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Abstract

Constrained resources like memory, power, bandwidth and delay require-
ments in many mobile systems pose limitations for video applications.
Standard approaches for video compression and transmission do not al-
ways satisfy system requirements. In this thesis we have shown that it is
possible to modify and optimize conventional algorithms in order to con-
vert them into low-complexity solutions and satisfy system constraints.

We have studied low-complexity approaches for video compression
without motion estimation. We have proposed scalable (progressive) so-
lutions for video compression with low memory consumption based on
image coding standards. Scalability aspects were studied for distributed
video coding as well. We have compared temporal scalability for dis-
tributed and scalable video coding and provided recommendations for
the choice of one of these solutions based on the system requirements.
Another comparison regarded power consumption for distributed video
coding and H.264/AVC standard. We also proposed a scalable-to-lossless
extension of transform domain Wyner-Ziv codec that allows bit savings
compared to lossless coding by standard algorithms. Scalability aspects
were also studied in perspective of video quality. We proposed a new
metric for objective quality assessment that considers frame rate.

As many applications deal with wireless video transmission, we per-
formed an analysis of compression and transmission systems with a fo-
cus on power-distortion trade-off. We proposed an approach for rate-
distortion-complexity optimization of upcoming video compression stan-
dard HEVC. We also provided a new method allowing decrease of power
consumption on mobile devices in 3G networks. Finally, we proposed
low-delay and low-power approaches for video transmission over wireless
personal area networks, including 60GHz fiber-wireless link.
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Resumé

Begrænsede ressourcer som hukommelse, energi, båndbredde og forsinkelse
medfører begrænsninger for video-applikationer i mobile systemer. Stan-
dardmetoder til videokompression og transmission opfylder ikke altid
systemkravene. I denne afhandling har vi vist, at det er muligt at mod-
ificere og optimere konventionelle algoritmer og dermed konvertere dem
til lavkompleksitetsløsninger, der tilfredsstiller systemets begrænsninger.

Vi har undersøgt tilgange med lav kompleksitet for videokompression
uden bevægelsesestimation. Vi har foreslået skalerbare løsninger med
lavthukommelsesforbrug baseret på billed-kodningsstandarder. Skaler-
barhedsaspekter blev også undersøgt for distribueret videokodning. Vi
har sammenlignet tidsmæssig skalerbarhed med distribueret og skaler-
bar videokodning og givet anbefalinger til valget af en af disse løsninger
baseret på systemkravene. I en anden sammenligning betragtes en-
ergiforbrug for distribueret videokodning og H.264/AVC standard. Vi
har også foreslået en skalerbar-til-tabsfri udvidelse af transformations-
domæne Wyner-Ziv codec, der tillader bitbesparelse i forhold til tabsfri
kodning med standardalgoritmer. Skalerbarhedsaspekter blev også un-
dersøgt med henblik på videokvalitet. Vi har foreslået en ny metrik for
objektiv kvalitetsvurdering, der inkluderer frame rate.

Da der er mange videotransmissionsapplikationer, har vi analyseret
videokommunikationssystemer med fokus på et trade-off mellem energi
og forvrængning. Vi har foreslået en strategi for rate-forvrængning-
kompleksitets optimering af en kommende videokompressionsstandard
HEVC. Vi har præsenteret en ny metode, der gør det muligt at reducere
energiforbruget på mobile enheder i 3G-net. Endelig har vi foreslået en-
ergibesparende metoder med lave forsinkelser til videotransmission via
trådløse personlige netværk, herunder et 60GHz fiber-trådløst link.
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Chapter 1

Introduction

1.1 Motivation

The 21st century is marked by a rapid development in many spheres of
Information and Communications Technologies (ICT). Within just few
years there has been a significant growth in amount of internet users that
has almost doubled from 2006 to 2011, and in amount of mobile-cellular
subscriptions worldwide that have almost reached 6 billion. At the same
time internet bandwidth grew exponentially from 11000 GBit/s in 2006
to almost 80000 GBit/s in 2011, and mobile broadband subscriptions
have reached almost 1.2 billion [12]. Together with internet communi-
cations and mobile systems there is also a vast development of related
applications. Among these video applications are taking a significant
place. According to Cisco, by the end of 2011 mobile video traffic was
52 % of all data traffic. Moreover, they predict that by 2016 over 70 %
of the world’s mobile data traffic will be video [13]. Thus, video appli-
cations are rising in popularity and becoming ubiquitous. A good exam-
ples of popular video applications are videoconference services such as
Skype [14] or video sharing websites like YouTube [15]. At the same time,
the amount of mobile subscriptions is also growing very fast. Therefore
bandwidth demand due to data, especially video, is increasing. It means
that in these conditions video compression is essential as uncompressed
data transmission requires a much higher bandwidth, which is often not
feasible for current transmission technologies.

1
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2 Introduction

1.1.1 State-of-the-art video coding standards

In the last decades there have been published many international stan-
dards, such as Advanced Video Coding (H.264/AVC) [16, 17], Scalable
Video Coding (H.264/SVC) [18,19], Multiview Video Coding (MVC) [20,
21] and some other video compression algorithms like Distributed Video
Coding (DVC) [22]. As they were developed in different times and for
different needs, these algorithms have different features and differ in their
performance and algorithmic properties. For example, DVC represents
a low-complexity solution for the encoder while Scalable Video Cod-
ing (SVC) provides scalable bit streams. If applied in mobile systems,
these algorithms have to be adapted to handheld devices that have con-
strained resources such as memory and power. Additional limitations in-
clude delay requirements, especially in real-time video communications,
and constrained bandwidth. There is no ideal solution that satisfies all
these requirements, but there is an ongoing research in the direction of
video codecs adjustment and development, and a number of improve-
ments have been suggested over time.

The H.264/AVC standard is the state-of-the-art in video coding and
is widely used, e.g. for video streaming, High-Definition Television (HDTV)
broadcasts and in Blue-ray discs. Its successor, the High Efficiency Video
Coding (HEVC) [23], is being standardized nowadays. It promises to be
a more efficient solution in terms of compression performance and it is
supposed to be adapted to higher resolution videos.

1.1.2 Challenges in video codec design

Creation of new and more efficient, but at the same time more complex,
standards does not mean that more simple solutions cannot be useful as
well. Existing video communication systems and relative video applica-
tions are so different in nature and required features that it seems un-
feasible to develop a general solution that suits all needs. For example,
high-complexity solutions do not fit applications that need low power
consumption. The state-of-the-art scalable video codec H.264/SVC is
quite complex which can restrict its use in low-power systems such as
video surveillance or video streaming where the scalability feature can be
very convenient. Therefore, it might be necessary to have an alternative
solution that provides comparable performance but with simpler imple-
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1.1 Motivation 3

mentation in terms of complexity and power consumption costs [6, 7].
It is also important to have effective ways to compare the performance

of different video compression schemes. The most complicated case is
the one of scalable schemes that produce compressed sequences with
various frame rates, spatial resolutions or fidelity. While there exist
conventional methods of comparing quality (fidelity), like Peak Signal-
to-Noise Ratio (PSNR), it is still an open question how to compare
video sequences with different temporal and spatial resolutions. Novel
objective metrics try to find an effective solution to this problem [24–27].

1.1.3 Wireless video applications

Video transmission takes a significant part of the overall data transmis-
sion in mobile systems. Wireless video transmission schemes are based
on various mobile networks such as 3G or high-speed Wireless Personal
Area Networks (WPANs) [28–30]. These schemes can be naturally di-
vided into compression and transmission parts in which optimization and
adaptation are applied either jointly or separately. The overall power
consumption depends on the complexity of both parts, which are in-
fluencing each other. Overall power consumption of video transmission
systems can be adjusted by power management systems. Cross-layer op-
timization allows controlling transmission parameters in order to achieve
desired power consumption level. At the encoder side it is represented
by a rate-control algorithm that tries to minimize the overall distortion
under given bit rate constraints ideally taking both encoder power con-
sumption and latency requirements into account [10].

1.1.4 Goals of the thesis

The main focus of this Ph.D. project is on efficient low-complexity so-
lutions for video communication systems under constrained resources.
This work considers low-complexity and scalable compression schemes,
quality assessment for scalable video coding and applications of video
compression in communication systems.

The goals of this thesis are to show that it is possible to modify, adjust
and optimize conventional approaches in video compression and trans-
mission in order to convert them into low-complexity solutions operating
under specific constraints. Among additionally studied features, we paid
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4 Introduction

a close attention to scalability issues due to the growing heterogeneity of
the wireless networks and capabilities of client terminals.

1.2 Structure of the thesis

The Ph.D. studies resulted in 11 peer-reviewed journal and conference
contributions [1–11]. 9 of them [1–3,6–11] are included in this thesis (see
Appendix A).

The publications are within the fields of distributed video coding,
scalable video coding, low-complexity approaches for video communica-
tion systems, power consumption analysis and visual quality assessment.

The remainder of this thesis is organized as follows: in Section 1.3 we
provide an overview of Ph.D. publications that represent the base of this
thesis. These publications are divided in two groups: “Video compression
systems” (Chapter 2) and “Video transmission systems” (Chapter 3).

Chapter 2 gives an introduction to video compression systems with
a focus on low-complexity and scalable solutions. It begins with an
overview of general scheme of video codec. Further we discuss character-
istics and properties of compression algorithms and describe comparison
criteria. Image and video codecs are presented afterwards. In this chap-
ter we also discuss applications with constrained resources that require
the use of specific compression algorithms, and describe quality assess-
ment for scalable video data.

In Chapter 3 aspects of wireless video transmission are discussed.
First, we describe modern communication systems and application sce-
narios for systems with constrained resources such as delay and power
consumption. We take a closer look at 3G networks and WPANs as
examples for application of video compression to wireless networks. We
consider that complexity relates to the system power consumption either
in terms of battery capacity or hardware processing power. Therefore,
we propose cross-layer optimization for low-delay low-complexity video
transmission in 3G networks and WPANs, including joint fiber-wireless
transmission in the 60 GHz band. Then we discuss rate-distortion-
complexity trade-off and propose a method for complexity control for
the upcoming HEVC standard.

Finally, conclusions and outlooks for the work presented in this thesis
are given in Chapter 4.
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1.3 Description of Ph.D. publications

1) Video compression systems

• Encoder power consumption comparison of Distributed
Video Codec and H.264/AVC in low-complexity mode [9]

In this paper we have compared a DVC encoder [31] with an al-
ternative low-complexity encoder - baseline profile of H.264/AVC
working in differential frame coding mode with Context-Adaptive
Variable-Length Coding (CAVLC) as entropy encoder. The com-
parison criterion was based on the power that the encoder consumes
in order to provide a given PSNR value. We designed a simple
model for relative power consumption of H.264/AVC and DVC and
provided an equation that shows the dependency of the power con-
sumption gain on implementation efficiency of CAVLC and Low-
Density Parity-Check (LDPC) coder and coding efficiency of the
compared algorithms. Rate-distortion performance combined with
estimated power consumption was used for evaluation of PSNR
vs. power consumption relationship. Results showed that, for the
most relevant visual quality range of 30 - 40 dB, DVC with LDPC
coder allows to decrease the power consumption of entropy coding
about 15 - 60% compared to CAVLC in H.264/AVC with differen-
tial frame coding. However, only the kernel of the video codecs has
been compared. Moreover, DVC utilizes H.264/AVC encoder for
intra/key frames. This leads to such an increase in the complexity
that it may be preferable to use H.264/AVC in differential coding
mode in systems that require low encoding complexity.
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• Temporal scalability comparison of the H.264/SVC and
Distributed Video Codec [11]

In this work we have analyzed the efficiency of temporal scalability
in DVC [22] and H.264/SVC [18]. For comparison we have used
DISCOVER DVC [31], our implementation of DVC codec, and the
H.264/SVC reference software [32]. We presented scalability im-
plementations in DVC and SVC solutions, discussed the differences
and presented the test conditions. We provided also a comparison
of complexity and required memory size, and of rate-distortion per-
formance for the discussed approaches. Results showed that with
the availability of the temporal scalability, the appropriate encod-
ing method (scalable or distributed video coding) should be chosen
based on the memory constraints.

• Scalable-to-Lossless Transform Domain Distributed Video
Coding [8]

In this work we presented a scalable-to-lossless distributed video
codec as an extension of lossy Transform DomainWyner-Ziv (TDWZ)
distributed video codec [33] with feedback based on Discrete Co-
sine Transform (DCT). Scalable-to-lossless solutions may be used
for high-quality applications where lossless is desirable, but the sys-
tem cannot (at least, efficiently) guarantee the resources for lossless
coding. We proposed to apply reversible integer DCT to provide
lossless coding. We also described a new backward adaptive coding
scheme and illustrated potential for improvement of scalable-to-
lossless TDWZ as well as feasibility of efficient scalable-to-lossless
coding using reversible integer DCT. Experimental results showed
that the proposed scalable-to-lossless TDWZ video codec can out-
perform alternatives based on the JPEG2000 standard. As for
lossless coding efficiency, the proposed scalable-to-lossless TDWZ
codec can save between 5 - 13% in terms of bit stream size com-
pared to lossless coding by JPEG-LS, JPEG2000 and H.264 Intra
frame coding. Compared with low-complexity Inter frame lossless
coding schemes (i.e. JPEG-LS Diff and JPEG2000 Diff), the pro-
posed scalable-to-lossless TDWZ video codec gave better or com-
parable performance for sequences with complex motion, but not
competitive results for the mostly static sequences.
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• Extending JPEG-LS for low-complexity scalable video cod-
ing [6]

In this paper we proposed a simple low-complexity solution for
two-step scalable lossless compression based on JPEG-LS. We com-
pared our solution with the leading image and video coding stan-
dards supporting scalability - JPEG2000 and H.264/SVC - in low-
complexity modes, suitable for wireless video applications. We
presented the constraints motivated by wireless applications and
adapted configuration parameters of the codecs to these conditions.
We provided the rate-distortion performance evaluation of the pro-
posed and competitor algorithms for the task of real-time wireless
high-quality low-complexity video transmission. The comparison
showed that the proposed scheme can provide better performance
than standard solutions for specific video contents at high rates.

• Low-complexity JPEG-based progressive video codec for
wireless video transmission [7]

In this paper we took a look at the enhancement of video cod-
ing in the case of memory and complexity constraints. First,
we showed the possibility of tuning the JPEG2000 algorithm for
different image types like natural or synthetic images when the
tiling option is used in order to provide low memory consumption.
Then, we proposed our simplified version of progressive JPEG al-
gorithm adapted for video compression under specific constraints,
for which existing image and video compression algorithms, suit-
able for general conditions, fail to give the best performance. We
slightly modified the standard JPEG algorithm in almost all cod-
ing blocks ranging from domain forming procedure to Run Lengths
encoding procedure and Huffman coding. Compared to the full-
featured JPEG2000 coding system with adjusted parameters, we
got a simple solution with reduced complexity and memory con-
sumption that allows providing good compression performance on
High-Definition (HD) computer graphics, while for other contents
the compression/quality ratio decreases slightly.
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• Objective assessment of the impact of frame rate on video
quality [1]

In this paper, we studied the impact of frame rate on video quality
and proposed a novel objective quality metric that takes temporal
resolution into account. Using the results from a previous sub-
jective study [34], we estimated the Perceptual PSNR (PPSNR)
and found a function that allows predicting these values by using
PSNR, frame rate and a content dependent parameter that can
be easily obtained from spatial and temporal characteristics of the
video. In order to evaluate the performance of the proposed met-
ric, our metric has been compared with two other objective metrics,
VQMTQ [26] and STVQM [27]. We observed that, on average, the
proposed metric is capable of predicting the subjective preferences
more accurately than those two metrics.

2) Video transmission systems

• Low-latency video transmission over high-speed WPANs
based on low-power compression [10]

In this paper we discussed latency-constrained video transmission
over high-speed WPANs. We analyzed end-to-end distortion and
showed that for its minimization it is sufficient to minimize the
quantization distortion only. We further presented a near-optimal
video source rate control algorithm based on the MINMAX quality
criterion. The proposed rate control is constructed in one-pass
mode, therefore it does not contribute much to the overall encoder
power consumption. Practical results for video transmission using
H.264/AVC standard over 60 GHz channel showed that in “good”
channel conditions the low-power version of H.264/AVC encoder
with rate-control provides lossless video bit rate equal to 1.5 Gbps,
which allows saving channel throughput. In “bad” channel states,
the proposed rate control algorithm provides adaptation to varying
channel conditions and guarantees acceptable video quality for the
given channel throughput.
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• Optimization of high-definition video coding and hybrid
fiber-wireless transmission in the 60 GHz band [3]

(This paper is an extended version of the conference paper [4])

In this paper we presented the study of high quality HD compressed
video transmission over a 60 GHz fiber-wireless network. Our ex-
periments and simulations demonstrated that there is a trade-off
between the distortion introduced by the source (due to lossy com-
pression) and distortion introduced by the channel. We achieved
high delivery quality for a given link budget by joint optimiza-
tion of physical layer parameters of a Radio over Fiber (RoF)
link (power levels, distance) and codec parameters (quantization,
error-resilience tools) for H.264/AVC in a low-complexity low-delay
configuration. Employment of error-resilience tools of H.264/AVC
with simplified settings showed a greater robustness against im-
pairments that occur in 60 GHz fiber-wireless channel.

• Power consumption analysis of constant bit rate video
transmission over 3G networks [2]

(This paper is an extended version of the conference paper [5])

This paper presents an analysis of the power consumption of video
data transmission with constant bit rate over 3G mobile wireless
networks. We proposed a model for power consumption in the
most consuming state of the Radio Resource Control (RRC) and
showed how power consumption is related to the packet size and
transmission interval. The comparison with the reference model
based on data rate showed that the proposed model provides a
better approximation of the experimental results. We discussed
how the power consumption depends on the transmission parame-
ters and explained how it can be reduced by optimizing the power
management policy. Namely, we proposed a method of parameter
selection for the 3GPP transition state machine that allowed to de-
crease power consumption on the mobile device in case of constant
bit rate data transmission. Further, we investigated few particular
cases with limitations for the amount of signaling traffic, buffer
size and buffering latency. We extended our analysis to the case
of constant bit rate video transmission and discussed the gain in
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power consumption vs. PSNR when applying our proposed method
instead of the one currently used in 3G. We also presented the pos-
sibility of performing power consumption management based on
the requirements for the video quality.
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Chapter 2

Video compression systems

2.1 Introduction

Video data is widely used in many spheres of our life. Digital broadcast-
ing brings high-quality TV signal to our houses, CD, DVD and Blu-ray
discs allow to store movies, Internet services such as YouTube offer mil-
lions of videos, videoconference services like Skype let us see a conver-
sational partner in real time and modern medical devices are also often
equipped with videocameras.

Video compression systems allow to reduce the amount of bits needed
for data storage or transmission. In contrast to compressed video signals,
uncompressed video data require larger storage space or transmission
bandwidth. An uncompressed video sequence of Common Intermediate
Format (CIF) resolution (352×288) and 30 frame per second (fps) in 4:2:0
color format has a bit rate of approximately 37 Mbps while for full-color
4:4:4 uncompressed High-Definition Television (HDTV) video sequence
with 60 fps we need approximately 3 Gbps. A movie in this format with
a length of 90 minutes would require over 2000 Gigabytes (GB) of data
space.

At the same time, 3G networks provide on average bit rates from few
hundreds kbps to few Mbps. Typical DVD bit rates vary from 4 to 10
Mbps and digital video broadcasting achieves bit rates up to 19 Mbps.
The maximum available DVD disc capacity is slightly higher than 17
GB.

As can be seen from the numbers above, existing channel throughputs

11
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12 Video compression systems

and digital media device capacities are not high enough for transmission
and storage of uncompressed video data. Most of the modern computers
do not allow real-time HDTV uncompressed video playing either. An
essential solution to this problem is video data compression, which allows
using channel and storage resources more efficiently.

Many compression standards and algorithms, published in the re-
cent time, allow efficient solutions for video encoding. These solutions
differ in the provided features, performance and characteristics. Each
particular video compression task requires an individual approach in the
choice of appropriate solution. For example, video applications designed
for low-power mobile devices require low-complexity methods for video
compression due to the limited battery capacity and hardware capabil-
ities. Another example of applications for wireless video transmission
demonstrates the need for scalable solutions due to the heterogeneity of
the clients in communication systems. Thus, requirements for specific
features of compression algorithms make the task of video codec design
more complex and challenging.

2.1.1 General scheme

A general scheme of video compression system is shown in Fig. 2.1. It
consists of an encoder and a decoder without communication channel.
The scheme of a joint video compression and transmission system is
described in Section 3.1. The general approach to video coding in com-
pression standards includes the following steps: reduction of the color
correlation, exploitation of the redundancies (spatial and temporal) that
are related to the similarities and predictability of data, quantization
and entropy coding.

Color transform

Red, Green and Blue (RGB) components are correlated among them-
selves. In order to reduce this correlation and allow higher compression,
color space conversion can be applied to RGB components of the video
sequence. This conversion is often called RGB to YUV color space trans-
form, however, it is important to note that this name can refer to different
models, namely YUV, YCbCr models and some others. Below we pro-
vide the transform from RGB to YCbCr, which is used in JPEG and
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Figure 2.1: Video compression scheme

MPEG coding standards. Here Y denotes luminance component and Cb
and Cr are the two chrominance components [35].




Y
Cb
Cr


 =




0.257 0.504 0.098
−0.148 −0.291 0.439
0.439 −0.368 −0.071






R
G
B


+




16
128
128


 (2.1)

Spatial transforms

Various transforms like Discrete Cosine Transform (DCT) or Discrete
Wavelet Transform (DWT) are used in video coding standards for re-
ducing spatial redundancy, caused by the correlation of nearby pixels.
These transforms allow concentrating most of the signal energy in a few
transformed coefficients, typically corresponding to low-frequency com-
ponents. The forward and inverse DCT of a 2-D 8× 8 block are defined
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by the following formulas [35]:

Suv =
1

4
CuCv

7∑

i=0

7∑

j=0

sij cos
(2i+ 1)uπ

16
cos

(2j + 1)vπ

16
(2.2)

sij =
1

4

7∑

u=0

7∑

v=0

CuCvSuv cos
(2i+ 1)uπ

16
cos

(2j + 1)vπ

16
, (2.3)

where

CuCv =

{
1√
2

if u, v = 0

1 otherwise,
(2.4)

Suv is the transformed (u, v) DCT coefficient,
sij is the value of the pixel at the position (i, j) in the block.

The DWT scheme is described below in the example of JPEG2000
standard. DWT can be alternatively performed using the lifting scheme [35].
Two wavelet filters are used for DWT in JPEG2000 (see Fig. 2.2): a high
frequency filter h0(n) and a low frequency filter h1(n). First, the wavelet
transform is applied on rows, followed by downsampling with a factor of
two; then on columns with downsampling with a factor of two afterwards
as well. The four obtained matrices HH0, HL0, LH0, LL0 correspond to
the filtering by h0(n) over rows and columns, h0(n) over rows and h1(n)
over columns, h1(n) over rows and h0(n) over columns and h1(n) over
rows and columns. Then DWT can be performed over low-pass matrix
LL0 once again, resulting in matrices HH1, HL1, LH1, LL1. If DWT
is applied to the original signal k times, the result will be consisting of
3k + 1 diminishing matrices.

Motion estimation

Adjacent frames can also be very similar and changes in them are typi-
cally caused by the motion of objects or of the camera, except for scene
cuts. It is therefore possible to reduce temporal redundancy between
frames by using motion compensated prediction, consisting of Motion
Estimation (ME) and Motion Compensation (MC). The most widely
used block-based ME first chooses the best matching block in the refer-
ence frame Fref and finds the displacement between the current block
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Figure 2.2: Discrete wavelet transform [36]

Fcur(x, y) and the best matching block Fref (x+mx, y+my) within the de-
fined search range. Afterwards, the residual (difference) block ∆F (x, y)
between the blocks of current frame Fcur and reference frame Fref is
calculated as follows:

∆F (x, y) = Fcur(x, y)− Fref (x+mx, y +my). (2.5)

Further, the residual ∆F (x, y) is encoded together with the so-called
motion vectors mx and my. If differential frame coding mode is used,
then mx and my are set to 0.

Being an efficient approach for video coding, ME at the same time
gives a significant contribution to the complexity of the encoder that
grows with the increase of the search range.

Quantization

Quantization is the next step in the video compression process. It allows
representing a large range of coefficient values with a smaller set at the
price of reduced fidelity. Quantization matrices for scalar quantization
are constructed taking into account the fact that the human visual sys-
tem is more sensitive to low frequencies, therefore high frequencies values
are usually quantized more. The quantization block in video compres-
sion scheme exploits visual (subjective) redundancy or, in other words,
visual irrelevancy. The loss caused by quantization is irreversible and
afterwards lossless reconstruction is no longer possible. Two parts of
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the decoder - inverse quantization and inverse spatial transform - are
included in the encoder scheme (see Fig. 2.1) so that an identical data
is used in the encoder and decoder for the next frame and drifting is
prevented.

Entropy coding

Finally, an entropy coder is applied to the quantized coefficients. Among
entropy coding schemes used in image and video compression standards
are Variable-Length Coding (VLC) (e.g. Huffman coder that produces
codes with optimal length [37] or Context-Adaptive Variable-Length
Coding (CAVLC) [17]) and adaptive arithmetic coder that considers
varying symbol statistics (e.g. Context-Adaptive Binary Arithmetic Cod-
ing (CABAC) [38]).

In the conventional compression scheme the encoder is more complex
than the decoder.

Decoder scheme

The scheme of the decoder can be represented as an inverse scheme of
the encoding process. Decoded quantized values are scaled by inverse
quantization. Then inverse spatial transform allows to reconstruct the
residuals that are afterwards combined with the result of the prediction.
The decoded picture is used for the prediction of following frames and
can be displayed after inverse color space transform. Typically, it is the
decoder that is standardized. This provides flexibility to the encoding
scheme and allows different implementations.

General scheme applications

The scheme described above is common for many video compression algo-
rithms like ITU-T Recommendation H.261 [39], where it was first intro-
duced, and its successors MPEG-1 [40], H.262 MPEG-2 [41], H.263 [42],
MPEG-4 Part 2 (Visual) [43], H.264/MPEG-4 Part 10 (AVC) [16] and
High Efficiency Video Coding (HEVC) [23]. Given that slight variations
and modifications are possible, the flexibility of this scheme allows to
adjust its blocks to the given conditions and by this achieve relevant
gains.
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2.1.2 Comparison criteria

Even if most algorithms follow the video compression scheme presented
in the previous section, they differ in their characteristics and perfor-
mance. Compression algorithms can be divided into lossless, providing
reconstruction of original data without errors, and lossy, when some
compression artifacts are introduced. Other parameters distinguishing
algorithms are their performance, encoder and decoder complexity, end-
to-end delay, scalability, rate-control options, robustness to data losses
and errors, Region Of Interest (ROI) coding, possibility of random access
etc. Below we present several main comparison criteria for video codecs:
compression ratio, quality and complexity.

Compression ratio

The compression ratio is one of the most obvious and important criterion.
It shows the ratio between compressed and uncompressed data sizes, i.e.
compression efficiency of the algorithm. It can be computed by the
following formula:

Compression Ratio =
Compressed data size

Uncompressed data size
. (2.6)

For the evaluation of the compression performance of the algorithm,
bit rate is often used instead of compression ratio. Bit rate for N com-
pressed frames of the considered video sequence can be computed as
follows:

Bit Rate =
Frame rate

N

N−1∑

i=0

Compressed data size(i). (2.7)

Quality

Another important criterion for comparison of video compression schemes
is the quality of the reconstructed video data or distortion. The meth-
ods for quality measurement are divided into two categories: subjective
and objective measurements. Objective quality assessment analyzes the
characteristics of the video signal while subjective quality assessment is
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based on visual evaluation by human observers. Subjective quality as-
sessment provides the most reliable results that are called ground truth,
as quality is a subjectively perceived feature by nature. Subjective qual-
ity is often represented by Mean Opinion Score (MOS). The most widely
used approach to collect MOS is to ask test subjects to rate the qual-
ity of test stimulus using five point scale ranging from one (bad) to five
(excellent) [44]. As test subjects may interpret subjective quality as well
as rating scales differently, it is often necessary to remove outliers from
the raw test results. However, subjective tests can be influenced not
only by human factors, but also by inadequate test arrangements and
limited test material. Moreover, subjective tests require more resources
and are not suitable for some applications, e.g. real-time quality moni-
toring. Therefore, there is an ongoing development of objective quality
metrics that correlate as good as possible with the human perception of
the video sequences.

One of the most widely used metrics, the Peak Signal-to-Noise Ratio
(PSNR), is computed between two m× n 8 bpp monochrome images X
and Y by the following formula:

PSNR = 10 log10
2552

1
mn

∑m−1
i=0

∑n−1
j=0 [X(i, j)− Y (i, j)]2

. (2.8)

However, PSNR does not correlate perfectly with the subjective opin-
ion [45], neither is it directly applicable for comparison of video sequences
with different spatial or temporal resolution, so more accurate objective
quality metrics are needed. Quality metrics have been steadily evolving
in the recent time [46], and several metrics taking frame rate impact
into account have been proposed, such as QM [25], VQMTQ [26] and
STVQM [27]. However, they have a number of disadvantages, such as
poor performance on low frame rates or complex computation of metric
parameters.

We have proposed a novel objective metric for quality evaluation of
the sequences with different frame rates [1]. Our metric is based on
PSNR, frame rate and a content dependent parameter that can easily
be obtained from slightly modified spatial and temporal activity indices
of the video sequence [47]. On average, the proposed metric shows a
slightly better performance than other metrics [1]. A modification of this
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metric and its performance on different databases is discussed further in
Section 2.5.

Complexity

The third important criterion for the evaluation of compression algo-
rithm is codec complexity that plays an important role for the devices
with constrained resources. It is typically divided into encoder and de-
coder complexity, and can be estimated in terms of amount of elementary
operations, memory or power consumption. It is possible to control the
complexity of the communication system using complexity management
strategies [48]. Such strategies for mobile devices allow to find a desired
trade-off between compression performance and computational complex-
ity. The complexity of the compression algorithm is subject to limitations
due to the device hardware constraints and/or limited battery capacity.
On the one hand, low-complexity solutions allow real-time processing;
on the other hand, they help to decrease the overall power consumption
of the device.

Rate-distortion performance

As the goal of video compression is to compress the video signal with
maximum quality provided the bit rate constraint, two of the above-
mentioned criteria - bit rate and distortion - are typically combined into
rate-distortion performance. It indicates the resulting distortion D (e.g.
PSNR) of the video signal with a given rate R. It is a widely spread
method for comparison of codec performance and it is used in bench-
mark tests [49]. Distortion can be estimated using one of the quality
metrics. Video quality metrics that take temporal or spatial scalability
dimensions into account allow comparing video sequences with different
frame rates and resolutions. In the case of bit rate constraints, scalable
codecs allow reducing bit rate by higher quantization or by reduction in
frame rate or resolution. An optimal solution in this case can be found
by objective quality metrics applicable for multidimensional scalability.



i
i

“main” — 2013/2/21 — 11:02 — page 20 — #38 i
i

i
i

i
i

20 Video compression systems

2.2 Algorithm characteristics

2.2.1 Scalability

Video compression systems vary not only in rate-distortion performance,
but in main features and characteristics. One of the important features
for wireless video transmission is scalability. It allows to encode the
video data only once and decode it at different quality levels. Three main
types of scalability are distinguished: spatial, temporal and quality or
Signal-to-Noise Ratio (SNR). Spatial scalability allows video decoding at
multiple spatial resolutions, temporal scalability deals with the reduction
of frame rate, while quality scalability keeps the same spatio-temporal
resolution but enables decoding with lower fidelity. All these types can be
also merged together in the so-called combined scalability (Fig. 2.3) [50].
The encoder forms the bit stream divided in several layers - base layer and
enhancement layers. The base layer contains the information about the
video stream at the lowest resolutions for all three dimensions - quality,
temporal and spatial. Decoding of each additional enhancement layer
allows improving the overall video quality of the reconstructed sequence
at the expense of an increased bit rate.
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Figure 2.3: Combined scalability [51]



i
i

“main” — 2013/2/21 — 11:02 — page 21 — #39 i
i

i
i

i
i

2.3 Image and video codecs 21

2.2.2 Power consumption

For many mobile systems and handheld devices power consumption is
an important issue. The power consumption of a compression algorithm
is directly connected to its complexity and memory consumption. Mem-
ory and computational constraints can be caused by the commercial
use of these video compression systems. Algorithm complexity becomes
another parameter for comparison of various systems. When speaking
about complexity of video compression systems, it is important to note
whether it refers to the encoder or decoder complexity. The complex-
ity of one encoder can also vary depending on particular configurations.
For example, the state-of-the-art codec H.264/AVC [16, 17] has several
encoding profiles with different computational complexities. Two of the
most complex and consuming blocks in the system are the ME and MC
blocks [52, 53]. These blocks are not used in the Intra low-complexity
profile. In order to achieve higher performance using low-complexity con-
figurations, it is possible to use differential frame coding, i.e. ME with
zero search radius [54]. In this way comparable performance and encoder
complexity between H.264/AVC and Distributed Video Coding (DVC)
can be achieved [9].

2.2.3 Memory consumption

Memory constraints due to power consumption restrictions or due to
commercial reasons also play a role in the choice of an optimal compres-
sion scheme. The amount of memory needed at the encoder and decoder
sides can be reduced by using tiling [7], i.e. division of the frames into
non-overlapping rectangular blocks that are compressed independently.
As only one tile is usually kept in the memory, it prevents an efficient
use of MC and ME or other methods exploiting temporal and spatial
redundancies. This usually leads to a performance decrease, however
a solution based on detection of static regions between two consecutive
frames, which we proposed in [10], is still possible.

2.3 Image and video codecs

The idea of combining spatial image compression and temporal motion
compensation laid the basis for efficient video compression schemes. In
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the last few decades there has been a fast evolution in image and video
compression systems from simple image codecs like JPEG [55,56] that is,
however, still widely used nowadays, till upcoming standard HEVC [23]
(its release is scheduled for 2013), that seems to be a promising solution
for high-resolution video data. Below we provide brief codec descriptions
and give an overview of this evolution.

2.3.1 Image coding

JPEG standard

The popular image compression standard JPEG dates back to 1990s. It
was issued few years after the Joint Photographic Expert Group (JPEG),
responsible for developing image coding standards, was organized. JPEG
algorithm refers to the group of algorithms based on DCT. After color
transform from RGB to YUV color space, DCT is applied to the non-
overlapping 8× 8 pixel blocks, one color component at a time. The top-
left corner value of each transformed block is a DC coefficient, while other
63 coeffients are referred to as AC. Transformed coefficients are quantized
using quantization matrices, defined in JPEG standard. Quantized DC
coefficient is encoded as a difference between the current and previous DC
coefficients. Quantized AC values are rearranged in a so-called Zigzag
order to collect most of zero values together. Run Length Encoding
(RLE) is used to efficiently encode groups of zeros which are afterwards
encoded with Huffman coding. Huffman tables are applied separately to
AC and DC coefficients of luma and chroma components. All Huffman
tables are defined in JPEG standard.

JPEG is a universal algorithm that has good rate-distortion perfor-
mance on average. Despite being developed in the early 90s, it is still
widely used nowadays in the web and in digital cameras. It can be
used in many applications, and if an application has specific require-
ments or works with specific contents, then JPEG can be modified in
order to achieve better performance in the particular case. For example,
computer graphics image statistics differ from natural image ones. This
image property can be used for adaptation of the JPEG algorithm.

If JPEG is applied to each frame of a video sequence, it can be used
for video compression. This approach is informally referred to as Motion
JPEG (MJPEG) and it is used e.g. in some digital and IP cameras.
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Recent work shows that MJPEG can also be applied for scalable secure
video communications [57]. We have shown [7] that if a progressive
scheme instead of a standard JPEG is used for MJPEG, it provides
to the bit stream a scalability property, which is important for wireless
video transmission. Our progressive encoder has a lower complexity than
progressive mode of JPEG, which does the encoding in multiple scans.

JPEG-LS standard

Even though JPEG was able to operate in a lossless mode based on Dif-
ferential Pulse Code Modulation (DPCM), this mode was never widely
adopted. In 1999 the JPEG standard was complemented with a loss-
less compression scheme called JPEG-LS. It has a similar name, but
it is based on a completely different approach - predictive technique.
Based on the context, one of the two possible modes is chosen - “Reg-
ular” or “Run”. In “Run” mode pixels having equal (or almost equal
in near-lossless encoding) values are encoded together using run length
coding. In “Regular” mode instead the algorithm chooses one of the pos-
sible probability distributions and uses it to encode the prediction error
with a Golomb code. JPEG-LS is much faster than another algorithm
from the JPEG family - JPEG2000 [58, 59] - that also allows lossless
compression. In addition to lossless compression JPEG2000 also pro-
vides scalability. However, we have shown that it is possible to modify
JPEG-LS to implement a low-complexity scalable solution [6].

JPEG2000 standard

The compression standard JPEG2000 appeared in the JPEG family in
2000. This time the standard is based on DWT and it aimed to surpass
JPEG in performance and flexibility. As mentioned above, big advan-
tages of JPEG2000 against JPEG are scalability and the possibility of
lossless compression. In addition it has ROI coding and higher error re-
silience thanks to data encoding in independent blocks. The general com-
pression scheme is similar to that of JPEG. After color space transform
(choice available between reversible and irreversible), the full image or
its tiles (if tiling option is on) are transformed by means of DWT. Trans-
formed coefficients are further scalar-quantized and the result is sent to
an entropy coding block called Embedded Block Coding with Optimal
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Truncation (EBCOT) [60]. Its extension Motion JPEG2000 [61] allows
applying it to video sequences. JPEG2000 is computationally more com-
plex than JPEG and JPEG-LS, and it has a number of configuration
parameters that need to be tuned in order to achieve the best perfor-
mance. In [7] we have studied the application of JPEG2000 scheme for
low-memory encoding. In order to achieve it the tiling option needs to
be used, and other configuration parameters - such as number of DWT
levels and codeblock size - need to be adjusted.

JPEG XR

In 2009 new still image compression standard JPEG XR was published [62,
63]. It utilizes a scheme similar to JPEG, but supports higher bit depths,
uses smaller blocks for transforms and has some other changes in entropy
coding and other compression blocks. It provides both lossy and loss-
less coding and is designed for continuous tone photographic images.
However, up to now it did not receive as wide acceptance as JPEG.

2.3.2 Video coding

MPEG and H.26x standards

Modern video coding standards such as MPEG and H.26x have two
modes - intra-frame coding where spatial correlation within a frame
is used, and inter-frame coding in which temporal correlation between
frames is exploited. If a frame is encoded using intra-prediction only, it
is referred to as I frame. If a reference frame from one direction is used
for prediction, the encoded frame is referred to as P frame. Finally, in
the B frame bidirectional prediction is used. The approach described
above makes encoders quite complex as they use ME and MC, trans-
form domain coding and entropy coding, while keeping the decoder side
relatively light. Such a scheme fits well the needs of video broadcasting
when video data has to be encoded only once, but decoded at various
client terminals many times. However, such solution is not suitable,
for example, for wireless video sensor networks, where the system needs
light-weight encoder instead.
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H.264/AVC standard. The state-of-the-art H.264/AVC standard fol-
lows the general scheme shown on Fig. 2.1. Additionally, a deblocking fil-
ter can be applied after inverse transform in encoding procedure in order
to remove the blocking effect and achieve better ME results. H.264/AVC
standard has several complexity profiles, specifying the set of used cod-
ing tools. For low-complexity low-delay applications the Baseline profile
was developed. It supports I and P frame types, intra prediction and
inter prediction from a single reference, the basic 4×4 integer transform
and CAVLC as an entropy coder [64]. It has low computational com-
plexity but provides lower performance than the High or Main profiles
that allow using more sophisticated tools.

Scalable extension of H.264/AVC standard. H.264/AVC has also
a scalable extension H.264/SVC [18, 19], which provides scalable bit
streams in temporal, spatial, quality or combined dimensions. As it
is based on H.264/AVC standard, most of the main operations are the
same. H.264/SVC can produce a base layer which is backward compat-
ible with H.264/AVC. H.264/SVC temporal scalability is also based on
H.264/AVC concept of hierarchical prediction structure using P and B
frames (Fig. 2.4). Regarding temporal scalability, SVC differs only in
temporal layer signaling.

I0 P0

1 2 3 4 5 6 7 80

B1

B2B2

B3 B3 B3 B3

Figure 2.4: Temporal scalability provided by P and B frames [51]
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Upcoming HEVC standard. H.264/AVC successor - HEVC - is fol-
lowing a similar compression scheme. However, HEVC introduces a new
data structure - Coding Unit (CU) tree. The CU is the basic coding unit
in HEVC, so it appears to be the analog of a macroblock in H.264/AVC.
While macroblock partition sizes in H.264/AVC vary from 4×4 to 16×16,
CU sizes can go up to 64 × 64. Such wide range allows efficient encod-
ing of large homogeneous areas that are more typical in high resolution
sequences. The partition depth in the configuration of HEVC defines
the smallest block size that can be used for encoding. In HEVC Test
Model (HM) [65] partition depth can vary from 1 to 4. For example, if
CU is defined as 64 × 64 block, and maximum partition depth is set to
3, CU splitting can go down to 16× 16 blocks. We say “can” as it is not
mandatory that the whole frame will be encoded with blocks 16× 16. It
means that on partition depth levels 3 and 2 (i.e. 16× 16, 32× 32 block
sizes in this case) the sum of the rate-distortion costs for four CUs of
that size will be compared with the rate-distortion cost of the encoding
CU at the following depth level (e.g. four CUs of size 16 × 16 at depth
level 3 will be compared to single CU of size 32×32 at depth level 2, and
four CUs of size 32×32 at depth level 2 will be compared to single CU of
size 64× 64 at depth level 1) and the decision for partition will be taken
based on the smallest rate-distortion cost. Fig. 2.5 presents an example
of hierarchical CU structure described above. This method, even though

Depth = 1

Depth = 3

Depth = 2

64

64

64

64

32

32

32

32

32

32

16

16

16

16

Figure 2.5: CU tree structure
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providing efficient compression, has a high computational complexity as
the encoder has to try encoding CUs on all levels in all possible con-
figurations. Thus, in order to use HEVC in power-constrained devices,
complexity management has to be performed at the encoder side.

Distributed video coding

In contrast to the conventional video coding approaches described above
where source statistical dependencies are exploited at the encoder side, a
new paradigm for video compression - distributed coding - was recently
developed. It is based on the results obtained by Slepian and Wolf (for
lossless coding) [66] and Wyner and Ziv (for lossy coding) [67]. DVC en-
codes frames independently using intra-frame coding, but decodes them
conditionally using “side information” from previously decoded frames.
Therefore, the complexity of the compression system is shifted to de-
coder. DVC represents a novel architecture for low-power video com-
pression where an efficient coding may be achieved by light-weight video
encoder. DVC looks like a promising solution for mobile systems and
wireless transmission, even though its decoder complexity is rather high.
It has high robustness to packet losses due to architecture, and transcod-
ing allows to make the decoding for mobile devices simple too.

An architecture implemented in DISCOVER DVC [31] allows tem-
poral scalability of the bit stream. We have compared it with temporal
scalability in H.264/SVC [11] and concluded that the preference towards
one or another solution depends on the memory consumption require-
ments. We have also extended transform domain DVC to a scalable-
to-lossless version [8]. This solution may be desirable for high-quality
applications, in which the system cannot always guarantee resources for
lossless compression.

2.3.3 Codecs evolution

As it can be seen from the overview of international standards and cod-
ing approaches, video compression has experienced a rapid development
in the past two decades and this technological evolution continues nowa-
days. Video compression standards are used in various services and ap-
plications, employed in wireless networks and mobile terminals. This
development required taking many aspects into account. As noticed by
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Netravali and Limb [68] “(...) the application of picture coding to trans-
mission channels is an economic trade-off in system design, balancing
picture quality, circuit complexity, bit rate and error performance.” In
other words, the idea of practical video coding design is to achieve an
optimal trade-off between rate and resulting quality, provided the limi-
tations for maximum complexity and delay [69]. These limitations often
pose restrictions for the deployment of many compression methods.

Originally, the simplest video compression method was an indepen-
dent compression of each picture. However, the average performance
of such an approach is relatively low compared to full-featured video
codecs. In fact, an exploitation of temporal redundancy can significantly
improve the performance. A combination of both prediction and trans-
formation laid the basis for MPEG and H.26x standards that kept the
block-based structure. As within the time the complexity constraints
have been eased, it was possible to add more coding modes in order to
improve the compression efficiency. For example, compared to MPEG-4
and H.263 standards, that support only the blocks of size 16 × 16 and
8× 8, H.264 allows to process partitions with block sizes 16× 16, 16× 8,
8× 16, 8× 8, 8× 4, 4× 8 and 4× 4.

The HEVC standardization committee is going further in increas-
ing the number of coding modes and proposes to have more than 30
different modes for intra prediction and block sizes go up to 64 × 64.
Due to these and other modifications, HEVC provides an average bit
rate savings compared to H.264/AVC for about 39% for random access
and 44% for low delay configurations [70]. As current video technolo-
gies allow to capture High-Definition (HD) video content and continue
to evolve towards Ultra High-Definition (UHD) resolutions, there is a
demand for new generation video compression technologies that can effi-
ciently process these contents. The upcoming standard HEVC promises
to have certain advances in video communications in terms of supported
resolutions, compression performance, efficiency-complexity trade-offs,
robustness to errors and flexibility for usage in various applications and
services.

Scalable functionality of video codecs was required in heterogeneous
wireless environments. Simple ways of achieving scalability are simul-
casting and transcoding. However, these methods are more resource
consuming than the creation of a scalable bit stream during the encod-
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ing process. Temporal scalability was supported to some extent already
in MPEG-1 with the introduction of I, P and B frame coding types. An
example of temporal scalability provided by P and B frames is shown in
Fig. 2.4.

In MPEG-2 spatial scalability was also introduced. However, scala-
bility in MPEG-2 and MPEG-4 was causing a significant loss in compres-
sion efficiency. H.264/SVC allowed to solve this problem. The bit rate
increase was up to 10% only compared to a non-scalable solution. It was
also supporting a backward compatible H.264/AVC base layer. In addi-
tion to adaptive delivery in lossy transmission environments, SVC layered
structure allows a combination with Unequal Error Protection (UEP)
providing in this way error resiliency.

The codec scheme mentioned above requires much more complex en-
coder than decoder. A novel DVC paradigm allowed to shift the encoder
complexity to the decoder. Additional advantages of DVC are robustness
to channel errors due to joint source-channel coding (e.g. the system re-
ferred to in [22] as Systematic Lossy Error Protection (SLEP) in case of
channel error rate increase allows to achieve graceful degradation of video
quality without layered structure of the bit stream) and the absence of
the prediction loop. The latter enables also codec-independent scalabil-
ity that looks very appealing in a perspective of the growing variety of
user terminals. Moreover, it allows the multiview coding by exploitation
of inter-view correlation at the decoder side.

2.3.4 Future trends

The evolution of video coding technologies continues nowadays. To-
gether with an availability of higher bit rate channels and an increase
in achievable computational complexity that goes in line with Moore’s
law [71], the quality expectations, resolutions and demand for bandwidth
are also rising. One of the main trends - to maximize the quality and
minimize the bit rate - which was clearly notable in video compression
development during the past decades - still remains central. The devel-
opment of the HEVC standard continues the strategy of improving the
rate-distortion performance due to the addition of new coding modes.
The demand for increasing picture formats up to 4K (3840× 2160) and
potentially up to 8K (7680 × 4320) will be also satisfied by HEVC. As
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the evolution of mobile video services continues towards the support of
higher resolutions, upcoming standards need to be compliant with them
as well. Already now a Call for Proposals for a scalable extension of
HEVC has been announced [72] and the first works start to appear [73].

While performance of conventional coding improves, development of
DVC algorithms continues as well. From the Slepian-Wolf and Wyner-
Ziv theorems it follows that DVC performance potentially can be as good
as the performance of conventional coding. Therefore, due to the existing
performance gap between theoretical limits and practical results, there
still remains a challenge of further improvement of the coding efficiency
of DVC. However, even with the currently achieved coding efficiency
the DVC framework shows its applicability to error-prone video trans-
mission due to its error-resilience characteristics, and in wireless visual
sensor networks due to distributed multiview video coding possibilities
that allow to avoid communications between the cameras. This property
opens some other perspectives for video surveillance and multiview video
entertainment allowing low-complexity solutions. DVC and conventional
approaches can also be combined in the future in order to achieve ad-
vances in rate-distortion performance.

Even if 3D video coding is out of the scope of this thesis, we consider
it important to mention this research direction among future trends.
The evolving interest in 3D video has caused an appearance of a variety
of 3D video coding approaches like conventional stereoscopic and mul-
tiview video [21], mono/multiview video plus depth [74], layered depth
video [75] and some others. The importance of 3D video has lead to the
development of the Multiview Video Coding (MVC) standard [20, 21]
that laid the basis for future work towards standardization of 3D and
free-viewpoint television. A 3D Video Coding (3DVC) standard is cur-
rently under development and its goal is to define a unique format and
compression technology for 3D video content. A new framework for scal-
able 3D based on wavelet or multiple description coding has also been
proposed in several variations [76–79].

Within the development of video codecs it is also important to be able
to effectively evaluate the quality of the reconstructed video sequences.
There is no standardized approach for objective video quality assessment
for sequences not having equal characteristics, and in this prospective the
development of an efficient quality metric for comparison of the videos
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with different temporal or spatial dimensions represents a challenging
task. Even more challenging seems now the development of an approach
for 3D objective quality assessment, where both 2D and 3D artifacts
have to be taken into account.

2.4 Applications with constrained resources

An extensive development of wireless networks together with video com-
pression systems has led to a new era of mobile wireless video commu-
nications. Mobile TV, video-on-demand, video streaming, online video
gaming, videoconferencing and video surveillance are now widely used
in everyday life. These systems are often subject to constraints such
as memory, computational complexity, power, bit rate and maximum
acceptable delay.

2.4.1 Bit rate constraints

Coding performance depends on the distortion and rate achieved by the
codec. Bandwidth or bit rate constraints can also appear as communica-
tion plays a significant role in mobile video systems. In order to provide
seamless communications, the available bandwidth should be comparable
with the encoder output bit rate. Video source rate control algorithms
can be utilized at the encoder side in order to minimize the source dis-
tortion provided that requirements for bit rate, power consumption and
delay are satisfied.

2.4.2 Complexity and power constraints

Apart from bit rate constraints, handheld devices have other restrictions.
The overall complexity of the encoder, consisting of the complexity of
individual blocks and depending also on the needs for memory access,
is often limited as well. In order to accelerate video encoder, fast al-
gorithms (e.g. fast ME or fast Rate-Distortion Optimization (RDO))
can be implemented along with standard solutions requiring more heavy
computations. Usually the encoder complexity has a direct connection to
the functionality, i.e. more complex encoders have more available com-
pression options and features. However, some properties can be added to
originally light-weight encoders without making them significantly more
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complex. In [6] we have described an approach for low-complexity scal-
able video coding based on JPEG-LS. As the solution is based on adding
a second compression block based on the same JPEG-LS algorithm, this
scheme can be efficiently implemented in hardware.

In emerging power-constrained systems like wireless video sensor net-
works, wireless video surveillance systems or wireless video endoscopes,
the main focus is on the encoder power consumption. These systems
with limited resources usually utilize a light-weight encoder. The recent
advances in distributed source coding allow to use DVC approach in or-
der to have a compression efficient and error resilient solution. In order
to evaluate the complexity of DVC, we have compared the encoder power
consumption of the state-of-the-art DVC codec and of the conventional
approach based on the H.264/AVC standard [9].

In the situation in which only a software version of the compres-
sion algorithm is available, one of the ways of computational perfor-
mance estimation is measurement of the encoding time. This is how
H.264/AVC reference software [80] was compared to the state-of-the art
DVC codec [31] in [81]. This approach has a disadvantage, as non opti-
mized versions of software from the time consuming point of view lead
to the incorrect comparison. Complexity can also be estimated in terms
of basic operations, including addition, multiplication, shift and com-
parison. These operations can be further transformed into the power
consumption values.

In our work we have demonstrated another way of evaluating power
consumption. As the DVC codec and H.264/AVC use the same DCT
and similar quantization techniques, we have proposed to compare only
the power consumption of the remaining blocks of the schemes. By us-
ing power consumption/bit rate relation for CAVLC and Low-Density
Parity-Check (LDPC) encoders used in H.264/AVC and DVC, respec-
tively, and rate-distortion performance of these codecs, we estimated the
relative power consumption for fixed PSNR values. Our results show that
for a given quality the H.264/AVC compression in low-complexity con-
figuration can achieve comparable coding performance and power con-
sumption with the DVC solution.
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2.4.3 Memory constraints

There are two reasons for memory restrictions: on the one hand, they
appear due to practical implementation feasibility; on the other hand,
higher system memory requirements can result in higher overall system
costs that make a device less attractive commercially. Video compres-
sion systems using inter-prediction require memory storage of minimum
one reference frame. For more complex systems with hierarchical GOP
structure, full GOP needs to be stored in order to provide a complete
reconstruction. In order to reduce the memory consumption when only
Intra-coding is used, it is possible to divide the source frame into tiles
that are compressed independently [7]. To achieve higher performance
when tiling option is used, static region detection proposed in [10] can
be used.

2.4.4 Delay constraints

Delay restrictions play a critical role in many applications (e.g. video
conferencing or video surveillance) where the data needs to be assessed
in real time. Generally, the overall system delay ∆T depends on many
parameters: it consists of encoding processing delay ∆Te, encoder and
transmitter buffer delays ∆Teb and ∆Ttb, channel delay ∆Tc, receiver
and decoder buffer delays ∆Trb and ∆Tdb and decoding processing delay
∆Td (see Eq. 2.9).

∆T = ∆Te + ∆Teb + ∆Ttb + ∆Tc + ∆Trb + ∆Tdb + ∆Td. (2.9)

It was shown [82] that if both encoder and decoder work in real-time,
Eq. 2.10 holds true:

∆Teb + ∆Tc + ∆Tdb = L, (2.10)

where L is the accumulation time on the receiver side before the decoding
and reproduction start, if the number of bits in the encoder buffer is less
or equal to the effective buffer size [83].

An approach for low-latency video transmission using low-complexity
compression approach has been described in [10].
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2.5 Video quality evaluation for performance
comparison

In Section 2.1.2 we have addressed the question of subjective and objec-
tive quality assessment and briefly described the way of obtaining subjec-
tive scores (MOS). Detailed recommendations for performing subjective
tests can be found in [44]. An extensive overview of most of the main
works on objective and subjective quality assessment for multidimen-
sional scalability together with future trends and challenges is given in
[84].

2.5.1 Objective assessment of video quality with
different frame rates

As mentioned in Section 2.1.2, most of the well known objective quality
models, such as PSNR, Mean Structural Similarity Index (MSSIM),
Video Quality Metric (VQM), focus mainly on spatial artifacts leaving
apart the question of the impact of temporal resolution on the visual
quality.

Some subjective studies [34, 85–87] have analyzed the impact of dif-
ferent frame rates. These works lead to a similar conclusion: the impact
of spatial distortion tends to be more crucial for the perceived quality
than the impact of frame rate. An increase of importance of frame rate
after acceptable SNR is achieved is reported in [88] and a high depen-
dence of frame rate preference on the content is observed in [89, 90].
However, subjective tests require lots of resources and are not applicable
to real-time quality monitoring. For these reasons researchers are trying
to develop objective metrics that correlate as good as possible with the
human perception of video sequences.

2.5.2 Existing objective metrics with focus on frame rate

Recently a few novel quality models with special focus on frame rate have
been proposed [1,25–27]. The metric [25] considering both quantization
and frame rate consists of PSNR combined with an offset that depends
on the frame rate and the level of motion in the sequence. In case of
high frame rates, the metric is dominated by the quantization errors and
is close to the PSNR, thus the offset is set to be small. Otherwise, the
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PSNR value (measured on the temporally upsampled sequences in case
of low frame rate) is compensated depending on the frame rate reduction
and the motion speed. Feghali et al. reported higher correlation with
subjective measurements than PSNR metric [25]. However, the com-
pensation is not enough for very low frame rates, as in this case PSNR
values for interpolated sequences do not vary significantly for different
video qualities, which results in almost equal values of the quality metric
at low frame rates.

Another quality metric - VQMTQ (Video Quality Metric considering
Temporal resolution and Quantization) [26] - provides a good fit to the
measured MOS scores. Ou et al. report better performance than the
metrics proposed in other works with similar complexity [26]. The model
uses sequence-dependent parameters; however, it is possible to predict
these parameters based on the characteristics of the video such as frame
difference, motion direction, and Gabor texture features.

Peng and Steinbach proposed a novel full-reference video quality met-
ric called STVQM (Spatio-Temporal Video Quality Metric), based on
PSNR, frame rate, and spatiotemporal activity measures [27]. Three
CIF video sequences - “Mother & Daughter”, “Foreman” and “Football”
- with original frame rate of 30 fps were used in the experiments. Each
sequence was temporally downsampled to 15, 10 and 7.5 fps and encoded
with MPEG-4 to generate three different spatial quality levels. Results
reported in [27] show that it performs significantly better than metric
in [25] whereas the difference between VQMTQ and STVQM is not sta-
tistically significant. However, STVQM has some advantages, namely
the use of only two standard video activity indicators that can easily
be computed, compared to four parameters with significantly more com-
plex interpretation used in VQMTQ. Moreover, STVQM has no codec-
dependent parameters, unlike VQMTQ.

2.5.3 Subjective studies with focus on frame rate

The studies described above are lacking cross-validation on different sub-
jective video quality databases, as the proposed models were trained and
validated on ad-hoc subjective experiments. In [1] we proposed a quality
metric that takes temporal resolution into consideration. The subjective
results from [34] have been used both for training and validation of the
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proposed metric. We have extended the validation part by including the
subjective results by Ou et al. [91, 92] in our study.

Subjective data [91] has been obtained by 31 non-expert participants.
After a training session (based on sequences “Soccer” and “Waterfall”),
each user had to rate the quality of a shown video in a range from 0
(worst) to 100 (best). Four test sequences (“Akiyo”, “City”, “Crew”, and
“Football”) of CIF resolution at original frame rate of 30 fps have been
encoded with H.264/SVC (version JSVM 9.12) [93] in order to produce
4 temporal layers (with frame rates 30, 15, 7.5, 3.75) and 4 quality layers
(corresponding to QP 28, 36, 40, and 44) using coarse grain scalability. A
total of 64 processed video sequences have been used in the experiment.

Another subjective quality assessment test [92] has been performed
on five CIF sequences (“Akiyo”, “Foreman”, “Football”, “Ice”, “Waterfall”)
at original frame rate of 30 fps. Similarly to the previous experiment,
several temporal (frame rates of 30, 15, 7.5, 3.75) and quality (QP equal
to 28, 36 and 40) layers have been obtained using JSVM 9.12 version
of H.264/SVC. Sequences with varying frame rate were also included in
this dataset, but we only use the data for sequences with constant frame
rate. Subjective tests have been done by 33 participants who rated the
viewed sequences from 0 to 100. The assessment has been performed
following a protocol similar to Absolute Category Rating (ACR) [47].

Obtaining quality scores from subjective preferences

The two datasets described above provide subjective scores in terms of
MOS. In [34] a new method for the evaluation of the relative impact of
frame rate and spatial quality was proposed. Using a pairwise compari-
son method, the subjectively preferred path from the lowest quality level
to the highest can be found. The way of converting the subjective pref-
erences from pairwise comparisons into quality scores can be described
as follows.

We assume that the impact of frame rate on perceived quality become
negligible for a frame rate level equal or higher than 25 fps. Therefore,
we consider that the quality of high frame rate sequences is defined by
the spatial quality Q. This is why in order to evaluate Q we can use any
quality metric or index that is agnostic to the frame rate, for example
PSNR or Structural Similarity Index (SSIM). There are n test subjects
who have reached position (Qx, FRy) on the quality plane, and their task
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is to choose the preferred sequence between A: (Qx+1, FRy) and B: (Qx,
FRy+1) (see Fig. 2.6). When nA subjects choose A and nB = n − nA
choose B, transition probabilities pA and pB for a random person to
choose A or B, respectively, can be estimated:

pA =
nA
n

; (2.11)

pB =
nB
n
. (2.12)

Assuming that the perceived quality levels for A andB are reasonably
close to each other, the perceived quality difference ∆PQ between FRy

and FRy+1 on the Q-scale can be estimated from the quality difference
∆Q between Qx and Qx+1 by the following equation:

∆PQ = ∆Q
pA
pB
. (2.13)

Then, starting from the highest frame rate and highest spatial quality,
we can compute values for ∆PQ cumulatively. If there are not enough
test subjects who have occupied a certain node when traversing through
the plane, the PQ may have to be omitted for that node.

2.5.4 Proposed objective metric

The Perceptual PSNR (PPSNR) metric that uses conventional PSNR to
model the spatial quality, proposed by us in [1] is computed as follows:

PPSNR = PSNR · (1− exp(1− 108 · FR · PSNR−c)), (2.14)

where FR is the frame rate and c is a content-dependent parameter. The
value of c is predicted from spatial and temporal characteristics of the
video content. Experimentally obtained values of c allow predicting its
values for new contents by applying linear regression.

As reported in [1], the performance of the proposed metric on the
subjective data from [34] is reasonably good compared to VQMTQ and
STVQM. However, further experiments with other datasets revealed that
the proposed single parameter model for computing PPSNR is not always
sufficient to match with experimental subjective data. This is why we
propose a new version of the model with two parameters, a and c:
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Figure 2.6: The choice of spatial quality or frame rate via pairwise comparison.

PPSNR = PSNR · (1− exp(a− 105 · FR · PSNRc)). (2.15)

In order to predict parameters a and c, we have used slightly modified
version of spatial and temporal activity indices SA and TA originally
defined in [47]:

SA = meantime(meanspace[Sobel(Fn)]), (2.16)

TA = meantime(stdspace[Fn − Fn−1]). (2.17)

In order to make the prediction of a and c more stable, we perform
the prediction in the logarithmic space. Therefore, the following linear
predictors are used:

a = −exp(αa + βa · SA+ γa · TA), (2.18)

c = −exp(αc + βc · SA+ γc · TA). (2.19)
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The prediction coefficients (αa, βa, γa, αc, βc, γc) are derived by
first solving the optimal values of a and c for a training set with known
subjective quality scores via nonlinear regression to match Eq. 2.15, and
then solving the linear predictor coefficients in Eqs. 2.18 and 2.19 by
applying linear regression to the solved values ln(−a) and ln(−c). The
new metric has two major differences in comparison to the metric in [1]:
we have introduced a new parameter a in Eq. 2.15, and we have modified
the predictor functions used in Eqs. 2.18 and 2.19. In addition, the
definition of SA had a minor change, since we used mean values from
the Sobel filtered image instead of standard deviation.

2.5.5 Performance evaluation

In our work [1] we exploited the database from the study [34] that pro-
vides subjective scores for five sequences. Ground truth quality scores
were obtained from subjective preferences by the method described in
Section 2.5.3. Such a small number of data did not allow us to create
separate subsets for training and validation. In order to alleviate this,
a linear regression was performed for each sequence separately using the
“leave-one-out” method, i.e. parameters α and β required for predicting
c were obtained using the known values of c for the other four sequences.
The major deficiency of this method of testing is the sensitivity to out-
liers, and therefore the performance varies highly across the sequences.

To make an extensive comparison of the modification of PPSNR met-
ric described above, we have included datasets A [34], B [91] and C [92]
in our evaluation experiments. Datasets B and C contain MOS scores,
while dataset A provides subjective scores derived from pairwise com-
parisons and PSNR values. Therefore, we have been able to use different
independently generated video databases for training, where we obtained
the linear predictor coefficients α, β and γ, and validation.

We have compared performance of our metric with VQMTQ and
STVQM. Our results averaged over sequences in each individual dataset
used for validation are shown in the Tables 2.1-2.3. The correlation be-
tween subjective scores and objective results obtained by metrics are
demonstrated by Root Mean Square Error (RMSE), and Spearman and
Pearson correlation coefficients. In order to average the values of cor-
relation coefficients over the sequences in the dataset, we have used the
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Figure 2.7: Relation between PSNR, frame rate and quality metrics
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Fisher’s Z-transform [94]. It is important to note that RMSE values are
not comparable across datasets due to the difference of scales for dataset
A and datasets B and C.

The provided results demonstrate that our metric PPSNR can com-
pete with other objective metrics that take frame rate influence on the
video quality into account. One advantage of the proposed metric in
comparison to VQMTQ is the simplicity of parameters prediction. While
VQMTQ parameters require complex computation from multiple char-
acteristics of video content, PPSNR parameters only depend on spatial
and temporal activity indices. VQMTQ shows good performance results
on datasets B and C. However, it is necessary to note that these datasets
come from the designers of VQMTQ.

As already reported in [1], metric performance depends on the con-
tent. However, results show also a dependency on the dataset used for
training. For example, average correlation coefficients for dataset B are
lower if PPSNR values were computed using α, β and γ obtained on
dataset A. Similar behavior can be noticed in the dataset C. On the
other hand, PPSNR shows very good performance on cross-validated
datasets B and C. These results support the hypothesis that predictor
parameters for PPSNR metric are more reliable when obtained on the
training dataset that uses the same subjective quality assessment method
as the dataset for validation. However, reasonably good performance of
PPSNR on dataset A using parameters from datasets B and C, and vice
versa, confirms that the novel method for subjective quality evaluation
proposed in [34] can be applied for assessment tasks along with MOS.

Table 2.1: Performance results for quality metrics for dataset A

Metric RMSE Spearman Pearson
VQMTQ 1.40 0.93 0.94
STVQM 1.33 0.95 0.97

PPSNR (trained on dataset B) 1.58 0.94 0.94
PPSNR (trained on dataset C) 1.10 0.95 0.95

Fig. 2.7 shows the relation between PSNR, frame rate and the con-
sidered metrics for the “Ice” sequence from dataset C. PPSNR metric
results were computed using dataset B as a training dataset.

In [1] we have used the “leave-one-out” method for validation of the
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Table 2.2: Performance results for quality metrics for dataset B

Metric RMSE Spearman Pearson
VQMTQ 2.81 0.98 0.99
STVQM 4.06 0.98 0.97

PPSNR (trained on dataset C) 3.72 0.98 0.98
PPSNR (trained on dataset A) 6.51 0.95 0.92

Table 2.3: Performance results for quality metrics for dataset C

Metric RMSE Spearman Pearson
VQMTQ 3.69 0.97 0.96
STVQM 5.05 0.93 0.92

PPSNR (trained on dataset B) 4.18 0.94 0.94
PPSNR (trained on dataset A) 5.48 0.95 0.91

metric. These results are repeated in the Table 2.4.

Table 2.4: Euclidean distance between subjectively preferred paths and paths ob-
tained by different metrics

Metric akiyo city coastguard football ice average
VQMTQ 0.65 0.34 0.27 1.24 0.37 0.57
STVQM 0.11 0.35 0.23 1.06 0.92 0.53
PPSNR 0.11 0.69 0.54 0.20 0.49 0.41

The new proposed metric shows very good results using this test-
ing method as well. For example, for dataset C the “leave-one-out”
method allows to achieve very good performance: the average Spearman
and Pearson correlation coefficients are equal 0.94 and 0.96, respectively.
PPSNR shows high correlation for this dataset when the parameters are
defined using all sequences from the dataset for the prediction: 0.97 and
0.98 for Spearman and Pearson, respectively. These results demonstrate
that PPSNR can have a very good performance if parameters a and c
are predicted with high precision.

Performance results demonstrated above show that PPSNR can be
used for comparison of video sequences with different frame rates. The
simplicity of computation of content dependent parameters allows for
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an easy utilization of this metric in any application that requires low-
complexity. Cross-validation of the proposed metric on datasets provided
by subjective tests performed in different research laboratories and in
different countries confirms the versatility of the PPSNR metric.

2.6 Conclusion

In this chapter we have taken a look at low-complexity video compres-
sion without ME at the encoder side. Avoiding ME allows reducing the
complexity and memory consumption of the encoder. However, in case
of conventional video coding it leads to a loss of rate-distortion perfor-
mance. Encoding in differential frame mode, though leading to an in-
crease of required memory, allows achieving better compression results.
A simple method of reducing temporal redundancy using detection of
static regions that we proposed in [10] leads to a higher performance as
well. Other approaches without ME at the encoder side, though yield-
ing standard featured codecs in performance but applicable in resource-
constrained scenarios, are based on MJPEG and DVC techniques.

In our work we discussed the two last named techniques and com-
pared their performance with standard solutions. We have shown in [9]
that an H.264/AVC encoder operating in differential frame coding mode
can show comparable performance and complexity. It is not only the sim-
plicity of the encoder that makes DVC an appealing solution: the scal-
ability feature of DVC codec is useful in heterogeneous communication
networks [95], visual sensor networks, and surveillance and streaming ap-
plications [96]. In the work [11] we have compared temporal scalability in
DVC and H.264/AVC and concluded that the choice of one or another
solution should depend on memory consumption requirements. In [8]
we have proposed a scalable-to-lossless solution that achieves compet-
itive performance with JPEG-LS, JPEG2000 and H.264/AVC in loss-
less mode. To the best of our knowledge, this is the only scalable-to-
lossless solution based on DVC. Lossless compression using DVC can be
a promising solution for the compression of hyperspectral images [97,98];
moreover, it can also be considered for other scientific and medical ap-
plications.

Scalable solutions play an important role in communication networks
and surveillance applications where video data has to be delivered to het-
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erogeneous clients with different capabilities. Scalability can be achieved
not only with the DVC approach: JPEG2000 and H.264/SVC standards
produce scalable bit streams and allow image and video decoding in var-
ious spatial, quality and temporal resolutions. However, a drawback of
these solutions compared to DVC is the complexity of the encoder, which
limits its usage in applications with complexity and power consumption
constraints. We have proposed two simple scalable (progressive) solu-
tions suitable for image and video coding based on JPEG and JPEG-
LS [6, 7]. Performance results show that our low-complexity solutions
can compete with standard approaches. Moreover, our scalable versions
of JPEG and JPEG-LS can also be combined with UEP, which allows
error-resilient wireless transmission over error-prone channels. This and
other previously named advantages of scalable compression show the
potential of scalable video coding. The planned scalable extension of
HEVC [72], which, however, does not refer to a low-complexity solution,
confirms the importance of scalable approaches.

There still remains an open question with the comparison of video
data with different temporal and spatial resolutions obtained by scalable
video codecs. Few quality metrics taking these factors into account have
been proposed [25–27], however they do not show a perfect correlation
with subjective opinion scores. We have proposed a novel quality metric
for the comparison of sequences with different frame rates [1]. Results
of the performance evaluation show that on average it allows achieving
slightly better performance than other quality metrics that consider the
temporal dimension. We described its improved version in Section 2.5.4
and demonstrated cross-validated results on different datasets.

Many ongoing research works show that video compression evolution
still continues. It is supported by the development of related science
fields like space, medical, geographic that use video and image data. A
growing popularity of video entertainment applications also makes its
contribution to the development of video communications. As new use
cases and systems that deal with video data appear, new methods and
approaches for video compression have to be developed as well. These
methods often have to take some system restrictions into account, which
makes the development of efficient methods and algorithms even more
challenging.
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Chapter 3

Video transmission systems

3.1 Introduction

Within just a few decades wireless technologies have evolved from the
first generation (1G) to the fourth (4G), providing nowadays mobile
broadband access to handheld devices and offering a large amount of ser-
vices. A wireless network can be categorized by its scale in Wireless Per-
sonal Area Network (WPAN), Wireless Local Area Network (WLAN),
Wireless Metropolitan Area Network (WMAN), Wireless Wide Area
Network (WWAN). These networks are typically based on different
transmission technologies, therefore they have different properties and
provide different services. Wireless video transmission is possible over
all these types of networks but in order to have an efficient communi-
cation system, their characteristics need to be taken into account while
choosing an optimal video compression scheme.

Wireless video transmission provides a variety of services like Mo-
bile TV, video-on-demand, video conferencing or online video gaming.
In general these applications can be divided into two types: “conver-
sational” (e.g. video telephony) and “non-conversational” (e.g. stream-
ing/broadcasting). The main difference between them is in delay con-
straints which are much more strict for real time data transmission (“con-
versational” applications).

Video communication system can be described by the joint video
compression (see Fig. 2.1) and transmission scheme shown in Fig. 3.1.
The source data is sent to the encoder that can be combined with the

45
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rate control unit in order to satisfy the requirements for average delay
or average bit rate by choosing appropriate parameters for compression.
The channel feedback provides information to the rate control unit about
the channel state. A transmitter buffer [99] is used for constant bit rate
transmission over communication channel. At the receiver side a similar
buffer is used for accumulation of the compressed data before the decod-
ing process starts. The decoder’s output is a reconstructed sequence with
compression distortion in case of lossy coding. As this scheme involves
compression and transmission, end-to-end distortion can be induced both
by quantization and channel. End-to-end delay is defined by the time
between the instant, when coding block has been sent to the encoder,
and the instant, when this block has been reconstructed at the receiver
side.

Video
encoder

ChannelRate control

Transmitter buffer

Video 
decoder

Receiver 
buffer

Input video sequence

Reconstructed video 
sequence

Channel feedback

Channel 
distortion

Control
 parameters

End-to-end 
delay

End-to-end 
distortion

Quantization 
distortion

Figure 3.1: Video transmission scheme

Wireless video communication systems are a good example of appli-
cation for video compression algorithms. In order to achieve optimal
performance such systems require cross-layer optimization techniques
that consider both compression and transmission aspects. Each video
communication system requires an individual approach as optimization
techniques may differ due to the diverse characteristics of both chosen
compression algorithm and transmission network. The growing popu-
larity of high-speed WPANs and ubiquity of mobile networks make re-
searchers looking for efficient techniques for video transmission over such
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types of networks. The development of such techniques becomes more
difficult due to the constrained resources of client terminals, e.g. hand-
held devices, that pose additional restrictions to video compression and
transmission systems.

3.2 Modern communication systems

3.2.1 Network types

Video transmission can be performed through various types of wired and
wireless networks. The most commonly used technology for wired Local
Area Network (LAN) is Ethernet [100]. If information is transmitted be-
tween devices without wires, such networks can be distinguished based
on the operation area. Local areas like houses, cafes, university cam-
puses are often covered with WLANs, e.g. based on the IEEE 802.11
standard [101]. Such systems usually operate in infrastructure mode
where an access point is required for the connection to the internet,
but wireless communications can be also used to establish ad-hoc net-
works within several user devices. For shorter range communications
(up to 10 meters) WPANs are used. For example, such networks can
be based on Infrared [102] or Bluetooth technologies [103]. There is
also a low-rate WPAN standard [104] that laid the basis for the ZigBee
specification [105] suitable for wireless sensor networks, and a group of
high-speed WPANs based on 60 GHz. In a metropolitan area, it is more
appropriate to talk about WMANs that allow to connect different build-
ings. WiMAX network based on IEEE 802.16 standard [106] is a good
example of WMAN. The WiMAX technology represents an alternative
solution to classical wired approaches using copper cables or fiber optics.
Finally, WWANs have worldwide coverage and provide mobile access to
the Internet from any area that has a signal coverage. Mobile wireless
networks starting from the second generation (2G) can be referred to as
WWAN.

3.2.2 Mobile generations

The transition from analog (1G) to digital (2G) transmission has hap-
pened in the 1990s. At that time cellular phones provided short messag-
ing and low speed data services. The capacity of 2G cellular systems has
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improved in comparison to 1G systems, but further demand for greater
bandwidth resulted in the development of the third generation mobile
telecommunications (3G), providing broadband access to mobile phones
and handheld devices. In order to be called “3G”, the technology needs
to meet the International Mobile Telephone 2000 (IMT-2000) project
requirements, providing 144 kbps of throughput at mobile speeds (in a
car or a train), 384 kbps at pedestrian speeds, and 2 Mbps in indoor
environments [107]. The upcoming 4G techology (official name “IMT-
Advanced”) will provide mobile ultra-broadband Internet access, wide
range of data rates and capabilities for high-quality multimedia appli-
cations with higher performance and quality of service like HD Mobile
TV and 3D television. The targets for peak data rates are 100 Mbit/s
for high mobility (mobile access) and 1 Gbit/s for low mobility (local
access) [108,109]. Two technologies under development - LTE Advanced
(Long-Term-Evolution Advanced) and IEEE 802.16m or WirelessMAN-
Advanced - are the candidates for the evolving 4G standard. However,
none of the currently implemented systems does comply fully with the
IMT-Advanced requirements.

Nowadays, most of the mobile phones are working in GSM, WiMAX
and 3G networks. The last named is becoming ubiquitous. As wireless
communication technology advances, 3G networks provide global com-
munications with various services including telephony, messaging (in-
cluding multimedia), high data rate internet access, videoconferencing,
global positioning, high quality music and video downloading, and online
gaming capabilities.

3.2.3 Wireless personal area networks

In the recent years high-speed WPANs are also becoming more and more
popular. They have low power data transmitters that allow long battery
lifetime and provide scalability in terms of bit rate - from low to very
high (20 Mbps - 28 Gbps). They are mostly used for short-range com-
munications between personal devices and have a high security level due
the fact that coverage area is limited to room space.

As the frequency range around 60 GHz (from 4 to 9 GHz within 57-66
GHz) has been regulated for unlicensed use worldwide, new standards
based on 60 GHz started to appear. In 2009 WPAN Standard 802.15.3-



i
i

“main” — 2013/2/21 — 11:02 — page 49 — #67 i
i

i
i

i
i

3.3 Systems with constrained resources 49

2003 was extended with an alternative physical layer (PHY) [28]. The
first consumer application of 60 GHz technology - WirelessHD [29] -
provides wireless connection and data exchange between a wide range of
devices, including laptops, televisions, Blu-ray players, gaming consoles
etc. The WiGig specification [110] utilizes the 60 GHz band to provide
data rates up to 7 Gbps. Though based on the 802.11 standard, it
has much more spectrum available than the 2.4 GHz and 5 GHz bands
utilized by Wi-Fi products, and therefore supports faster transmission
rates.

Due to high data rates, these 60 GHz networks can transmit High-
Definition (HD) video between devices over wireless channels instead of
wired cables for high quality video services such as HD video conferencing
and distributed video gaming. Even though uncompressed data trans-
mission is possible [111,112], video compression is preferable as it allows
to decrease the overall power consumption for the transmission [113].

These two types of networks described above - 3G and WPANs -
are currently the most relevant for wireless video transmission due to
the availability of high data rates. The development of novel solutions
or optimizations of existing schemes for video transmission over such
networks still remains actual. This task becomes even more complex,
as many relevant applications have in addition power consumption and
delay constraints.

3.3 Systems with constrained resources

3.3.1 Delay constraints

Delay is critical for real-time applications, e.g. conversational services
like video conferencing or online video gaming. The maximum tolerable
end-to-end delay for such kind of applications is estimated around 125-
250 ms [114,115].

As described in the Section 2.4, the end-to-end delay in the system
depends on the particular delays during encoding and transmission pro-
cesses (see Eq. 2.9).

Equation 2.10 shows that the accumulation time on the receiver side
before the decoding and reproduction start is equal to the sum of encoder
buffer delay, channel delay and decoder buffer delay, if the number of bits
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in the encoder buffer is less than or equal to the effective buffer size.
In order to calculate the effective buffer size beff (t) [83] for video

transmission at the moment t, it is necessary to know the future channel
throughputs ci:

beff (t) =

t+L·f ·N∑

i=t+1

ci, (3.1)

where L is the required maximum latency, N is the number of coding
units in the frame and f is the frame rate.

It is not possible to calculate the exact size of the effective buffer for
time varying wireless channels, as future channel rates cannot be known.
In this case, an estimation b̂eff (t) obtained with a channel model [116]
can be used, which, however, does not guarantee that at any instant t,
b̂eff (t) ≤ beff (t). If b̂eff (t) exceeds beff (t), the latency requirements
(2.10) do not hold true. To restore the required latency values it is
possible to apply an approach that we proposed in [10].

In 3G systems, buffering latency can influence efficient power man-
agement as well. As was shown in [2], in order to comply with buffering
latency restrictions, a mobile device has to stay in the state with low
power consumption for a shorter time, which leads to an increase of the
overall power consumption.

3.3.2 Power constraints

The total power consumption for video communication systems consists
of power consumption needed for compression and the one needed for
data transmission. Transmission power consumption depends on the
amount of data that needs to be transmitted, that in turn is related to the
efficiency of the compression. However, compression performance is also
directly connected to the power consumption: better performance can
be often achieved due to the increase of computational complexity of the
algorithms and thus the increase of the power consumption for compres-
sion. An illustration of power consumption dependency on the encoding
complexity parameter CP is shown in Fig. 3.2. The solution between
the conflicting issues results in achieving a computation-communication
trade-off that for video communication systems is often called the Power-
Rate-Distortion (P-R-D) trade-off. This trade-off can be applied to the
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downlink communication as well, where the computation part refers to
the power consumption of the decoder.

Figure 3.2: Relation between power and complexity [117]

In handheld devices, where power remains one of the most critical
resources, it is essential to have an efficient power management. There
are many ways of performing it on a mobile device. Such devices consist
of several blocks like CPU, memory, network interfaces etc., which require
different power consumption strategies to be applied on [118–120].

In most cases, power management techniques focus on the device
power consumption. It is obvious that here some fundamental trade-offs
like spectrum efficiency - energy efficiency, bandwidth - power, delay -
power and quality - power appear [121]. In our analysis of the power
consumption of the 3G transition state machine [2], we consider the two
last named trade-offs. We propose a method for parameters selection
for the 3G transition state machine that allows to decrease device power
consumption. We also describe the cases with several restrictions like
signaling traffic, buffer size and latency. As we apply this technique for
uplink video transmission over 3G networks, we show the potential of
content-dependent power management. For example, a mobile device
can balance between video quality and transmission power. By defining
the desired quality range, it is possible to avoid using additional power
for unnecessary improvement of the video quality.

Power management is possible in the downlink mobile communica-
tions as well. It has been noted [119,122–124] that the power consump-
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tion of the receiver can be lowered if the transmission occurs in bursts.
The main idea of such approach implemented in DVB-H [125] is that
the receiver operates for a short time interval, during which the part of
the video data is received. Then, the receiver turns off the radio parts
completely while the video is being constantly decoded. The use of scal-
able codecs in this solution allows meeting the trade-off between power
consumption and video quality in handheld receivers [51,126].

3.4 System optimization

Efficient management of video communication systems requires cross-
layer optimization techniques. Optimization methods can be focused e.g.
on the end-to-end delay, power consumption and complexity. Cross-layer
communication allows the system to use the information about operation
on other layers. Such information like remaining battery capacity or
channel conditions is useful to adjust the system parameters in order to
achieve optimal performance.

3.4.1 Optimization for fiber-wireless transmission

The ideal compression system for wireless transmission over high-speed
networks has not been developed yet. In order to perform video trans-
mission over such networks, an optimization of the existing solutions
should be done.

In [3] we have demonstrated the HD video distribution over fiber-
wireless networks. For such a setup that can be used for both conferenc-
ing applications and distributed video gaming, some requirements need
to be satisfied. These applications have delay and power consumption
constraints, plus they require error-resilient transmission. In order to fit
a realistic scenario, we have chosen the H.264/AVC codec that covers a
wide range of wireless applications [114]. To comply with the require-
ment for low delay, the Intra coding mode was chosen. It allows avoid-
ing long buffering time as reference frames are not used for prediction.
In addition, the elimination of inter-prediction reduces the complexity
of the algorithm. Instead of Context-Adaptive Binary Arithmetic Cod-
ing (CABAC), a lower complexity solution for entropy coding - Universal
Variable-Length Coding (UVLC) - was used [64].
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Intra mode allows at the same time to improve the error resilience
together with other optional tools: slicing, data partitioning, Flexible
Macroblock Ordering (FMO), Arbitrary Slice Ordering (ASO), redun-
dant coded slices. In [3] two of these tools - FMO and slicing - have been
used. The results have shown that employed tools allowed to increase the
robustness of video for fiber-wireless transmission over 60 GHz channel.

3.4.2 Rate-Distortion-Complexity optimization

In Section 3.3.2 we have mentioned that complexity/power consumption
for the whole video communication system depends on its two compo-
nents - compression and transmission. However, these components influ-
ence each other: higher compression efficiency requires higher complexity
and therefore, higher power consumption, but at the same time it allows
to reduce bit rate and save on transmission power, and vice versa (see
Fig. 3.2).

One of the goals of compression is to optimize the quality of the re-
constructed video data. The limited bandwidth of the communication
channels put additional constraints on the bit rate. An optimal compres-
sion solution under constrained bit rate can be found by Rate-Distortion
Optimization (RDO). In mobile video communications power and com-
putational complexity are two other constrained resources, therefore, in
order to find an optimal solution under all constrained resources, it is
not enough to perform only RDO. In this case, it is necessary to per-
form Resource-Distortion optimization [127], which includes P-R-D and
Rate-Distortion-Complexity (R-D-C) analysis and optimization [128–
132]. R-D-C optimization is part of the complexity management sys-
tem, which allows data encoding within a certain complexity limit, i.e.
complexity budget. An optimization can be done offline, i.e. already at
the level of system design, or online, i.e. during data processing, allowing
to adapt the algorithm to the current conditions.

Complexity limitations are caused by the device hardware capabili-
ties, e.g. the operating speed of the processor and its working states (idle
levels, etc.). This implies that there is a hardware limit for computational
resources on the mobile device. Power restrictions are usually connected
to the battery capacity, which is also limited on mobile devices.

Experimental studies show that the contribution of the encoder to
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the overall power consumption for video communication systems is high
and it usually exceeds the contribution of transmission power [133,134].
Encoder power consumption depends on the complexity of the compres-
sion algorithm. Therefore, R-D-C optimization for the encoder can play
a significant role in the complexity management system. Usually R-D-C
optimization is based on efficient bit allocation in order to maximize the
quality under complexity constraints. Some approaches for R-D-C opti-
mization have been designed for the H.264/AVC standard [117,132,135].
They are typically based on optimization of Motion Estimation (ME),
as it represents one of the most resource-consuming units of the codec,
and controlling the mode decision operations.

Rate-Distortion-Complexity optimization for HEVC

We extended the idea of restricting the amount of coding modes tested
during RDO to the upcoming High Efficiency Video Coding (HEVC)
standard. The novel CU data structure of HEVC, described in Sec-
tion 2.3.2, allows to control the complexity by varying the partition
depth. One approach based on dynamic adjustment of the partition
depth is described in [136]. In this work CU depth, which defines the
smallest block size that can be used for encoding, is selectively con-
strained by a complexity control algorithm in order to comply with
the complexity budget. Their idea is based on the assumption that
co-located areas in adjacent frames are more likely to have similar be-
havior and consequently similar values of maximum depth; therefore it
is possible to restrict depth values in a chosen number of frames bas-
ing on the maximum depth values in previous frames (in corresponding
areas). This method allows achieving good precision in fulfilling target
complexity and allows a wide range of complexity reductions.

We propose our solution for the task of complexity management for
HEVC. In contrast to the approach described above, we find depth
values for each Group Of Frames (GOF) in the sequence in the way
that rate-distortion performance is close to optimal given the complex-
ity budget. This allows us not only decreasing the depth values, but
also increasing them for particular frames if it appears to be beneficial
from a R-D-C point of view. HEVC does not allow changing the depth
while a sequence is being encoded. This means that for a chosen encoder
configuration, four complexity levels are available at maximum (referred
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to four possible partition depth values). In our approach we encode each
GOF independently. Using predictive techniques and game theory meth-
ods, we can define depth values independently for each encoded GOF,
which allows us to control the complexity and perform the encoding of
the sequence within a given complexity budget.

The proposed algorithm works in the following manner. After encod-
ing the first GOF with all possible depth values and obtaining distortion,
bit rate and complexity characteristics (measured as performance time),
we can get the parameters α and β separately for I and P frames for
each depth value d from the following dependencies:

Complexity = αd
1 · SAD + βd1 , (3.2)

Rate = αd
2 · SAD + βd2 , (3.3)

Distortion = αd
3 · SAD + βd3 . (3.4)

These functions allow us to predict complexity, rate and distortion
values for the following GOF knowing the SAD values of its frames. The
values of αd and βd are updated to the values α′d and β′d after encoding
the new GOF with the chosen depth value d. Prediction for other depth
values d∗ is done using previous values of αd∗ and βd∗. Then, the results
of the prediction are proportionally scaled in the following manner:

Complexity′(αd∗, βd∗) = Complexity(αd∗, βd∗) · Complexity(α
′d, β

′d)

Complexity(αd, βd)
,

(3.5)

Rate′(αd∗, βd∗) = Rate(αd∗, βd∗) · Rate(α
′d, β

′d)

Rate(αd, βd)
, (3.6)

Distortion′(αd∗, βd∗) = Distortion(αd∗, βd∗) · Distortion(α
′d, β

′d)

Distortion(αd, βd)
.

(3.7)
Predicted complexity, rate and distortion values are used later to

define the optimal values of the partition depth for the following GOFs
using a game theory approach.
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Game theory

Game theory [137] is used in many science fields, including economics,
social, political, and computer sciences. It is a common approach to
solve the optimization problem of resource allocation [138,139].

A game consists of the interaction of n players that take decisions
in order to maximize their own utility. The decision chosen by the i-th
player at the time moment t is referred to as a strategy and is represented
as σi,t. The set of strategies chosen by n players at the moment t can be
defined as σ = [σ1,t, σ2,t, ..., σn,t].

The utility or payoff function u(σ) depends on the array of strategies
σ. The utility function ui(σ) for player i is defined so that

{
ui : C1 × ...× Cn 7→ <
ui : σ → ui(σ) .

A utility function is a criterion that allows to compare different strategies,
i.e. the set of strategies σ1 is better than the set of strategies σ2 if
u(σ1) > u(σ2).

A game with n players where the i-th player chooses its strategies
σi in the set Ci and has a utility function ui(σ) defined above, can be
expressed in strategic form: (C1, ..., Cn, u1(σ), ..., un(σ)). For a game
G = (C1, ..., Cn, u1, ..., un) a given configuration (σ∗1, ..., σ

∗
n) is a Nash

equilibrium if the strategy σ∗i is the best response of player i to the
strategies (σ∗1, ..., σ

∗
i−1, σ

∗
i+1, ..., σ

∗
n), i.e.

ui(σ
∗
1, ..., σ

∗
i−1, σ

∗
i , σ
∗
i+1, ..., σ

∗
n) > ui(σ

∗
1, ..., σ

∗
i−1, σi, σ

∗
i+1, ..., σ

∗
n)

for ∀i ∈ N and ∀σi ∈ Ci.
In our problem statement, a game consists in the interaction of n

players (GOFs) that choose the configuration, i.e. the value of the par-
tition depth, in order to maximize their own utility u. Each player i has
a choice between m values of partition depth, i.e. the overall amount
of possible configurations is equal to P = mn. For each configuration
p ∈ P we find a utility function u(p) that takes into consideration both
predicted bit rate and complexity of the following GOF. Afterwards we
search for the configurations that provide Nash equilibria. The config-
uration that gives the best payoff according to the prediction will be
a solution of the optimization task for the following GOF. Afterwards
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the GOF is encoded using the found depth value. Then, the complex-
ity budget for the remaining GOFs is updated using the actual encoding
complexity of the encoded GOF. Finally, rate, distortion and complexity
characteristics for each depth of the next GOF are predicted, and the
game theory approach is applied again. These operations repeat until
the whole sequence is encoded.

The game theory approach described above can be extended to a
bigger amount of available configurations. For example, each player can
choose between the configurations that depend not only on the partition
depth, but also on the quantization parameter and some other configu-
ration options that affect the R-D-C performance of the algorithm.

Performance results

We have performed R-D-C optimization on three CIF video sequences
“Crew”, “Mobile” and “News” that represent three different kinds of con-
tents: high motion, texture and low motion. 70 frames per sequence were
considered in our experiments. Each sequence was encoded as GOFs,
consisting of 1 I frame and 4 P frames. The chosen CU size was 64× 64.
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Figure 3.3: Relationship between the target and actual complexity

As it can be seen from Fig. 3.3, the proposed game theory approach
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combined with prediction provides a quite accurate control of the com-
plexity. The maximum deviation from the target complexity is around
5%. The complexity is measured by processing time, and the actual com-
plexity refers to the time spent for encoding of the sequence de facto.

Figure 3.4: Performance of different configurations for the sequence “Mobile”, 70%
complexity level

Figure 3.4 shows all the configurations for the sequence “Mobile” that
satisfy the defined complexity level of 70%. As it can be noticed, the
configuration found by our method is quite close to the optimal ones
providing the best rate-distortion performance.

Figure 3.5 shows the performance of the proposed method in com-
parison to the optimal solutions found by offline optimization. It means
that complexity (performance time) values for all possible configurations
have been stored in advance and optimal solutions satisfying the defined
complexity level have been found by full search. Table 3.1 shows the
PSNR difference in dB between proposed and optimal configurations,
compared at equal bit rates.

Figure 3.6 demonstrates that the proposed R-D-C optimization pro-
vides flexibility for the HEVC encoder in terms of complexity. As already
mentioned, the current HEVC encoder allows 4 complexity levels at max-
imum. These levels are referred as Depth 2, 3 and 4 in Fig. 3.6. Depth 1
is not allowed for CIF sequences with CU size equal 64× 64. Our solu-
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Figure 3.5: Performance results for the proposed solution compared to offline opti-
mization
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Figure 3.6: Flexibility of the HEVC provided by R-D-C optimization
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Table 3.1: PSNR difference (dB) between the proposed and optimal configurations

Sequence 60% 70% 80%
Crew 0.13 0.18 0.08
Mobile 0.13 0.11 0.10
News 0.10 0.16 0.12

tion allows HEVC performance with the complexity level defined by the
end user. We have shown the performance in terms of PSNR/complexity
relationship, as our setup implies the use of a rate control algorithm that
allows producing bit streams with similar bit rates. However, slight de-
viations from the target bit rates are possible, especially on the short
sequences like the ones used in our experiments (70 frames).

Our results for RDC optimization for HEVC (see also Appendix B)
evidence a small PSNR loss against the solution that can be found by
offline optimization. In contrast to the work [136], we do not only de-
crease the complexity of HEVC, but also provide a solution that gives
rate-distortion performance close to the optimal one. The use of rate
control for HEVC allows performing optimization under bit rate and
complexity constraints at the same time.

Our approach shows the possibility of controlling the complexity of
HEVC allowing its use in power-constrained devices. Optimization of
the power consumption of the device through the complexity control of
the encoder implies accessing the state of the hardware resources in the
device. This means that R-D-C control should be performed from a cross-
layer optimization point of view. This optimization can include another
layer - transmission - if compressed video data has to be sent over the
network. As described in the Section 3.3.2, such cross-layer optimization
will result in finding computation-communication trade-offs.

3.5 Conclusion

Modern communication systems have been steadily evolving in the last
years so that just in few decades we have passed from 1G to 4G networks.
Digital transmission significantly advanced the development of wireless
communication systems, so that now we have high data rates and capa-
bilities for various applications. Networks availability and their variety,
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convergence of wired and wireless networks, ubiquity of 3G mobile sys-
tems, popularity of social networks and conversational applications - all
this has contributed to the development of the concept of “anytime any-
where” wireless connectivity.

However, wireless connections require additional power consumption
from the client terminal. Mobile communication systems often include
handheld devices that have additional constraints like power consump-
tion. In order to prolong battery lifetime, it is possible to perform com-
plexity management. We have shown in [2] that some modifications in
the 3GPP transition state machine can bring significant benefits in terms
of device power consumption. Apart from the ideal case, we have pro-
vided the analysis of system performance in case additional restrictions
- like latency, amount of signaling traffic or buffer size - appear. As the
share of video in mobile data traffic is continuously growing, we have
discussed video data transmission over 3G networks and shown power-
quality trade-offs that allow to perform adaptive power control on the
mobile device.

Data transmission can be more efficient if a rate control system that
helps to maximize the quality under the bit rate constraints is embedded.
We have presented a low-latency low-power video source rate control
and provided practical results for video transmission over high-speed
WPANs using the proposed rate control [10]. If rate control is combined
with power/complexity control, we can speak about P-R-D or R-D-C
optimization. As power consumption of mobile communication systems
consists both of compression and transmission power that depend on each
other, a trade-off between these conflicting issues needs to be found.
However, higher power consumption in video communication systems
refers to encoding procedures than to transmission. Power management
systems for encoders similar to the one presented in Section 3.4.2 allow
to achieve another trade-off - between power consumption/complexity
and resulting video quality, so that efficient but complex video coding
schemes like HEVC can be applied to power-constrained devices. If all
aspects including rate-distortion performance, power consumption and
delay are taken into account, we can speak about Resource-Distortion
control that allows to achieve efficient transmission.

Thus, many applications that deal with video data to be transmitted
over wireless networks are becoming more and more popular. With high
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bandwidth available in some types of the networks like 60 GHz WPANs,
it is possible to transmit this data even in uncompressed form, but effi-
cient video compression can bring additional advantages apart from the
bit rate decrease. Video encoding with small compression ratios can lead
to overall power savings in the system. In the perspective of growing res-
olutions up to 4K and even 8K, video compression seems to be essential.
Moreover, scalable bit stream allows the efficient usage of Unequal Er-
ror Protection (UEP) to provide error resilient transmission. However,
error resilient transmission can be achieved by employing different tools.
We have experimentally demonstrated 60 GHz Radio over Fiber (RoF)
transmission of compressed HD video and the effect of error-resilience
tools in H.264/AVC for 60 GHz RoF setup [3]. In particular, we have
shown that these tools improve robustness against impairments that oc-
cur in 60 GHz fiber-wireless channel.

Bandwidth demand leads to the development of new generations of
wireless networks and these networks require new approaches to handling
of the video data. Thus, advances in communications and growing share
of video in overall data traffic pose new challenges for the research in
video coding as well.
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Conclusion and Outlook

The fast development of video communications that has taken place in
the last decades has lead to many changes in our everyday life. Video
chats, Mobile TV, wireless video surveillance, wireless home theaters - all
these applications have entered in our life and almost immediately took
very strong positions so that nowadays it is hard to imagine life without
them. Such a variety of applications leads to a variety of technolog-
ical approaches used in them. Low and high complexity compression
algorithms, real time and non real time systems, scalable and multi-
view video codecs - just to name a few of them. These systems are
often subject to memory, complexity, bit rate or other constraints that
pose additional limitations to the compression systems. As compressed
video data is often sent over communication systems, additional chal-
lenges appear. Transmission systems add further restrictions to power,
bandwidth and delay, so an optimal solution has to be found taking all
aspects of the joint compression and transmission system into account.
Greater demand for bandwidth leads to new generations of wireless net-
works, higher resolutions lead to the evolution of compression standards
so the development of video mobile communications continues and new
approaches need to be found.

This thesis covered several important aspects regarding low-complexity
wireless transmission of compressed video under constrained resources.
We have proposed low-complexity scalable (progressive) solutions for
video compression based on JPEG and JPEG-LS image coding stan-
dards. These two schemes can be applied in low-power systems where

63
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in addition low memory consumption is required, and our results show
that in such constrained scenario our methods compete with standard
solutions.

We have studied scalability aspects in the novel Distributed Video
Coding (DVC) paradigm as well. DVC is a low-complexity approach
that together with the scalability and other features seems a promising
solution for many applications. In our work we have compared DVC
and H.264/AVC in terms of encoder power consumption and temporal
scalability. Our results show that both solutions can provide satisfactory
results for low-complexity coding and the choice between them should
be made based on other restrictions and requirements of the system. We
have also proposed a scalable-to-lossless DVC codec that outperforms
other lossless solutions, i.e. JPEG-LS, JPEG2000, H.264/AVC, allowing
around 5 - 13 % bit rate savings.

In continuation of the scalability topic, we have proposed a novel
metric for objective quality assessment for video coding with temporal
scalability. Such metrics are essential for comparison of video sequences
with different frame rates produced by scalable video codecs. Our met-
ric shows a high correlation with the subjective scores. We have also
demonstrated the applicability of the novel method for subjective qual-
ity evaluation proposed in [34] to the tasks of quality assessment along
with Mean Opinion Score (MOS).

Orienting on low-complexity solutions, we have performed power con-
sumption analysis of compression and transmission systems with a focus
on the power-distortion trade-off. We have proposed a power consump-
tion model for the most consuming state of the Radio Resource Con-
trol (RRC) in 3G. Our model provides a good approximation to the
experimental results. We have proposed an optimization for the 3GPP
transition state machine that allows to decrease device power consump-
tion. We have also discussed constant bit rate video transmission over
3G networks and shown the benefits of the proposed method in terms of
quality vs. power consumption.

We have discussed low-delay and low-power video transmission over
Wireless Personal Area Networks (WPANs). This included the optimiza-
tion for joint fiber-wireless transmission over 60 GHz, the demonstration
of error-resilience tools performance in fiber-wireless link, and a pro-
posal of a video source rate control for low-latency video transmission.
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Performance results for rate control, providing lossless quality in “good”
channel states and guaranteeing acceptable quality for a given through-
put in “bad” channel states, have also been demonstrated for 60 GHz
network.

Finally, we have proposed Rate-Distortion-Complexity (R-D-C) con-
trol for the upcoming video compression standard High Efficiency Video
Coding (HEVC) that allows additional flexibility in terms of complexity.
Our method provides a quite accurate control of the complexity and is
able to find solutions close to the optimal ones.

In our work we followed some of the main trends in video compres-
sion and mobile communications. Some future directions in power-aware
mobile multimedia have been pointed out in [140]. One of the challenges
in this field is the development of the power management strategies in
mobile devices that allow an efficient use of the most critical resource in
such systems - battery energy. Another challenge is the R-D-C analysis
of video codecs that allows to choose a proper configuration for modern
complex encoders like HEVC.

Regarding DVC and its applications, [95] describes the main trends
in DVC and concludes that it suits low-complexity applications with
low-power consumption at the encoder side, especially when combined
with video transmission over noisy channels. With such restrictions DVC
represents an appealing solution providing competitive results in terms
of rate-distortion performance.

Scalable video coding is gaining its popularity as well. The plan for
the development of a scalable extension of HEVC is an additional proof.
Due to its properties, scalability looks attractive for video transmission
in wireless environments and its possible applications include IPTV [141]
and Future Media Internet [142].

The scalability feature poses another issue: it is important to find
a method for objective comparison of quality of videos having different
temporal and spatial resolutions. Lee et al. [84] confirm that currently
most of the subjective metrics are highly dependent on the test data
used for metric design. We agree with the authors that it is necessary
to perform quality assessment on common validation databases allowing
cross-evaluation for benchmarking.

In our opinion one of the most obvious applications that can benefit
from low-delay low-power scalable solutions is video surveillance. Most of
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the studied approaches, including the quality assessment for video with
different frame rates, can be efficiently used in wireless video surveil-
lance systems. Multidimensional quality assessment is almost inevitable
in video surveillance that often has to deal with scalable videos. Such
systems usually consist of many heterogeneous clients where wireless ter-
minals have time-varying bandwidth capacity. In these conditions, scal-
able bit streams have advantages against non-scalable solutions [143]. In
addition, scalability is useful in video surveillance applications as it al-
lows keeping for long-term storage only some parts of bit stream without
degrading visual quality significantly [84].

As new standards and new solutions advance, the potential of wireless
video applications grows as well. Many spheres - from education to se-
curity, from space science to medicine - are benefiting from the advances
in video communications. Many of such applications were unimagin-
able just few decades ago, but thanks to the technological development
we now see and use them in everyday life. It is hard to make predic-
tions about the future research directions, but we think that even if
battery capacities of mobile devices will significantly increase in next
years, low-complexity approaches will still be desirable as they allow
power consumption savings, which gets more and more important in the
perspective of limited Earth energy resources.
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ABSTRACT 

 
In this paper, we present a novel objective quality metric 
that takes the impact of frame rate into account. The 
proposed metric uses PSNR, frame rate and a content 
dependent parameter that can easily be obtained from spatial 
and temporal activity indices. The results have been 
validated on data from a subjective quality study, where the 
test subjects have been choosing the preferred path from the 
lowest quality to the best quality, at each step making a 
choice in favor of higher frame rate or lower distortion. A 
comparison with other relevant objective metrics shows that 
the proposed metric on average provides a more precise 
correlation with the subjective results. 
 

Index Terms— Video quality, frame rate impact, 
objective metric 
 

1. INTRODUCTION 
 
The perceived video quality in today's video applications is 
a significant part of the Quality of Experience (QoE) for the 
end users. Therefore, it is very important to measure the 
possible quality degradations in the system in order to 
maintain and control the quality of the video data. The 
methods for quality measurement are divided into two 
categories: subjective and objective measurements. 
Subjective quality is often expressed in Mean Opinion Score 
(MOS), but there are also other possible methods not based 
on quality scoring, e.g. pairwise comparisons [1]. Whereas 
subjective quality evaluation provides the most reliable 
results as quality is estimated by human beings, who 
represent the end users, it requires more resources and is not 
suitable for some applications, e.g. in real-time quality 
monitoring. As the most popular objective metrics, such as 
peak signal-to-noise ratio (PSNR), do not correlate perfectly 
with the subjective quality [2], more accurate objective 
quality metrics are needed for many applications. 

As video data also includes the temporal dimension, the 
quality assessment for video is more demanding than for 
images. Unfortunately, most of the established video quality 
metrics do not take frame rate into consideration. However, 
the impact of frame rate on perceptual video quality has 
been studied by many researchers. McCarthy, Sasse and 

Miras studied the effects of quantization vs. frame rate for 
video sequences with sports content [3]. Their work 
concluded that on a small screen, high spatial quality is 
preferred over the frame rate. However, their study did not 
propose any objective method for quality measurement. 

A metric QM based on peak signal-to-noise ratio 
(PSNR) considering both quantization and frame rate is 
described in [4]. In case of high frame rates, the metric is 
dominated by the quantization errors and is close to the 
PSNR. Otherwise, the PSNR value (measured on the 
temporally upsampled sequences in case of low frame rate) 
is compensated depending on the frame rate reduction and 
the motion speed. However, the compensation is not enough 
for very low frame rate, as in this case PSNR values for 
interpolated sequences do not vary significantly for different 
video quality, which results in almost equal values of the 
quality metric at low frame rates. 

Another quality metric VQMTQ considering both frame 
rate and quantization artifacts is proposed in [5]. That metric 
provides a good fit to the measured MOS scores. The model 
uses sequence-dependent parameters; however, it is possible 
to predict them based on the characteristics of the video 
sequences. 

Peng and Steinbach proposed a novel full-reference 
video quality metric STVQM based on PSNR, frame rate, 
and spatiotemporal activity measures [6]. Their experiments 
show that they both perform well and the difference between 
VQMTQ and STVQM metrics is not statistically significant. 
However, STVQM has some advantages, namely the use of 
only two standard video activity indicators that can easily be 
computed, compared to the four parameters with 
significantly more complex interpretation used in VQMTQ. 
Moreover, STVQM has no codec-dependent parameters, 
unlike VQMTQ. 

In this paper we propose a novel quality metric for 
objective quality assessment of the video data taking the 
impact of the frame rate into account. Our experimental 
results show that the proposed method allows determining 
the quality of the video sequences close to the subjective 
human opinion, and can compete with other recently 
developed objective quality metrics, such as VQMTQ and 
STVQM, by offering more constant performance with 
different contents. 

 

A. Ukhanova, J. Korhonen, S. Forchhammer “Objective assessment of the impact
of frame rate on video quality”, International Conference on Image Processing (ICIP),
Lake Buena Vista (FL), USA, 2012.
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2. METHODOLOGY 
 

As reference data for this study, we have used the data 
obtained from the study published in [7]. The purpose of the 
original experiment was to find the quality optimal path 
through the plane, where one dimension is the quality 
measured in terms of peak signal-to-noise ratio (PSNR), and 
one other dimension is the frame rate. Different 
combinations of frame rates and PSNRs are represented by 
nodes, arranged in a form of a two dimensional grid. At each 
step, test subjects choose between two sequences according 
to their preference: one with higher frame rate but lower 
PSNR (the node upwards), and another with lower frame 
rate but higher PSNR (the node to the right). With this 
method, it is possible to find the average preferred path from 
the lowest to the highest frame rate and PSNR, reflecting the 
perceived relative importance of frame rate and PSNR along 
the path. The details of the study are omitted due to the lack 
of space, but interested readers may refer to [7]. 

Unfortunately, the described method does not produce 
any subjective quality scores directly. However, we can 
measure the PSNR difference between two different PSNR 
levels, and then estimate the perceptual PSNR (PPSNR) 
difference between two frame rate levels from the relation 
between test subjects choosing the higher frame rate and 
those choosing the higher PSNR. The concept is illustrated 
in Fig. 1. In the illustration, nodes 0, a and b represent video 
sequences with different combinations of frame rates (FR1, 
FR2) and PSNR levels (PSNR1, PSNR2). Transition 
probabilities pa and pb denote the proportion of test subjects 
who prefer to move from node 0 to node a and b, 
respectively (pa + pb = 1). PSNR difference between nodes 0 
and b is known to be ΔPSNR, and when pa and pb are 
known, we can assume that PPSNR difference ΔPPSNR 
between nodes 0 and a can be estimated as: 

  ba ppPSNRPPSNR /⋅∆=∆       (1) 

The estimate is most reliable when pa ~ pb ~ 0.5 and becomes 
less accurate when either pa or pb approaches zero. The 
method can be applied regardless of the sign of ΔPSNR. 

a

0 bFR1

FR2

PSNR1 PSNR2

pa

pb

ΔPSNR

ΔPPSNR = 
pa/pb∙ΔPSNR

PPSNRa = 
PSNR1 + ΔPPSNR

 
 

Figure 1. Method for deriving PPSNR values. 
 

The data from [7] contains the preferred paths for five 
sequences judged by 25 test subjects, across planes with six 

frame rates and PSNR levels, ie. there are 6x6 nodes in each 
graph. Each node is assigned with a number of "occupants", 
ie. test subjects who have traversed through the node in 
question. For the practical application of the technique 
described above, we have first initialized the PPSNR values 
of the nodes with full frame rate with their measured 
respective PSNR values. Then, we have resolved the PPSNR 
values cumulatively for the lower frame rates by computing 
the proportion of "occupants" preferring higher frame rate or 
PSNR at each step. Naturally, some nodes have too few 
occupants to give reliable results; these nodes have been 
discarded from the final results. The most reliable PPSNR 
values are supposed to be found close to the most popular 
paths. Figure 2 shows the resulting PPSNR values for 
sequence "Coastguard". 
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Figure 2. PPSNR values for “Coastguard”. 

 
The next challenge is to find an objective quality index 
matching with the experimental data obtained in the previous 
phase as accurately as possible. After attempting with 
several functions with potential resemblance to the surfaces 
such as in Fig. 2, we have identified that Eq. (2) gives the 
most promising results. The parameters of the quality 
function are PSNR, frame rate FR, and a content dependent 
parameter c. 
 
        ( ))101exp(1 8 cPSNRFRPSNRPPSNR −⋅⋅−−⋅=   (2)  

 
Since parameter c is related to the content type, we have 
used the spatial and temporal activity measures to predict c. 
In this work, we have used slightly modified definitions of 
the SI and TI indices in [8], denoted as SA and TA, as 
defined in [6]: 
 
 [ ]))(( nspacetime FSobelstdmeanSA =      (3) 

 [ ])( 1−−= nnspacetime FFstdmeanTA      (4) 
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The parameter c is then predicted from SA and TA: 
 
    )exp( TASAc ⋅⋅+= βα ,                    (5) 

 
where α and β are model parameters that can be solved by 
applying linear regression to the experimentally obtained 
values of ln(c). The logarithmic space is used instead of  
linear space, since we got slightly better results using the 
logarithmic space. 
 

3. PERFORMANCE EVALUATION 
 
In order to evaluate the performance of the proposed metric, 
we have compared our metric with VQMTQ and STVQM, 
as these are the most relevant comparison points known 
from the related studies. To make the comparison, we have 
created the preferred paths as in [7], derived from the quality 
values produced by the metrics named above. Based on the 
relative quality differences between adjacent nodes, we have 
computed the transition probabilities pa and pb for each node 
and then computed cumulatively the relative amount of 
occupants in each node, starting from the lowest frame rate 
and quality. The method for computing pa and pb is basically 
the reverse of the method shown in Fig. 1: we assume that 
pa/pb equals to ΔVQa/ΔVQb, where ΔVQa and ΔVQb are the 
differences in quality values between the source node and 
nodes a and b. Instead of PPSNR, VQ can be any quality 
metric with locally linear behavior. When the objective 
quality values are known, pa and pb can be computed as: 
 

         ab
ba

a
a pp

VQVQ
VQp −=
∆+∆

∆
= 1,       (6) 

  
As mentioned in Section 2, test subjects make their choice in 
several steps, starting with the lowest frame rate and PSNR. 
After the first step, the hypothetical test subjects are divided 
to nodes (1,2) and (2,1). After the second step, test subjects 
are distributed among nodes (1,3), (2,2) and (3,1), and so on. 
If we denote the relative number of occupants in node (x,y) 
as sx,y, the average indices (xi,yi) after i steps can be 
computed as follows: 
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              (7) 

 
From [7], we have the preferred paths based on subjective 
evaluation for the following sequences in CIF (352x288) 
resolution: “Akiyo”, “City”, “Coastguard”, “Football”, and 
“Ice”. The illustrations of the original subjective path for 
sequences “Coastguard” and “Football” are shown in Fig. 3, 
together with the paths resolved following the procedure 

described above, applied to the objective quality indices 
from VQMTQ, STVQM and the proposed method.  

Then, we have compared the subjective path against 
the objective paths by computing the mean Euclidean 
distance D between the average subjective position (xi

subj, 
yi

subj) and the position (xi
obj, yi

obj) computed from the 
objective data at each step i: 

 

))()(( 22 subj
i

obj
i

subj
i

obj
i yyxxmeanD −+−= ,  (8) 

 
where position is defined in terms of indices, since FR and 
PSNR scales are different.  

Unfortunately, we only have the subjective paths 
available for the five abovementioned sequences, and such a 
small number of data does not allow us to create separate 
subsets for training and validation. To alleviate this a linear 
regression was performed for each sequence separately using 
the “leave-one-out” method, ie.  parameters α and β required 
for predicting c were obtained using the known values of c 
for the other four sequences. The results for the distance 
comparisons between the subjective preferred path and the 
objective paths are listed in the Table I for each test 
sequence. Similar relative results can be obtained by using 
median instead of mean Euclidean distance. 
 
Table I. Minimum distance comparison for preferred paths 
obtained by different quality metrics. 

 
 akiyo city coastg. footb. ice avg. 
VQMTQ 0.65 0.34 0.27 1.24 0.37 0.57 
STVQM 0.11 0.35 0.23 1.06 0.92 0.53 
Proposed 0.11 0.69 0.54 0.20 0.49 0.41 

 
The comparison with the QM metric [4] has not be included, 
since we have observed that increasing quality and bit rate 
with low frame rates does not always give increasing QM 
values, and this is why we have concluded that QM metric 
cannot predict the quality reliably at low frame rates. 

As we can see, on average our proposed metric 
performs slightly better than VQMTQ and STVQM. 
However, the performance fluctuates between contents for 
all the metrics and none of them shows excellent 
performance on all sequences. For some contents, VQMTQ 
and STVQM perform better than the proposed metric, but 
the proposed metric achieves a more constant performance 
across different contents. The average performance of 
STVQM and VQMTQ is roughly similar, but VQMTQ has 
some disadvantages, such as the use of parameters 
dependent on the codec and content, which are not trivial to 
compute. We expect that the proposed method can be 
improved by using subjective data for more sequences, as 
the use of only four sequences in the “leave-one-out” 
method for parameter estimation can lead to overemphasis 
of outliers. 
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4. CONCLUSIONS 

 
Several studies about the impact of frame rate on subjective 
video quality conclude that the impact is highly dependent 
on the content. However, most of the established video 
quality metrics known from the literature do not take frame 
rate into consideration. In this paper, we have used data 
from a subjective study where the preferred path from the 
lowest quality to the best quality is determined by choosing 
between different frame rate and distortion levels at each 
hop. We have derived the relative subjective scores from the 
probability (frequency) of test subjects for choosing each of 
the two alternatives at each point. 

We have proposed a simple metric for assessing the 
impact of frame rate on quality. In the proposed metric, the 
PSNR value of the video sequence is multiplied by a factor 
including frame rate and a content dependent parameter that 
can be computed from spatial and temporal activity indices 
SI and TI. We have compared the proposed metric against 
two other relevant metrics, VQMTQ and STVQM, and 
observed that in average, the proposed metric is capable of 
predicting the paths chosen by test subjects more accurately 
than the other metrics. However, the performance shows a 
significant dependency on the content. In the future, we plan 
to improve the proposed metric by involving more extensive 
subjective experiments, covering a larger variety of contents 
and higher resolutions. 
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Figure 3. Preferred subjective and objective paths for sequences "Coastguard" and "Football". 
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a b s t r a c t

This paper presents an analysis of the power consumption of video data transmission with constant bit
rate over 3G mobile wireless networks. The work includes the description of the radio resource control
transition state machine in 3G networks, followed by a detailed power consumption analysis and mea-
surements of the radio link power consumption. Based on this description and analysis, we propose
our power consumption model. The power model was evaluated on a smartphone Nokia N900, which fol-
lows 3GPP Release 5 and 6 supporting HSDPA/HSUPA data bearers. We also propose a method for param-
eter selection for the 3GPP transition state machine that allows to decrease power consumption on a
mobile device taking signaling traffic, buffer size and latency restrictions into account. Furthermore,
we discuss the gain in power consumption vs. PSNR for transmitted video and show the possibility of per-
forming power consumption management based on the requirements for the video quality.

� 2012 Elsevier B.V. All rights reserved.

1. Introduction

Wireless networks have gone through an extensive develop-
ment throughout the recent years. After the Internet, in the
1990s, came the second generation wireless systems with addi-
tional features for communication by means of cellular phones.
With the move from analog (1G) to digital transmission (2G), the
capacity of the cellular systems have been significantly improved.
Further demand for greater bandwidth resulted in the develop-
ment of third generation mobile telecommunications (3G), provid-
ing a mobile broadband access to handheld devices.

The number of mobile cellular subscriptions has also been rap-
idly growing in the last decade, and now the rough estimate has al-
most reached 6 billions. Nowadays 3G systems are also becoming
ubiquitous: the number of active mobile-broadband subscriptions
reaches almost 1.2 billion [1]. As wireless communication technol-
ogy advances, in new generation mobile phones 3G networks pro-
vide a large amount of various services including high data rate
Internet access, videoconferencing, global positioning, high quality
music and video downloading, and gaming capabilities.

Mobile TV and video-on-demand services are also rising in pop-
ularity and expected to be a significant driver for the wireless con-
sumer industry. Consumers demand for video data, quality of

experience of mobile multimedia and its usability is pushing the
development of Mobile TV and related services. Therefore, video
transmission for mobile terminals is a major application in the
3G and beyond systems and may play a key role in their success
[2]. According to Cisco research, ‘‘two-thirds of the world’s mobile
data traffic will be video by 2015’’ [3]. As a consequence, these
additional features are bringing the power consumption of mobile
phones to the level of desktop computers. However, the lack of a
constant power supply and limited battery capacity [4] pose strict
limits to the overall power consumption of the device. Therefore,
minimization of the power consumption of wireless devices is a
great challenge for the entire electronic industry, at all system lev-
els. Hence, an intense research in this field has focused on power
management [5–7].

In our work we analyze the power consumption in case of up-
link transmission, show how the power consumption depends on
the transmission parameters and explain how it can be reduced
by optimizing the power management policy. We analyze the cases
with buffer and latency restrictions and show how to choose trans-
mission parameters in these scenarios. Due to the growing interest
in various mobile video applications, the analysis is then extended
to the case of constant bit rate video transmission. Experimental
results show that in this case the proposed solution allows to save
power on video transmission if compared to the conventional
approach.

Our paper starts with a review of some prior work on the power
consumption in wireless networks in Section 2. Then we present

0140-3664/$ - see front matter � 2012 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.comcom.2012.05.010

⇑ Corresponding author. Tel.: +45 45256567, mobile: +45 50679631; fax: +45
45936581.

E-mail address: annuk@fotonik.dtu.dk (A. Ukhanova).

Computer Communications 35 (2012) 1695–1706

Contents lists available at SciVerse ScienceDirect

Computer Communications

journal homepage: www.elsevier .com/locate /comcom

A. Ukhanova, E. Belyaev, L. Wang, S. Forchhammer “Power consumption analysis
of constant bit rate video transmission over 3G networks”, Computer Communications
Journal, Vol. 35, Iss. 14, 2012.



i
i

“main” — 2013/2/21 — 11:02 — page 75 — #93 i
i

i
i

i
i

Computer Communications Journal

the 3G mobile transmission system in Section 3, where we
explain the idea of state machine applied to mobile devices and de-
scribe the communication between transmitter and receiver. In
Section 4 the state power model is provided, with particular focus
on Cell_FACH (Cell Forward Access Channel) and Cell_DCH (Cell
Dedicated Channel) states. We propose a model of power consump-
tion in Cell_DCH state and show that power consumption is related
to the packet size and transmission interval. In Section 5 we propose
a method of parameter selection for the 3GPP transition state ma-
chine that allows to decrease power consumption on the mobile de-
vice in case of constant bit rate data transmission. Section 6 presents
the power consumption for constant bit rate video transmission and
provides the results for trade-off between video quality and power
consumption for several standard test video sequences.

2. Power consumption in wireless networks

There exists a large number of approaches for power manage-
ment in communication networks for handheld devices and they
have been studied throughout the recent years.

An overview of the methods to reduce the large and growing
energy consumption of the Internet was provided in [8]. However,
since that time the Internet has been adopted and widely used in
many other devices other than networked desktop computers,
and deployment of next generation networks in the mobile devices
has significantly contributed to it.

Yeh et al. [9] as well as Sklavos and Touliou [10] provided an
analysis of power consumption in 3G networks. Markov chains
are used in [9] to analyze the 3GPP transition state machine and
examine how different timer values affect the power consumption
of the device. The analysis is based on several assumptions about
the device power consumption in different states. Sklavos and
Touliou [10] considered different units of the mobile phone (such
as memory, display, cellular engine), analyzed power consumption
on each of them and addressed different power management tech-
niques for different units, thereby focusing on the device power
consumption. They also state the need for power control tech-
niques, e.g. based on method of idling the modules that are not
used. A similar approach of dividing the processes in stages and
applying different power saving mechanisms to them is described
in [11]. For the reception stage, which requires most of the power,
the solution is to send multimedia data in larger amounts at less
frequent intervals by hiding the traffic temporarily from a mobile
station, thus allowing it to sleep longer and achieve power savings.
Korhonen and Wang [12] also proved that in IEEE 802.11 power of
the receiver can be saved if data packets are transmitted as bursts.

Perrucci [5] provided a broad overview of existing approaches
and studied the strategies for efficient use of the wireless commu-
nication in three main focus areas, namely Cross Layer, Overlay
Networks and Cooperation. The energy savings on mobile devices
are achieved by choosing the most efficient available network,
using wake-up systems (described in detail in [13]) and sharing
cellular links between mobile users. Another analysis of ap-
proaches for achieving energy-efficient web access on mobile de-
vices is provided in [14].

Two good overviews of the past and future research directions in
the field of power management for mobile networks are given in
[6,7]. In [6] the mobile device and battery capacity evolutions, mul-
tiaccess nature of modern mobile devices and the respective impli-
cations for power management are described, as well as a proposal
of an information-centric approach to networking, which allows
audio/video streaming to be transformed from an energy-heavy
network service to a lightweight one. However, the last would re-
quire an adoption of a new networking paradigm and a change in
the way the information is distributed to its intended recipients.

Zhang et al. [7] provided a survey of many issues related to
power-aware mobile multimedia, such as power-management for
mobile devices, rate-distortion-complexity optimized video codec
design, and computational complexity and power aware cross-
layer design and optimization. The authors have pointed out the
challenges and the corresponding future research directions in
power-aware video coding and power-aware video delivery, such
as power management in mobile devices, rate-distortion-complex-
ity analysis of video codecs and network information feedback and
cross-layer signaling.

Considering wireless video transmission from mobile devices, it
is necessary to take into account that some energy has to be spent
on the video capturing and compression. On average, a mobile
camera may consume less than 60 mW for CIF resolution video
at 30 Hz [15]. According to [16], the power needed for compression
is also lower than the one needed for the transmission. Neverthe-
less, cross-layer approaches could be applied here as well and work
like [17] discusses joint power control and bit allocation for video
transmission in wireless networks. A good overview of works on
this topic is also given in [18].

Chen et al. [19] described the fundamental trade-offs in wireless
networks, such as deployment efficiency – energy efficiency, spec-
trum efficiency – energy efficiency, bandwidth – power, and delay
– power trade-offs. Kim et al. [20] and Vuyst et al. [21] explored the
trade-offs between delay and power consumption for sleep-mode
operation in mobile WiMAX. In [22,23] the possibility for trade-
off between video quality and power saving in the receiver was
demonstrated. In [22] the mobile broadcast standard DVB-H along
with JPEG2000 for video encoding was used to show how to allow
receivers to control the level of power consumption depending on
the priorities. As any other scalable codec could be used instead of
JPEG2000, the work was further extended to the Scalable Extension
of H.264/AVC [23].

Unlike the work in [22,23], this time we consider the case of
power consumption for the uplink transmission only and thereby
focus on the device. However, the main idea – that it is possible
to control the trade-off between the level of power consumption
and video quality – has been kept. Moreover, we also take the delay
– power trade-off into account and show how it influences the
achieved power savings. We provide a power model for devices
for 3G systems, and perform power-aware cross-layer optimiza-
tion by controlling the transmission parameters and adjusting
the time periods spent by the mobile device in the state with active
data transmission. We also show the potential for power manage-
ment for video transmission that is content-dependent as different
videos can have different rate-distortion characteristics.

3. Mobile transmission system overview

3G systems provide global communication with various ser-
vices including telephony, messaging and access to Internet. 3G
networks consist of three domains: Core Network (CN), UMTS
Terrestrial Radio Access Network (UTRAN) and User Equipment
(UE). UE interoperates with Base Station (called Node B). The Radio
Resource Control (RRC) handles the control plane signaling be-
tween the UEs and the UTRAN. For efficient use of radio resources
and power consumption control, RRC introduces a state machine
for UE [24].

3.1. State machine

There are five states in the RRC: Idle, Cell_FACH (Cell Forward
Access Channel), Cell_PCH (Cell Paging Channel), Cell_DCH (Cell
Dedicated Channel) and URA_PCH (Utran Registration Area Paging
Channel). Cell_PCH and URA_PCH can be considered as low power

1696 A. Ukhanova et al. / Computer Communications 35 (2012) 1695–1706
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states, which consume only around 30 mW. The state of Cell_FACH
consumes around 400 mW and the state of Cell_DCH consumes
around 800 mW, according to our measurements on a smartphone
Nokia N900. URA_PCH is very similar to Cell_PCH, although some
vendors have not implemented it in their solution. In our work
we consider these two states largely equivalent.

The power consumption in Cell_FACH is roughly 50% of that in
Cell_DCH, and Cell_PCH state uses about 1–2% of the power con-
sumption of Cell_DCH state [25]. Each state is now described in
more detail.

Idle. In this mode UE does not communicate with the network
although it does listen for broadcast messages. So it does not have
a RRC Connection, but UE can still have an IP address and be
reached by paging. In this state the mobile device consumes the
least amount of power.

Cell_PCH. In this state the channel is shared by all mobile de-
vices so the inclusion of an additional mobile device does not have
any impact on the network. UE monitors paging messages from the
Radio Network Controller (RNC). As in the Idle state, the power
consumption is very small. In this state no dedicated physical
channel is allocated to the UE, so no uplink activity is possible.

Cell_FACH. In the Cell_FACH the mobile device communicates
with the network via a shared channel. A few bits of data can be
transmitted at a relatively low data rate, on the order of up to
16 kbps in the uplink. The maximum amount of transmission data
also depends on the overall loading of the common channels. At
the same time the UE continuously monitors a FACH in the down-
link. The mobile device power consumption is higher than it is in
Idle or Cell_PCH states.

Cell_DCH. The mobile device is allocated a dedicated transport
channel both in downlink and uplink. It consumes the most net-
work resources and the impact on the battery is at the very high
level.

3.2. Communication between transmitter and receiver

It is UE that always initiates the RRC connection, then the estab-
lishment and the release are handled by the RRC protocol. UE starts
working in Idle state, when an RRC connection has not yet been
established. Only one RRC connection is used at any time between
the UE and the network. When an RRC connection has been estab-
lished between UE and Node B together with RNC, the Idle state
switches to the RRC Connected mode.

To be more precise, from Idle mode through establishment of an
RRC connection the UE enters the Cell_DCH state. Further it can be
moved by explicit signaling from Cell_DCH to other states. The UE
does not generally listen to the broadcast channel in this state. If
Node B allocates to UE a common or shared traffic channel (i.e.,
the channel is shared by several UEs), it enters Cell_FACH state.
The data communication activities can only be performed in these
two states.

Depending on the activities of the UE and traffic volume, states
could be changed. Signaling messages (radio bearer configuration
messages) are sent between UE and Node B when states are chang-
ing. Three timers are used to detect when a mobile device should
move to a lower power state in case of inactivity. These inactivity
timers T1, T2, and T3 are managed by RNC.

T1 is used in Cell_PCH. After T1 seconds (usually a very long
timer), the RRC connection will be released and the state will be
changed to Idle. T2 is an inactivity timer determining how long
the 3G device should remain in Cell_FACH state without any activ-
ity. Timer T3 is used within Cell_DCH state and refers to the inac-
tivity period after which the 3G device enters Cell_FACH.

As for the signaling traffic i.e. messages between UE and Node B,
it is necessary to note that 3G was designed and implemented to
support large amounts of data traffic (like long, uninterrupted data

sessions, video conferencing, etc.). But according to Thelander, CEO
and founder of Signals Research Group (SRG), the reality is that
‘‘signaling traffic is outpacing actual mobile data traffic by 30–
50%, if not higher’’ [26].

4. Power consumption analysis of transition states

In this section, the power consumption of each state of the RRC
is analyzed. We focus on modeling the power consumption in
Cell_DCH state. Then, our proposed model is compared with real
measurements and a reference model which thoroughly analyzes
power consumption for UDP traffic in 3G network and provides
practical power model for the consumption.

4.1. The influence of packet sending intervals and packet size on power
consumption of Cell_DCH state

Each RRC state requires varying power to maintain operation
and differs when generating signals transferred between UE
and RNC to establish, maintain and release connections as well
as transmit/receive data across the air interface. Compared to
Cell_FACH state, which is only applicable for transferring relatively
small quantities of data, Cell_DCH state gives potential for UE to
transfer large quantities of data and, thus, is the state where most
of the data communication happens, as specifically described in
the previous section. It is the most interesting state to examine
the effect of packet sending intervals and packet size on power
consumption of UE radio interface.

Generally speaking, the size of a transport block specifies the
maximum payload that can be transmitted within each Transmis-
sion Time Interval (TTI), which decides the maximum packet send-
ing or receiving rate. These two parameters together influence the
maximum throughput and packet sending or receiving pattern in
the Physical layer. From the Transport layer perspective, applica-
tion’s traffic pattern – namely packet sending or receiving interval
and packet size – directly decides underlaying layer’s behavior
regarding the size of transport block set and transmitting interval.
Specifically, if the number of bits in a TTI is larger than the maxi-
mum size which one physical block can contain, segmentation is
performed and the over-sized bits are sent during the next TTI. If
the packets are generated with an interval which is less than TTI,
the transmitting interval is decided by TTI. Otherwise, it is decided
by the packet generating interval of the application. The power
consumption of a radio interface increases proportionally to the
number of transport block sets sent and received over one radio
interface.

Fig. 1 demonstrates the power consumption of packet transmis-
sion on a smartphone Nokia N900 in downlink. A traffic generator
is used to generate UDP packets in different intervals as shown in
the figure. Each peak corresponds to the power consumption of
transmitting one transport block set. As it can be seen, the number
of peaks directly influences the power consumption of the radio
interface. A faster receiving interval leads to a larger number of
peaks, and thus higher power consumption. In our experiments,
we also observed the same phenomena in uplink on Nokia N900.
Among the peaks, wide ones are due to the power consumption
of daemon processes of 3G modem and excluded from calculation
in the following subsections. The power consumption was mea-
sured in a stable environment. Otherwise, when the signal quality
of UE drops off or the UE moves away from the Node B, power con-
trol mechanisms in 3G network have to increase transmission
power in order to keep the received uplink Signal-to-Interference
Ratio (SIR) at a given SIR target. Moreover, the degradation of sig-
nal quality also increases MAC layer retransmission, which leads to
more energy consumption for successful transmission of one bit.
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The measurements were done three times. The average variance of
the transmission power consumption (sending and receiving) is
5:7 � 10�6.

4.2. Power consumption modeling of Cell_DCH state

The power consumption of sending or receiving packets in
Cell_DCH state mainly consists of three sources: the power con-
sumption of Cell_DCH state defined as PDCH in watt, the power con-
sumption of sending or receiving packets which is defined as Ppeak

in watt demonstrated as power peaks in Fig. 1, and the power con-
sumption of encapsulating or decapsulating packets which is de-
fined as a function of packet size PencðsÞ, where s is the size of
packet in bytes. Therefore, the power consumption of UE to send
or receive packets in state Cell_DCH can be reformulated as
follows:

P ¼ PDCH þ Ppeak þ PencðsÞ: ð1Þ

UE requires resource and power consumption to maintain the state.
Thus, PDCH is the minimal power consumption for the UE to stay in
state Cell_DCH, which includes the power consumption of reception
of control signals and is considered as an approximately fixed value
since most of the traffic is data traffic.

Besides, we define I as the UDP packet sending interval in Trans-
port layer in ms, which is the interval of sending packets from UE
to Node B or the interval of sending packets from Node B to UE.

The power consumption for encapsulation or decapsulation
PencðsÞ for packet size s is assumed to be linear and proportional to
the size of the packet since more computational power is required
to process bigger packets yielding higher power consumption. Since
PDCH; Ppeak and total power consumption P are measurable, the
power component PencðsÞ can be calculated and then used to derive
the linear model.

The number of transport blocks needed for sending one IP pack-
et is determined by the size of the packet and maximum number of
bits for a transport block per TTI defined in different 3GPP releases.
Here we define the number of transport blocks as

N ¼ s
MTBS

l m
; ð2Þ

where MTBS is Maximum Transport Block Size.
Let Epeak denote the energy consumption of sending or receiving

one peak in Joule. As analyzed above, the power consumption of
peaks changes more or less linearly with the number of the trans-
port blocks. When more than one transport block is needed to send
or receive one IP packet, the time spent on processing this packet is
N � s, where s is the value of TTI. Normally, packet sending interval
I is much larger than the packet processing time. Thus,

Ppeak ¼
N
I
� Epeak; when I� N � s: ð3Þ

Then combining (1)–(3), the power consumption in Cell_DCH
state can be written as

Fig. 1. Power consumption of Nokia N900 in downlink.
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P ¼ PDCH þ
Epeak

I
s

MTBS

l m� �
þ PencðsÞ: ð4Þ

Eq. (4) formulates the power consumption of one connection of
uplink or downlink traffic. This model shows that power consump-
tion can be determined by the number of peaks, namely set by
packet sending or receiving interval I and packet size s, which is
the influential factor of power consumption of the radio interface.
This model can be extended to formulate the power consumption
for multiple connections by counting the amount of bits sent or re-
ceived in a certain interval. As long as mobile devices are capable to
record transmitted and received packet intervals and sizes, the
proposed model can be extended to estimate power consumption
of the radio interface in runtime.

4.3. Experimental setup

In order to have sufficient measurement accuracy and an unin-
terrupted power source, the battery of the N900 was replaced with
a battery adapter, which was serially connected to a 4.1 V DC
power supply and a 0.1 Ohm resistor. A NI cRIO-9215 was then
used as a data logger to record voltage fluctuations of the N900
at a sample rate of 1000 sample/s. A Linux traffic generator was
also used to generate packets with various packet sizes and send-
ing intervals. UDP traffic was generated instead of TCP to avoid TCP
hand-shake and retransmissions. The packet sending interval ran-
ged from 10 ms to 1000 ms to avoid UE switching to Cell_FACH
state. The packet size ranged from 10 bytes to 1500 bytes, which
is the typical Maximum Transmission Unit (MTU) for Ethernet.
When measuring the power consumption of sending packets, the
UDP packets generated on the N900 were sent to Node B via uplink,
and then forwarded to the Linux server. When measuring the
power consumption of receiving packets, the UDP packets were
generated on the Linux server and received by the N900 in
downlink.

4.4. Evaluation of power models

The power model was evaluated on Nokia N900, which follows
a 3GPP Release 5 and 6 supporting HSDPA/HSUPA data bearers. The
measured average energy consumption of peak Epeak, average
power consumption in Cell_DCH PDCH and related parameters
needed for (1) are listed in Table 1. Through (4), the power con-
sumption of sending or receiving packets is thereby decided by I
and s.

In order to evaluate our model, we use another power con-
sumption model, which is based on the assumption that power
consumption is linear in the data rate r [27]. The referenced model
designates two independent variables.

� Time of data communication.
� Amount of data sent or received during the communication.

The energy consumption of UDP-type session, therefore, is ex-
pressed as follows.

E ¼ t � ðrt þ r � rdÞ þ c; ð5Þ

where rd is the energy consumption rate for data in Joule/KByte, rt is
power consumption in Watt, r is data rate, t is transmission time in
second and constant c represents the offset term of the energy con-
sumption, which is independent of the process duration. The model
is introduced as a general equation of energy consumption to de-
scribe UDP-type of data session. In order to compare it with our
power consumption model, the equation needs to be divided by
time t. The power consumption model can be formulated as a linear
equation.

Table 1
Parameters for the experiment applied on Nokia N900.

Uplink Downlink

UE category HSUPA category 5 HSDPA category 5
TTI 10 ms 2 ms
Maximum Transport

Block Size (MTBS)
20000 bits 7298 bits

Data rate 2 Mbit/sa 2 Mbit/s
Epeak 0.4532E�3 J 0.4435E�3 J
PDCH 0.8556 W 0.8478 W

a Note: The uplink data rate is limited to 2 Mbit/s due to the type of data packet.
The maximum data rate is 3.65 Mbit/s.
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Fig. 2. Uplink power consumption for experiment, proposed model and reference
model for time interval = 10 ms.
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Fig. 3. Downlink power consumption for experiment, proposed model and refer-
ence model for time interval = 10 ms.
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P ¼ rt þ r � rd: ð6Þ

The fitted values of the proposed model and reference model,
and the measured values from experiments are shown in Figs. 2
and 3. To compare two models, rate r in the reference model is
expressed as the product of packet size s and packet sending
frequency I�1 such that two models share the same coordinate.
Our proposed model shows a better approximation than the refer-
ence model. We also compared the two models with their Mean
Absolute Percentage Error (MAPE) for downlink and uplink power
consumption, which is defined as follows.

MAPE ¼ 1
n
�
Xn

i¼0

jAi � Fij
Ai

; ð7Þ

where n is the number of measured values of power consumption,
Ai is the actual value and Fi is the fitted value. The MAPEs of the pro-
posed model is 5.0% for downlink and 4.7% for uplink power con-
sumption, which is about 28% more accurate than that of the
reference model.

5. Uplink power consumption analysis of transition state
machine

Section 5 provides the uplink power consumption analysis of
the transition state machine (TSM) described in Section 3. As we
consider constant bit rate sources (in contrast to http-like data
sources, modeled e.g. as Poisson source traffic [28]), it is easy to
predict the source rate and find optimal parameters for TSM to
minimize the uplink power consumption. This section starts with
an evaluation of power consumption for ideal transition state ma-
chine. Further this ideal TSM is used for parameter selection for
3GPP TSM, and the differences between these two TSMs are also
described. The paper continues with the analysis of the TSM and
parameter selection in case for different limitations: the limitation
for the amount of signaling traffic (Section 5.3), the limitations for
the amount of signaling traffic and buffer size (Section 5.4), and the
limitations for the amount of signaling traffic and buffering latency
(Section 5.5). The corresponding results for power savings in these
cases are presented on the figures in this Section.

5.1. Power consumption for ideal transition state machine

Let P denote the uplink power consumption of mobile device, r
the data source bit rate and c the channel bit rate. The optimal TSM
has to correspond to the following optimization task:

minimize P;

c P r:

�
ð8Þ

Let us define BRLC as the uplink data buffer of UE, BT
RLC as the buf-

fer threshold and tinact as the inactivity time. Then, the following
ideal TSM can be introduced:

State 1 (Cell_PCH).
If activity detection, then go to State 2,
else go to State 1.

State 2 (Cell_FACH).
If BRLC > BT

RLC , then go to State 3,
else if tinact > T2, then go to State 1,
else go to State 2.

State 3 (Cell_DCH).
If BRLC ¼ 0, then go to State 2,
else go to State 3.

Let us define p1; p2 and p3 as the power consumption in State 1,
State 2 and State 3 respectively and c2 and c3 as channel rate in

State 2 and State 3. The power consumption of this TSM depending
on the data source bit rate r can be described as follows. If data rate
r ¼ 0, then UE is always working in State 1 and power consumption
is p1. If 0 < r 6 c2, then UE is always working in State 2 and has
power consumption p2. If r P c3, then UE is always working in
State 3 and has power consumption p3. If c2 < r < c3 then there
is buffer accumulation in State 2 and buffer emptying in State 3.
Accumulation time in State 2 is

t2 ¼
BT

RLC

r � c2
: ð9Þ

Emptying time in State 3 is

t3 ¼
BT

RLC

c3 � r
: ð10Þ

Finally, power consumption for the ideal TSM is:

P ¼

p1; if r ¼ 0;
p2; if 0 < r 6 c2;

t2
t2þt3
� p2 þ t3

t2þt3
� p3; if c2 < r < c3;

p3; otherwise:

8>>><
>>>:

ð11Þ

Theorem 1. The state machine described above is a solution of the
optimization task (8) for data source bit rate r 2 ðc2; c3Þ.

Proof. From (11) it follows that for ideal TSM the channel rate
c ¼ r for r 2 ðc2; c3Þ. Let us assume that another TSM with power
consumption P0 < P exists. It is possible only if accumulation time
t02 in State 2 for this TSM is more than the accumulation time t2 in
State 2 for ideal TSM. But in this case channel rate c0 for this TSM
will be less than r. It means that this TSM does not exist. h

5.2. Power consumption for the 3GPP transition state machine

The ideal TSM can be used to select the parameters for 3GPP
TSM [29]: BT

RLC which was defined in previous subsection and timer
T3. Then 3GPP TSM differs from the ideal TSM only in State 3, that
can be described as follows (see Fig. 4):

State 3 (Cell_DCH).
If r < c3 more than T3 sec, then go to State 2,
else go to State 3.

If data rate r ¼ 0, then UE is always working in State 1 and
power consumption is p1. If 0 < r 6 c2, then UE is always working
in State 2 and has power consumption p2. If r P c3, then UE is al-
ways working in State 3 and has power consumption p3. If
c2 < r < c3 then there is buffer accumulation in State 2 and buffer
emptying in State 3. Finally, a power consumption model for 3GPP
TSM is given by (11) with accumulation time in State 2

1 2 3

If active

If inactivity
time is more
than T2 sec

otherwise

If BRLC > BTRLC

If r < c3 for more
than T3 sec

otherwiseIf inactive

Cell_PCH Cell_FACH Cell_DCH

Fig. 4. 3GPP transition state machine.
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t2 ¼
minfBT

RLC ; ðc3 � rÞ � T3g
r � c2

ð12Þ

and emptying time in State 3 t3 ¼ T3.
From Theorem 1 follows that if parameters T3 and BT

RLC of 3GPP
TSM satisfy the equation

BT
RLC ¼ ðc3 � rÞ � T3; ð13Þ

then 3GPP TSM is identical to ideal TSM and it is a solution of the
optimization task (8) too.

Figs. 5 and 6 show power consumption for TSM with experi-
mentally obtained parameters and parameters for carrier 1 listed

in [24] and compared with TSM with proposed parameters se-
lected using (13) for constant bit rate data. In fact, the parameters
depend on the operator; some additional data and discussions
could be found in [30]). These figures illustrate that with the pro-
posed parameter selection the power consumption is growing lin-
early with the growth of bit rate, which allows a significant
decrease of uplink power consumption of UE.

5.3. Parameter selection taking signaling traffic into account

As was mentioned in Section 3, one of the problems for 3G net-
works is the increasing amount of the signaling traffic [31,32,24],
as each time UE moves between the various RRC states it ex-
changes signaling messages with the mobile network for mobility
and radio resource management. In this subsection we show the
possibility of controlling the total signaling traffic on the base
station.

Let us define n23 as the number of signaling messages needed to
be transmitted from UE to base station for the transition from State
2 to State 3 and n32 as the one needed for the transition from State
3 to State 2 and ns as the number of signaling messages per second
for UE. Then, optimization task (8) can be modified as follows:

minimize P;

c P r;

ns 6 N�s ;

8><
>: ð14Þ

where N�s > 0 is a maximum allowed number of signaling messages
per second for UE.

If c2 < r < c3 the UE works in State 2 and State 3 only. In case of
constant bit rate transmission all working time can be divided into
the equal intervals t2 þ t3 seconds (see Fig. 7). The number of trans-
mitted signaling messages in each interval is a sum of transition
signaling messages for both states n23 þ n32. Therefore the number
of signaling messages per second can be calculated as

ns ¼
n23 þ n32

t2 þ t3
6 N�s : ð15Þ

Combining (9), (10) and (15), it follows:

BT
RLC P

ðn23 þ n32Þ � ðr � c2Þ � ðc3 � rÞ
N�s � ðc3 � c2Þ

: ð16Þ

The maximum needed BT
RLC is

max
r

BT
RLC ¼

ðn23 þ n32Þ � ðc3 � c2Þ
4 � N�s

: ð17Þ

From (17) follows that 3GPP TSM is a solution of (14) if

BT
RLC ¼

ðn23 þ n32Þ � ðc3 � c2Þ
4 � N�s

;

T3 ¼
BT

RLC

c3 � r
:

8>>><
>>>:

ð18Þ

In case of constant bit rate data transmission, (18) allows to
control the total network signaling traffic on the base station by
selecting N�s for each UE.

5.4. Parameter selection taking signaling traffic and UE buffer size
restrictions into account

In real applications the UE buffer size can be limited depending
on device properties. In this case, it is important to comply with
this limitation while choosing the parameters for the transmission
in the proposed method. Taking into account buffer size restric-
tions, the optimization task (14) can be modified as follows:
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Fig. 5. Uplink power consumption for transition state machine for constant bit rate
data transmission, c2 ¼ 16 kbps, c3 ¼ 2000 kbps, BRLC ¼ 8 kB, T3 ¼ 9 s, p2 ¼ 400
mW, p3 ¼ 890 mW.
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Fig. 6. Uplink power consumption for transition state machine for constant bit rate
data transmission, c2 ¼ 16 kbps, c3 ¼ 2000 kbps, BRLC ¼ 543 B, T3 ¼ 5 s,
p2 ¼ 460 mW, p3 ¼ 800 mW.
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minimize P;

c P r;

ns 6 N�s ;

BT
RLC 6 Bmax

RLC ;

8>>><
>>>:

ð19Þ

where Bmax
RLC is the maximum possible UE buffer size.

Taking into account buffer size restrictions, the working time of
UE in State 2 is

t2 ¼
Bmax

RLC

r � c2
: ð20Þ

At the same time the working time of UE in State 3 can be written as

t3 ¼
Bmax

RLC

c3 � r
þ Dt3; ð21Þ

where Dt3 P 0 is an additional time needed to provide the maxi-
mum allowed number of signaling messages per second N�s .

Taking into account (15), (20) and (21), the additional time has
to satisfy the following inequality:

Dt3 P
n32 þ n23

N�s
� Bmax

RLC

r � c2
� Bmax

RLC

c3 � r
: ð22Þ

To minimize the power consumption and provide c ¼ r the
inequality in (22) should be written as equality. As a result, for
c2 < r < c3 3GPP TSM will be a solution of (19) if

BT
RLC ¼ Bmax

RLC ;

T3 ¼ Bmax
RLC

c3�r þmax 0; n32þn23
N�s
� Bmax

RLC
r�c2
� Bmax

RLC
c3�r

n o
:

8<
: ð23Þ

Figs. 8 and 9 show the comparison between the power con-
sumption for systems with TSM without any restrictions and with
different buffer limitations. Formula (23) shows that with the in-
crease of restricted N�s the time portion of working in State 2 be-
comes closer to the maximum possible value without restrictions
(18). For low values of N�s there is an opposite situation, and the
UE should stay longer in State 3, therefore the gain in power con-
sumption savings is lower. For N�s ¼ 2 only the curve for Bmax

RLC ¼
200 kB differs from the one without restrictions. That means the
value of N�s is high enough to adapt the parameter values, unless
the buffer becomes too small to keep the UE in State 2 long enough.
Thus, the result of the gain in power consumption savings with
buffer restrictions depends on the current situation in the network
and limitations on N�s , imposed by the network operator.

5.5. Parameter selection taking signaling traffic and buffering latency
restrictions into account

Another important restriction is buffering latency DT, which has
a significant meaning for real-time wireless communications. Nec-
essary requirement for conversational services is an end-to-end
delay smaller than 250 ms [33], but, according to [34], the desired
delay in real time video applications is approximately 40 ms. For
non-real time video applications the limit value is higher and
should not be greater than 10 s, as stated in [35]. This limitation

for buffering latency also influences our method for efficient power
savings.

Taking buffering latency restriction into account, the optimiza-
tion task (14) can be modified as follows:

n23 n23n32 n32

t2 t2t3 t3
BRLC = 0BRLC > BT

RLC BRLC > BT
RLC BRLC = 0

full interval full interval

Fig. 7. Amount of signaling traffic for a transmission interval.
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Fig. 8. Power consumption with buffer restrictions and N�s = 0.4.
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minimize P;

c P r;

ns 6 N�s ;

DT 6 L;

8>>><
>>>:

ð24Þ

where L is a buffering latency restriction.
Taking this restriction into account, the working time of UE in

State 2 is

t2 ¼ L: ð25Þ

At the same time the working time of UE in State 3 can be written as

t3 ¼
L � ðr � c2Þ

c3 � r
þ Dt3; ð26Þ

where Dt3 P 0 is an additional time needed to provide the maxi-
mum allowed number of signaling messages per second N�s . Taking
(15) into account, Dt3 has to satisfy the following inequality:

Dt3 P
n32 þ n23

N�s
� L� L � ðr � c2Þ

c3 � r
: ð27Þ

In order to minimize the power consumption and provide c ¼ r,
the inequality in (27) should be written as equality. As a result, for
c2 < r < c3 3GPP TSM will be a solution of (24) if

BT
RLC ¼ L � ðr � c2Þ;

T3 ¼ BT
RLC

c3�r þmax 0; n32þn23
N�s
� L� L�ðr�c2Þ

c3�r

n o
:

8<
: ð28Þ

Figs. 10 and 11 show the comparison between the power con-
sumption for system with TSM without any restrictions and TSM
with different latency limitations. As in the case with buffer limita-
tions, (28) shows that with the increase of N�s , the time portion of
working in State 2 can come closer to the maximum possible value
without restrictions, defined by (18). Instead, low values of N�s
mean that the UE will work more in State 3, and there is a smaller
gain in power consumption savings compared to the case without
any restrictions. For N�s ¼ 2 a significant gain can be obtained for
latencies bigger than 5 s. On one hand, this is caused by the fact
that limitation on latency allows for UE to stay in State 2 long en-
ough to achieve the decrease of power consumption. At the same
time, due to a reasonably high value of N�s , the UE can also move
to State 3 and come back to State 2 after transmission often en-

ough. So, generally speaking for the case with latency restrictions,
as well as for the case with buffer limitations, the resulting gain in
power consumption savings depends on the limitations on N�s .

6. Energy efficient constant bit rate video transmission over
3GPP networks

In this section the analysis of video transmission over 3G net-
works is presented. We are focusing our research on power con-
sumption of constant bit rate video only. One source of constant
bit rate video data is a single-layer codec with rate control mech-
anism that helps to achieve constant bit rate of the compressed vi-
deo data [36,37]. Constant bit rate transmission of variable bit rate
stored video may be performed e.g. with the optimal choice of buf-
fer size [38].

The system in general can operate as described on the Fig. 12.
The UE decides the power saving mode according to its needs,
and based on it the power saving controller chooses the optimal vi-
deo bit rate, as demonstrated later in this section. At the same time,
power saving controller finds the optimal parameters for RRC state
machine, as described in Section 5. Based on the given video bit
rate, the video rate controller defines the compression parameters,
which are used for encoding the video source. After this the com-
pressed bit stream is ready for the transmission with optimal
TSM parameters, providing the necessary level of power consump-
tion for the UE.
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Fig. 10. Power consumption with latency restrictions and N�s = 0.4.
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Another approach considers the use of scalable video coding
(e.g. Scalable Extension of H.264/AVC [39]), with further extraction
of the necessary amount of data under bit rate constraints (at the
same time, possibly maximizing quality) [40]. The latter approach
can practically be used in hybrid video surveillance systems, con-
sisting of a camera that records video data in a scalable format
and a transmission terminal that is used for the delivery of the en-
coded video data. For power saving reasons, in case of no motion
detection, the camera can transmit the base layer only. When the
motion is detected, the camera starts transmitting several (up to
all) quality layers of the video sequence, thus increasing the power
consumption of the mobile terminal.

In this section we evaluate the necessary amount of power for
the video transmission for different levels of video quality. For
practical experiments the H.264/AVC scheme in reference software
JM codec v.16.2 [41] was used. Experimental results were obtained
for several test video sequences: ‘‘Hall monitor’’, ‘‘Foreman’’, ‘‘Soc-
cer’’ and ‘‘Akiyo’’ at QCIF (176 � 144) resolution, 15 Hz, 300 frames
and CIF (352 � 288) resolution, 30 Hz, 300 frames, and also ‘‘Crew’’
at QCIF, CIF and SD (704 � 576, 30 Hz, 300 frames) resolutions. The
following GOP structure was used: IPPP, GOP size = 16.

Using the JM codec, we obtained the rate-distortion perfor-
mance on the test video sequences, shown on Figs. 13 and 14.
Using the analysis, provided in Sections 4 and 5, it is possible to
evaluate the power consumption for uplink transmission taking
different restrictions into account, as it was done, for example,
on Figs. 8–11. Thus, we know the dependency between the power
consumption and the transmission rate. Combining these results
and the rate-distortion performance, results demonstrating the
trade-off between video quality and power consumption can be
obtained.

We used Figs. 13 and 14 and the power consumption for TSM
with proposed parameters without any restrictions (Fig. 5) to ob-
tain Figs. 15–17. Similar results can be obtained if using power
consumption for TSM with proposed parameters used for Fig. 6.
They illustrate that, due to the combination of the proposed TSM
parameter selection with a video encoder providing constant bit
rate, it is possible to adapt the level of the power consumption
based on the requirements.

Fig. 13 shows the PSNR of the luminance component vs. bit rate
for four standard CIF test video sequences. Fig. 14 shows the PSNR
of the luminance component vs. bit rate for one test sequence

‘‘Crew’’ in three different resolutions. As the content/resolution of
these sequences varies (e.g. slow motion for ‘‘Akiyo’’ and fast mo-
tion for ‘‘Soccer’’, or, for example, QCIF and CIF resolutions for
‘‘Crew’’), the performance of the video codec is also different. As
a consequence, the same video quality for different sequences
can be obtained at different bit rates.

As illustrated on Figs. 15 and 16, more power may be needed for
the transmission of one sequence with a certain quality than
for another sequence with the same level of quality. For example,
for a quality level around 36 dB, approximately 450 mW will be
needed for ‘‘Hall monitor’’ compared to 590 mW for ‘‘Soccer’’. A
similar example can be found for ‘‘Crew’’ sequence, when the
transmission in QCIF resolution with quality around 36 dB will re-
quire 440 mW compared to approximately twice as much power
for SD resolution. That means, that it is possible to control the
power consumption of the UE, by defining the required level of
video quality for a particular sequence.
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Fig. 13. Rate-distortion performance for CIF test video sequences.

25

30

35

40

45

50

55

0 200 400 600 800 1000 1200 1400 1600 1800 2000
Video bit rate, kbps

Y-
PS

N
R

, d
B

Crew QCIF
Crew CIF
Crew SD

Fig. 14. Rate-distortion performance for ‘‘Crew’’ test video sequence.
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In fact, for some applications it would make sense to define the
range of desired or acceptable quality (e.g. 30–40 dB for video
transmission [42]), so that no additional power is spent for the
unnecessary improvement of the video quality. Thus, for the pro-
vided data on Figs. 13 and 15, it could be beneficial to restrict
the quality for ‘‘Akiyo’’ to say 45 dB, and, in case of transmission
of several sequences, spend the saved power on other sequences.
So, we suggest that a cross-layer strategy to optimize the power
and quality performances should be sequence-dependent.

As we consider the case of restricted power consumption, we
try to maximize quality within these constraints. Fig. 17 shows
the gain in the video quality vs. power consumption for the 3GPP
and proposed TSMs for ‘‘Foreman’’ video sequence in CIF resolu-
tion. For the 3GPP TSM it is possible to achieve only a small gain

in power consumption savings even for a significant decrease in
a bit rate. The proposed state machine uses the information about
the bit rate and optimizes the parameters, as was described in Sec-
tion 5, so that a significant gain in power savings is achieved (up to
two times for low PSNR values for the sequence ‘‘Foreman’’). The
proposed approach can be used for adaptive power control for
the mobile device. Depending on the power resources, the trans-
mitting device can decrease/increase the power consumption by
varying the quality of the transmitted video data. For example, if
it is necessary to have the high level of power savings or the trans-
mission will last a long time, a mobile device can switch to the en-
ergy saving mode. But if there is no need for power savings on the
device in the current moment, it can work with the highest quality
of the video data.

7. Conclusion

In this paper we have considered the power consumption of
data transmission over 3G networks for smartphones. The first part
of the analysis is related to the states in RRC in general. We have
proposed a power consumption model based on our experimental
results on a smartphone Nokia N900, taking into account packet
size and transmission intervals. Our model provides a better
approximation to the experimental results than the referenced
model based on data rate. The second part of the paper discussed
the uplink power consumption analysis of the transition state ma-
chine. We proposed a method for parameter selection for the 3GPP
transition state machine that allows to significantly decrease the
uplink power consumption on the mobile device taking signaling
traffic, buffer size and latency restrictions into account. Further-
more, we presented an analysis of power consumption for constant
bit rate video transmission in 3G networks. We achieved a gain in
power consumption vs. PSNR for transmitted video of our proposed
method over the one used currently in 3GPP. Our results demon-
strate that, depending on the requirements for power consump-
tion, a mobile device can balance the video quality and
transmission power, permitting to perform adaptive power man-
agement. Moreover, this work can be further extended to the LTE
systems, as also there a TSM exists with a low latency for transition
between idle and connected states [43]. Thus, a similar approach
can be applied for energy savings in LTE.
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Abstract: The paper addresses the problem of distribution of high-

definition video over fiber-wireless networks. The physical layer 

architecture with the low complexity envelope detection solution is 

investigated. We present both experimental studies and simulation of high 

quality high-definition compressed video transmission over 60 GHz fiber-

wireless link. Using advanced video coding we satisfy low complexity and 

low delay constraints, meanwhile preserving the superb video quality after 

significantly extended wireless distance. 
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1. Introduction 

The motivations for this work are three-fold. First, the unprecedented frequency range around 

60 GHz (from 4 to 9 GHz within 57-66 GHz) has been regulated for unlicensed use in a 

number of countries around the world. Second motivation is the introduction of high quality 

video services such as high-definition (HD) video conferencing and distributed video gaming. 

These services define both the demand for increased data rates in the access networks and 

need for optimization of video compression schemes. Third, efficient convergence of wired 

and wireless technologies is required to enable the concept of “anytime anywhere” wireless 
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connectivity. Radio-over-fiber (RoF) is considered a promising example of such integration 

for optical networks [1]. 

Previous research in the area of 60 GHz RoF video transmission suggests the use of 

uncompressed video [2,3]. The main drawback of this approach is reduced flexibility in terms 

of bitrate: bitrates are fixed depending on resolution, number of bits per pixel, and frame rate 

of the video sequence. This therefore results in extremely complex adaptation of the HD video 

system to significant signal-to-noise ratio (SNR) drops caused by either severe shadowing in 

non-line-of-sight (NLOS) case or extremely high attenuation – problems that are typical for 

60 GHz systems. 

Source coding (compression) gives us desirable flexibility of bitrate but at the expense of 

introducing delay and increase of power consumption. However, there is a trade-off between 

the power needed to radiate larger bandwidth for uncompressed video and the power 

consumed for the computations of an encoder and a decoder for compressed video 

transmission. According to [4], low complexity compression can, in fact, bring about 

reduction in power consumption for a 60 GHz wireless video transmission system compared 

to the uncompressed case, while at the same time keeping delay under the acceptable limit. 

In this work we explore the notion of joint optimization of physical layer parameters of a 

RoF link (power levels, distance) and the codec parameters (quantization, error-resilience 

tools) based on peak signal-to-noise ratio (PSNR) as an objective video quality metric. We 

experimentally demonstrate, first time to our knowledge, the combined optical access and 

wireless transmission of compressed HD video in the 60 GHz band employing simple 

envelope detection technique. 

2. Experimental setup 

The experimental setup of the 60 GHz optical-wireless RoF system is shown in Fig. 1. The 

binary sequence corresponding to compressed video file was uploaded in an arbitrary 

waveform generator (AWG). The non-return-to-zero (NRZ) electrical signal on the output of 

the AWG directly modulated a 1550 nm laser. After the baseband data modulation, frequency 

up-conversion to the 60 GHz band was performed by driving a Mach-Zehnder modulator 

(MZM) biased at the minimum transmission point with a 30 GHz sinusoidal signal. A 

polarization controller (PC) was used before the MZM to minimize its polarization-dependant 

losses. After the MZM, two sidebands with a frequency spacing of 2fLO were generated 

according to the double sideband-suppressed carrier (DSB-SC) intensity modulation scheme 

(see Fig. 2). Optical carrier suppression of approximately 13.6 dB is achieved limited by the 

MZM extinction ratio. The generated sidebands have the same optical power and the locked 

phase. Subsequently, an Erbium doped fiber amplifier (EDFA) is employed to compensate the 

losses, and an optical band pass filter (OBPF) is used afterwards to mitigate the amplified 

spontaneous emission (ASE) noise produced by the EDFA. Then the signal is launched into a 

20 km span of non-zero dispersion shifted fiber (NZDSF). We employ the NZDSF in order to 

minimize dispersion induced impairments. A variable optical attenuator (VOA) is employed 

to control the optical power impinging the photodiode (PD) in order to evaluate BER 

performance of the system as a function of the received optical power. 
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Fig. 1. Experimental 60 GHz optical-wireless RoF system with envelope detection, LD-laser 

diode, PC-polarization controller, MZM-Mach-Zehnder modulator, LO-local oscillator, EDFA-

Erbium doped fiber amplifier, OBPF-optical band pass filter, PD-photodiode, LNA-low noise 

amplifier, PA-power amplifier, BPF-band pass filter, ED- envelope detector, LPF-low pass 

filter, DSO-digital sampling oscilloscope. 

After photodetection the 60 GHz signal was amplified (gain of amplifiers – 16 dB and 

28.7 dB) and filtered (58.1-61.9 GHz) before feeding it to an antenna for up to 6 meters of 

wireless transmission. After receiving the signal with an antenna and following filtering 

(58.1-61.9 GHz) and amplification (gain of amplifiers – 16 dB and 28.7 dB) envelope 

detection was employed for down-conversion. The detected envelope is low-pass filtered and 

digitized by a digital sampling oscilloscope (DSO). Both the transmitting and receiving 

antennas used throughout the experiment are commercially available horn antennas with 20 

dBi gain and 12° beam width. Bitrates that were transmitted over the fiber are low compared 

to similar research setups. This explains a good performance to a certain extent, but we 

emphasize that reduction of bitrate does not lead to a significant video quality deterioration. 

1549,0 1549,5 1550,0 1550,5
-70

-60

-50

-40

-30

-20

1
3

.6
 d

B

O
p
ti
c
a

l 
p
o
w

e
r 

[d
B

m
]

Wavelength[nm]

 DSB-SC signal

 Optical carrier

 

Fig. 2. Optical spectra on the input of the PD. 

The encoding was performed using the Joint Model (JM) 17.0 reference software 

implementation of the H.264/Advanced Video Codec (AVC) [5]. It is a realistic scenario 

since H.264/AVC is one of the latest industrial video coding standards covering a wide range 

of applications, including, coding for transmission over wireless links and HDTV coding [6]. 

An Intra coding mode only and a frame slicing mechanism were employed to achieve the low 

delay requirement. Both mechanisms are improving the error-resilience as well [7]. Slicing 

was performed with the use of flexible macroblock ordering (FMO). 

H.264 is not capable of coping with single-bit errors: its mechanisms of error-resilience on 

the encoding side and error concealment on the decoding side are adjusted to cope with packet 

loss when the packets affected by the errors are discarded such as usually occurs in networks. 

Packet error rate (PER) depends on the bit error rate (BER) and the size of the packet; in 

general, the noisier the transmission the shorter the length of the packet is desirable. Initially 

in the experiment we used the packet size equal to 2500 bytes, each packet containing a slice 

of the frame; afterwards we have been using packets of length of 3000 and 3500 bytes for 
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simulation. The uncompressed HD test video sequence ‘blue sky’ was used for encoding and 

transmission. The sequence was originally shot in 4:2:0 format 8 bits per color 1920 × 1080 

pixels. However, in order to model the most bitrate demanding case upsampling to 4:4:4 

format was performed (uncompressed bitrate – 3 Gbps for the frame rate of 60 frames per 

second). 

We use PSNR as an objective quality metric for video, which is defined as: 

 2

1

1
( ) ,

N

i ii
MSE x y

N =
= −∑  (1) 

 
2

10
10log ( ),

L
PSNR

MSE
=  (2) 

where MSE stands for mean squared error, N is the number of pixels in the image or video 

signal, and xi and yi are the i-th pixel values in the original and the distorted signals, 

respectively. L is the dynamic range of the pixel values. For an 8 bits/pixel signal, L is equal 

to 255. PSNR is evaluated for the luminance component of the transmitted video signal. 

3. Composite fiber-wireless channel modeling for 60 GHz band 

The difficulty of the modeling arises from the fact that we need to account for both the 

impairments induced by the wireless and the fiber-optic channels. We performed the 

modeling of the fiber-optic channel with VPI software [8]. The wireless channel model was 

implemented in Matlab and combined with VPI channel model afterwards. We combine 

below the description of the channel model with the excerpts from experimental 

measurements that allow us to simplify the model. 

Noise processes in the optical part of the setup (such as amplified spontaneous emission 

(ASE) noise, Johnson noise, shot noise at the photodiode), attenuation and dispersion in the 

fiber are simulated in VPI software. We set the numerical values for these parameters 

according to the specifications of equipment we used in the experimental setup. 

We performed the modeling of the wireless channel according to the physical parameters 

of the devices that have been used in the scheme and references on theoretical parameters 

taken from [9–11]. 

The path loss (attenuation) at 60 GHz is much more severe than the path loss at the 

frequencies that are currently employed for Wireless Personal Area Networks (WPAN). 

Theoretical description for this phenomenon is provided by Friis formula [9], according to 

which attenuation in the air is proportional to the frequency squared. It is known that the line-

of-sight (LOS) attenuation of the 60 GHz wireless channel can be modeled with a log-normal 

model [11]. Parameters for this model have been defined through the extensive measurements 

presented in a number of publications. Summary on the parameters for different experimental 

environments can be found in [9]. We perform the modeling of the system without taking into 

account frequency dependency of the path loss. To the best of our knowledge, frequency 

dependent models for 60 GHz system have not yet been reported. 

Influence of the noise on the signal can be modeled with the following formula [10,11]: 

 
10

(10 log ( ) ),

tx tx rx rx

tx tx rx rx

tx T R LNA PA LNA PA

LNA PA LNA PA

SNR P G G G G PL
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+ +

+ +
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 (3) 
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0

( ) 10 log ( ),
d

PL PL d n
d

= +  (4) 

where Ptx in our case is the RF power on the output of the PD, GT and GR are the gain of 

transmitting and receiving antennas respectively, 
tx txLNA PAG
+

and 
rx rxLNA PAG
+

 are gains of 
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amplification cascades at transmitting and receiving parts of the scheme respectively, PL is 

the distance-dependent path loss (attenuation) in the air. The terms in brackets represent noise 

contributions. The first term represents the Johnson noise, second and third represents noise 

contributions from amplifiers. Parameters d0 and d in Eq. (4) represent the reference distance 

(we used 1 m according to [9]) and the distance between a transmitter and a receiver 

respectively, n denotes path loss exponent. 

The formula does not account for shadowing caused by LOS obstruction, but this 

resembles the experimental setting where we were working with the LOS scenario only. 

Phase noise modeling for the channel was excluded after the experimental examination of 

the phase noise of the oscillator presented in Fig. 3. Figure 3 shows the high quality of the 

electrical oscillator for 3 cases: measuring the phase noise of LO, setup without fiber 

transmission up to a transmitting antenna (optical back-to-back) and after 20 km of NZDSF. 

Figure 3 also illustrates the fact that contribution from the system to the phase noise is 

insignificant. Moreover, it could be excluded from consideration, because after wireless 

transmission we finally recover with ED only the amplitude of the signal, and therefore 

discard information about phase or frequency. 
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Fig. 3. Phase noise of RF subcarriers. 

The model does not take into account the nonlinear effects that are reported for Power 

Amplifiers in [9]. Nevertheless we regard the model as feasible since the power after the PD 

is low, so we work in the linear region. Indeed, the power on the output of the PA at the 

transmitting side given the power at the photodiode of −10 dBm is around −6 dBm. Typically 

nonlinear effects are observed in the region above 0 dBm [9]. The RF-spectrum measured is 

depicted in Fig. 4. We refer to the power before the antenna, as the power before radiation Pbr. 

Therefore the equation for wireless channel simulation based on Eq. (3) and Eq. (4) could be 

transformed into: 
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Fig. 4. RF spectrum measured before the antenna. 

Typical parameters for the path loss at the reference distance and the path-loss exponent 

has been found in the references [9,10]. Values for the parameters that are used in modeling 

of the wireless channel are listed in the Table 1 below. 

Table 1. System Parameters for Modeling 

Parameter Numerical value 

Center frequency, GHz 60 

Joint noise figure Tx amplifiers (LNA + PA), dB (6 + 7) = 13 

Joint noise figure Rx amplifiers (LNA + PA), dB (6 + 7) = 13 

Joint gain of Tx amplifiers (PA + LNA), dB (28.7 + 16) = 44.7 

Joint gain of Rx amplifiers (PA + LNA), dB (28.7 + 16) = 44.7 

Gain of the Tx antenna, dBi 20 

Gain of the Rx antenna, dBi 20 

Bit rate, Mbps 312.5/1250 

Distance, m 2-6 

Reference path loss at 1 meter, dB 57.5 

Path loss exponent 1.77 

Ambient temperature for Johnson noise modeling, K 298 

We perform attenuation of the signal and addition of the Additive White Gaussian Noise 

(AWGN) in VPI, the noise power and attenuation to achieve SNR described in Eq. (5) are 

calculated in Matlab. 

4. Results and discussion 

Our goal for optimization is to achieve the best video delivery quality for a given link budget. 

With regards to the role of the quantization of transform coefficients of the coded video in the 

optimization, roughly speaking, the smaller the quantization parameter size, the smaller the 

source distortion (loss due to compression), but the larger the channel distortion it may cause. 

In the experiment we explored two cases. First, the chosen test video sequence (‘blue sky’ 

4:4:4) was encoded with bitrate of 312.5 Mbps. Second, the tested video sequence was 

encoded in a high quality setting with the quantization parameter equal to 1, which gave us a 

compression ratio of 3. 

#155834 - $15.00 USD Received 3 Oct 2011; accepted 28 Nov 2011; published 8 Dec 2011
(C) 2011 OSA 12 December 2011 / Vol. 19,  No. 26 / OPTICS EXPRESS  B900



i
i

“main” — 2013/2/21 — 11:02 — page 92 — #110 i
i

i
i

i
i

92 Ph.D. publications

2 3 4 5 6

6

5

4

3

2

-l
o

g
(B

E
R

)

Wireless distance [m]

 1.25 Gbps

 312.5 Mbps

 

Fig. 5. BER as a function of the wireless distance. 

0 1 2 3 4 5 6
30

35

40

45

50

55

60

65

 

P
S

N
R

 [
d

B
]

Wireless distance [m]

 1.25 Gbps

 312.5 Mbps

 

Fig. 6. PSNR as a function of the wireless distance. 

On the Fig. 5 BER at the power level at the photodiode equal to −10 dBm as a function of 

the wireless distance is depicted. From the Fig. 5 we can see that in general the distortion 

induced by the wireless channel is severe in our system, but video coded with the use of 

higher quantization parameter has greater dynamic range of wireless distance, as shown in 

Fig. 6. The distance equal to 0 corresponds to the distortion introduced by the compression 

only. When we increase the wireless distance, in the beginning, the source distortion is 

dominant, and the use of lower quantization parameter is reasonable. Anyhow, we lose the 

advantage of lower distortion after around 2 m of transmission when video is evaluated based 

on the PSNR metric only. This shows the potential of optimization of the power budget of the 

system under the constraint of video quality. We obtain similar curves for changing optical 

power level at the photodiode at 5 m of wireless distance, as shown in Fig. 7 and Fig. 8. With 

the higher video compression we can work at lower optical power levels. At the same time, 

we should note that the video quality is high in both cases, and deterioration induced by the 

compression itself can be regarded as non-significant (PSNR of the video unimpaired by the 

channel is higher than 45 dB in both cases). 
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Fig. 7. BER as a function of the optical power at the photodiode. 
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Fig. 8. PSNR as a function of the optical power at the photodiode. 

Curves provided by simulation for 5 meters distance and dynamically changing optical 

power levels show close resemblance that verifies the correctness of the simplified wireless 

channel model employed. We do not provide simulation-based curves for PSNR, because our 

simulation is based on the analytical estimation of BERs with the use of VPI software, and we 

therefore do not have traces including erroneous bits to analyze video performance. 

5. Video coding for 60 GHz radio-over-fiber 

We employed video coding parameters in a simplified setting that is suitable for both 

conferencing applications and distributed video gaming. The main constraints for such type of 

an application are delay and energy consumption. As a part of simplified setting we were 

using Universal Variable Length Coding (UVLC) for entropy coding that is considered a 

lower complexity solution [7]. All coding experiments were performed in intra mode thus 

eliminating the need for long buffering time, and satisfying low delay requirement. The 

simulation below was performed with bit traces including erroneous bits. 

H.264/AVC encoder employs the number of error-resilience tools: slicing of the frame, 

data partitioning, arbitrary slice ordering, and redundant coded slices [7]. Below we present 

simulation on two major tools providing error resilience: slices and Flexible Macroblock 

Ordering (FMO). On the decoder side, there are two error concealment tools used in JM 17.0 

reference software implementation of H.264/AVC codec, one exploiting spatial information 

only, suitable for intra frames (the one used in the experiment and simulation), and one 
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exploiting temporal information. Details on the error concealment algorithms used can be 

found in [5]. 

First we performed the simulation with a different size of the packet (each containing one 

slice of the frame). Employing the smaller slices enables us to receive acceptable video 

quality in the regions with higher BER, and therefore extends distance for acceptable quality 

of video transmission. Indeed, enabling packets of shorter length reduces the amount of 

information lost when the packet is discarded, enabling decoder to reconstruct impaired parts 

of the picture better from unimpaired blocks of neighboring pixels. The simulation results are 

illustrated on Fig. 9. 
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Fig. 9. PSNR as a function of the wireless distance for different packet sizes of the encoded 

video for the bitrate of 312.5 Mbps. 

Below we also present the simulation results for enabling FMO in H.264 reference 

software [5]. H.264/AVC is the first standard defining this error-resilience tool [7]. In case if 

we do not use FMO, the images will be composed of a single slice groups with the 

macroblocks in a scan order. If we employ this algorithm, then when we lose a slice of the 

video frame, we can make better approximation with the neighboring blocks and therefore, 

presumably, can achieve gain in PSNR. Results of the simulation for the packet size of 3000 

bytes are depicted in the Fig. 10. FMO shows up to 3 dB improvement of PSNR. 
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Fig. 10. PSNR performance as a function of the wireless distance for FMO effect estimation. 

Coding simulations show the effect of employed source coding error-resilience 

mechanisms for a particular simplified setting of H.264/AVC and 60 GHz RoF setup as an 

example of physical layer architecture suitable for transmission high quality HD video 
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content. Employed tools of H.264/AVC show the greater robustness of video provided by 

advanced video coding against impairments induced by 60 GHz fiber-wireless channel. 

6. Conclusions 

Our experiment and simulation demonstrates the trade-off between the distortion introduced 

by the source (lossy compression) and distortion introduced by channel for high quality HD 

video transmission over 60 GHz RoF fiber-wireless links. We have achieved significant 

extension of wireless distance employing low complexity physical layer solution for detection 

of RF modulated signal. Our work demonstrates the solutions for improving robustness and 

reach of simplified converged fiber-wireless RoF communication links provided by advanced 

video coding. 
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Extending JPEG-LS for low-complexity scalable video coding

Anna Ukhanovaa, Anton Sergeevb and Søren Forchhammera
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ABSTRACT

JPEG-LS, the well-known international standard for lossless and near-lossless image compression, was originally
designed for non-scalable applications. In this paper we propose a scalable modification of JPEG-LS and compare
it with the leading image and video coding standards JPEG2000 and H.264/SVC intra for low-complexity
constraints of some wireless video applications including graphics.

Keywords: scalable JPEG-LS, H.264/SVC, JPEG2000, wireless video transmission

1. INTRODUCTION

JPEG-LS1 was designed as an efficient algorithm for completely lossless compression of still images and controlled
lossy mode where a precise upper bound on the maximal error in pixel value could be predefined by the user.
The main advantages of these algorithms are very low computational complexity, perfect coding efficiency at
high rates and possibility of near-lossless compression.2, 3 All this allows JPEG-LS to successfully compete
for some applications with the state-of-the-art compression algorithms for still images (JPEG2000 4) and video
(H.264 5). JPEG-LS comes to foreground for application with strong constraints for implementation complexity
and memory consumptions: processing and storage of medical, airspace images, maps; mobile video; desktop
graphics; transmission of HD video and etc. Unfortunately JPEG-LS has also some evident shortcomings.
In contrast to its competitors, the original JPEG-LS has no means for building scalable video streams and
organizing multithreaded transmission. In scalable video coding partial loss of the scalable stream does not
irreparably affect the decoding process: the decoder may reconstruct image with reduced quality level (without
re-compression and retransmission). The successful reception of all the compressed streams results in decoding
and reconstruction of the whole image with the same quality level as at the coder side. Scalability is extremely
important in modern video coding and useful in video transmission, downloading, providing variable quality
access etc..6, 7 There are no such a features in the standard JPEG-LS. In this work we propose a new scalable
extension of JPEG-LS and compare it with two generally recognized leaders in the area of image and video
coding: JPEG2000 and H.264/SVC in intra mode. Modern full-featured image/video compression algorithms
support a variety of compression modes, each with different trade-offs among efficiency of compression, loss of
fidelity in the compression and the amount of computation required to encode/decode. Before designing and
comparing the compression algorithms, we should determine which modes are suitable based on target application
scenarios and limits. Today video transmission in wireless networks (WPAN/WMAN/WLAN) has become a hot
topic in the industry.7–9 Therefore this paper aims at providing a performance evaluation of the proposed and
other algorithms for the task of real-time wireless high-quality low-complexity video transmission. Comparison
parameters are selected accordingly to the requirements of wireless video applications:

• Reduced computational complexity because in mobile terminals (laptops, phones, etc) battery life and
processing power are strongly limited.

• High coding efficiency at high rates. Throughput of wireless technologies increased during the last decade
(11 Mbps 802.11b to 160 Mbps 802.11n in WLAN, 3Mbps of Bluetooth to 3Gbps of 802.15.3TG3 in WPAN).
So looking forward we focus on high transmission rates and consequently consider low compression ratios.

• Scalability and error resilience, controlled quality reduction achieved by partial loss of bit stream.
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• Universality i.e. effective coding of different types of images including photo, computer graphics and
synthetic images.

The paper is organized as follows. Section 2 includes a short overview and basis for profile selection of
JPEG-LS and competitors. In Section 3 the scalable JPEG-LS modification is proposed. Section 4 describes
comparison methodology and presents comparison of the compression algorithms according to the selected
requirements. Section 5 presents results of the performance comparison of the suggested scalable JPEG-LS,
standard H.264 intra and JPEG 2000. Section 6 concludes the paper.

2. CODECS OVERVIEW

An overview of the selected codecs is given here.

2.1. JPEG2000 compression

JPEG2000 is the current ISO/ITU-T standard for still and motion image coding. The RCT (Reversible
Color Transform) color format is used, decribed in the standard. JPEG2000 supports many interesting
features such as lossless and lossy compression, multi-resolution representation, scalable and Region Of
Interest (ROI) coding, tiling, blocking, error resilience and a flexible file format. But on the other hand
JPEG2000 is more complex and slower than the prior and still widely-used JPEG standard.10

2.2. H.264/SVC compression

The Moving Picture Experts Group (MPEG) has introduced the Scalable Video Coding standard, which
is an extension of the H.264/MPEG-4 Advanced Video Coding (AVC) standard .11 It has additional
properties like scalability. So, on one hand, H.264/SVC could be used in the situation when we have many
receivers and it is necessary to receive the data at different bitrates. Another case is when we have to
control the transmission rate depending on the situation in the channel. Other important features of H.264
are integrated rate control, deblocking filter and error resilience.

2.3. JPEG-LS compression

JPEG-LS1, 12 is the international standard for lossless and near lossless still images compression. The main
advantage of JPEG-LS is a possibility to set up the maximum error value per pixel by choosing a bound on
the differences for near-lossless coding (so-called near parameter or lossy-factor). Another plus of JPEG-LS
is an extremely low level of implementation complexity8 and memory consumption at the encoder side.
The encoding process requires less than two rows of samples only (less than 10KByte). Unfortunately the
original JPEG-LS standard has no means for building scalable video streams and organize multithreaded
transmission in contrast with its competitors. Scalability (see Section 4.2) here means a possibility of lossy
reconstruction with smaller quality level in case of partial data loss. This feature is very important for
wireless video applications because wireless channel may be quite non-stable and some data could be lost
during the transmission. Therefore in the next section we propose a scalable version of the JPEG-LS to
address this shortcoming.

2.4. Codec Profiles

During the experiments we compared different profiles and feature sets for the JPEG2000, H.264/SVC
and JPEG-LS image or video compression algorithms. The following configuration sets are selected for
analyzing the codecs from the point of the tradeoff between rate-distortion characteristics and complexity:

– JPEG2000: RCT colorpace transforms, tile size 1280x8, codeblock size 512x8, number of DWT levels
is equal 2, reversible wavelet 5-3;

– JPEG-LS: scalable modification, per pixel processing, lossless RCT colorspace transform, no subsam-
pling, Golomb coding. It was noted8 that for HD picture size and 60 FPS it is possible to design
and implement in RTL (150MHz clock rate, TSMC 60nm technology) the encoder with total power
consumption of around 10mW;
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– H.264/SVC intra: YUV colorspace, all intra prediction, 4x4 DCT, Intra/IPCM detection, CABAC.
The power consumption for H.264 for similar parameters was given as well as for JPEG-LS as stated
above.8 H.264/SVC has a power consumption, which is roughly at least twice that of JPEG-LS.
However, if the channel fluctuates, it is possible to use a scalable stream for power saving.13

3. SCALABLE JPEG-LS COMPRESSION

A simple scalable version of JPEG-LS has been proposed14 by sending one or more least-significant bit-
planes uncoded and only coding the reduced precision image using JPEG-LS. We consider another approach
for better performance and/or finer granularity in the scalable format.

Our proposed scalable JPEG-LS-based algorithm utilizes the well-known differential coding approach.15–17

Firstly data is compressed in lossy mode, then the main (primary) compressed stream is constructed
providing the base quality level. Then the difference between an original and compressed image is calculated
pixel by pixel. This difference is also encoded and forms the second (secondary) stream. The main question
here is: what compression method should be used for the second stream encoding?

The main idea of the proposed scalable JPEG-LS is to compress the input image (or video intra-frame) in
two (or more) steps and create two (or more) sub-streams joint in one global scalable bit-stream. At the
first step JPEG-LS is used in lossy mode for encoding the original image. The compressed data forms the
primary (or the first) sub-stream. The lossy mode increases the compression rate (and thereby decreases
the amount of data to be transmitted) but distorts the original image. At the second step at the transmitter
side a residual image is calculated as the difference between the original and the reconstructed images (after
the first step). Then the residual image is compressed by lossless JPEG-LS and this constitutes the second
bit stream for the wireless transmission.

Therefore the encoder generates a single global bitstream, which may include the primary bit stream and the
second bit stream. The global bit stream could be transmitted over a stable or an un-stable communication
wired or wireless communication channel. The codec may use a progressive approach to provide SNR
scalability that allows supporting features such as multi-streaming and prioritized transmission.

A successful reception and decoding of both sub-streams provides a lossless image reconstruction at the
receiver side (i.e. reconstructed image is equal the original one). At the same time if there are any problems
with the second stream there is a possibility to decode only the primary stream and show the image with
visually acceptable quality level (arount 42db PSNR for for a maximum pixel value error of 2). Similarly
if the quality level of the primary stream is satisfactory for the end-user then the decoding of the second
stream (even if it is successfully received) could be omitted.

The maximum error value per pixel (near parameter, n) for constructing the primary bit stream should be
selected according to the requirements of the real applications. Figure 1 gives an overview of the algorithm.
It is summarized by the following formulas: Consider xij to be the pixel of the input image with coordinates
i and j accordingly. This pixel is firstly compressed with the lossy factor n1. After successful reconstruction
of the pixel it is equal x̂ij . The corresponding difference between the original pixel and the reconstructed
one, xij - x̂ij , is denoted dij . Prior to making the additional lossless compression of the differential image,
all values are shifted by the value of lossy factor n1, d′ij = dij + n1, to get non-negative values. Then the
same block of lossless compression is applied to the image (d′ij) of restricted range. This forms the second
bit stream of compressed pixels.

The bigger n is selected, the smaller the size of the primary stream will be and the more stable it is to the
sudden throughput fluctuations. In our investigations we selected n = 1 because in this case the total size
of the primary and secondary bit streams is minimum while the size of both bitstreams are approximately
equal. One could notice that JPEG2000 and SVC are truly scalable while the presented modification of
JPEG-LS relates mainly to progressive two-step scalability.

It should be noted though that the simple two-step coding is well-correlated with the existing usage models
for the end-user side:

– the picture of the ideal quality is shown while the wireless channel is in the ”good” state,
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Figure 1. Full lossless decompression

– there is a way of the instantaneous and visually graceful, ideally imperceptible quality degradation in
case of sudden noise level fluctuations.

Depending on the image type in lossless mode the compression performance of Scalable JPEG-LS is 2-23%
worse then Standard JPEG-LS . With the growth of n this gap slowly increases.

Our proposal also may be extended to a nested structure (as e.g. for near-lossless coding18): For the
JPEG-LS parameter, NEAR = ni, i = 1, 2, ... we get the interval:

∏
i(2 × ni + 1). Using n1=n2=1

we have intervals of 9, 3, 1(=lossless) in a scalable manner. For finer granularity we may use, the visual
quantization in JPEG-LS part 2, which context adaptively chooses between near parameters n and n + 1.
This may readily be treated as above based on the larger value, n + 1. For more efficient coding, the
refinement JPEG-LS coder should be modified so it reconstructs the near parameter for each pixel and
uses this information in coding the difference pixel. Compared with other results,14 our versions have the
advantage of a better control of the (maximum) error of the lossy coding and if using visual quantization,
a finer granularity. It is possible to use near-lossless factor up to 5 without any significant visual losses.

For example the simple scalable coding mentioned based on selecting k LSB planes14 has the following
drawbacks:

1. The intervals steps increase exponentially as 2k, i.e. 2, 4, 8, 16, ... .

2. As can be seen from the result,14 the convex hull of the rate-distortion (measured by PSNR) of the
baselayer has lower quality than the convex hull of JPEG-LS measured at different near values.

3. Also measured by the inf-norm truncation it is inferior to using JPEG-LS in near-lossless mode.
(Points 2 and 3 are in part due to reconstructing to integer points.) Due to these relative advantages
of JPEG-LS in near-lossless mode, it is interesting to explore the possibilities of using JPEG-LS near-
lossless directly as the base-layer, but still have a simple coding and processing of enhancement layers
for a scalable codec.

4. COMPARISON METHODOLOGY

To decrease the level of power consumption and complexity cost it is suggested here to use video encoders
with relatively small level of operational complexity and very small memory utilization.

4.1. Intra-Coding and Slicing

To decrease complexity costs at the encoder side intra-coding mode only is used, i.e. the frames are
compressed independently and are not stored after compression. Therefore we can not apply algorithms that
exploit temporal redundancy such as motion estimation/compensation (ME/MC) or differential coding.

An additional way to decrease memory consumption for some algorithms like JPEG2000 is to split an
input frame into smaller pieces and to process each piece independently and sequentially. More specifically,
a frame is partitioned into (one or) several disjoint rectangular regions called slices. Small slices can
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significantly decrease the level of memory consumption. The slice size in our tests are 1280x16 (less than
100 KByte if a pixel depth is 24 bits) and for hardware implementation a low-cost internal chip-based
memory can be used. Slicing can be viewed from an implementation point of view: we have one slice
in memory at a time. This will restrict wavelet based coders, whereas JPEG-LS only requires 2-lines in
memory (nevertheless, coded as one frame). Meanwhile, slicing can also be viewed from the point of the
coding format, which may influence performance. For JPEG-LS we can code the whole image as one entity
(still not requiring more than two lines in memory) or we can slice it. The later approach for slicing will
come at a price in coding performance for adaptive coders as JPEG-LS. However, slicing also allows us to
enhance the use of unequal error protection (UEP)19 to the transmission of the video data.

4.2. Scalability

Data transmission with two sub-streams is one of the most commonly used scalability schemes satisfying
most of the use cases. It allows for end-users to receive pictures even in the case of unexpected data
loss and at the same time the overhead costs for (unequal) error protection for two streams instead of
one are quite acceptable. So, the main idea of scalable coding is that coder forms the bitstream from
several layers. All three competitors support scalable and progressive coding i.e. in case of partial data loss
during transmission only a part of the encoded data could be received, extracted and decoded from a global
scalable bit-stream and an image with smaller quality level can be successfully reconstructed at the receiver.
Scalability is one of the most prominent features of JPEG2000 that leads to its ability of extracting different
resolutions, fidelities, components or spatial locations from a single compressed bitstream. The scalable
extension (SVC) of the H.264/AVC Standard, is a highly attractive solution to the problems posed by the
characteristics of modern video transmission systems. Current version of JPEG-LS standard (excluding
the one proposed in this paper) does not support scalability.

4.3. Complexity Costs and Features

It is clear that implementation complexity and memory consumption should be estimated not for the
whole coding standard but for a selected core number of functionalities required by wireless applications.
The standardized codecs provide a rich set of instruments for putting certain restrictions on the encoding
parameters such that some kind of complexity scalability can be achieved. Anyway different investiga-
tions2 demonstrate that JPEG2000 is more complex than H.264/SVC due to integral arithmetic coding
and multiple bitwise operations. It was mentioned20, 21 that the Tier-1 block of JPEG2000 that includes
those operations consumes more than 50% of total computation power. On the other hand JPEG-LS was
originally designed as a low-complexity coding system that has extremely low complexity level in com-
parison with H.264/SVC and JPEG2000. Error concealment in JPEG2000 can be ensured by different
means including markers, regular termination of the arithmetic coder, error resilient termination and seg-
ment symbols, possibility to move the sensitive packet head information to the bit stream header and
etc .4 H.264/SVC also includes a rich set of tools particularly designed for that purpose.5 JPEG-LS
unfortunately does not offer a proper error resilience support, but as described may easily be extended..

5. RESULTS

In our experiments HD video sequences of resolutions 1280x720, 30fps are tested. They have a 24 bits/pixel
depth. The raw bitrate is 0.663 Gbps. We have used RGB 4:4:4 color space format for JPEG2000 and
JPEG-LS and YUV 4:4:4 for H.264/SVC. For more detailed description of the codecs settings please refer
to Subsection 2.4. ”Kungfu” (427 frames) and ”Breeze” (461 frames) are natural image sequences, with fast
and slow motion, respectively. ”Desktop” (1880 frames) is a computer desktop snaphot, mostly consisting
of computer graphics. (For the sake of simplicity and ease of reporting on the figures lossless is depicted at
70dB is for JPEG-LS and JPEG2000). The following graphs (Figs.2-4) present the comparison of results.
It is necessary to note that one point for JPEG-LS (between n=0 and n=1) is obtained as a compression
of one half of the frames with n=0 and the other - with n=1.

Obviously, JPEG-LS was not constructed for the low rates, in contrast to H.264. JPEG-LS has the best
relative performance for computer graphics, that is why it shows outstanding results on the ”Desktop”
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sequence (Fig.2). Table 1 shows compression efficiency comparison for Standard JPEG-LS and the proposed
scalable solution in Gbps.

Table 1. Compression efficiency comparison (bit rate, Gbps)
Codec type desktop kungfu breeze
JPEG-LS 0.128 0.229 0.262
Scalable JPEG-LS 0.132 0.247 0.276

6. CONCLUSION

This paper proposes simple and low-complexity solution for two-step scalable JPEG-LS. Comparison with
other widely used scalable solutions for video compression like H.264/SVC and JPEG2000 show that the
proposed idea can compete with standard solutions for specific video content at high rates.
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Figure 2. RD comparison for ”Desktop” sequence Figure 5. Example of ”Desktop” sequence

Figure 3. RD comparison for ”Kungfu” sequence Figure 6. Example of ”Kungfu” sequence

Figure 4. RD comparison for ”Breeze” sequence Figure 7. Example of ”Breeze” sequence
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Low-complexity JPEG-based progressive video
codec for wireless video transmission

Anna Ukhanova, Søren Forchhammer
DTU Fotonik, Technical University of Denmark

Abstract—This paper discusses the question of video
codec enhancement for wireless video transmission of
high definition video data taking into account constraints
on memory and complexity. Starting from parameter
adjustment for JPEG2000 compression algorithm used
for wireless transmission and achieving the best possible
results by tuning settings, this work proceeds to develop a
low-complexity progressive codec based on JPEG, which
is compared to the tuned JPEG2000. Comparison to
H.264/SVC for this codec is also given. As the results
show, our simple solution on low rates can compete with
JPEG2000 and H.264/SVC for specific video content.

I. INTRODUCTION

The parallel evolution of wireless communication sys-
tems and video data compression schemes has reached
the level where it seems to be realistic to transmit high
definition video sequences with variable quality adapting
to fluctuating wireless channels. The variety of multime-
dia applications forms individual requirements for the
video compression algorithms. Moreover, the organiza-
tion of the encoded bit stream depending on the trans-
mission protocols is also important for the quality of the
reconstructed video sequence. Finally, the commercial
use of these multimedia applications means that there
could be strong memory and computational complexity
constraints. One of the most investigated and popular
cases is a real-time high quality video transmission in
wireless personal area networks (WPANs [1]) in houses
and offices. Applications and technical specifications aim
to deliver the high-definition video (HD video) within
the office or entertainment cluster wirelessly to the huge
variety of devices: digital still cameras, HDTV, set top
boxes, game consoles, camcorders, high resolution print-
ers/scanners, players, projectors and etc. Applications
include cable replacement, remote connection to HD
displays, multimedia exchange within offices, and video
transmission from informational kiosk. For example,
UWB [2] could connect a wall-mounted plasma display
to an STB or DVD player without any cables (see
Fig. 1). Set-top-box resources are enough to transcode

or recompress video to fit narrow client channels. One
of the key points of wireless transmission is a fluctua-
tive nature of the channel. Therefore, progressive video
coding should be used to provide continuous playback
on the receiver side. Hovewer, current solutions [3]
can not be considered to be simple in terms of com-
putational/memory complexity (e.g. [4]). Industrial use
and commercial implementation of these algorithms has
already put some restrictions on the cost of the end-
user devices for wireless video transmission meaning it
is necessary to decrease complexity of the algorithms
and, therefore, decrease the overall price of the device.
For initial decrease of the complexity costs we focus
on frame by frame coding of video as in M-JPEG [5],
M-J2k and Intra coding only in H.264/SVC. But as
an alternative to the existing algorithms we decided to
develop low-complexity solution for simple progressive
encoding algorithm based on DCT. A low latency con-
straint influences the development of the algorithm and,
as stated above, it was decided to use intra-coding only
as restrictions like fixed bitrate combined with the use of
motion compensation would most likely increase latency.
Also frame by frame coding is more robust compared
to motion compensation. Progressiveness also allows
to apply unequal error protection [6]. We adjust our
algorithm for HD video compression so that it does not
perform worse than JPEG2000 [7] for particular video
content (e.g. HD videogaming as a part of home network
environement).

The paper is organized as follows. Firstly, we suggest
some simple codec adjustments to the specific use cases
for the generally recognized leader in the area of image
compression: JPEG2000 (the full-featured international
standard for still images coding). The goal is to achieve
good results under constrained complexity. Secondly, the
specific video content types are discussed and different
ways for compression of these types are given. Then the
solution for low-complexity tiny codec with the feature
of progressiveness is presented. RD-performance of the
progressive tiny codec is thereafter given along with
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Fig. 1. Wireless video transmission use cases

results for JPEG2000 and H.264/SVC [8]. Finally, the
computational and memory complexity of the proposed
codec is calculated and compared to JPEG2000.

II. COMPRESSION ALGORITHMS PARAMETERS

Existing algorithms have different characteristics be-
cause the goal and period of their creation was also
different. For instance, JPEG [5] has low complexity
and good compression ratio whereas JPEG2000 has very
good compression ratio at the expense of a rather high
complexity. We focus on the development of algorithms
for video compression for specific constrained use cases,
where existing image and video compression algorithms,
adapted to general conditions, fail to give the best
performance and could be improved.

A. Parameter adjustment

The first approach is based on parameter adjustment
without any change in the encoding algorithms and with-
out adding complementary blocks to it. We try to tune
parameters of JPEG2000 [9] algorithm based on discrete
wavelet transform (DWT) to find the best settings for
compression of different types of the video sequences
in order to further compare ”optimized” JPEG2000 with
the proposed codec.

B. Dividing pictures into tiles for memory consumption

If we have strong memory constraints at the en-
coder/decoder side, for JPEG2000 algorithm we could
use tiling to provide image partitioning into rectangular
and non-overlapping tiles of size, e.g. 1280 × 8 or
1920×8. The image quality at a given bit-rate is reduced
in this case. This happens because, firstly, the coding
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Fig. 3. Encoding parameters adjustment for JPEG2000 for ”syn-
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algorithm (and, in particular, the DWT) is applied not to
the whole image and, secondly, other coding parameters
(e.g. codeblock size, number of resolution levels) are not
matched with the tile size, but they remain at their default
values.

C. Optimal parameters for tiling

By coordinating parameters with each other we can
achieve a better quality (as shown on Fig. 2, for the test
videosequence ”Kungfu”, 427 frames, 1280 × 720). As
seen from the results, the best mode with tiling option
is the biggest supported codeblock size 512 × 16 for
tilesize 1280× 16 and the number of DWT levels equal
3 (nrvls=4 for Jasper [10] codec) for ”video” type of
the sequence. Another mode with 2 DWT levels should
be chosen for compressing computer (synthetic) images
(see Fig. 3), which are common for video games and
computer graphics. The selected test set in this case is a
sequence ”Synthetic”, (1920 × 1080, 15 frames).
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III. DETECTION OF ”TEXT”/”VIDEO”

The second approach consists of using some extra
blocks in the encoding algorithms, which help to improve
compression efficiency. A good example of these blocks
is a ”text”/”video” detector. Some images like computer
desktop screenshots actually consist of two types of
the images - photorealistic images or so called ”video”
type of the images (or tiles, when we divide a picture
into non-overlapping blocks), and computer images with
text (mostly, uniform background of one colour with
letters written in the other colour) - the so called ”text”
type. The detector helps to divide images into non-
overlapping blocks of text and video types. A simple
approach is described below. The developed algorithm
detects text areas in tiles of the input image. The aim of
the detector is to separate input tile into sets of ”text”
or ”video” segments. Each segment is then compressed
with the optimal parameters (number of DWT levels for
JPEG2000 and the biggest supported codeblock size).
These parameters could be applied to the detected areas,
which are the parts of the tiles and as each tile is anyway
compressed independently, we can divide the tile into
sub-areas of ”text” and ”videos”. Icons, toolbars and
other elements of screen captures should be detected
as text. The tile is divided into blocks of size N×N.
Further the number of different colors is counted in each
block. Thus, a virtual color map is produced according to
the initial image (its size - image height/block height
× image width/block width). Each cell of this map
contains the information about the number of colors of
an appropriate block. The next step is a classification of
the blocks. The number of colors (NC) in each block
is compared with a threshold (T , e.g. T=3). And if NC
is less then T , the block is classified as ”text” block,
otherwise as a ”video” block. Then the algorithm works
with each block and its three neighbors. If NC of current
block or at least one of its neighbors is less then T ,
all blocks (current block and its three neighbors) are
classified as ”text” blocks. The result of the algorithm
work one can see on Fig. 4.

By differentiating two image types, we can achieve
a big gain. One can see that the compression efficiency
degrades a lot when we use optimal video coding param-
eters (number of DWT levels = 2) for ”text” (no DWT
for ”text” images) and vice versa (results are estimated
for the videosequences ”Desktop”, 1880 frames, and
”Kungfu”, 427 frames, both 1280 × 720 ). It can be
noticed that quality decreases much more when ”text”
(”Desktop”) is compressed as ”video” - see Fig. 5 - ( 20

Fig. 4. ”Text” and ”video” detection. Original image (left) and
detected (right) (N=16, T=3)
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Fig. 5. ”Text” images compressed with different parameters -
”Desktop” videosequence

dB for rate=0.13) than for inverse situation when ”video”
(”Kungfu”) is compressed as ”text” - see Fig. 6 - ( 4 dB
for rate=0.13).
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Fig. 7. Scheme of the progressive transmission

IV. PROGRESSIVENESS: PROPOSED ALGORITHM

For increased performance, we can also change some
blocks inside the encoder. For example, one of the
important characteristics of compression algorithms is
progressiveness. The JPEG and JPEG2000 standards also
specify progressive coding but at the cost of increase
in complexity. Here, we propose a simpler solution for
progressive image compression based on JPEG.

A. What is actually progressiveness?

When we have to transmit data - video sequences - in
real-time, it is very important that we are able to decode
(and, therefore, display) the image (rows of image) in
each set of time. If Standard (non-progressive) JPEG [5]
is used for video encoding and real-time transmission,
channel errors of even one packet can cause fatal prob-
lems for a decoder, and a corresponding part of the
image (e.g. domain) will not be represented. Therefore,
a progressive version of image compression algorithm
is desired for that case. Progressiveness allows to see a
rough approximation of the input image after the first
stream has been decoded, and the image reproduction
quality is then gradually improved as more scans are
decoded (see Fig. 7)

B. Proposed Progressive Tiny (pTiny) algorithm

For HDTV images it is not efficient to encode the
domains (i.e. image blocks) separately. It is better to scan
the domain coefficients of the image rows in a particular
order (Fig. 8, ”slice scanning”).

We can gather the coefficients on the same positions as
subbands. This grouping into subbands will also allow us
to provide progressiveness [11]. In other words, we scan
all first coefficients of all domains in one row, then the

Fig. 8. Partitioning into slices

Fig. 9. Coefficients ordering in slices

second ones, then the third etc., for each slice (Fig. 9).
Thereby the coefficients of approximately equal values
will be collected together (that is most valuable for
HDTV images).

We have developed the compression algorithm called
Progressive Tiny which is less complex than the usual
Progressive JPEG [12] and less complex than JPEG2000
both for software and hardware implementation. For the
case of memory restrictions it gives results which in
some cases may be comparable to those of JPEG2000
with adjusted parameters for tiling and quite close to the
results to the H.264/SVC (Fig. 12–14). More discussions
are given later.

To achieve a low memory consumption, the en-
coder and decoder for our pTiny algorithm has in-
put storage only for one row of domains for Y, U
and V components. For the Y component we have
(image height)/(domain height) rows in the image.
For U and V components this number reduced to half
because of downsampling. We form packets simultane-
ously for Y, U and V components, and should somehow
figure out the problem caused by downsampling. There
are two ways of solving this problem: we can either have
a bigger input storage, so that we can store two rows of
Y, one of U and one of V at the same time (YYUV), or
change the procedure of forming the domain (YUV).

To reduce the memory consumption, we decided to
have specific domains forming procedure for U and V
components of image. This procedure does not affect the
visual quality significantly (see Fig. 10), but allows to
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Fig. 10. Comparison of YYUV and YUV schemes of domain
forming

Fig. 11. Forming UV-domains

reduce the memory consumption by a factor of 2. We
have only 4 rows of pixels of the U and V components,
and we have to construct a domain of 8× 8 pixels. So,
we construct this domain in the following manner (see
Fig. 11)

In the pTiny algorithm the rows of the image are firstly
divided into domains (8 × 8). Then these domains are
DCT-transformed and quantized by a special quantiza-
tion matrix that could be implemented in hardware by
using shift operations only.

After these transformations we extract DC coefficients
from each domain in row and create first slice. Then
the difference between DC coefficients will be calculated
and this slice will be encoded with the standard Huffman
tables for DC.

Then we form slices of AC coefficients according
to the established division into slices using the slice
scanning algorithm. It is clear that we can combine
two scanning algorithm (i.e. ZigZag scanning and slice
scanning) in one without any losses.

We use the same slice scanning algorithm for all slices
and finally have a new array of AC coefficients, that
actually has the same length (with DC coefficients), as
the whole row of domains.

The advantage of such a rearrangement of coefficients
is that we group zero coefficients from all domains in
one row together. It is expected that there are lots of
zeros in the end of the domains, so that some of the last
slices completely consist of zeros. And for images of big
width (HDTV size) they can be effectively compressed.
The same approach is presented by the traditional ZigZag
scanning in Standard Sequential JPEG algorithm.

After this scanning we can apply a modified algorithm
for Run Length Encoding, which works as follows:

1) For traditional pairs of Run and Size, when Run
is smaller than 16, we use traditional pairs (Run,
Size)(Amplitude)

2) When Run is 16 or more, we use ZeroBlock coding
(ZeroBlock)(ZeroRun), where ZeroBlock rep-
resents number of bits used to encode ZeroRun,
ZeroRun is a zero-run value. ZeroBlock is rep-
resented in pairs as following (number of bits, 0)

3) When the last run of zeros includes the last AC
coefficient in the slice, we use a special symbol
EOS (End Of Slice), that has value (0,0)

Traditional Huffman tables for pairs (Run, Size) stated
in JPEG Standard do not include ZeroBlock values.
Moreover, they are general for all images. It is obvious,
that for fixed parameters (image size, quality) we can
create more optimal Huffman code. So we use our own
tables for entropy coding of (Run, Size). One table is
for Y component of the image, the other one is for U
and V components together. These tables were created
by applying Huffman algorithm to the statistic for pairs
(Run, Size) that was collected over big amount of images
(mostly computer graphics of HDTV size, and also some
natural HDTV images ).

V. PERFORMANCE COMPARISON

Figures 12–14 show the compression performance of
three fully progressive algorithms, namely JPEG2000,
H.264/SVC and pTiny. JPEG2000 was applied with the
tiling option with tile height = 16, and adjusted parame-
ters for this tile size and video sequence characteristics.
H.264/SVC was used in Intra-mode to provide a fair
comparison with M-JPEG based pTiny. One can see that
JPEG2000 and H.264/SVC perform better on the ”video”
sequence ”Kungfu” as originally these algorithms were
created for photorealistic image/video compression. On
the ”text” sequence ”Desktop” JPEG2000 has a signifi-
cant gain due to the parameters adjustment for this type
of the image. However, pTiny achieves almost the same
compression results within the ranges of rates 0.03-0.05.
pTiny shows good results on ”synthetic” video type as
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Fig. 12. Compression efficiency comparison of the Progressive Tiny
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Fig. 13. Compression efficiency comparison of the Progressive Tiny
(pTiny) algorithm on ”synthetic” sequence

both slice scanning algorithm and proposed Huffman
tables were tuned for this type of the images.

VI. COMPLEXITY ISSUES

In the previous section performance capability has
been adressed. In this part complexity of the proposed
algorithm is analyzed and compared with the correspond-
ing issues for JPEG2000. The fundamental building
blocks of a typical JPEG2000 encoder can be joined into
two major parts:

• pre-processing, DWT, quantization;
• Embedded Block Coding with Optimized Trunca-

tion (EBCOT): arithmetic coding (Tier-1 coding),
and bitstream organization (Tier-2 coding). Tier-1
is an embedded block coder, which utilizes context
analysis and context-based arithmetic coding to
encode each code-block into an independent embed-
ded bit-stream. Tier-2 is a post-compression rate-
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Fig. 14. Compression efficiency comparison of the Progressive Tiny
(pTiny) algorithm on ”video” sequence

distortion optimization algorithm. EBCOT Tier-1
is the most complex part of JPEG 2000, which
consumes more than 50% of the total computation
power [13].

Our research shows that the JPEG2000 coding system is
full-featured but much more complex than JPEG-based
solution. Anyway there are 2 main ways for complexity
reduction of JPEG2000:

• decrease the number of coding passes of context-
based arithmetic coder if rate control [14] is applied
(the most computational-intensive part of JPEG
2000). Algorithm should be developed to stop
context-based arithmetic coder;

• find optimal DWT filters for usage with tiling and
reduce the size of vertical DWT filter.

We tried to estimate operational complexity in terms
of multiplications (muls), additions (adds) and shifts and
memory consumption of pTiny codec. The calculated
complexity level (see Fig. 15) per tile for HDTV (1920×
1080) is an ”upper bound” and can be significantly
improved during final design process. Firstly, complexity
of entropy coding of the pTiny algorithm is estimated in
different Actions (Action1 = Comparison with 0, Action2
= Counter increasing, Action3 = Counter modifying, Ac-
tion4 = Amplitude calculating (only for negative sign)),
and then pseudo-tranformed into additions.

A. Color space tranform

The input video sequence in RGB color space is
converted to YUV (luminance and 2 chrominance com-
ponents). In the pTiny codec YUV 4:1:1 (4:2:0) re-
duction is applied. For every 4 points of the U and
V color components an average value is stored. So
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muls adds muls adds shifts Num of 
actions 
per 
domain

Adds per 
one action 
(upper 
bound)

Add per 
domain 
(upper 
bound)

Y per pixel 2 4 Action1 63 1 63
U per pixel 1 1 Action2 48 1 48
V per pixel 1 1 Action3 0,1 1 0,1

Action4 15 0,5 7,5

Sum per pixel 4 6
Sum per domain 256 384 80 464 64 118,6
Sum per tile 61440 92160 19200 111360 15360 28464

mul add
TOTAL 80640 231984

YUV DCT ProgressiveRLE+VLC

Fig. 15. Calculation of pTiny complexity

the overall complexity of this stage is the following: 9
bytes to store color space transform coefficients (memory
consumptions) using 9 multiplications, 6 additions and 2
shifts per RGB sample. For 8× 8 domain the maximum
complexity is 64×(9 muls + 6 adds + 2 shifts) = 576
muls + 384 adds + 128 shifts.

B. Discrete cosine transform (DCT)

DCT is a very important aspect of a JPEG-based
scheme. Decorrelation of the coefficients is very impor-
tant for compression, because each coefficient can then
be treated independently without loss of compression
efficiency. Another important aspect of the DCT is the
ability to quantize the DCT coefficients using visually-
weighted quantization values. The most straightforward
way to implement DCT is to follow the theoretical
equations. When we do this, we get an upper limit of
64 multiplications and 56 additions for each 1-D 8-point
DCT. (Note that the cosine terms can be combined with
the constants before the computation because the cosines
become discrete numbers at each position.) Therefore, a
full 8×8 DCT done in this way in separable 1-D format
- eight rows and then eight columns - would require
1024 multiplications and 896 additions plus additional
operations to quantize the coefficients. If the DCT really
required this many operations to compute, JPEG would
have chosen a different algorithm. In fact, the most
efficient algorithm for the 8×8 DCT, a true 2-D method
developed by Feig [15] requires only 54 multiplications,
464 additions, and 6 arithmetic shifts to produce a form
suitable for quantization. But it requires float quantizers
after FDCT to scale output. The version of the DCT by
Arai, Agui, and Nakajima [15] has 13 multiplications
and 29 additions, which is competitive with the best that
has been achieved by other techniques. What makes it
special, however, are the properties it has for a scaled
DCT implementation. Although 13 multiplications are

required, eight of the multiplies are to scale the final
output to the correct range as in Feig scheme. But for
this algorithm scaling can be done by shift operations.
If the output is to be quantized - as in the case of
JPEG - the outputs can be left in this scaled form and
the scaling factors can be absorbed into the divisions
needed to quantize the outputs. Only 5 multiplications
are actually needed before the quantization, making this
the most efficient 1-D quantized DCT known. Because
the 2-D DCT is separable, the summations can be done
as eight 1-D DCTs on all rows, and then eight 1-D
DCTs on the eight columns formed by the coefficients
for the rows. Note, however, that if we use the scaled
1-D DCT we can delay the row output scaling until after
the column 1-D DCTs are complete. Consequently, we
can embed the output scaling for both the row DCTs
and the column DCTs in the final quantization step. To
get to the final scaled DCT output we therefore need 16
1-D scaled DCTs, and therefore a total of 16 × 5 = 80
multiplications and 16× 29 = 464 additions. This is the
best approach known for a separable 2-D scaled DCT
[15]

C. Quantization

One of the simpliest ways to decrease JPEG complex-
ity is to use only one predefined quantizing table for the
target quality level. Moreover only shift operations are
used in the proposed scheme instead of the divisions in
the standard quantizing tables (the proposed quantization
table of pTiny codec consists of powers of 2).

D. Entropy Coding

It is useful to consider entropy coding as a 2-step
process. The first step converts the zigzag sequence of
quantized coefficients into an intermediate sequence of
symbols. The second step converts the symbols to a data
stream in which the symbols no longer have externally
identifiable boundaries. The form and definition of the
intermediate symbols is dependent on both the DCT-
based mode of operation and the entropy coding method.
There are several ways of coding these sequences, using
Run Length coding and Huffman coding. Figure 15
shows average complexity values per block for the
operations listed above. For example if average Action-
3 complexity equals 0.1 it means that there is only one
Action-3 per 10 blocks in average.

Assume that JPEG2000 applies a color space trans-
form, which has the same complexity. For the DWT al-
gorithm with filter 5-3, it is necessary to have 8 additions
per pixel, 8 × 64 for domain, that is similar for pTiny.
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Even if we consider that JPEG has the same complexity
of the quantization, taking into account that entropy
coding part takes 50 % of the complexity (furthermore
reading bitplanes is hard for hardware implementation),
it means that JPEG2000 is more complex than proposed
solution. Table 1 also shows comparison of the memory
consumption.

TABLE I
MEMORY SIZE COMPARISON

Algorithm J2k 16× 1920 PTiny 8×1920
Memory (kB) 150 50

VII. CONCLUSION

To meet the requirements of real-time video appli-
cations and to decrease the implementation complexity,
the proposed pTiny codec was tuned for HD computer
graphics only. The work focused on the entropy cod-
ing scheme. An entropy coding method with reduced
complexity was proposed. The compression algorithm
pTiny was compared with other progressive codecs as
JPEG2000 and H.264/SVC. JPEG2000 was also adjusted
to specific conditions caused by computational complex-
ity and memory restrictions. Thus, it was possible to
achieve a big gain in compression efficiency by setting
different parameters for the ”text” and ” video” parts
of the images compared to default parameters. The
proposed pTiny algorithm allows to provide good com-
pression performance mostly on HD computer graphics
(”synthetic” type) that could be explained by using this
kind of images for gathering statistics for tuning the
entropy coding and adjusting slice scanning algorithm
exactly on this type of images. Progressive decoding
could be applied to the code stream of this algorithm,
as is also the case for H.264/SVC and JPEG2000. It
allows to use unequal error protection for different slices
of the output data, and also to decode the video data
if only some part of the bitstream was received. The
analysis and experimental results show that the proposed
solution significantly decrease codec complexity (70 %
memory consumption) while compression/quality ratio
only changes slightly.
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Abstract—Distributed video coding (DVC) is a novel approach
providing new features as low complexity encoding by mainly
exploiting the source statistics at the decoder based on the
availability of decoder side information. In this paper, scalable-to-
lossless DVC is presented based on extending a lossy Transform
Domain Wyner-Ziv (TDWZ) distributed video codec with feed-
back. The lossless coding is obtained by using a reversible integer
DCT. Experimental results show that the performance of the
proposed scalable-to-lossless TDWZ video codec can outperform
alternatives based on the JPEG 2000 standard. The TDWZ codec
provides frame by frame encoding. Comparing the lossless coding
efficiency, the proposed scalable-to-lossless TDWZ video codec
can save up to 5%-13% bits compared to JPEG LS and H.264
Intra frame lossless coding and do so as a scalable-to-lossless
coding .

I. INTRODUCTION

Distributed Video Coding (DVC) [1] is a new video coding
paradigm, which mainly exploits the source statistics at the
decoder instead of at the encoder as in motion-compensated
video encoding. Thereby computational power requirements
are shifted from encoder to decoder. According to the Slepian-
Wolf theorem [2], it is possible to achieve the same rate by
independently encoding but jointly decoding two statistically
dependent signals as for typical joint encoding and decoding
(with a vanishing error probability). The Wyner-Ziv theorem
[3] extends the Slepian-Wolf theorem to the lossy case. This
work laid the basis for distributed source coding and it forms
the key theoretical basis for DVC. The source is lossy coded
based on the knowledge that a correlated source is available
at the decoder, which utilizes this so-called side information.
There are various approaches to DVC, e.g. PRISM [4], Pixel
Domain Wyner-Ziv (PDWZ), and feedback channel based
Transform Domain Wyner-Ziv (TDWZ) [5] have been applied
for lossy coding. However, the lossless distributed source,
image and video coding has also been devised, [6]-[9]. One
application considered is for hyperspectral images [7]-[9],
but lossless distributed source coding may also find relevant
applications in other scientific and medical applications. A
good example of the need for lossless coding could be scanned
image sequences for 3D reconstructions. There could be
several approaches for providing lossless DVC. For example, a
wavelet based DSC approach for lossy-to-lossless compression
of hyperspectral images is proposed in [9] but inter-band

MMSP’10, October 4-6, 2010, Saint-Malo, France.
978-1-4244-8112-5/10/$26.00 c©2010 IEEE.

processing is utilized at the encoder. In [6] a novel loss-
less compression technique is presented based on exploiting
the temporal correlation under the distributed source coding
paradigm. This technique operates in the pixel-domain to avoid
any lossy transform and relies on syndrome decoding of trellis
codes by encoding the final state of the trellis. The lattice
based approach was also applied to lossless video coding, but
here applying motion compensation also at the encoder side,
which we want to avoid. These techniques were presented
for lossless coding. In this work, instead a scalable-to-lossless
distributed video codec based on Discrete Cosine Transform
(DCT) is proposed based on TDWZ. This may be used for
high-quality applications, where lossless is desired, but the
system can not (efficiently) guarantee the resources for lossless
coding. Furthermore, the coding scheme is also modified to a
backward adaptive video coding system, which is evaluated to
indicate the potential room for improvement in (scalable-to-
lossless TDWZ) DVC.

This paper is organized as follows: Section II introduces
a reversible integer DCT. The lossy TDWZ video codec is
reviewed in Section III [13]. In Section IV, the TDWZ codec is
modified to achieve scalable-to-lossless coding. In Section V,
backward adaptive video coding is described. Finally, test
conditions, results and analysis are presented in Section VI.

II. REVERSIBLE INTEGER DCT

In H.264(/MPEG4 part 10) Advanced Video Coding, a 4×4
transform is used. It is an integer transform, but not designed
for reversible transformation. A 4× 4 transform is also a part
of TDWZ coding scheme. The transforms are derived from
DCT. For this transform the basic functions are cosines, and
therefore the transform values and transform results are not
integer. We shall apply a separable two-dimensional transform
defined by one-dimensional (1-D) transforms. The initial one-
dimensional transform with kernel

KDCT =




0.5000 0.5000 0.5000 0.5000
0.6533 0.2706 −0.2706 −0.6533
0.5000 −0.5000 −0.5000 0.5000
0.2706 −0.6533 0.6533 −0.2706




can be implemented in a reversible version using fixed point
arithmetic, but this solution leads to additional bit depth
(and thereby bitplanes), which will negatively influence loss-
less compression. The main features of reversible integer
transforms proposed and analyzed in [10] and [11] are 1)

X. Huang, A. Ukhanova, A. Veselov, S. Forchhammer, M. Gilmutdinov, “Scalable-
to-Lossless Transform Domain Distributed Video Coding”, Multimedia Signal Process-
ing (MMSP), St.-Malo, France, 2010.
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reversibility, 2) a good approximation preserving the main
transform properties and 3) limiting the number of required
bitplanes.

The reversibility is achieved by using results of general
matrix factorization theory. In [10] triangular elementary re-
versible matrix (TERM) and single-row elementary reversible
matrix (SERM) are used for DCT kernel factorization. The
reversible transform used in this paper is obtained by DCT
kernel KDCT factorization via the PLUS method [11]:

KDCT = P ∗ L ∗ U ∗ S (1)
where S is Single-row, U — Upper, L — Low triangular
elementary reversible matrices. P is permutable matrix. Values
of matrices can be found in [11].

It is important to maintain the order of operations in order
to preserve reversibility properties. Input vector x̄ should
be multiplied by matrix-by-matrix with rounding for each
intermediate coefficient:

ȳ = P ∗ round(L ∗ round(U ∗ round(S ∗ x̄))) (2)
Here operation of rounding is denoted by round(.). So far as
separation property is preserved for reversible transform, 2D
transform can be obtained by independent applying Eq. 2 to
each row and column of 4× 4 input matrix X . The operation
is denoted as:

Ŷ = [[PLUS ∗X] ∗ (PLUS)T ] (3)
To verify that this approximation leads to a transform

preserving the main properties of the DCT, the variance of
the differences between the DCT output and the results of the
reversible integer transform were estimated. Variances were
calculated for the Y component of the first 50 frames of the
Foreman (CIF) sequence as follows. Each frame was divided in
4 × 4 non-overlapped blocks. The original (float point) DCT
with the KDCT kernel and the reversible integer transform
were applied to the 4× 4 blocks B, thereafter the differences
were calculated for each position of the transform.

dB(i, j) = yB(i, j)− ŷB(i, j),

where i, j ∈ {0, ..., 3} are the index row and column, yB(i, j)
is the element of float point matrix of DCT coefficients,
obtained by:

Y = KDCT ∗X ∗ (KDCT )T .

After that all differences corresponding to each position (i, j)
were calculated over all blocks B and the variance value for
each position was calculated:

V ARD =




0.3887 0.3079 0.3276 0.3967
0.3164 0.2352 0.2776 0.3984
0.3403 0.2591 0.2975 0.4235
0.4248 0.3333 0.3595 0.4989


 .

Here the coefficient at position (i, j) contains the variance
value of the sequence corresponding to this position. Standard
deviation for the worst case (lower right corner) is less
than one. It means that energy redistribution for reversible
transform case is not significant.

To examine the last feature, the ranges of one-dimensional
DCT with kernel KDCT and its reversible approximation used
in the proposed TDWZ scheme are determined. Minimal and

maximal values of each DCT coefficient can be easily found
from the scalar product of input vector and corresponding basis
vector:

y(i) =
3∑

j=0

x(j) ∗ kDCT (i, j), i = 0, ..., 3,

where x(j) are input vector values, kDCT (i, j) are coefficients
of KDCT . Minimal and maximal values are given in Table I.
For the reversible integer transform ȳ values are calculated by
Eq. 2. In the 2D case, the number of bitplanes given by the
full range for each transform coefficient is therefore 10.

TABLE I
VALUE RANGES FOR DCT4 AND REVERSIBLE TRANSFORM (1D CASE,

8-BIT INPUT)

Output DCT Reversible Integer Transform
Value Min Max Min Max Number of

bitplanes
y(0) 0 510 0 510 9
y(1) -235.59 235.59 -235 236 9
y(2) -255 255 -255 255 9
y(3) -235.59 235.59 -235 236 9

III. TRANSFORM DOMAIN WYNER-ZIV VIDEO CODING

The architecture of the TDWZ video codec with feedback
channel [13], which we shall base the new lossless version on
is depicted in Fig. 1. It follows the same architecture as the
one developed by Stanford group [1] and later further devel-
oped by the DISCOVER project [5]. However, an advanced
Overlapped Block Motion Compensation (OBMC) based side
information generation method [12] and an improved adaptive
noise model [13] are adopted in the TDWZ video codec. These
improvements lead to state-of-the-art TDWZ performance. A
fixed Group of Pictures (GOP=N) is utilized with periodically
designating one frame out of N in the video sequence as a key
frame and utilizing these for coding the intermediate frames as
Wyner-Ziv frames. The key frames are intra coded by using a
conventional video coding solution with low complexity such
as H.264/AVC Intra, while the Wyner-Ziv frames in between
are coded using a Wyner-Ziv approach. At the encoder, Wyner-
Ziv frames are partitioned into non-overlapped 4×4 blocks and
applying a transform to each block. The transform coefficients
within a given band bk, k ∈ {0...15}, are grouped together
and then quantized. DC coefficients and AC coefficients are
uniformly scalar quantized and deadzone quantized, respec-
tively. Within each coefficient band bk, eight pre-defined
quantization levels (2Mbk ) are used, as in [5], depending on
the target quality of the Wyner-Ziv frame. The quantized
coefficients are then decomposed into bitplanes with bit depth
Mbk . Each bitplane is fed to a rate-compatible Low-Density-
Parity-Check Accumulate (LDPCA) encoder [14] starting from
the most significant bitplane. For each encoded bitplane, the
corresponding accumulated syndrome is stored in a buffer
together with an 8-bit Cyclic Redundancy Check (CRC). The
amount of bits to be transmitted depends on the requests made
by the decoder through a feedback channel as shown in Fig.
1.

At the decoder, a side information frame Y is interpolated
and an estimated noise residue R is generated by using two
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Fig. 1. Architecture of feedback channel based Transform Domain Wyner-
Ziv video codec

previously decoded frames [12]. The noise residue R and side
information Y undergoes the same 4×4 transform to obtain the
transformed coefficients CY and CR, respectively. CR is used
to estimate the noise distribution between the corresponding
bands of the side information frame and the original Wyner-
Ziv frame. Using a modeled noise distribution [13] (with
estimated Laplacian parameter α), the coefficient values of
the side information frame CY and the previous success-
fully decoded bitplanes, soft-input information (conditional
bit probabilities Pcond) for each bitplane is estimated. With
this soft-input information, Pcond, the LDPCA decoder starts
to process the various bitplanes to correct the bit estimation
errors. Convergence is tested by an 8-bit CRC sum and the
Hamming distance between the received syndrome and the one
obtained from the decoded bitplane [15]. If both the Hamming
distance and CRC sum are satisfied, convergence is declared.
If not, more syndrome bits are requested and decoding and
testing is run again. After a bitplane is successfully decoded,
a quantization interval can be obtained. It indicates the range
of the original Wyner-Ziv coefficient CX . Together with side
information coefficients CY , noise distribution parameter α
and the interval information, decoded coefficients within band
bk of the Wyner-Ziv frame are reconstructed as in [16]. Finally,
the inverse transform is performed to obtain the reconstructed
Wyner-Ziv frame X ′i .

IV. SCALABLE-TO-LOSSLESS TDWZ

In order to achieve scalable-to-lossless TDWZ video cod-
ing, some aspects of a basic lossy TDWZ video codec are
required to be updated and modified. At the encoder side, the
modifications are mainly on key frame coding, the transform
and not applying quantization besides the quantization implicit
in coding bitplanes. The key frames are lossless encoded.
Obviously any lossless encoder may be applied, we chose
JPEG-LS. The main modification is to apply the 4 × 4
reversible integer transform presented in Section II to the
Wyner-Ziv frames to obtain the integer reversible transform
coefficients. we shall refer to a lossy TDWZ scheme using the
reversible integer DCT by rTDWZ. The coefficients are coded
in a slightly modified sign-magnitude representation (where
the 0 interval is associated with the positive values). Instead
of pre-defined quantization matrices as in [5], the maximum
absolute magnitude of transformed coefficients, mk in each
band bk is calculated at the encoder. The smallest value of

Mbk , such that 2Mbk can cover the range of values, is chosen
to decompose the transformed coefficient into bitplanes with
the image and band dependent, minimum required bit depth
Mbk for lossless coding. For 8 bit pixel values, Mbk will not
exceed 10 bits, as shown in Sec. II. The deadzone quantization
of the TDWZ has to be dealt with for lossless coding. No
dead-zone is applied in defining the bitplanes. Actually dead-
zone quantization could be applied for lossy coding and then
resolved by sending additional bits in the scalable-to-lossless
refinement. Starting from the most significant bitplane, each
bitplane is fed to a LDPCA encoder together with the CRC.
The encoded bitplane is saved in a buffer and the amount of
transmitted bits depends on the requests from decoder. Since
all the encoded bitplanes are availabe at the encoder buffer, by
controlling the number of transmitted bitplanes, the quality of
transmitted and decoded Wyner-Ziv frames can be vary and be
scalable-to-lossless. The Rate-Distortion (RD) performance of
this scalable-to-lossless TDWZ video coding can be influenced
and optimized by selective ordering of the different bitplanes
and frequency bands. However, the RD optimization is not
considered in the scalable-to-lossless TDWZ codec described
in this paper. The decoding order is starting from the most
significant bitplane to the least significant bitplane and from
the low frequency band to high frequency band.

Besides employing a reversible integer transform, the mod-
ification of the decoder is mainly in the reconstruction module
(Fig. 1). The rest of the decoding of Wyner-Ziv frames is the
same as in the TDWZ decoder. For a given coefficient band bk,
if the current bitplane Mi is not the final bitplane providing the
required bit depth, Mbk , i.e. Mi < Mbk , reconstruction by the
method in [16] is employed to guarantee that the reconstructed
coefficients are located in the correct interval. If the current bit-
plane Mi is the final bitplane providing the required bit depth
Mbk , all the available bitplanes generated at the encoder have
been received and thus the decoded coefficient provides the
lossless reconstructed transformed coefficients. After all the
transform coefficients are obtained, inverse reversible integer
transform is performed to reconstruct the Wyner-Ziv frame.

V. SCALABLE-TO-LOSSLESS BACKWARD ADAPTIVE
CODING
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Fig. 2. Architecture of backward adaptive video coding
Interpreting the Wyner-Ziv theorem in terms of a practical

Wyner-Ziv video codec as outlined above, it should be possible
to achieve a RD performance similar to that of a conventional
video codec under certain conditions [3]. However, based on
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previous results e.g. in [12][13], there is still a gap between the
performance of practical TDWZ video codec and conventional
hybrid video codec (e.g. H.264/AVC Inter coding). This gap
depends on the video characteristics and it may be substantial.
This loss of performance of practical TDWZ video codecs may
be introduced by the low quality of side information frame,
an inaccurate noise model and loss of performance in the
LDPCA codec etc. In order to evaluate the performance of
the LDPCA codec [14] in a practical TDWZ video codec, a
backward adaptive prediction coding scheme is described in
this section.

Deviating from the distributed encoding, the LDPCA de-
coder may be replace by an arithmetic decoder using the same
conditional probabilities, Pcond, as input. Now the encoder
performs the same processing achieving the same conditional
probabilities, Pcond, and uses these as input to the arithmetic
encoder. As shown in Fig. 2, the general architecture of
backward adaptive decoding scheme is the same as in the
scalable-to-lossless TDWZ video codec. However, backward
frame prediction (here in B-frames) is allowed to calculate the
same conditional probabilities, Pcond, at encoder side. This
is based on employing both the side information generation
method [12] and the noise modeling module [13] also at the
encoder side, hence the estimated soft input Pcond otherwise
fed into the LDPCA decoder in Wyner-Ziv coding is now
available both at the encoder and the decoder and used to
drive the arithmetic encoding and decoding, respectively. What
we have is more like a conventional coding scheme, but now
with backward adaptive motion compensation without explicit
encoding of motion vectors. For ease of calculation in the
experiments, we estimate the code length of the arithmetic
encoder by calculating an Ideal Code Length (ICL) based on
soft input Pcond, which the TDWZ utilizes in the LDPCA
decoder.

For one bitplane x, the ICL is given by

L(x) =

n∑

j=0

− logPcond(xj) (4)

where xj ∈ {0, 1} and Pcond(xj) represents the estimated
conditional probability of xj , i.e. the symbol with index j. The
decoder is able to lossless decode each bitplane with the same
side information generation method [12], noise model [13] and
the received coding bits. It is well known that context adaptive
arithmetic coding can provide code lengths very close to the
ICL. For both context adaptive coding and distributed source
coding the ICL can take the place of an (upper bound of) the
conditional entropy H(X|Y ), which is theoretically achiev-
able asymptotically. The backward adaptive coding scheme
is utilized to indicate the potential room for improvement
of the TDWZ video codec if an ideal Slepian-Wolf codec
is employed. But it may also serve as a codec in itself and
evaluate the performance of modifying a DCT based video
coding as H.264 to a scalable-to-lossless DCT based video
coder.

VI. EXPERIMENTAL RESULTS

Performance of scalable-to-lossless TDWZ video coding
is evaluated in this section. Furthermore, the performance
of backward adaptive coding with ICL is also reported to
illustrate potential for improvement of scalable-to-lossless
TDWZ. The test sequences are Coastguard, Hall Monitor and
Foreman, at QCIF, 15 frames per second (fps). Hall Monitor
is dominated by a static background and thus simple capture
cross-frame correlation. Coastguard is also characterized by in
some sense simple apparent motion, due to a panning camera,
while the motion of the water is not so simple. Foreman is a
typical video telephony scene including some complex motion
and scene change. Commonly used GOP size N equal to 2 is
chosen.

Initially, the influence of introducing a reversible integer
DCT is examined. The RD performance of lossy TDWZ video
codec with reversible integer DCT (denoted as rTDWZ) is
evaluated in Figs. 3 and 4. The performance is evaluated based
on the luminance components of all the frames of a sequence.
Key frames are encoded with H.264/AVC Intra [17] with the
same Quantization Parameters (QP) as in [15]. For compari-
son, the performance of the lossy TDWZ video codec (Sec.
III) and the benchmark codecs with relevant low encoding
complexity, i.e. not using motion estimation at the encoder,
are also reported (Figs. 3 and 4). These are H.264/AVC
Intra codec, H.264/AVC No Motion codec and DISCOVER
video codec. It may be noted that lossy TDWZ video coding
gives better RD performance than H.264/AVC Intra codec
and DISCOVER video codec on both sequences. With the
reversible integer DCT, minor (acceptable) performance loss
is introduced in rTDWZ, but the performance is still better
than that of the DISCOVER codec.
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Fig. 3. Rate-Distortion performance comparison on Hall Monitor for all
frames

Thereafter, the RD performance of scalable-to-lossless
TDWZ video coding described in Section IV is compared
with scalable-to-lossless solutions based on the JPEG 2000
codec in Figs. 5 and 6. For GOP size 2, the performance
is evaluated on the luminance component of even/WZ frames
only, since key frames are lossless coded. As we focus on high-
quality and scalable-to-lossless, the distortion is here expressed
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by log(1 + MSE), where MSE is the standard mean square
error. (It may be noted that values of 1 and 6 corresponds
to a PSNR of 48.1 dB and 30.1 dB, respectively.) For fair
comparison, both Intra frame lossless coding scheme and a
low complexity Inter frame coding scheme (i.e. JPEG 2000
Diff) are included. JPEG 2000 Diff denotes compression of
difference frames with JPEG 2000 coding. The difference
frame D is obtained by directly calculating the difference
between the current frame Xi and the previous key frame
Xi−1.

D = (Xi −Xi−1 + 128) mod 256 (5)
As shown in Figs. 5 and 6, the performance of the proposed

scalable-to-lossless TDWZ video codec is better than JPEG
2000 Intra frame coding. Compared with low-complexity
Inter frame coding schemes, the performance of scalable-to-
lossless TDWZ video codec is better than JPEG 2000 Inter
frame coding for the sequence Coastguard and it gives a
comparable performance in the mostly static sequence Hall
Monitor. Among all the RD curves, the backward adaptive
coding measured by ICL always gives the best results. This
indicates that the side information and noise modeling are
indeed efficient, but there is still room for improvement of the
scalable-to-lossless TDWZ video coding and it further shows
that good performance may be achieved by video codecs using
a reversible integer DCT.
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Fig. 5. Scalable-to-Lossless Rate-Distortion performance comparison on Hall
Monitor for even/WZ frames only
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Finally, the performance of different lossless coding
schemes are listed and compared in Table. II and the RD
performance of the scalable-to-lossless TDWZ video codec
is compared with non-scalable video codecs in Figs. 7 and 8.
The DCT based H.264 does not provide lossless encoding,
using the JM H.264 reference software [17] but achieving high
PSNR values is possible. For lossless mode using predictive
coding another available H.264 codec (x.264[18]) was used.
It can be seen that the lossless TDWZ video coding can
save around 5% bit rate compared to JPEG LS and com-
pared to JPEG 2000 and lossless H.264 Intra frame coding
the reduction is 8%-13% for sequences with low motion.
For the sequence with intensive motion, e.g. Foreman, the
performance of lossless TDWZ video coding is competitive
as well.

Compared with low complexity Inter frame coding schemes
(i.e. JPEG-LS Diff and JPEG 2000 Diff), lossless TDWZ cod-
ing gives better performance in Coastguard and comparable
result in Foreman but not as good results in the almost static
sequence Hall Monitor. Compared with lossless backward
adaptive coding with ICL, there is a penalty about 13%-18%
introduced by the practical lossless TDWZ video coding. This
suggests improving the performance of the LDPCA codec
employed, a topic we leave as an area for future research. Very
good performance is achieved by the x.264 lossless inter, but
this applies motion estimation at the encoder. Furthermore,
it can be seen from the Table II that the lossless coding
performance of backward adaptive coding using arithmetic
coding (but here evaluated by ICL) can match conventional
predictive video coding (i.e. x.264 Inter frame coding) in most
cases, while providing scalable-to-lossless at the same time.

As shown in Figs. 7 and 8, the RD performance of the
scalable-to-lossless TDWZ video codec is compared with non-
scalable H.264/AVC (JM H.264 [17]) and JPEG LS near
lossless coding. It shows that scalable-to-lossless TDWZ video
can outperform H.264/AVC Intra coding and JPEG LS near
lossless Intra frame coding. Compared with H.264/AVC no
motion (key frames are near lossless coded with PSNR value
around 80 dB) and JPEG LS near lossless Inter frame coding
(key frames are lossless coded), the performance of scalable-
to-lossless TDWZ video codec is better for the sequence
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Coastguard but not as good results (especially at high quality)
in the almost static sequence Hall Monitor. It may be noted
from Fig. 7 that RD performance of JPEG LS near lossless
Inter frame coding is better than scalable-to-lossless TDWZ
only above 43 dB. H.264/AVC No Motion Inter frame coding
is better but only gives the maximum PSNR around 65 dB.

TABLE II
LOSSLESS COMPRESSION. COMPARISON OF AVERAGE BPP OF EVEN/WZ

FRAMES (GOP 2)
Hall Monitor Coastguard Foreman

JPEG-LS 3.8987 bpp 5.0067 bpp 4.3499 bpp
JPEG-LS Diff 3.0684 bpp 5.4030 bpp 4.3652 bpp
JPEG 2000 4.2798 bpp 5.2126 bpp 4.5991 bpp
JPEG 2000 Diff 3.2852 bpp 5.4588 bpp 4.5454 bpp
x.264 Lossless Intra 4.1446 bpp 5.1815 bpp 4.6621 bpp
x.264 Lossless Inter 3.1162 bpp 4.1545 bpp 3.3324 bpp
Lossless TDWZ 3.7080 bpp 4.7463 bpp 4.5850 bpp
Lossless ICL 3.1545 bpp 4.1880 bpp 4.0793 bpp
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Fig. 7. Non-scalable video codecs compared with scalable-to-lossless TDWZ
on Hall Monitor for even/WZ frames only
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VII. CONCLUSION

Scalable-to-lossless DVC was introduced based on using
a reversible integer DCT as the transform in a TDWZ
scheme. Experimental results show that the proposed scalable-
to-lossless TDWZ video codec achieves good performance at
high quality and competitive lossless performance on the test

images. The codec outperformed lossless coding based on the
standardized JPEG 2000. For lossless coding efficiency, the
proposed scalable-to-lossless TDWZ video codec can save up
to 5%-13% bits compared to lossless coding by JPEG LS,
JPEG 2000 and H.264 Intra frame coding. Compared with low
complexity Inter frame lossless coding schemes (i.e. JPEG-LS
Diff and JPEG 2000 Diff), the proposed scalable-to-lossless
TDWZ video codec gives better performance for Coastguard,
comparable result in Foreman but worse results for the mostly
static Hall Monitor sequence. Furthermore, a system based on
backward adaptive coding is also introduced and tested. The
results illustrate that there are still room for improvement of
the scalable-to-lossless TDWZ video codec. It also showed that
efficient scalable-to-lossless coding using a reversible integer
DCT is feasible.
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ENCODER POWER CONSUMPTION COMPARISON OF DISTRIBUTED VIDEO CODEC
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Abstract: This paper presents a power consumption
comparison of a novel approach to video compression
based on distributed video coding (DVC) and widely used
video compression based on H.264/AVC standard. We
have used a low-complexity configuration for H.264/AVC
codec. It is well-known that motion estimation (ME)
and CABAC entropy coder consume much power so we
eliminate ME from the codec and use CAVLC instead of
CABAC. Some investigations show that low-complexity
DVC outperforms other algorithms in terms of en-
coder side energy consumption . However, estimations
of power consumption for H.264/AVC and DVC stated
in this paper show that for current implementations
of DVC these statements could be disputed from a
power consumption/compression efficiency point of view
when comparing to compression algorithms based on
differential frame coding (with zero search radius for
ME).

I. INTRODUCTION

During the last years of video codec development more
and more attention has been paid to the low-complexity
codecs, as they are considered now for use in wireless sensor
networks and another systems, where it is necessary to de-
crease encoding power consumption so that they can achieve
longer working time, and the decoder power consumption for
these systems is not an important issue. Therefore, power
consumption on the encoder side has become one of the
most important issues along with compression efficiency.

Distributed Video Coding (DVC) [1], [2] is a new video
coding paradigm which fully or partly exploits the video
redundancy at the decoder and not anymore at the encoder as
in the predictive video coding, thereby shifting computation
power from encoder to decoder.

Existing DVC implementations are based on the idea
that the encoder uses Intra-coding part from traditional
compression algorithms [3] and replaces inter coding with
distributed coding. This makes the codec architecture more
complex, and hence the encoder power consumption consists
of two components: Wyner-Ziv encoder and Intra-encoder.

As an alternative architecture we take the baseline profile
of H.264/AVC standard [3] working in differential frame
coding mode (no motion coding with zero search radius for
motion estimation) and using CAVLC as an entropy coder.
One of the ways to show the computational performance
of DVC encoder is to measure the working time on test
video sequences. In particular, in [4] the working time of
JM codec [5] is compared to the DISCOVER codec [6].
However, this comparison methodology should be consid-
ered to be preliminary. Firstly, the JM source code is not
optimized from the time consuming point of view. Secondly,
this comparison for software is not correct for hardware
implementation of video compression algorithms.

Therefore, this paper proposes to use as a comparison
criteria the power that the encoder consumes to provide
the given peak signal-to-noise ratio (PSNR) value. Based on
this criteria, we consider efficiency comparison of DVC and
H.264/AVC with no motion coding for test video sequences
and evaluate PSNR vs. power consumption.

Taking into account the fact that DVC codec and
H.264/AVC use the same discrete cosine transform and
similar quantization, and deriving simple analytical model
we focus on power consumption and complexity gain com-
parison on the CAVLC and LDPCA encoder parts based
on information about their power consumption for specific
implementations, namely a 0.18µ TSMC cell library, as
presented in [7] and [8], respectively. This approach does
not allow to estimate the overall power consumption, but
gives us information about relative power consumption for a
fixed PSNR value. In addition we provide an equation that
explains the dependency of the power consumption gain on
implementation efficiency of CAVLC and LDPC and coding
efficiency of the compared algorithms.

The hypothesis of this paper is that although DVC is
considered to be low-power approach for video encoding [9],
common approach based on H.264/AVC with no motion
coding can achieve a comparable power consumption for
a given PSNR value.

The rest of the paper is organized as follows. Section II
describes the H.264/AVC and DVC encoding algorithms.
Section III introduces assumptions that lay a basis for de-

A. Ukhanova, E. Belyaev, S. Forchhammer, “Encoder power consumption com-
parison of Distributed Video Codec and H.264/AVC in low-complexity mode”, Int’l
Conf. on Software, Telecom. and Computer Networks (SoftCOM), Bol, Croatia, 2010.
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riving a simple model of power consumption of H.264/AVC
and DVC and on the basis of this model a formula for power
consumption gain is given. In Section IV the results of the
comparison are presented.

II. H.264/AVC AND DVC ENCODERS
DESCRIPTION

II-A. H.264/AVC encoder

This paper considers only low-complexity low-power con-
sumption implementation of H.264/AVC. The aim of this
work is to show that even this simple version of H.264/AVC
can achieve good results that can compete with the results
of DVC solutions. Therefore, we eliminate ME (that con-
sumes much power [10], [11]) and apply CAVLC instead of
CABAC and use H.264/AVC with no motion coding. The
encoding process for each frame for H.264/AVC [3] for
our differential frame coding mode includes the following
operations:

1) A fixed Group of Pictures (GOP) is divided into
2 kinds of the frames, i.e. Intra-predicted (I) and
Bidirectionally-predicted (B). Each frame is further
divided into non-overlapping blocks of size 16 × 16
(macroblocks).

2) For each macroblock in I-frame Intra-prediction is
performed. Then 4 × 4 DCT and quantization are
perfomed on the residual data that is further entropy
encoded with Context-Adaptive Variable Length Coder
(CAVLC).

3) For each macroblock in B-frame Inter-prediction is
performed. In order to avoid complex motion esti-
mation in H.264/AVC Inter mode, differential frame
coding is used. As for Intra-mode, according to the
coding procedure of H.264/AVC, the produced residue
is transformed, quantized and entropy coded.

II-B. DVC encoder

This paper considers feedback channel based transform
domain Wyner-Ziv video coding [12]. The encoding proce-
dure includes the following main operations:

1) A fixed Group of Pictures (GOP=N) is adopted to split
video sequences into two kinds of frames, i.e. Key
frames and Wyner-Ziv frames. Periodically one frame
out of N in the video sequence is named as key frame
and intermediate frames are Wyner-Ziv frames. The
key frames are Intra coded by using a conventional
video coding solution such as H.264/AVC Intra (see
Sect. II-A) while the Wyner-Ziv frames are coded
using a Wyner-Ziv video coding approach.

2) Each Wyner-Ziv frame Xi is partitioned into non-
overlapped 4 × 4 blocks and a DCT [3] is applied
to each of them.

3) The transform coefficients within a given band bk, k ∈
{0...15}, are grouped together and then quantized. DC

coefficients are uniformly scalar quantized and AC
coefficients are dead zone quantized, respectively.

4) After quantization, the coefficients are binarized. The
binary bits with the same significance are formed
to a bitplane, which is given to a rate compatible
Low Density Parity Check Accumulate (LDPCA) en-
coder [13]. Starting from the most significant bitplane,
each bitplane is independently encoded by the LDPCA
encoder, the corresponding accumulated syndrome is
stored in a buffer together with an 8-bit Cyclic Redun-
dancy Check (CRC).

III. H.264/AVC AND DVC POWER CONSUMPTION

Taking into account, that the considered H.264/AVC
scheme is not using motion estimation and preprocessing,
assume that power consumption of H.264/AVC encoder
depends on DCT/quantization part and entropy encoder part
only. Consider that power consumption of the part that
performs transform and quantization fh264tran depends on the
number of pixels, processed per time unit, and CAVLC
power consumption fCAVLC is a function of the output bitrate.
Therefore analytically power consumption of H.264/AVC
encoder can be written as

Ph264 = fh264tran (FI + FB ,W,H) + fCAVLC(RI +RB), (1)

where FI and FB are frame rate for I and B frames
respectively, W and H are frame width and height, RI and
RB are bit rate of compressed video stream correspondent
to I and B frames.

For the sake of simplicity, assume that CAVLC power
consumption is a linear function of the output bitrate [14]:

fCAVLC(RI +RB) = (RI +RB) · CCAVLC + P 0
CAVLC, (2)

where CCAVLC is the CAVLC complexity, which depends
on the concrete hardware implementation of H.264/AVC
encoder, P 0

CAVLC is constant component of power consumtion.
In turn, DVC encoder power consumption consists of two

parts: Intra-encoder and Wyner-Ziv encoder. Therefore, in
the same way, power consumption of DVC encoder can be
written as

PDVC = fh264tran (FI ,W,H) + fCAVLC(RI)
+fdvctran(FW ,W,H) + fLDPC(RW ),

(3)

where FW and RW are frame rate and bitrate of the com-
pressed video stream for Wyner-Ziv frames, respectively.

In the same way, power consumption of LDPC part can
be written as

fLDPC(RW ) = RW · CLDPC + P 0
LDPC, (4)

where CLDPC is the LDPC complexity, which depends on the
concrete hardware implementation of the LDPC encoder.
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As stated above, DVC encoder and H.264/AVC use the
same DCT and similar quantization part. Therefore, if FB =
FW then

fh264tran (FI+FB ,W,H) ≈ fh264tran (FI ,W,H)+fdvctran(FW ,W,H),
(5)

From (1), (3) and (5) it follows that the power consumption
gain of DVC encoder can be estimated by measurements
of CAVLC and LPDC (here we assume that the power
consumption estimation of LDPC is similar to LDPCA used
in DVC).

Let us assume that H.264/AVC and DVC encoders use the
same numbers of I frames in GOP. Then power consumption
gain of DVC scheme can be written as

∆P = Ph264 − Pdvc ≈ fCAVLC(RB)− fLDPC(RW ) =
= RB · CCAVLC −RW · CLDPC + ∆P 0.

(6)
As was already stated above, this paper proposes to

use as comparison criteria the power consumption that the
encoder needs to provide a given frame distortion value. For
analytical description of this criteria lwe use the following
operational rate-distortion function model [15]:

D(R) =
θ

R−R0
+D0, (7)

where θ, R0 and D0 are model parameters [15], D and R
are distortion and bit rate for given video sequence.

From (6) and (7) it follows that the power consumption
gain of DVC encoder for given distortion value D(R∗

B) =
D(R∗

W ) = D can be written as:

∆P =
( θB
D −D0

B

+R0
B

)
· CCAVLC−

−
( θW
D −D0

W

+R0
W

)
· CLDPC + ∆P 0.

(8)

Let us assume that D0
W ≈ D0

B , then (8) can be simplified
as:

∆P ≈ α1

D + α2
+ α3, (9)

where α1–α3 are constants.

IV. PERFORMANCE COMPARISON

For practical experiments the JM codec v.16.2 [5] which
is the H.264/AVC reference software and DISCOVER
codec [6] which is a reference software for distributed video
coding were used. Practical results were obtained for four
test video sequences ”foreman” and ”hall monitor” at QCIF
(176x144) resolution, 15 Hz, 150 frames and ”foreman”
and ”hall monitor” at CIF (352x288) resolution, 30 Hz, 300
frames.

For power consumption estimation of CAVLC and LDPC
we have used the results published in [7] and [8], re-
spectively, and the linear models (2) and (4) were used

to extract the power consumption values. All power con-
sumption measurements were achieved for 0.18µ TSMC
cell library. Although this library could not be considered
very new, both CAVLC and LDPC results were obtained
for the same experimantal conditions and, therefore, if one
solution consumes less power on 0.18µ TSMC cell library
than another, most likely it will also consume less power on
the advanced technologies.

The rate-distortion performance (Fig. 1–4) and the power
consumption estimated as described in Section III. The
results were combined to evaluate PSNR/Power consump-
tion. Figures 5–8 show the relative power consumption
for different GOP sizes. Thereafter, we chose the points on
the curves with minimum power consumption for DVC and
H.264/AVC and calculate the difference. This difference is
shown on Fig. 9–12 denoted as ”estimated results”. These
graphs also show the results for the proposed model (9), that
approximates the DVC power consumption gain relative to
H.264/AVC in low-complexity mode very accurately.

Results show that for most relevant visual quality range
(30-40 dB) DVC with LDPC allows to decrease power
consumption of entropy coding about 15-60% compared to
CAVLC for H.264/AVC in differential frame coding mode.
Taking DCT and Quantization blocks into account this gain
is not dramatic and may not warrant the use of feedback in
the DVC scheme considered.

V. CONCLUSION

In this paper two low-complexity codecs were discussed
and compared. We have proposed a simple analytical model
that allows to estimate power consumption gain of DVC
from H.264/AVC. This model shows the dependency be-
tween encoding algorithms efficiency and implementation
efficiency of CAVLC and LDPC and power consumption
gain.

In this paper we have compared only the kernel of the
video codecs, and the difference is rather small. If we
consider other costs, the difference may be insignificant.
Therefore, taking into account the complexity increase due
to DVC introducing a different coding unit, than the one
already used for intra/keyframes and the small gain in com-
parison to H.264/AVC may be preferable to use H.264/AVC
in differential coding mode for the systems that require low
encoding complexity.

The authors would like to note that this paper uses
simple models and assumptions and focused on LDPC as
replacement of CAVLC. This does not take into considera-
tion some other components of the power consumption like
memory access, residual data calculation for Inter-mode in
H.264/AVC and bit-plane coding along with CRC calculation
in DVC. The model is planned to be made more precise in
the future work.
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Fig. 1. Rate-distortion performance comparison for “hall
monitor qcif“

27

29

31

33

35

37

39

41

0 200 400 600 800 1.000
bit rate, kbps

Y
-P

SN
R

, d
B

JM GOP2
JM GOP4
JM GOP8
Discover GOP2
Discover GOP4
Discover GOP8

 

Fig. 2. Rate-distortion performance comparison for “foreman
monitor qcif“
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Fig. 3. Rate-distortion performance comparison for “hall cif“
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Fig. 4. Rate-distortion performance comparison for “foreman
cif“

0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

1,8

2

28 30 32 34 36 38 40

Y-PSNR, dB

Po
w

er
, m

W

JM GOP2
JM GOP4
JM GOP8
Discover GOP2
Discover GOP4
Discover GOP8

 

Fig. 5. Relative power consumption comparison for “hall
qcif“
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Fig. 6. Relative power consumption comparison for “fore-
man qcif“
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Fig. 7. Relative power consumption comparison for “hall
cif“
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Fig. 8. Relative power consumption comparison for “fore-
man cif“
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Fig. 9. DVC power consumption gain for “hall qcif“
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Fig. 10. DVC power consumption gain for “foreman qcif“
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Fig. 11. DVC power consumption gain for “hall cif“
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Fig. 12. DVC power consumption gain for “foreman cif“
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Abstract—This paper disscuses latency-constrained video
transmission over high-speed wireless personal area networks.
Low-power single-layer video compression is proposed as an
alternative to others video processing approaches. End-to-end
distortion and end-to end latency in video transmission system
are analyzed. A near-optimal video source rate control based
on MINMAX quality criteria is introduced. Practical results for
video encoder based on H.264/AVC standard are also given.

I. INTRODUCTION

In the last few years a number of high throughput wireless
personal area networks (WPANs) have appeared, such as the
IEEE 802.15.3c standard [1]. These networks have low power
data transmitters and throughput up to 6 Gigabit per second.
Therefore, they can provide a transmission of high definition
video from mobile device to display over wireless channel
instead wired cable. These networks are lacking of the best
method for the choice of video processing so this task still
remains actual.

To choose the best video processing approach for such type
of networks the following restrictions and requirements should
be taken into account. To provide low power consumption at
mobile transmitter one-pass low-complexity and low-memory
approaches without motion compensation or temporal filtering
(intra processing only) have to be used. At the same time
these solutions should provide very low transmission latency,
continuous video playback at the receiver and acceptable
visual quality for all variety of video sources: sequences of
computer graphics, snapshots, natural and mixed images.

From our point of view there are four potential approaches
that can satisfy these restrictions and requirements:

• uncompressed video transmission;
• intra single-layer video compression;
• intra scalable video coding;
• distributive video coding.

Let us consider the list stated above. The straightforward
solution in these networks can be based on uncompressed
video transmission [1]. This approach does not require any
compression algorithm and provides low processing latency.
On the other hand, several disadvantages arise. Firstly, the
throughput of a wireless channel is time-varying where, in ad-
dition, other traffic such as audio or IP data can be transmitted
along with video data. Therefore, it could not be guaranteed
that the channel rate is high enough for continuous video
playback. Secondly, this approach does not use the channel

in an efficient way in the sense of throughput and energy
consumption, because it does not take into account the video
source redundancy. In the third place, this solution requires
technical change at the network layers like combination of
video data unequal error protection and special automatic
repeat request methods [1]. Fourthly, the pixel partitioning
technique which is used for unequal error protection is not ef-
ficient in rate-distortion sense especially for desktop snapshot
type of the video that contains a lot of details commensurable
with pixel size.

The second solution can be based on Scalable Video Cod-
ing (SVC) and unequal error protection of different quality
layers [2]. In this case latency-constrained video transmission
over variable wireless channels is achieved due to dropping
the higher enhancement layers of the scalable video [3].
However, known SVC algorithms have higher computation
complexity and lower compression efficiency than single-layer
video compression [4].

The third solution can be based on Distributive Video
Coding (DVC) [5] which became very popular in the last
few years. Practical results show that DVC can provide com-
pression efficiency better than single-layer video compression
in intra-mode [6]. Many papers present DVC as very low-
power approach for video compression. But at this time there
are no DVC implementations which verify it. In addition
DVC encoder has to contain two compression cores: Winer-
Ziv encoder and traditional intra-encoder, and has very high
power consumption on the decoder side that is not efficient
for consumer products.

And final solution can be based on single-layer video com-
pression which is most extended in video processing devices.
This approach has low encoder and decoder complexity, it has
good compression efficiency in rate-distortion sense and do
not require any changes at link and physical network layers.

The particular properties of the video processing methods
are stated in Table I. Complex comparison shows that intra
single-layer video compression is more preferable for video
data transmission over high-speed wireless personal area net-
works.

Note, that transmission system based on solutions, which
were described above, has a set of parameters (like quanti-
zation step, macroblock type, transport packet length, mod-
ulation and code scheme and so on) which have to change
in real time depending on video source and wireless channel
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Table I
VIDEO PROCESSING APPROACHES COMPARISON

Video processing
approach

Encoder / Decoder
complexity

Compr.
efficiency

Is network
layers
modification
needed?

Uncompressed
video transmission

very low / very low very low yes

Intra single-layer
video compression

low / low medium no

Intra scalable video
coding

medium / medium low partly

Distributive video
coding

low / high high no

states. In common case, algorithms, which are controlling
these parameters, should minimize video distortion based on
objective or subjective quality criteria taking into account
power consumption and transmission latency restrictions. In
common case it is very difficult task and an open problem at
the current time.

This work is a continuation of our research in this way. In
papers [11], [12] we propose latency-constrained video source
rate control algorithm based on MINMAX quality criteria for
transmission of video data over constant throughput channels.
In this paper we extend our approach taking into account
power consumption restrictions and variable throughput chan-
nel and adopt it to intra single-layer video compression based
on H.264/AVC standard [7]. We introduce several assump-
tions, formulate optimization task and propose corresponding
one-pass video source rate control algorithm.

This paper is organized as follows. Section II describes low-
power implementation of H.264/AVC Encoder. In Sections III–
IV end-to-end distortion and end-to-end latency in video com-
pression and transmission systems are discussed. In Section V
video source rate control based on MINMAX quality criteria
is introduced. Finally, the practical results for different test
video sequences are shown.

II. LOW-POWER VIDEO COMPRESSION BASED ON

H.264/AVC STANDARD

H.264/AVC compression standard [7] is based on exploiting
the spatial and temporal redundancy of video sources. This
is achieved by using motion estimation and compensation,
intra-frame prediction, discrete cosine transform, quantization,
entropy coding and others methods.

To achieve low-power compression, low computation com-
plexity and memory consumption is needed. To decrease the
memory size it is proposed to eliminate motion estimation
and to use intra-coding only. In this case the encoder can be
implemented by using internal memory which is needed to
store 32 pixel lines of the input video only. For example, for
the resolution size of 1920×1080 180 Kbytes is needed instead
of more than 6 Mbytes in the motion compensation case.

In addition to the proposed scheme, even for this small
memory size the simple case of the temporal redundancy
removal could be used. It is often the case that many regions in
the current and the previous frames are the same in computer

graphics and desktop snapshots (static regions). Therefore, it is
possible to detect “static“ macroblocks at the encoder side by
calculating hash function value. If hash function value for the
current macroblock is equal to the corresponding hash function
value for the previous frame, it can be encoded in SKIP mode
and the decoder shows the corresponding macroblock which
was transmitted earlier.

The further decrease of the computational complexity can be
achieved by using DC intra-prediction, 4×4 DCT and CAVLC
(Context-adaptive variable-length coding) compression modes
only. For improving the encoding performance and achieving
absolutely RGB-lossless compression it is proposed to use
reversible YCoCg 4:4:4 color space transform.

III. END-TO-END DISTORTION IN TRANSMISSION SYSTEM

Let us assume that each video frame is separated into non-
overlapping units that include several macroblocks. The end-
to-end distortion dt for unit t in wireless video communication
systems consists of two main components [13]:

dt = d(qt) + dc, (1)

where d(qt) is distortion caused by quantization at the encoder
side and dc is distortion caused by channel errors and error
concealment algorithm at the decoder side. In this paper
we describe video transmission based on MINMAX quality
criteria [14] that can be interpreted as follows. For each unit t
the distortion dt should be provided, so that

minimizemax
t

dt. (2)

Usually the automatic repeat request (ARQ) method is
used to achieve reliable data transmission over an unreliable
channel. For each packet the receiver sends to transmitter
special message (acknowledgement) that indicates if the packet
is received correctly or not. If the packet is not received
correctly then the transmitter sends it again. The probability of
this situation can be defined as pt = 1− (1−pb)

l, where pb is
bit error rate (BER) and l is transport packet length assuming
independent bit errors. If the packet is not received after n
retransmissions then it is dropped at the transmitter side with
the probability pnt and the decoder shows the corresponding
co-located macroblocks which were transmitted earlier.

Assume that channel rate controller chooses modulation
and coding scheme (MCS) and transport packet size to max-
imize the throughput depending on channel feedback. In this
case the transmission scheme that provides the BER < 10−4

is chosen. Then the optimal transport packet size for this
BER values can be chosen [16] to guarantee that packet loss
probability is pnt < 10−10. Therefore, for further optimization
we can disregard packet losses. It means that for end-to-end
distortion minimization it is enough to minimize quantization
distortion d(qt) only.

IV. END-TO-END LATENCY IN TRANSMISSION SYSTEM

A. Video transmission system description

The video transmission system model discussed in this
paper is shown in the Figure 1. Consider the system timing
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Figure 1. End-to-end distortion and end-to-end latency in video transmission system

is discrete and slotted. The slot time is a part of the system
time [t, t + 1) and time moment t refers to the end of this
slot. Channel rate controller chooses the transmission scheme
that maximizes the channel throughput. Taking into account
transport packet headers, ARQ and time division between
different types of traffic, let us define channel throughput for
video data ct as the number of bits that are transmitted during
time slot t. The video source gives encoder a unit that contains
M macroblocks of the encoded frame. After compressing
unit t into r(qt) bits, where qt is a quantization step, encoder
places it into the encoder buffer. Depending on the number of
bits in the encoder buffer and channel state, video source rate
controller chooses the quantization step qt and macroblocks
type mt ∈ {intra, skip} for the next unit.

The number of bits in the encoder buffer be(t) after placing
there a new compressed unit t and transmitting over the
channel with the throughput ct, changes as follows:

be(t) = max{0, be(t− 1)− ct}+ rt(qt,mt). (3)

Data on the receiver side is accumulated for some time L
after which the decoding and playing starts.

B. Latency definition, necessary and sufficient conditions

Generally, latency ΔT between the time moment when
some unit has been sent to the encoder and the time moment
when this unit has been shown at the receiver device display
consists of the following components:

ΔT = ΔTe +ΔTeb +ΔTtb +ΔTc +ΔTrb +ΔTdb +ΔTd,
(4)

where ΔTe and ΔTd are the encoding and decoding processing
latency, ΔTeb is the encoder buffer latency, ΔTtb is transmit-
ter buffer latency, ΔTrb is receiver buffer latency, ΔTdb is
the decoder buffer latency, ΔTc is the channel transmission
latency.

Let us suppose that the encoder and the decoder work real-
time and values ΔTe, ΔTd and ΔTtb, ΔTrb are significantly
less than L. In [8] it was shown that

ΔTeb +ΔTc +ΔTdb = L, (5)

if the number of bits in the encoder buffer is

be(t) ≤ beff (t) =

t+L·f ·N∑

i=t+1

ci, (6)

where beff (t) is the effective buffer size [15], N is a number
of units in the frame and f is a frame rate.

For time-varying wireless channel beff (t) is equal to the
sum of the future channel rates in time interval [t, ..., t + L]
and it can not be calculated at the time moment t, because
future channel rates are not known yet. Therefore, effective
buffer size is usually estimated at the encoder side by us-
ing channel model [9]. However, for time-varying wireless
channel it is not possible to guarantee that estimated value
b̂eff (t) ≤ beff (t) for any time moment t. Then the situation
when be(t) > beff (t) is possible and latency requirements (5)
do not hold.

C. Required latency restoration approach

If required L value is low (e.g. 1ms) then we can use the
following approach to restore the required latency. At the time
moment t + L we can calculate effective buffer size beff (t).
If at the time moment t+L inequality (6) does not hold then
at the time moment t latency requirements (5) do not hold.
It means that at the time moment t + L number of bits in
decoder buffer is bd(t+L) = 0 and decoder can not start the
reconstruction process.

Assume that decoder works in real-time, therefore decoding
time for INTRA unit is less than ΔT intra

d ≤ 1
f ·N and decoding

time for SKIP unit is close to zero ΔT skip
d ≈ 0. Then, to

restore equation (5) we propose the following algorithm.
Step 1. Compress all units in SKIP mode until at the time

moment t∗ encoder buffer will be emptied be(t∗) = 0.
Step 2. Compress all units in SKIP mode at the time interval

[t∗, ..., t∗ + 2 · L+ 1
f ·N ].

At the time moment t+L encoder buffer contains not more
than n = 2 · L · f · N + 1 units. At the time moment t∗ all
these units will be available at the decoder side together with
SKIP units that were formed in the time interval [t + L, t∗].
To decompress it decoder spends time

ΔTd(n) ≤ (2 ·L ·f ·N+1) ·ΔT intra
d ≤ 2 ·L+ΔT intra

d . (7)
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It means that at the time moment t∗ + 2 ·L+ 1
f ·N encoder

buffer will contain SKIP units and decoder buffer will be
empty. This event is equivalent to the system starting state.

V. VIDEO SOURCE RATE CONTROL ALGORITHM

A. MINMAX optimization task description

Note that for high-speed video transmission we can use
high-resolution quantization hypothesis [10] that defines dis-
tortion as d(q) = q2/12, therefore MINMAX criteria (2)
corresponds to

minimizemax
t

qt. (8)

Suppose that despite statistical properties of the units in
the frame may be quite different from each other, statistical
properties of all frames vary insignificantly. It means that there
is only one scene in the input video sequence. This assumption
does not hold true generally, because video sequence usually
consists of subsequences (scenes) with different statistical
properties. To make understanding of the algorithm with
several scenes easier, let us initially take into account the case
when video sequence has only one scene.

Let us formulate rate control optimization task according
to the latency requirements (6) and the MINMAX quality
criteria (8). For each unit t it is necessary to choose the
quantization step qt, so that

{
minimizemax

t
qt

b(t) ≤ beff (t).
(9)

B. Solution of MINMAX task by consecutive search algorithm

Solution of the task (9) can be found by the following
hypothetic algorithm which consists of the following two
steps:

Step 0. (Initialization)
0.1 Set {qi} = {0, 1, ..., qmax}, i← 0.
0.2 Go to Step 1.1

Step 1.
1.1 q̃ ← qi, b̃(0)← 0.
1.2 For units t = 0, 1, ... calculate

b̃(t)← max{0, b̃(t− 1)− ct}+ rt(q̃).
If b̃(t) > beff (t) then i← i+ 1 and go to Step 1.1

The algorithm described above is called the consecutive
search algorithm.

Theorem 1. Consider q̃ the solution found by the consec-
utive search algorithm. There is no sequence of quantization
steps y1, y2, . . . for which max

t
yt < q̃ that does not lead to

effective buffer size exceeding.
Proof. Suppose that consecutive search algorithm has

stopped at the step i. Then for each step j < i for every
unit t quantization step xt = qj was chosen. From consecutive
search algorithm description follows that after encoding unit τ
number of bits in encoder buffer b̃(τ) > beff (τ).

Let us choose any sequence of quantization steps y1, y2, . . .,
where yt ≤ qj , and b(t) is the number of bits in encoder

buffer, when unit t is encoded with yt value. Then yt < xt,
consequently,

r(yt) ≥ r(xt) (10)

So if b̃(0) = b(0) = b0, then from (3) and (10) follows that
b̃(t) ≤ b(t). It means that exists such τ ′ ≤ τ that

b(τ ′) > beff (τ
′).� (11)

C. Single-scene MINMAX rate control algorithm

Consecutive search algorithm is a hypothetic one that shows
the solution of (9), but can not be implemented in a real-time
system, because it is impossible to rerun data transmission
after effective buffer size exceeding.

Therefore, this paper proposes an algorithm that allows to
find the estimation of q̃ for the consecutive search algorithm.
Consider q̂t to be the estimation of q̃ value. It is supposed
to estimate q̃ value as follows. All units are compressed with
quantization step q̂t until the number of bits in the buffer be(t)
will not exceed effective buffer size beff (t). This exceeding
means that it is impossible to hold the q̂t value for the
given channel throughput for fixed end-to-end latency without
increasing it. So, the end-to-end latency exceeds its initial
value L and, consequently, the required latency restoration
approach is used and the estimation of q̂t increases. The
algorithm consists of the following three steps.

Step 0. (Initialization)
0.1 Set q̂0 ← q0, t← 0, be(0)← 0.
0.2 Go to Step 1.1

Step 1. (Buffer accumulation)
1.1 t← t+ 1, q̂t ← q̂t−1.
1.2 be(t)← max {0, be(t− 1)− ct}.
1.3 Compress unit t with quantization step q̂t.
1.4 If be(t) > beff (t) go to Step 2.1
1.5 be(t)← be(t) + r(q̂t) and go to Step 1.1

Step 2. (Latency restoration)
2.1 Compress all units in SKIP mode until at the time
moment t∗ encoder buffer size be(t∗) = 0.
2.2 Compress all units in SKIP mode at the time inter-
val [t∗, ..., t∗ + 2 · L · f ·N + 1].
2.3 t← t∗+2 ·L ·f ·N+1, q̂t ← q̂t+Δq+ and go to Step 1.1

Theorem 2. Consider that consecutive search algorithm
finds the quantization step value q̃. Then for the proposed al-
gorithm with initial value q̂0 ≤ q̃, the inequality q̂t < q̃+Δq+

holds true for any time moment t.
Proof. Let b̃(t) be the buffer size for the consecutive search

algorithm. From its description

b̃(t) ≤ beff (t). (12)

Let us suppose that q̂0 ≤ q̃ and at the time moment τ this
inequality holds true firstly:

q̃ ≤ q̂τ < q̃ +Δq+. (13)

So at this moment the number of bits in the encoder buffer
(see Step 2.1) is:

be(τ) = 0. (14)
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From (13) for t ≥ τ the following inequality holds true:

r(q̂t) ≤ rt(q̃), (15)

so that from (3), (12), (14) and (15) follows that at the time
moment t ≥ τ the number of bits in the buffer is:

be(t) ≤ b̃(t) ≤ beff (t). (16)

Thereby, from the time moment τ the statement of Step 1.4
of this algorithm fails. Consequently, the algorithm will not
reach Step 2.3 and parameter q̂t will not be increased.�

From Theorem 2 follows that after algorithm adaptation for
the source and channel properties the quantization step for
each unit will not exceed the quantization step for the solution
of the task (9) and the value not more than Δq+. The time of
the adaptation depends on the source and channel properties,
and starting value q0 and Δq+. With Δq+ increase the time
of the adaptation decrease, and vice versa.

D. Scene change and virtual buffer concept

Now let us take a look at the video sequences that consist
of several scenes s0, s1, . . . , sn. Then MINMAX optimization
task (9) should be applied for each scene. Let q̃(si) be
a solution provided by consecutive search for scene si. If
q̃(si+1) ≥ q̃(si), then algorithm proposed above will adapt
to a new scene. However, if q̃(si+1) < q̃(si), then algorithm
will not decrease q̂t, that means that the quality will not be
improved.

Therefore, to overcome this problem we introduce an heuris-
tic approach based on a virtual buffer concept. For each unit t
the following value is calculated:

bev(t)←

⎧
⎨
⎩

be(t), if t = t∗,
max{0, bev(t− 1)− cv(t)}+ r(q̂t −Δq−),
if t �= t∗,

(17)
where t∗ is a number of the first unit in the current frame,
cv(t) is a virtual channel rate that is calculated as follows:

cv(t) =
bmin
eff (w, t)

L · f ·N , (18)

where bmin
eff (w, t) is a minimum of the effective buffer size for

the previous w frames

bmin
eff (w, t) = min

i
beff (i), i ∈ {t∗−w ·N, . . . , t∗− 1}. (19)

In addition, the difference between the number of bits that
is placed into the buffer and maximum number of bits that
could be transmitted is accumulated:

Δrv ←
t∗+N−1∑

i=t∗
r(q̂t −Δq−)− cv(t). (20)

Let us take a look on the virtual buffer concept. If Δrv > 0,
the number of bits sent to the transmission buffer is more then
the number of bits sent to the channel and this can lead to the
effect of latency exceeding the limit during the transmission
of the next frames. On the other side, the bit size distribution

for units in each frame may be so, that this can happen even
if Δrv ≤ 0. Therefore, in addition bev(t) is calculated. Thus,
if before the encoding of the unit t∗ the following statements
are fulfilled:

{
max

i
bev(i) ≤ bmin

eff (w, t
∗ − 1), i ∈ {t∗ −N, . . . , t∗ − 1},

Δrv ≤ 0,
(21)

and rate control was not in the latency restoration mode
during coding of previous frame, the quantization step value
is modified as follows:

q̂t ← max{0, q̂t −Δq−}. (22)

E. Using static units detection in rate control

For improving video quality for the low channel throughput
case, static units can be transmitted repeatedly in lossless
mode. However, we have to take into account that the types
of the units (static or non-static) in the future are unknown.
Therefore we should keep a significant part of the encoder
buffer free for non-static units. Thus, if rate control works
in buffer accumulation mode then lossless mode is used for
static units, if they were not transmitted as lossless earlier
and number of bits in encoder buffer be(t) ≤ α · beff (t),
α ∈ [0, ..., 1].

VI. PRACTICAL RESULTS

To obtain practical results the suggested rate control algo-
rithm was embedded into the low-power H.264/AVC encoder
that was shortly described in Section II. In the rate control
algorithm the following parameters were used: L = 1 ms,
M = 2, w = 5, Δq+ = 3, Δq− = 2, α = 0.15.

Channel throughput ct simulation is executed as following.
At first, propagation measurements in the presence of human
activity for a 60 GHz channel [17] were used for obtaining
of the temporal variations of the channel SNR(t). Secondly,
SNR(t) vs. pt dependencies for each MCS were calculated
based on transport packet length l = 4092, number of retrans-
missions n = 10 and SNR/BER curves from IEEE 802.15.3c
standard proposals documents [18]. Finally, for each SNR(t)
value one of the MCS was chosen that provide BER< 10−4.

The performance of the discussed algorithm was tested on
two video sequences with 1920×1080 frame resolution, frame
rate f = 60. The first test video sequence (“Breeze“) is a
typical movie which contains natural images. The second test
video sequence (“Desktop“) corresponds to computer desktop
snapshots: running office applications and dragging windows.
Figure 2 shows video source rate and peak signal-to-noise ratio
(PSNR) for the given channel throughput. For the convenience
of graphic expression PSNR= 70 dB corresponds to the
absolutely lossless compression.

Practical results show that in good channel condition case
the low-power encoder provides lossless video source rate
equal to 1.5 Gbps for natural video sequences that allows to
economize channel throughput or use it for other data traffic.
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Figure 2. Practical results for “Breeze“ (on the left side) and “Desktop“ (on the right side) video sequences

In bad channel state the proposed rate control algorithm pro-
vides adaptation to varying channel conditions and guarantees
acceptable video quality for the given channel throughput.
Greater effect is obtained for desktop video sequences that
contain a lot of static regions.

VII. CONCLUSIONS

In this paper the latency-constrained video transmission over
high-speed wireless personal area networks was discussed.
In the complex comparison it leads to the conclusion that
single-layer video compression suits at most for the described
situations. The video source rate control algorithm based
on MINMAX quality criteria was proposed and practical
results for the real channel are shown. The proposed rate
control was constructed in one-pass mode: it does not need
recompression and it does not necessary need the channel
model constuction. By this, the number of operations that is
needed for macroblocks types and quantization steps selection
in the unit is tiny in comparison to the encoder operations.
Therefore, the proposed algorithm does not contribute much
to the general encoder power consumtion.

The future works will be devoted to the rate-distortion
performance comparison of single-layer video compression
with other approaches like uncompressed video, scalable video
coding and distributed video coding for high-speed wireless
personal area networks taking into account transmission la-
tency and power consumtion restrictions.
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Abstract— The problem of the multimedia scalable video
streaming is a current topic of interest. There exist many
methods for scalable video coding. This paper is focused
on the scalable extension of H.264/AVC (H.264/SVC) and
distributed video coding (DVC). The paper presents an
efficiency comparison of SVC and DVC having reduced
encoder complexity. Moreover, temporal scalability is de-
scribed for these two algorithms, and it is analyzed and
compared.

I. INTRODUCTION

Scalable video coding is very interesting for multi-
media networks. Various clients might require decoding
of the same video at different resolutions and qualities.
Therefore, scalable coding encodes the video only once
and enables decoding at different qualities, spatial and
temporal resolutions. It makes scalable video coding
attractive for different applications. The Moving Picture
Experts Group (MPEG) has recently introduced the
Scalable Video Coding (SVC) standard [1], which is
an extension of the H.264/MPEG-4 Advanced Video
Coding (AVC) standard [2]. SVC achieves very good
compression performance. On the other hand, SVC en-
tails a higher complexity at the encoder side. Another
approach is taken in the field of Distributed Video
Coding [3] as a new video coding paradigm to deal with
lossy source coding using side information to exploit the
statistics at the decoder to reduce computational demands
at the encoder. Using DVC, for example, the burden of
motion estimation and compensation can be shifted from
the encoder to the decoder. This implies low power / low
complexity encoders.

The paradigm of distributed source coding (DSC),
which has its roots in the theory of coding correlated
sources developed by Slepian and Wolf [4] for the
lossless case and Wyner and Ziv [5] for the lossy case,
has recently become the focus of different kinds of video
coding schemes [6], [7]. DVC is promising in creating
reversed complexity codecs for power constrained (hand-
held) devices. Unlike regular broadcast oriented video

codecs with high encoding complexity and low decoding
complexity, reversed complexity codecs have low encod-
ing complexity but high decoding complexity.

SVC could be used in the situation when we have
many receivers and it is needed to receive the data at
different bitrates. This can be used for the following:

• video transmitted over Internet for the users with
different receiving rate;

• digital TV (DVB-T, DVB-H, ATSC, DTMB, ISDB,
SBTVD);

• wireless transmission (on the base of Wi-MAX,
WiFi).

Another case is when we have to control the transmis-
sion rate depending on the situation in the channel. If
the channel becomes worse, it is possible to use scalable
stream for power saving [11]. As for DVC, it will suit
the situation better, when there are limitations for the
complexity and memory of the encoder, and also for
power consumption. In a number of resource critical
applications, a complex video encoder is a disadvantage
in terms of physical size and power consumption. DVC
is proposed to apply in areas, where the cost of separated
video encoders is the primary concern:

• wireless video surveillance;
• low-power video sensors;
• wireless digital cameras and camera embedded mo-

bile phones.

The goal of this paper is to explore the efficiency of
the temporal scalability of DVC and SVC for reduced
encoder complexity. By comparing the coding perfor-
mance, the advantages and disadvantages of scalable
DVC and H.264/SVC are analyzed and discussed. The
rest of this paper is organized as follows: Section II
briefly describes different types of scalabilities in video
coding. In Section III, temporal scalability in H.264/SVC
is introduced. In Section IV, coding procedures of
state-of-the-art DVC is described. Temporal scalablities
and complexity of H.264/SVC and DVC are compared
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Fig. 1. Temporal scalability scheme.

in Section V.

II. TYPES OF SCALABILITY

Scalable extension of the H.264/AVC standard is a
highly attractive solution to the problems posed by the
characteristics of modern video transmission systems.
“Scalability“ in this paper means removal of parts of the
bit stream to adapt it to the different needs or preferences
of end users as well as to the network conditions.

The main idea of scalable coding is that coder forms
the bit-stream from several layers: base layer and en-
hancement layers. The base layer of a bit stream is al-
ways coded in compliance with a non-scalable profile of
H.264/AVC (single-layer coding). For next enhancement
layers encoding the previous layers (that may include
the base layer) is needed. Each layer is characterized
by its own bit rate and visual quality. Thus, receivers
could decode the necessary layers to provide with the
necessary bit rate and visual quality.

There exist different ways of the video data processing
to form the streams with the properties described above:

• Temporal scalability.
• Spatial scalability.
• SNR-scalability.
• Combined scalability.

Spatial scalability and temporal scalability describe cases
in which subsets of the bit stream represent the source
content with a reduced picture size (spatial resolution)
or frame rate (temporal resolution), respectively. With
SNR (quality) scalability, the substream provides the
same spatial-temporal resolution as the complete bit
stream, but with a lower fidelity where fidelity is often
informally referred to as signal-to-noise ratio (SNR). The
different types of scalability can also be combined, so
that a multitude of representations with different spatial-
temporal resolutions and bit rates can be supported
within a single scalable bit stream [10]. As temporal

scalability is the most obvious scalability type, we only
focus on this case.

III. TEMPORAL SCALABILITY IN H.264/SVC

Temporal scalability in H.264/SVC is achieved by
using hierarchical coding structures with B-pictures [8].
The pictures of the temporal base layer are only predicted
from previous pictures of this layer. The enhancement
layer pictures can be bidirectionally predicted by using
the two surrounding pictures of a lower temporal layer
as references. A picture of the temporal base layer and
all temporal refinement pictures between the base layer
picture and the previous base layer picture build a group
of pictures (GOP). In each GOP, the frame at the lowest
level is called the key frame and it is encoded as I- or P-
frames. Each temporal layer is marked by an additional
identifier T . T is equal to 0 for pictures of the temporal
base layer and is increased by 1 from one temporal layer
to the next.

Figure. 1 shows an example of building hierarchical
B-picture structure for the case of GOP containing 8
frames. In this case base temporal layer T = 0 consists
of only the single key (frame 8) of this GOP. Next layer
T = 1 consists of single B-picture (frame 4) that requires
two reference frames in forward and backward direction
(frame 0, frame 8) from layer T = 0. In the same manner
B-picture (frame 2) in the layer T = 2 also requires
two reference frames (frame 0, frame 4) from layers
T = 0 and T = 1 accordingly. The following steps
are done in a similar manner. For the implementation of
this type of scalability it is necesary to store all 8 frames
in the encoder memory. This brings additional delay and
increases the size of the memory used. Therefore, if it is
needed to decrease the memory size and delay, temporal
scalability could be used in low-delayed mode. However,
this will lead to a efficiency degradation.

Temporal scalable bit-stream can be generated by
using hierarchical prediction structures without any
changes to H.264/MPEG4-AVC. The encoding process
for each frame includes the following operations:

1) Inter-frame prediction
- Motion estimation (4x4, 4x8, 8x4, 8x8,
8x16,16x8,16x16 inter-block search). For each
block in the current frame it is necessary to make
the search for the most similar block in the previ-
ous frame(s).
- Motion compensation. This means the difference
calculation between the current block and blocks
found in the reference frame(s).
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Fig. 2. Main operarions for SVC encoding [2]

2) Intra-frame prediction (DC-prediction, Vertical,
Horizontal, Diagonal and others predictions). The
prediction of the current block is done by the pixels
of the left and upper blocks.

3) Deblocking filter. This filter is used to remove the
blocking effect for the improvement of the motion
compensation.

4) Discrete Cosine Transform (4x4 DCT, 8x8 DCT,
16x16 DCT).

5) Scalar quantization.
6) Intra/Inter prediction mode decision - in this stage

the best prediction mode and best DCT type for
current macroblock is chosen.

7) Entropy encoding
- CABAC (Context-Adaptive Binary Arithmetic
Coder);
- CAVLC (Context-Adaptive Variable Length
Coder).

8) Network Abstract Layer - it forms a H.264/SVC
compatible stream which can be transmitted over
any network.

The decoding process using H.264/SVC includes:

1) Entropy decoding (depending on what was used
for encoding).

2) Scalar dequantization.
3) Inverse Discrete Cosine Transform.
4) Motion compensation.
5) Error resielence algorithm - describes what to do

if some part of the bit stream was damaged.
6) Deblocking filter.

IV. DVC AND ITS TEMPORAL SCALABILITY

Feedback channel based transform domain Wyner-Ziv
video coding is one DVC approach. The architecture of
transform domain Wyner-Ziv video codec [6] is depicted

in Fig. 3. The encoding procedure includes the following
main operations:

1) A fixed Group of Pictures (GOP=N) is adopted to
split video sequences into two kinds of frames, i.e.
Key frames and Wyner-Ziv frames. Periodically
one frame out of N in the video sequence is
named as key frame and intermediate frames are
WZ frames. The key frames are Intra coded by
using a conventional video coding solution such as
H.264/AVC Intra while the Wyner-Ziv frames are
coded using a Wyner-Ziv video coding approach.

2) Each Wyner-Ziv frame Xi is partitioned into non-
overlapped 4× 4 blocks and a DCT [2] is applied
to each of them.

3) The transform coefficients within a given band
bk, k ∈ {0...15}, are grouped together and then
quantized. DC coefficients are uniformly scalar
quantized and AC coefficients are dead zone quan-
tized, respectively.

4) After quantization, the coefficients are binarized.
The binary bits with the same significance are
formed to a bitplane, which is given to a rate
compatible Low Density Parity Check Accumulate
(LDPCA) encoder [12]. Starting from the most
significant bitplane, each bitplane is independently
encoded by the LDPCA encoder, the correspond-
ing accumulated syndrome is stored in a buffer
together with an 8-bit Cyclic Redundancy Check
(CRC). The amount of transmitted bits depends
on the requests made by the decoder through a
feedback channel. Although latency is introduced
by a feedback channel, encoder complexity can be
minimized with this feedback channel based rate
control mechanism.

The decoding procedure is described as follows:

1) A side information frame Yi and its corresponding
noise residual frame R are created in the side infor-
mation generation module [13] by using previously
decoded frames. The side information frame Yi is
seen as a ’noise’ version of the encoded Wyner-Ziv
frame Xi, the estimated noise residual frame R is
utilized to express the correlation noise between
the Wyner-Ziv frame Xi and the side information
frame Yi.

2) The estimated noise residual frame R and side
information frame Y undergo the DCT to obtain
the coefficients CR and CY . Taking CR and CY as
inputs of a noise model module [15], the noise dis-
tribution between corresponding frequency bands
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Fig. 3. Feedback channel based transform domain Wyner-Ziv video codec architecture

of the side information frame Yi and the Wyner-
Ziv frame Xi is modeled.

3) Using a modeled noise distribution, the coefficient
values of the side information frame CY and
the previous successfully decoded bitplanes, soft-
input Pcond (conditional bit probabilities) for each
bitplane is calculated.

4) With the obtained soft-input Pcond, the LDPCA de-
coder starts to process various bitplanes to correct
bit errors. Convergence is tested by the 8-bit CRC
sum and the Hamming distance. If the Hamming
distance is different from zero or the CRC sum
is incorrect after a certain amount of iterations,
the LDPC decoder requests more accumulated
syndrome bits from the encoder buffer via the
feedback channel to correct the existing bit errors.
If both the Hamming distance and CRC sum are
satisfied, convergence is declared, guaranteeing a
very low error probability for the decoded bitplane.

5) After successful LDPCA decoding, the obtained
bitplanes are grouped together to form a set of
decoded quantization symbols for each band bk.
With the received quantization information, the
decoded quantized symbols are used to calculate
the correct intervals in which the Wyner-Ziv coef-
ficients are located. Together with side information
coefficients CY , noise distribution parameter α
and the interval information, decoded coefficients
within band bk of the Wyner-Ziv frame are recon-
structed.

6) After all the coefficients bands are reconstructed,
4×4 block inverse transform is performed to obtain
the reconstructed Wyner-Ziv frame X ′

i.
Compared with the DISCOVER DVC codec in [14],

the novelty of the implemented DVC codec is combining

an improved Overlapped Block Motion Compensation
(OBMC) based side information generation module [13]
and an adaptive virtual channel noise model module [15].
Beside the novel DVC aspects, our DVC implementa-
tion is also extended with temporal scalability in this
paper according to GOP size 8 example as shown in
Fig. 1. Each temporal layer in DVC can be encoded
independently without storing any reference frames. The
temporal layer T = 0 consists of the H.264/AVC Intra
coded frames (frame 0 and frame 8), while the other
layers are Wyner-Ziv coded frames. During the decoding,
Wyner-Ziv frames in the next layer T = 1 (frame 4)
needs two previous decoded key frames in forward and
backward direction (frame 0, frame 8) from layer T = 0
for decoding. Similarly, Wyner-Ziv frames (frame 2) in
layer T = 2 utilize two frames (frame 0, frame 4) from
layers T = 0 and T = 1 for decoding.

Due to the feedback channel based rate control mech-
anism in our DVC implementation, the coded data (e.g.
the coded frame 4) in higher layers still needs to be
stored in a buffer before lower layer frames (e.g. frame
0 and frame 8) is successfully decoded. The size of coded
data to be stored may be equivalent of up to 1.5 frames
with simple rate control [16]. Ideally, if an efficient rate
control is employed, it may be possible to avoid store
these data for the realization of temporal scalability in
DVC.

V. COMPARISON OF SCALABILITY PERFORMANCE

In order to make fair scalability comparisons between
DVC and H.264/SVC, the Joint Scalable Video Model
(JSVM) reference software v.9.15 [9] which has pro-
cessed video stream in temporal scalable mode is used.
It is important to note, that the comparison was made
for reduced encoder complexity. SVC worked in the
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Intra mode without memory for the frames. For this the
most complicated blocks were turned off (e.g. motion
estimation). In the differential coding mode the encoding
complexity was also minimal but the additional memory
for the frames was needed. The test conditions adopted
in this paper are the DISCOVER project test conditions,
commonly used in the DVC literature [13][14]. The test
sequences “hall monitor“ and “coastguard“ are coded
at QCIF, 15 frames per second (fps). The key frames
are encoded using H.264/AVC Intra and the QPs are
chosen so that the average PSNR (Peak Signal-to-Noise
Ratio) of the WZ frames is similar to the average PSNR
of the key frames. The RD performance is evaluated
for the luminance component of the key frames, WZ
frames and hierarchical B frames. GOP consists of 8
frames: IWWWWWWWI for Wyner-Ziv encoding and
IBBBBBBBI for SVC encoding (taking into account
that I frames were encoded in a similar manner). The
temporal scalability results are shown in Figs. 4–9.

TABLE I
COMPLEXITY AND MEMORY SIZE COMPARISON FOR ENCODER

FOR GOP8
Encoder type Computation complex-

ity
Memory

H.264/SVC Intra Intra prediction, DCT,
Quantization, Entropy
encoding, IDCT, De-
quantization

Less than 1
frame

DVC DCT, Quantization,
LDPCA encoder, CRC

Equivalent to 1
frame

H.264/SVC
Differential frame
coding

Inter/Intra mode deci-
sion, DCT, Quantiza-
tion, Entropy encoding,
IDCT, Dequantization

more than 8
frames

If there are no restrictions on the complexity of the
decoder, then as shown in Figs. 4–9 the use of state-
of-the-art DVC is preferable in the case when we need
to have minimal memory and encoder complexity. The
efficiency of state-of-the-art DVC is better than SVC for
the same memory size and complexity. If the size of the
memory at the encoder is not limited, the H.264/SVC
has better results (see Table I). If there is a limitation on
the encoder complexity then simplified H.264/SVC (e.g.
without motion compensation) is better.

In this work, we evaluate temporal scalability. It is
straightforward possible for our DVC scheme to provide
SNR-scalability by selecting of bitplanes. Furthermore
the basic layer (or key frames) could be lower resolution,
thus also providing spatial scalability. The choice of
scalability using DVC may be made without changing
the DVC encoder, thus only the decoder needs to be
modified.

VI. CONCLUSION

The efficiency of the temporal scalability of state-of-
the-art DVC and SVC with reduced complexity encoding
are discussed in this paper. If there are the strong
restrictions on the encoder memory and complexity
then only H.264 in the Intra-frme mode can provide
temporal scalability. If the encoder memory is close to
one frame and we have complexity restrictions at the
encoder then DVC shows better results. If there are no
encoder memory restrictions, but only restriction for the
complexity, it is better to use H.264 in the Differential
Frame Coding mode. Thus, it is shown that with the
encoder memory restrictions and availability of the tem-
poral scalability the best method of the encoding should
be chosen taking into account the memory restrictions
Due to the existing performance gap, it is necessary
to further improve the coding efficiency of DVC. The
minimization of the encoder complexity overhead for
scalable coding without sacrificing coding efficiency has
become an active research area in the video coding
community. As a continuation of this work in the future,
additional research for spatial and SNR scalability will
be conducted.
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Appendix B

Performance results for
Rate-Distortion-Complexity
optimization
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Figure B.1: Performance results for the proposed solution compared to offline op-
timization for “Crew” with 60% complexity

135



i
i

“main” — 2013/2/21 — 11:02 — page 136 — #154 i
i

i
i

i
i

136 Performance results for Rate-Distortion-Complexity optimization

0.235 0.24 0.245 0.25 0.255 0.26 0.265 0.27 0.275
26.7

26.8

26.9

27

27.1

27.2

27.3

27.4

27.5

27.6

27.7

P
S

N
R

, d
B

Bit rate, bpp

 

 

Convex hull for all configurations
Proposed configuration

Figure B.2: Performance results for the proposed solution compared to offline op-
timization for “Mobile” with 60% complexity
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Figure B.3: Performance results for the proposed solution compared to offline op-
timization for “Crew” with 70% complexity
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Figure B.4: Performance results for the proposed solution compared to offline op-
timization for “Mobile” with 70% complexity
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Figure B.5: Performance results for the proposed solution compared to offline op-
timization for “News” with 70% complexity
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Figure B.6: Performance results for the proposed solution compared to offline op-
timization for “Mobile” with 80% complexity
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Figure B.7: Performance results for the proposed solution compared to offline op-
timization for “News” with 80% complexity
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Figure B.8: Performance of different configurations for the sequence “Crew”, 60%
complexity

Figure B.9: Performance of different configurations for the sequence “Mobile”, 60%
complexity
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140 Performance results for Rate-Distortion-Complexity optimization

Figure B.10: Performance of different configurations for the sequence “News”, 60%
complexity

Figure B.11: Performance of different configurations for the sequence “Crew”, 70%
complexity



i
i

“main” — 2013/2/21 — 11:02 — page 141 — #159 i
i

i
i

i
i

Figure B.12: Performance of different configurations for the sequence “News”, 70%
complexity

Figure B.13: Performance of different configurations for the sequence “Crew”, 80%
complexity
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142 Performance results for Rate-Distortion-Complexity optimization

Figure B.14: Performance of different configurations for the sequence “Mobile”, 80%
complexity

Figure B.15: Performance of different configurations for the sequence “News”, 80%
complexity
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Appendix C

Examples of test video
sequences

Figure C.1: Sequence “Akiyo”, 1st frame
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144 Examples of test video sequences

Figure C.2: Sequence “City”, 1st frame

Figure C.3: Sequence “Coastguard”, 90th frame
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Figure C.4: Sequence “Crew”, 70th frame

Figure C.5: Sequence “Foreman”, 125th frame
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146 Examples of test video sequences

Figure C.6: Sequence “Football (1)”, 100th frame

Figure C.7: Sequence “Football (2)”, 10th frame
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Figure C.8: Sequence “Ice”, 1st frame

Figure C.9: Sequence “Mobile”, 80th frame
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148 Examples of test video sequences

Figure C.10: Sequence “News”, 160th frame

Figure C.11: Sequence “Waterfall”, 200th frame
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List of Acronyms

3DVC 3D Video Coding

ASO Arbitrary Slice Ordering

AVC Advanced Video Coding

CABAC Context-Adaptive Binary Arithmetic Coding

CAVLC Context-Adaptive Variable-Length Coding

CIF Common Intermediate Format

CU Coding Unit

DCT Discrete Cosine Transform

DPCM Differential Pulse Code Modulation

DVC Distributed Video Coding

DWT Discrete Wavelet Transform

EBCOT Embedded Block Coding with Optimal Truncation

FMO Flexible Macroblock Ordering

fps frame per second

GB Gigabytes

GOF Group Of Frames

HD High-Definition
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150 List of Acronyms

HDTV High-Definition Television

HEVC High Efficiency Video Coding

ICT Information and Communications Technologies

JPEG Joint Photographic Expert Group

LAN Local Area Network

LDPC Low-Density Parity-Check

MC Motion Compensation

ME Motion Estimation

MJPEG Motion JPEG

MOS Mean Opinion Score

MSSIM Mean Structural Similarity Index

MVC Multiview Video Coding

PPSNR Perceptual PSNR

P-R-D Power-Rate-Distortion

PSNR Peak Signal-to-Noise Ratio

R-D-C Rate-Distortion-Complexity

RDO Rate-Distortion Optimization

RGB Red, Green and Blue

RLE Run Length Encoding

RMSE Root Mean Square Error

RoF Radio over Fiber

ROI Region Of Interest

RRC Radio Resource Control



i
i

“main” — 2013/2/21 — 11:02 — page 151 — #169 i
i

i
i

i
i

SLEP Systematic Lossy Error Protection

SNR Signal-to-Noise Ratio

SSIM Structural Similarity Index

SVC Scalable Video Coding

TDWZ Transform Domain Wyner-Ziv

UEP Unequal Error Protection

UHD Ultra High-Definition

UVLC Universal Variable-Length Coding

VLC Variable-Length Coding

VQM Video Quality Metric

WLAN Wireless Local Area Network

WMAN Wireless Metropolitan Area Network

WPAN Wireless Personal Area Network

WWAN Wireless Wide Area Network
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