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Abstract

Properties of periodic dielectric media have attracted a big interest in the

last two decades due to numerous exciting physical phenomena that cannot

occur in homogeneous media. Due to their strong dispersive properties, the

speed of light can be significantly slowed down in periodic structures. When

light velocity is much smaller than the speed of light in a vacuum, we describe

this phenomena as slow light. In this thesis, we analyze important properties

of slow light enhancement and limitations in periodic structures. We ana-

lyze quantitatively and qualitatively different technologies and significant

structures with numerical and analytical methods. By analyzing different

structures, we show very general properties for limitation and enhancement

in the slow light regime.

Inherent imperfections of fabricated structures such as a material loss and

structural disorder have a strong influence on slowly propagating light. By

means of perturbative analysis, we address the effect of small imperfections

in periodic structures. From our analysis, we find very universal behavior in a

slow light regime for all periodic structures. Even if losses are very small the

dispersion is severely affected in the vicinity of the band edge. The minimum

attainable group velocity will depend on the amount of imperfections. Since

imperfections are inherited as part of any periodic structure it is necessary

to take them into account when we are interested in slow light applications.

Slowly propagating light gives rise to longer interaction time in the peri-

odic media. Due to this reason, weak light-matter interaction is enhanced.

The enhancement due to slow light has been studied for loss and gain. By

introducing gain/loss, dispersive properties, in the slow light region, are

severely influenced. The minimum attainable group velocity is strongly de-

pendent on the amount of introduced loss/gain that will result in limitation

of enhancement. Therefore, small amounts of gain/loss will provide great

enhancement. While for a large amount of gain/loss slow, light is heavily

jeopardized, hence no enhancement will occur.



Resumé

Egenskaberne af periodiske dielektriske materialer har tiltrukket sig stor in-

teresse i de seneste to årtier p̊abaggrund af et stort antal fysiske fænomener,

der ikke kan finde sted i homogene materialer. Lysets hastighed kan blive

sænket betydeligt p̊a grund af den stærke dispersion der kan opn̊as. N̊ar

lysets hastighed bliver meget mindre en lysets hastighed i vakuum, beskriver

vi dette fænomen som langsomt lys. I denne afhandling analyserer vi vigtige

egenskaber af forstærkning og begrænsning ved langsomt lys. Vi analyserer

kvantitativt og kvalitativt de vigtige strukturer indenfor forskellige teknolo-

gier ved hjælp af numeriske og analytiske metoder. Ved analyse af forskellige

strukturer vises meget generelle egenskaber for begrænsning og forstærkning

i regimet med langsomt lys.

Fabrikerede strukturers medfødte defekter, s̊asom tab og strukturel uor-

den, har stor indflydelse p̊a egenskaberne af langsomt propagerende lys. Ved

hjælp af perturbations analyse, beskrives effekten af små defekter i peri-

odiske strukturer. Analysen viser en meget generel opførsel i et regime med

langsomt lys for alle periodiske strukturer. Selv hvis tabene er meget små vil

dispersionen blive betydeligt p̊avirket i omegnen af b̊andkanten. Den mindste

opn̊aelige gruppehastighed vil afhænge af antallet af defekter. Da defekter er

medfødte i alle periodisk strukturer, er det nødvendigt at de inkluderes n̊ar

vi er interesserede i anvendelser af langsomt lys.

Langsomt propagerende lys giver anledning til længere tids vekselvirkn-

ing i det periodiske medium. Af denne grund bliver svag vekselvirkning

mellem lys og materiale forstærket. Denne forstærkning p̊a grund af lang-

somt lys er blevet studeret i tilfælde med b̊ade tab og forstærkning. N̊ar

tab/forstærkning introduceres bliver dispersionen i regimet med langsom

lys kraftigt p̊avirket. Den mindste opn̊aelige gruppehastighed er stærkt

afhængig af mængden af tab/forstærkning, hvilket vil resultere i begræn-

sning af effekten. Derfor vil små tab/forstærkning give en stærk effekt. For

stort tab/forstærkning bliver langsomt lys stærkt begrænset, hvorved ingen

forstærkning vil finde sted.
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1
Introduction

There are various reasons to study slow light (SL). Clearly, the concept of SL

is in direct opposition to our daily life experience of light traveling extremely

fast. The fundamental interest is to have a deeper and better understand-

ing of light propagation and light-matter interactions under circumstances

where the effective velocity of light is much lower than the usually consid-

ered speed, c = 3×108 km/s. In addition, there is huge technological interest

for improvement of optical devices where requirements such as power, low–

loss and compactness can be addressed with SL concepts. One of the main

issues in the modern communication links is electro–optical conversion where

a lot of energy is lost and at the same time the speed of information trans-

fer is decreased. An all optical integrated circuit that can substitute the

role of electronics would significantly improve a communication link. For

practical implementation SL could actually allow faster optical communica-

tion [1, 2, 3]. In such cases, planar photonic crystal (PC) is a very promising

platform where various optical functionalities can be integrated on the same

device. Figure 1.1 shows an imagined photonic chip where components such

as buffers, optical memories, amplifiers and delay lines are crucial parts of

such a device. All these devices take advantage of the SL phenomena that

has to be understood in detail.

The concept of group velocity vg describe the propagating speed of the

light pulse. SL refers to situations where vg is much smaller than the light

velocity in the vacuum. In simple terms, we can obtain SL in two ways.
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Figure 1.1 The photonic chip, from ref. [4].

First, by changing dispersive properties of homogeneous media with vari-

ous schemes as: electromagnetically induced transparency (EIT) [5], coher-

ent population oscillation(CPO) [6], stimulated Brillouin scattering(SBS) [7].

Second, by periodically pattering homogeneous dielectric media. In the first

case strong dispersion occurs due to atomic resonances while in the second

case it is due to geometrical resonances. The famous experiment performed

by Hau et al. [5] in 1999, belong to the former example. Together with the

co–workers she showed that light pulses can be slowed down to a speed of 17

m/s. This experiment was definitely one of the milestones for the research

in the SL. But, such experiment requires very complicated and large set–up

that is impractical for any real application outside a lab environment. On

the other hand, ideal periodic structures can offer very low vg based on very

small sample footprints, which fulfill integration requirements.

Properties of fabricated structures are affected by various structural and

material [8, 9] sources of imperfections that jeopardize SL properties. It is

necessary to understand physics behind these processes in order to make more
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robust and reliable devices. On the other hand, enhancement of light–matter

interaction in periodic structures [10, 2, 11] is one of the most appealing fea-

tures of structural SL. Therefore, in this thesis, we are interested in two

central aspects of SL. First, the limitation of the real structures where vari-

ous sources of imperfections will compromise minimum group velocity vg is

considered. Second, the enhancement of the light–matter interaction due to

SL in periodic media is investigated. The limitations of vg have important

implications on enhancement of light–matter interaction. These two effects

are tightly related, and therefore, it is necessary to study both effects simul-

taneously and on equal footing. We show that SL enhancement in periodic

media of light–matter interaction is limited by the amount of introduced

homogeneous loss/gain.

1.1 Thesis outline

The thesis is structured as follows:

Chapter 2 The necessary theoretical background is presented. First

we introduce Maxwell’s equations from which the eigenvalue problem for a

periodic media. We touch upon the Kramers–Kronig relations for dielectric

materials. The chapter is concluded with a discussion on different definitions

for pulse speed and the meaning of the superluminal group velocity.

Chapter 3 We briefly discuss material SL in the first section and in

much detail SL in periodically structured media. In the first section we go

through the most important SL methods in homogeneous material where the

speed of light is reduced due to the strong material dispersion. Methods

for material SL are explained in the first section. EIT is still very challeng-

ing to implement on room temperatures, while CPO seems very promising.

SBS and Stimulated Raman scattering (SRS) are both very versatile pro-

cesses and with wide tunable range which make them very attractive. Three

guiding SL structures are of central interest in this thesis. In the following

subsections we explain their features with emphasize on SL properties. The

coupled resonator optical waveguide (CROW) is very easy to study because

the dispersion relation can be calculated in a closed form. Therefore SL
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and other physical properties can be easily understood. Then the ideal pho-

tonic crystal waveguide (PCW) is introduced, in this case it is necessary to

perform numerical calculations in order to calculate the dispersion. In the

end, the hollow core fiber (HCF) is introduced. Our fiber has a very big

hollow,compared to the standard HCFs, core that support SL light modes.

Chapter 4 Limitations of SL in various structures: CROWs, PCW and

briefly also HCFs. This is done by introducing an imaginary part to the

dielectric constant. By implementing analytical and numerical methods we

are able to predict the same qualitative behavior of the limitations of SL.

Chapter 5 The enhancement of loss and gain has been explored, using

existing knowledge from Chapter 4. Even though gain and loss seem funda-

mentally different they are found to have the same effect on the dispersion.

That gives rise to a limitation of the enhancement of light-matter interaction.

Chapter 6 To conclude this thesis we provide a summary and discussion

of the main results obtained together with a brief outlook at the future.



2
Electromagnetism in periodic

structures

Starting from Maxwell equations, we derive a wave equation for homoge-

neous and periodic materials. These equations are the essential ingredients

for analysis of periodic structures. Using a representation of the electromag-

netic problem in an operator form, concepts from solid state physics such as

Bloch waves and Bloch wavevectors are used to describe the waveform in the

periodic media. For any physical system causality condition has to be sat-

isfied, we show how causality leads to Kramers–Kronig relations. Moreover

Kramers–Kronig relates imaginary and real part of the complex dielectric

constant, in other words they show how dispersion and absorption of mate-

rial are related. In the end, we derive group velocity for a propagating pulse

that allow us to introduce concepts of slow and fast light.

2.1 Maxwell’s equation

Classical electromagnetic phenomena can be explained with a set of four

coupled partial differential equations. Any electromagnetical law can be

deducted from these equations. The set of Maxwell equations [12] is the
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following:

∇× E = −∂B

∂t
(2.1)

∇×H =
∂D

∂t
+ J (2.2)

∇ ·D = ρ (2.3)

∇ ·B = 0 (2.4)

The electric field is represented by E and the magnetic field is H, B is the

magnetic flux density and D the dielectric displacement, ρ(r) is the charge

distribution and the J the current density. All fields, charge distribution and

densities are functions of space and time. The continuity equation:

∇ · J+
∂ρ(r)

∂t
= 0 (2.5)

is implicitly given in the Maxwell equations and it can be obtained from

eq. 2.2 and eq. 2.3.

Maxwell equations are very general and can deal with any type of electro-

magnetic problems. Dielectric permittivity ε and magnetic permeability μ

contain properties of medium where the electromagnetic field is present. In

general these two quantities are tensors in which each tensor element depends

on space and time. We will make assumptions about the medium that will

help us to describe the electromagnetic problem. It is reasonable to assume

that μ = 1,since all media that we will study have magnetic response equal

to unity. It is useful for now to make the assumption that the medium is

homogeneous, meaning that ε does not depend on r. Later on, we will relax

this assumption, because we are going to deal with periodic media which

are obviously spatially dependent. The medium is isotropic, meaning that

dielectric tensor ε̄ is

ε̄ =

⎡
⎢⎢⎣
ε 0 0

0 ε 0

0 0 ε

⎤
⎥⎥⎦ (2.6)

. This assumption immediately reduces ε̄ from being a tensor to scalar. Then
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we assume (for now) that the medium is time independent. We will assume

that media is linear, ε does not depend on poweres of E [13, 14]. All these

assumptions yield very simple constitutive relations for electric and magnetic

field. The constitutive relations connect the fields D, B and J to the fields E

and H. The field D is related to the field E through the dielectric function

ε where

D(r) = ε0εE(r) (2.7)

for the fields B and H we have simply

B(r) = μ0H(r) (2.8)

while for J and E relation is

J(r) = σE(r) (2.9)

where σ is electrical conductivity.

In order to get the wave equation, we will disregard sources of electro-

magnetic field ρ(r), J(r) and, with previous assumptions about the medium,

the Maxwell equations become

∇× E = −μ0
∂H

∂t
(2.10)

∇×H = εε0
∂E

∂t
(2.11)

∇ · E = 0 (2.12)

∇ ·H = 0 (2.13)

Applying the operator ∇× to eq. 2.10 and bearing eq. 2.12 in mind that we

get the wave equation in vacuum (ε = 1)

∇2 E+
1

c2
∂2E

∂t2
= 0 (2.14)
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where c = 3× 108 [m/s] is the speed of light and is given by

c =
1√
ε0μ0

(2.15)

We can obtain a wave equation for H just doing the same operation that

we did for eq. 2.10 with but now with eq. 2.11. Assuming harmonic time

dependence of E(r, t) and H(r, t) the wave equations turns into the following

form:

∇2 E−
(ω
c

)2

E = 0 (2.16)

∇2 H−
(ω
c

)2

H = 0 (2.17)

with superposition of plane waves we can get solution for an arbitrary wave-

form. The electromagnetic problem from aforementioned equations is solved

together with proper boundary conditions.

The periodic medium implies that ε is a function of space ε(r). Doing the

same mathematical steps that we did previously for the homogeneous case

we get the equations that take into account the inhomogeneous nature of the

material

∇×∇× E = ε(r)
(ω
c

)2

E, (2.18)

∇× 1

ε(r)
∇×H =

(ω
c

)2

H. (2.19)

Solving one of these equations we find the waves supported by the periodic

medium. We can represent eq. 2.18 and eq. 2.19 as an eigenvalue problem

with corresponding operators [15]. The linear operator acting on H is Â =

∇× 1/ε(r)∇× and we can write the eq. 2.19 in compact form as

ÂH =
(ω
c

)2

H (2.20)

where (ω/c)2 is the eigenvalue. The reason why we decided to use equation

2.19 is that linear operator Â is hermitian
〈
ÂH1|H2

〉
=

〈
H1|ÂH2

〉
[16, 15].
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A hermitian operator yields important properties for the eigenvalue prob-

lem, eigenfunctions corresponding to different eigenvalues are orthogonal,

eigenvalues are positive and real. Equation 2.19 is usually called the master

equation.

2.2 Bloch wave theory

The Bloch theorem has important consequences in development of semicon-

ductor theory, motion of electrons in periodic potentials [17, 18]. It states

that eigenfunctions of the wave equation for periodic potentials are the prod-

ucts of plane waves with wavevector k times a periodic function that has the

periodicity of the crystal lattice [17]. Actually the Bloch theorem is a direct

consequences of discrete translational symmetry in a crystal [16, 15]. In our

case the periodic potential is the dielectric constant

ε(r+ a) = ε(r) (2.21)

where a is the lattice constant. The operator Â is periodic due to periodicity

of ε(r) meaning that the eigenfunction Hk will be of the following form:

Hk(r) = eikruk(r) (2.22)

where uk(r) is the periodic function of period a. The plane wave transmitted

through the periodic media is spatially modulated by the function uk(r) [15].

The solution Hk, where the periodic function uk(r) is multiplied by the plane

wave is called the Bloch function. Translational and discrete translational

symmetry yields different types of wave functions. In the case of continuous

translational symmetry the corresponding wave functions are plane waves,

while for the discrete translational case wave functions are Bloch waves. The

formulation using Bloch wave theory gives rise to an altered dispersion rela-

tion.
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2.3 Kramers–Kronig relations

The mathematical relation between absorption and dispersion is known as

the Kramers–Kronig relations. The imaginary and real part of the complex

refractive index n = n(ω)′ + in(ω)′′ =
√
ε(ω) =

√
ε(ω)′ + iε(ω)′′ depend on

each other [12]. If imaginary part n(ω)′′is known then the real part n(ω)′ is

also completely determined. A very important characteristic of the Kramers–

Kronig relation is that media that fulfilled these relations are causal [19, 20].

The causality is of extreme importance since every physical system must be

causal. It means that no effect can occur before the excitation or that no

output exist before the input. Mathematically causality can be formulated

in the following way, Fin(t) is the input signal that gives Fout as the output

and G(t) is a transfer (Green) function of the system. We have

Fout(t) =
1√
2π

∫ ∞

−∞
G(τ)Fin(t− τ)dτ (2.23)

where G(τ) = 0 for τ < 0. The requirement for causality can be expressed

by introducing the Heaviside step function

U(t) =

{
0 if t ≤ 0

1 if t > 0
(2.24)

and then representing G(t) as

G(t) = G(t)U(t) (2.25)

Performing the Fourier transform of Eq. 2.25 yields

G̃(ω) = F {G(t)U(t)} (2.26)

where we get the following expression

G̃(ω) =
i

π
P

∫ ∞

−∞

G̃(ω′)
ω′ − ω

dω′ (2.27)
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The integral is performed in the complex plane and P stands for principal

value. The imaginary and real part of G(ω) can be separated where interde-

pendence between them becomes more clear

Re
{
G̃(ω)

}
=

1

π
P

∫ ∞

−∞

Im
{
G̃(ω′)

}
ω′ − ω

dω′ (2.28)

Im
{
G̃(ω)

}
= − 1

π
P

∫ ∞

−∞

Re
{
G̃(ω′)

}
ω′ − ω

dω′ (2.29)

In the upper half plane the function G(ω) has to be analytic and has to

decay fast as ω → ∞ in order to satisfy the Kramers–Kronig relation. These

relations are nothing else but Hilbert transform between real and imaginary

part of the complex function G(ω).

For dispersive media the D and E field are related in the following way

D(r, t) =

∫ ∞

−∞
ε(t− t′) · E(r, t′)dt′ (2.30)

where we can see the analogy with eq. 2.23, so ε(t) is the response function

for excitation field E(r, t). Performing the Fourier transform on 2.30 the con-

volution becomes simple multiplication in the frequency domain D(r, ω) =

ε(ω)E(r, ω) [12]. Since every physical system has to be causal ε(ω) satisfies

the Kramers–Kronig relations

Re {ε(ω)} = 1 +
1

π
P

∫ ∞

−∞

Im {ε(ω′)}
ω′ − ω

dω′ (2.31)

Im {ε(ω)} = − 1

π
P

∫ ∞

−∞

Re {ε(ω′)− 1}
ω′ − ω

dω′ (2.32)

Complex refractive index n =
√
ε′ + iε′′ can be expressed with approxi-

mate expression n ∼=
√
ε′ + iε′′/(2

√
ε′) in the case when ε′′ � ε′ . It is very

important to bear in mind that this approximated expression does not for-

mally fulfill the Kramers–Kronig relations, but the physics of slow light can

be correctly analyzed for resonant media [21].

As an example, in fig. 2.1 we show the real and imaginary part of n(ω) for
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n′(ω)

n′′(ω)

−→

←−

(ω0 − ω)

Figure 2.1 Complex refractive index associated with two level system

a two level sytem where we can see that significant absorption occurs only

around resonant (red line) frequency ω0 and in correspondence with a high

absorption there is steep change in real part n′ (blue line).

2.4 Group velocity

Monochromatic waves propagate in a medium with a phase velocity

vϕ =
ω

k
=

c

n
(2.33)

where n is the refractive index of hosting medium. Waves generated from a

highly precise source is not single frequency but it has a small bandwidth Δω

and the k wavevector spectrum is also finite [12]. A light pulse is a superpo-

sition of an infinite number of plane waves centered around the wavevector

k0. With Fourier transform we can reconstruct the waveform of the pulse.

The dispersion relation shows the dependence between ω and k. In the most

general case ω and k are complex quantities, but we will assume that both are

real. The propagating pulse u(z, t) is described by the Fourier integral [12],

u(z, t) =
1√
2π

∫ ∞

−∞
A(k)eikz−iω(k)tdk. (2.34)
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The amplitude A(k) is a spectrum of u(z, t) at the time t = 0 in the trans-

formed space k

A(k) =
1√
2π

∫ ∞

−∞
u(z, 0)e−ikzdk (2.35)
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Figure 2.2 a) Very slowly varying pulse shape in the real space and the very peaked
pulse when it is transformed to Fourier space. b) Pulse envelope (in blue ) propagating
with vg and carrier frequency (red dashed line) propagating with vϕ

Pulses whose power is peaked around k0 (i.e. Δk is very small) have an

amplitude that varies slowly in the space domain. In the panel a) of fig. 2.2

we see how a very broad pulse in the space domain is very peaked in the

transformed k space. We Taylor expand ω(k) around k0

ω(k) ∼= ω0 +
dω

dk
(k − k0) +O(k2) (2.36)

. When we put the 2.36 in Eq. 2.34 we get

u(z, t) ∼= ei(k0
dω
dk

−ω0)t

√
2π

∫ ∞

−∞
A(k)ei[kz−

dω
dk

t]dk (2.37)

the expression under the integral in the Eq. 2.37 is the same as Eq. 2.35, with

a new variable z′ = z − (dω/dk|0)t. We thus basically represent the pulse in

the moving frame scheme. As the pulse propagate though the medium it will
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maintain its shape and will propagate with speed known as group velocity

vg =
dω

dk
. (2.38)

Writing the pulse expression in the more compact form

u(z, t) ∼= u(z − tvg, 0)e
i[k0vg−ω0)]t (2.39)

the slowly varying envelope u(z′, 0) propagates through the medium with ve-

locity vg while the plane wave propagate with phase velocity, see the illustra-

tion on fig. 2.2 b). Neglecting all higher order terms in the expansion eq. 2.36

means that the pulse preserves its shape along the propagation through the

medium. From the dispersion ω = ω(k) relation we can express the group

velocity as

vg =
c

n+ ω(dn/dω)
=

c

ng

(2.40)

where the quantity ng is called the group index. In fig. 2.3, ng spectrum of

two level system is illustrated.
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Figure 2.3 Group index spectrum for two level system

Depending on dn/dω we have anomalous, normal dispersion regions and

dispersionless region. In the anomalous dispersion region, the quantity dn/dω <

0 means that light is propagating with fast or superluminal velocity, while
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for a dn/dω > 0 we are in the regime of the slow light; and in the dispersion-

less region the quantity is dn/dω ∼= 0. The superluminal pulse propagates

with speeds higher than c. This seems to be in contradiction with special

relativity, which states that nothing can propagate faster than the velocity

of light in vacuum. In the following section we will touch upon the concept

of fast light and see how it can be understood and interpreted. Slow light

(SL) has a central role in this thesis and following chapters will focus on dif-

ferent aspects of SL in periodic structures and the effect on the light-matter

interaction.

In the derivation of the group velocity we neglected high–order derivatives

in the expansion eq. 2.36 meaning that no dispersion will influence the pulse

shape along the propagation. For very short pulses with a time width T0,

higher order coefficients β2 = d2k/dω2 and β3 = d3k/dω3 from eq. 2.36

have to be taken into account. The group velocity dispersion (GVD) is

represented by β2 and it quantifies how much a pulse is going to spread. The

coefficient β3 is third order dispersion that acts asymmetrically on the pulse

shape [14]. The effect of two higher order dispersions becomes relevant when

the dispersion length

LD =
T n
0

βn

, n = 2, 3 (2.41)

is smaller or comparable with the propagation distance [14]. For very short

pulses and very long propagation distances, these effects will significantly

modify the pulse shape, where vg as a quantity that defines pulse propagation

lose it physical meaning. A light pulse tends to spread and distort as it

propagates through a material. For this reason, it is not possible to use a

single definition of velocity to describe the speed at which a pulse of light

propagates through the material [22, 20]. The following definitions are used

to describe properly the pulse speed:

• Front velocity: the propagation velocity of the front of a step-function

discontinuity

• Signal velocity: is defined operationally as the velocity of propagation

of the half-the-peak-intensity point on the leading part of the pulse.
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• Energy velocity: This is approximately equal to the group velocities

when the frequency of the field is far from any absorption (or amplifi-

cation) resonances but near resonances theoretically it can appear to be

superluminal if we do not take proper account of the fact that energy

is stored for a finite time in the medium.

When interferences are such that the pulse peak appears to travel with vg

higher than c we are in the superluminal regime. But Einstein’s special theory

of relativity says that: no signal can propagate faster than the speed of light

in a vacuum. As we mentioned before, the vg doesn’t always have physical

meanings, because of strong dispersion and absorption that can drastically

change the pulse profile leading to erroneous interpretation of pulse speed.

Points of discontinuity propagate at the speed of light in a vacuum because no

physical material can respond instantaneously to a change in a waveform [23].

Superluminal speed of light is just an artifact of our definition of vg. The

signal velocity is always subliminal, even when the apparent group velocity

is superluminal [24]. So, causality is always satisfied.

As an example, ng can be manipulated in two ways in order to get fast

light, one is using dispersive contribution from dn/dω < 0 that yields anoma-

lous dispersion and another is to design artificial materials (metamaterials)

that have high negative refractive index. In metamaterials [25] negative ng

implies that the peak of the pulse travels in a direction opposite to that of

its phase velocity and to that of energy flow [26]. Some exotic propagation

effects can occur when light pulses pass through a dispersive material, as we

can see from fig 2.4. One of these is superluminal pulse propagation. In (A),

a 260-ns-long (full width at half maximum) pulse propagates through a laser

pumped potassium vapor with ng of approximately 20 (dashed line). The

peak of the pulse is seen to be advanced by 27 ns with respect to vacuum

propagation (solid line) [27]. Such superluminal propagation effects may ap-

pear to violate principles of causality, but in fact they do not for reasons

illustrated in (B). Any real pulse has a ”front”: the first moment in time

at which the intensity becomes nonzero, as indicated by the vertical line.

In superluminal propagation experiments, the peak of the pulse moves at a

superluminal velocity, but the front of the pulse moves at velocity c. Be-
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cause the information is contained in the front of the pulse, no information

is transmitted at a velocity exceeding c. For propagation distances longer

than those shown here, for which the pulse peak begins to overtake the pulse

front, severe pulse distortion always occurs and no pulse energy ever pre-

cedes the pulse front. (C) Another exotic propagation effect is backward

pulse propagation. This effect occurs for a sufficiently long material with a

negative ng and leads to the result that the peak of the transmitted pulse

appears to emerge from the material medium before the peak of the incident

pulse enters the medium. Backward propagation has been observed in the

laboratory [28]. The plots are based on a simple model that assumes that all

spectral components of the pulse propagate without loss at the same vg [22].

Figure 2.4 A) Superluminal pulse advancement, B) Front of emitted pulse propagation,
C) Pulse propagation through the negative index material. Figure from ref [22].



3
Engineering the Speed of Light

The methods for slowing down light are divided into two groups; those based

on structural dispersion and others on material dispersion. Here by material

dispersion we refer to methods that somehow can change the atomic response

of the medium in such a way that a strong dispersion is accompanied with

acceptable (or no) loss. In the first section, I will give a brief overview of

the most promising methods for material dispersion slow light (SL). The

central theme of this thesis are aspects of SL in structured media. Therefore,

the following three sections of this chapter are dedicated to the origin of SL

in a structured periodic material. Three important structures are explored:

coupled resonator optical waveguide (CROW), photonic crystals waveguide

(PCW) and photonic crystal fibers (PCF).

3.1 Material Dispersion

Electromagnetically induced transparency (EIT) is a quantum mechanical

phenomenon based on destructive quantum interference. The optical re-

sponse of the medium is modified by a strong pump field that introduces

change in the optical pathways of absorption for the probe field. The effect

relies on maintaining the quantum coherence between states [29]. By doing

this, absorption at the resonant frequency is almost completely eliminated

while dispersion is completely changed [30]. In other words a medium that

was opaque at resonant frequency ω0 with anomalous dispersion becomes

transparent with normal dispersion. A steep dispersion curve and suppressed
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absorption imply that SL is possible. The transmission window around ω0

is very narrow [31] meaning that very broad pulses (in frequency domain)

would be severely distorted. While linear absorption is suppressed by the

EIT, nonlinear susceptibility is enhanced by constructive interference [30].

In EIT experiment a cloud of extremely cold atoms called a Bose–Einstein

condensate (BEC) is used in order to control precisely the energy levels for

EIT. Such low temperatures imply that energy states are sharply defined

and thereby the frequency range where cancellation occurs can be made very

narrow [32].
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Figure 3.1 a) Three–level system and b) Absorption and dispersion associated with EIT.

From panel a) in the fig. 3.1 we can see a three–level system for EIT. The

scheme used is called a ”lambda” and it is the most used scheme. There are

two other configurations called ”ladder” and ”vee”, but for practical reasons

the lambda is preferable [30]. In panel b) we see the absorption spectrum

of the BEC with resonant frequency ω0 after applying the pump field. We

can see that two absorption peaks are equally separated from ω0 and that

absorption around ω0 is completely suppressed. The distance between two

absorption peaks depends on the intensity of the pump field, that is denoted

as Rabi frequency Ωp = μE/� where μ is the dipole moment, E is the

electrical field amplitude and � is the Planck constant. The panel b) shows

an anomalous dispersion region around resonant frequency ω0 but when the

pump is applied, the dispersion changes drastically. The refractive index of
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EIT medium at ω0 is almost 1 [31]. Dispersion becomes normal and very

steep around ω0 meaning that vg will be very low. What is more interesting,

by changing the Ωp we can change vg. But we should be careful about the

trade–off: if Ωp is decreased, the dispersion curve will be steeper, but at

the same time two absorption peaks will get closer and that will increase

absorption around ω0.

Performing experiments at cryogenic temperatures is very interesting and

a variety of exciting phenomena can be studied, but is unsuitable for any

on–chip applications. One of the possible solutions for solid state EIT is by

introducing quantum dots (QD) on semiconductor substrates [33, 34]. The

problem with QDs is that they suffer form high dephasing rates compared to

BEC and inhomogeneous broadening due to the fluctuation in size [35]. It is

very challenging to reach very long dephasing times in semiconductors even at

low temperatures due to interaction with phonons of the crystal lattice [34].

One possibility is to combine a photonic crystal waveguide together with

QDs. In that way it is possible to control and enhance ng by using SL effects

due to EIT and PC waveguide dispersion [36]. Implementation of EIT on chip

has recently been demonstrated [37]. Filling a hollow core planar waveguide

with hot rubidium vapors, ng of 1200 with transparency of 0.44 has been

obtained [37]. This is a very significant and encouraging result that puts

really good prospectives for EIT for on–chip applications.

Another possibility to obtain slow light at room temperature is coherent

population oscillation (CPO). The material is excited with the modulated

wave meaning that we beat continuous wave (CW) of frequency ω0 with a

wave of slightly lower frequency. The high intensity wave creates a frequency

region Δω where absorption/gain becomes depleted [21]. Having a dip in

the absorption spectrum means that the refractive index will change due to

Kramers–Kronig relations. High values of ng [6] are obtained, meaning that

significant slowdown of the probe pulse occurs, see the illustration in fig. 3.2.

From panel a) fig. 3.2, we can see that the pumping frequency is inter-

acting with a continuum of states. The carrier density is modulated by the

strong pump field, resulting in a dip in the absorption spectrum, as shown

in panel b). Since the real and imaginary part of the material dispersion are
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Figure 3.2 a) Two level scheme and b) Absorption and c) dispersion associated with
CPO, figure taken from ref. [21].

related by the Kramers–Kronig relation, the dip in the absorption spectrum

results in a very abrupt change in refractive index [38], as we can see from

panel c).

There are several advantages of CPO with respect to EIT: it does not

require coherence between states, it is much less affected by inhomogeneous

broadening than EIT. It also has much larger bandwidth than EIT, this is

extremely important for high speed applications, and is quite easy to im-

plement in actual semiconductor materials [38, 34]. With all this CPO will

probably be the way to go for the future integrated devices where material

slow light is required [22].

Processes like stimulated Brillouin scattering (SBS) and stimulated Ra-

man scattering (SRS) are the most promising candidates for a room temper-

ature SL applications in optical fiber technologies. SBS has higher efficiency,

it can work with very low pump powers and for almost any wavelength [7]. In

SBS, the energy from pump waves modulates the material density creating

a time grating (acoustic wave) in the fiber seen from the probe pulse. When

matching conditions between pump, probe and generated acoustic waves are

fulfilled, energy is transferred from pump to probe [21]. Very narrow gain res-

onance of SBS means a very steep dispersion curve, implying that the pulse

can be significantly slowed [22, 7]. Dispersion is also controlled by power,

meaning that ng can be tuned. The main disadvantage of SBS is that the

Brillouin resonance bandwidth is very narrow hence data transmission rates
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are quite limited [22]. Another nonlinear process that arises from molecular

vibration is SRS. This process has broad bandwidth due to the structural

disorder in amorphous materials, but much smaller gain compared to the

SBS [21].

3.2 Structural dispersion

3.2.1 Coupled optical resonator waveguides

By arranging in line identical optical resonators we can make a new type

of a waveguide called coupled resonator optical waveguide (CROW). Such a

waveguide was initially proposed by Yariv et al. in 1999 [39]. Wave guiding

in CROW is different from total internal reflection (TIR) or Bragg reflec-

tion. In the CROW, photons are hopping from one resonator to another by

evanescent field coupling. The CROW has been made with different types

of resonators: photonic crystal (PC) cavities [40, 41, 42], microspheres [43],

microring resonators [44, 45, 46] and Fabry–Perot resonators [47]. Among

these different design possibilities, the microring resonators are the more

widely used building blocks for CROW. The realization of a microring is

simple and a single fabrication step is all that is required; there is no need

for ultra-high resolution lithography [48]. Among fabricated structures, only

PC CROWs come close compared to microring one, but so far microring

CROWs has shown superior quality in terms of flexibility, tunability and,

most important, reproducibility [44]. In Figure 3.3 we can see the state of

the art of the microring CROW structure.

From resonator properties and established distance between neighboring

resonators all waveguide properties are defined. Design flexibility and ex-

tremely easy analytical calculation of dispersion relation make them very

appealing structures for implementing integrated photonic devices. We will

focus on the SL properties of that permit construction of delay lines [49, 50],

buffers [45], as well as various nonlinear signal processing [42, 44] and fil-

tering [44]. In fig. 3.4, we can see one example of the CROW waveguide

together with parameters that define its dispersive and guiding properties.
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Figure 3.3 State–of–the–art CROW realized on silicon-on-insulator, taken from ref. [45].

The resonant frequency Ω of the single resonator depends on the geometry

Figure 3.4 CROW waveguide

and material properties of the resonator. Since Ω is the eigenvalue for a given

electromagnetical problem, the eigenmode EΩ(r, t) is the associated electric

field distribution. Assuming that the CROW is a chain of an infinite number

of resonators we can apply the Bloch theorem, meaning that the electric field

can be represented in the following form

E(r, t) = E0 exp(iωt)
∑
n

exp(−inka)EΩ(r− na). (3.1)

We will assume that the electromagnetic field is strongly confined in the res-

onator and that the distance between resonators a, is large enough that cou-

pling occurs only between nearest neighbors. Fields are coupled via evanes-

cent tails that overlap [39], implying weak coupling. The large separation

between resonators means that the field distribution of one resonator does
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not affect the field of the neighboring one. The only difference from res-

onator to resonator is the associated phase constant while the field remains

the same. The coupling coefficient γ is expressed in the following way

γ =

∫
ΔεEΩ(r)EΩ(r+ a)dr. (3.2)

The assumption of weak coupling occurs very often in the calculation of

band structures in solid state physics [17, 18] where the atomic potential is a

function that decays very fast with distance from the center and in that case

the method is called tight-binding. Another method that is also widely used

for analysis of CROW is transfer matrices [51], in some cases it is convenient

to work with coupled mode theory (CMT) in the time domain [49]. If we

want to realize CROWs with PC it is possible to calculate the dispersion

with the MPB software based on plane wave expansion [52]. Substituting

eq. 3.1 in the master eq. 2.18 together with the assumption of weak coupling,

we get the dispersion relation

ω = Ω
(
1− γ

2
cos(ka)

)
. (3.3)

For the sake of simplicity, we have omitted the term Δα in eq. 3.3 that

introduces small shifts in the central frequency Ω due to influence of the

surrounding (neighboring resonators) [42]. In fig. 3.5 the dispersion curve is

shown. Due to the symmetrical properties of the structure, the dispersion

is shown just for the positive values of k in the first Brillouin zone. The

frequency in the plot has been normalized with the eigenvalue frequency Ω

and the wavevector is normalized with a. The derivative of the dispersion

relation ω(k) with respect to k, yields the group velocity

vg =
∂ω

∂k
=

Ωaγ

2
sin(ka). (3.4)

What we can see from eq. 3.4, is that at the symmetry point of the Brillouin

zone, a light pulse can be stopped formally. In the following chapters we will

come back to this issue and analyze this effect on the pulse speed using a more
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Figure 3.5 Dispersion relation

realistic description. It is clear that the coupling coefficient γ determines

max vg because the steepness of ω depends on γ [48]. Physically, a small

γ implies that the photon dwell time in a single resonator will increase and

tunneling from site to site will occur with a lower rate. If we would like

to decrease the overall vg in a CROW, we should use a smaller coupling

coefficient. But small γ comes with a trade–off with the bandwidth Δω

offered by the structure. In a CROW Δω = Ωγ, meaning that the field

confinement and the distance between resonators define the bandwidth, since

these two parameters influence field overlap. Having a bigger γ will increase

the bandwidth, but the overall vg would be higher. In panel a) of fig. 3.6, vg

is shown while in b) the GVD is shown.

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
�0.3
�0.2
�0.1

0.0
0.1
0.2
0.3

ka/π

v
g

ka/π

G
V
D

a) b)

Figure 3.6 a) Group velocity and b) GVD.

From panel b) we can see that the GVD is zero for ka/π = 0.5; that
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corresponds to the single resonator frequency Ω. Close to the band edge, we

can reach a very high ng, but the GVD will be quite strong meaning that

the pulse will broaden significantly. If the pulse is centered around Ω then

no spreading will occur, but this is also the point with the highest vg.

3.2.2 Photonic crystals waveguides

Periodical patterning of dielectric media gives new possibilities to control

light. Because of a strong similarity to a crystal lattice in solid materials,

periodic dielectric materials are called PC. Many new phenomena have been

explored in the past years in PC, to name a few: superprism effect [15, 10],

slow light [3, 2], and enhancement of light-matter interaction in the linear

and nonlinear regime [53, 11, 54]. Photonic crystals were discovered by two

scientist at about the same time, Sajeev John [55] and Eli Yablonovitch [56].

Discrete translational symmetry is responsible for strong dispersive proper-

ties of PCs that cannot occur in natural materials. Due to the strong index

contrast, the wave propagating through the PC is bouncing back and forth

hence coupling between forward and backward waves occurs. The waveform

that propagates through the PC is a Bloch wave and it has an associated

Bloch wavevector k. No propagation modes exist for frequencies in the band

gap (BG). In the BG, forward and backward waves interfere in such a way

that only evanescent tails exist. In fig. 3.7 we can see fabricated PC struc-

tures in 1D, 2D, and 3D

a) b) c)

Figure 3.7 a) 1D PC , from [57]. b) 2D PC, from [58]. and c) 3D PC, from [59].

Optical components such as a cavity or waveguide are easily realized in
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PCs. For cavities, we need to make a point defect within a structure, while

for a waveguide it is necessary to realize a line defect. By introducing defects

in the PC we are pulling a mode frequency inside the BG, by doing that

light is prevented from propagating in the structure but it is localized or

guided (depending on the type of defect)[16, 15]. In traditional waveguides

confinement and guiding of light occur due to total internal reflection (TIR)

while in PC waveguides (PCW) it is a BG effect that is responsible for guiding

and confinement. In the panel a) of the fig. 3.8 we can see an example of a

fabricated planar PCW, usually called W1 due to the fact that one line of

holes in the PC has been omitted in order to realize the waveguide. While

in the panel b) we have the dispersion relation for a W1 waveguide. The

normalized frequency is ωa/2πc and normalized wavevector is ka/2π.
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Figure 3.8 a) Fabricated W1 waveguide, from. [60], b) Dispersion curve for W1.

Recently significant progress in fabrication techniques for 3D PCs has

been made, although it is still quite difficult to make 3D structures with

line or point defects. In order to confine and guide light in 3D we use PC

membranes such as the one show in the panel a) of the Fig. 3.8 where light

is confined by Bragg reflection in the horizontal plane and in vertical plane

confinement occurs due to TIR. Because of the vertical confinement, not all

k values are allowed. The red region that covers the upper half of the plot

in the panel b) of Fig. 3.8 is called the light cone. All points (ω, k) lying

in that area indicate radiative modes [15]. The radiative leakage of energy
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occurs due to the fact that the TIR condition is not satisfied and a portion

of the wave is transmitted out of the structure.

The particular dispersion that occurs in PCW is mainly due to the peri-

odicity in the horizontal plane. It is a strong scattering of the wave which is

bouncing back and forth that is responsible for slowing of light. We can see

that the dispersion curve is getting quite flat as we are approaching the sym-

metry point. The region where the dispersion curve is very flat is called the

SL region. In the ideal PC, light can be completely stopped at the symmetry

point ka/2π = 0.5. In real structures, there are various sources of imper-

fection that are serious obstacles for achieving high values of ng [9]. Slow

light region is accompanied with higher order dispersions [61] that can be

a big hindrance for many applications [3, 2]. With a topology optimization

method, very robust designs can be made with constant ng and higher order

dispersion can be eliminated [62, 63].

For a 1D structure it is possible to calculate analytically [64] the disper-

sion. But for 2D and 3D structures, numerical calculations are necessary, if

we deal with ideal lossless structures then dispersion can be calculated very

efficiently with the MIT free software MPB that implements a plane wave

method (PWM) [52]. Various other numerical methods can also be used for

more realistic and advanced analysis; a good overview can be found in [65].

3.2.3 Photonic Crystal Fibers

The importance of the optical fiber in the modern communication links is

crucial. Low losses (0.18 dB/km), low nonlinearities and good dispersion

properties are main requirements for a reliable telecom fiber. For such appli-

cations, the most commonly used fiber is a step index fiber, in which guiding

is in the most general case based on TIR. In photonic crystal fibers (PCF),

guiding occurs due to BG effect or due to the TIR. Due to the very com-

plex geometry and demanding fabricational processes, losses in PCF is still

a big issue. But PCF are appealing for applications such as supercountin-

uum generation, nonlinear application, sensing, dispersion control and am-

plifier stages where they have superior properties compared to traditional

fibers [66, 67]. Three different types of the PCF are shown in the fig. 3.9. In
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Figure 3.9 a) Solid core PCF, b) Hollow core PCF and c) Bragg fibre.

the panel a) we can see the solid core PCF where guiding is usually based on

TIR and the cladding is considered as an effective media. In the hollow core

fiber (HCF), panel b), waveguiding occurs due to the band gap effect. The

Bragg fiber, panel c), in some sense resembles the circular waveguide used in

microwave technology. But here the reflection occurs due to the periodicity

of the waveguide walls because use of the metal for reflecting walls would

cause unacceptable propagation losses at optical frequencies.

In fig. 3.10 we have an illustration of TIR guiding and guiding in the HCF.

In the panel a) we can see how light rays are bouncing against the interface

of the dielectric slab and air. Due to TIR, light does not leave the structure

but propagates by bouncing against the interfaces. The panel b) shows the

electric field distribution in the fiber. We see that light is chiefly confined in

the material with high refractive index (inside slab). In the panel c) we can

observe how the contribution of the rays reflected from different interfaces

confine and guide light in the center hole. Due to the multiple reflections,

we can see from panel d) that the electric field is tightly confined in the low

index material. Comparing panel b) and d) we can see qualitatively that

confinement in the HCF is stronger than in the traditional fiber.

We know from the previous section that creation of defects in perfectly

periodic structures leads to localization of light. That is exactly the principle

of light confinement in the transversal plane of a PCF. In the projected band

diagram for PCF we plot the normalized frequency ωa/2π against βa/2π that

is the normalized wavevector component along the fiber axes. In both cases
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Figure 3.10 a) Light guiding in the fiber, b) Electric field distribution in the fiber, c) Light
propagation HCF and d) Electric field distribution in the HCF

normalizations is done with respect to the lattice constant a of the periodic

pattern in the transversal plane. The band gap for HCF opens for very big

values of β due to the fact that the materials used to make the fibers offer

small index contrast [68]. Using glass materials from the family of chalco-

genides for fibers it is possible to attain higher index contrasts. If the index

contrast is high enough to support a complete BG for all polarizations in the

transversal plane, however, then the resulting HCF has a BG extending from

β = 0 to some nonzero β [68]. In the hexagonal lattice we have introduced

an air hole of radius R = 3.38a. In the Figure 3.11 we can see the BG that

opens from β = 0 and the blue line within BG that is a guided mode in the

core. We can see how the dispersion curve of the guided mode is getting

flat as it is approaching β = 0. There is a clear indication that for small

values of β, group velocity becomes very low. In the panel c) of Fig. 3.10 it is

shown how light waves are bouncing back and forth as they are propagating

through the fiber. Small values of β means that light is hitting the interface

almost orthogonally. Due to that reason, effective optical path in z becomes

much longer. But what is very important is that the majority of the energy
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Figure 3.11 Dispersion for hollow core fiber

is still confined within the hollow core. At the same time, we have also strong

confinement of the energy inside the core and SL propagation. For various

linear and nonlinear processes, this can be a very beneficial situation that

can enhance those interactions. But at the same time back action of losses,

gain and imperfection will affect SL and in the next chapter we will explore

those effects.



4
Limitations of Slow Light in photonic

structures

In this chapter I show results from Papers A, B, C, and D where limitations of

SL effects are analyzed. The idea is to investigate limitations of ng in different

types of periodic structures where SL occurs. Results for PCW show that

the maximum ng depends on the amount of overall loss mechanisms present

in the structure. For CROW, it is possible to study the problem of material

losses in a closed form. By adding structural disorder in the CROW together

with a finite Q we get further insight into the limitations of SL for such

structures. Translationally invariant structures such as HCF are studied

with full numerical calculations where we could find the same trend for ng

as in the previous two cases.

4.1 Group index, density of states and limitations in PCW

Planar PCWs are one of the most promising structures for SL applications.

It has been demonstrated that very favorable scaling of various phenomena

occurs with increase of ng [3, 2, 69] . In other words, enhancement of ab-

sorption/gain [11, 54, 64, 70], nonlinear effects can be enhanced [71, 72, 73]

and phase sensitivity is increased [74] by SL effect. Since all these processes

depend on ng we would like to maximize ng. The fabrication of PC has im-

proved a lot in past years, but the state–of–the–art structures still suffer from

structural and material imperfections. These imperfections are sources of
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various leakage mechanisms in PCWs such as, radiation losses due to surface

roughness, finite size effects [75, 76], intrinsic material losses and scattering

losses due to variation in hole radius and position [77, 78, 8]. Electromagnetic

energy is lost in the waveguide due to structural and material imperfection.

Along the waveguide, the light intensity will be attenuated. Energy leakage

mechanisms also affect dispersion and in the proximity of the band edge the

effect on dispersion curve is very pronounced. Here we use a semi–analytical

approach in order to address the problem of energy leakage. The effect of

imperfections is taken into account by introducing a small imaginary part in

the dielectric constant. The small imaginary part has a strong effect on SL

and that is a reason why ng values are not higher than ∼ 300 [79, 80].

Density of states (DOS) ρ0 is one of the concepts borrowed from the solid

state physics. It gives number of available photonic states (electromagnetic

modes) per frequency. For a given electromagnetical problem, e.g. eq. 2.18,

we can define the Green’s tensor Ĝ [76, 81] that allows us to define DOS as

ρ(ω) =

∫
V

Im{ωTr(Ĝ(r, r, ω))}dr. (4.1)

The volume is indicated with V , while Tr is a trace of the tensor Ĝ. Then

from the Ĝ given for a PC [76, 82] we can reformulate the previous equations

as

ρ(ω) =
1

VBZ

∑
m

∫
BZ

2

π
Im

{
ω

ω2 − ω2
m(k)− iγ2

}
dk, (4.2)

where VBZ is the normalization given by the volume of the first Brillouin

zone [82, 83]. Equation 4.2 is a general form of DOS of a periodic structure,

where the sum over m indicates different bands and γ is a damping rate that

takes losses into account. For an ideal PCW γ is infinitesimal and we are

interested in the DOS for a single guided mode that gives

ρ0(ω) =
a

π

∫
δ [ω − ω(k)] dk. (4.3)
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by the changing integration variable we get

ρ0(ω) =
a

π

∫
δ[ω − ω(k′)]dk′

=
a

π

∫
δ[ω − ω(k′)]

dk′

dω
dω

=
a

πc
ng(ω). (4.4)

We would like to point out that the DOS here is the projected one dimen-

sional DOS in the direction of propagation [84]. From eq. 4.4 it is clear that

DOS and ng are proportional. When we talk about broadening of the elec-

tromagnetic modes [83], it is more natural to use DOS, while when we are

looking into the slowing down of light we refer to ng. In the left panel of

ω(1)(k)

ω(2)(k)

k0 ρ0 ρ0

Bloch wave vector density of states density of states

ω
(1)

0

ω
(2)

0

ω → ω + iγ

ρ = ρ0cRe
{

∂k

∂ω

}

Figure 4.1 Schematic photonic-band structure (solid lines) and the derived photonic den-
sity of states. The left panel illustrates the dispersion relation with the parabolic approx-
imation indicated by dashed lines. The middle and right panels show the corresponding
density of states for the ideal structure and in the presence of a broadening mechanism,
respectively. Figure taken from paper A.

Fig. 4.1 we have sketched the band structure for a general PC where the BG

is highlighted in yellow. The blue line is the full calculation of a band struc-

ture while the dashed green line is a Taylor expansion around the symmetry

point. For the given band structure, the DOS for an ideal structure is shown

in the middle panel. We can see how the expansion around the band edge

(green dashed line) follows the ideal curve (blue line). In the right panel, we

can see that the DOS is modified due to the contribution of a finite but small
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γ. The effect of the small imaginary contribution γ is twofold: first, interfer-

ence between the forward and backward wave is not completely destructive

in the BG anymore [84], meaning that allowed states are created in the BG.

The second effect is that due to the broadening of photonic states the DOS

does not diverge at the band edge but it has a finite value, i.e. the Van Hove

singularities are smeared out.

We can phenomenologically include all sources of structural and material

imperfection by adding a small imaginary part ε′′ to dielectric constant of

PC [84]. When ε′′ � ε′ we can apply perturbation theory [85, 15] for the

electromagnetic eigenvalue problem. The perturbation theory is a class of

mathematical techniques that allow to calculates the solution for a complex

problem by ”perturbing ” solution of a simpler (idealized) problem.

We now consider the eigenvalue problem, i.e. eq. 2.18, for the PCW. By

introducing ε′′, we perturb ω(k) (eigenvalues) that results in a frequency shift

Δω = −ω

2

〈E|iε′′|E〉V
〈E|ε′|E〉 (4.5)

Here, the integral in the numerator is restricted to the volume V containing

ε′′ (the dielectric material). We can rewrite the previous expression as

Δω = −i
1

2
ωf

ε′′

ε′
(4.6)

where

f =
〈E|ε′|E〉V
〈E|ε′|E〉 (4.7)

is the filling fraction quantifying the energy in the dielectric [15]. Here, it is

assumed that ε′′ is in the dielectric. The dispersion curve ω(k) can be Taylor

expanded in the proximity of k0

ω(k) ∼= ω0 + vg,0(k − k0) + β2(k − k0)
2 + ... (4.8)

where β2 relates to the GVD. Ideally the excitation frequency ω is real while

the Bloch wavevector k = k′ + ik′′ is complex. The effect of the small

imaginary ε′′ part is that in the guided band spatial damping is present.
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From eq. 4.8 we can write k(ω) as a function of ω

k(ω) = k0 − vg,0
2β2

±
√

v2g,0 + 4β2(ω − ω0)

2β2

. (4.9)

When the Bloch wavevector is complex, vg is defined as the derivative with

respect to the real part of k, and we can write

vg =

(
Re

{
∂k

∂ω

})−1

. (4.10)

We can now write the expression for vg for a PCW using 4.6

vg =

√
v4g,0 + (2β2ω0

ε′′
ε′ )

2

Re
{√

v4g,0 + i2β2ω0
ε′′
ε′

} . (4.11)

With these equations we can evaluate the effect of ε′′ for a whole bandwidth.

When we are at the band edge, the vg,0 = 0 property significantly simplifies

the eq. 4.11 and we get

vg =

√
2β2ω0

ε′′

ε′
. (4.12)

Here, we have assumed that f = 1. We can see from 4.12, in a very neat

way, how vg is compromised at the band edge. The GVD and ε′′ are limiting

factors of vg. Even for very small amounts of ε′′, vg is seriously jeopardized

at the band edge [84]. Equation 4.12 shows how vg scales as a function of

ε′′, where the dependence is sublinear [84]. The sign of the imaginary part

in the denominator does not influence vg meaning that introduction of gain

(negative ε′′) has the same effect on the dispersion as loss. In the left panel

of Fig 4.2, the spectrum of ng for PCW is shown. In the right panel we can

see that the scaling of ng at the band edge is inversely proportional to
√
ε′′.

Parameter details of the structure can be found in Paper A. From eq. 4.11

we can see that in the region

vg,0 �
√
αω0

ε′′

ε′
, or ng,0 �

√
c2

αω0

ε′

ε′′
, (4.13)
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Figure 4.2 Group index for W1 waveguide in two-dimensional membrane PC with ε′ =
12.1. The left panel shows the group index versus wavelength for varying values of ε′′.
The right panel shows the group index at the band edge versus ε′′, from Paper A.

the small imaginary part does not have any influence on ng. The part of the

dispersion curve that is close to band edge, on the other hand, is seriously

affected by ε′′. The electric field distribution of the slow light mode is spatially

very spread in the PCW meaning that the mode interferes much more with

any kind of imperfection. We can see from the right panel that for ε′′ =

(0.001, 0.01), ng is in the range of (100, 300); these are the max achievable ng

in PCW [80, 79]. The material loss in homogeneous silicon is ε′′/ε′ ≈ 10−9,

and in comparison with the values considered in our calculation, we can

conclude that major contribution to the limitation of the ng must necessary

be attributed to rather structural defects than intrinsic material absorption.
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4.2 Group delay and group velocity limitations in CROWS

In the contrast with the previous section, losses in the CROW can be ad-

dressed in a closed analytical form. A CROWs dispersion relation ω(k) has

a cosine dependence, which allows an easy analysis for infinite and ideal

structures. Resonators constituting CROW in practical samples suffer from

material and fabricational imperfection losses [38, 86, 87]. We can include the

loss mechanism through the quality factor Q. Since the guiding mechanism in

CROWs is based on the photons hopping from resonator to resonator, that is

characterized by tunneling (hopping) time τt, the photon lifetime τp = Q/Ω0

in the resonator has to be much bigger than τt in order to ensure guiding.

The complex frequency is defined as Ω = Ω0(1 + i/2Q) and we can work

out the tight–binding model [39] that yields

ω(k) = Ω

(
1 + i

1

2Q

)(
1− γ

2
cos(ka)

)
. (4.14)

Now the coupling coefficient γ is a complex quantity, due to the fact that Ω

is complex. But, the imaginary contribution is so small that it does not have

any significant influence on the dispersion. We have introduced a complex

resonator eigenfrequency in derivation of the CROW dispersion relation in

the presence of loss. In the resonator, the field distribution is localized in

space and oscillates in time. For that reason, loss is expressed as a decay

in time. In the case of waveguides, the physical picture is different, the

guiding mode is excited with a laser that has a well defined (real) frequency.

A propagating field, in a waveguide, due to the losses decays spatially. By

inverting eq. 4.14 we obtain k as a function of ω. Again, the Bloch wavevector

k = k′ + ik′′ is a complex quantity that can be expressed in close form. We

can calculate DOS as

ρ(ω) =
a

π
Re

{
∂k

∂ω

}
(4.15)

The density of states is normalized as ρΩ0 meaning that we have DOS per

resonator. In Fig. 4.3 we illustrate the complex photonic band structure

and the corresponding DOS, for CROW with finite and infinite Q. In the
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Figure 4.3 Complex dispersion relation for a CROW. Dashed lines are for Q = ∞ while
solid lines correspond to Q = 102. The left panel shows the frequency ω versus the real
part of the Bloch wave vector k′, the middle panel shows the frequency ω versus the
imaginary part of the Bloch wave vector k′′, and the right panel shows the density-of-
states ρ (per resonator), from paper C.

left panel where the real part of the band structure is shown, we have the

standard cosine band for ideal structure (blue dashed line). When loss is

introduced in the structure by a finite Q, we can observe how the dispersion

curve close to the band edge bends (green line). The bending occurs due the

introduction of Q and at a frequency corresponding to the inflection point

where vg reaches its maximum. In the middle panel, for frequencies with a

guiding band in the ideal structure (green line), we observe k′′a = 0. While

k′′ becomes finite and increases as we move out of the band. We can see that

for non–ideal structure (green line), k′′ has a finite value in the band meaning

that propagation in the CROW will be accompanied with attenuation.The

density of states is shown in the right panel, where introduction of Q smears

out the Van Hove singularities (blue dashed lines). The finite value of the

two peaks is proportional to the maximum ng showing that SL is severely

affected by Q at the band edges. Close to the band edge, the dispersion curve

bends upward (downward) close to the symmetry point. In the bent region

the dispersion curve is very steep meaning that vg is superluminal. However,

the special theory of relativity is not violated, because the definition of vg in

that region is not an appropriate definition for information transfer.

At the band center, the group velocity is v0 = γaΩ/2 for an ideal structure
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and if we compare it with vg for structure with Q finite we have

vg
v0

= 1 +
1

8

1

γ2Q2
+O(Q−4) (4.16)

We can see that at the band center, vg is not affected by the Q as far as

γQ � 1. In the right panel of fig. 4.3, we can see that the DOS at the

band center is unchanged. For practical devices, a pulse should have carrier

frequency at the band center since vg is not affected by Q and absence of

GVD. The expression for vg at the band edge is

vg
v0

=

√
2

γQ
+O(Q− 3

2 ) (4.17)

where we can see that at the band edge vg is scaling quite unfavorable with

Q. In connection with a limited vg for PCW, we see that vg scales with the

same trend. The quality factor Q is proportional ε′/ε′′ and eq.4.17 yields that

in CROWs vg ∝
√
ε′′, i.e the same general behavior as for PCWs.

Realistic structures are made up of a finite number N of resonators giving

a length L = Na of the waveguide. In this case vg loses its meaning, since k is

not continuous. It is more appropriate to use group delay τg as the quantity

describing the light slow down. By increasing the number of resonators we

increase the length meaning that τg increases. The amount of losses imposes

a bound on the waveguide length L � 1/α, where α = 2k′′. We get the

expression

τmax ∼ 1

vgα
(4.18)

that is the upper limit of τg. We can expand in a Taylor series of 1/Q giving

analytical expressions of α and vg, leading to

τmax ∼ Q

Ω0

+O(Q−1) = τp +O(Q−1). (4.19)

Equation. 4.19 gives an important insight that maximum τg is limited by the

photon lifetime in the single resonators. But in comparison to the single res-

onator the CROW offers a larger bandwidth. By reducing vg, the interaction
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time increases meaning that loss is enhanced. If a pulse is propagating slower

it gets more attenuated. The issue of losses and vg has to be taken on the

same footing to have full advantage of CROW.

Deviations in the geometrical shape of the individual resonator, due to

the fabricational processes, translate into fluctuations of Ω and γ. In the

SL regime, we know that structures are extremely sensitive to imperfec-

tions, meaning that ng will drop significantly even for small structural de-

fects [8, 88]. Another problem that occurs with disorder (fluctuations), is

that Anderson localization occurs [89, 88, 90]. The field will be localized

somewhere within the CROW. Where the localized field has spatial distribu-

tion that decays exponentially. The strength of localization is characterized

by the localization length ll. If the structure length L is longer than ll then

the field cannot be coupled out from the structure. The disorder strength

has to be smaller than the energy separation between two neighboring energy

levels (the separation between two successive eigenvalues) in order [38] to

have states (fields) that extend in the whole waveguide. The transmission

through the CROW of length L is parametrized by

T (ω) = exp

(
−ξ(ω)

L

)
(4.20)

where ξ(ω) is the characteristic length and it takes into account the effects of

disorder and losses in the structure. The maximal length of the structure has

to be ξ(ω) otherwise transmission through the structure is inefficient. The

maximal delay that can be achieved in the CROW is then

τmax(ω) =
ξ(ω)

vg(ω)
= −πρ(ω) lnT (ω). (4.21)

In order to calculate τmax in the presence of the disorder we implement the

Green function method suggested by Datta [91, 92]. A segment of the disor-

dered waveguide of N elements is coupled to an infinite ideal CROW by self

energy coefficient Σ(ω) that results in a N ×N Green matrix

G(ω) = [ωI−H−Σ(ω)]−1 (4.22)
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where I is the identity matrix, and H the tight-binding Hamiltonian . For

CROW made of N elements we can set up a Hamiltonian matrix H

Hii = Ω0

(
1 + σΩ + i

1

2Q

)
Hii±1 = Ω0(−γ + σγ). (4.23)

Disorder is introduced by adding the Gaussian distribution with standard

deviation σΩ (σγ) to diagonal (off–diagonal) elements of the matrix. The

amount of σ indicates the strength of the disorder in the structure. We will

for simplicity assume that linewidth is not subject to deviations, meaning

that Q will remain constant.
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Figure 4.4 Properties of a disordered CROW, with blue lines indicating ensemble-
averaged properties while the red lines illustrate the results for a particular realization
of the disorder, thus emphasizing pronounced CROW-to-CROW fluctuations. Panel (a)
shows the local DOS ρj for a particular realization of the disorder and panel (b) shows
the corresponding results for the total DOS ρ (per resonator). Panel (c) shows the maxi-
mal group delay τmax. Panel (d) shows results for the transmission. For comparison, the
dashed line shows the unity transmission for an ideal crow, while the green line is for a
non-disordered CROW, but with a finite Q, from paper C.



4.2 Group delay and group velocity limitations in CROWS 45

In the panel a) of Fig. 4.4 the local DOS is shown, in the map we can see

how states are distributed locally in the CROW. We can see that, states are

very extended in the center of the band . But in the region close to the band

edge the red spots indicate spatially localized modes. That is the indication

of Anderson localized modes, that occur due to the strong interference effect.

We show in the panel b) the DOS for one realization of the ensemble (red line)

and the average DOS (blue line) of the ensemble. For different realizations

the sample to sample deviation of the DOS is huge. The averaging smears out

Van Hove singularities in the DOS. In this model, losses and disorder have

been included, meaning that the overall effect on smearing of the average

DOS is even stronger. The maximum achievable delay for a CROW with

finite Q, is τp. For that reason, we have normalized τmax with respect to τp.

We can see that average τmax (blue line) is much lower than τp. Again, the

deviation of one realization (red line) is huge in respect to the average and

τmax/τp is always below 1. The presence of the disorder makes the design of

the CROW very challenging, because small deviations in the geometry cause

big fluctuations in important design parameters. The panel d) shows T (ω),

in an ideal CROW (blue dashed line) where transmission over the whole

bandwidth is 1. With finite Q, transmission (green line) has been decreased,

and has a constant value around center band. But as we approach the band

edge, we can see how T (ω) is decreasing. The decay of T (ω) is due to SL

enhancement of attenuation that becomes significant in the vicinity of band

edges. The presence of disorder, together with losses, makes things even

worse; fluctuations in transmission spectrum (red line) occur and max T is

limited in the finite Q case.

An interesting interplay between loss (finite Q) and disorder can be ob-

served if we look at fig. 4.5. We show τmax/τp at the band center as a function

of disorder strength σ, for different values of Q. The highest Q = 106 is the

one that decays faster with the increase of σ meaning that it is extremely

sensitive to small disorder. On the other hand, the structure with the low-

est considered Q = 102 shows that it is robust with respect to the influence

of disorder. High Q means that the electromagnetic field is well confined

within the resonator and the evanescent tails overlap of the two neighboring
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Figure 4.5 Maximal group delay τmax at band center versus disorder strength σ, from
paper C.

resonators is very small and sensitive to the smallest imperfections. For a

low Q, field overlap does not depend significantly on disorder.

Material and structural imperfections in a CROW have strong implica-

tions on light propagation. Just by the presence of a finiteQ, the minimum vg

at the band edge is seriously compromised. Due to the disorder the SL region

is susceptible to localization and strong fluctuation in waveguide parameters

from sample to sample occurs. All imperfections in the SL region are very

pronounced and for that reason design of CROW is quite a challenge.

4.3 Group index limitations in HCF

As the last example, we briefly discuss the effect of losses on HCF with a SL

mode. The group index of such a fiber is also subjected to limitations due

to material and structural imperfections. In comparison with the previous

section where we used analytical methods to evaluate the effect of losses in

PCW and CROW, we would like to point out that a full numerical calculation

has been performed for HCF. Waveguiding and light confinement in the core

in this fiber rely on the periodic structure. It has been suggested [93] that
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the number of rings should be at least 17 in order to reduce leakage losses

to values of attenuation in step index fibers. Such a big number of rings

yields an extremely expensive computational domain, in terms of memory

and computational time. As a good compromise between computational

domain and light confinement, we decided to put 6 rings around the core.

Here we solve the full electromagnetical (eigenvalue) problem with a finite

elements method (FEM) and an absorptive medium in the core. This allows

us to calculate the complex dispersion, β(ω) = β′(ω) + iβ′′(ω) of the HCF

and ng by deriving numerically β′(ω).

One of the practical limitations for such type of fiber is also the fact

that the SL mode has a very complicated field distribution which means

that in/out coupling could be very challenging, since there will be big mode

mismatch with modes in the step index fibers.

From Fig. 4.6 we can see the spectrum of ng for the different values of

n′′(0.001,005,0.01). The maximum achievable ng depends strongly on n′′. We
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Figure 4.6 Group index spectrum for three different values of n” (0.001, 0.005, 0.01).
from paper D.

should emphasize that this limitation is more severe than in previous cases,

because of presence of the leakage loss in the transversal plane. We can see

very similar trends in the scaling of the ng vs. n′′ as in the previous cases
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of PCWs and CROWs. The effect of the imaginary part on the dispersion

curve is very a general feature for periodic guiding structure.



5
Enhanced light-matter interaction

Key results from papers D and E are summarized here. In the first section

we explore loss enhancement determine how loss enhancement is related to

slow light. As a practical example we have analyzed a hollow core photonic

crystal fiber (HCF) in section 5.1 . Gain enhancement is analyzed in the

section 5.2, and we highlight similarities of gain and losses in a terms of

enhancement and limitations of SL. As a practical example we have studied

three important periodic structures, with numerical and analytical methods.

5.1 Loss

Due to weak light–matter interaction in on–chip optical devices it is neces-

sary to have long interaction times τi = L/vg = ngL/c, where L is the device

length. Since the structure length cannot be changed, in order to increase τi

it is necessary to slow down the speed of light. By doing so, τi will linearly

increase with ng. Periodic structures have a strong dispersion which becomes

almost flat in the vicinity of the band edge. Therefore, light–matter interac-

tion is enhanced in this region due to high ng. We can explain heuristically

the enhancement in periodic structures using the example of a Bragg Stack

(BS). When light propagates thorough a BS it bounces back and forth due

to the periodicity of the refractive index. This multiple reflection increases

the optical path, meaning that τi becomes much longer than in a homoge-

neous medium. The light thus interacts much longer with the medium than

in the homogeneous case and therefore gives rise to enhancement. For a BS
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infiltrated with absorptive gas, it has been shown experimentally that SL en-

hances absorption [94]. Absorption of light is described by the Beer–Lambert

law

I = I0e
−αL = I0e

−ΓαlL, (5.1)

where I0 is the light intensity, αl = 2k′′ is the absorption coefficient and

Γ a dimensionless parameter that takes into account enhancement of light–

matter interaction [11]. In homogeneous media, Γ0 is close to unity while in

periodic media Γ0 can be quite large [11, 70]. Absorption in periodic media

is given by the imaginary part ε′′ that gives complex dielectric constants

ε = ε′ + iε′′ for eq. 2.18. Again as in Section 4.1, we assume that absorption

is very week, ε′′ � ε′, which allows us to use perturbation theory [15, 85]

to evaluate the overall absorption in the periodic media. Assuming that the

excitation frequency ω0 is fixed, the change due to ε′′ occurs in wavevector;

in other words ε′′ causes an imaginary shift iΔk′′. We can express Δk′′ using

eq. 4.6 in the following way

Δk′′ =
∂k′

∂ω
Δω =

1

vg
fω0

ε′′

2ε′
. (5.2)

The absorption coefficient in periodic media is αp = 2Δk′′, so we can write

αp =
(ω0

c

)
ngf

ε′′

ε′
= 2k0n

′′f
ng

n′ . (5.3)

While for homogeneous media, absorption is

αl = 2k0n
′′ (5.4)

by taking ratio of αp to αl we get the enhancement factor

Γ0 = f
ng

n′ . (5.5)

Equation 5.5 shows that Γ0 scales linearly with ng, meaning that SL increases

τi. The filling factor f has to be as close as possible to 1 in order to take full

advantage of the enhancement. If ng is very high but the confinement is very
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weak (low f) in the waveguide, then there wont be any enhancement because

the contribution of high ng is overcome by the low f [29]. In Chapter 4,

we showed how a small imaginary part affects SL. If we want to calculate

Γ0 self–consistently we have to include the effect of ε′′ on ng meaning that

enhancement Γ0 will be limited due to saturation of ng.

Now we will show an example of the enhancement of absorption in HCF.

We have performed full FEM calculation for this problem, where the core

has been infiltrated with weakly absorbing gas. In the left panel of fig. 5.1

we show the real part of the dispersion relation β′(ω)a/(2πc) for 4 different

values of n′′. There are 4 curves in the left panel and we can see that even
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Figure 5.1 Complex dispersion relation for the hollow core fiber being infiltrated by an
absorbing gas with n = n′ + in′′ with n′ = 1 and n′′ ranging from 0 to 0.01. The left
panel shows the dispersion while the right panel shows the corresponding absorption in
dependence of the frequency (vertical axis), from paper D.

for a lossless HCF (blue line) close to the band edge, the dispersion curve
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bends down. Due to the finite periodic environment (6 rings) around the

core, there is a small leakage of energy. For this reason, the dispersion curve

bends and become very steep in the vicinity of β′′ = 0. We can see that

for the other 3 curves as n′′ is increasing bending becomes more and more

prominent. In the right panel, the imaginary part of the dispersion relation

β′′(ω)a/(2πc) is shown. When n′′ = 0 in the HCF, we can see that the loss in

the whole band is negligible. But for finite n′′, it is clear that absorption in

whole guiding band increases with increased n′′. In the vicinity of the band

edge β′′ becomes quite large and absorption is enhanced.

It is necessary to distinguish between two sources of loss in the HCF in

order to properly evaluate the enhancement. There are losses due to the

energy leakage and losses that are intentionally introduced in the structure

(by the absorbing gas). We are interested in evaluating the enhancement of

the gas absorption

Γ =
β′′ − β′′(n′′ → 0)

n′′ , (5.6)

while neglecting leakage losses. For that reason, the influence of finite effects

is removed by applying eq. 5.6.The left panel of fig. 5.2 shows the spectrum

of Γ for the HCF and ithe right panel shows the spectrum of ng. The en-

hancement follows nicely the behavior of ng; where for n′′ = 0.001 we can

see clearly the proportionality between the two curves. Small discrepancies

between the curves are still present, but they are due to numerical artifacts.

For the two curves that correspond to values n′′ = (0.01, 0.005), we can see

that the maximum Γmax is 4 and 6 respectively. Γ and ng do not have the

same qualitative behavior, because for the corresponding values of n′′ we are

on the limit of validity of the perturbation theory. Nevertheless, enhance-

ment is still present and is due to the SL effect. But, there is clear evidence

that by increasing absorption, ng saturates; and as a consequence limits the

enhancement.

In fig 5.3 we summarize the previous discussion by showing Γmax as a

function of n′′. We have performed calculation for additional two values

of n′′ that haven’t been included in the previous figures. We can observe

how Γmax scales with n′′. This plot illustrates clearly that Γmax increases
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Figure 5.2 Comparison of the absorption enhancement factor (left panel) and the group
index (right panel), both derived from the results in Fig. 5.1. For the absorbing gas, n′′ is
varied in the range from 0.001 to 0.01. ,from paper D.

as n′′ is diminished. The small amount of absorption doesn’t perturb the

dispersion curve strongly; meaning that high values of ng are obtained. High

absorption strongly jeopardizes ng which results in the suppression of Γ.

Even though HCF is a translationally invariant structure, the dispersion and

tight confinement are consequences of periodicity in the transversal plane.

For that reason, HCF shows the same physical properties as other periodical

structures when absorption and ng play in a concert. The enhancement is

promoted by SL, but only for weakly absorbing media, otherwise vg will

saturate and the effect will disappear.
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Figure 5.3 The maximal absorption enhancement factor Γmax versus intrinsic gas ab-
sorption n′′ for the infiltrated gas, from paper D.

5.2 Gain

Slow light appears to be a solution for various photonic devices in which it is

necessary to maximize otherwise weak light-mater interactions. Introducing

active media in nanophotonic structures is of great technological and fun-

damental interest. Loss compensation in metamaterials and plasmonics is

addressed by the introduction of active media [95, 96, 97]. Devices such as

amplifiers [98], low–threshold laser [99], mode–lock lasers [100] are structures

that take great advantage of gain in periodic environment. The enhancement

of gain has been theoretically studied Dowling et al. [64] for 1D PCs, while 2D

and 3D structures have been studied by various other groups [54, 98, 101].

We have seen from the previous example, that the absorption and disper-

sion of periodic media are interdependent. By changing the sign of ε′′ in

the complex dielectric constant, we can introduce gain in periodic media.

Perturbative analysis, from the previous section, can be performed in the

same manner for homogeneous gain. The limiting effect on vg is the same

as in the case of losses. The fundamental difference however is that a signal

propagating through periodic media with gain, will be amplified; while in

the presence of absorption, the signal is attenuated. It is suggested in [2]
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that gain is independent of structural dispersion. This is true for a small

amount of introduced gain which present a beneficial effect of SL, namely,

that the effective gain geff is enhanced. By exploring three important struc-

tures: CROW, BS and PCW, we will explain with more detail the effect of

gain enhancement and its limitations.

In CROW, the gain can be introduced by adding a small imaginary part

g0 to the frequency.

ω(k) = Ω (1− ig0) [1− γ cos(ka)]. (5.7)

We can see that eq. 5.7 is the same as eq. 4.14 where only the sign of the

imaginary part in the expression has been changed. The calculation of the

dispersion relation yields the same curves for complex dispersion and DOS, as

in fig 4.3. Even though all curves look the same, there is a crucial difference

with the imaginary part of the dispersion curve k′. Instead of losses, therefore

k′′ now accounts for amplification. The real part of the dispersion curve will

bend due to the introduction of g0. We know from section 4.2 that losses

will introduce broadening of DOS. Since bending of the real part is identical

as in the lossy case, the effect of gain on DOS is same as in the presence of

losses. Intuitively, there might be the wrong expectation that gain will just

sharpen the DOS. In fig. 5.4, we put together three curves representing: lossy

(−g0), gain (g0) and ideal structure (g0 = 0). We can see that gain and loss

with the same absolute value have a similar effect on the DOS. From this

example we can see that gain enhancement depends strongly on the amount

of introduced homogeneous gain. Large amounts of g0 saturate the SL effect

and as a consequence the enhancement will be suppressed. However, if small

amounts of g0 is introduced then we will still have high ng which will promote

enhancement. With the next examples, we will see that the effect is indeed

a general property of periodic structures.

A Bragg stack is a periodic 1D PC consisting of alternating layers of

thickness a1 and a2, with dielectric constants ε1 and ε2. The dispersion



56 Enhanced light-matter interaction

0 5 10 15 20 25
0.90

0.95

1.00

1.05

1.10

F
re
q
u
e
n
cy

,
ω
/
Ω

Gain/Loss

Ideal

Photonic density of states, ρΩ
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relation for BS can be calculated in a closed form [64] and is given by

cos(ka) = cos
(√

ε1a1
ω

c

)
cos

(√
ε2a2

ω

c

)
(5.8)

+
ε1 + ε2√
ε1
√
ε2

sin
(√

ε1a1
ω

c

)
sin

(√
ε2a2

ω

c

)

where a = a1 + a2 is the lattice constant. In this case the loss/gain can be

introduced by an imaginary part ε′′. For simplicity we have introduced the

same ε′′ in both layers.

In panel a), from fig. 5.5 we have the real part of the dispersion relation

where yellow indicates the band gaps. We can see that in the presence of the

moderate loss/gain (red line) the effect of the BG disappears. Forward and

backward propagating waves experience different amplification (or attenua-



5.2 Gain 57

tion) and thereby have different amplitudes. Due to this reason, destructive

interference is not complete meaning that the BG effect disappears. Panel

b) illustrates the imaginary part of the dispersion relation. For the ideal

structure (green line) we have a finite imaginary wavevector k′′ in the BG

region and zero out of the BG. When moderate gain/loss is introduced we

can see that k′′ has a finite value outside the BG meaning that in the guided

band, gain/loss is present. Close to the band edge the gain/loss is enhanced,

but it is clear that the effect is not infinite. The finite value of k′ indicates

that due to the introduction of ε′′, we bound the maximum value of ng which

produces a limitation of the enhancement. As a limiting case we can intro-

duce extremely large ε′′. The effect is that any indication of a BG completely

vanishes, the BS responds as a homogeneous material(blue line).

As a last example, we will analyze a PCW when a homogeneous gain is

introduced. The geometric complexity requires a full numerical treatment.

We used FEM, with a super cell approach with boundary conditions fulfilling

Bloch wave conditions with complex wave number k in the direction of the

waveguide and simple periodic conditions in the transverse direction [102].

The gain is introduced by adding a small imaginary ε′′. Like in the two

previous cases, ng is affected by the amount of the ε′′ while the sign doesn’t

influence the effect.

For practical devices, such as amplifiers, homogeneous gain is defined as

g0 = 2n′′(ω/c), where n =
√
ε = n′ + in′′ is the complex refractive index.

With an imaginary part of the dispersion we can evaluate the effective gain

geff = 2k′′ in a PCW. We know from eq. 4.11 that ng at the band edge is

proportional to g
−1/2
0 , while geff ∝ g0ng(g0). This yields

geff ∝ g
1/2
0 . (5.9)

We have also evaluated Γ and geff for 2D PCW with ε′ = 12.1; while gain

is introduced by ε′′. The results are illustrated in fig 5.6 where geff and g0

are normalized with respect to a. Γ and geff are evaluated at the frequency

ω∗ that is slightly detuned from the bend edge. Due to that reason ng

has a small constant under the square root (eq. 4.11) meaning that ng ∝
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(const. + g0)
−1/2. The geff scales with the square root law of g0 at the band

edge (red line). This expression is very important because it takes into

account the limitations introduced in ng when we are evaluating Γ. By doing

so, the effect on enhancement limitation is calculates self consistently. In the

inset of fig. 5.6 we can see the deviation from square root law for small values

of g0, in log–log scale, because of slight detuning from band edge frequency

. For a bigger values of g0, calculated values (red dots) match nicely with a

simple square root. On the left hand axis we have Γ. The blue line clearly

shows that for very small values of g0 we have a big enhancement. When

values of g0 increases the enhancement decreases.

Surface roughness, deviations in hole position and size, finite structure

effects, material losses etc. are the main sources of limitation in passive

PCWs. We have seen from statistical studies, done for CROWs, that aver-

aging of disorder effects result in broadening of DOS. With more advanced

methods [103, 78] for PCWs, the averaging effect on DOS has the same effect.

Since the overall average effect of weak disorder could be mapped in ε′′, it

appears that if we are able to introduce homogeneous gain, with respective

−ε′′ we could compensate losses and recover the ideal ng completely. How-

ever, it is not clear whether we would compensate losses or introduced even

more broadening to the structure.

To conclude, we have studied 3 different periodic structures that are of

significant technological and fundamental interest. Each structure has strong

dispersive properties due to the periodicity. We have explored the effect of

gain enhancement due to the SL effect with analytical and full numerical cal-

culations. BS and CROW have closed form solutions where the enhancement

and gain back-action on dispersion are treated on the same footing. On the

other hand, the electromagnetical problem has been solved self–consistently

using a numerical method. Comparing closed form, perturbative and nu-

merical results show the same qualitative behavior for the aforementioned

structure. The effect of gain/loss on vg and therefore on enhancement is a

very general feature for any periodic structures. Whenever we want to take

advantage of gain enhancement it is important to use active material with

small gain (e.g layer of quantum dots). Otherwise, if gain is too large, the
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ng will be compromised resulting in less enhancement.
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Conclusions & Outlook

In this thesis important aspects of the limitation of slow light (SL) and

enhancement of light–matter interaction in periodic structures have been

covered.

In the first part of my PhD, I have been looking into limitations of SL in

PC waveguides (PCW) and coupled resonator optical waveguides (CROW).

For an ideal PCW, in proximity of the band edge the speed of light can be

drastically slowed down and at the band edge, light can formally be stopped.

However, in experiments, it has never been possible to attain a group index

ng higher than 300 [79, 80]. Fabricated PCWs are affected by numerous

imperfections like: surface roughness, material absorption, scattering losses,

finite size effects and radiation losses. All those imperfections decrease the

amount of the transmitted energy through the structure, but what is more

important the SL properties are severely affected [9]. Very detailed studies

on every single effect of imperfection require complex analytical methods and

very demanding simulation efforts. By making assumption that imperfection

can be translated into a small imaginary part of dielectric constant then good

insight on limitation of SL, in perturbative regime, can be obtained very eas-

ily. With our approach, we can understand what are the major sources of

limitation of SL in PCW and how the maximum ng scales with the overall

effect of imperfections. For a CROW, we have performed an analysis where

simple homogeneous loss was introduced in an ideal structure. The advan-

tage of studying the CROW is that dispersion even in a lossy case can be

calculated in a closed form. The scaling law for vg in a CROW has the same
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qualitative behavior as in the PCW. The CROW has been studied in more

detail where disorder is added to an already lossy structure. In that situation,

we could see that SL properties has strong fluctuations that make device de-

sign very challenging. Furthermore, if disorder is very strong, the SL regime

can lead to localization effects that can suppress transmission completely.

Disorder and loss are inherent properties of every periodic structure, and no

matter how small they are, implications on SL are strong. As another exam-

ple, a photonic crystal fiber (HCF) is studied with a full numerical method

where we found that limitation on SL follows the same scaling law as in the

previous two cases. Addressing the problem of limitation of SL with numer-

ical and analytical methods for 3 different periodic structures we conclude

that the effects of small imperfections on SL is a general property of periodic

structures.

On–chip–optical devices should offer the same or better properties in re-

spect to the bigger devices and at the same time have much smaller size. By

shrinking the length of e.g. amplifiers, then overall amplification decreases.

It is necessary to use very long device that is in contrast with miniaturization

requirements. SL in structured dielectric media can solve a problem of weak

light-matter interaction. In a very simple picture, due to the slow propaga-

tion of light the interaction time in the medium is longer and that results in

enhanced light–matter interaction. If dispersive properties were independent

of loss/gain then enhancement would only depend on the size of ng. However,

loss and gain can also be understood as a perturbation of the dielectric con-

stant of an ideal structure meaning that it is important to take into account

limiting effect on vg. An interesting structure for gas sensing applications,

HCF is analyzed in detail, where the peculiarities of interplay of losses and

dispersion are discussed. PCW, CROW and Bragg stack are studied within

the context of gain enhancement with numerical and analytical methods. All

4 aforementioned structures can enhance light-matter interaction, but only

for a weak gain/loss.

Regardless of the fundamental difference between loss and gain on signal

amplitude, the limiting effect on the SL is the same. For very weak light-

matter interaction, dispersion is not severely affected meaning that high ng
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can be achieved. Since the enhancement is directly proportional to ng we

can greatly enhance very low gain/loss. However, if the amount of loss/gain

is large, then vg will be completely jeopardized and therefore enhancement

will disappear. Extremely short amplifiers can not be constructed by using

a periodic structures, but in the case of very weakly amplifying media (e.g.

quantum dots layer), the effect of SL is still beneficial, where the decent

increase of effective gain can be expected.

We have used a phenomenological approach in this thesis in order to

address the problem of loss/gain limitation of enhancement. However, we get

a good insight in the very fundamental property for any periodic structure.

We can predict the maximum enhancement for a given structure in the linear

regime, where only a small perturbation to the ideal structure is introduced

by gain/loss. But we would like to emphasize that our results and analysis

is valid only in the perturbative regime. For the strong disorder regime,

the perturbative approach can not be used meaning that detailed numerical

analysis are necessary. Using finite difference time domain coupled to rate

equations would be definitely interesting approach in order to address the

more complete picture of gain enhancement in real structures. The nonlinear

processes have a double advantage in the SL regime: longer interaction time

and scaling of the nonlinear constant with nn−1
g , where n is the power of the

nonlinear process (such as Kerr nonlinearity where n = 3) [69]. It would be

very interesting to study the effect of enhancement in nonlinear regime and,

understand if it is subjected to other kind of limitations. Since is not quite

clear how combined effects of disorder and gain in periodic media will affect

structural dispersion of PC It would be important to understand if gain could

has any beneficial effect in the SL propagation regime or SL properties would

be further compromised by introduction of gain.
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Abstract

In photonic crystals the speed of light can be significantly reduced due to band-structure effects associated with the spatially

periodic dielectric function, rather than originating from strong material dispersion. In the ideal and loss-less structures it is possible

even to completely stop the light near frequency band edges associated with symmetry points in the Brillouin zone. Unfortunately,

despite the impressive progress in fabrication of photonic crystals, real structures differ from the ideal structures in several ways

including structural disorder, material absorption, out of plane radiation, and in-plane leakage. Often, the different mechanisms are

playing in concert, leading to attenuation and scattering of electromagnetic modes. The very same broadening mechanisms also

limit the attainable slow-down which we mimic by including a small imaginary part to the otherwise real-valued dielectric function.

Perturbation theory predicts that the group index scales as 1=
ffiffiffiffiffi
e00

p
which we find to be in complete agreement with the full solutions

for various examples. As a consequence, the group index remains finite in real photonic crystals, with its value depending on the

damping parameter and the group-velocity dispersion.We also extend the theory to waveguidemodes, i.e. beyond the assumption of

symmetry points. Consequences are explored by applying the theory to W1 waveguide structures.

# 2009 Elsevier B.V. All rights reserved.

Keywords: Photonic crystal; Slow light; Perturbation theory

1. Introduction

Several slow-light phenomena have attracted tre-

mendous attention in recent years. Many devices may

potentially take advantage of slow-light modes [1,2],

such as optical amplifiers and lasers, optical buffers and

interferometers being sensitive to the group index.

Slow-light modes may also enhance light-matter

interactions [3] and the compression of pulses within

slow-light modes even enhances nonlinearities in the

material response [4,5]. Applications in sensing have

also been proposed [6]. Numerous experimental studies

have demonstrated the potential of slow-light modes in

photonic crystal slab waveguides, but despite the

tremendous fabrication efforts, the celebration of group

indices beyond two orders of magnitude still remains.

So far, ng � 300 has been reported for state-of-the-art

structures [7,8]. We develop a theory which qualita-

tively explains the limitations on the slow-down by

including a small imaginary contribution to the

dielectric function, which accounts for the various

broadening mechanisms in real photonic crystal

samples, including structural disorder, material absorp-

tion, out of plane radiation, and in-plane leakage.

Conceptually, the group velocity vg is closely

connected to the photonic density of states (PDOS),

with vg being inversely proportional to the projected

density of states so that vg � 0 is associated with van

Hove singularities in the PDOS. As a natural

consequence, any mechanism that will serve to smear

out the van Hove singularity will in turn also assure that

the group velocity stays non-zero and the group index

www.elsevier.com/locate/photonics
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remains finite [9,10]. This is illustrated in Fig. 1 for a

generic photonic band structure.

Instead of having a diverging PDOS (middle panel)

associated with the band edges (left panel), broadening

of electromagnetic modes leads to a smearing of

singularities as well as introduction of states inside the

photonic band gap (right panel), where electromagnetic

propagation would otherwise be prohibited. By con-

trasting the PDOS, rðvÞ, to that of a corresponding

homogeneous material with r0, we may immediately

identify three different regimes of interest: (1) a long

wavelength regime with rðvÞ’ r0, (2) a slow-light

regime rðvÞ> r0 and (3) a superluminal regime

rðvÞ< r0. We emphasize that the latter occurs in the

band-gap regime, where propagation is strongly

damped, though not fully prohibited because of the

broadening-induced states [9,10].

2. Perturbation theory

Photonic band diagrams of ideal structures have so

far proved extremely useful in the analysis of

experimental results. This suggest, that the various

broadening mechanisms only perturb the electromag-

netic modes weakly. This is a main motivation for

applying perturbation theory rather than relying on

extensive numerical studies. Mathematically, perturba-

tion theory is justified by our assumption that the

complex-valued dielectric function e ¼ e0 þ ie00 has a

very small imaginary part e00 � e0 with the real part e0

resembling the ideal and loss-less structure. Applying

first-order electromagnetic perturbation theory [11,12]

we have

Dv ¼ �v

2

hEjie00jEiV
hEje0jEi ; (1)

where the integral in the numerator is restricted to the

volume V comprising the dielectric material of the

photonic crystal. We may straightforwardly rewrite

the expression as

Dv ¼ �i
1

2
v f

e00

e0
; (2)

where

f ¼ hEje0jEiV
hEje0jEi ; (3)

is the filling fraction quantifying the dielectric energy

localized in the dielectric [11,12]. Above, we have

implicitly assumed a two-component photonic crystal

with e00 taking a constant value in the dielectric, while

being zero in the air regions. In Refs. [13,14] the

situation is opposite and the imaginary part is finite

in the air regions with which our definitions would

correspond to f ! 1� f .
Next, consider a general band structure vðkÞ which

we Taylor expand in the vicinity of a point ðk0;v0Þ, i.e.
vðkÞ’v0 þ vg;0ðk � k0Þ þ aðk � k0Þ2: (4)

where a is a measure of group-velocity dispersion

(GVD) in terms of @2v=@k2. We emphasize that in

the context of the Taylor expansion vg;0 and a are

independent parameters, and a should not be confused

with the commonly introduced group-velocity disper-

sion parameter GVD ¼ @2k=@v@l.
In the generic band structure in Fig. 1 the dashed line

illustrates Eq. (5) in the case where k0 is a symmetry

point so that the intrinsic group velocity vg;0 is zero.

We stress that for this analysis, the band structure is

an illustration of the response of our structure to an

excitation at a given angular frequency. Consequently,
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Fig. 1. Schematic photonic band structure (solid lines) and the derived photonic density of states. The left panel illustrates the dispersion relation

with the parabolic approximation indicated by dashed lines. The middle and right panels show the corresponding density of states for the ideal

structure and in the presence of a broadening mechanism, respectively.



we must take the angular frequency v of the Bloch

states as being real-valued, while allowing for complex-

valued Bloch wave vectors, k ¼ k0 þ ik00. The imaginary

part of the wave vector is thus associated with spatially

decaying modes, as is the case within the band gap, or

with damping associated with the imaginary part of the

dielectric function. In order to calculate the group

velocity we first invert Eq. (5)

kðvÞ ¼ k0 � vg;0
2a

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2g;0 þ 4a½v� ðv0 þ iDv0Þ�

q
2a

(5)

where the small imaginary shift in v0 is given by

Eq. (2). Finally, differentiating this expression with

respect to the frequencyv and evaluating the expression

at v ¼ v0 we get

vg ¼ Re
@k

@v

� �� ��1

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v4g;0 þ ð2av0 f ðe00=e0ÞÞ2

q
Re

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2g;0 þ i2av0 f ðe00e0Þ

qn o ;

(6)

corresponding to a group index given by

ng ¼ c

vg
¼

cRe
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2g;0 þ i2av0 f ðe00=e0Þ

qn o
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v4g;0 þ ð2av0 f ðe00=e0ÞÞ2

q : (7)

With this expression it is possible to analyze the entire

dispersion curve vðkÞ, and study the deviation of the

actual group velocity from that of the ideal structure.

Focusing on the term under the square root it is obvious

that two regimes exist. For simplicity we may assume

that f � 1 and find that for

vg;0 �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
av0

e00

e0

r
; or ng;0 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2

av0

e0

e00

s
; (8)

the expression simplifies considerably, and the group

velocity remains unaffected by damping, i.e. vg ’ vg;0.
In this regime, simulations of ideal structures compare

well to corresponding measurements, even though the

experimentally studied structure is strictly speaking

imperfect. In other words, the group velocity is domi-

nated by the value intrinsic to the ideal structure.

Coupled-resonator optical waveguide structures are par-

ticular interesting in this context. Near the band centre,

the curvature vanishes and a is by definition zero and to

estimate the influence on the group velocity a higher

order expansion is necessary. Indeed, in coupled-mode

theory we find that vg ¼ vg;0 þOðQ�2ÞwithQ being the

quality factor of the resonators [15]. In the opposite limit,

the vg;0 term may be neglected and we arrive at

ng / 1=
ffiffiffiffiffiffiffi
ae00

p
. This result applies whenever the intrinsic

group velocity vg;0 is small and in particular near band

edges associated with symmetry points in the Brillouin

zone, where vg;0 ¼ 0 by definition. In summary, the

effects of dampingwill be appreciable only in thevicinity

of band edges, where the group velocity of the corre-

sponding ideal structure goes to zero. This explains the

challenge associated with realizing very high group

indices; the dispersion relation is sensitive to evenminute

broadening exactly at the frequencies where the group

index could potentially be high. Coming back to the

PDOS picture, this means that damping mainly affects

the singularities while the remaining frequency regimes

remain unaffected by the damping, comparing themiddle

and right panels in Fig. 1. A decrease in group index will

be associated with a slight increase in bandwidth. In the

PDOS picture the former is associated with the peak

height while the latter relates to the peak width. Physi-

cally, the area below the PDOS curve is conserved by any

perturbation, suggesting that the delay-bandwidth pro-

duct will roughly be unaffected.

3. Analytical and numerical examples

As a first example we consider a one-dimensional

Bragg stack comprising alternating layers of dielectric

and air. For simplicity, the layers have equal thickness

a=2 with a being the periodicity, and we consider e0 ¼
2 for the dielectric. The top panel in Fig. 2 shows the

ideal photonic band structure vðkÞ, with k ¼ k0 þ ik00

being the complex-valued Bloch wave vector. Photonic

band gaps are indicated by yellow shading (For

interpretation of the references to color in this

sentence, the reader is referred to the web version of

the article.). The middle panel shows the group index

ng versus frequency for the case of e
00 ¼ 0:1 (solid line)

compared to the loss-less limit with e00 ¼ 0 (dashed

line). The lower panel shows the maximum group

index near the band edges for an increasing damping.

The results of perturbation theory are indicated by

dashed lines while exact results are shown in solid

lines. The results for e00 ¼ 0:1 correspond to the four

peaks in the middle panel. As seen, the full solution for

the group index is in excellent agreement with the

scaling predicted by perturbation theory. The small

offset in the magnitude appears because the perturba-

tive results for simplicity assume that the peaks appear

exactly at the band edges, while in reality each peak

position shifts slightly away from v0 as broadening is

applied, because the van Hove singularity is asym-

metric with respect to v0.
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As a second example we consider the W1 waveguide

mode in a two-dimensional membrane photonic crystal

resembling those studied experimentally [7,8]. The

membrane has e0 ¼ 12:1 and a thickness of 223 nm,

while the lattice constant is 437 nm and the air-hole

radius is 110 nm. For our numerical calculations we

employ a freely available plane-wave method [16],

which has proved extremely efficient for analyzing ideal

J. Grgić et al. / Photonics and Nanostructures – Fundamentals and Applications 8 (2010) 56–61 59

Fig. 2. One-dimensional Bragg stack with alternating layers of dielectric and air (for details see the text). The middle panel shows the group index ng
versus frequency for the case of e00 ¼ 0:1 (solid line) compared to the loss-less limit with e00 ¼ 0 (dashed line). The lower panel shows the maximum

group index near the band edges for an increasing damping. The results of perturbation theory are indicated by dashed lines while exact results are

shown by solid lines.



structures with real-valued dielectric functions. For

simplicity, we consider only the fundamental W1

waveguide mode and the left panel in Fig. 3 shows our

results for the group index versus the wavelength. The

different groups of data are all calculated from Eq. (7),

using the same input parameters, but with e00 taking
values of 0:0001, 0:001, 0:01, and 0:1. The meaning of

the inequality in Eq. (8) is obvious in this example; the

group index is only sensitive to broadening near the

band edge, while deeper inside the band, the group

index is given by the one intrinsic to the waveguide

geometry itself. The right panel illustrates the

ng / 1=
ffiffiffiffiffi
e00

p
dependence near the band edge. Our

findings suggest that e00 � 0:001 would limit the group

index to ng 9 300. We emphasize that this corresponds

to the relative broadening e00=e0 being as low as

� 0:01%. Increasing the group index further by an

additional order of magnitude is challenged by the

unfortunate scaling and will require a remarkably low

relative broadening. For silicon we have e00=e0 � 10�9

(at l� 1600 nm), suggesting that results are so far not

limited by material absorption, so that the estimated

value of e00 � 0:001 reflects imperfections related to

structural disorder.

4. Conclusion

While ideal photonic crystal structures could

conceptually bring light to stop, real structures have

so far only offered group indices in the range of 300.

We attribute this to limitations associated with

absorption, structural imperfections, and radiation

loss. The broadening caused by such effects can be

included via a small imaginary contribution e00 in the

dielectric function. With the aid of perturbation theory,

we have shown that the maximal attainable group

index scales as 1=
ffiffiffiffiffiffiffi
ae00

p
, where a is the group-velocity

dispersion. For W1 waveguide structures our calcula-

tions suggest that a value as low as e00=e0 � 0:01% will

limit the group index to a few hundreds in typical W1

waveguide structures. For silicon, this value is much

larger than the actual number associated with material

absorption, which suggests that the experimental

structures are still limited by other broadening

mechanisms such as structural disorder. Ultimately,

one would like to relate the imaginary part of epsilon

to loss measurements, see e.g. [17]. However, care

should be taken, since slow-light may further enhance

absorption [6], while at the same time absorption may

limit the slow-down. Addressing the strong interplay

in a more qualitative way obviously calls for a self-

consistent approach.
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[4] M. Soljačić, J.D. Joannopoulos, Enhancement of nonlinear

effects using photonic crystals, Nat. Mater. 3 (4) (2004) 211–

219.

[5] J. Mørk, F. Ohman, M. van der Poel, Y. Chen, P. Lunnemann, K.

Yvind, Slow and fast light: controlling the speed of light using

semiconductor waveguides, Laser Photon. Rev. 3 (1–2) (2009)

30–44.

[6] N.A. Mortensen, S.S. Xiao, Slow-light enhancement of Beer–

Lambert–Bouguer absorption, Appl. Phys. Lett. 90 (14) (2007)

141108.

[7] M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, I.

Yokohama, Extremely large group-velocity dispersion of line-

defect waveguides in photonic crystal slabs, Phys. Rev. Lett. 87

(25) (2001) 253902.

[8] Y.A. Vlasov, M. O’boyle, H.F. Hamann, S.J. Mcnab, Active

control of slow light on a chip with photonic crystal waveguides,

Nature 438 (7064) (2005) 65–69.

[9] J.G. Pedersen, S.S. Xiao, N.A.Mortensen, Limits of slow light in

photonic crystals, Phys. Rev. B 78 (15) (2008) 153101.

[10] A.A. Krokhin, P. Halevi, Influence of weak dissipation on the

photonic band structure of periodic composites, Phys. Rev. B 53

(3) (1996) 1205–1214.

[11] J.D. Joannopoulos, S.G. Johnson, J.N. Winn, R.D. Meade,

Photonic Crystals: Molding the Flow of Light, second edition.

Princeton University Press, ISBN 0691124566, 2008.

[12] S.G. Johnson, M. Ibanescu, M.A. Skorobogatiy, O. Weisberg,

J.D. Joannopoulos, Y. Fink, Perturbation theory for Maxwell’s

equations with shifting material boundaries, Phys. Rev. E 65 (6)

(2002) 066611.

[13] H. Benisty, D. Labilloy, C. Weisbuch, C.J.M. Smith, T.F. Krauss,

D. Cassagne, A. Beraud, C. Jouanin, Radiation losses of wave-

guide-based two-dimensional photonic crystals: positive role of

the substrate, Appl. Phys. Lett. 76 (5) (2000) 532–534.

[14] R. Ferrini, D. Leuenberger, R. Houdré, H. Benisty, M. Kamp, A.
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Coupled-resonator optical waveguides hold potential for slow-light propagation of optical pulses. The dispersion properties may adequately
be analyzed within the framework of coupled-mode theory. We extend the standard coupled-mode theory for such structures to also
include complex-valued parameters which allows us to analyze the dispersion properties also in presence of finite Q factors for the
coupled resonator states. Near the band-edge the group velocity saturates at a finite value vg/c ∝

√
1/Q while in the band center, the

group velocity is unaffected by a finite Q factor as compared to ideal resonators without any damping. However, the maximal group delay
that can be envisioned is a balance between having a low group velocity while not jeopardizing the propagation length. We find that the
maximal group delay remains roughly constant over the entire bandwidth, being given by the photon life time τp = Q/Ω of the individual
resonators. [DOI: 10.2971/jeos.2010.10009]
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1 INTRODUCTION

The coupled-resonator optical waveguide (CROW) was first
proposed and analyzed by Yariv et al. [1]. One particularly
interesting property is that CROWs in principle offer slow-
light propagation. In a simple picture, the group velocity is
low when the wave package will dwell for a long time in one
resonator before tunneling onto the next resonator and so on.
Of course, to take full advantage of the CROW concept, the
quality factor Q should be sufficiently high that the photon
life time τp of an isolated resonator much exceeds the tunnel-
ing time τt in which case the group velocity will be of the order
vg ∼ a/τt with a being the spacing of the resonators. The orig-
inal work emphasized the coupling of ideal and identical res-
onators [1] and more recently the influence of disorder on the
group velocity has been studied in detail [2]–[4]. CROWs have
been proposed and realized in a number of ways, utilizing for
example, high-Q microspheres [5], ring resonators [6, 7], or
defect cavities in photonic crystals [8]–[13]. There is a general
consensus that resonators with an intrinsic high Q are needed,
but according to our knowledge the influence of a finite Q has
not yet been analyzed in detail with respect to the interplay
of slow-light and damping. In this work we explicitly account
for a finite intrinsic quality factor of the resonators forming
the CROW. Broadening of van Hove singularities in photonic
crystal waveguides limits the slow down near band edges [14]
and for the CROWs we find a similar effect which can be

studied explicitly within the framework of coupled mode the-
ory. Most importantly we find that when treating slow light
and damping on an equal footing, damping is jeopardizing
some of the attractive features of the slow-light propagation.
In the following we first review the derivation of a general ex-
pression for the dispersion relation (see Section 2) and subse-
quently we derive analytical expressions for Q-factor depen-
dence of the group velocity near the band edges as well as in
the center of the band (see Section 3). Furthermore, we discuss
the maximal group delay that one may achieve with CROWs
(see Section 4) and as an example we apply the coupled-mode
formalism to a photonic crystal waveguide structure (see Sec-
tion 5). Finally, conclusions are given (see Section 6).

2 COUPLED-MODE THEORY

Consider a resonator with a resonant field

Ej(r, t) = Ej(r) exp
[
i(Ωj + iδΩj/2)t

]
(1)

so that the energy in the resonator
∣∣Ej(ω)

∣∣2 has a Lorentzian
frequency distribution corresponding to the density-of-states

ρj(ω) =
1
π

δΩj/2
(ω − Ωj)2 + (δΩj/2)2 (2)
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where Ωj is the resonance frequency, δΩj is the resonance line
width, and Qj = Ωj/δΩj is the quality factor of the jth res-
onator, corresponding to a photon life time τp = Q/Ω.

Next, imagine a chain of coupled resonators of the above kind.
We follow the work of Yariv and co-workers [1] and write
the electrical field as a linear combination of the isolated res-
onator fields Ej, while allowing for complex-valued parame-
ters, like the resonance frequency Ωj + iδΩj/2 and the cou-
pling elements γj+1,j. We further consider the case where the
resonators are all identical and arranged in a fully periodic
sequence with nearest-neighbor coupling only. For clarity we
may thus suppress all indices.

The electromagnetic states now form a continuous band with
a dispersion relation (see e.g. [3, 15])

ω(κ) = Ω
(

1 + i
1

2Q

)(
1 − Δγ

2
− γ cos(κa)

)
(3)

where κ = κ′ + iκ′′ is the complex valued Bloch wave vec-
tor and a is the lattice constant of the periodic arrangement of
resonators. On the right-hand side,

γ =
〈
Ej

∣∣Δε
∣∣Ej+1

〉
(4)

is the coupling term of two neighboring resonators j and j + 1,
while

Δγ =
〈
Ej

∣∣Δε
∣∣Ej

〉
(5)

is the small lowering of the isolated resonance frequency
caused by the presence of neighboring resonators. In the
framework of the tight-binding model, this is referred to as the
lowering of the ’on-site’ energy. Here, we have assumed that
the fields are normalized so that

〈
En

∣∣εn
∣∣En

〉
=

∫
εn(r)E∗

n(r) ·
En(r) = 1, where εn(r) is the dielectric function of the isolated
resonator. Eq. (3) is a generalization of the theory by Yariv et
al. [1] to also include resonators with a finite Q-factor. Poten-
tially, γ and Δγ may also be complex, for example in the pres-
ence of material absorption, but for simplicity we will treat γ

as a real parameter here.

3 DISPERSION, GROUP VELOCITY, AND
DENSITY-OF-STATES

The group velocity may formally be calculated from the dis-
persion relation in Eq. (3). Keeping in mind that ω is real while
κ may be complex, we have that the group velocity is given by

vg =
1

Re {∂κ/∂ω} . (6)

Isolating κ in Eq. (3) we get κ = (1/a) arccos[ f (ω)] which
may formally be differentiated to give ∂κ/∂ω = −(1/a)[1 −
f 2(ω)]−1/2∂ f /∂ω, with

f (ω) ≡ 1
γ

(
1 − Δγ

2
− 2Qω

Ω(2Q + i)

)
. (7)

Taking the inverse of the real part we then arrive at an analyt-
ical expression for the group velocity. Though the calculation
is straightforward, the final result is lengthy and it is not re-
produced here. Along the same lines, we may also calculate
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κ′a κ′′a ρΩ

FIG. 1 Complex dispersion relation for a CROW. Dashed lines are for Q = ∞ while

solid lines correspond to Q = 102. The left panel shows the frequency ω versus

the real part of the Bloch wave vector κ′, the middle panel shows the frequency ω

versus the imaginary part of the Bloch wave vector κ′′ , and the right panel shows the
density-of-states ρ(ω).

density-of-states from the dispersion relation in Eq. (3). For
the particular case of a one-dimensional chain, the density-of-
states is inversely proportional to the group velocity, giving
rise to the following density-of-states

ρ(ω) =
a
π

Re
{

∂κ

∂ω

}
. (8)

Figure 1 illustrates the dispersion properties of the CROW.
The left panel illustrates the relation between the frequency
ω and the real part κ′ of the complex-valued Bloch wave vec-
tor κ = κ′ + iκ′′. Likewise, the middle panel illustrates the
relation between frequency ω and the imaginary part κ′′ of
the Bloch wave vector. Finally, the right panel shows the cor-
responding density-of-states. The difference between the ideal
structure (Q → ∞) and one employing resonators of finite Q is
contrasted by the dashed and solid lines, respectively. Notice
how the finite Q factor serves to smear out van Hove singu-
larities in the density-of-states. In the dispersion relation this
has its counterpart in the group velocity not going to zero near
the high-symmetry points corresponding to the band edges of
the ideal structure. Also, quite steep bands appear outside the
traditional band of extended states, though of course with a
significant attenuation as evident from the middle plot illus-
trating the κ′′ dependence.

In the following we analyze the result at the band-center and
the band-edges in more detail. For simplicity we assume γ �
1, which is also the relevant regime for slow-light applications.
Furthermore, we neglect the small shift Δγ so that the band is
centered around ω = Ω with band-edges at ω = (1± γ)Ω. At
the band center we get

vg

v0
= 1 +

1
8

1
γ2Q2 + O(Q−4), (band center) (9)

where v0 = γaΩ is the group velocity at the band center for
infinite-Q resonators. Likewise, at the band-edges we get

vg

v0
=

√
2

|γ|Q + O(Q−3/2). (band edges) (10)

The first result illustrates that in the center of the band, the
group velocity is rather insensitive to the quality factor, and
given by v0 provided that Q 	 1/γ. On the other hand, at
the band edges the group velocity scales quite unfavorably
with the Q factor, making the slow-light regime challenging
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FIG. 2 Density-of-states for a CROWs with varying coupling, Eq. (8). The dashed line

illustrates the Lorentzian density-of-states for the uncoupled resonator, Eq. (2).
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FIG. 3 Plot of the minimum group velocity versus γQ calculated numerically from

Eq. (6) for the three different cases of γ = 0.001, 0.01, and 0.1. The dashed line

shows the asymptotic expression for the group velocity at the band edge, Eq. (10).

to explore. In the case of absorption, the quality factor Qabs is
inversely proportional to the imaginary part ε′′ of the dielec-
tric function [16, 17] so that vg ∝

√
ε′′ in full agreement with

the perturbative results derived from band-structure consid-
erations in [14]. At the band center, the group velocity of the
ideal CROW is finite and given by v0. Furthermore, the group
velocity is hardly dispersive (the second-order derivative is
small), thus making the group velocity itself quite insensitive
to dissipation [18]. Results similar to Eqs. (9) and (10) were
reported recently in [3].

The interplay of the coupling strength γ and the quality fac-
tor Q is also illustrated in Figure 2, depicting how the initial
Lorentzian line-shape broadens with increasing γ into a band
with van Hove singularities at the two band edges. Notice
how the area below the curves is conserved. Obviously, the
most pronounced slow down occurs at the van Hove singu-
larities associated with band edges. The smearing by the finite
Q serves to shift the minimum in the group velocity slightly
away from the band edge. Figure 3 shows the minimum group
velocity versus γQ calculated numerically from Eq. (6) for the
three different cases of γ = 0.001, 0.01, and 0.1. As seen, the
full results are in excellent agreement with the predictions of
Eq. (10) shown by the dashed line.

4 THE MAXIMAL GROUP DELAY

The group delay is given by τ = L/vg with L being the length
of the waveguide. To estimate the maximal realistic group
delay we use that for any practical purpose L � 1/α with
α = 2κ′′ being the damping parameter. This gives an upper
bound

τmax ∼ 1
vgα

=
1

2κ′′
∂κ′

∂ω
. (11)

Combining the full results for vg and α and expanding in 1/Q
we get

τmax ∼ Q
Ω

+ O(Q−1) = τp + O(Q−1). (12)

Quite intuitively, the maximal group delay is limited by the
photon life time τp = Q/Ω of the individual resonators inde-
pendently on the actual frequency. Despite the reduced group
velocity near the band edges, the advantage of a slowly ad-
vancing wave package is balanced by a reduced propagation
length, see the middle panel of Figure 1. According to our
knowledge, this is an overlooked issue which is important for
the potential application of CROW concepts in optical buffers
and delay-line architectures. We emphasize that compared to
a single resonator, the CROW of course offers the advantage
of an increased bandwidth.

5 PHOTONIC CRYSTAL EXAMPLE

Finally, we consider a CROW realized by coupled defects
in a photonic crystal. For simplicity, we consider a two-
dimensional photonic crystal with triangular lattice of air-
holes of diameter d and pitch Λ. By removing every third
air hole on a line we form a CROW with a lattice constant
a = 3Λ. In order to compare the predictions of Eq. (3) to
full-vector simulations we employ a plane-wave method [19].
We consider air holes of diameter d = 0.6Λ in a dielectric
material with ε = 7.0225, and using a super-cell approxi-
mation the plane-wave method gives ΩΛ/2πc = 0.3079 for
the resonance frequency of an isolated defect cavity. For the
corresponding CROW we obtain the dispersion relation in-
dicated by data points in Figure 4. The dashed line shows
a least-square error fit to Eq. (3) with ΩΛ/2πc = 0.3074,
Δγ = 3.705 × 10−5, and γ = −0.0066, while Q → ∞. Note
how the fitted value of Ω agrees excellently with the value ob-
tained independently for the isolated defect cavity. Further-
more, the parameters indeed satisfy Δγ � γ � 1 as assumed
in our analysis leading to Eqs. (9) and (10). Consequences
of a finite Q factor can now immediately be predicted and
the solid line shows how the dispersion changes in the pres-
ence of a finite quality factor, Q = 103. At the band edges,
Eq. (10) in this particular case leads to a maximal group index
of ng ∼ (3/2)

√
Q, so that Q = 104 would allow a group index

up to ng ∼ 150, while Q = 103 would limit the group index
to ng ∼ 50. However, as discussed above the high group in-
dices do not come for free as they will be associated with an
increased damping.

6 CONCLUSION

In conclusion, we have derived an explicit relation for the dis-
persion relation of CROWs made from resonators with a finite
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FIG. 4 Dispersion relation for a CROW in a two-dimensional photonic crystal with ε =

7.0225 and with air-hole diameter d = 0.6Λ and waveguide pitch a = 3Λ, with Λ

being the pitch of the air-hole lattice. Data points are obtained with a plane-wave

method [19] while the dashed line shows Eq. (3) with ΩΛ/2πc = 0.3074, Δγ =

3.705× 10−5, and γ = −0.0066, and Q → ∞. The solid line shows corresponding

results for the case of Q = 103.

Q factor. A finite Q profoundly influences the van Hove sin-
gularities near the band edges with a resulting limitation of
the group index while at the center of the band the dispersion
properties are less affected. Simple analytical expressions are
supported by calculations of the group velocity, demonstrat-
ing how the Q enters on an equal footing with the coupling
γ corresponding to the competing time scales associated with
photon decay and tunneling. In the context of practical appli-
cations involving the group delay, we note that the maximal
attainable group delay appears as a balance between the re-
duced group velocity and the the decay length. Explicit calcu-
lations show that irrespectively of the underlying bandstruc-
ture, the maximal group delay is limited by the photon life
time of the resonators. This illustrates the importance of ad-
dressing propagation loss and slow-light on an equal footing.
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Abstract Coupled resonator optical waveguides (CROW) can significantly reduce light
propagation pulse velocity due to pronounced dispersion properties. A number of interesting
applications have been proposed to benefit from such slow-light propagation. Unfortunately,
the inevitable presence of disorder, imperfections, and a finite Q value may heavily affect
the otherwise attractive properties of CROWs. We show how finite a Q factor limits the max-
imum attainable group delay time; the group index is limited by Q, but equally important
the feasible device length is itself also limited by damping resulting from a finite Q. Adding
the additional effects of disorder to this picture, limitations become even more severe due to
destructive interference phenomena, eventually in the form of Anderson localization. Simple
analytical considerations demonstrate that the maximum attainable delay time in CROWs is
limited by the intrinsic photon lifetime of a single resonator.

Keywords Coupled-resonator optical waveguide (CROW) · Photonic crystal
waveguides · Slow light · Group delay

1 Introduction

Slowing down the speed of light enhance phenomena like nonlinearities [1], gain/absorption
[2,3], and phase sensitivity [4]. It can be also useful for practical applications like delay lines,
optical memories, and low threshold lasers [5]. CROW structures offer particular ways of
slow light guiding, with photons hopping sequentially from one resonator to the next. The
concept and proposal of CROWs were introduced in 1999 by Yariv et al. [6]. At that point
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it was obvious that such structures would yield big interest in the optical community due to
the potential application possibilities [7–10]. In particular, it is clear that near the band edge
the group velocity is significantly reduced in the ideal and lossless structure. Unfortunately,
a certain level of damping will always be present due to radiation losses, intrinsic losses of
materials, and any other mechanism that may dissipate or scatter part of the electromagnetic
energy. Any fabrication processes will introduce some variations in the properties of the indi-
vidual resonators that will serve to dissipate and scatter light propagating in the CROW. Such
non-uniformities can indeed seriously affect slow light propagation [7,11–13], emphasizing
the importance of quantifying their effect and unavoidable consequences.

When discussing the potential of slow-light waveguides the emphasis is often on the
attainable group index ng = c/vg or the group velocity vg . However, in applications involv-
ing delay lines and buffers, the group delay τ = L/vg is the key parameter. Obviously, the
longer the waveguide the longer the group delay! However, this trivial statement implicitly
neglects the decay of the pulse as it propagates down the waveguide and eventually the pulse
has lost its initial strength and intensity. In this paper, we treat the issues of delay and decay
on an equal footing by emphasizing that the decay length ξ serves as an effective cut off for
L (Sect. 2), leaving us with a maximal attainable group delay τmax of the order ξ/vg [14,15].

The manuscript is organized as follows. From coupled-mode theory (Sect. 3), our key
observation is that the maximum attainable delay time in CROWs is limited by the intrinsic
photon lifetime of a single resonator (Sect. 3.1). The presence of disorder and scattering will
further serve to reduce this bound (Sect. 3.2), as shown numerically with the aid of a Green
function method (details given in appendix). Finally, conclusions are given (Sect. 4).

2 Delay versus decay

To facilitate quantitative predictions of τmax we imagine a CROW of length L and the
transmission T through this segment is then conveniently parameterized by

T (ω) = exp

(
−ξ(ω)

L

)
. (1)

Obviously, this parametrization excellently represents the exponential decay of the power
associated with absorption and other loss mechanisms captured by the finite Q factors of
the resonators. Likewise, in the presence of localization, the average transmission also has
an exponential distribution with the scale given by the localization length. Thus, the length
scale ξ(ω) = −L ln T (ω) captures the combined effects of disorder-induced localization and
other loss accounted for by the finite Q-factor.

In the context of pulse delay, ξ represents an estimate of the maximal length of the CROW
that we could imagine in any practical application. Extending the length L of CROW beyond
ξ would effectively suppress the output power, thus jeopardizing any benefits of slowing
down a wave package. The maximal group delay is thus a balance between a slow group
velocity and a long propagation length, i.e. τmax(ω) = ξ(ω)/vg(ω). Since the group veloc-
ity is also inversely proportional to the density-of-states we may conveniently rewrite this
expression as

τmax(ω) = −πρ(ω) ln T (ω). (2)
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The key result of this paper is that τmax is always limited by the single-resonator photon
lifetime, i.e.

τmax(ω) ≤ τp (3)

where the equality applies to the situation with absence of disorder.
In the following we outline our account for this result by coupled-mode theory and in

particular, we study first the limit of ideal CROWs (but with finite Q) and subsequently we
address the effects of disorder.

3 Coupled-mode theory

We consider a chain of coupled optical resonators, where the j th resonator, if left isolated
from the other resonators, is characterized by a resonant field

E j (r, t) = E j (r) exp
[
i(� j + i� j/2)t

]
, (4)

where � j is the resonance frequency and � j represents the resonance line width. The energy

in the resonator
∣∣E j (ω)

∣∣2 then has a Lorentzian frequency distribution corresponding to the
density-of-states

ρ j (ω) = 1

π

� j/2

(ω − � j )2 + (� j/2)2 . (5)

The associated quality factor Q j = � j/� j may conveniently be parametrized as a photon
life time τp = Q/�.

Next, imagine a chain of coupled resonators of the above kind. We follow the work of
Yariv and co-workers [6] and write the electrical field as a linear combination of the isolated
resonator fields, i.e. E j (r) = ∑

j ψ j E j (r), where the expansion coefficients are denoted by
ψ to emphasize the similarities with the notation in Ref. [16,17] for the associated problem of
electrons in a quantum wire. In the regime of weak nearest-neighbor coupling the equations
linearize to

(� j + i� j/2)ψ j − γ j+1, jψ j+1 − γ j−1, jψ j−1 = ωψ j (6)

which has a form resembling the tight-binding chain in condensed matter physics [16,18].
To further emphasize this connection we write the coupled equations in a matrix form, i.e.
Hψ = ωψ , where the ‘Hamiltonian’ matrix H has elements

Hl j = (� j + i� j/2)δl j − γl jδl±1, j (7)

with γl j = γ ∗
jl so that the off-diagonal part of H is Hermitian.

3.1 The influence of finite Q factor

In the case where the resonators are all identical and arranged in a fully periodic sequence, we
may without loss of generality suppress all indices, thus making further analytical progress
possible. The electromagnetic states now form a continuous frequency band and the problem
is easily diagonalized by the Ansatz ψ j+1 = exp(iκa)ψ j . The resulting dispersion relation
is of the form

ω(κ) = �

(
1 + i

1

2Q

)
− 2γ cos(κa) (8)
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where κ = κ ′ + iκ ′′ is the complex valued Bloch wave vector and a is the lattice constant
of the periodic arrangement of resonators. Equation (8) corresponds to the theory by Yariv
et al. [6] to also include resonators with a finite Q-factor.1

The group velocity may formally be calculated from the dispersion relation in Eq. (8).
We imagine the situation where the CROW is excited by a monochromatic laser with a well-
defined frequency of the light. Care should thus be taken that ω is to be considered real while
κ may be complex, and the group velocity is then formally given by

vg = 1

Re {∂κ/∂ω} . (9)

Along the same lines, we may also calculate the density-of-states from the dispersion
relation in Eq. (8). We emphasize, that for the particular case of a one-dimensional chain, the
density-of-states is inversely proportional to the group velocity,

ρ(ω) = a

π
Re

{
∂κ

∂ω

}
. (10)

Clearly, a vanishing group velocity will be associated with a diverging density-of-states
and vice versa. This also explains why a light pulse can not completely come to stop in a
real system, since no real system will exhibit a true singular density-of-states the inevita-
ble presence of absorption, radiation, and imperfections will serve as effective broadening
mechanisms. Nevertheless, to illustrate the basic physics, it is common to consider lossless
structures and only focus on the real part of the dispersion properties, since the damping is
anyway assumed to be modest. However, in the present context of slow-light propagation the
two issues are not easily separable and care must be taken.

Figure 1 illustrates the contrast between a CROW made from lossless resonators (dashed
lines) and finite-Q resonators (solid lines), respectively. The left panel illustrates the usual
cosine-band dispersion relation, i.e. the relation between the frequency ω and the real part κ ′
of the complex-valued Bloch wave vector κ = κ ′+iκ ′′. Likewise, the middle panel illustrates
the corresponding damping, i.e. the relation between frequency ω and the imaginary part κ ′′
of the Bloch wave vector. Finally, the right panel shows the density-of-states associated with
the dispersion diagram in the left panel. The difference between the ideal structure (Q → ∞)
and one employing resonators of finite Q is easily contrasted by comparing the dashed and
solid lines, respectively. We emphasize that the main cause of a finite Q factor is to smear
out van Hove singularities in the density-of-states and to weaken the slow down of light
pulses propagating near the band-edges of the CROW. Of course, the finite Q also introduces
damping throughout the entire band, though be most pronounced near the band edges due to
slow-light enhanced absorption [19]. Finally, we note that quite steep bands appear outside
the traditional band of extended states, though of course with a significant attenuation as
evident from the middle plot illustrating the κ ′′ dependence.

In our previous work we have carefully discussed the influence of the finite Q factor on
the saturation of the group index [14,15]. The main conclusion is that in the center of the
band the group velocity is (to lowest order in 1/Q) insensitive to the finite photon life time.
On the other hand, at the band edges, initially supporting pronounced slow down, the group
velocity scales quite unfavorably with the Q factor, making the slow-light regime challenging
to explore.

1 To ease the comparison to our previous work in Ref. [14] we note that ω(κ) = �
(

1 + i 1
2Q

) [
1 − γ̃ cos(κa)

]
where γ̃ is for simplicity considered real and given by γ̃ = 2γ /�.
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Fig. 1 Complex dispersion relation for a CROW. Dashed lines are for Q = ∞ while solid lines correspond
to Q = 102. The left panel shows the frequency ω versus the real part of the Bloch wave vector κ ′, the middle
panel shows the frequency ω versus the imaginary part of the Bloch wave vector κ ′′, and the right panel shows
the density-of-states ρ (per resonator)

Here, we focus on the attainable group delay when the slow down and the damping is
treated on an equal footing. For the ideal CROW, the group delay is given by τ = L/vg .
However, in the presence of a finite Q, the length L is effectively cut off by the damping
length ξ = 1/2κ ′′ associated with the exponential decay in Eq. (1). This gives an upper
bound and Eq. (2) may in this case formally be rewritten as

τmax(ω) = 1

2κ ′′
∂κ ′

∂ω
. (11)

Combining the full results for κ ′ and κ ′′ and expanding in 1/Q we get [14]

τmax(ω) = τp + O(Q−1). (12)

The main conclusion from this analytical exercise is that the maximal group delay is lim-
ited by the photon life time τp = Q/� of the individual resonators, independently on the
actual frequency. While being a quite intuitive results, it has important and overlooked con-
sequences with respect to how much delay one may envision in future designs of optical
buffers and delay-line architectures. Despite the reduced group velocity near the band edges,
the advantage of a slowly advancing wave package is balanced by a reduced propagation
length, see the middle panel of Fig. 1. We emphasize that compared to a single resonator, the
CROW may of course offer the advantage of an increased bandwidth. Likewise, the strongly
suppressed group-velocity dispersion at the band center might also be beneficial in some
applications.

In the following we discuss how this result is modified in the presence of disorder. How-
ever, we may at this stage anticipate that disorder may only further limit time delay, thus in
general adding the ‘lesser sign’ in Eq. (3) as compared to the equality derived in Eq. (12).

3.2 The influence of disorder

We next turn to disordered waveguides, formally allowing for CROWs composed of res-
onators with a resonator-to-resonator fluctuation in the resonance frequency � j and the
linewidth � j as well as fluctuations in couplings γl j between neighboring resonators. For
simplicity we will neglect fluctuations in the linewidth so that all resonators have the same Q
factor. For the resonance frequencies and the couplings we will further assume uncorrelated
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Gaussian distributions P(� j ) and P(γl j ), respectively. The distributions have mean values

� and γ corresponding to the ideal CROW parameters, while fluctuations σ� = √
δ2� and

σγ = √
δ2γ around the mean values can be varied to mimic different strengths of disorder.

We employ a Green’s function method to calculate the transmission and the density-of-
states which allows us to evaluate Eq. (2) for each member of the ensemble. The Green’s
function is formally obtained by inverting the matrix H . However, since its dimensions are
formally infinite we imagine a segment of disordered CROW (containing N resonators) sand-
wiched between to semi-infinite ideal CROWs, i.e. with no disorder. With the aid of Dyson’s
equation this apparently unsolvable problem can fortunately be turned into a matrix problem
of finite dimension (corresponding to the dimension N of the disordered segment) and the
retarded Green functions of the CROW can now be found from a numerical inversion of a
sparse N × N matrix problem [16,17]

G(ω) = [ωI − H −�(ω)]−1 , (13)

where I is a unit matrix and the couplings to the two semi-infinite ideal CROWs are accounted
for by a complex-valued frequency dependent self-energy �. The details of this approach
are given in the Appendix A, which lists expressions how to obtain the transmission T and
the density-of-states ρ from the Green’s function G.

Once the Green function is obtained, the maximal time delay, Eq. (2), is thus easily evalu-
ated with the aid of Eqs. (16) and (18). We take advantage of standard matrix inversion routines
to numerically study the statistical properties of large ensembles of disordered CROWs. In
principle this allows us to study statistical moments to any order, but for simplicity we will
here focus on the average properties (first moment) and only highlight the CROW-to-CROW
fluctuations (second moment) by displaying results for particular members, chosen randomly
from the large CROW ensemble.

In the panel (b) of the Fig. 2 we show results for the ensemble-averaged DOS (blue lines). It
is clearly seen how disorder, in addition to a finite Q, serves to further broaden the ensemble-
averaged DOS near the band edges. Comparing these results to the DOS associated with one
particular realization of the disordered CROW (red line), it is however clear that pronounced
sample-to-sample fluctuations are to be expected. In particular, the formation of Anderson
localized states near the band edges, due to the strong interference of light waves, is apparent.
These fluctuations in the DOS are quite naturally inherited by other central quantities, such
as the maximal group delay τmax and the transmission T . In panel (c) the value of τmax is
normalized with photon lifetime in single resonator τp . For the ensemble-averaged maximal
delay time, disorder is seen to further suppress τmax below the bounds by τp . However, from
a practical point of view it is alarming to see fluctuation comparable to the mean value, as
indicated by the strongly fluctuating results for a particular realization of the disorder (red
line). For the transmission in panel d) we see a similar picture with a strong suppression of
the transmission near band edges, but with the pronounced transmission fluctuations appear-
ing throughout the entire band. For comparison, the dashed line shows the result of unity
transmission (T = 1) for an ideal CROW with infinite Q, while the green line shows the
pronounced suppression of transmission in the presence of a finite Q, but in the absence of
any additional disorder. The quite abrupt drop in transmission near the band edges is associ-
ated with slow-light enhanced absorption [20] as compared to the center of the band where
slow-light enhancement is almost absent.

There is an interesting interplay between the finite Q factor and the amount of disorder in
the structure. In Fig. 3 we plot τmax/τp as a function of disorder strength σ/� = σγ /� =
σ�/�, evaluated for a frequency corresponding to the band center. The different curves
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Fig. 2 Properties of a disordered
CROW, with blue lines indicating
ensemble-averaged properties
while the red lines illustrate the
results for a particular realization
of the disorder, thus emphasizing
pronounced CROW-to-CROW
fluctuations. Panel (a) shows the
local DOS ρ j for a particular
realization of the disorder and
panel (b) shows the
corresponding results for the total
DOS ρ (per resonator). Panel (c)
shows the maximal group delay
τmax. Panel (d) shows results for
the transmission. For comparison,
the dashed line shows the unity
transmission for an ideal crow,
while the green line is for a
non-disordered CROW, but with
a finite Q
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represent different values of the Q factor. Quite intuitively, the lower the Q value the less
sensitive is the result to disorder, keeping in mind that τmax, T , and ng themselves would be
heavily suppressed in the presence of a low Q. For higher Q values, it consequently becomes
increasingly challenging, in terms of disorder, to take full advantage of the high intrinsic
photon life time τp .

4 Conclusion

In conclusion, we have derived an explicit relation for the dispersion relation of CROWs
made from resonators with a finite Q factor. A finite Q profoundly influences the van Hove
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Fig. 3 Maximal group delay
τmax (at band center) versus
disorder strength σ = σγ = σ�
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singularities near the band edges with a resulting limitation of the group index while at the
center of the band the dispersion properties are less affected. Simple analytical expressions
are supported by calculations of the group velocity, demonstrating how the Q enters on an
equal footing with the coupling γ corresponding to the competing time scales associated with
photon decay and tunneling. In the context of practical applications involving the group delay,
we note that the maximal attainable group delay appears as a balance between the reduced
group velocity and the the decay length. Explicit calculations show that irrespectively of
the underlying bandstructure, the maximal group delay is limited by the photon life time of
the resonators. This illustrates the importance of addressing propagation loss and slow-light
on an equal footing. Any inevitable presence of disorder will serve to further suppress the
attainable group delay and pronounced sample-to-sample fluctuations may arise.

Acknowledgments This work is financially supported by the Villum Kann Rasmussen Centre of Excellence
NATEC (Nanophotonics for Terabit Communications).

Appendix: Details of Green’s function approach

The self energy in Eq. (13) is given by � = �L + �R where the contributions from the left
and right semi-infinite CROWS are given by{

� p(ε)
}

jl = −γ exp [iκ(ω)a] δ jsp δspl (14)

with sL = 1 and sR = N . The wave vector is related to the energy through the usual cosine
dispersion relation derived above, see Eq. (8), corresponding to

exp [iκ(ω)a] = � − ω

2γ
+ i

√
1 + (� − ω)2

4γ 2 . (15)

The transmission probability may now conveniently be written as a trace formula

T (ω) = Tr
[
�L(ω)G(ω)�R(ω)G†(ω)

]
, (16)

where

� p(ω) = i
[
� p(ω) −�†

p(ω)
]
. (17)
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Likewise, the total density-of-states (per resonator) is given by

ρ(ω) = 1

N

N∑
j=1

ρ j (ω), (18)

with the corresponding local density-of-states governed by the diagonal part of the Green’s
function,

ρ j (ω) = − 1

π
Im{G j j (ω)}. (19)
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Abstract: Light traversing a hollow-core photonic band-gap fiber may
experience multiple reflections and thereby a slow-down and enhanced op-
tical path length. This offers a technologically interesting way of increasing
the optical absorption of an otherwise weakly absorbing material which
can infiltrate the fibre. However, in contrast to structures with a refractive
index that varies along the propagation direction, like Bragg stacks, the
translationally invariant structures studied here feature an intrinsic trade-off
between light slow-down and filling fraction that limits the net absorption
enhancement. We quantify the degree of absorption enhancement that can
be achieved and its dependence on key material parameters. By treating
the absorption and index on equal footing, we demonstrate the existence
of an absorption-induced saturation of the group index that itself limits the
maximum absorption enhancement that can be achieved.
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1. Introduction

Media supporting slow-light propagation of electromagnetic waves are presently receiving
tremendous attention in the context of enhanced light-matter interactions. Intuitively, slow-light
propagation offers the photons longer time for interacting with the host medium, thus enabling
enhanced sensitivity of interferometers and gyroscopes, enhanced non-linear interactions, en-
hanced spontaneous emission, and enhanced gain and absorption sensitivity, see e.g. [1–7].
Expressing the group velocity as vg = c/ng, the magnitude of the group index, ng, relative to
that of a reference structure is often taken as a measure of the factor by which slow-light effects
enhance light-matter coupling.

A one-dimensional Bragg stack [8] is one example of a structure that can enhance the net
absorption experienced by a beam traversing the structure. In this case, the picture of a beam
propagation path that is effectively prolonged by multiple back-and-forth scattering in the prop-
agation direction offers a simple physical interpretation. Likewise, photonic crystal structures
with immersed liquid have been shown to enhance the absorption, with potential applications
in compact lab-on-a-chip implementations of Beer-Lambert-Bouguer absorption measurement
schemes [9]. In this latter case, however, the enhancement of the absorption is reduced by a
mode filling factor smaller than one that tends to decrease as the mode enters a slow-light
regime [9]. Thus, the physical picture offered above for one-dimensional structures has to be
modified to take into account that part of the effective propagation path may lie outside the
region containing the material with which the interaction is to be increased.

Taking into account this issue of reduced modal overlap it is not immediately clear whether
translationally invariant stuctures, which realize slow light effects by a strongly guiding in-
dex structure that feature multiple scattering effects in the transverse direction, would offer net
absorption enhancement. In this paper we perform a detailed investigation of a recently pro-
posed hollow-core photonic crystal fiber [17] exhibiting a slow-light mode, which is speculated
to enhance the effective absorption coefficient of an infiltrated gas. Defining an enhancement
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a

R=3.38a

Fig. 1. Left panel shows a typical Ez field pattern for the considered mode,and a right panel
shows the fiber geometry with the blue region indicating the symmetry-reduced calcula-
tional domain

factor
γ = α/α0 (1)

where α is the effective absorption coefficient of the fiber, and α0 is the absorption coefficient
experienced by a plane wave propagating through a homogeneously distributed gas, we estab-
lish the conditions under which net enhancement can be achieved. From a fully self-consistent
solution for the complex propagation constant β (ω) = β ′(ω)+ iβ ′′(ω), we indeed find a net en-
hancement factor, that exceeds unity. However, the enhancement factor is significantly smaller
than the group index due to the filling factor and, furthermore, we find the important result that
absorption itself limits the degree of enhancement that can be achieved.

In this paper we are concerned with slow-light propagation arising from mode dispersion,
but slow light effects may also originate from material dispersion, such as electromagnetically
induced transparency and coherent population oscillations [6, 7]. However, in these cases the
effect of slow-light propagation on the absorption properties are already self-consistently in-
cluded in the complex susceptibility, and the associated slow-down factor will not directly scale
with the intrinsic medium absorption [11].

The paper is organized as follows: In Section 2 we describe the specific photonic crystal
hollow core fiber (HCF) considered and the properties of its guided modes. Then, in Section
3, we compute and analyze the dispersion and absorption properties, emphasizing the depen-
dence on the absolute value of the absorption coefficient of the infiltrated gas. Section 4 is
devoted to a discussion of the physical interpretation of our results and Section 5 summarizes
the conclusions.

2. Slow-light modes in a hollow-core photonic band gap fiber

The particular system we consider belongs to the class of photonic band gap fibers offering
hollow-core guidance of optical fields, see e.g. Refs. [13, 14] and references therein. Among
many novel properties these fibers are also interesting for studies of light-matter interactions,
as the porous structures may be easily infiltrated by e.g. liquids or gasses. Furthermore, the
photonic band gap structures offer a tight confinement of the light to the hollow core, thus
allowing guidance over long distances and long interaction lengths.
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Fig. 2. Dispersion relation (solid curve) for a mode guided in a hollow-core photonic band
gap fiber made from a high-index soft glass. The filled regions show the projected bands of
the photonic crystal cladding, resulting in a band gap all the way to β = 0 (white region).
Results are obtained for a lossless structure with the wave equation being solved with the
aid of a plane-wave method [12].

These fibers are best known for supporting so-called finger-like band gaps opening toward
high-frequency regimes, even for arbitrary low index contrast [10, 13–15]. However, in sil-
ica based hollow-core fibers, the waveguide dispersion does not offer slow light propagation
because the index contrast is not sufficiently large to open a band gap that extends all the
way down to β = 0, meaning that there are no slow-light modes. If vg = ∂ω/∂β does not
change significantly, the effective interaction length is given by the physical length of prop-
agation meaning that absorption would be changed insignificantly. There is a quest for zero-
group-velocity modes in longitudinally uniform waveguides [16] and if the index contrast is
sufficiently high to support a complete band gap for all polarizations in two dimensions, the
projected cladding bands offer a band extending all the way down to β = 0. Turning to soft
glasses with a higher dielectric function than silica, theoretical predictions show possibilities
for this [17]. The translational invariance of course implies inversion symmetry, so any guided
mode will be symmetric with respect to β = 0. For the ideal lossless fiber we have β = β ′ and
the dispersion relation is a real analytic function, thus implying that

ω(β ) = ω0 +
1
2

(
∂ 2ω
∂β 2

)
β=0

β 2 +O(β 4), (β ′′ → 0) (2)

and the group velocity is consequently zero when approaching small values of wave numbers.
Such a mode has been recently proposed for slow-light enhanced absorption [17], which could
be interesting in the context of previous studies of gases infiltrated in hollow-core fibers [18,19].
The right panel of Fig. 1 shows the hollow core fibre geometry and the left panel displays a
mode profile for the Ez component, while Fig. 2 illustrates a dispersion relation for a confined
mode. In reality, however, the confinement loss associated with a photonic crystal cladding of
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finite extension will cause β to be complex. The dispersion relation may then no longer have
the simple parabolic dependence near β = 0 and the group index ng = c∂β ′/∂ω will saturate
rather than diverge.

Infiltrating the fiber with a weakly absorbing gas is expected to further promote the saturation
of the group index, as shown recently in the case of photonic crystals and photonic crystal
waveguide structures [20, 21]. Obviously, the apparent absorption-induced saturation of the
group index ng will have consequences for the group-index enhanced absorption [22]. In the
following we numerically study this interplay for the hollow-core fiber proposed in Ref. [17].

3. Numerical analysis

The fiber geometry we consider is illustrated in the right panel of Fig. 1. For the soft glass
material, we use a dielectric function ε = n2 = (2.7)2 = 7.29 and the photonic crystal cladding
has a triangular lattice of air-holes. During fiber drawing the air-holes will tend to become
hexagonal with rounded corners [23], but for simplicity we consider circular air-holes with
diameter d = 0.9a, where a is the lattice constant. The hollow core is formed by introducing an
air defect with a radius R = 3.38a in the otherwise periodic structure. With this choice of defect
radius, the guided mode is well confined to the hollow core and the air-light overlap is fairly
high. In our simulations, the cladding structure comprises 7 rings of air holes, which causes a
sufficiently low leakage loss as compared to the absorption properties of the gas that we are
considering. For fewer rings of air holes, there is a stronger saturation of the group index even
in absence of the additional saturation caused by gas absorption itself.

We employ a commercially available finite-element method (Comsol Multiphysics) to solve
the wave equation[

∇2
t + ε(x,y)

(ω
c

)2
+

(
∇2

t ε(x,y)
ε(x,y)

)
×∇t×

]
Ht(x,y) = β 2Ht(x,y) (3)

for the transverse magnetic field Ht(x,y). Adaptive meshing is used to ensure an efficient con-
vergence and efficient use of spatial grid points. Rather than writing the wave equation as an
eigenvalue problem, with ω2 being the eigenvalue, we have here rewritten it as an eigenvalue
problem for β 2 which is then solved for a fixed frequency, which physically corresponds to
an excitation by a well determined frequency. We emphasize that the strength of this method
is to allow a direct calculation of the complex propagation constant along with the possibility
to also account for dispersive materials. In this paper, for simplicity, we neglect such material
dispersion.

The calculation domain is truncated with the aid of perfectly-matched layers, which allows
us to also include the effects of leakage loss due to the finite spatial extension of the photonic
crystal cladding. Leakage loss manifests itself as a small imaginary part β ′′ of the effective
propagation constant, even in the absence of any material absorption. The dispersion results of
Fig. 2 for the ideal lossless structure are used as an initial guess for the finite-element solution,
in order to track the mode in the ω versus β space more easily. Likewise, the symmetry of the
mode shown in the left panel of Fig. 1 is also enforced, which reduces the computational domain
to one fourth of its original size; and also significantly eases tracking of the desired mode. In
reducing the computational domain, care must be taken that the imposed boundary conditions
along the symmetry directions respect the hybrid nature of the mode, in most cases implying in
total 6 boundary conditions associated with electric and magnetic field components.

Figure 3 summarizes our results for the complex dispersion relation in the presence of leak-
age loss and a possible additional absorption due to the infiltration of the hollow core by a
weakly absorbing gas. For the gas, we consider a complex refractive index n = n′ + in′′ =
1+ in′′, with the imaginary part ranging from 0.001 to 0.01. The left panel shows the dispersion
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Fig. 3. Complex dispersion relation for the hollow core fiber being infiltrated by an absorb-
ing gas with n = n′ + in′′ with n′ = 1 and n′′ ranging from 0 to 0.01. The left panel shows
the dispersion while the right panel shows the corresponding absorption in dependence of
the frequency (vertical axis).

relation, i.e. ω versus β ′, while the right panel shows the corresponding damping, i.e. ω versus
β ′′. As clearly seen, the dispersion departs significantly from the ideal lossless case shown in
Fig. 2 in the assumed slow-light regime near β ′ = 0. Rather than approaching ω0 with a small
slope, the dispersion relation turns very steep near β ′ ∼ 0. However, we emphasize that this
apparent super-luminal group velocity is accompanied by strong damping, as seen in the right
panel.

Our focus is to explore to which extent a low group velocity will enhance light matter
interactions. Figure 4 shows the corresponding absorption enhancement factor γ along with
the group index ng. In order to correct Eq. (1) for the radiation-induced damping we use
γ ≡ 2 [β ′′ −β ′′(α0 → 0)]/α0. The bending of the dispersion curve discussed above manifests
itself in a saturation of the group index as compared to a diverging group index for the ideal
lossless structure (right panel). However, despite the saturation of the group index, the absorp-
tion may still be enhanced (left panel).The effect of broadening of the electromagnetical modes
causes a smearing of the density of states (DOS) and a removal of the singular behavior. This
has its counterpart in the group index, which remains finite so that the group velocity is limited
by n′′ [21]. This is in particular true for the lowest values of n′′, where the saturation of the
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Fig. 4. Comparison of the absorption enhancement factor (left panel) and the group index
(right panel), both derived from the results in Fig. 3. For the absorbing gas, n′′ is varied
in the range from 0.001 to 0.01. In the right panel, for comparison the dashed line repre-
sents the group index in the ideal structure, neglecting both leakage loss and absorption
(calculated with the aid of a plane-wave method as in Ref. [17]).

group index is less pronounced. However, stronger gas absorption jeopardizes the group index,
and a strong slow-light enhancement is absent. In Ref. [9] it was, by means of perturbation
theory, predicted that γ ∝ ng. While this expression neglects the additional saturation of the
group index itself due to absorption, the fully self-consistent solution still confirms the trend,
as seen by the correlation between a high group index in the right panel and a high absorption
enhancement in the left panel. It is thus evident that the exploitation of a slow light mode en-
ables the enhancement of the net absorption experienced by a beam traversing the structure as
compared to the beam traversing a homogeneous medium. We emphasize, that the weaker the
intrinsic absorption of the gas is, the larger the absorption enhancement that can be achieved by
exploiting the slow-light dispersion relation of the hollow-core fiber. For sensing applications
this is particularly interesting since it allows sensing gas substances in the very dilute regime
and thus highly dispersive hollow-core fibers potentially constitute an interesting platform for
development of such gas sensing devices.
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Fig. 5. The maximal absorption enhancement factor γmax versus intrinsic gas absorption n′′
for the infiltrated gas.

Figure 5 summarizes how the maximum enhancement factor is influenced by intrinsic ab-
sorption of the gas. As discussed above, the enhancement factor increases in the dilute gas
limit, where the intrinsic absorption of the gas becomes lower.

a) b)

c) d)

X

Z

│ │E

│ │E

Fig. 6. Schematic illustration of light rays for a) index-guided and c) band-gap guided
modes. b) and d) show the corresponding field confinement profiles. Very small inclination
of wave vector with respect to the interface in the dielectric slab, panel a), implies a very
weak field confinement, panel b). The multiple reflections in a 2D translationally invari-
ant guide with transversal periodicity, panel c), may cause a more tight field confinement,
panel d).
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Fig. 7. Schematic illustration of complex dispersion relation.The dashed lines mimic the
lossless case while the solid lines are in the presence of moderate damping in the system.
Left panel illustrates the real part of the dispersion relation; middle panel represents the
imaginary part. The right panel shows the: shows the associated DOS illustrating, how the
van Hove singularity is smeared in the presence of damping

4. Discussion

Here we would like to illustrate our ideas with two very simple examples. In the first example
we show how the periodic structure may play a significant role in the field confinement that
is one of the important ingredients in order to have enhanced absorption. The second example
shows changes in the complex dispersion relation induced by a small imaginary part of the
dielectric constant.

The waveguide dispersion of weakly guided modes can be shown not to support enhanced
absorption. Due to the fact that the confinement factor is small, benefits of a slowly propagating
pulse are offset. The confinement factor measures the fraction of the electric field energy con-
centrated in the core region with respect to the total electric energy in the structure. In Fig. 6(a)
we show a weakly guiding dielectric slab where the corresponding geometrical rays are almost
parallel to the interface, resulting in the electric field being weakly confined in the structure, see
Fig. 6(b). The confinement factor can be made larger by making the waveguide wider, but not
without jeopardizing the slow-light propagation supported by the wave guide dispersion. More
formally, if we derive the weakly guiding propagation equation no slow-light enhancement oc-
curs [11]. Figure 6(c) illustrates a contrasting case where multiple scattering from a periodic
Bragg structure serves to strongly confine the mode in the core, see Fig. 6(d), while at the same
time supporting a longer effective propagation path.

In Fig. 7 we schematically illustrate the effects of the imaginary part of the refractive index
on the complex dispersion relation and density of states. The group velocity vg goes to zero
near the band edge in the lossless case (red dotted lines), while losses (blue lines) introduce a
bending that leaves vg finite. Likewise, the middle panel shows how the attenuation turns finite
also inside the band. Below the cut-off of the band (ω < ω0), the lossless case corresponds to
purely imaginary values for β and the mode is not propagating in this frequency region. In the
right panel, the loss manifests itself as a smearing of the van Hove singularity in the DOS. In
conclusion, in the presence of absorption, vg will be significantly modified in the β ′ = 0 region.
We emphasize that the apparent superluminal behavior associated with the very steep part of
curve of course is accompanied by a pronounced damping as seen from the middle panel.
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5. Conclusion

We have analyzed the possibility for slow-light enhanced absorption in translationally invariant
waveguides with strong confinement and waveguide dispersion. As a particular example we
have shown how hollow-core photonic band gap fibers may potentially be used for enhanced
absorption measurements in the context of detection of dilute and weakly absorbing gasses. Our
work offers an important example of the possibility of enhanced absorption due to slow-light
waveguide dispersion, even in translationally invariant structures, thus confirming expectations
based on perturbation analysis. Our results also illustrate the importance of treating the issues
of absorption and group index on an equal footing and in a fully self-consistent way: while
a high group index promotes enhanced absorption the absorption serves to saturate the group
index.
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A common strategy to compensate for losses in optical nanostructures is to add gain material in the

system. By exploiting slow-light effects it is expected that the gain may be enhanced beyond its bulk

value. Here we show that this route cannot be followed uncritically: inclusion of gain inevitably modifies

the underlying dispersion law, and thereby may degrade the slow-light properties underlying the device

operation and the anticipated gain enhancement itself. This degradation is generic; we demonstrate it for

three different systems of current interest (coupled-resonator optical waveguides, Bragg stacks, and

photonic crystal waveguides). Nevertheless, a small amount of added gain may be beneficial.

DOI: 10.1103/PhysRevLett.108.183903 PACS numbers: 42.70.Qs, 41.20.Jb, 42.25.Bs, 78.67.�n

Light-matter interactions in periodic structures can be
significantly enhanced in the presence of slow-light propa-
gation. This paradigm has led to several important discov-
eries and demonstrations, including the enhancement of
nonlinear effects [1–7], Purcell effects for light emission
[8], light localization [9], as well as slow-light enhanced
absorption and gain processes [10–14]. Loss is an inherent
part of any passive optical material, and the inclusion of
gain material is presently receiving widespread attention in
many different situations, ranging from the fundamental
interest in gain-compensation of inherently lossy metama-
terials [15–18] and spasing in plasmonic nanostructures
[19,20], to active nanophotonic devices such as low-
threshold lasers [21] and miniaturized optical amplifiers.
There is a common expectation that if a material with net
gain g0 is incorporated in a periodic medium, such as
Bragg stacks, photonic crystals (PhC) or metamaterials,
the gain will effectively be enhanced to geff � n0gg0, where

n0g is the group index associated with the underlying dis-

persion relation !0ðkÞ of the passive structure. In a device
context the gain enhancement is anticipated to allow
shrinking the structure by a factor equivalent to the group
index, while maintaining the same output performance.
However, this reasoning implicitly assumes that gain can
be added without considering its impact on !0ðkÞ—an
assumption that calls for a closer scrutiny.

In this Letter, we analyze the modification of the disper-
sion due to gain, and show that a large gain will eventually
jeopardize the desired slow-light dispersion supported by
the periodic system, thus suppressing the slow-light in-
duced light-matter interaction enhancement anticipated in
the first place. On the other hand, a small amount of
material gain is shown to beneficial. Thus, importantly,
devices employing quantum-dot gain material may display
a superior performance.

Early investigations emphasized simple one-
dimensional periodic media such as Bragg stacks in the
context of slow-light enhanced gain and low-threshold
band-edge lasing [22]. Likewise, the related phenomenon
of slow-light enhanced absorption was proposed as a route
to miniaturized Beer-Lambert sensing devices [11].
Slow-light enhancement thus appears to be a conceptual
solution to a wide range of fundamental problems involv-
ing inherently weak light-matter interactions or techno-
logical challenges calling for miniaturization or enhanced
performance. However, recent studies of linear absorption
[23,24] suggest that ng itself is also affected by the pres-

ence of loss. Likewise, the gain may also influence ng [25]

and analytical studies of coupled-resonator optical wave-
guides (CROW) show explicitly that the group index and
attenuation have to be treated on an equal footing and in a
self-consistent manner [26]. Here, we show that the same
considerations apply to gain, and illustrate the general
consequences with the aid of three examples. Recent stud-
ies on random scattering showed that fabrication disorder
leads to a loss that increases with the group index [27,28].
This effect imposes another limitation to the degree of light
slow-down that may be useful for the applications.
However, in contrast, the effect investigated here is intrin-
sic, and will impede the performance even of a perfectly
regular structure.
Coupled-resonator optical waveguide.—We consider

first a CROW formed by a linear chain of identical and
weakly coupled neighboring optical resonators (inset of
Fig. 1). In the frequency range of interest the individual
resonators support a single resonance at � and when
coupled together they form a propagating mode with
dispersion relation [29]

!ðkÞ ¼ �ð1� ig0Þ½1� � cosðkaÞ�: (1)
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Here, a is the lattice constant while g0 and � are dimen-
sionless parameters representing the material gain and the
coupling, respectively. Our sign convention for the gain
term is associated with an expði!tÞ time dependence,
corresponding to a real-valued frequency relevant for the
excitation by a cw laser source. Inverting Eq. (1) leads to a
complex-valued Bloch vector kð!Þ ¼ k0ð!Þ þ ik00ð!Þ. The
group velocity is computed from vg ¼ ð@k0=@!Þ�1. The

photonic density of states (PDOS) is in general propor-
tional to the inverse group velocity and in this particular
example � ¼ a=ð�vgÞ. In Fig. 1 we show the PDOS for a

typical CROW, e.g., for a structure working at around the
telecom wavelength,�� 1015 s�1, the figure corresponds
to a lattice constant of a� 300 nm. For the passive struc-
ture with g0 ¼ 0 the characteristic van Hove singularities
at the lower and upper band edges are found. In the
presence of damping (g0 < 0) one expects a smearing of
the PDOS and broadening of the singularities [26].
Intuitively, one might expect that loss compensation by
addition of gain material will sharpen the PDOS features,
but a priori it is not clear what net gain (g0 > 0) will result
in. However, with the dispersion relation (1) one can show
that changing the sign of g0 causes no changes in the
PDOS, as is also evident from the plotted results (blue-
dashed line). In the context of the intrinsic quality factor
Q0 of the resonators we note that Q0 ¼ 1=ð2jg0jÞ [26],
which in the present case corresponds to aQ0 ¼ 500. Since
ng / � we conclude that both loss and gain will reduce

the maximal achievable group index, in particular, near
the band edges where the group index would otherwise
diverge. For the lossy case this is easily understood in
terms of multiple scattering, where even a small imaginary
absorption coefficient will eventually cause a dephasing of

the otherwise constructive interference leading to a
standing-wave formation at the band edges. For gain the
situation is very much the same; in this situation the multi-
ply scattered wave components increase in amplitude and
eventually prevent the perfect formation of a standing-
wave solution. Mathematically, changing the sign of g0
simply corresponds to a complex conjugation of kð!Þ, thus
rendering the real part and the derived PDOS and group
index invariant. This observation clearly illustrates a po-
tential conflict for the anticipated slow-light enhancement
of gain if a too high material gain is added. This effect is
not special to the CROW as the following two examples
demonstrate.
Bragg stack.—Next, we turn to a one-dimensional real-

ization of a more complex PhC concept: the dielectric
Bragg stack consisting of alternating layers of thickness
a1 and a2, with dielectric constants �1 and �2, respectively
(inset of Fig. 2). The dispersion relation is given by

cosðkaÞ ¼ cos

� ffiffiffiffiffi
�1

p
a1

!

c

�
cos

� ffiffiffiffiffi
�2

p
a2

!

c

�
� �1 þ �2

2
ffiffiffiffiffi
�1

p ffiffiffiffiffi
�2

p

� sin

� ffiffiffiffiffi
�1

p
a1

!

c

�
sin

� ffiffiffiffiffi
�2

p
a2

!

c

�
; (2)

where a ¼ a1 þ a2 is the lattice constant and c is the speed
of light in vacuum. The dielectric constants can be complex
valued, allowing for analysis of both lossy and gain media
[22,30]. The characteristic dispersion diagrams for Bragg
stacks are readily derived from k0ð!Þ. Here we examine the
imaginary part k00ð!Þ, central to our discussion of slow-
light gain and loss enhancement. For simplicity, we assume
that gain is added to both layers 1 and 2, so that all modes
experience the same field overlap with the gain material.
Relaxing this assumption will influence the different bands
in a slightly different manner, but without changing the
overall conclusions. Figure 2 shows a plot of k00 versus !,

FIG. 2 (color online). Imaginary part of Bloch vector k00 versus
frequency!, for a Bragg stack with a2¼2a1, �

0
2¼3, and �01 ¼ 1

[31]. The passive structure (green line) exhibits clear band gaps
(yellow shading), which are being smeared out for moderate gain
or loss, �00 ¼ �0:1 (red line). Exaggerated large gain or loss
(�00 ¼ �1) eventually removes the band-structure effects (blue
line).

FIG. 1 (color online). Photonic density of states (per resonator)
� (lower horizontal axis) and group index ng (upper horizontal

axis) versus frequency !, for a CROW with � ¼ 0:03. For
passive resonators with g0 ¼ 0, van Hove singularities appear
at the band edges. For g0 ¼ �0:01, gain or an equivalent loss
cause a similar smearing of the singularities.
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emphasizing both the positive and negative branches asso-
ciated with backward and forward propagating branches in
the usual k0 versus ! dispersion diagram (not shown,
however, see Ref. [31]). For the gainless material the
imaginary part k00 is nonzero only inside the band gaps
(shaded areas) while it vanishes inside the bands of free
propagation. As the gain is moderately increased (g0 �
2000 cm�1 realizable, e.g., with GaAs, see [31]), a finite,
enhanced gain develops inside the bands. Clearly, k00
remains finite near the band edges, in contrast to a diverg-
ing enhancement as predicted by a lowest-order perturba-
tive treatment [11], where the backaction of material gain
on the group index is neglected. For exaggerated larger
values of g0 there is no reminiscence of the band gaps: the
structure effectively responds as a homogeneous material.

Photonic crystal waveguide.—As the final example, we
consider PhC waveguide structures with a strong trans-
verse guiding due to the presence of a periodic photonic
crystal cladding (inset of Fig. 3). Firm light confinement
and strong structural dispersion with high ng [14,32,33]

make such waveguides interesting candidates for compact
photonic devices and for fundamental explorations of
light-matter interactions [9,12]. Because of the need of a
nonperturbative treatment, analytical progress is difficult
and we proceed numerically with the aid of a finite-
element method. We use a supercell approach with bound-
ary conditions fulfilling Bloch-wave conditions with
complex wave number k in the direction of the waveguide
and simple periodic conditions in the transverse direction
[34]. As in the Bragg stack example we model gain by
adding a small imaginary part �00 to the base material of the
photonic crystal. For a specified real-valued frequency !
we find the associated complex k by diagonalizing a com-
plex matrix eigenvalue problem. Mathematically, changing
the sign of �00 leads to the adjoint eigenvalue problem and
thus the new eigenvalues are just the complex conjugates
of the former. Physically, the group index and the PDOS
thus remain unchanged when going from loss to a
corresponding gain, while there of course is a change

from a net loss to a net gain when inspecting the changes
in k00.
To make contact to practical nanophotonic applications,

we parametrize the homogeneous material gain as g0 ¼
2ð!=cÞn00, where n ¼ n0 þ in00 ¼ ffiffiffi

�
p

is the complex re-
fractive index of the material. For the specific simulations
we consider a semiconductor planar PhC (�0 ¼ 12:1) with
a triangular lattice of air holes, with lattice constant a and
air-hole diameter d ¼ 0:5� a. Light is localized to and
guided along a so-called W1 defect waveguide formed by
the removal of one row of air holes from the otherwise
perfectly periodic structure. Gain in such structures can be
realized by embedding layers of quantumwells or quantum
dots, which are pumped externally to provide net gain. For
simplicity we restrict ourselves to a two-dimensional rep-
resentation; this does not alter our overall conclusions.
This PhC is known to support a guided mode, displaying
a low group velocity when k0 approaches the Brillouin zone
edge. In Fig. 3 we show the associated group index versus
frequency. For the passive structure a clear divergence
occurs around !�a=ð2�cÞ ¼ 0:205 25. As n00 is increased
the divergence is smeared out and eventually the group
index approaches a constant value well below 50 through-
out the frequency range for n00 still as small as 7:2� 10�3.
Quite surprisingly, increasing the n00 from 1:4� 10�5 by
roughly a factor 500 to 7:2� 10�3 causes a reduction in
the maximal group index from more than 500 to around 50.
This shows that the addition of gain may reduce the an-
ticipated group index, and as a consequence, also the
desired slow-light enhancement of the gain.
Figure 4 shows the effective gain geff ¼ 2k00 (right-hand

axis) versus g0 evaluated at !� (where the propagation is
initially slowest). Recalling the introductory discussion we
anticipate an enhancement proportional to ng for low gain

and indeed geffa starts out with a big slope in the low-gain
limit; i.e., gain is greatly enhanced. However, at the singu-

larity ngðg0Þ / g�1=2
0 [23], and consequently

geffðg0Þ / ngðg0Þg0 / g1=20 ; (3)

which is indeed supported by the full numerical data
(circular data points) and the indicated square-root depen-
dence (right-hand axis). The slow-light enhancement fac-
tor � ¼ geff=g0 (left-hand axis) is correspondingly large
for low g0. Since !

� is slightly detuned from the singular-

ity a more detailed analysis yields ng / ðconstþ g0Þ�1=2

[24] and consequently a deviation from the square-root
dependence for small g0 takes place (see inset). To make
a connection with real gain materials, we consider an
implementation at telecom frequencies with quantum
dots as the active medium. Typically, g0 is in the range
of 10–45 cm�1 [35] corresponding to n00 in the range from
1:5� 10�4 to 7:5� 10�4. The slow-light enhanced gain
could then be as high as 1300–2835 cm�1, corresponding
to a gain enhancement extending from � ¼ 130 down to

FIG. 3 (color online). Group index ng versus frequency !, for
a photonic crystal semiconductor waveguide with varying gain
g0 / n00.
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60 for the highest gain. This analysis implicitly assumes
that the passive structure itself is ideal and with a diverging
group index. However, disorder and imperfections will
inevitably be present no matter the effort invested in the
fabrication of the PhC. Ensemble averaging over disorder
configurations will have the same overall effect on the
PDOS as gain or absorption will have; singularities be-
come smeared and the group index assumes a finite value.
Clearly, such broadening cannot be compensated by the
addition of gain and the achievable effective gain may turn
out lower than the estimate given above.

Symmetry points and Brillouin zone edges.—Finally, we
discuss our results in the context of Bloch-wave physics,
inherent to the general class of periodic photonic metama-
terials. From the Bloch condition, the dispersion relation
!ðk0Þ must necessarily be symmetric with respect to the
zone edges (e.g., k0 ¼ �=a for a Bragg stack). In the case
of structures with zero gain (loss), this condition is met by
@!=@k0 ¼ 0 at the zone edge, corresponding to a standing-
wave pattern. However, in the presence of nonzero gain
(loss), k is in general complex and the mode may even
propagate inside the band gap region, albeit heavily
damped. In this case, the symmetry condition is met
by having two branches of solutions that extend across
the band gap and with a degeneracy at the zone edge
(i.e., crossing bands near the center of the band gap) and
correspondingly the group index remains finite. Examples
of such modes have been depicted in a number of recent
works on lossy dielectric problems [25,26] and for damped
plasmonic systems [34,36]. In an attempt to compensate

the inherent loss of metamaterials, gain should thus be
added with care; while modes seem unaffected under a
lasing condition (zero net gain) the anticipated dispersion
properties may be jeopardized in an amplifier setup if a too
high net gain develops. We have focused on the regime of
weak input signals, as appropriate to characterize the
small-signal gain properties of an amplifier with no need
to include saturation effects of the medium. Beyond this
regime there would be a need for a self-consistent solution
of the nonlinear light-matter coupling [16,17], possibly
revealing new interesting findings when approaching the
saturation regime.
In conclusion, adding gain to a periodically structured

photonic material changes the dispersion properties and the
slow-light enhanced gain in a complex manner. By both
analytical examples and a numerical study we have illus-
trated how a large material gain degrades the slow-light
properties supported by the corresponding passive struc-
ture, thereby eventually limiting the effective gain en-
hancement. Waveguide designs away from the band edge
constitute an interesting case in the context of quantum-dot
gain material. Here, the impact of gain is less detrimental
and slow-light gain enhancement is possible with typical
enhancement factors in the range from 60 to 130.
This work was financially supported by the Villum Kann

Rasmussen Foundation (via the NATEC Center of
Excellence), the EU FP7 project GOSPEL, and the
FiDiPro program of Academy of Finland.
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[26] J. Grgić, E. Campagnoli, S. Raza, P. Bassi, and N.A.
Mortensen, Opt. Quantum Electron. 42, 511 (2011).

[27] M. Patterson, S. Hughes, S. Combrié, N.-V.-Quynh Tran,
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