

DOLL Academy 2 day course plan

Course plan (temporary)

Day 1

- 9-9:15: Welcome and introduction
- 9:15-10: Introduction to LED technology
- 10-11: Photometry
- 11-12: Colorimetry
- 12-13: Lunch
- 13-14: Demonstration: (Integrating sphere, goniometer)
- 14-15: Flicker with demonstration (flicker, dimming of LEDs)
- 15-17: Practical exercise: Spectrometers, flicker and luminance

Day 2

- 9-10: Additive color mixing and color perception
- 10-11: Color Rendering Indices
- 11-12: White light generation
- 12-13: Lunch
- 13-14: Light and Health
- 14-15: Guest lecture (lighting design, health, etc)
- 14-16: Practical exercise: Integrating spheres and goniometers
- 16-17: Sum up of the course
- 17: Thanks and goodbye

Topics in more detail

- Introduction to LED technology
 - Electric energy usage for Lighting
 - LED history and future (Nobel Prize 2014)
 - How does LEDs work? (PN-junction)
- Photometry
 - Quantities and definitions
 - Efficiency and efficacy
- Colorimetry
 - o Theory of color measurement
 - Color matching functions
 - Color spaces and Chromaticity diagrams (CIE 1931(x,y), Uniform (u,v)-diagram)
 - Correlated Color Temperature
- Additive color mixing
- Color Rendering Indices
 - CIE CRI Ra
 - o TM-30
- White light generation
 - o RGB mixing
 - Wavelength converters
 - Efficiency/quality trade off
- Color perception
 - o Illusions
- Flicker
 - Metrics (Percent Flicker (PF) / Flicker Index (FI) / Visibility Measure (Mv))
 - Standards and recommendations
 - o Dimming
- Light and health
 - o Circadian sensitivity
 - Temporal Light Artefacts (TLAs) / flicker
- Equipment
 - Spectrometers
 - o Integrating Spheres
 - o Goniometers
- Guest lectures:
 - o E.g. lighting design

Practical exercises

- Spectrometer to measure:
 - o Spectra
 - Chromaticity coordinates
 - Correlated color temperature
 - Color rendering
- Integrating spheres to measure:
 - o Luminous flux
 - Efficacy
 - o Spectra
- Goniometer to measure:
 - Light Intensity Distribution (LID)
 - Flicker measurements using:
 - o LabVIEW
 - Mobile phone camera
- Luminance measurement using:
 - Luminance camera Techno Team
 - Classical luminance meters

Physical demonstrations

- Inspection of a rack with different light sources using pocket spectroscopes
- Color mixing (Red, green and blue projected on white surface to generate cyan, magenta, yellow and white) and/or (laser pointers into small integrating sphere)
- Integrating sphere (principle and scattering)
- Stroboscopic effects and phantom arrays of flicker
- Dimming of LEDs