully construct a quantum controlled-NOT gate [119]. Under
non-resonant excitation the exciton relaxes down to the s-shell of the QD with
some rate, which gives rise to a time-jitter on the time of excitation. This time-
jitter degrades the indistinguishability, but it can be eliminated under pulsed
resonant excitation, which is probably part of the reason for the high degree
of indistinguishability measured in [119]. Furthermore, the strictly resonant
excitation eliminates the excitation of other charges in the system and could

potentially reduce fluctuations in the electrostatic environment.

The work described in this chapter is still in progress, and as a result only
a single measurement will be presented. The theory for both continuous and
pulsed resonant excitation will be derived and essential features will be de-
scribed. Afterwards, the experimental setup will be described in detail, and
a measurement showing the experimental proof of resonant excitation will be

shown. Finally, the outlook of the project will be presented and discussed.
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6.1 Resonance fluorescence

While we previously studied the spontaneous decay of a QD due to the vacuum
fluctuations of the electromagnetic field, we here study the emission from the
QD while it is irradiated by a continuous monochromatic electric field, and
this is called resonance fluorescence. The derivations in this section follow
those presented in [53]. When studying spontaneous emission and the Jaynes-
Cummings model, we assumed that the QD was initially in the excited state.
In the present theory the excitation of the QD is included in the model, and
we assume that the QD is in the ground state initially. From the derivations
in section 2.1.2 we find that the Hamiltonian in the rotating frame is given by

Q
H=hg(6-+6.) +hAdio (6.1)

where Q = —2h7'deg - E is the Rabi frequency and A = wqq — wi, is the
detuning between the QD (wqq) and laser (wi,) frequency. In this semiclassical
description the emitter, i.e. QD, is quantized, while the driving field is a
coherent state that is described classically. In accordance with section 2.4 we
describe the system using the density operator for which the equation of motion

can be written
. T - ~
p=—2[H )+ Ly, 6-) + L(Vap/2,64) (6.2)

where 6, = [04,5_]. The first term in the equation governs the coherent light-
matter interaction, while the second term is a Lindblad term that describes the
decay of the QD with the rate v, and the last Lindblad term describes pure
dephasing of the QD levels. The density matrix is a two by two matrix, but

writing the elements as a vector of dimension four gives the following equations

of motion
/)11 -y ZQ/Q —iQ/Q 0 P11
po | _ | 02 —TEm A 0 —iQ)/2 P12
fo1 —iQ/2 0 ~T e A Q)2 par
P22 v —i)/2 iQ/2 0 P22

(6.3)

which we in shorthand write p,(t) = Mp,(t). We note that using the relation
(64(t)o-(t)) = Tr(p(t)6+6-) = p11(t) we make the following identifications;
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(6_64+) = paa(t), (64) = p12(t), and (6_) = po1(t). From Eq. (6.3) we thus
observe that in absence of any driving field the QD simply decays with the
rate v and the polarization decays with the rate (v/2 + vap). However, when
including the driving laser, the excited and ground state of the QD become
coupled through the polarization.

6.1.1 Steady state solutions

Because the driving field is continuous, the QD will eventually settle in a steady
state. In this case the left hand of Eq. (6.3) can be set to zero, and we find the
following expression for the polarization

B iQ < 1) 6.0
p12_7/2+7dp+iA P11 B . .

Inserting this into the equation for pi;(¢) gives us the population of the QD in
the steady state limit

@ v+ 29ap
4y A% + (7 + 27ap) (7 + 27ap + 2022 /7) /4

Ngs = pll(t)|ss = (65)
We note that using the above definitions, the Rabi frequency squared is pro-
portional to the intensity of the driving laser, i.e. Q2 oc I. In Fig. 6.1 the
steady state population, n, is plotted as a function of intensity, 92, for
A = 0, where the population increases linearly until it reaches saturation at
0% = v(v/2+~ap). At saturation the population approaches 1/2, and detuning

decreases this value.

6.1.2 Second order correlation

We now study the second order correlation function because it is experimentally
accessible and because it can reveal whether or not the emission is of single-
photon nature. In order to calculate this function we must first solve the
equation of motion given in Eq. (6.3) that is of the form py(t) = Mp,(t), in
which case we can simply write the solution as

pe(t+7) =U(1)py(t) , where U(r) =eMT | (6.6)
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Figure 6.1: The steady state population of the QD as a function of 02, which
is proportional to the intensity of the driving field. The population increases
linearly until reaching saturation when Q% = ~(v/2 + vq4p) and the population
approaches 1/2.

According to the quantum regression theorem [38], if the one-time expectation

value of the operator A s given by

(At +7)) = Z ai(m)(Ai(t)) (6.7)

then the two-time expectation value with the two other operators B and C can

be expressed

(BOA(t +m)C(t)) = Z ai(r)(BH) A (1)C (1)) (6.8)

Using this theorem we can calculate the unnormalized second order correlation

function to be
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because 64 (t)64(t) = 6_(t)6_(t) = 0, which holds because the two-level sys-
tem can maximally hold one excitation. Assuming that the time, ¢, is large
enough for steady state conditions to be reached, we can replace p11(t) with
the steady state population ng. This results in the following normalized second

order coherence function

g@(r) = Uiz“(ﬂ , (6.11)

which assuming resonance, A = 0, can be calculated to give [53]

2 3
gD () =1 — e~ (vap/243v/4)7 (cos(,uT) + 7(127:7 sin(,m’)) . (6.12)

where 1 = /92 — (v/4 — vap/2)%. Under strong excitation, i.e. Q> {v,vap},

the above expression simplifies to
gD (1) =1 — e an/2H37/D7 co5(Q7) | (6.13)

from which it is seen that although the function still dips to zero for zero time
delay, it exhibits oscillations damped by dissipation and decoherence for larger
time delays. Similarly the following expression is found in the weak excitation

regime
g (r)=1-e" | (6.14)

where we have assumed that v < 274, which is usually fulfilled when con-
sidering the case of a QD in a photonic crystal due to the strong inhibition of
the radiative rate. This result is analogous to that obtained for a QD that is
initially in the excited state and spontaneously decay with the rate 7, which
is the case under incoherent excitation of the QD. In Fig. 6.2 the second order
correlation function is plotted as a function of time delay for three different
excitation powers. The emission is always anti-bunched at zero time delay, but
the width of the dip varies strongly with excitation power. At low powers it
is limited by the radiative decay rate, and with increasing powers the dip nar-
rows and eventually damped oscillations appear at small time delays. These
oscillations are proof of the coherent oscillations of the population driven by

the excitation laser.
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Figure 6.2: Second order correlation function as a function of time delay for
three different excitation powers with v = 7qp/10 and A = 0. While the
emission is always anti-bunched at zero time delay, the width of the dip is
given by the radiative rate for low excitation powers and the dip narrows when

increasing power until damped oscillations are observed at small time delays.

6.1.3 First order correlation

The coherence of a quantum system can most directly be probed by measuring
the first order correlation function. Using the quantum regression theorem the

unnormalized first order correlation function can be calculated to give

= Uss(7)p11(t) + Usa(7)p12(t) . (6.15)
The normalized first order correlation function can be expressed as

gD (r 1) = G (r,1) GO
e e @) ot ne ()Y V(O (t+7)

(6.16)
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Once again we assume that the time, ¢, is long enough for steady state condi-

tions to apply, and we obtain the expression

gD (1) = Uss(r) + 22 Us(r) | (6.17)

Ss

where pgs is the steady state polarization obtained by inserting Eq. (6.5) into
Eq. (6.4). In the case of A =0 we find the following analytical expression [53]

1
g (r) = s 3 + §e—(v/2+vdp)7 (6.18)
4 s =37/t van/2)T Acos(put) + B sin(pr) (6.19)
02 4 ’

where the constants A and B have been defined as

A== (v/2=yap)v
B = —(Q%(2vap — 57) + 2973, — 277 vap +7°/2)

By setting dephasing to zero, i.e. 7q, = 0, and taking the low power limit,
Q) < v we see that the time dependence of g(l)(T) disappears and it approaches
unity. This is also shown in Fig. 6.3(a), where 4, = 0 and the coherence is
seen to decay to a non-zero level for low powers. The scattered field has two
components, namely the coherently and incoherently scattered field. In the
former, a single photon in the driving field scatters off the two-level system
without populating the system notably, and absorption and emission cannot
be considered independent events. The incoherent part of the field originates
from single photons of the driving field being absorbed and subsequently emit-
ted. For spontaneous emission the coherence is always limited by the radiative
lifetime, but the coherently scattered field is liberated from this constraint,
and the coherence can as a result remain very high. Both the coherently and
incoherently scattered part of the field are calculated from expectation values
of the QD operators (64 and 6_) that both relate to the dipole moment of the
QD. As a result the far-field pattern of both parts remains the dipole pattern,
and from Eq. (6.14) we see that the field is also anti-bunched. As a result
the coherence, i.e. ¢g")(7), can remain very high, while the field still exhibits
anti-bunching, which has been demonstrated experimentally [135, 137]. How-
ever, as shown in Fig. 6.3(b) dephasing destroys this effect by decreasing the

steady state level of coherence. When the power is increased the incoherent
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Figure 6.3: a) Normalized first order coherence as a function of time for three
different pump powers and g, = A = 0. For weak excitation the coherently
scattered part dominates the field and the coherence reaches a steady state
level that is much higher than the limit given by the radiative lifetime. When
increasing power the coherence decreases until oscillations, due to the dressing
of the two-level system with the laser, become visible. b) The steady state
level of coherence as a function of dephasing showing that dephasing decreases
the contribution of coherent scattering to the total field.

field becomes dominant and the coherence decreases. Eventually the driving
laser becomes strong enough to dress the two-level system, and this gives rise
to oscillations in the coherence as seen in Fig. 6.3(a).

6.1.4 Emission spectra

From the first order correlation function we can calculate one of the experimen-
tally accessible properties, namely the emission spectrum. Because stationary
conditions apply we can express the emission spectrum as the Fourier transform
of the unnormalized first order correlation function [53]

S(w) = 1 /OO GV (r)e™Tdr | (6.20)

™ Jo
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and using simple properties of the Fourier transform allows us to easily compute

the emission spectrum as

Sw) 42 1 yap+7/2
Tis TLss@é(W) + 5(_4)2 T (,_de i ’7/2)2
+ Re% (A + B) 1
22\ 2 8ip) i(w—p)+ (yap/2 +37/4)
ns (A B 1
+Re2 (T - ) - 6.21
‘2 <2 Sw) i(w+ 1) + (Yap/2 + 37/4) (6.21)

in the case of A = 0. We note that w is the observation frequency relative to
the QD frequency, because we are in the rotating frame. The first term gives
the coherently scattered part of the field, while the three latter terms make up
the incoherently scattered contribution. The single photons coherently scat-
tered off the two-level system inherit the coherence properties of the driving
laser, and because we assumed a completely monochromatic driving field the
spectrum for the coherently scattered field is a delta-function. This is of course
not physical, but it serves to prove that the coherently scattered field inherits
the coherence of the laser and the delta-function can to a good approximation
be replaced by the actual spectral function of the laser as long as the laser is
much more narrow than the QD linewidth. In the case of spontaneous decay,
the upper limit for the coherence of a two-level system is given by the radiative
rate, but operating in the coherently scattered regime a 30-fold increase in the
coherence has been observed experimentally [135].

The incoherently scattered part of the field is given by the last three terms
in Eq. (6.21), where the first of these terms gives a central peak and the two
last terms give peaks at +u. In Fig. 6.4(a) the emission spectra are plotted as
a function of the amplitude of the driving field €2 and in Fig. 6.4(b) the spectra
at three different powers representing very different regimes are shown. As dis-
cussed, at low powers the coherently scattered field dominates and the emission
spectra inherits the linewidth of the excitation laser. In order to be able to plot
the spectrum we have assumed the laser to be given by a Lorentzian with a
very narrow full-width at half-maximum (FWHM) of 10~3v. When increasing
Q the incoherently scattered field begins to contribute significantly to the total
field, which is seen in Fig. 6.4(b) for 2 = v as a broad contribution to the
central peak and the overall intensity has gone up. In this case the central
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Figure 6.4: Emission spectra calculated with A = 0 and vqp, = 0. a) While the
coherent part dominates the spectrum at very low values of w, the incoherent
part has become significant already at 2 = v. As ) increases, Mollow triplets
become clear and they split linearly as a function of Q. b) Spectra at three
powers showing very different regimes. For 2 = /10 the coherent part domi-
nates and the spectrum has the linewidth of the laser. For € = ~ the incoherent
part has become significant and appear as a broadening of the central peak.
When = 5v the incoherent part dominates completely and Mollow triplets
appear due to the dressing of the QD levels with the driving laser. For clarity
the spectra are offset vertically and the spectrum for 2 = ~ is scaled down by

a factor of 5.

peak consists of the sum of the first and second term in Eq. (6.21), where the
former coherent part is given by the delta-function and the latter incoherent
part is a Lorentzian with a width of (7 + 2v4p). The relative amount of in-
coherent field increases as the population of the QD becomes non-negligible.
As Q) is increased even further, the incoherent part dominates the central peak
completely and side peaks appear. These three peaks are known as Mollow
triplets [75] and can be seen in Fig. 6.4(b) for Q = 5. For these values of
), the driving field becomes strong enough to overcome both dissipation and
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decoherence, and the laser dresses the bare states of the QD. Both the excited
and ground state of the QD are split into two states with the splitting g, which
allows for four transitions, where two of them are at w = +p and two of them
are degenerate at w = 0. As a result the spectrum in Fig. 6.4(b) contains three
peaks, and the splitting between them increases linearly with €.

Coherent and incoherent scattering

The transition from predominantly coherent to incoherent scattering can be
quantified by considering their respective contributions to the total intensity
of the emitted field, which can be be expressed as the integral over the entire

spectrum
I =1I.on+ Line = a/ S(w)dw = angs (6.22)

where « is a proportionality constant. We have used the fact that the total
intensity can viewed simply as the steady state population of the QD. The
coherent spectrum is given by the first term in Eq. (6.21) and the intensity is
easily found to be

00 2 2 202
gl 2 7
Loon = 2 ) 5(w)dw = anZ L = . (6.2
h a/OOnSSQQ (OJ) W anSSQQ a(72+277dp+292)2 (6 3)

and the intensity of the incoherent part is found as the difference

7Y, (2ryap +297)
Q2 (7% + 277ap + 202)?

Tine = I — Ioon = Qg (1 — Tss (6'24)

We recall that the intensity of the driving field is proportional to 2, and in
Fig. 6.5 the intensities of both the coherent and incoherent parts are plotted
as well as the total intensity as a function of pump intensity. For small values
of 2 the coherent part dominates and increases linearly with pump intensity
until it reaches saturation, whereafter it decreases again. The incoherent part
increases parabolically until eventually reaching saturation. The intensities of
the coherent and incoherent parts are equal at Q2 = y(7/2 — vqp), where the
steady state population has reached the value of ng = (1 — 27qp/7)/4. We
immediately note that increasing dephasing will cause this cross-over to occur
at lower pump intensities. The ratio between the two contributions yields

Lo~ °*

=1 6.25
Iinc 2(’Y’Vdp + QQ) ( )
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Figure 6.5: The intensity of the coherently and incoherently scattered parts
of the field together with the total intensity for vq, = A = 0. At low powers
the coherent part dominates until it reaches saturation at Q% = v(v/2 — vap),

after which it decreases again. Meanwhile the incoherent part increases and

completely dominates the total intensity for large values of 2.

As observed in Fig. 6.5, the relative contribution of the coherently scattered
field decreases with increasing pump intensity. In the limit of low pump inten-
sity we obtain

Icoh _ Yy
Iinc 2'7dp

(6.26)

from which we see that the deteriorating effect of dephasing cannot be compen-
sated for by decreasing pump intensity. However, in recent experimental work
dephasing was found not to be very significant, and the coherently scattered
part of the field was clearly observed [135].

6.2 Pulsed resonant excitation

In the previous section we considered only CW excitation, where single photons

were generated but at random times. However, in order to generate single
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photons on-demand we need to prepare the QD deterministically in the excited
state, which we in the following demonstrate is possible by exciting the QD
with a pulse. The equations of motion for pulsed excitation are the same as
Eq. (6.3) derived for resonance fluorescence just with a time dependence on the
driving field, i.e.

Q) = O t-rset (6.27)

e

where the excitation pulse shape has been assumed gaussian with the temporal
width of the pulse 20. The time offset, ¢y, denotes the center of the pulse and
assuming that the amplitude of the driving field is negligible at ¢t = 0, then
© = [;° Q(t)dt is the pulse area. In shorthand we write Eq. (6.3) as

pu(t) = M(t)py(t) (6.28)
and the solution can then be written
pu(t) = ®(t)py(t =0) , where &(t) = elo MMdr (6.29)

if and only if [M(¢),®(t)] = 0. This condition is found to only be fulfilled
on resonance and when dissipation and decoherence is not included, i.e. v =
~Yap = A = 0 and for simplicity we first consider this case. We find that

cos(0(t)/2)* g sin(0()) i
_ 5 sin(0(t)) cos( (t)/2)? sin(6(t)/2
PO s /27 cos(h
sin(6(t)/2)? ffsm( (t))  5sin(0(t)

with the time varying quantity defined as

o(t) — % (erf (t_to) +erf (t;)) , (6.31)

where erf(t) is the error function occurring when integrating a normal distri-

bution from zero to time ¢. At initial times the QD is in its ground state, and

we thus find the following expression for the population of the excited state
p11(t) = sin?(0(t)/2) . (6.32)
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Figure 6.6: Population of the excited state of the QD as a function of time for
Yy=9p =A=0,0=17-3, tg = 5 ns, and 0 = 1 ns. For reference the

excitation pulse with an amplitude normalized to unity is also plotted.

Using this expression the population of the excited state in the QD is plotted
in Fig. 6.6 as a function of time, and for reference the excitation pulse with
an amplitude normalized to unity is also plotted. As expected the population
remains zero until the pulse arrives, whereafter it increases and begins to oscil-
late. The oscillations become faster as the pulse amplitude increases and when
the pulse amplitude decreases again then the oscillations slow down again. Fi-
nally the population levels off at a fixed population, from where it does not
decay because we have set dissipation to zero. By taking the long-time limit
in Eq. (6.31) we obtain that 0(t > {tg,0}) = ©, where © is the pulse area.
We thus see that the final population of the QD varies as sin®(©/2), which is
plotted in Fig. 6.7. A pulse with © = 7, also known as a m-pulse, thus leaves
the QD in an excited state and choosing the pulse area correctly makes it pos-
sible to prepare the QD in any superposition of excited and ground state. This
behavior has also been observed experimentally [138, 132], where dissipation,

however, changes the picture as we shall see now.

We now include both dissipation and decoherence and solve the equations

numerically. The population is plotted as a function of time in the case of both
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Figure 6.7: Steady state population of the excited state of the QD as a function
of pulse area with v = 74, = A = 0. The steady state of the QD can thus be
tailored by applying the correct pulse area, e.g., applying a m-pulse (© = )
leaves the QD in the excited state.

dissipation, cf. Fig. 6.8(a), and dephasing, cf. Fig. 6.8(b). Both processes cause
damping of the oscillations during the excitation pulse, while only dissipation
gives rise to a population decay after the excitation pulse has disappeared.
Dissipation usually causes a decay of both the population and the polariza-
tion, while decoherence only causes the latter. However, when the system is
driven with a pulse, the population decay becomes less important because the
excitation pulse can re-excite the QD immediately. For this reason dissipation
and decoherence have the same effect on the population, namely damping the
oscillations, with the only difference being that dissipation causes the other-
wise steady state population to decay, as verified by Fig. 6.8. While including
dephasing, vqp, = 1 ns™!, we now calculate the steady state population as a
function of pulse area, and the result is shown in Fig. 6.9. As in the case of no
dephasing, the population oscillates as a function of pulse area, but dephasing
causes damping of the oscillations and an increase in their period. The damp-
ing results in the population eventually reaching the steady state value 0.5,

which is the same as in the case of continuous wave excitation. Experimentally
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Figure 6.8: Population of the excited state of the QD as a function of time
for © = 17-F,t) = 5ns, A = 0, and 0 = 1 ns. a) Dissipation damps the
oscillations and causes a decay of population once the excitation pulse has
disappeared. b) Decoherence also damps the oscillations but does not give rise

to a population decay.

the damping shown in Fig. 6.9 has been observed [139], but the period of the
oscillation were seen to increase with the spectral FWHM of the excitation
pulse, which was attributed excitation-induced dephasing. Acoustic phonons
could be identified as the principal source of this excitation-induced dephas-
ing. Later work showed that the period of the oscillations also increased with
temperature and comparison to a model that takes the interaction between
electrons and longitudinal acoustic phonons into account showed a very good
agreement [114]. The aforementioned model bares strong resemblances to the
model we described in chapter 4. The increase in period with temperature was

shown to be due to the phonon-induced renormalization of the Rabi frequency.

Recent measurements have used resonant excitation to prepare the QD in
an excited state and measured the indistinguishability of the emitted photons
to an impressive 97% [119], where the extracted dephasing rate was found to

be very low, Ayqp = 0.12 peV indicating that resonant excitation might reduce
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Figure 6.9: Steady state population of the excited state of the QD as a function
of pulse area with 7gp = 1 ns™! and v = A = 0. Dephasing damps the
oscillations and increases the period slightly.

the very fast dephasing. Furthermore, the deterministic preparation of the QD
in the excited state leads to the elimination of the jitter on the excitation time
that occurs under non-resonant excitation. This time-jitter causes additional

dephasing and resonant excitation thus eliminates this source of dephasing.
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6.3 Experimental setup

A new experimental setup has been build for the purpose of resonant excitation
of a single QD in a photonic-crystal membrane, and in the following all of the
essential components are described. Tt will also be outlined how measurements

are performed and an example of resonant excitation of a QD will be shown.

6.3.1 Cryostat

The cryostat used in this setup is a AttoDry500 cryostat, which is a Cryostation
from Montana Instruments customized by AttoCube Systems so that small and
high-precision piezo-stages can be fitted inside the cryostat. The cryostat is a
closed-cycle cryogen-free cryostat, which means that a fixed amount of helium
is circulated around in the cryostat and used for cooling. Complete details
on the cooling mechanism in the cryostation are not revealed by Montana In-
struments as they have a patent pending, but the main principle behind the
cooling of the cryostat is a Gifford-McMahon cryocooler. The working princi-
ple, which is not much different from that of a standard refrigerator, is that
helium gas is let into a displacer, where it is expanded causing the pressure and
thus temperature to drop. The displacer moves back and forth with frequency
~ 1 Hz at stable conditions, and it is connected to a compressor through both a
high-pressure supply line and low-pressure exhaust line both containing helium.
The compressor consumes significant amounts of energy in order to supply the
high-pressure helium into the cryocooler and retract it through a low-pressure
exhaust line. The cold space in the cryocooler it connected to a cold arm that
goes to the sample chamber, cf. Fig. 6.10, and delivers the cooling power. In
Fig. 6.10 it is illustrated how the sample chamber is connected to the cryocooler
via a cold arm, and that the cryocooler is connected to the compressor via two
supply lines. In addition both the cryocooler and the compressor are connected
to a control unit that contains much of the electronics for controlling the sys-
tem. The control unit is also connected to a laptop computer that contains the
graphic user interface. Finally, the sample chamber is connected through a vac-
uum tube to a vacuum pump in the control unit, which ensures a low pressure
before cooling is initiated. The surrounding housing of the sample chamber is
made of Invar and vacuum sealing between the removable lid and the fixed bot-

tom part is ensured by O-rings. Before cooling, the sample chamber is pumped
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Figure 6.10: Sketch of the cryostat setup. The compressor is connected to the
Gifford-McMahon cryocooler via a supply and return Helium line. The control
unit contains a vacuum pump and through a connection to the cryocooler it
ensures vacuum around the sample. Electronic connections make it possible to
control the cooling of the cryostat and the stages from a computer. In the left
part we show a zoom-in on the cryostat, where the cold arm comes from the
cryocooler and the stages, sample, and radiation shield are all connected to it.
The three stages are stacked on top of each other with a thermally anchored
pad on top followed by a heater pad with a build-in thermometer. On top of
this our sample is placed surrounded by a radiation shield that facilitates the
cryo-pumping. The microscope objective is placed 1.2 mm above the sample
and is at room-temperature. A tilted anti-reflection coated window ensures the
vacuum. There is a small gap between this window and the top of the cryostat,

and a small hole is made on the left of it to enable the pressure to equalize.

down to ~ 0.13 mbar at ~ 300 K, and after cooling when the temperature
has reached stable conditions the pressure should drop to ~ 1.7-1073 mbar
following the ideal-gas law. However, at cryogenic temperatures an important
effect is cryo-pumping, where gas molecules condensate on cold surfaces. In
the sample chamber gas molecules condensate on e.g. the outside of the radia-
tion shield and two adsorber towers filled with porous carbon, which allows for
an even more effective cryo-pumping, bring the pressure down to ~ 1.3-107°

mbar outside the radiation shield. The pressure is probably significantly lower
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inside the radiation shield, where the sample is mounted. We later modified
the setup to allow for the connection to a turbopump in which case we reach

an initial pressure before cooling of ~ 10~% mbar.

In Fig. 6.10 the sample chamber is shown in more detail. The three piezo-
stages are mounted on a holder that is thermally coupled to the cold arm from
the cryocooler. The piezo-stages are ANP101/RES/LT from AttoCube that
work on the slip-stick principle utilizing the difference in static and kinetic fric-
tion, and they have a minimum step size of ~ 10 nm at 10 K. A small variable
resistor is mounted inside each of the stages, and the resistance is proportional
to the position of the stages. By reading out the resistance, we can measure the
position with an accuracy of ~ 200 nm. The absolute readout can thus not be
used for fine-tuning of the position but works very well for larger movements.
On top of the three stages a pad thermally anchored to the bottom through
ultra-flexible cobber braids is mounted, and on top of that a heating pad with
an integrated temperature sensor is placed for temperature control. Finally,
the titanium sample holder is placed with the sample glued onto using silver
glue. A radiation shield encasing the piezo-stages and sample but allowing
for optical access from the top is mounted. Sample temperatures down to 6.5
K with a stability of 13 mK can be reached with the radiation shield on, as
opposed to only 14 K without the radiation shield. As indicated in Fig. 6.10
the electrical connections from the stages are going to a stage controller box,
ANC350/3/RES from AttoCube, which generates the voltages needed to move
the stages and does the resistive read-out of the position. The stage controller

is also connected to a computer from which it can be controlled.

The microscope objective, LCPLN100XIR from Olympus, has a working
distance of 1.2 mm, a high numerical aperture of 0.85, and a high optical trans-
mission of more than 80% in the range 800 — 1000 nm. As seen in Fig. 6.10,
the microscope objective is mounted on the part of the cryostat that stays at
room temperature. The vacuum in the sample chamber thermally isolates the
room-temperature microscope objective from the sample, which is at cryogenic
temperatures. The resolution of the microscope objective was tested by insert-
ing a test sample containing a grating with a periodicity of 5 pm. The grating

was mounted at a 45° angle relative to the x— and y—stages in order for the
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measurements to include vibrations along both axes. Above the microscope
objective we placed a single mode fiber and a lens in front of it to collimate the
beam. Thereafter, we coupled a Helium-Neon laser at 633 nm into the fiber
and measured the intensity of the light that has reflected from the sample and
is coupled back into the fiber. By maximizing the intensity of the reflected light
we focussed on the top of the grating structure. Using a fixed voltage per step
we moved one of the piezo-stages and mapped out the grating structure as a
function of steps, which allowed us to make the calibration of 146.4 nm/step
using a voltage of 38 V. The grating structure we mapped out did not have
very sharp edges due to the optical resolution. It took 4 steps, i.e. 585 nm,
to go from 15% to 85% of the maximum intensity, which are the points cor-
responding to the 1o level of a gaussian function. In this way we determined
the optical resolution to 585 nm for a laser wavelength of 633 nm. Afterwards
we moved the stages so that the intensity of the reflected light was half of the
maximum, [,.x. The slope at this point could be approximated by the linear
expression o = I,,(0.85 — 0.15) /585 nm. In a time-span of 20 s we measured
peak-to-peak fluctuations of 16.7 nm, where we used the linear slope, «, to
convert from intensity to spatial fluctuations. The root-mean-square of the vi-
brations were obtained by dividing the peak-to-peak fluctuations by 2v/2, and
this gave 6 nm. The intensity of the emission from a single QD measured using
a spectrometer and CCD maximally decreased by 50% over 24 hours without
any re-alignment, which proved that long-term drifts of the sample were also

not a problem.

6.3.2 Confocal microscopy setup

The optical setup around the cryostat is shown in Fig. 6.11. The excitation
laser is coupled into the single-mode polarization-maintaining (PM) fiber and
is exiting the fiber on the right-hand side of the figure. When exiting the fiber,
the beam diverges but the lens (L1) makes the beam collimated with a diame-
ter of 2 mm. The beam then propagates through a beam-sampler (BS1), where
less than 10% is reflected. It then passes through a thin-film polarizer in order
to make the beam linearly polarized before being incident on the beam-splitter
(BS2) where 90% is transmitted and 10% is reflected down to the sample. The
transmitted beam is incident on a photodiode, which is used for two purposes;

firstly a thorough calibration using a power-meter makes it possible to use the
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Figure 6.11: Sketch of the optical setup around the cryostat. The excitation
laser is coupled out of the PM fiber and collimated to a beam diameter of 2
mm by lens (L1) before hitting a beam-sampler (BS1), which transmits more
than 90% of the beam. The thin film polarizer ensures the beam is linearly
polarized and the beam-splitter (BS2) reflects 10% of the laser down to the
cryostat, where the vacuum window is anti-reflection coated and tilted. The
90% of the laser that is transmitted through BS2 is detected with a photodiode
and the output goes to the power stabilization. The emission from the sample
is collected by the microscope objective (NA=0.85) and 90% of the emission
is transmitted through BS2, whereafter a linear polarization is selected and
the emission coupled into a PM fiber and sent to detection. For imaging the
sample, an LED centered at 850 nm is inserted before the lens L2, and the

sample is imaged on the CCD-camera using the lens L3.

photodiode to measure the power, and secondly the voltage output can be con-
nected to a PID loop for active stabilization of the power, as will be described
in more detail shortly. 10% of the incident laser is reflected down towards the
cryostat, where it propagates through a tilted anti-reflection coated window
that ensures the vacuum before being incident on the microscope objective.

The microscope objective focusses the beam onto the sample, excites the QDs,
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and collects the emission from the sample. The collimated beam emerging from
the microscope objective is incident on the beam-splitter (BS2), where 90% of
the beam is transmitted, and the thin-film polarizer transmits only one linear
polarization before the lens (L2) couples the beam into a PM-fiber, which goes
to the detection part of the setup. However, 10% of the beam is reflected by
the beam-splitter (BS2) and less than 10% of that beam is reflected once more
by the beam-sampler (BS1) onto the lens (L3), which focusses the beam onto
the CCD camera for imaging purposes. We need to image the sample in order
to known where we are collecting emission from, and for this purpose we can
insert, an LED just in front of the detection fiber that then illuminates the sam-
ple. The center wavelength of the LED is 850 nm and the reflections from the

sample are detected on the CCD, which thus enables orientation on the sample.

Through the PM fiber, the emission from the sample is sent to the detection
part of the setup, where the output from the fiber is collimated with a diameter
of 2.8 mm using a lens. The beam is directed onto a spectrometer followed by
either an APD or a CCD-camera for time-resolved and spectroscopy measure-
ments. However, since only a single QD is probed in resonance fluorescence
a spectrometer is not needed to filter out the contributions from other QDs,
and for resonance fluorescence measurements we therefore send the emission
directly onto an APD. In this way we avoid the transmission losses of the spec-
trometer. We use the previously described APDs from Perkin Elmer that offer
a high quantum efficiency at the expense of the time-resolution. The emis-
sion can also be sent to a free-space Hanbury Brown and Twiss setup, where
the beam is incident on a 50 : 50 beam-splitter and both the transmitted and

reflected beams are sent to APDs, and the coincidence counts recorded.

Polarization extinction ratio

Because only a single QD is addressed in resonance fluorescence it is not neces-
sary to spectrally filter emission from other QDs away. The technical challenge,
however, consists in filtering the laser away from the emission since they both
have the same wavelength and their optical modes have a large overlap. Filter-
ing of the laser can be done by addressing one of the linear dipoles of the QD
with a linearly polarized laser oriented at 45° with respect to the dipole. Half

of the incident laser thus interacts with the dipole. In detection a polarizer
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situated at —45° with respect to the dipole and thus orthogonal to the exci-
tation laser, which ensures that the excitation laser is filtered away. Only half
of the emission is thus transmitted, but recent work has shown that residual
laser can be suppressed by a factor of 107 [135]. In order to obtain such a high
polarization extinction ratio we use thin-film polarizers in both the excitation
and detection arm, as shown in Fig. 6.11. The extinction ratio is measured
by reflecting linearly polarized laser light of the surface of the sample. The
polarizer in the detection arm is now rotated and the difference between the
maximum and minimum intensity of the light coupled into the PM fiber is
measured to be 3.7-10%. Such a high extinction ratio is only possible when
the laser light is either s- or p-polarized with respect to the plate beam-splitter
BS2 in Fig. 6.11. We find that it is crucial to have as few optical elements
between the two polarizers as possible, and in this setup we only have a plate
beam-splitter, a tilted anti-reflection coated vacuum window, and a microscope
objective between the two polarizers. Because the dipoles of the QD preferably
align themselves along crystal directions, we can rotate the sample in order
to ensure that the excitation and detection polarizations are at ~ 45° with
respect to the dipoles of the QD. The high extinction ratio requires a very fine
alignment, and temperature fluctuations and turbulence around the thin-film
polarizers reduce the extinction ratio with more than two orders of magnitude
over ~ 30 minutes. This problem was reduced by shielding the polarizers as

much as possible.

6.3.3 Excitation of the quantum dot

For the theory derived in section 6.1 the excitation laser was assumed to be
completely monochromatic, which of course cannot be realized experimentally.
However, the theory can still be applied as long as the linewidth of the exci-
tation laser is much narrower than the Fourier-limited linewidth of the QD. In
this case g(*)(7) shown in Fig. 6.3 does not settle to a constant level but rather
decays with the laser coherence time, and similarly the peak due to coherent
scattering in the spectra in Fig. 6.4 is no longer a delta-function but is rather
given by the linewidth of the laser [135]. Due to the inhibition of spontaneous
emission in a photonic crystal the decay rate is normally below 0.1 ns~! which
corresponds to a Fourier-limited linewidth below 16 MHz or in energy 65 neV.

For excitation we therefore use a fiber-coupled diode laser, DL pro 940
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from Toptica Photonics, which according to specifications has a linewidth of
100 kHz measured over 5 ps, but we have measured a long-term drift of more
than ~ 100 MHz over several hours. The laser can be tuned over the range
911 to 985 nm in a coarse manner, where the laser exhibits mode-jumps as
it is scanned in wavelength. In Fig. 6.12 the optical setup for the excitation
lasers is shown, and the output of the Toptica laser is sent through a half-
wave plate (HWP) and a polarizing beam-splitter (PBS), where the reflected
part is coupled into a fiber that goes to a wavemeter, HP Agilent 86120B,
which records the wavelength of the laser. It is possible to scan the laser
without any mode-hops by applying a voltage to the grating of the diode.
By applying such a voltage in steps and recording the wavelength at each
step using the wavemeter, we measure a typical mode-hop free tuning range
of 24 GHz. Any noise on the voltage supplied to the grating will be turned
into frequency noise of the laser, but we can eliminate a large part of this
by inserting an electronic low-pass filter consisting of an RC-circuit with a
cutoff frequency of 17 Hz. While scanning the laser, the output power changes
strongly. Furthermore, the HWP and PBS in Fig. 6.12 translate polarization
fluctuations into power fluctuations, and over time we observe a drift of the
laser power. In order to compensate for this, we actively stabilize the power
of the laser using a proportional-integral-derivative (PID) controller, where
the difference between the measured and set power, e(t), is calculated. The
controller then tries to minimize e(t) by adjusting an output variable that
affects the power. The output variable depends on e(t) through three terms;
one that is just proportional to e(t), one that is proportional to the integral of

e(t), and one that is proportional to the derivative of e(t).

In our case the optical power is measured by the photodiode after the 90/10
beam-splitter in Fig. 6.11, which gives an output voltage that is sent to the PID
loop. From the computer we set the desired optical power, which through a
calibration is converted to the corresponding voltage and sent to the PID loop.
The difference between the measured and set voltage is e(t), which the PID loop
minimizes by adjusting the optical power using an acousto-optic modulator
(AOM), AOM 3080-125 with the driver 1080AF-AIFO-2.0 both from Crystal
Technology. The AOM operates by using a piezoelectric transducer to create
acoustic waves in glass (TeO3) at 80 MHz. This causes the optical beam to
be diffracted into the first order diffraction mode, and the amplitude of the
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Figure 6.12: Sketch of the optical setup for the excitation lasers. The fiber-
coupled tunable Toptica laser is used for resonant excitation, while the tunable
pulsed Tsunami laser is primarily used for lifetime measurements, and the laser
diode at 780 nm is used for fast characterizations. The Toptica laser passes
through an AOM, where the first order diffracted beam is coupled into the fiber
going to the cryostat. By connecting the AOM to a PID loop we can actively
stabilize the power of the laser and part of the beam is sent to a wavemeter
that measures the wavelength. Sets of half-wave plates (HWP) and polarizing
beam-splitters (PBS) are used to control the power of the Tsunami and laser
diode. Part of the Tsunami beam is sent to an autocorrelator for checking that
it is pulsing, and part of it is sent to the triggering diode used for lifetime
measurements.

diffracted beam depends on the amplitude of the acoustic wave.

In Fig. 6.12 the optical setup is shown, where the Toptica laser propagates
through the AOM, and the first order diffracted beam is coupled into the fiber
going to the cryostat, while the zeroth order diffracted beam is blocked. The
output of the PID loop is connected to the driver of the AOM, which controls
the amplitude of the acoustic wave, and in this way the PID stabilizes the power
that is transmitted through the 90/10 beam-splitter in Fig. 6.11. By measuring
the intensity fluctuations of the beam reflected from the 90/10 beam-splitter
we constantly achieve standard deviations below 1% of the total intensity. We
chose to place the photodiode for power stabilization as close to the sample

as possible to minimize any intensity fluctuations of the excitation laser at the
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position of the sample. An additional advantage of the power stabilization is
that it also allows for automatic power control and, e.g., power series are thus
automated.

In order to perform time-resolved measurements we have included the option
of exciting the sample with a pulsed tunable Ti:Sapph laser, Tsunami from
Spectra-Physics, which has a 3 ps pulse duration and a repetition rate of 80
MHz. As shown in Fig. 6.12, the output of the Tsunami laser is directed
through two sets of HWP and PBS, where the beam reflected from the first
PBS is sent toward an autocorrelator, Mini from A.P.E. , and a fast triggering
diode. The second set of HWP and PBS is used for controlling the power that is
sent to the sample. An additional set of HWP and PBS distributes the power
between the autocorrelator used for monitoring that the Tsunami is pulsing
and the fast triggering diode used for lifetime measurements. Finally, a small
CW laser diode at 780 nm is also coupled into the fiber and is primarily used

for alignment purposes in order to avoid having to turn on the Tsunami laser.

6.4 Measurements

The sample with photonic-crystal membranes that we use for resonance fluores-
cence is the same sample that we used for cavity quantum electrodynamics in
the previous chapter. The sample contains photonic-crystal membranes both
with and without L3 cavities, and we only use the latter structures, where the
spontaneous decay rate is inhibited. For investigations of a single QD we need
to locate an exciton emission line that is well separated from other QDs. Be-

cause the sample has a relatively high density of QDs, ~ 80 um~2

, we search for
QDs at long wavelengths, ~ 950 nm, compared to the center of the distribution.
When searching for suitable QDs we observe the emission on the spectrometer
under above-band excitation. After locating the QD we tune the Toptica laser
close to the resonance and optimize the extinction ratio under slightly detuned
conditions. We then scan the laser across the resonance in small wavelength
steps, while recording the emission from the sample on an APD and the wave-
length of the laser for each step to ensure the tuning is mode-hop free. During
scanning, power stabilization is used and the power is recorded to ensure that
it works correctly. However, when using this approach we encounter the severe
problem that the polarization extinction ratio varies strongly with wavelength.
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The recorded signal is thus dominated by the reflection of the laser instead of
emission from the QD, and the extinction ratio easily decreases by a factor of
25 over 20 GHz.

Such measurement have been performed successfully by other groups, but
there are crucial differences. In [133], the geometry allowed for orthogonal exci-
tation and detection which made the polarization extinction ratio unnecessary.
In [135], cross-polarized confocal microscopy was also used, but instead of scan-
ning the excitation laser, the QD transition was scanned using the DC Stark
effect. The obvious advantage of scanning the QD transition energy instead
of the excitation laser is that the extinction ratio can be optimized at a fixed
wavelength, and the QD can subsequently be scanned across the resonance.
Unfortunately we have neither electrically tunable samples nor the possibility
of applying high magnetic fields, which would otherwise make it possible to
tune the transition energy of the QD.

In order to circumvent this problem we plan to use a scanning Fabry-Perot
to determine the QD transition energy and subsequently set the laser to the
same wavelength thus ensuring the two are on resonance. However, the QD
transition energy shifts slightly depending on the excitation method, e.g., we
observe a QD shift of ~ 0.1 nm when changing from above-band to wetting-layer
excitation, which we attribute to the excitation of more carriers under above-
band excitation and their subsequent Coulomb shifts of the QD. Unfortunately
we did not have access to a Fabry-Perot at the time of the measurements and
instead we used a more crude method, where we set the excitation laser to
resonance with the QD by overlapping the two on the spectrometer. This is
done under wetting-layer excitation of the QD since the transition energy is
not expected to be very different compared to resonant excitation. Once this
is done we optimize the polarization extinction ratio. However, this requires
that we minimize only the reflected laser light, and we thus need to shift the
QD frequency away in order to make sure that there is no emission from the
QD. This is done by applying a strong above-band laser, which shifts the QD
~ 0.1 nm away while we optimize the extinction ratio. Afterwards, we only
send the Toptica laser to the sample and record the second order correlation
function, g(® (1), and in Fig. 6.13 an example of such a measurement is shown

together with a reference measurements. The reference measurement is done
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Figure 6.13: Normalized coincidence counts as a function of time delay. The
reference measurement "off QD" is taken under large detunings, and two peaks
due to flashing of the QDs are visible in both measurements. A dip at zero time
delay is visible in the measurement on the QD, but the dip does not extend all
the way to zero due to laser scattering. Theory is calculated using Eq. (6.12)
with 7 = 0.14 ns™! as determined by lifetime measurements and with A, Ydp;
and ) set to zero. An inhomogeneous part is added for the comparison, and
the dip in the experimental data is much narrower than the theoretical one
indicating that we are not in the very low power regime and that dephasing is

not negligible.

under large detuned conditions, and the two peaks are due to flashing of the
APDs, which is the emission of a photon from the APD chip shortly after the
absorption of an incoming photon. The flashing of one of the APDs in the
HBT setup can result in a backwards propagating photon in nearly the same
optical mode as the emission and can thus give rise to a detection event on the
other APD. The flashing peaks are at around £15 ns, which translates into a
path length from one APD to the other of ~ 4.5 m. The flashing peaks are
present in both measurements in Fig. 6.13, and they can be strongly reduced

by inserting band-pass filters, but these also reduce the count-rates.

In Fig. 6.13 we observe a dip in ¢(® (7)-function as expected from the theory,
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cf. Fig. 6.2, but the dip does not extend all the way to zero due to laser
scattering but rather reaches the value g2 (0) = 0.87. By expressing the total
intensity of the detected light as I = Iqq + 1o, where the latter part is due
to laser scattering, we can perform the same type of calculations as we did in
section 3.1.4. Assuming that incoherent scattering is dominating the emission,
i.e. that the laser is uncorrelated with the QD emission, we derive that the
laser constitutes (1 —+/1 — g(2)(0)) of the total intensity, which we evaluate to
64%.

Independently we measure the decay rate of the QD to v = 0.14 ns~! by
exciting the QD with a 20 MHz repetition rate pulsed above-band laser diode,
PDL 800-B from Picoharp. The low repetition rate is needed because the QD
has a strongly inhibited decay rate. Although we have determined v, we do not
have any independent measures of the other parameters entering the theoretical
expression in Eq. (6.12), but by assuming the other parameters A, 7qp, and
Q to be zero we obtain the theoretical curve shown in Fig. 6.13, where we
have added a laser contribution of 64% for the comparison to experiment. The

theory has a much wider dip than the experimental data.

Increasing €2 while maintaining v4, = 0 to the point where the width of
dip is in agreement with experiment results in large oscillations of the function,
which are not visible in the data. This indicates that g, is not negligible for this
QD, but with the data at hand we cannot determine the value quantitatively.
In order to examine this in more detail we first need to decrease the amount of
laser scattering, which a lower value of the dip would be evidence of. As already
mentioned, we plan to use a scanning Fabry-Perot to ensure resonance of the
excitation and QD and thus a better signal-to-background ratio. Secondly, we
plan to scan the laser across the QD resonance, while performing differential
reflection measurements [140]. In that type of measurements the Toptica laser
is frequency-scanned in steps while a strong above-band laser is modulated by
a chopper wheel and is exciting the QD. The emission and any residual laser
scattering from the sample is detected on a photodiode and sent to a lock-in
amplifier that also has an input from the chopper wheel. The strong above-
band laser shifts the QD far away from the laser. In the time the above-band
laser is on, the signal measured on the photodiode is thus only reflected laser
light. During the time the above-band laser is blocked, the interference between

the reflected laser light and the coherently scattered light is measured. In a
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differential reflection measurement the difference between these two signals is
measured. Because differential reflection relies on the difference between the
two signals, it does not depend on the polarization extinction ratio. In this
way we might be able to circumvent the problem of the strongly wavelength-

dependent polarization extinction ratio.

6.5 Conclusion and outlook

In conclusion we have derived the theory for resonance fluorescence, where a
monochromatic laser is incident on a two-level system. The quantities relevant
for experiments have been calculated, and we have shown that a coherently and
an incoherently scattered part of the field results from the resonant excitation.
The coherent part dominates at low excitation powers and it inherits its coher-
ence properties from the laser while remaining anti-bunched. The incoherent
part dominates at high powers and eventually the two-level system becomes
dressed by the laser, which gives rise to Mollow triplets in the spectrum. The
distinction can be made that the coherent part consists of single photons that
scatter off the two-level system without populating it notably, while the inco-
herent part relies on absorption and emission of single photons. Similarly the
theory for pulsed resonant excitation was derived, and we showed how the QD
can be prepared in any superposition of the excited and ground by applying
the correct pulse area.

The experimental setup for resonance fluorescence was described in detail
with a special emphasis on the cryostat and the polarization extinction ratio
since they have posed the largest experimental challenges. A successful mea-
surement of resonance fluorescence was shown, where a correlation measure-
ment showed the expected anti-bunching although laser scattering was found
to make up 64% of the detected signal. We found it to be a severe limitation
that the polarization extinction ratio depends strongly on the wavelength, but
several suggestions were made to work around this obstacle. Namely a scan-
ning Fabry-Perot can be used to ensure resonance between the excitation laser
and the QD transition, and differential reflection can be employed to measure
the coherently scattered part of the field.

Finally, as this is work in progress and much time was devoted to setting up

the cryostat and building the optical setup there was no time to explore pulsed
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resonant excitation. For CW excitation it poses an experimental challenge to
ensure that the excitation laser is on resonance with a QD in a photonic-crystal
membrane or to precisely determine the detuning, because the inhibited decay
rate makes the Fourier-limited linewidth of the QD narrow with values below 16
MHz. However, under pulsed excitation the short pulse duration of ~ 3 ps for
our pulsed Ti:Sapph laser makes the laser spectrally much wider (~ 150 GHz)
than the QD and the effect of a small detuning becomes much less critical.

While the incoherent properties of QDs in photonic-crystal membranes, e.g.
the decay rates, have been widely studied, details on their coherent properties
are largely unknown. Rather surprisingly it was demonstrated in chapter 4 that
the longitudinal acoustic phonons interacting with the QD in an L3 photonic-
crystal cavity could be described as bulk phonons in GaAs. In chapter 5 it was
demonstrated that the dephasing also depends on the excitation mechanism,
and in this respect resonant excitation provides us with an exceptional tool to
investigate the dephasing mechanisms without any excitation-induced dephas-
ing. If we think of dephasing as a "shaking" of the QD transition energy, then
resonant excitation might help us understand whether this "shaking" only oc-
curs when an exciton is present, which is the case for the pure dephasing model,
or whether the "shaking" occurs even if there is no exciton present, thus giving
rise to an "intrinsic" dephasing as opposed to an excitation-induced dephasing.

Furthermore, we can use spectral measurements to study the local opti-
cal environment (LDOS), which is strongly modified in the photonic crystal.
Strong variations in the LDOS can give rise to non-Markovian dynamics that
can be resolved temporally by measuring the first order coherence. Finally, res-
onant excitation opens for the possibility to perform heterodyne measurements
that can be used to study, e.g. collapses and revivals of quantum oscillations
of a QD in a photonic-crystal cavity.
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Conclusion

In this thesis the coherent dynamics of QDs embedded in photonic-crystal cav-
ities have been investigated. The properties of a QD is determined by the
nanophotonic environment, which primarily alters the incoherent dynamics for
the light-matter couplings strengths considered in this work, and by the in-
teraction with the solid-state environment, which primarily gives rise to de-
phasing. The investigation has been carried out by studying systems, where
the nanophotonic environment was engineered to give rise to a strong enhance-
ment of the light-matter interaction, and also by studying different excitation
methods, which allowed us to probe the solid-state environment of the QD.

In a micropillar cavity we found the enhancement of the light-matter inter-
action to be so strong that not only was the decay of the QD Purcell enhanced
but it also exhibited non-Markovian decay dynamics. This occurred because the
cavity was not just an efficient decay channel for the QD but actually exerted
back-action onto the QD, thus making the decay process memory dependent.
To our knowledge this provides the first experimental demonstration of non-
Markovian dynamics in solid-state cavity quantum electrodynamics, and by
independently measuring all the parameters we were able to show an excellent
agreement with the Jaynes-Cummings model.

Studies of a QD with a small coupling to a low-Q mode of a photonic-crystal
cavity enabled the investigation of the solid-state environment. The emission
from the QD was collected with an efficiency at the first lens of (44.3 +2.1)%,

and the emission retained its single-photon nature when excited far above sat-
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uration. We were able to excite the system very efficiently by tuning the laser
to a 2 longitudinal optical (LO) phonon resonance, where an exciton is created
in the s-shell, and the residual energy is emitted as 2 LO phonons. Similarly
we demonstrated excitation mediated by longitudinal acoustic (LLA) phonons,
where the residual energy is emitted as single LA phonons. Importantly both
the 2 LO phonon resonance and the LA phonon continuum were lying within
a cavity mode, which was crucial in making this type of excitation possible.
Performing indistinguishability measurements under both L.O and LA phonon-
mediated excitation made it possible to extract the corresponding pure de-
phasing rates that were found to be surprisingly low. A significant decrease in
dephasing rates were observed when shifting from LO to LA phonon-mediated
excitation, which highlights the importance of excitation for the generation of
coherent single photons. The decrease in dephasing is attributed to the signif-
icantly smaller amount of energy emitted into the lattice under LA phonon-
mediated excitation.

We also studied a single QD in a high-Q photonic-crystal cavity, where
a fascinating interplay between the nanophotonic and solid-state environment
was found. On resonance the QD decays with a strongly Purcell enhanced
decay rate due to the strong modification of the light-matter interaction. How-
ever, the Purcell enhancement is much more broadband than expected from
the Jaynes-Cummings model, and we model the data successfully with a mi-
croscopic theory that takes the non-Markovian interaction with LA phonons
into account. The broadband enhancement occurs because LA phonons can
assist the QD in decaying into the cavity mode by either absorbing or emitting
LA phonons with the energy corresponding to the QD-cavity detuning. Us-
ing the model we were able to extract the effective phonon density of states,
which holds all the information on how phonons can assist in optical recombi-
nations. A cut-off was observed when the wavelength of the phonons became
comparable to the size of the exciton wavefunctions. Remarkably, the effective
phonon density of states could be modeled by a theory assuming bulk phonons
in GaAs despite the strong inhomogeneity of the structure, and this rules out

localization of LA phonons in the cavity at the energies considered here.

The studies performed in this thesis provide a detailed insight on the solid-
state environment that the QD is embedded in, and how this affects the op-
tical properties of the QD. The low dephasing rates combined with the high
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collection efficiency are promising for applications relying on single-photons
on-demand, and by taking advantage of the strong Purcell enhancement in a
cavity, a high degree of indistinguishability can be reached. Similar or even
lower dephasing rates are expected under resonant excitation, which has also
been pursued in this thesis, but no conclusive results were obtained. This thesis
constitutes a step towards understanding and potentially controlling the coher-
ence properties of quantum electrodynamics systems based on quantum dots,
which is required for all-solid-state quantum-information processing. Finally,
the observed interplay between the solid-state and nanophotonic environment
provides a fascinating combination of different, areas of physics, which may be

utilized in, e.g., the emerging field of quantum optomechanics.
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